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中文摘要 

我們運用新型遞歸多變量濾波〔recursive multivariate filter〕，順利萃取好動態

條件基本面解釋成因的風險溢酬〔dynamic conditional factor premiums〕，實證

計量解析顯示此項新型計量模型成功解釋許多資產訂價領域的異常現象〔size, 

value, momentum, asset growth, and operating profitability〕。同時，自我向量

迴歸解析實證確認總經衝擊與動態條件溢酬兩者的雙向因果連動關係〔mutual 

causation in vector autoregressions〕，我們將其雙向因果連動關係，確立成為

基本面解釋成因選擇的科學理據條件，由於動態條件溢酬顯著反映總經衝擊風險，

此雙向因果連動關係自然展現投資人的基本面總經預期資產報酬，這項經濟見解

可以幫助有效區分衡量金融領域當中的理性預期均衡訂價模型與行為財務失衡

訂價模型。 
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Abstract 

We extract dynamic conditional factor premiums from the Fama-French factor model and find 

that most anomalies disappear after one accounts for time variation in these premiums. Vector 

autoregression evidence shows that mutual causation between dynamic conditional alphas and 

macroeconomic surprises serves as a core qualifying condition for fundamental factor selection. 

This economic insight is an incremental step toward drawing a distinction between rational risk 

and behavioral mispricing models. To the extent that dynamic conditional alphas can reveal the 

marginal investor’s fundamental news and expectations about the cross-section of average asset 

returns, our economic insight helps enrich macroeconomic asset return prediction. 
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Abstract 

We extract dynamic conditional factor premiums from the Fama-French factor model and find 

that most anomalies disappear after one accounts for time variation in these premiums. Vector 

autoregression evidence shows that mutual causation between dynamic conditional alphas and 

macroeconomic surprises serves as a core qualifying condition for fundamental factor selection. 

This economic insight is an incremental step toward drawing a distinction between rational risk 

and behavioral mispricing models. To the extent that dynamic conditional alphas can reveal the 

marginal investor’s fundamental news and expectations about the cross-section of average asset 

returns, our economic insight helps enrich macroeconomic asset return prediction. 

 

1. Introduction 

Fama and French’s (1992, 1993, 1996, 1998, 2015, 2016) seminal contributions shed skeptical 

light on the empirical performance of the Capital Asset Pricing Model (CAPM) of Sharpe (1964) 

and Lintner (1965). The subsequent search for a better asset return model has been a hot pursuit 

for many financial economists (Fama and French, 1993, 1995, 1996, 1998, 2006b, 2008, 2015; 

Hou, Xue, and Zhang, 2014). Financial economists engage in the relentless debate over whether 

dramatic movements in market valuation such as the Global Financial Crisis reflect a “rational” 

fair-value price correction or a lack of compensation for risk. The debate has left many financial 

economists at a time-worn impasse (Fama and French, 2004). Empiricists continue to discover 

new asset anomalies (e.g. Titman, Wei, and Xie (2004); Fama and French (2006b, 2008); Cooper, 

Gulen, and Schill (2008); Li, Livdan, and Zhang (2009); Novy-Marx (2013)). 

Kozak, Nagel, and Santosh’s (2017; 2018) recent studies show that many recent empirical 

horse races cannot draw a distinction between both rational and behavioral theories of average 

return evolution. Kozak et al (2018) report that a factor model with a small number of statistical 

principal-components (PCs) performs as well as the prior factor models (e.g. Fama and French 

(1993); Hou, Xue, and Zhang (2014); Fama and French (2015); Novy-Marx and Velikov (2016); 

Barillas and Shanken (2018)). For typical portfolios, these few factors dominate the covariance 

matrix of returns. In the absence of near-arbitrage investment opportunities, these factor models 

include only a few dominant factors, which can be fundamental characteristics such as size and 

book-to-market or purely statistical PCs. Because these models exhibit few conceptual links to 

investor beliefs and preferences, the q-theoretic factor models are as much “behavioral models” 

as the models are “rational models” (cf. Berk, Green, and Naik (1999); Johnson (2002); Gomes, 

Kogan, and Zhang (2003); Liu, Whited, and Zhang (2011); Liu and Zhang (2008); Lin, and 

Zhang (2013); Liu and Zhang (2014)). In a similar vein, the prior tests of characteristics-versus- 
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covariances inform us little of whether and how behavioral barriers such as investor sentiment 

and overconfidence affect asset returns (e.g. Daniel and Titman (1997); Brennan, Chordia, and 

Subramanyam (1998); Davis, Fama, and, French (2000); Stambaugh and Yuan (2017)). Overall, 

it seems futile to implement these horseraces to assess the complex convolution of both investor 

sentiment and rationality in most asset return tests. 

In the current study, we carry out an alternative approach to tackling this important issue in 

finance. We first extract all dynamic conditional factor premiums from the Fama-French (2015) 

model and then find that most anomalies disappear after one accounts for time variation in these 

premiums. Granger-causality tests suggest new mutual causation between dynamic conditional 

alpha spreads and macroeconomic innovations. This mutual causation therefore serves as a core 

qualifying condition for factor selection with sound economic motivation. In the current study, 

our economic insight is an incremental step toward drawing a distinction between both rational 

risk and behavioral models in response to Kozak, Nagel, and Santosh (2017; 2018). To the extent 

that macroeconomic surprises manifest in the form of dynamic conditional alphas, this causation 

can reveal the marginal investor’s fundamental news and expectations about the cross-section of 

average returns. Hence, our evidence contributes to macroeconomic asset return prediction. 

Kozak, Nagel, and Santosh (2018) point out that the presence of arbitrageurs will connect 

the covariance structure to the cross-section of average returns. Insofar as this cross-section at 

least partially reflects investor sentiments such as overconfidence, salience of recent experience, 

and other cognitive biases, behavioral mispricing factors can help price assets with reasonable 

bounds on the Sharpe ratios. In this context, these behavioral factors load reasonable premiums 

to correctly price assets. However, these behavioral factors and premiums “will not necessarily 

covary with aggregate macroeconomic risks, as the [fundamental factors] would…” (cf. Kozak, 

Nagel, and Santosh (2017, 2018); Daniel et al (2017); Daniel, Hirshleifer, and Sun (2017)). In 

fact, Kozak, Nagel, and Santosh (2018) suggest several alternative routes to design asset return 

tests that are more informative about investor beliefs, behaviors, and preferences: 

“To devise tests that are more informative about investor beliefs, researchers must exploit 

additional predictions of a factor model that relate returns to other data such as macroeconomic 

variables, information on portfolio holdings, or data on investor beliefs” (cf. Kozak, Nagel, and 

Santosh (2018): Section III.C first paragraph with our own bold italic emphasis). 

In the current study, we pick the low-hanging fruit through an empirical analysis of mutual 

causation between macroeconomic innovations and dynamic conditional factor premiums. To 

the extent that macroeconomic innovations manifest in the form of dynamic conditional alphas 

and betas, the conditional moments of returns and factors convey information about the cross-

section of average returns. This causation can thus serve as a core qualifying condition for valid 

and sound factor selection in macroeconomic asset return prediction. In particular, our evidence 

lends credence to the ubiquitous use of Fama-French (2015) factors that can reveal the marginal 

investor’s response to fundamental expectations about the cross-section of average returns. At 
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the same time, however, our econometric tests support Fama and French’s (1996, 2008, 2015, 

2016) perennial reluctance to consider the Carhart (1997) momentum factor in their factor model. 

We connect our dynamic conditional factor model results to recent advances in the intertemporal 

CAPM context (Merton, 1973; Campbell, 1993; Campbell and Vuolteenaho, 2004; Campbell et 

al, 2017). On balance, our current study represents an incremental step toward better deciphering 

a distinction between the rational risk paradigm and the behavioral mispricing conjecture. 

We acknowledge the fact that some recent studies replicate a broader basket of anomalies 

(cf. Fama and French (2016); Harvey et al (2016); Harvey (2017); Hou, Xue, and Zhang (2017); 

Chordia, Goyal, and Saretto (2017)). Our primary and ultimate goal is not to compete with these 

prominent authors with more empirical replication. Instead, we establish new Granger causation 

between dynamic conditional alpha spreads and macroeconomic innovations as a core qualifying 

condition for fundamental factor selection in macro asset return prediction. This condition adds 

sound economic rigor and intuition to macroeconomic asset return prediction. So this condition 

contributes to our fresh insight that bilateral causation between macroeconomic surprises and 

dynamic conditional alpha spreads reflects the marginal investor’s fundamental news and macro 

expectations about the cross-section of average returns. This fresh insight can help demystify the 

empirical puzzle that Kozak, Nagel, and Santosh (2018) suggest in their recent research. 

Macroeconomic innovations move in tandem with dynamic conditional factor premiums 

that provide unique economic insights into the implicit nexus between state-dependent alphas 

and betas across fundamental factors. This nexus reveals rich information about the conditional 

factor covariance matrix in contrast to the unconditional counterpart, the latter of which omits 

informative restrictions across the conditional moments of both asset returns and factors from 

the empirical assessment of goodness-of-fit (Nagel and Singleton, 2011). Not only do dynamic 

conditional alpha spreads change over time, but these alpha spreads also exhibit a robust causal 

relation with macroeconomic surprises in a standard vector autoregressive system (Sims, 1980). 

Macroeconomic innovations Granger-cause most dynamic conditional alpha spreads except for 

momentum and partial value. Granger causation runs in a bilateral direction such that dynamic 

conditional alpha spreads both lead and convey material information about macro innovations 

(cf. our subsequent explanatory text on Section 4 and Tables 6 to 8).  

This evidence enriches our key interpretation of the intertemporal CAPM that macroeconomic 

gyrations both lead and vary with the conditional expectations of terminal payoffs in the marginal 

investor’s intertemporal selection (Merton, 1973; Campbell, 1993; Fama, 1996; Campbell and 

Vuolteenaho, 2004; Campbell et al, 2017). Macro innovations manifest in the form of dynamic 

conditional alpha spreads that persist as abnormal returns. Therefore, mutual Granger causation 

between macro surprises and dynamic conditional alpha spreads becomes an informative piece 

of evidence that we can apply to help resolve some long prevalent asset anomalies. 

With this theoretical justification of the intertemporal CAPM, we contribute to the empirical 

design of a workhorse asset return model by qualifying specific fundamental factors as useful 
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and reasonable state variables. Our core qualifying condition is equivalent to mutual causation 

between macro surprises and alpha spreads that reflect changes in the conditional expectations 

of structural shifts in terminal wealth for the marginal investor. To the extent that many residual 

macroeconomic fluctuations lead dynamic conditional alpha spreads and vice versa, this causal 

relation becomes a necessary condition for valid and effective factor selection in empirical asset 

return research. For this pivotal purpose, sound theoretical justification of fundamental factors 

with respect to causal macroeconomic innovations should precede pure empirical motivation in 

macroeconomic asset return prediction (Harvey, 2017; Harvey, Liu, and Zhu, 2016). 

Our current study also contributes to the conditional multifactor model literature. It is well-

known that a dynamic conditional mean-variance efficient return need not unconditionally price 

the static portfolios with constant weights (cf. Cochrane (2005: 140)). Specifically, if a portfolio 

return is on the conditional mean-variance efficient frontier, this return may or may not land on 

the unconditional mean-variance efficient frontier. Cochrane (2005: 168) describes this issue in 

a succinct statement: “Whether the [multifactor model] can be rescued by more careful treatment 

of conditioning information remains an empirical question”. In the current study, we attempt to 

fill this theoretical void by conditioning the main prediction of average returns on Fama-French 

(2015) factors up to each time increment. Subsequent work substantiates our economic insight 

that reconciles a reasonable array of anomalies within the dynamic conditional factor model. 

Our unique use of fresh econometric tools serves as another empirical contribution to the 

asset return literature. Both the conditional specification test and recursive multivariate filter help 

extract dynamic conditional factor premiums that covary with macro surprises substantially over 

time. This important econometric innovation extends and generalizes the Fama-French multiple-

regression approach and therefore can become part of the standard toolkit for subsequent asset 

pricing analysis. This application reconciles a baseline array of anomalies with the central theme 

of “dynamic” multifactor mean-variance efficiency (cf. dynamic MMVE in Fama (1996) and 

Merton (1973)). Further, the concomitant tests provide evidence in support of this notion. As a 

result, dynamic MMVE can serve as an informative benchmark for the empirical assessment of 

pervasive anomalies or portfolio strategies that generate persistent abnormal returns in a static 

context. Overall, our dynamic conditional factor model thus has key implications for equity cost 

estimation, risk management, fund performance evaluation, and corporate event assessment. 

Applying the recursive multivariate filter adds value to the notion of dynamic multifactor 

mean variance efficiency (MMVE) in the intertemporal asset pricing context (cf. Merton (1973); 

Campbell (1993); Fama (1996); Campbell and Vuolteenaho (2004); Campbell et al (2017)). In 

this context, investors care about not only their terminal wealth but also state variables such as 

human capital, labor income, consumption, and hedging investment opportunities that covary 

with their terminal wealth (Fama and French, 2004). For instance, several studies suggest that 

inter-industry heterogeneity in both human capital and labor mobility can help explain the cross-

section of average returns (Eiling, 2013; Donangelo, 2014). An international factor model with 
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Epstein-Zin (1989) recursive investor preferences explains the high correlation of stock market 

indices despite the low correlation of fundamental factors (Colacito and Croce, 2011). A twin-

country model can demystify both the carry trade puzzle and low correlation between exchange 

rate movements and cross-country differences in total consumption in the intertemporal context 

(Colacito and Croce, 2013). Hence, the Fama-French (2015) factors serve as valid and relevant 

empirical hedging instruments for the marginal investor’s intertemporal selection between his 

or her current and future investment opportunities. Our current work suggests that the exclusion 

of Fama-French factors leads the econometrician to reject the null hypothesis of a correct factor 

model specification (Fama and French, 2016). Specifically, we find mutual Granger causation 

between macroeconomic surprises and dynamic conditional alphas for the Fama-French (2015) 

fundamental factors, except for momentum and partial value. This latter falsification provides 

empirical justification of Fama and French’s (1993, 1996, 2015, 2016) perennial reluctance to 

encompass Carhart (1997) momentum as a new fundamental factor in the rational risk paradigm. 

All of this evidence thus bolsters our intertemporal CAPM interpretation of fundamental factors 

for the dynamic conditional factor model. 

To the extent that macroeconomic surprises manifest in the form of dynamic conditional 

alphas, this causation reveals the marginal investor’s fundamental news and expectations about 

the cross-section of average returns. Our evidence enriches and contributes to the intertemporal 

CAPM interpretation of dynamic conditional factor models. In this context, macro innovations 

serve as fundamental news and expectations that induce cash-flow and future-risk betas as “bad 

betas” or negative discount-rate betas as “good betas”. In accordance with this intertemporal 

CAPM thesis, we expect assets with positive cash-flow shocks, future-risk spillovers, or subpar 

discount-rate news to yield low average returns. Conversely, we would expect other assets with 

negative cash-flow shocks, volatility declines, or optimistic discount-rate news to generate high 

average returns. Therefore, mutual causation between macroeconomic innovations and dynamic 

conditional alpha spreads serves as a core qualifying condition for fundamental factor selection 

with sound economic rigor and intuition. This economic insight is one of our main contributions 

to macroeconomic asset return prediction. 

In addition to the use of a recursive multivariate filter for dynamic conditional alpha and 

beta estimation, the conditional specification test helps draw a crucial distinction between both 

the static and dynamic conditional factor models. This conditional specification test examines 

whether the core distance between the static and dynamic conditional estimators turns out to be 

significant so that there is sufficient evidence for one to reject the null hypothesis of a consistent 

and efficient static specification. Under the alternative hypothesis, only the dynamic conditional 

estimator is consistent although this more generic alternative specification may or may not be 

efficient in the econometric sense. In our empirical analysis of 100 decile returns on the major 

anomalies plus their respective 10 long-short stock portfolio strategies that focus on the extreme 

deciles, about 95% of the stock portfolio tilts point to the statistically reliable rejection of the 
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null hypothesis that the static factor model is a correct specification. The key preponderance of 

empirical results thus supports our chosen dynamic conditional factor model in contrast to the 

static baseline factor model. 

The remainder of our current study follows the structure below. Section 2 discusses the use 

of a recursive multivariate filter for estimating dynamic conditional factor premiums from the 

baseline Fama-French (2015) factor model. Section 3.1 describes the key datasets on the Fama-

French factors and anomalies. Section 3.2 discusses the core empirical evidence in support of 

dynamic conditional factor premiums. Section 3.3 empirically analyzes each factor premium as 

a typical financial time series that we extract from recursive multivariate filtration. Section 3.4 

lists the conditional specification test evidence in favor of the dynamic conditional factor model. 

Section 4 finds Granger causation between macroeconomic surprises and dynamic conditional 

alpha spreads as the core qualifying condition for fundamental factor selection in modern asset 

pricing model design. Section 5 concludes our study and offers new avenues for future research, 

especially structural factor models with an economically intuitive and meaningful specification 

of both investor beliefs and preferences.  

The appendices offer supplementary evidence for our work. In particular, Appendix 1 helps 

the reader visualize top-to-bottom-decile dynamic conditional alphas across several anomalies. 

Appendix 2 presents the econometric test details for the canonical treatment of each dynamic 

conditional factor premium as a unique typical financial time-series. Appendix 3 provides a list 

of macroeconomic variable definitions and their data sources for our core vector autoregression 

(VAR) empirical analysis of Granger bilateral causation between fundamental macro surprises 

and dynamic conditional factor premiums. Appendix 4 encapsulates some elaborate discussions 

on the conceptual nexus between our current study and several recent studies of empirical asset 

return prediction. Appendix 5 presents the empirical results for dynamic conditional betas. 

 

2. Methodology 

In this section, we discuss our application of recursive multivariate filtration as an econometric 

innovation. This filter helps extract major dynamic conditional factor premiums from Fama and 

French’s (2015) factor model. We offer an intuitive explanation for connecting this filter to the 

core notion of dynamic multifactor mean-variance efficiency (MMVE) (e.g. Merton (1973) and 

Fama (1996)). Our intuitive explanation contributes to the empirical asset-pricing literature by 

reconciling ubiquitous anomalies with dynamic multifactor portfolio efficiency.  

An advantage of this unique econometric method is that we can assess whether the pervasive 

asset pricing anomalies persist after one accounts for time variation in these dynamic conditional 

factor premiums. We propose an alternative test of dynamic multifactor mean-variance efficiency 

to complement Gibbons, Ross, and Shanken’s (1989) F-test. Our central evidence suggests that the 

pervasive anomalies of size, value, momentum, asset growth, operating profitability, and short-term 

and long-term return reversals, are not robust after we account for the dynamic nature of conditional 
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factor premiums.1 A unique core implication of our empirical evidence is that dynamic MMVE 

is essential to the design of a workhorse factor model for modern investment analysis. The prior 

static factor models can be viewed as special cases of the more generalized dynamic conditional 

factor model. 

The vast majority of earlier studies of factor models rest upon the implicit assumption that 

factor premiums are constant over time. Under this key assumption, the resultant static analysis 

cannot account for the adverse effect of measurement noise that might be present in each state 

variable. To the extent that conditional factor premiums vary over time, this measurement noise 

can persist even in long-term data. Hence, the emergence and persistence of anomalous returns 

may arise from the fact that the conventional static baseline model cannot adequately take into 

account time variation in dynamic conditional factor premiums. 

It is important for us to point out that our chosen use of a recursive multivariate filter differs 

from the recent attempts by numerous proponents of the conditional CAPM or other conditional 

factor model to allow each factor premium to change in short-window regressions, to move in 

tandem with economic variables, or to co-vary in accordance with some specific structure of 

autoregressive mean reversion (Lewellen and Nagel, 2006; Fama and French, 2006; Adrian and 

Franzoni, 2009; Ang and Kristensen, 2012).2 In contrast, the recursive multivariate filter can 

allow conditional factor premiums to jointly covary in each time increment. This covariation is 

not conditional on particular macroeconomic fluctuations. Neither does this covariation strictly 

follow any arbitrary structure. As the recursive multivariate filter and conditional specification 

test evidence both bolster the case for dynamic MMVE, these main results lend credence to the 

empirical plausibility of dynamic conditional factor premiums. As dynamic conditional factor 

 
1   In our current empirical assessment, we consider a reasonably wide array of ubiquitous asset pricing anomalies 

such as size (Banz, 1981), value (Basu, 1977; Rosenberg, Reid, and Lanstein, 1985; Fama and French, 1992; 

Fama and French, 1998; Lakonishok, Shleifer, and Vishny, 1994), medium-term return momentum (Jegadeesh 

and Titman, 1993, 2001; Chan, Jegadeesh, Lakonishok, 1996), asset investment growth (Titman, Wei, and Xie, 

2004; Cooper, Gulen, and Schill, 2008), operating profitability (Haugen and Baker, 1996; Collins and Hribar, 

2000; Dechow, Hutton, and Sloan, 2000; Richardson, Sloan, Soliman, and Tuna, 2005; Fama and French, 2006b; 

Novy-Marx, 2013), and contrarian long-term return reversal (DeBondt and Thaler, 1985; Lakonishok, Shleifer, 

and Vishny, 1994; Fama and French, 1996, 1998). Fama and French (2004) provide a meticulous survey of the 

main anomalies that point to the empirical embarrassment of the CAPM. Fama and French (2008) revisit the 

empirical assessment of these key anomalies and in turn suggest that these anomalies tend to concentrate in the 

extreme deciles or in the microcap portfolio. Some more recent studies replicate a broader basket of anomalies 

(cf. Fama and French (2016); Harvey et al (2016); Harvey (2017); Hou, Xue, and Zhang (2017); Chordia, Goyal, 

and Saretto (2017)). Our primary and ultimate goal is not to compete with these prominent authors with more 

replication. Instead, the current study seeks to establish “mutual causation” between dynamic conditional alphas 

and macro surprises as a core qualifying condition for relevant and effective factor selection in subsequent asset 

pricing model design. 
2  The conditional asset pricing literature can be traced back to the econometric contributions of Harvey (1989), 

Shanken (1990), Jagannathan and Wang (1996), Lettau and Ludvigson (2001). Ferson and Harvey (1991, 1993, 

1999) empirically link multifactor betas to economic fluctuations. Several studies point out the importance of 

identifying the correct and relevant set of state variables (Harvey, 1989; Shanken, 1990; Jagannathan and Wang, 

1996; Cochrane, 2001: 145). Lewellen and Nagel (2006) avoid this problem by using short-window regressions. 

Furthermore, Ang and Chen (2007) and Fama and French (2006) both assume some particular structure of auto-

regressive mean reversion or structural breaks in the time-series behavior of market beta. Adrian and Franzoni 

(2009) allow market beta to vary over time with a univariate version of the recursive filter that the current paper 

proposes in the multivariate context. Ang and Kristensen (2012) test the conditional CAPM and the conditional 

Fama-French three-factor model and report evidence in favor of the alternative hypothesis that the pricing errors 

are too large for the conditional model to be correctly specified.  
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premiums are highly volatile over time, this high volatility suggests a lack of statistical evidence 

against the hypothesis that our chosen dynamic conditional factor model is correctly specified.3  

Nagel and Singleton (2010) design a test of conditional moments of asset returns in a high-

dimensional context. It is well-known that it is more difficult to handle the multi-variate kernel 

regressions as the number of dimensions increases in the Nagel-Singleton (2010) framework. 

Thus, our chosen use of both recursive multivariate filtration and conditional specification test 

evidence helps resolve this important issue in modern asset pricing model design. Not only do 

we apply recursive multivariate filtration to extract informative time-varying conditional factor 

premiums, but we also devise a new dynamic conditional specification test to empirically verify 

factor premiums as dynamic financial time-series in the form of ARMA-EGARCH and ARMA-

GJR-GARCH stochastic processes. Appendix 1 provides the complete time-series visualization 

of our dynamic conditional alphas over time. 

The Fama-French (2015) five-factor model follows the canonical representation of Eq(1) 

with static point estimates of factor premiums on the respective factors. This model embeds the 

excess return on the CRSP value-weighted market portfolio. Each factor is the spread between 

the average returns on the top 30% and bottom 30% stock deciles that the econometrician sorts 

on size, book-to-market, asset growth, and operating profitability. Specifically, (Rkt–Rft) and 

(Rmt–Rft) denote the excess returns on the respective individual and market stock portfolios; 

SMBt or Small-Minus-Big is the mean return spread between the top 30% and bottom 30% size 

deciles; HMLt or High-Minus-Low is the mean return spread between the top 30% and bottom 

30% book-to-market deciles; CMAt or Conservative-Minus-Aggressive equates the mean return 

 
3  There are several main differences between the current paper and the previous studies of conditional factor 

models. First, we consider all of Fama-French’s (2015) fundamental factors in the recursive estimation of 

dynamic conditional factor premiums in contrast to the narrower focus on the single-beta CAPM (Lewellen and 

Nagel, 2006; Fama and French, 2006a; Petkova and Zhang, 2005; Ang and Chen, 2007; Adrian and Franzoni, 

2009) and the prior Fama-French factor model (Ang and Kristensen, 2012). Should the model exclude some 

relevant state variables, the incorrect specification would lead to an inconsistent estimator and also would 

produce significant alphas. In effect, each alpha absorbs the sum product of each dynamic factor premium and 

the corresponding state variable that one excludes from the model. Therefore, the inclusion of all of the Fama-

French (2015) return spreads captures a broader gamut of state variables. This information set can more 

accurately span the mean-variance space. In turn, the consistent estimation of dynamic conditional factor 

premiums minimizes the likelihood of omitted-variables bias. Second, the current study uses a dynamic version 

of the Fama-French (2015) factor model to assess the persistence of anomalies such as size, value, momentum, 

asset investment growth, operating profitability, short-run return reversal, and long-term return reversal. Unlike 

Petkova and Zhang (2005), Lewellen and Nagel (2006), Fama and French (2006a), and Ang and Kristensen 

(2012), we find evidence in favor of the null hypothesis that a dynamic multifactor model adequately explains 

the long-short return spreads from portfolio tilts that consistently generate static anomalous returns. All of these 

anomalies are not robust after we consider the dynamic nature of conditional factor premiums. Third, our 

dynamic application is simple, requires no stringent time-series structure, and retains parsimony and flexibility 

in econometric usage. Unlike Ang and Chen (2006), we specify no highly parameterized latent-variable process 

to characterize the evolution of conditional factor premiums (Fama and French, 2006a: 2177). Unlike Lewellen 

and Nagel (2006), Fama and French (2006a), and Ang and Kristensen (2012), we set no particular time interval 

for updating the estimation of conditional factor premiums. Neither do we apply any specific kernel method or 

bandwidth choice to estimate smooth conditional factor premiums (Ang and Kristensen, 2012). Time variation 

in factor premiums is not conditional on macroeconomic fluctuations. The current study differs from the prior 

studies that assess time variation in macroeconomic factor premiums (cf. Ferson and Harvey, 1991, 1993, 1999; 

Lewellen and Nagel, 2006; Ang and Kristensen, 2012). However, each recursively fit dynamic factor premium 

can be generalized as a common financial time series that contains rich and meaningful economic content. It is 

plausible for conditional factor premiums to convey useful information about macroeconomic trends and cycles.  
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spread between the top 30% and bottom 30% investment deciles; and RMWt or Robust-Minus-

Weak is the average return spread between the top 30% and bottom 30% profitability deciles. 

In comparison, we attempt to gauge the “dynamic estimates” of conditional factor premiums as 

unique individual time-series in the alternative representation of Eq(2). A primary comparison 

between Eq(1) and Eq(2) suggests that the former entails the static estimation of point estimates 

of factor premiums, α, βm, βs, βh, βr, and βc, on the Fama-French (2015) five-factors while the 

latter involves the dynamic estimation of time-series trajectories of conditional factor premiums, 

αt, βmt, βst, βht, βrt, and βct, on the Fama-French (2015) five-factors. For the practical purpose of 

our current analysis, the point estimates of static factor premiums in Eq(1) differ from the long-

term mean values of dynamic conditional factor premiums in Eq(2) where these equations carry 

the Gaussian normal error terms εt and et: 

( ) ttctrthtsftmtmftkt CMARMWHMLSMBRRRR  +++++−+=−   Eq(1) 

( ) ttcttrtthttstftmttmtftkt eCMARMWHMLSMBRRRR +++++−+=−   Eq(2) 

 

Our recursive multivariate filter follows the dynamic multifactor representation below (Kalman, 

1960; Harvey and Shephard, 1993: 267-270; Lai and Xing, 2008: 130-133; Tsay, 2010: 591): 

11 ++ += tttt uβAβ              Eq(3) 

tttt vβFr +=               Eq(4) 

 

where βt is a (k+1)╳1 vector of conditional factor premiums at each time increment; At is a (k+1)

╳(k+1) identity matrix of linear dynamic variation in the state equation Eq(3); rt is a vector of 

excess returns on each portfolio; Ft is a T╳(k+1) matrix of Fama-French factors plus an intercept 

in the measurement equation Eq(4); and ut and vt are independent random vectors with E(ut)=0, 

cov(ut)=Σu, E(vt)=0, and cov(vt)=Σv. The dynamic states βt are unobservable. The observations 

are the excess returns rt that are linear transformations of time-varying factor premiums βt via 

the matrix Ft plus the unobservable random disturbances ut. The recursive multivariate filter is 

the recursive minimum-variance linear estimator of βt based on the observations up to each time 

increment. We can define Pt|t-1 as the covariance estimator of the unobservable state βt, as well 

as the filter for the previous state βt|t-1. The gain matrix follows the form κt below: 

( ) 1

1|1|

−

−− += v

T

tttt

T

ttttt ΣFPFFPAκ           Eq(5) 

 

For better exposition, we summarize the recursive formula for the filter in Eq(6)-Eq(9): 
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( )1|1||1
ˆˆˆ

−−+ −+= tttttttttt βFrκβAβ           Eq(6) 

( ) ( ) T

tvtu

T

tttttttttt κΣκΣFκAPFκAP ++−−= −+ 1||1
       Eq(7) 

( ) ( )1|

1

1|1|1||
ˆˆˆ

−

−

−−− −++= ttttv

T

ttttttttttt βFrΣFPFFPββ        Eq(8) 

( ) 1|

1

1|1|1|| −

−

−−− +−= tttv

T

tttt

T

ttttttt PFΣFPFFPPP         Eq(9) 

 

where we can initialize recursions at β1|0=E(β1) and P1|0=cov(β1). Lai and Xing (2008: 130-133) 

provide a complete derivation of the recursive formula for the filter. Due to its recursive nature, 

the filter ensures that the measurement noise between the real-time state and its most up-to-date 

dynamic estimator is nil on average (i.e. the expectation of the last term in Eq(8) equates zero).  

To compare each stock portfolio to the market portfolio or the dynamic MMVE Q-portfolio, 

we can compute the quadratic Sharp-ratio square as αTV-1α where α is a vector of alphas on the 

deciles and V is the residual variance-covariance matrix. In accordance with the prior treatment 

of Gibbons, Ross, and Shanken’s F-test (1989) (Campbell, Lo, and MacKinlay, 1997: 192-193; 

Cochrane, 2005: 230-233), we present this test statistic in Eq(10): 

( )1,~
1

ˆˆˆ1
2

1

−−














+







 −−
=

−

NTNF
SRN

NT
GRS

m

T
αVα

       Eq(10) 

where k=5 is the number of regressors in the Fama-French (2015) factor model; N=10 denotes 

the number of deciles; and SRm denotes the Sharpe ratio for the mean-variance efficient market 

portfolio in the Sharpe-Lintner CAPM. This GRS F-test examines whether a vector of average 

alphas is jointly zero in a static sense. Several comments can be made on the GRS F-test. First, 

the test assumes away the fact that conditional factor premiums can exhibit substantial variation 

over time. There can be non-trivial measurement noise in the estimation of unknown parameters 

in the multifactor model (Merton, 1980; Black, 1986). Second, the test only investigates a static 

version of portfolio efficiency with a single mean-variance efficient portfolio (Markowitz, 1952; 

Merton, 1973; Fama, 1996; Fama and French, 1996). The test may thus call for some adjustment 

in the more plausible case where several assets span the mean-variance space and then address 

the hedging concerns for the investors who care about their intertemporal portfolio choices. In 

this light, the optimal benchmark portfolio should include the relevant state variables that yield 

the largest possible Sharpe ratio over a sufficiently long time horizon. Third, the test rests on 

the implicit assumption that the alpha spread is constant over time. In this case, the GRS F-test 

may reject the correctly-specified multifactor model more often than one otherwise would in a 

dynamic context. The subsequent analysis demonstrates the opposite case that there is pervasive 

time variation in conditional factor premiums. Each dynamic alpha spread varies substantially 
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at different historical junctures and exhibits the well-known properties of a financial time series. 

To the extent that the GRS F-test cannot take into account dynamic heterogeneity in conditional 

factor premiums, it is important for the econometrician to design a more suitable test of dynamic 

portfolio efficiency. 

When the econometrician applies the recursive multivariate filter to extract the time-series 

of dynamic conditional factor premiums, alpha spreads should enter the GRS-equivalent F-test 

formula. Over each time increment the recursion is an independent estimation of dynamic factor 

premiums. This estimation makes use of all the return data up to the point in time. It is important 

to assess the joint significance of αt over each time increment. For this reason, we have to adjust 

the degrees of freedom for the numerator of the GRS-equivalent F-test statistic: 

( )1,~
1

ˆˆˆ1
2

1

−−−−














+









−−

−−
=

−

NTkNTF
SRkNT

NT
AGRS

m

T
αVα

     Eq(11) 

We dub Eq(11) the adjusted-GRS F-test. Cochrane (2005: 230-235) offers a GMM-equivalent 

χ2-test that yields robust consistent standard errors to safeguard against both heteroskedasticity 

and serial correlation. In a similar vein, we run the adjusted-GMM χ2-test to account for the key 

dynamic nature of each conditional alpha spread: 

( )kNT
SR

NT
AGMM

m

T

−−













+







 −−
=

−
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1

~
1

ˆˆˆ

1

1


αVα
       Eq(12) 

Our chosen use of a recursive multivariate filter adds value to the notion of dynamic MMVE in 

the intertemporal asset-pricing context of Merton (1973), Campbell (1993), and Fama (1996). 

In this dynamic context, investors care about not only their terminal wealth but also investment 

opportunities that these investors expect to face before they achieve their terminal wealth. These 

marginal investors consider how their current wealth might co-vary with several state variables 

such as human capital, labor income, consumption, and hedging investment opportunities that 

remain available after the present period (Fama and French, 2004). For instance, inter-industry 

heterogeneity in human capital and labor mobility affects the cross-section of average returns 

(Eiling, 2013; Donangelo, 2014). In addition, an international factor model with Epstein-Zin 

(1989) recursive investor preferences helps explain the high correlation of global market indices 

despite the low correlation of fundamental factors (Colacito and Croce, 2011). A similar cross-

country model helps demystify the carry-trade puzzle and the low correlation between exchange 

rate gyrations and international differences in aggregate consumption in an intertemporal asset-

pricing context (Colacito and Croce, 2013). In this light, the Fama-French (2015) factors serve 

as valid and relevant empirical hedging instruments for the marginal investor’s intertemporal 

substitution between the current and future investment opportunities. A subsequent strand of 

falsification tests suggests that the main exclusion of any one of the Fama-French (2015) factors 

would lead the econometrician to reject the null hypothesis of our correct dynamic conditional 



doi:10.6342/NTU202300842
12 

 

factor model specification. All of this evidence thus shines fresh light on a dynamic conditional 

interpretation of economic intuition behind the intertemporal CAPM (Merton, 1973; Campbell, 

1993; Fama, 1996; Campbell and Vuolteenaho, 2004; Campbell et al, 2017). 

Fama and French’s (2015) five-factor model includes a unique set of fundamental factors 

(e.g. Fama and French (1993, 1995, 1996, 1998, 2006b, 2012, 2015); Vassalou and Xing (2004); 

Petkova (2006)). Our empirical study extends their “static” model to encapsulate time variation 

in conditional factor premiums. This time variation suggests that each dynamic alpha oscillates 

too much around nil so that the pervasive anomalies vanish. Once the econometrician accounts 

for the dynamic nature of conditional factor premiums, each alpha spread between the extreme 

deciles eventually disappears. A pivotal comparison hence has to be made against the dynamic 

MMVE portfolio. For easier exposition, we dub this dynamic MMVE portfolio the “Q-portfolio” 

that generates the largest possible average returns for each given set of asset return covariances 

and variances with the valid fundamental factors (Fama, 1996). Without reinventing the wheel, 

we use the Fama-French (2015) five-factors as state variables in our dynamic conditional factor 

analysis. Moreover, we propose an alternative Q-test of dynamic mean-variance efficiency by 

comparing the Sharpe ratios for each long-short decile alpha-spread and the MMVE Q-portfolio. 

A reasonable choice is to assume each Sharpe ratio to follow an independent normal distribution, 

then the Q-test statistic conforms to the χ2 distribution:  

( )kNT
NT

Q
T

T

−−














+







 −−
=

−

−
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1
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ˆˆˆ1

ˆˆˆ

1

1


qWq

αVα
       Eq(13) 

where q denotes a vector of Fama-French return spreads and W is the variance-covariance of 

these return spreads. In effect, our chosen omnibus Q-test verifies whether the Sharpe ratio for 

a particular portfolio tilt is so large that dynamic conditional alphas cannot be readily explained 

by the Fama-French (2015) factor model. The Q-test statistic is asymptotically analogous to the 

Wald test statistic of Ang and Kristensen (2012: 138-139) except here we regard the dynamic 

MMVE Q-portfolio as the benchmark portfolio. In this latter case, the Q-test helps measure the 

wedge between the Sharpe-ratio squares for the Q-portfolio and each stock portfolio tilt. In our 

subsequent analysis, we use the Q-test to complement the AGRS F-test and the AGMM χ2-test 

(aka the AGMM C-test). 

 

3. Evidence  

3.1 Data description 

We retrieve the U.S. stock portfolio return data from Professor Ken French’s online data library. 

The monthly stock dataset spans the 50-year period from January 1964 to December 2013. For 

applying the recursive multivariate filter to this dataset, we run the filter on a training period of 

60 months. This technical choice allows the filter to adapt dynamic conditional factor premiums 
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by recursively learning from a sufficient set of prior information. The Fama-French factors are 

the market risk premium (MRP), the return spread between the small-versus-big size portfolios 

(SMB), the return spread between the high-versus-low book-to-market portfolios (HML), the 

return spread between the robust-versus-weak portfolios in terms of their operating profitability 

(RMW), and the return spread between the conservative-and-aggressive asset-growth portfolios 

(CMA). For the practical purposes of this empirical analysis, we consider the value-weighted 

deciles for the pervasive portfolio sorts of size, value (i.e. book-to-market, cash-flow-to-price, 

dividend-to-price, and earnings-to-price), momentum, asset growth, operating profitability, and 

short-term and long-term return reversals. For each of these sorts, we apply the recursive multi-

variate filter to extract dynamic conditional factor premiums on the Fama-French (2015) factors 

and intercept term. This dynamic factor analysis focuses on whether the alpha spread between 

the extreme deciles for each of the pervasive portfolio sorts is sufficiently large for us to reject 

the null hypothesis of a correct factor model specification.  

Table 1 shows the descriptive statistics for the Fama-French factors and return spreads that 

generate anomalous patterns in several prior studies (e.g. Fama and French (1996, 2015, 2016)). 

For the size, asset investment growth, short-run return reversal, and long-run reversal sorts, the 

portfolio strategy that involves both a long position in the top decile and a short position in the 

bottom decile produces a negative average return spread. This evidence echoes the descriptive 

statistics for the other decile sorts that yield positive mean return spreads. Because these time-

series are leptokurtic and exhibit fat tails, it is reasonable to conjecture that each factor premium 

may be similar to a financial time series in the dynamic conditional factor context. Specifically, 

conditional factor premiums vary much over time and exhibit pervasive autoregressive patterns 

in the conditional mean specification and volatility clusters and asymmetries in the conditional 

variance specification. Subsequent analysis provides a deeper exploration of these new patterns. 

Table 2 lists the Sharpe ratios for the market benchmark portfolio, the Fama-French MMVE 

Q-portfolio, and the portfolio sorts of size, value, momentum, profitability, investment growth, 

and short-term and long-term return reversals. While the market portfolio attains a Sharpe ratio 

of 0.1006, the MMVE Q-portfolio achieves a superior Sharpe ratio of 0.3006. The vast majority 

of portfolio sorts generate Sharpe ratios that land within these bounds. A notable exception is 

the short-term return reversal sort. The best Sharpe-ratio performers are the portfolio strategies 

that exploit the return spreads between the top and bottom deciles of momentum, dividend-to-

price, asset growth, and short-term reversal with the respective Sharpe ratios of 0.2574, 0.2935, 

0.2551, and 0.3362. In light of this evidence, most of the anomalies offer greater rewards that 

are commensurate with their exposure to systematic risk in comparison to the CAPM. However, 

the results also suggest that the anomalies largely lead to smaller mean excess returns per unit 

of risk relative to the MMVE Q-portfolio. Table 2 thus resonates with the Q-test evidence below 

that the relative distance between the Sharpe-ratio squares for the dynamic MMVE Q-portfolio 



doi:10.6342/NTU202300842
14 

 

and each of the stock portfolio tilts is not sufficiently large for one to reject the null hypothesis 

of a correct dynamic conditional factor model specification.  

3.2 Time-varying dynamic conditional alphas  

Table 3 presents the time-varying Fama-French (2015) alphas across the deciles for each of the 

portfolio sorts, t-tests of these alpha spreads between the extreme deciles with the Newey-West 

(1987) standard-error correction that safeguards against potential heteroskedasticity and serial 

correlation, F-tests of mean-variance efficiency (Gibbons, Ross, and Shanken, 1989), and Q-

tests that we propose as the appropriate test of dynamic portfolio efficiency to complement the 

filter. A first glance at Table 3 indicates that most dynamic conditional alphas are statistically 

close to nil. Out of these portfolio tilts, only the momentum, short-term reversal, and long-term 

reversal tilts yield significant alpha spreads between the top and bottom deciles in the range of 

0.989, –1.180, and 0.426 (p-values<0.001). Yet, the positive sign of the average alpha spread 

for long-term return reversal is counter-intuitive and therefore instead suggests long-term return 

momentum. This evidence contradicts the prior studies in support of long-term return reversal 

that can arise from the typical investor’s naïve extrapolation of past superior stock performance 

(DeBondt and Thaler, 1985; Lakonishok, Shleifer, and Vishny, 1994; Fama and French, 1996). 

With respect to return momentum (Jegadeesh and Titman, 1993, 2001; Chan, Jegadeesh, and 

Lakonishok, 1996), the long-term average dynamic conditional alpha is significant only for the 

extreme deciles. In this case, the top and bottom deciles produce significant average conditional 

alphas of –0.569 and 0.42 respectively (p-values<0.005). The resultant alpha spread is therefore 

significant at the conventional statistical confidence level. Also, the dynamic conditional alpha 

spread between the extreme short-term reversal deciles is significant in econometric terms (p-

value<0.001). Whether these results are a statistical aberration calls for more formal hypothesis 

tests on the short-term reversal and momentum phenomena.  

In Table 3, all the AGRS F-tests, the AGMM C-tests, and the Q-tests unanimously suggest 

that dynamic conditional alphas are jointly indistinguishable from zero for all the portfolio tilts. 

The p-values are substantially near unity across the board. Hence, there is minimal evidence in 

support of the alternative hypothesis that our dynamic factor model is incorrectly specified. The 

main economic intuition is that the wedge between the Sharpe-ratio squares for the benchmark 

portfolio and the long-short decile strategy is not large enough to justify the statistical rejection 

of a dynamic variant of the Fama-French (2015) factor model. The conditional factor premiums 

are too volatile for the econometrician to affirm the consistent outperformance of each portfolio 

tilt once he or she takes into account the dynamic nature of these conditional factor premiums. 

In Appendix 1, the time-series visualization of dynamic conditional alpha spreads between both 

the top and bottom deciles corroborates this empirical fact. A falsification test suggests that the 

highest F-test, C-test, and Q-test p-value is 0.04 (not shown in the tables and charts) when we 

exclude any one of the Fama-French (2015) explanatory factors from the recursive estimation. 

This falsification test evidence supports the joint insignificant of dynamic conditional alphas.  
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Harvey, Liu, and Zhu (2015) introduce a multiple testing framework (e.g. Harvey and Liu 

(2014a, 2014b, 2014c, 2014d)) and provide a unique variety of historical significance cut-offs 

from the first empirical tests in the 1960s to the present. This new strand of investment literature 

suggests that we should raise the test hurdle substantially from a t-ratio of 2.0 to a t-ratio of 3.0 

for most cross-sectional asset-pricing tests. Specifically, Harvey, Liu, and Zhu (2015) find that 

this higher hurdle reduces the number of cross-sectional anomalies from 316 to only 2 i.e. value 

and momentum (cf. Asness et al (2013); Fama and French (2016); Hou, Xue, and Zhang (2017)). 

In addition, Harvey, Liu, and Zhu (2015) propose that a theoretically-derived factor should have 

a lower hurdle than an empirically-discovered factor. Their central thesis suggests that a factor 

can be important in some economic environments but unimportant in some other environments.  

While our econometric innovation complements Harvey, Liu, and Zhu’s (2015) multiple 

testing analysis, our work serves as a time-series equivalent to their cross-sectional adjustment 

for asset-pricing tests. Back-of-the-envelope calculations show that the typical stock portfolio’s 

Sharpe ratio has to increase by at least 3 to 8.2 times for most dynamic conditional alphas to be 

jointly significant at the conventional confidence level. The critical values for the χ2-test with 

525 degrees of freedom are 603.31, 579.43, and 566.91 at the respective 99%, 95%, and 90% 

confidence levels. Table 3 demonstrates that the highest C-test or Q-test statistic is 59.29 while 

the lowest C-test or Q-test statistic is 8.97. Therefore, the smallest Sharpe ratio multiplier can 

be calculated as (566.932/59.29)1/2=3.092 while the largest Sharpe ratio multiplier can then be 

calculated as (603.31/8.97)1/2=8.201. As a result, the econometrician has to specify a higher test 

hurdle for each anomaly. Across the deciles, most dynamic conditional alphas need to be larger 

on average with significantly less variability for the Sharpe ratio to increase by at least 3 to 8 

times. The equivalent Sharpe ratio would be in the approximate range of 1.15 to 2.4 (cf. Kozak, 

Nagel, and Santosh (2017)). In other words, our unique dynamic analysis of conditional factor 

premiums proposes raising the bar for the econometric asset pricing test. This recommendation 

echoes the cross-sectional counterpart of Harvey, Liu, and Zhu (2015). 

  

3.3 ARMA-GARCH representation of each dynamic conditional factor premium 

In this section, we demonstrate that each dynamic conditional factor premium can be modeled 

as a financial time-series. We apply both ARMA(1,1)-EGARCH(1,1,1) and ARMA(1,1)-GJR-

GARCH(1,1,1) conditional-mean-and-variance models to fit each conditional factor premium 

that the econometrician extracts from a dynamic variant of the Fama-French (2015) multifactor 

model. Although it is possible to identify a better time-series representation for each conditional 

factor premium, our goal here is more straight-forward. In fact, our primary objective is to apply 

the standard toolkit in time-series econometrics to establish the empirical fact that each dynamic 

alpha or beta spread exhibits the major properties of most financial time series. Each conditional 

factor premium embeds autoregressive mean reversion in the conditional mean specification of 

ARMA(1,1), and volatility clusters and asymmetries in the conditional volatility specification 
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of EGARCH(1,1,1) or GJR GARCH(1,1,1) (cf. Engle (1982); Bollerslev (1986); Nelson (1991); 

Glosten et al, 1993):  

ARMA(1,1) conditional mean specification 

tttt wcwbmam +++= −− 11            Eq(14) 

ttt hw =               Eq(15) 

 

EGARCH(1,1,1) and GJR-GARCH (1,1,1) conditional variance specifications 
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where mt is the dynamic conditional alpha or beta spread; wt is the residual error term; ht is the 

conditional variance process; εt is a Gaussian white noise; Dt denotes a binary variable with a 

numerical value of unity if wt is negative or zero if wt is positive; a, b, c, d, e, f, and g are the 

parameters for quasi-maximum likelihood estimation. The canonical ARMA model serves as 

the conditional mean specification to capture any autoregressive mean reversion in the dynamic 

conditional alpha or beta spread between the extreme deciles, while EGARCH or GJR-GARCH 

fits the conditional variance specification to encapsulate any volatility clusters and asymmetries 

in the current factor premium time-series under study.  

It is important to draw a distinction between this time-series analysis and the prior studies 

of multiple conditional factor models (Ferson and Harvey, 1991, 1999; Fama and French, 2006; 

Ang and Chen, 2007; Ang and Kristensen, 2012). In the current study, we need not impose any 

a priori assumption about the dynamic evolution of conditional alpha or beta spreads, whereas, 

the earlier studies of conditional factor models make specific assumptions about the time-series 

behaviors of dynamic conditional factor premiums (such as structural breaks in autoregressive 

mean reversion). Yet, the econometrician can readily fit an ARMA-EGARCH or ARMA-GJR-

GARCH model to characterize the dynamic evolution of each conditional alpha or beta spread 

over time. This characterization entails both reasonable and flexible assumptions about the true 

conditional mean and variance processes for each dynamic conditional factor premium.  

This time-series analysis also differs from several earlier studies that exclusively focus on 

the CAPM (cf. Adrian and Franzoni (2009); Ang and Chen (2007); Lewellen and Nagel (2006)). 

The recursive multivariate filter helps extract dynamic conditional alphas and betas from the 

Fama-French (2015) multifactor model, and then the econometrician can apply Eq(14)-Eq(17) 
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to model each dynamic conditional alpha or beta spread as a typical financial time series. While 

it is reasonable to identify the “best” ARMA-GARCH representation for each conditional alpha 

or beta spread, we aim to establish the empirical fact that each conditional alpha or beta spread 

exhibits most prevalent properties of a typical financial time series. In turn, this empirical fact 

defies the conventional wisdom of point estimates of factor premiums in most static time-series 

ordinary least-squares regressions. Table 4 summarizes the empirical results in Appendix 2 (cf. 

Tables A2.1 to A2.6). 

We summarize several bullet points from Appendix 2 and the tabular results therein: 

1. These results allow us to establish the empirical fact that almost all the dynamic conditional 

factor premiums exhibit the key properties of most financial time-series. Specifically, these 

dynamic conditional alpha and beta spreads exhibit autoregressive mean reversion in the 

conditional mean specification, and volatility clusters and asymmetries in the conditional 

variance specification. Therefore, the conditional moments of factors and returns manifest 

in the form of state-dependent alphas and betas, or dynamic conditional factor premiums, 

across Fama and French’s (2015; 2016) fundamental factors (Nagel and Singleton, 2011). 

Our subsequent analysis suggests bilateral causation between macroeconomic surprises and 

conditional alpha spreads. Overall, the evidence enriches our chosen interpretation of the 

intertemporal CAPM that most macroeconomic gyrations both lead and covary with the 

conditional expectations of terminal wealth in the investor’s investment opportunity set (cf. 

Merton (1973); Campbell (1993); Fama (1996); Campbell and Vuolteenaho (2004, 2010); 

Campbell et al (2017)). To the extent that macroeconomic shocks manifest in the form of 

persistent dynamic conditional alpha spreads, mutual causation between macro surprises 

and alpha spreads hence becomes an informative piece of evidence that we can exploit in 

order to resolve at least some of the prevalent abnormal returns or stock market anomalies. 

2. To the extent that stock market information serves as a useful indicator of macro surprises, 

each dynamic conditional factor premium conveys rich information about macroeconomic 

growth, market valuation, financial stress, cyclical variation, or forecast combination. This 

inference calls for more corroboration in the core spirit of several recent studies (Liew and 

Vassalou, 2000; Vassalou, 2003; Vassalou and Xing, 2004; Petkova, 2006; Campbell and 

Vuolteenho, 2010; Campbell, Giglio, Polk, and Turley, 2017).  

3. Most of the average conditional alpha spreads are insignificant while the exceptions are 

momentum and short-term reversal (with absolute t-ratios more than 2.9). For the latter 

portfolio tilts, the respective conditional average alpha spreads are 1.03 and –1.12. These 

conditional mean alpha spreads are close to the corresponding average dynamic conditional 

alpha spreads for momentum and short-term return reversal of 0.989 and –1.18 in Table 3. 

Although these average alpha spreads seem to persist in the extreme deciles (cf. Fama and 

French (2008; 2016)), it is key to recall the more formal Sharpe ratio test evidence that the 

average alphas do not jointly differ from nil across all the momentum and short-term return 
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reversal deciles. In other words, these dynamic conditional alphas are too volatile for one 

to reject the hypothesis that our chosen dynamic version of the Fama-French (2015) factor 

model is a correct specification. The logic leads the econometrician to infer that the average 

alpha spreads are consistent between Table 3 and Table A2.1. 

4. Table A2.3 shows that each dynamic conditional HML beta exhibits much variability over 

time for the original Fama-French value factor to be economically meaningful in explaining 

time variation in average stock returns. In conjunction with the evidence of significant long-

term average HML betas in Table A5.3, the ARMA-GARCH results support the use of 

HML as a relevant state variable that helps better span the investor’s mean-variance space. 

Thus, HML conveys non-negligible information about at least some variation in average 

returns for a wide variety of stock portfolio tilts. This major inference reconciles with some 

recent independent empirical contributions of Fama and French (2015, 2016) and Hou, Xue, 

and Zhang (2014): HML appears to be redundant once the econometrician incorporates 

RMW and CMA into the factor model for the U.S. stock market, whereas, the hefty value 

premium persists both in the U.S. and several other stock markets (Asness, Moskowitz, and 

Pedersen, 2013; Fama and French, 2016). In turn, the economic content and substance of 

HML and even SMB may help explain whether these state variables serve as useful 

empirical proxies for macroeconomic innovations (Liew and Vassalou, 2000, Vassalou, 

2003; Petkova, 2006; Hahn and Lee, 2006), distress risk (Griffin and Lemmon, 2002; 

Vassalou and Xing, 2004), or some other behavioral mispricing reasons (Campbell, 

Hilscher, and Szilagyi, 2008). Our subsequent evidence generalizes the key empirical 

inference that mutual causation between macroeconomic surprises and dynamic conditional 

alpha spreads can be an informative and plausible economic explanation for most anomalies 

in the fundamental evolution of average returns and factors.  

 

3.4 Conditional specification test evidence  

In this section, we follow the recent dynamic conditional specification test from the U.S. patent 

literature (Yeh, 2017 and 2021) to assess whether the static and dynamic conditional alphas are 

econometrically different. Table 5 offers the complete empirical results and discussions on this 

important part of our econometric analysis. 

 

Yeh, A.J.Y. (October 2017 and March 2021). Algorithmic system for dynamic conditional asset 

return prediction and fintech network platform automation. USPTO patent specification (Patent 

Application Number #17192059; Publication Number: US20210192628). 

 

Table 5 lists the conditional specification test evidence in favor of the dynamic conditional 

multifactor asset pricing model. In our empirical analysis of 100 monthly decile returns on the 

major anomalies plus their respective 10 long-short portfolios that focus on the extreme deciles, 
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95% of the portfolio tilts suggest the statistical rejection of the null hypothesis that the static 

factor model is a correctly specification. The preponderance of empirical results supports the 

dynamic conditional factor model in stark contrast to the static baseline model for good reasons. 

First, the vast majority of dynamic conditional alphas are statistically insignificant so that most 

of the pricing errors are close to zero in the alternative dynamic conditional model specification. 

Second, the conditional specification test results prevail in favor of the alternative hypothesis 

that only the dynamic conditional estimator is consistent. This latter point highlights the power 

of measurement error minimization that the recursive multivariate filter achieves for consistent 

statistical estimation. Overall, the dynamic conditional factor model can outperform its static 

counterpart in light of the conditional specification test evidence and dynamic conditional alpha 

insignificance.4  

Therefore, both the recursive multivariate filter and dynamic conditional specification test 

add value to the econometric toolkit for subsequent asset-pricing analysis. Not only does this 

econometric advancement pose a core conceptual challenge to the conventional use of ordinary 

least-squares (OLS) regressions for factor model design, but this econometric innovation also 

suggests that dynamic conditional alpha estimation serves as a useful quantitative method for 

financial applications such as mutual fund performance evaluation, corporate event assessment, 

equity cost estimation, and financial risk management.  

 

4. Mutual causation between macroeconomic innovations and alpha spreads 

In this section, we delve into the main crux of the current study and empirically ascertain mutual 

causation between macroeconomic innovations and dynamic conditional alpha spreads. To the 

extent that macroeconomic innovations manifest in the form of these dynamic conditional alpha 

spreads, this causality reveals the marginal investor’s fundamental news and expectations about 

the cross-section of average returns. We interpret this Granger-causality evidence in the broader 

context of the intertemporal CAPM with cash-flow news, discount-rate news, as well as future- 

risk news (cf. Merton (1973); Campbell (1993); Campbell and Vuolteenaho (2004); Campbell, 

Giglio, Polk, and Turley (2017)). Campbell and Vuolteenaho (2004) develop the intertemporal 

CAPM with cash-flow and discount-rate betas. Campbell et al (2017) extend and generalize the 

 
4   There are a couple of reasons for this model comparison. First, the vast majority of dynamic conditional alphas 

are statistically insignificant so that most of the pricing errors or alphas are near zero in the alternative dynamic 

conditional specification. Second, the new conditional specification test results prevail in favor of the alternative 

hypothesis that only the dynamic conditional estimator is consistent. This latter reason highlights the power of 

measurement error minimization that the recursive multivariate filter attains for consistent estimation. Overall, 

the dynamic conditional factor model outperforms its static counterpart in light of the conditional specification 

test evidence and dynamic conditional alpha insignificance. In effect, both the recursive multivariate filter and 

conditional specification test contribute to the econometric toolkit for empirical asset pricing analysis. Not only 

does this advancement pose a new conceptual challenge to the conventional use of ordinary least-squares (OLS) 

Fama-French time-series regressions for empirical asset pricing analysis, but this econometric innovation also 

suggests that dynamic conditional alpha estimation serves as a novel and useful quantitative method for a broad 

variety of financial applications such as cost-of-equity-capital estimation, corporate event study, financial risk 

management, and mutual fund performance evaluation. 
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intertemporal CAPM with stochastic volatility to capture future-risk news. The price of risk for 

cash-flow news is the marginal investor’s relative risk aversion coefficient times more than the 

unit price of risk for negative discount-rate news. Therefore, cash-flow news carries “bad betas”, 

whereas, negative discount-rate news carries “good betas”. Also, an asset that provides positive 

returns when future risk expectations increase tends to generate low average returns. Thus, the 

marginal investor’s stochastic discount factor is high when he or she anticipates high stochastic 

volatility in the future. In essence, these fundamental news and expectations reflect the marginal 

investor’s rational response to different kinds of macroeconomic surprises with respect to cash 

flows, discount rates, and stochastic volatilities. Vector autoregressions (VAR) and Granger-

causality tests below accord with the main theme of bilateral causation between macroeconomic 

innovations and dynamic conditional alphas. This causation reinforces the intertemporal asset- 

pricing interpretation that macroeconomic shocks manifest in the form of dynamic conditional 

factor premiums and vice versa such that this nexus reveals the marginal investor’s fundamental 

news and macroeconomic expectations about the cross-section of average returns. To the extent 

that these causal relations reflect the marginal investor’s rational response to changes in his or 

her intertemporal choice and conditional expectation of terminal wealth, the resultant dynamic 

conditional factor model differentiates itself from most behavioral mispricing models. This key 

conceptual distinction resonates with the primary thesis of Kozak, Nagel, and Santosh’s (2018) 

recent critique of numerous horseraces for empirically-driven factor models. 

We use 15 main monthly time-series in a macroeconometric vector autoregression (VAR) 

(Sims, 1980; Campbell, 1993). There are 12 macro time-series, 2 financial uncertainty metrics, 

and 2 investor sentiment proxies. The resultant dataset spans the 285-month sample period from 

April 1990 to December 2013. These macrofinancial time-series include first differences in the 

national economic activity index, Treasury bill rate, unemployment rate, term spread, default 

spread, prime bank loan rate, aggregate equity market dividend yield, as well as percent changes 

in industrial production, non-farm payroll, house price index, consumer price index, exchange 

rate, financial stress index, economic policy uncertainty, and investor sentiment. For the Baker- 

Wurgler capital market investor sentiment index, we use the first principal component as a main 

empirical proxy. This variable choice has no impact on our subsequent inferences. Appendix 3 

lists and describes these macroeconomic variable definitions and their data sources.  

We develop a medium macroeconometric vector autoregressive system in order to gauge 

macroeconomic innovations or fundamental surprises that the typical investor would face in his 

or her investment journey. Insofar as we can gauge macroeconomic surprises, we establish the 

empirical fact of mutual Granger causation between macroeconomic innovations and dynamic 

conditional alpha spreads. Granger-causality tests help us assess this mutual causation as a core 

qualifying condition for fundamental factor selection.  

Table 6 shows the vector autoregression (VAR) coefficient estimates and t-statistics. This 

VAR model explains most of the time variation in fundamental macroeconomic news. The only 
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exception is the macro VAR model of percent changes in the economic policy uncertainty index 

(Baker, Bloom, and Davis, 2012), which seems to contain peculiar information in its own right. 

Due to its unique lag structure, the Baker-Wurgler (2006) financial market investor sentiment 

VAR model generates the highest R2 of 94.9%. This macroeconometric VAR system captures 

reasonably well time variation in U.S. national economic activity, prime bank loan interest rate, 

non-farm payroll, and residential house price index with intermediate R2s from 40% to 68%.  

This macroeconometric VAR system explains about 20%-30% of time variation in each of 

the other key macroeconomic time-series such as the Treasury 3-month bill rate, unemployment 

rate, term spread, default spread, aggregate dividend yield, industrial production, dollar strength, 

CPI inflation, and systemic stress within the U.S. financial sector. Overall, this medium macro 

VAR system allows us to extract macroeconomic innovations (or fundamental surprises) as the 

residual disturbances from each of the resultant macro equations. 

Tables 7 and 8 list the pairwise Granger causality tests with p-values for us to see whether 

there is mutual causation between macroeconomic surprises and dynamic conditional alphas. 

Indeed, these test results suggest the affirmative case for Granger causation in both directions. 

Table 7 shows that at least 1 to 4 macroeconomic innovations Granger-cause each dynamic 

conditional alpha spread for size, value (B/M, CF/P, and Div/P), operating profitability, asset 

growth, short-term return reversal, and long-run return reversal. Only momentum and partial 

value (E/P) turn out to be the exceptions that defy this rule of thumb. 

Table 8 shows that reverse causality runs from several dynamic conditional alpha spreads 

to macroeconomic innovations. Key conditional alpha spreads represent rich and valuable stock 

market signals about macroeconomic surprises. However, this evidence is less conclusive since 

only partial value (Div/P and E/P), asset investment growth, operating profitability, short-term 

return reversal, and long-term return reversal exhibit this reverse causation. In fact, the primary 

conditional alpha spreads for size, value (B/M and CF/P), and momentum convey little causal 

information about macroeconomic innovations.  

On balance, these results suggest mutual Granger causation from macroeconomic surprises 

to most dynamic conditional alpha spreads and vice versa (except momentum and partial value). 

Within the intertemporal CAPM context, we interpret this evidence in support of the prevalent 

use of Fama-French (2015) factors in a dynamic conditional model. Mutual causation between 

macroeconomic innovations and dynamic conditional alpha spreads serves as a core qualifying 

condition for “shrinking the factor zoo”, whereas, there is minimal or no sufficient evidence in 

favor of viewing momentum as a conceptually sound factor in the dynamic conditional context. 

To the extent that the marginal investor cannot decipher fundamental news nor macroeconomic 

surprises from momentum, it is difficult to rationalize momentum apart from a unique statistical 

aberration. Insofar as momentum profits persist as an anomaly, we need a more plausible reason 

than behavioral mispricing disequilibrium before we view momentum as an extra fundamental 

factor in the dynamic conditional model. 
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Tables 7 and 8 demonstrate bilateral causation between most macroeconomic shocks and 

dynamic conditional alpha spreads. To the extent that macroeconomic innovations manifest in 

the form of these dynamic conditional alpha spreads, this critical channel of Granger causation 

reveals the marginal investor’s fundamental news and expectations about the cross-section of 

average returns. This core evidence enriches and contributes to our chosen intertemporal asset- 

pricing interpretation of dynamic conditional factor models. In this intertemporal asset-pricing 

context, macroeconomic innovations serve as fundamental news and surprises that induce cash- 

flow betas and future-risk betas as “bad betas” or negative discount-rate betas as “good betas”. 

In accordance with this intertemporal CAPM thesis, we would expect assets with positive cash- 

flow shocks, future-risk spillovers, or subpar discount-rate news to generate low average returns. 

Conversely, we would expect other assets with negative cash-flow surprises, volatility declines, 

or optimistic discount-rate news to generate high average returns. Therefore, mutual causation 

between macroeconomic innovations and dynamic conditional alpha spreads serves as a core 

qualifying condition for more effective factor selection with sound economic rigor and intuition. 

This new economic insight is one of our key contributions to modern asset pricing model design. 

Appendix 4 discusses the main similarities and differences between our current study and some 

concurrent contributions. 

In accordance with the core thesis of Kozak, Nagel, and Santosh (2018), both fundamental 

and behavioral factors can help price the cross-section of average returns. In order to determine 

whether a specific factor is fundamental, the econometrician can measure factor covariances or 

factor premiums with macroeconomic risk innovations. Vector autoregression (VAR) evidence 

confirms bilateral Granger causation between dynamic conditional alphas and macroeconomic 

risk innovations. VAR evidence further supports this mutual causation for Fama-French (2015) 

fundamental factors with the plausible exceptions of both momentum and partial value. In light 

of this evidence, it would be informative to analyze the dynamic conditional alpha time-series 

(cf. Appendix 1 time-series visualization of dynamic conditional alphas). When each dynamic 

conditional alpha is nil on average but can be persistently positive and negative during different 

phases of the real business cycle, the conditional moments and factor premiums can help inform 

empirical asset pricing model design and performance. 

Our dynamic analysis of core conditional factor premiums from the Fama-French (2015) 

model proposes raising the hurdle for the conventional asset-pricing test. This recommendation 

serves as the time-series equivalent to the cross-sectional thesis of Harvey, Liu, and Zhu (2015). 

Also, our prime empirical analysis contradicts McLean and Pontiff’s (2016) recent conjecture 

that academic research partially erodes stock return predictability because investors are able to 

learn from a variety of anomalies. To the extent that the dynamic conditional factor premiums 

exhibit substantial volatility over time, the vast majority of dynamic conditional alphas are not 

significantly far from zero while there is no sufficient evidence to reject the hypothesis that our 

conditional factor model carries a correct specification. For this reason, we can reconcile most 
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ubiquitous anomalies with a dynamic variant of the Fama-French factor model. Also, our study 

offers a mild refutation of Berk and Van Binsbergen’s (2016) and Barber, Huang, and Odean’s 

(2016) overall qualitative conclusion that the CAPM is the clear victor in the horserace against 

the other dynamic-equilibrium and factor models. In contrast, our work shows that the dynamic 

conditional factor model provides progress toward a positive portrayal of the quantitative nexus 

between average return and risk. Our dynamic conditional factor model helps draw a distinction 

between both rational-risk and behavioral theories of average return evolution because bilateral 

causation between macroeconomic innovations and dynamic conditional alpha spreads shines 

unique light on the marginal investor’s fundamental news and economic expectations about the 

cross-section of average returns. This insight offers economic logic, rigor, and intuition for our 

empirical analysis in response to the recent landmark statistical discovery of Kozak, Nagel, and 

Santosh’s (2018). As a consequence, the myriad contributions of our current study help address 

at least part of the concern and suspicion in the recent reappraisals of asset pricing model tests 

(cf. Lewellen et al (2010); Berk and van Binsbergen (2016); Barber et al (2016); Harvey et al 

(2016); Fama and French (2015, 2016); Kozak et al (2017, 2018)). 

 

5. Conclusion 

In response to Kozak, Nagel, and Santosh’s (2018) recent critique of many horseraces among 

factor models, we apply a new approach to addressing at least part of the concern and suspicion 

in several reappraisals of asset pricing tests (cf. Lewellen et al (2010); Berk and van Binsbergen 

(2016); Barber et al (2016); Harvey et al (2016); Fama and French (2015, 2016); Kozak et al 

(2017, 2018)). We extract dynamic conditional factor premiums from the Fama-French (2015) 

model and then find that most anomalies disappear after one accounts for time variation in these 

premiums. Mutual causation between dynamic conditional alpha spreads and macroeconomic 

surprises serves as a core qualifying condition for relevant fundamental factor selection with sound 

economic rigor and motivation. To the extent that macroeconomic innovations manifest in the 

form of dynamic conditional alphas, this causation reveals the marginal investor’s fundamental 

news and macroeconomic expectations about the cross-section of average returns. 

Specifically, our evidence bolsters the ubiquitous use of Fama-French (2015) factors that 

reflect the marginal investor’s response to fundamental news about the cross-section of average 

returns. Our econometric results lend credence to Fama and French’s (1996, 2004, 2008, 2015, 

2016) perennial reluctance to encompass Carhart (1997) momentum in their factor model. In a 

conceptual domain, we link the dynamic conditional factor model results to recent advances in 

the intertemporal CAPM context (Merton (1973); Campbell (1993); Campbell and Vuolteenaho 

(2004); Campbell et al (2017)). Overall, our current study serves as an incremental step toward 

better deciphering a distinction between the rational risk and behavioral mispricing paradigms. 

We agree with Kozak, Nagel, and Santosh’s (2018) qualitative conclusion on “observational 

equivalence between most rational risk factor models and behavioral mispricing factor models”. 
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As we have discussed in the introduction of the current study, this consensus resonates with the 

relentless debate and elusive quest of a factor model for our profession. These advances shed new 

light on the major essential need for financial economists to “[develop-and-test] structural asset-

pricing models with specific assumptions about investor beliefs and preferences that can deliver 

testable predictions about (1) the fundamental factors that should be in the [stochastic discount 

factor] (SDF), and (2) the probability distributions under which this SDF prices assets” (Kozak, 

Nagel, and Santosh, 2018).  

A concurrent contribution moves in this direction. Yeh (2021) derives and estimates the SDF 

from financial intermediary capital strength and then uses the Euler, asset return prediction, and 

price multiple valuation equations to test stock market anomaly persistence over a broad basket 

of long-short extreme decile strategies. Yeh (2021) further tests the empirical predictions of the 

dynamic stochastic general equilibrium (DSGE) structural model to find evidence in support of 

his permanent capital hypothesis. This new frontier shows some promise in applying “structural 

macrofinance models” of both investor beliefs and preferences for economists to make progress 

in macroeconomic asset return prediction. 
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Table 1: Descriptive statistics for various stock return spreads 

This table summarizes the descriptive statistics for the various stock portfolio tilts. The first panel encapsulates the 

summary statistics for the Fama-French (2015) return spreads such as the excess return on the CRSP value-weighted 

market portfolio (MRP), the return spread between the top 30% small and bottom 30% big stocks (SMB), the return 

spread between the top 30% high book-to-market and bottom 30% low book-to-market stocks (HML), the return 

spread between the top 30% robust and bottom 30% weak stocks in terms of their relative profitability (RMW), and 

the return spread between the top 30% conservative investment and bottom 30% aggressive investment stocks (CMA) 

in developing the multifactor mean-variance efficient (MMVE) tangency portfolio. The second panel sums up the 

descriptive statistics for the long-short trading strategy that involves both a long position in the top decile and a short 

position in the bottom decile for the pervasive asset pricing anomalies such as size, value (book-to-market, cashflow-

to-price, dividend-to-price, and earnings-to-price), momentum, investment, profitability, short-term return reversal, 

and long-term return reversal. The descriptive statistics include each return spread’s mean value, standard deviation, 

skewness, kurtosis, minimum, median, and maximum. 

 

 

 

Table 2: Sharpe ratios for the market portfolio, the Q-portfolio, and the anomalies 

This table summarizes the long-term Sharpe ratio for each stock portfolio strategy in the period from January 1964 

to December 2013. The Sharpe ratio is the ratio of excess stock return to its standard deviation. The basket of stock 

portfolio strategies encompasses the CRSP value-weighted market portfolio, the multifactor mean-variance efficient 

(MMVE) tangency stock portfolio from the Fama-French (2015) joint return spreads for size, value, investment, and 

profitability, as well as the ubiquitous asset pricing anomalies such as size, value (book-to-market, cashflow-to-price, 

dividend-to-price, and earnings-to-price), momentum, investment, profitability, short-term return reversal, and long-

term return reversal. The Sharpe ratios land in the range of 0.1006 for the CRSP value-weighted market portfolio to 

0.3006 for the multifactor MVE tangency portfolio and 0.3362 for the short-term return reversal strategy. The other 

Sharpe ratios land within this intermediate range.  

 

 

Stock return spread Mean Stdev Skew Kurt Min Med Max
Market risk premium (MRP) 0.49 4.50 -0.53 1.86 -23.24 0.86 16.10
Small-minus-big (SMB) 0.31 2.92 0.37 3.50 -14.32 0.24 18.05
High-minus-low (HML) 0.29 2.17 -0.14 3.26 -10.85 0.25 9.82
Robust-minus-weak (RMW) 0.25 1.52 -0.83 11.64 -12.76 0.26 7.60
Conservative-minus-aggressive (CMA) 0.15 1.18 0.32 1.08 -3.54 0.10 5.10
Size -0.37 4.87 -0.73 4.17 -32.21 -0.16 21.10
Momentum 1.32 7.01 -1.49 8.04 -45.89 1.67 26.18
Book-to-market 0.53 4.67 0.54 2.31 -13.58 0.44 26.73
Cashflow-to-price 0.49 4.22 0.03 1.74 -20.27 0.39 16.02
Dividend-to-price 0.08 5.38 0.03 2.55 -26.22 0.27 22.11
Earnings-to-price 0.47 4.30 -0.02 1.57 -20.13 0.54 16.75
Investment -0.48 3.26 -0.32 1.22 -15.47 -0.48 10.12
Profitability 0.19 3.96 0.23 2.93 -19.68 0.35 22.46
Short-term return reversal -0.36 5.35 -0.24 3.99 -26.65 -0.30 25.23
Long-term return reversal -0.48 5.07 -0.98 4.67 -33.79 -0.16 18.94

Stock portfolio sort Sharpe ratio
Market risk premium 0.1006
Multifactor MVE Q -portfolio 0.3006
Size 0.2084
Momentum 0.2574
Book-to-market 0.2016
Cashflow-to-price 0.2172
Dividend-to-price 0.2935
Earnings-to-price 0.1358
Investment 0.2551
Profitability 0.1918
Short-term return reversal 0.3362
Long-term return reversal 0.2271
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Table 3: Average dynamic alphas, dynamic alpha spreads, NW t-tests, AGRS F-tests, AGMM χ2 tests, and MMVE Q-tests 

Over the 50-year period from January 1964 to December 2013, the econometrician applies the recursive multivariate Filter to extract dynamic factor premiums from the Fama-French (2015) five-

factor asset pricing model. At each time increment, the econometrician takes into account the Fama-French (2015) factors such as the excess return on the market portfolio (MRP), the return 

spread between the top 30% small and bottom 30% big stocks (SMB), the return spread between the top 30% high book-to-market and bottom 30% low book-to-market stocks (HML), the return 

spread between the top 30% robust and bottom 30% weak stocks in terms of their relative profitability (RMW), and the return spread between the top 30% conservative investment and bottom 

30% aggressive investment stocks (CMA) to explain the variation in the excess return on each stock decile for size, momentum, value (cf. book-to-market, cashflow-to-price, dividend-to-price, 

and earnings-to-price), investment, profitability, short-term return reversal, and long-term return reversal. The econometrician presents the mathematical time-series representation below: 

 

 

( ) ttcttrtthttstftmttmtftkt CMARMWHMLSMBRRRR  +++++−+=−  

 

 

Table 3 sums up the long-run average alpha for each stock decile sorted on size, value, momentum, investment, profitability, short-term return reversal, and long-term return reversal. The first 10 

columns summarize each long-run average alpha and its corresponding p-value for the null hypothesis of zero dynamic alpha. The next column encapsulates the long-run average alpha spread for 

the long-short trading strategy that involves both a long position in the top decile and a short position in the bottom decile throughout the 50-year period from January 1964 to December 2013. 

The last three columns summarize the Gibbons, Ross, and Shanken (1989) AGRS F-test, AGMM C-test, and AGMM Q-test results on each long-short trading strategy across the ubiquitous asset 

pricing anomalies such as size, value, momentum, investment, profitability, short-term return reversal, and long-term return reversal. This evidence reports each test statistic and its corresponding 

p-value. For each hypothesis test, the econometrician applies the Newey-West (1987) method with quadratic spectral kernel estimation to correct the standard errors to safeguard against any serial 

correlation and heteroskedasticity. The appendix depicts the time-series dynamic alphas for each of the stock portfolio tilts that yield anomalous excess returns in static asset pricing analysis (i.e. 

size, value, momentum, investment, profitability, short-term return reversal, and long-term return reversal).  
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Table 3: Average dynamic alphas, dynamic alpha spreads, NW t-tests, AGRS F-tests, AGMM χ2 tests, and MMVE Q-tests 

 

  

Portfolio Low Decile 2 Decile 3 Decile 4 Decile 5 Decile 6 Decile 7 Decile 8 Decile 9 High Spread F -test C -test Q -test
Size
Alpha (test statistic) -0.076 -0.112 0.001 -0.092 0.080 0.104 0.090 0.104 0.053 -0.014 0.062 0.043 22.799 21.121
p-value 0.438 0.101 0.983 0.070 0.185 0.258 0.216 0.080 0.344 0.659 0.505 0.999 0.999 0.999
Momentum
Alpha (test statistic) -0.569 -0.171 0.016 -0.135 0.063 0.008 -0.021 0.039 0.164 0.420 0.989 0.051 34.776 32.216
p-value 0.005 0.215 0.857 0.072 0.392 0.879 0.722 0.635 0.038 0.001 0.000 0.999 0.999 0.999
Book-to-market
Alpha (test statistic) -0.001 0.067 -0.043 0.136 0.015 -0.126 -0.163 0.052 0.128 -0.042 -0.041 0.041 21.318 19.749
p-value 0.988 0.446 0.518 0.093 0.877 0.065 0.008 0.374 0.084 0.664 0.752 0.999 0.999 0.999
Cashflow-to-price
Alpha (test statistic) 0.050 -0.025 0.106 -0.064 -0.012 -0.012 -0.014 -0.226 -0.021 0.195 0.144 0.038 24.746 22.924
p-value 0.611 0.744 0.155 0.331 0.906 0.855 0.891 0.012 0.820 0.102 0.385 0.999 0.999 0.999
Dividend-to-price
Alpha (test statistic) 0.031 0.182 0.269 0.193 -0.231 0.015 -0.004 -0.049 -0.116 0.080 0.049 0.070 45.204 41.877
p-value 0.720 0.005 0.009 0.018 0.022 0.851 0.962 0.513 0.279 0.541 0.790 0.999 0.999 0.999
Earnings-to-price
Alpha (test statistic) 0.100 0.113 0.060 -0.020 0.048 -0.027 0.054 -0.032 -0.122 0.099 -0.001 0.016 9.683 8.970
p-value 0.256 0.048 0.472 0.803 0.610 0.783 0.434 0.709 0.052 0.396 0.995 0.999 0.999 0.999
Investment
Alpha (test statistic) -0.229 0.082 -0.104 -0.065 -0.005 -0.008 0.206 0.041 0.137 -0.086 0.143 0.049 34.142 31.629
p-value 0.029 0.223 0.187 0.307 0.948 0.888 0.044 0.358 0.039 0.328 0.310 0.999 0.999 0.999
Profitability
Alpha (test statistic) -0.108 0.122 -0.050 0.036 0.039 -0.148 0.045 -0.069 0.105 0.110 0.219 0.031 19.307 17.886
p-value 0.218 0.043 0.571 0.630 0.556 0.115 0.490 0.252 0.044 0.100 0.088 0.999 0.999 0.999
Short-term reversal
Alpha (test statistic) 0.565 0.571 0.435 0.202 0.156 -0.147 -0.114 -0.262 -0.357 -0.615 -1.180 0.100 59.290 54.927
p-value 0.000 0.000 0.000 0.005 0.015 0.086 0.051 0.001 0.000 0.000 0.000 0.999 0.999 0.999
Long-term reversal
Alpha (test statistic) -0.339 0.034 -0.214 -0.124 -0.112 -0.055 0.100 0.254 0.144 0.088 0.426 0.052 27.063 25.071
p-value 0.003 0.748 0.019 0.195 0.040 0.400 0.152 0.000 0.018 0.345 0.001 0.999 0.999 0.999
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Table 4: ARMA-GARCH time-series representation of each dynamic conditional alpha and beta spread 

This table summarizes the empirical results in Appendix 2 (cf. Tables A2.1 to A2.6). We demonstrate that each dynamic conditional factor premium can be modeled as a typical financial time-

series. We apply both ARMA(1,1)-EGARCH(1,1,1) and ARMA(1,1)-GJR-GARCH(1,1,1) conditional-mean-and-variance models to fit each factor premium that the econometrician extracts from 

a “dynamic” variant of the Fama-French (2015) factor model. Although it is possible to identify a more precise time-series representation for each factor premium, our goal here is more straight-

forward. In fact, our primary and ultimate goal is to use the standard toolkit in time-series econometrics to establish the empirical fact that each dynamic conditional alpha or beta spread exhibits 

the major properties of most financial time series. Each factor premium embeds autoregressive mean reversion in the conditional mean specification of ARMA(1,1), as well as volatility clusters 

and asymmetries in the conditional volatility specification of EGARCH(1,1,1) or GJR-GARCH(1,1,1) (cf. Engle (1982); Bollerslev (1986); Nelson (1991); Glosten et al (1993)). 

 

 

 
 

  

Panel A
Factor premium spread AR MA ARCH GARCH Expo AR MA ARCH GARCH GJR
Conditional alpha spread
Size P P P P P P P P P P

Momentum P P P P P P P P

Book-to-market P P P P P P P

Cashflow-to-price P P P P P

Dividend-to-price P P P P P P P P

Earnings-to-price P P P P P P P P

Investment P P P P P P P

Profitability P P P P P P

Short-term reversal P P P P P P

Long-term reversal P P P P P P P P

Conditional MRP beta spread
Size P P P P P P

Momentum P P P P P P

Book-to-market P P P P P P P P

Cashflow-to-price P P P P P P

Dividend-to-price P P P P P P

Earnings-to-price P P P P P

Investment P P P P P P

Profitability P P P P P P

Short-term reversal P P P P P P P P

Long-term reversal P P P P P

ARMA(1,1)-EGARCH(1,1,1) ARMA(1,1)-GJR-GARCH(1,1,1)
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Table 4: ARMA-GARCH time-series representation of each dynamic conditional alpha and beta spread 

This table summarizes the empirical results in Appendix 2 (cf. Tables A2.1 to A2.6). We demonstrate that each dynamic conditional factor premium can be modeled as a typical financial time-

series. We apply both ARMA(1,1)-EGARCH(1,1,1) and ARMA(1,1)-GJR-GARCH(1,1,1) conditional-mean-and-variance models to fit each factor premium that the econometrician extracts from 

a “dynamic” variant of the Fama-French (2015) factor model. Although it is possible to identify a more precise time-series representation for each factor premium, our goal here is more straight-

forward. In fact, our primary and ultimate goal is to use the standard toolkit in time-series econometrics to establish the empirical fact that each dynamic conditional alpha or beta spread exhibits 

the major properties of most financial time series. Each factor premium embeds autoregressive mean reversion in the conditional mean specification of ARMA(1,1), as well as volatility clusters 

and asymmetries in the conditional volatility specification of EGARCH(1,1,1) or GJR-GARCH(1,1,1) (cf. Engle (1982); Bollerslev (1986); Nelson (1991); Glosten et al (1993)). 

 

 

 
 

Panel B
Factor premium spread AR MA ARCH GARCH Expo AR MA ARCH GARCH GJR
Conditional SMB beta spread
Size P P P P P P P P

Momentum P P P P P P P P

Book-to-market P P P P P P P P

Cashflow-to-price P P P P P P

Dividend-to-price P P P P P P

Earnings-to-price P P P P P

Investment P P P P P P

Profitability P P P P P P

Short-term reversal P P P P P P P P

Long-term reversal P P P P P P P

Conditional HML beta spread
Size P P P P P P

Momentum P P P P P P P P

Book-to-market P P P P P P

Cashflow-to-price P P P P P P

Dividend-to-price P P P P P P

Earnings-to-price P P P P P P

Investment P P P P P P P P

Profitability P P P P

Short-term reversal P P P P P P

Long-term reversal P P P P P

ARMA(1,1)-EGARCH(1,1,1) ARMA(1,1)-GJR-GARCH(1,1,1)
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Table 4: ARMA-GARCH time-series representation of each dynamic conditional alpha and beta spread 

This table summarizes the empirical results in Appendix 2 (cf. Tables A2.1 to A2.6). We demonstrate that each dynamic conditional factor premium can be modeled as a typical financial time-

series. We apply both ARMA(1,1)-EGARCH(1,1,1) and ARMA(1,1)-GJR-GARCH(1,1,1) conditional-mean-and-variance models to fit each factor premium that the econometrician extracts from 

a “dynamic” variant of the Fama-French (2015) factor model. Although it is possible to identify a more precise time-series representation for each factor premium, our goal here is more straight-

forward. In fact, our primary and ultimate goal is to use the standard toolkit in time-series econometrics to establish the empirical fact that each dynamic conditional alpha or beta spread exhibits 

the major properties of most financial time series. Each factor premium embeds autoregressive mean reversion in the conditional mean specification of ARMA(1,1), as well as volatility clusters 

and asymmetries in the conditional volatility specification of EGARCH(1,1,1) or GJR-GARCH(1,1,1) (cf. Engle (1982); Bollerslev (1986); Nelson (1991); Glosten et al (1993)). 

 

 

 
  

Panel C
Factor premium spread AR MA ARCH GARCH Expo AR MA ARCH GARCH GJR
Conditional RMW beta spread
Size P P P P P P P P

Momentum P P P P P

Book-to-market P P P P P P P P P

Cashflow-to-price P P P P P P P

Dividend-to-price P P P P P P

Earnings-to-price P P P P P P

Investment P P P P P P

Profitability P P P P P P P P P

Short-term reversal P P P

Long-term reversal P P P P P

Conditional CMA beta spread
Size P P P P P P P P

Momentum P P P P P P

Book-to-market P P P P P P P P

Cashflow-to-price P P P P P P P P P

Dividend-to-price P P P P P P P P P P

Earnings-to-price P P P P P P P

Investment P P P P P P P

Profitability P P P P P P P P

Short-term reversal P P P P P P

Long-term reversal P P P P P

ARMA(1,1)-EGARCH(1,1,1) ARMA(1,1)-GJR-GARCH(1,1,1)



doi:10.6342/NTU202300842

34 
 

Table 5: Conditional specification test of the static versus dynamic conditional multifactor asset pricing models 

Over the 50-year period from January 1964 to December 2013, one applies the recursive multivariate Filter to extract dynamic multifactor factor premiums from the Fama-French (2015) five-

factor asset pricing model. At each time increment, the econometrician takes into account the Fama-French (2015) factors such as the excess return on the market portfolio (MRP), the return 

spread between the top 30% small and bottom 30% big stocks (SMB), the return spread between the top 30% high book-to-market and bottom 30% low book-to-market stocks (HML), the return 

spread between the top 30% robust and bottom 30% weak stocks in terms of their relative profitability (RMW), and the return spread between the top 30% conservative investment and bottom 

30% aggressive investment stocks (CMA) to explain the variation in the excess return on each stock decile for size, momentum, value (cf. book-to-market, cashflow-to-price, dividend-to-price, 

and earnings-to-price), investment, profitability, short-term return reversal, and long-term return reversal. The econometrician presents the mathematical time-series representation below: 

 

 

( ) ttcttrtthttstftmttmtftkt CMARMWHMLSMBRRRR  +++++−+=−  

 

 

Table 5 presents the conditional specification test evidence for each stock decile sorted on size, value, momentum, asset investment, operating profitability, short-term return reversal, and long-

term return reversal. The first 10 columns summarize the χ2-statistic for each stock decile and its corresponding p-value for the null hypothesis of a consistent and efficient static estimator against 

the alternative hypothesis of a correct consistent dynamic conditional estimator. The next column shows the χ2-statistic for each long-short top-bottom stock decile and its corresponding p-value. 

About 95% of the χ2-statistics are econometrically significant with at least 90%+ confidence. The appendix depicts the dynamic conditional alpha time-series for each of the stock portfolio tilts 

that yield anomalous excess returns in static asset pricing analysis (i.e. size, value, momentum, asset investment, operating profitability, short-term return reversal, and long-term return reversal).  
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Table 5: Conditional specification test of the static versus dynamic conditional multifactor asset pricing models 

 
  

Portfolio Low Decile 2 Decile 3 Decile 4 Decile 5 Decile 6 Decile 7 Decile 8 Decile 9 High Spread
Size
κ  test statistic 32.0 178.8 42.2 46.8 257.5 4092.7 166.9 164.4 13200.4 0.0 31.8
p -value 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.999 0.001
Momentum
κ  test statistic 33.0 42.0 41.0 13.2 829.6 0.0 20.4 11327.4 49.5 61.4 3.1
p -value 0.001 0.001 0.001 0.067 0.001 0.999 0.005 0.001 0.001 0.001 0.876
Book-to-market
κ  test statistic 18.5 47.3 191.6 247.1 160.6 1371.7 710.3 477.8 580.3 462.0 14.6
p -value 0.0097 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.042
Cashflow-to-price
κ  test statistic 24.2 11.9 324.3 220.1 345.3 189.0 214.6 553.9 1111.8 407.2 223.0
p -value 0.001 0.104 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Dividend-to-price
κ  test statistic 59.0 108.3 102.3 53.2 440.0 1623.9 262.1 1655.0 512.9 254.7 222.5
p -value 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Earnings-to-price
κ  test statistic 10.3 26.6 169.0 821.0 149.8 200.3 385.0 495.1 748.0 339.8 87.0
p -value 0.171 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Investment
κ  test statistic 15.6 206.4 33.5 2417.7 867.0 1017.3 1452.1 683.6 1102.5 521.7 23.9
p -value 0.029 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Profitability
κ  test statistic 20.5 398.8 209.1 162.2 203.8 4215.2 743.9 830.9 1938.1 4744.2 23.0
p -value 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002
Short-term reversal
κ  test statistic 28.4 744.3 168.8 93.2 76.0 2.3 1331.4 60.8 1047.9 319.1 221.4
p -value 0.001 0.001 0.001 0.001 0.001 0.940 0.001 0.001 0.001 0.001 0.001
Long-term reversal
κ  test statistic 20.4 156.6 455.9 899.0 10916.2 598.9 344.1 844.1 4923.1 2151.9 27.5
p -value 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
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Table 6: Vector AutoRegression (VAR) of macroeconomic fluctuations with consistent coefficient estimates and t-statistics 

This table summarizes the macroeconometric vector autoregression (VAR) results. The upper panel presents the consistent coefficient estimates, and the lower panel shows the corresponding t-

statistics. We use 15 main monthly time-series in a macroeconometric vector autoregressive system (Sims, 1980; Campbell, 1993). There are 12 macro time-series, 2 financial uncertainty metrics, 

and 2 investor sentiment proxies. The resultant dataset spans the 285-month sample period from April 1990 to December 2013. These macro time-series encompass first differences in the national 

economic activity index, Treasury bill rate, unemployment rate, term spread, default spread, prime bank loan rate, aggregate dividend yield, and percent changes in industrial production, non-farm 

payroll, house price index, consumer price index, exchange rate, financial stress index, economic policy uncertainty, and investor sentiment. Appendix 3 presents and describes the macroeconomic 

variable definitions and their data sources.  

 

 
 

 

Macroeconomic variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
Intercept -45.809 13.923 -52.542 -3.716 7.332 12.378 -0.037 0.029 -0.376 0.509 -0.565 -0.094 -1.009 29.052 23.922
National activity index change -0.447 -0.002 0.033 0.027 0.003 -0.008 0.018 -0.002 0.000 0.001 -0.001 0.002 0.006 0.011 -0.013
Treasury 3-month bill rate change 0.218 0.210 0.032 -0.251 -0.057 0.450 0.098 0.002 0.001 0.001 0.000 -0.001 -0.068 -0.045 -0.014
Unemployment rate change 0.034 -0.035 -0.152 0.135 -0.113 -0.035 -0.048 -0.005 -0.002 0.000 0.001 -0.003 -0.022 -0.262 -0.012
Term spread (10-year minus 1-year) 0.269 -0.046 -0.065 0.123 -0.121 0.006 -0.004 0.000 0.000 0.002 -0.001 -0.015 -0.075 -0.331 0.052
Default spread (Baa minus 10-year) -0.589 -0.207 0.080 0.036 0.155 -0.103 -0.108 -0.009 0.000 0.001 -0.001 -0.023 -0.005 0.007 -0.052
Prime bank loan rate change 0.261 0.117 -0.106 0.065 0.014 0.203 -0.069 0.002 0.000 0.000 0.000 -0.014 0.087 0.006 0.007
Aggregate S&P 500 dividend yield -1.318 -0.119 -0.041 -0.415 0.617 -0.046 0.255 -0.014 -0.002 0.000 -0.001 -0.013 0.118 0.396 0.101
Industrial production index change -27.389 2.535 -3.206 -5.961 -5.808 2.264 -4.374 0.128 0.045 -0.080 0.052 -0.600 -0.313 -20.078 -1.524
Non-farm payroll percent change -39.774 11.453 -47.308 -2.925 10.034 9.044 2.895 0.691 0.554 0.184 0.100 1.065 -4.478 35.224 16.951
House price index percent change 5.901 1.205 -1.330 -1.440 -1.066 1.067 0.408 0.051 0.006 0.870 -0.018 0.002 1.846 -0.471 1.211
Consumer price index percent change 14.084 -0.937 -0.426 6.208 3.044 0.443 0.988 0.158 0.022 0.509 0.333 0.051 3.344 12.995 6.599
Dollar trade index percent change 1.104 -0.347 -0.400 0.519 1.117 -0.397 0.034 -0.003 -0.003 0.028 -0.033 0.392 -0.172 1.299 0.704
Economic uncertainty percent change 0.214 0.037 0.081 -0.111 0.014 -0.027 0.012 0.003 0.000 -0.001 0.000 -0.004 -0.218 0.107 0.001
Financial stress index change 0.219 0.056 0.009 0.075 0.073 0.030 0.102 0.005 0.000 0.001 -0.002 0.017 -0.010 0.048 -0.060
Baker-Wurgler investor sentiment -0.007 -0.042 0.022 0.015 0.021 -0.023 0.009 0.000 0.000 0.000 0.000 0.001 0.008 0.025 0.963

Macroeconomic variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
Intercept -1.68 1.67 -7.41 -0.54 0.85 2.00 -0.19 0.07 -7.18 2.31 -4.68 -0.16 -0.14 1.69 2.58
National activity index change -7.97 -0.11 2.35 1.55 0.17 -0.62 2.22 -3.08 -3.69 1.68 -2.70 2.06 0.34 0.36 -0.43
Treasury 3-month bill rate change 0.80 2.41 0.41 -2.82 -0.71 7.20 2.44 0.61 1.61 0.53 0.25 -0.14 -0.81 -0.26 -0.57
Unemployment rate change 0.14 -0.53 -2.53 1.83 -1.62 -0.71 -1.37 -1.94 -3.65 0.21 1.12 -0.65 -0.30 -1.92 -0.08
Term spread (10-year minus 1-year) 1.21 -0.65 -1.19 1.75 -1.87 0.14 -0.11 -0.05 -0.50 1.24 -0.87 -3.33 -1.12 -2.57 -0.09
Default spread (Baa minus 10-year) -1.99 -2.25 1.10 0.39 1.82 -1.58 -2.49 -2.91 0.28 0.25 -0.65 -3.94 -0.05 0.04 -1.11
Prime bank loan rate change 1.02 1.46 -1.71 0.80 0.15 3.49 -1.76 0.58 0.39 0.21 -0.22 -2.72 1.09 0.05 0.32
Aggregate S&P 500 dividend yield -2.62 -0.72 -0.32 -2.64 4.21 -0.38 3.41 -2.63 -2.25 0.09 -0.59 -1.33 0.77 1.34 0.71
Industrial production index change -3.93 1.14 -1.86 -2.70 -2.88 1.44 -4.27 1.73 3.46 -1.48 1.75 -4.38 -0.14 -5.01 -0.89
Non-farm payroll percent change -1.49 1.41 -6.90 -0.42 1.23 1.51 0.60 2.34 10.57 0.87 0.90 1.98 -0.56 2.17 2.02
House price index percent change 1.14 0.78 -1.01 -0.95 -0.74 0.94 0.49 0.94 0.59 22.10 -0.79 0.04 1.21 -0.20 0.82
Consumer price index percent change 0.91 -0.14 -0.09 1.26 0.68 0.16 0.36 0.98 0.69 4.36 5.30 0.17 0.73 1.46 1.25
Dollar trade index percent change 0.35 -0.45 -0.46 0.56 1.39 -0.68 0.04 -0.13 -0.57 1.27 -2.69 7.04 -0.19 0.78 0.28
Economic uncertainty percent change 0.99 0.53 1.51 -1.63 0.24 -0.58 0.40 1.20 0.14 -0.89 0.45 -0.88 -3.36 0.87 -0.41
Financial stress index change 1.44 1.19 0.20 1.56 1.63 0.91 4.59 3.27 0.11 0.86 -3.16 5.63 -0.22 0.54 -1.82
Baker-Wurgler investor sentiment 0.06 -2.50 1.29 1.14 1.31 -1.86 1.48 -0.22 1.64 -0.34 0.58 1.10 0.50 0.99 54.63
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Table 7: Granger causation from macroeconomic innovations to dynamic conditional alpha spreads 

This table shows the pairwise Granger-causality test p-values for the econometrician to assess whether Granger causation runs from macroeconometric innovations to dynamic conditional alphas. 

The columns indicate the respective asset pricing anomalies such as size, momentum, value (B/M, CF/P, Div/P, and E/P), asset growth, operating profitability, short-run return reversal, and long-

run return reversal. This tables demonstrates that at least a few macro innovations Granger-cause each dynamic conditional alpha spread with at least 90% statistical confidence (p-values<0.10) 

for most anomalies such as size, value (B/M, CF/P, and Div/P), asset growth, operating profitability, short-run return reversal, and long-term reversal. Only momentum and partial value (E/P) turn 

out to be the exceptions that defy this rule of thumb. Within the intertemporal CAPM context, we interpret this evidence in support of the prevalent use of Fama-French (2015) factors in a dynamic 

conditional model. Granger causation between macroeconomic innovations and dynamic conditional alphas serves as a core qualifying condition for “shrinking the factor zoo”, whereas, there is 

minimal evidence in favor of viewing momentum as a conceptually sound fundamental factor in the dynamic conditional context. To the extent that the investor cannot decipher fundamental news 

nor macroeconomic surprises from momentum, it remains hard to rationalize momentum apart from a unique statistical aberration. Insofar as momentum returns persist as an anomaly, we need a 

more plausible explanation than behavioral mispricing disequilibrium before we view momentum as an extra fundamental factor in the dynamic conditional model. 

 

 

 
 

Macroeconomic variable Size Momen B/M CF/P Div/P E/P AG OP SR Rev LR Rev
National activity index change 0.65 0.13 0.43 0.40 0.067 0.18 0.21 0.73 0.82 0.70
Treasury 3-month bill rate change 0.105 0.90 0.54 0.72 0.15 0.94 0.021 0.98 0.38 0.026
Unemployment rate change 0.64 0.62 0.33 0.075 0.35 0.79 0.034 0.56 0.13 0.98
Term spread (10-year minus 1-year) 0.78 0.96 0.29 0.61 0.63 0.64 0.12 0.44 0.41 0.0317
Default spread (Baa minus 10-year) 0.16 0.52 0.32 0.15 0.14 0.18 0.027 0.64 0.88 0.0321
Prime bank loan rate change 0.19 0.43 0.59 0.95 0.46 0.86 0.21 0.86 0.16 0.84
Aggregate S&P 500 dividend yield 0.25 0.56 0.52 0.32 0.19 0.21 0.49 0.81 0.072 0.54
Industrial production index change 0.52 0.88 0.72 0.98 0.58 0.27 0.78 0.35 0.92 0.16
Non-farm payroll percent change 0.098 0.69 0.86 0.35 0.99 0.31 0.40 0.48 0.11 0.64
House price index percent change 0.23 0.14 0.14 0.47 0.78 0.99 0.78 0.26 0.40 0.25
Consumer price index percent change 0.029 0.63 0.073 0.15 0.14 0.55 0.86 0.63 0.23 0.93
Dollar trade index percent change 0.60 0.88 0.45 0.98 0.11 0.69 0.35 0.35 0.70 0.51
Economic uncertainty percent change 0.98 0.79 0.21 0.66 0.62 0.61 0.33 0.61 0.084 0.47
Financial stress index change 0.86 0.16 0.32 0.1002 0.013 0.44 0.037 0.57 0.65 0.005
Baker-Wurgler investor sentiment 0.73 0.57 0.67 0.27 0.68 0.40 0.12 0.056 0.76 0.55

* *
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Table 8: Granger causation from dynamic conditional alpha spreads to macroeconomic innovations 

This table shows the pairwise Granger-causality test p-values for the econometrician to assess whether Granger causation runs from dynamic conditional alphas to macroeconometric innovations. 

The columns indicate the respective asset pricing anomalies such as size, momentum, value (B/M, CF/P, Div/P, and E/P), asset growth, operating profitability, short-run return reversal, and long-

run return reversal. Only partial value (Div/P and E/P), asset growth, operating profitability, short-run return reversal, and long-run reversal exhibit this reverse causation (p-values<0.10). In fact, 

the primary conditional alpha spreads for size, value (B/M and CF/P), and momentum convey little causal information about macroeconomic innovations (p-values>0.10). Within the intertemporal 

CAPM context, we interpret this evidence in support of the prevalent use of Fama-French (2015) fundamental factors in a dynamic conditional model. Granger causation between macroeconomic 

innovations and dynamic conditional alphas serves as a core qualifying condition for “shrinking the factor zoo”, whereas, there is minimal evidence in favor of viewing momentum as a conceptually 

sound fundamental factor in the dynamic conditional context. To the extent that the investor cannot decipher fundamental news nor macroeconomic surprises from momentum, it remains hard to 

rationalize momentum apart from a unique statistical aberration. Insofar as momentum profits persist as an anomaly, we need a more plausible explanation than behavioral mispricing disequilibrium 

before we view momentum as an extra fundamental factor in the dynamic conditional model. 

 

 

 

Macroeconomic variable Size Momen B/M CF/P Div/P E/P AG OP SR Rev LR Rev
National activity index change 0.32 0.52 0.31 0.20 0.64 0.087 0.80 0.66 0.91 0.28 *
Treasury 3-month bill rate change 0.87 0.34 0.46 0.96 0.016 0.72 0.47 0.63 0.92 0.44 *
Unemployment rate change 0.22 0.35 0.27 0.28 0.008 0.017 0.49 0.44 0.98 0.70 *
Term spread (10-year minus 1-year) 0.16 0.24 0.28 0.71 0.57 0.20 0.27 0.22 0.43 0.54
Default spread (Baa minus 10-year) 0.70 0.80 0.73 0.81 0.46 0.88 0.37 0.98 0.35 0.83
Prime bank loan rate change 0.22 0.20 0.68 0.83 0.31 0.34 0.50 0.0963 0.82 0.0916 *
Aggregate S&P 500 dividend yield 0.15 0.80 0.64 0.72 0.61 0.77 0.74 0.87 0.62 0.86
Industrial production index change 0.14 0.16 0.31 0.11 0.95 0.06 0.86 0.82 0.87 0.37 *
Non-farm payroll percent change 0.93 0.57 0.42 0.11 0.04 0.08 0.58 0.22 0.28 0.54 *
House price index percent change 0.41 0.20 0.52 0.34 0.29 0.84 0.75 0.64 0.12 0.39
Consumer price index percent change 0.50 0.30 0.46 0.97 0.90 0.73 0.51 0.81 0.022 0.98 *
Dollar trade index percent change 0.61 0.52 0.70 0.71 0.54 0.67 0.82 0.43 0.30 0.96
Economic uncertainty percent change 0.54 0.30 0.99 0.23 0.52 0.43 0.18 0.32 0.97 0.45
Financial stress index change 0.20 0.91 0.41 0.92 0.61 0.60 0.96 0.52 0.26 0.56
Baker-Wurgler investor sentiment 0.11 0.52 0.33 0.71 0.97 0.63 0.035 0.029 0.001 0.98 *
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Online Appendix to the PhD dissertation 

Stock market alphas help predict macroeconomic innovations. 
 

 

Abstract 

We extract dynamic conditional factor premiums from the Fama-French factor model and find 

that most anomalies disappear after one accounts for time variation in these premiums. Vector 

autoregression evidence shows that mutual causation between dynamic conditional alphas and 

macroeconomic surprises serves as a core qualifying condition for fundamental factor selection. 

This economic insight is an incremental step toward drawing a distinction between rational risk 

and behavioral mispricing models. To the extent that dynamic conditional alphas can reveal the 

marginal investor’s fundamental news and expectations about the cross-section of average asset 

returns, our economic insight helps enrich macroeconomic asset return prediction. 
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Appendix 1: Dynamic conditional alpha visualization for the extreme deciles 

This appendix shows the time-series charts of the dynamic alphas for the extreme deciles based on the stock portfolio 

tilts such as size, value, momentum, profitability, investment, short-run return reversal, and long-run return reversal. 

These dynamic factor premiums exhibit wide variation for the top and bottom deciles. Some large comovements 

tend to influence the central tendency of the alpha spread between the extreme deciles. Each alpha spread often 

switches its sign and becomes econometrically insignificant. In addition to Gibbons, Ross, and Shanken’s (1989) 

AGRS F-test, the AGMM C-test and AGMM Q-test of dynamic multifactor mean-variance efficiency (MMVE) 

suggests that the average alpha spreads are not different from zero. The distance between the squared Sharpe ratios 

for each individual stock portfolio and the MMVE tangency portfolio is not large enough for one to reject the null 

hypothesis of a correct asset pricing model specification. This inference accords with the spirit of the intertemporal 

context of Merton (1973), Campbell (1993), and Fama (1996). Investors care about not only their terminal wealth 

but also several behavioral considerations such as human capital, labor income, consumption, and hedging 

investment opportunities that covary with the conditional expectations of their terminal wealth. In this light, the 

Fama-French (2015) factors serve as valid and relevant state variables that reflect these comovements in response to 

the typical investor’s demand for hedging instruments. To the extent that the dynamic factor premiums on each 

Fama-French (2015) state variable is econometrically significant across the entire data span (i.e. each dynamic 

multifactor beta consistently differs from zero), the resultant dynamic alpha exhibits too much variability for the 

pricing error to be significant enough for the econometrician to reject the null hypothesis that the dynamic multifactor 

model is correctly specified.  

 

 

 

 
 

 

 
 

 



doi:10.6342/NTU202300842

41 
 

 
 

 

 
 

 

 
 

 

 

 

 

 

  



doi:10.6342/NTU202300842

42 
 

Appendix 2: ARMA-GARCH representation for each dynamic factor premium 

We show that each dynamic conditional factor premium can be modeled as a typical financial time-series. We apply 

both ARMA(1,1)-EGARCH(1,1,1) and ARMA(1,1)-GJR-GARCH(1,1,1) conditional-mean-and-variance models to 

fit each factor premium that the econometrician extracts from a “dynamic” variant of the Fama-French (2015) factor 

model. Although it is possible to identify a more precise time-series representation for each factor premium, our goal 

here is more straight-forward. In fact, our primary goal is to use the standard toolkit in time-series econometrics to 

establish the empirical fact that each dynamic alpha or beta spread exhibits the major properties of most financial 

time series. Each factor premium embeds autoregressive mean reversion in the conditional mean specification of 

ARMA(1,1), and volatility clusters and asymmetries in the conditional volatility specification of EGARCH(1,1,1) 

or GJR-GARCH(1,1,1) (cf Engle (1982); Bollerslev (1986); Nelson (1991); Glosten et al (1993)). One can readily 

fit an ARMA-EGARCH or ARMA-GJR-GARCH model to characterize the dynamic evolution of each conditional 

alpha or beta spread over time. This characterization entails both reasonable and flexible assumptions about the true 

conditional mean and variance processes for each dynamic conditional factor premium.  

 

This time-series analysis also differs from several earlier studies that exclusively focus on the single-beta CAPM (cf. 

Adrian and Franzoni (2009); Ang and Chen (2007); Lewellen and Nagel (2006)). The recursive multivariate filter 

helps extract dynamic conditional alphas and betas from the Fama-French (2015) multi-factor model, and then the 

econometrician can apply Eq(14)-Eq(17) to model each dynamic conditional alpha or beta spread as a financial time 

series. While it is reasonable to identify the “best” ARMA-GARCH representation for each conditional alpha or beta 

spread, we establish the empirical fact that each dynamic conditional alpha or beta spread exhibits the most prevalent 

properties of a typical financial time series. In turn, this empirical fact defies the conventional wisdom of pure point 

estimates of factor premiums in most static time-series ordinary least-squares regressions. 

 

Table A2.1 presents the ARMA-GARCH results for each dynamic alpha spread between the extreme deciles. While 

there is substantive evidence in support of autoregressive dynamic alpha spreads across all of the portfolio tilts (t-

ratios>33), only the size portfolio tilt demonstrates some trace of a moving average alpha spread (t-ratio>2.6). Across 

the EGARCH and GJR-GARCH panels, there is strong evidence in support of both volatility clusters and 

asymmetries across all of the portfolio tilts (|t-ratios|>2). In this light, it is reasonable to infer that each dynamic 

alpha spread exhibits the common properties of a typical financial time series. Subsequent analysis can shine new 

light on both the economic content and predictive power of each dynamic alpha spread. To the extent that stock 

market information serves as a leading indicator of economic activity, each alpha spread can convey material 

information about economic growth, market valuation, financial stress, cyclical variation, or forecast combination. 

This conjecture calls for some further empirical confirmation in the spirit of several recent studies (Liew and 

Vassalou, 2000; Vassalou, 2003; Vassalou and Xing, 2004; Petkova, 2006; Hahn and Lee, 2006).  

 

Only the momentum and short-term reversal portfolio tilts produce significant average alpha spreads (|t-ratios|>2.9). 

The respective intercepts are 1.028 and –1.122. These average conditional alpha spreads are reasonably close to the 

corresponding average alpha spreads for momentum and short-term return reversal of 0.989 and –1.180 in Table 3. 

Although these average alpha spreads seem to persist in the extreme deciles (Fama and French, 2008), it is key to 

recall the more formal Sharpe ratio test evidence that the average alphas do not jointly differ from zero across all the 

momentum and short-term reversal deciles. This logic leads the econometrician to infer that the average alpha 

spreads are consistent between Table 3 and Table A2.1. 

 

Table A2.2 encapsulates the ARMA-GARCH results for each dynamic MRP beta spread between the top and bottom 

deciles. This conditional beta spread represents the relative sensitivity of the excess return on each stock portfolio 

tilt to changes in the market risk premium. All of the AR(1) coefficients are highly significant across the board (t-

ratios>9), but only the short-term reversal portfolio tilt carries a significant MA(1) coefficient (t-ratio>2). Thus, the 

conditional mean specification is largely autoregressive in nature. In regard to the conditional variance specification, 

the GARCH effect is significant for the momentum, book-to-market, cashflow-to-price, profitability, and short-term 

reversal portfolio tilts. Among these tilts, only the MRP beta spreads for momentum and book-to-market exhibit 

significant volatility asymmetries in both the EGARCH and GJR-GARCH models. In comparison, the cashflow-to-

price, profitability, and short-term reversal tilts exhibit significant volatility asymmetries only in the EGARCH 

model. Similar to the case for the dynamic alpha spreads, the MRP beta spreads can be further synthesized to offer 

new insights into a better prediction of economic or financial variables. The time variation in each MRP beta spread 

reflects shifts in the response of the excess return on a given portfolio strategy to changes in the market risk premium. 

As a result, this variation indicates changes in the investor’s exposure to systematic risk after the econometrician 

controls for the other Fama-French (2015) state variables. A deeper analysis of MRP beta spread gyrations shows 

promise beyond the asset pricing literature.  

 

Table A2.3 presents the ARMA-GARCH results for each dynamic SMB beta spread between the extreme deciles. 

The dynamic SMB beta spread reflects the relative sensitivity of the excess return on each stock portfolio tilt to 

changes in the return spread between the small and big stock portfolios. With respect to the conditional mean 

specification, the AR(1) coefficients are significant across the board (t-ratios>20), whereas, the MA(1) coefficients 

are insignificant at any reasonable confidence level. The conditional mean specification is first-order autoregressive. 

With respect to the conditional variance specification, the GARCH effect is prevalent across the EGARCH and GJR-
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GARCH models for the size, momentum, book-to-market, profitability, and short-term reversal portfolio tilts (|t-

ratios|>2.1). With the EGARCH model, the GARCH effect of volatility clusters is also evident for the cashflow-to-

price, investment, and long-term reversal portfolio tilts (|t-ratios|>2.1). Moreover, the presence of volatility 

asymmetries is real for the size, momentum, book-to-market, cashflow-to-price, investment, profitability, short-term 

reversal, and long-run reversal portfolio tilts (|t-ratios|>2.1). In sum, the SMB beta spread exhibits large variability 

over time. It is reasonable to infer that the SMB beta spread gyrates sufficiently to capture shifts in the relative 

response of the excess return on a given portfolio strategy to changes in the return spread between the small and big 

stock portfolios.  

 

Table A2.4 summarizes the ARMA-GARCH results for each HML beta spread between the extreme deciles. The 

HML beta spread throws light on the sensitivity of the excess return on a given portfolio strategy to changes in the 

return spread between the high and low book-to-market stock portfolios. With respect to the conditional mean 

specification, the AR(1) coefficients are significant (t-ratios>25.8). Moreover, the MA(1) coefficients for momentum 

and earnings-to-price are significant (t-ratios>2) in the ARMA-EGARCH model. Thus, there is substantial serial 

correlation in the conditional mean specification of the dynamic HML beta spread. With respect to the conditional 

variance specification, the EGARCH model suggests significant volatility clusters for the dividend-to-price, 

investment, and short-term reversal portfolio tilts while the GJR-GARCH model suggests significant volatility 

clusters for the size, momentum, cashflow-to-price, and investment portfolio tilts. In this light, the GJR-GARCH 

seems to better pick up the GARCH effect for the HML beta spread. Among these portfolio tilts, volatility 

asymmetries prevail in the GJR-GARCH model for both momentum and investment tilts. All this evidence supports 

the view that the dynamic HML beta spread exhibits the common properties of a typical financial time series. 

 

The above results are informative in the sense that each HML beta spread exhibits much variability over time for the 

original Fama-French HML factor to be economically meaningful in explaining the variation in stock returns. In 

conjunction with the evidence of significant mean HML betas in Table A5.3, the ARMA-GARCH results support 

the use of HML as a relevant state variable that helps better span the investor’s mean-variance space. Thus, HML 

conveys non-trivial information about at least some of the variation in excess returns for a variety of stock portfolio 

tilts. This inference is inconsistent with the recent claim of Fama and French (2015) and Hou, Xue, and Zhang (2014) 

that HML becomes redundant after the econometrician incorporates RMW and CMA into the multifactor asset 

pricing model. The economic content of HML and even SMB relates to whether these state variables serve as proxies 

for financial distress risk (Griffin and Lemmon, 2002; Vassalou and Xing, 2004), macroeconomic innovations (Liew 

and Vassalou, 2000; Vassalou, 2003; Petkova, 2006; Hahn and Lee, 2006), or some other behavioral considerations 

(Campbell, Hilscher, and Szilagyi, 2008). 

 

Table A2.5 presents the ARMA-GARCH results for each dynamic RMW beta spread between the extreme deciles. 

The RMW beta spread reflects the relative sensitivity of the excess return on a given portfolio to changes in the 

return spread between the robust and weak stock portfolios in terms of their profitability. With respect to the 

conditional mean specification, the AR(1) coefficients are highly significant across the board (t-ratios>34). Also, the 

ARMA-EGARCH model yields significant MA(1) coefficients for the book-to-market and profitability portfolio 

tilts (t-ratios>2), whilst the alternative ARMA-GJR-GARCH model yields significant MA(1) coefficients for the 

investment and profitability tilts (t-ratios>2.9). Thus, there is substantial serial correlation in the conditional mean 

specification of each dynamic RMW beta spread. With respect to the conditional variance specification, the GJR-

GARCH model seems to better pick up the GARCH effect than the EGARCH model. Specifically, the GJR-GARCH 

model suggests a significant GARCH effect for the size, momentum, book-to-market, cashflow-to-price, dividend-

to-price, earnings-to-price, and profitability portfolio tilts (t-ratios>1.8), whereas, the EGARCH model picks up a 

large GARCH effect only for the size, book-to-market, cashflow-to-price, and investment portfolio tilts (t-ratios>1.7). 

In addition, the presence of volatility asymmetries prevails in the GJR-GARCH model for the size, book-to-market, 

cashflow-to-price, investment, and profitability portfolio tilts (|t-ratios|>2.3). In light of the above evidence, the 

RMW beta spread exhibits much variability over time. Similar to the case for the other state variables, RMW carries 

informative dynamic beta spreads that are analogous to a typical financial time series. To the extent that RMW 

captures the return spread between profitable stocks and less profitable stocks, this state variable adds value to the 

explanatory power of a dynamic variant of the Fama-French (2015) multifactor model.  

 

Table A2.6 summarizes the ARMA-GARCH results for each CMA beta spread between the top and bottom deciles. 

The CMA beta spread describes the sensitivity of the excess return on a given stock portfolio to changes in the return 

spread that reflects differences in a firm’s capital investment or asset growth. With respect to the conditional mean 

specification, the AR(1) coefficients are significant across the board (t-ratios>36). Some of the MA(1) coefficients 

are also significant for the size, cashflow-to-price, dividend-to-price, investment, profitability, and short-term 

reversal portfolio tilts (t-ratios>1.6). Similar to the case for the other Fama-French beta spreads, the CMA beta spread 

exhibits serial correlation in its conditional mean. With respect to the conditional variance specification, the 

EGARCH model appears to better pick up the prevalence of volatility clusters than the GJR-GARCH model. 

Specifically, the EGARCH model finds a substantial GARCH effect for the size, momentum, book-to-market, 

cashflow-to-price, dividend-to-price, profitability, and short-term reversal portfolio tilts (|t-ratios|>2), while the GJR-

GARCH model does so only for the book-to-market, dividend-to-price, and short-term reversal portfolio tilts (t-

ratios>2). However, the evidence of volatility asymmetries is less conclusive. In sum, CMA seems to be a useful 

state variable that yields wide time-series heterogeneity in its beta spread between the extreme deciles.  
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Table A2.1: ARMA-GARCH representation of each dynamic conditional alpha spread 

The econometrician demonstrates that each dynamic factor premium can be modeled as a typical financial time-series. The econometrician can use the canonical ARMA(1,1)-EGARCH(1,1,1) 

and ARMA(1,1)-GJR-GARCH(1,1,1) models to fit each dynamic factor premiums that one extracts from the dynamic multifactor variant of the Fama-French (2015) asset pricing model. The 

conditional mean specification is ARMA(1,1) while the conditional variance specification can take the form of EGARCH(1,1,1) or GJR-GARCH(1,1,1). For simple and intuitive exposition, the 

econometrician describes the ARMA(1,1) conditional mean specification and EGARCH(1,1,1) and GJR-GARCH(1,1,1) conditional variance specifications below (Engle, 1982; Bollerslev, 1986; 

Nelson, 1991; Glosten, Jagannathan, and Runkle, 1993): 
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where mt is the dynamic alpha or beta spread; wt is the residual error; ht is the conditional variance process; εt is a Gaussian white noise; Dt is a binary variable with a numerical value of unity if 

wt is negative or zero if wt is positive; a, b, c, d, e, f, and g are the parameters for quasi-maximum likelihood estimation. While the ARMA model serves as the conditional mean specification to 

capture any serial correlation in the dynamic alpha or beta spread between the extreme deciles, the EGARCH or GJR-GARCH model fits the conditional variance specification to encapsulate any 

volatility clusters and asymmetries in the above time-series under study.  

 

 

Table 9 summarizes the quantitative estimates of the main parameters for each dynamic alpha in the ARMA(1,1)-EGARCH(1,1,1) and ARMA(1,1)-GJR-GARCH(1,1,1) conditional mean-variance 

specifications. The main parameters a, b, c, d, e, f, and g correspond to the key coefficients in the above time-series representation. This table reports each coefficient estimate and its corresponding 

t-statistic across the pervasive asset pricing anomalies such as size, value, momentum, investment, profitability, short-term return reversal, and long-term return reversal. Each t-test statistic helps 

examine statistical significance. On this basis, the econometrician can assess the presence or absence of the common properties of a typical financial time-series (cf. autoregressive mean reversion 

in the conditional mean specification and both volatility clusters and asymmetries in the conditional variance specification).  
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Table A2.1: ARMA-GARCH representation of each dynamic conditional alpha spread 

 

  

Asset pricing puzzle
Stock portfolio sort a b c d e f g a b c d e f g
Size
Coefficient 0.084 0.887 0.114 0.008 0.035 1.000 0.042 0.087 0.889 0.116 0.000 0.033 0.984 -0.037
t-ratio 0.9 48.6 2.7 2.9 10.1 41597 3.1 0.8 45.5 2.6 3.3 3.6 170.4 -2.5
Momentum
Coefficient 1.028 0.918 0.041 -0.016 0.078 0.959 0.057 0.987 0.915 0.031 0.013 0.071 0.951 -0.076
t-ratio 2.9 54.6 0.8 -1.0 3.6 50.4 2.3 2.9 49.0 0.6 1.9 3.4 66.7 -3.4
Book-to-market
Coefficient -0.195 0.906 0.047 -1.430 0.187 0.170 0.283 -0.173 0.914 0.075 0.003 0.000 1.000 -0.029
t-ratio -1.0 46.0 0.8 -5.2 2.5 1.1 2.5 -6.2 65.3 4.7 180.6 0.0 380425 -205.7
Cashflow-to-price
Coefficient -0.047 0.909 0.012 -0.017 -0.007 0.980 0.068 0.021 0.912 0.022 0.004 0.000 0.979 0.012
t-ratio -0.2 60.8 0.3 -3.1 -0.4 341 14.3 0.1 47.3 0.5 6.0 0.0 217.4 1.8
Dividend-to-price
Coefficient -0.142 0.932 0.002 0.010 0.037 1.000 0.059 -0.239 0.922 0.047 0.007 0.063 0.958 -0.082
t-ratio -0.6 50.8 0.0 3.3 2.4 2309 10.1 -3.0 56.9 1.3 12.8 208.6 1764 -203.5
Earnings-to-price
Coefficient -0.082 0.904 0.031 -0.083 0.068 0.944 0.048 -0.095 0.897 0.043 0.013 0.071 0.910 -0.086
t-ratio -0.5 46.0 0.7 -11.7 3.8 255 3.4 -0.5 45.5 1.0 3.0 3.4 36.5 -3.7
Investment
Coefficient 0.056 0.938 0.062 -1.074 -0.403 0.465 0.127 0.051 0.907 0.063 0.062 0.000 0.409 0.351
t-ratio 0.3 59.2 1.7 -5.1 -6.5 4.6 2.0 0.3 51.2 1.2 4.4 0.0 3.7 4.1
Profitability
Coefficient 0.304 0.928 0.024 -0.227 0.017 0.898 0.034 0.329 0.931 0.032 0.001 0.000 1.000 -0.011
t-ratio 1.9 53.6 0.5 -2.9 0.7 24.2 3.6 2.2 55.4 0.8 1.9 0.0 294824 -2.0
Short-term reversal
Coefficient -1.122 0.858 0.079 0.001 0.003 0.980 0.098 -1.076 0.901 0.066 0.004 0.000 1.000 -0.015
t-ratio -4.8 41.1 1.5 0.1 0.2 98.8 4.1 -2.6 49.9 1.6 7.6 0.0 214006 -9.0
Long-term reversal
Coefficient 0.378 0.854 0.065 -0.092 0.093 0.928 0.070 0.380 0.860 0.072 0.023 0.062 0.881 -0.065
t-ratio 2.6 38.2 1.4 -2.3 4.3 39.0 2.2 2.4 33.6 1.5 3.3 2.4 27.6 -2.0

ARMA(1,1)-EGARCH(1,1,1) ARMA(1,1)-GJR-GARCH(1,1,1)
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Table A2.2: ARMA-GARCH representation of each dynamic conditional MRP beta spread 

The econometrician demonstrates that each dynamic factor premium can be modeled as a typical financial time-series. The econometrician can use the canonical ARMA(1,1)-EGARCH(1,1,1) 

and ARMA(1,1)-GJR-GARCH(1,1,1) models to fit each dynamic factor premiums that one extracts from the dynamic multifactor variant of the Fama-French (2015) asset pricing model. The 

conditional mean specification is ARMA(1,1) while the conditional variance specification can take the form of EGARCH(1,1,1) or GJR-GARCH(1,1,1). For simple and intuitive exposition, the 

econometrician describes the ARMA(1,1) conditional mean specification and EGARCH(1,1,1) and GJR-GARCH(1,1,1) conditional variance specifications below (Engle, 1982; Bollerslev, 1986; 

Nelson, 1991; Glosten, Jagannathan, and Runkle, 1993): 
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where mt is the dynamic alpha or beta spread; wt is the residual error; ht is the conditional variance process; εt is a Gaussian white noise; Dt is a binary variable with a numerical value of unity if 

wt is negative or zero if wt is positive; a, b, c, d, e, f, and g are the parameters for quasi-maximum likelihood estimation. While the ARMA model serves as the conditional mean specification to 

capture any serial correlation in the dynamic alpha or beta spread between the extreme deciles, the EGARCH or GJR-GARCH model fits the conditional variance specification to encapsulate any 

volatility clusters and asymmetries in the above time-series under study.  

 

 

Table 10 shows the quantitative estimates of the key parameters for each dynamic MRP beta in the ARMA(1,1)-EGARCH(1,1,1) and ARMA(1,1)-GJR-GARCH(1,1,1) conditional mean-variance 

specifications. The main parameters a, b, c, d, e, f, and g correspond to the key coefficients in the above time-series representation. This table reports each coefficient estimate and its corresponding 

t-statistic across the pervasive asset pricing anomalies such as size, value, momentum, investment, profitability, short-term return reversal, and long-term return reversal. Each t-test statistic helps 

examine statistical significance. On this basis, the econometrician can assess the presence or absence of the common properties of a typical financial time-series (cf. autoregressive mean reversion 

in the conditional mean specification and both volatility clusters and asymmetries in the conditional variance specification).  
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Table A2.2: ARMA-GARCH representation of each dynamic conditional MRP beta spread 

 

  

Asset pricing puzzle
Stock portfolio sort a b c d e f g a b c d e f g
Size
Coefficient 0.048 0.700 0.012 -0.017 0.023 0.993 0.071 0.047 0.697 0.010 0.000 0.035 0.962 -0.006
t-ratio 1.8 18.8 0.2 -1.0 1.5 176.9 3.8 1.6 15.7 0.2 1.2 2.4 88.2 -0.3
Momentum
Coefficient -0.083 0.699 0.021 -0.563 -0.130 0.462 0.454 -0.065 0.701 0.024 0.225 0.178 0.090 0.271
t-ratio -1.0 12.1 0.2 -2.8 -2.3 2.6 5.1 -0.8 17.4 0.3 4.3 2.5 0.6 1.9
Book-to-market
Coefficient 0.213 0.708 -0.021 -0.125 0.079 0.941 0.062 0.216 0.711 -0.035 0.005 0.066 0.933 -0.099
t-ratio 6.1 18.1 -0.4 -9.3 4.9 144.6 2.8 4.6 16.0 -0.5 2.8 3.6 32.5 -11.7
Cashflow-to-price
Coefficient 0.108 0.682 -0.023 -0.336 -0.064 0.822 0.350 0.102 0.670 -0.016 0.040 0.243 0.465 0.119
t-ratio 3.0 22.3 -1.2 -2.2 -1.6 11.0 3.9 2.4 14.6 -0.2 3.7 2.4 4.0 1.1
Dividend-to-price
Coefficient -0.254 0.699 -0.010 -0.020 0.002 0.982 0.174 -0.249 0.700 -0.012 0.003 0.072 0.913 0.011
t-ratio -6.5 23.1 -0.8 -0.8 0.1 68.2 4.1 -4.7 15.8 -0.2 1.5 3.1 37.2 0.3
Earnings-to-price
Coefficient 0.177 0.713 -0.018 -0.392 -0.072 0.800 0.157 0.169 0.730 -0.024 0.000 0.005 0.988 0.011
t-ratio 2.4 9.0 -0.1 -1.6 -1.8 6.7 2.4 3.0 15.3 -0.4 0.6 0.6 455.4 0.6
Investment
Coefficient -0.025 0.665 0.011 -0.278 -0.012 0.885 0.114 -0.021 0.678 -0.006 0.000 0.000 0.991 0.015
t-ratio -0.7 14.1 0.2 -1.3 -0.4 9.9 2.0 -0.6 14.7 -0.1 0.5 0.0 837.4 2.4
Profitability
Coefficient -0.285 0.733 -0.021 -0.138 0.012 0.937 0.184 -0.275 0.735 -0.011 0.006 0.088 0.857 -0.015
t-ratio -7.2 16.8 -0.3 -2.6 0.4 43.0 4.6 -6.0 16.5 -0.2 2.9 2.4 29.9 -0.3
Short-term reversal
Coefficient -0.199 0.661 0.134 -0.044 -0.012 0.956 0.153 -0.185 0.662 0.121 0.015 0.067 0.887 -0.003
t-ratio -2.6 15.0 2.3 -1.7 -0.5 43.5 3.9 -2.5 14.4 2.0 1.7 2.6 20.2 -0.1
Long-term reversal
Coefficient -0.186 0.637 0.109 -0.272 -0.003 0.833 0.205 -0.169 0.642 0.130 0.001 0.008 1.000 -0.024
t-ratio -4.0 14.5 1.6 -1.9 -0.1 10.0 3.2 -1.8 9.2 1.3 3.8 0.9 213718 -0.9

ARMA(1,1)-EGARCH(1,1,1) ARMA(1,1)-GJR-GARCH(1,1,1)
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Table A2.3: ARMA-GARCH representation of each dynamic conditional SMB beta spread 

The econometrician demonstrates that each dynamic factor premium can be modeled as a typical financial time-series. The econometrician can use the canonical ARMA(1,1)-EGARCH(1,1,1) 

and ARMA(1,1)-GJR-GARCH(1,1,1) models to fit each dynamic factor premiums that one extracts from the dynamic multifactor variant of the Fama-French (2015) asset pricing model. The 

conditional mean specification is ARMA(1,1) while the conditional variance specification can take the form of EGARCH(1,1,1) or GJR-GARCH(1,1,1). For simple and intuitive exposition, the 

econometrician describes the ARMA(1,1) conditional mean specification and EGARCH(1,1,1) and GJR-GARCH(1,1,1) conditional variance specifications below (Engle, 1982; Bollerslev, 1986; 

Nelson, 1991; Glosten, Jagannathan, and Runkle, 1993): 
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where mt is the dynamic alpha or beta spread; wt is the residual error; ht is the conditional variance process; εt is a Gaussian white noise; Dt is a binary variable with a numerical value of unity if 

wt is negative or zero if wt is positive; a, b, c, d, e, f, and g are the parameters for quasi-maximum likelihood estimation. While the ARMA model serves as the conditional mean specification to 

capture any serial correlation in the dynamic alpha or beta spread between the extreme deciles, the EGARCH or GJR-GARCH model fits the conditional variance specification to encapsulate any 

volatility clusters and asymmetries in the above time-series under study.  

 

 

Table 11 shows the quantitative estimates of the key parameters for each dynamic SMB beta in the ARMA(1,1)-EGARCH(1,1,1) and ARMA(1,1)-GJR-GARCH(1,1,1) conditional mean-variance 

specifications. The main parameters a, b, c, d, e, f, and g correspond to the key coefficients in the above time-series representation. This table reports each coefficient estimate and its corresponding 

t-statistic across the pervasive asset pricing anomalies such as size, value, momentum, investment, profitability, short-term return reversal, and long-term return reversal. Each t-test statistic helps 

examine statistical significance. On this basis, the econometrician can assess the presence or absence of the common properties of a typical financial time-series (cf. autoregressive mean reversion 

in the conditional mean specification and both volatility clusters and asymmetries in the conditional variance specification).  
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Table A2.3: ARMA-GARCH representation of each dynamic conditional SMB beta spread 

 

  

Asset pricing puzzle
Stock portfolio sort a b c d e f g a b c d e f g
Size
Coefficient -1.419 0.844 0.007 -0.050 0.050 0.979 0.061 -1.436 0.845 0.003 0.001 0.042 0.965 -0.046
t-ratio -24.5 38.0 0.8 -12.4 3.8 4260 12.0 -22.6 30.0 0.0 3.4 4.4 124.6 -3.1
Momentum
Coefficient 0.034 0.845 0.014 -0.043 0.082 0.939 0.104 0.002 0.840 0.011 0.023 0.099 0.900 -0.094
t-ratio 0.2 31.7 0.3 -1.6 3.0 31.1 2.8 0.0 29.9 0.2 1.7 2.8 20.6 -2.6
Book-to-market
Coefficient 0.403 0.828 0.066 -0.031 0.038 0.986 -0.024 0.409 0.797 0.080 0.001 0.007 0.996 -0.026
t-ratio 4.4 27.7 1.3 -15.7 3.9 5170 -5.2 5.2 27.8 1.6 2.9 3.4 553289 -4.4
Cashflow-to-price
Coefficient 0.109 0.797 0.034 -0.329 -0.077 0.827 0.166 0.086 0.788 0.047 0.023 0.041 0.751 0.100
t-ratio 1.7 24.4 0.7 -2.2 -2.1 11.0 2.9 1.1 22.9 0.8 2.5 1.4 9.1 1.8
Dividend-to-price
Coefficient -0.317 0.790 0.033 -0.071 -0.043 0.947 0.162 -0.308 0.784 0.052 0.011 0.023 0.875 0.098
t-ratio -4.5 21.0 0.5 -1.9 -1.5 42.2 4.4 -3.6 21.9 0.8 2.4 1.1 23.6 2.4
Earnings-to-price
Coefficient 0.168 0.813 0.058 -0.265 0.002 0.858 0.066 0.165 0.824 0.055 0.000 0.000 0.994 0.011
t-ratio 1.8 25.7 1.1 -1.0 0.0 5.9 1.3 1.7 28.7 1.1 0.6 0.0 1046 2.0
Investment
Coefficient -0.092 0.871 -0.003 -0.196 0.053 0.918 -0.053 -0.081 0.838 0.012 0.001 0.000 1.000 -0.018
t-ratio -1.0 30.1 -0.1 -55.1 2.9 18417 -1.8 -1.0 31.7 0.2 25.0 0.0 952657 -25.1
Profitability
Coefficient -0.482 0.750 0.084 -0.175 -0.002 0.918 0.132 -0.462 0.754 0.092 0.008 0.045 0.871 0.012
t-ratio -7.7 20.7 1.3 -2.4 -0.1 29.8 3.1 -8.0 20.6 1.5 2.7 2.1 23.3 0.4
Short-term reversal
Coefficient -0.138 0.813 0.035 -0.044 0.077 0.948 0.103 -0.137 0.812 0.026 0.022 0.118 0.880 -0.106
t-ratio -1.0 25.5 0.6 -1.9 3.0 42.3 3.5 -1.0 25.6 0.5 2.5 3.4 28.9 -2.6
Long-term reversal
Coefficient -0.577 0.860 0.025 -0.036 -0.042 0.969 0.097 -0.567 0.857 0.049 0.005 0.010 0.946 0.044
t-ratio -5.1 34.6 0.6 -1.4 -2.1 62.1 2.9 -4.3 32.4 0.9 2.0 0.6 49.0 2.1

ARMA(1,1)-EGARCH(1,1,1) ARMA(1,1)-GJR-GARCH(1,1,1)
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Table A2.4: ARMA-GARCH representation of each dynamic conditional HML beta spread 

The econometrician demonstrates that each dynamic factor premium can be modeled as a typical financial time-series. The econometrician can use the canonical ARMA(1,1)-EGARCH(1,1,1) 

and ARMA(1,1)-GJR-GARCH(1,1,1) models to fit each dynamic factor premiums that one extracts from the dynamic multifactor variant of the Fama-French (2015) asset pricing model. The 

conditional mean specification is ARMA(1,1) while the conditional variance specification can take the form of EGARCH(1,1,1) or GJR-GARCH(1,1,1). For simple and intuitive exposition, the 

econometrician describes the ARMA(1,1) conditional mean specification and EGARCH(1,1,1) and GJR-GARCH(1,1,1) conditional variance specifications below (Engle, 1982; Bollerslev, 1986; 

Nelson, 1991; Glosten, Jagannathan, and Runkle, 1993): 
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where mt is the dynamic alpha or beta spread; wt is the residual error; ht is the conditional variance process; εt is a Gaussian white noise; Dt is a binary variable with a numerical value of unity if 

wt is negative or zero if wt is positive; a, b, c, d, e, f, and g are the parameters for quasi-maximum likelihood estimation. While the ARMA model serves as the conditional mean specification to 

capture any serial correlation in the dynamic alpha or beta spread between the extreme deciles, the EGARCH or GJR-GARCH model fits the conditional variance specification to encapsulate any 

volatility clusters and asymmetries in the above time-series under study.  

 

 

Table 12 shows the quantitative estimates of the key parameters for each dynamic HML beta in the ARMA(1,1)-EGARCH(1,1,1) and ARMA(1,1)-GJR-GARCH(1,1,1) conditional mean-variance 

specifications. The main parameters a, b, c, d, e, f, and g correspond to the key coefficients in the above time-series representation. This table reports each coefficient estimate and its corresponding 

t-statistic across the pervasive asset pricing anomalies such as size, value, momentum, investment, profitability, short-term return reversal, and long-term return reversal. Each t-test statistic helps 

examine statistical significance. On this basis, the econometrician can assess the presence or absence of the common properties of a typical financial time-series (cf. autoregressive mean reversion 

in the conditional mean specification and both volatility clusters and asymmetries in the conditional variance specification).  
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Table A2.4: ARMA-GARCH representation of each dynamic conditional HML beta spread 

 

  

Asset pricing puzzle
Stock portfolio sort a b c d e f g a b c d e f g
Size
Coefficient -0.593 0.808 0.026 -0.013 0.005 0.992 0.070 -0.591 0.841 -0.009 0.001 0.040 0.965 -0.028
t-ratio -12.9 39.0 1.0 -4.4 0.4 1732 28.0 -9.4 25.8 -0.2 2.3 2.6 126.5 -1.3
Momentum
Coefficient -0.452 0.920 0.060 0.006 0.021 0.988 0.087 -0.409 0.929 0.064 0.009 0.057 0.961 -0.065
t-ratio -2.1 53.8 4.5 0.7 1.0 77.8 2.9 -1.1 51.1 1.4 1.6 3.3 54.3 -2.9
Book-to-market
Coefficient 1.933 0.877 -0.009 -1.518 -0.127 0.259 0.385 1.972 0.877 -0.005 0.004 0.000 0.947 0.047
t-ratio 17.6 39.8 -0.1 -4.1 -2.2 1.49 4.4 17.3 37.9 -0.1 1.8 0.0 42 2.7
Cashflow-to-price
Coefficient 1.642 0.860 0.059 -0.316 0.065 0.817 0.261 1.620 0.852 0.084 0.035 0.194 0.646 -0.096
t-ratio 15.0 33.4 1.0 -2.3 1.3 10.8 3.5 14.4 32.7 1.4 3.6 2.2 7.8 -1.1
Dividend-to-price
Coefficient 1.587 0.867 0.063 0.006 -0.037 1.000 0.026 1.633 0.863 0.068 0.001 0.009 0.979 0.022
t-ratio 11.8 46.4 1.4 3.2 -3.7 400458 4.9 11.7 35.4 1.4 1.7 1.2 233.5 1.8
Earnings-to-price
Coefficient 1.739 0.854 0.057 0.005 0.000 1.000 0.031 1.742 0.856 0.037 0.000 0.004 0.992 0.006
t-ratio 14.7 35.4 2.0 6.7 0.0 105492 97.8 14.4 32.7 0.7 0.7 0.4 981 0.5
Investment
Coefficient -0.686 0.888 -0.010 -0.603 0.128 0.716 0.235 -0.725 0.894 0.024 0.001 0.000 1.000 -0.025
t-ratio -6.5 41.2 -0.2 -3.1 3.2 8.28 3.7 -7.1 49.3 0.5 52.7 4.7 9274919 -41.7
Profitability
Coefficient -0.873 0.854 0.076 -0.468 -0.052 0.792 0.075 -0.874 0.851 0.085 0.021 0.017 0.757 0.042
t-ratio -9.0 33.1 1.6 -1.3 -1.3 5.0 1.4 -9.2 32.9 1.7 1.5 0.7 5.0 0.8
Short-term reversal
Coefficient -0.087 0.840 0.012 -0.030 -0.059 0.967 0.068 -0.055 0.844 0.015 0.009 0.000 0.944 0.060
t-ratio -0.8 40.1 0.7 -7.1 -4.5 260.6 9.3 -0.4 33.1 0.3 1.9 0.0 50.6 3.3
Long-term reversal
Coefficient -1.089 0.907 0.018 0.004 -0.026 1.000 0.022 -1.031 0.907 0.018 0.000 0.004 0.992 0.005
t-ratio -5.8 46.0 0.4 2.8 -1.7 194322 5.99 -5.4 42.4 0.4 0.6 0.4 947.4 0.3

ARMA(1,1)-EGARCH(1,1,1) ARMA(1,1)-GJR-GARCH(1,1,1)
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Table A2.5: ARMA-GARCH representation of each dynamic conditional RMW beta spread 

The econometrician demonstrates that each dynamic factor premium can be modeled as a typical financial time-series. The econometrician can use the canonical ARMA(1,1)-EGARCH(1,1,1) 

and ARMA(1,1)-GJR-GARCH(1,1,1) models to fit each dynamic factor premiums that one extracts from the dynamic multifactor variant of the Fama-French (2015) asset pricing model. The 

conditional mean specification is ARMA(1,1) while the conditional variance specification can take the form of EGARCH(1,1,1) or GJR-GARCH(1,1,1). For simple and intuitive exposition, the 

econometrician describes the ARMA(1,1) conditional mean specification and EGARCH(1,1,1) and GJR-GARCH(1,1,1) conditional variance specifications below (Engle, 1982; Bollerslev, 1986; 

Nelson, 1991; Glosten, Jagannathan, and Runkle, 1993): 
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where mt is the dynamic alpha or beta spread; wt is the residual error; ht is the conditional variance process; εt is a Gaussian white noise; Dt is a binary variable with a numerical value of unity if 

wt is negative or zero if wt is positive; a, b, c, d, e, f, and g are the parameters for quasi-maximum likelihood estimation. While the ARMA model serves as the conditional mean specification to 

capture any serial correlation in the dynamic alpha or beta spread between the extreme deciles, the EGARCH or GJR-GARCH model fits the conditional variance specification to encapsulate any 

volatility clusters and asymmetries in the above time-series under study.  

 

 

Table 13 shows the quantitative estimates of the key parameters for each dynamic RMW beta in the ARMA(1,1)-EGARCH(1,1,1) and ARMA(1,1)-GJR-GARCH(1,1,1) conditional mean-variance 

specifications. The main parameters a, b, c, d, e, f, and g correspond to the key coefficients in the above time-series representation. This table reports each coefficient estimate and its corresponding 

t-statistic across the pervasive asset pricing anomalies such as size, value, momentum, investment, profitability, short-term return reversal, and long-term return reversal. Each t-test statistic helps 

examine statistical significance. On this basis, the econometrician can assess the presence or absence of the common properties of a typical financial time-series (cf. autoregressive mean reversion 

in the conditional mean specification and both volatility clusters and asymmetries in the conditional variance specification).  
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Table A2.5: ARMA-GARCH representation of each dynamic conditional RMW beta spread 

 

  

Asset pricing puzzle
Stock portfolio sort a b c d e f g a b c d e f g
Size
Coefficient 0.581 0.907 0.049 -0.027 0.071 0.989 0.017 0.579 0.892 0.052 0.001 0.041 0.977 -0.053
t-ratio 5.6 48.9 1.0 -9.8 5.5 2102663 16.0 5.8 45.2 1.1 11.3 7.9 121.6 -4.2
Momentum
Coefficient 0.275 0.904 0.020 -0.023 -0.023 0.943 0.139 0.267 0.897 0.035 0.039 0.045 0.858 0.039
t-ratio 0.9 43.3 0.4 -1.0 -0.8 30.0 3.5 1.0 40.4 0.6 1.9 1.8 16.1 1.1
Book-to-market
Coefficient -1.161 0.889 0.067 -0.130 0.080 0.917 0.205 -1.184 0.898 0.044 0.010 0.189 0.838 -0.147
t-ratio -6.5 48.3 2.2 -2.8 2.8 39 4.5 -8.1 41.4 0.8 3.2 3.5 28 -3.0
Cashflow-to-price
Coefficient -0.322 0.901 -0.014 -0.080 0.042 0.949 0.090 -0.331 0.904 -0.020 0.005 0.047 0.945 -0.045
t-ratio -0.9 39.9 -0.3 -1.7 1.7 39.1 2.6 -2.0 44.7 -0.4 2.2 2.6 50.6 -2.3
Dividend-to-price
Coefficient -1.083 0.886 0.055 -0.019 0.018 0.962 0.225 -1.117 0.889 0.073 0.010 0.128 0.875 -0.052
t-ratio -7.2 51.9 1.9 -0.8 0.8 58.0 4.8 -6.7 40.3 1.4 2.4 3.8 29.2 -1.5
Earnings-to-price
Coefficient -0.341 0.871 -0.049 -0.364 -0.006 0.757 0.360 -0.303 0.877 -0.019 0.001 0.014 0.988 -0.006
t-ratio -3.7 38.3 -0.7 -3.0 -0.2 10.5 4.5 -2.1 34.5 -0.4 0.8 3.0 409.3 -0.7
Investment
Coefficient 0.597 0.910 0.063 -0.224 -0.039 0.893 -0.008 0.622 0.899 0.086 0.001 0.000 1.000 -0.008
t-ratio 3.7 45.7 1.4 -10.6 -1.8 105 -0.4 4.2 45.6 2.9 4.1 0.0 49347 -10.8
Profitability
Coefficient 1.460 0.891 0.105 -0.301 -0.003 0.858 0.151 1.505 0.900 0.093 0.001 0.005 1.000 -0.031
t-ratio 10.8 39.2 2.0 -2.1 -0.1 13.3 2.7 15.1 58.8 3.0 33.7 6.2 705608 -314.5
Short-term reversal
Coefficient 0.217 0.897 0.035 -0.741 -0.102 0.117 0.390 0.127 0.894 0.030 0.331 0.173 0.000 0.211
t-ratio 0.8 44.5 0.7 -3.6 -1.7 0.5 4.5 0.5 45.8 0.6 12.7 1.9 0.0 1.4
Long-term reversal
Coefficient 0.334 0.915 0.026 -0.162 -0.008 0.881 0.144 0.404 0.917 0.000 0.021 0.023 0.866 0.041
t-ratio 1.4 48.2 0.5 -1.9 -0.2 15.7 2.6 1.8 44.6 0.0 1.9 0.9 14.1 1.2

ARMA(1,1)-EGARCH(1,1,1) ARMA(1,1)-GJR-GARCH(1,1,1)



doi:10.6342/NTU202300842

54 
 

Table A2.6: ARMA-GARCH representation of each dynamic conditional CMA beta spread 

The econometrician demonstrates that each dynamic factor premium can be modeled as a typical financial time-series. The econometrician can use the canonical ARMA(1,1)-EGARCH(1,1,1) 

and ARMA(1,1)-GJR-GARCH(1,1,1) models to fit each dynamic factor premiums that one extracts from the dynamic multifactor variant of the Fama-French (2015) asset pricing model. The 

conditional mean specification is ARMA(1,1) while the conditional variance specification can take the form of EGARCH(1,1,1) or GJR-GARCH(1,1,1). For simple and intuitive exposition, the 

econometrician describes the ARMA(1,1) conditional mean specification and EGARCH(1,1,1) and GJR-GARCH(1,1,1) conditional variance specifications below (Engle, 1982; Bollerslev, 1986; 

Nelson, 1991; Glosten, Jagannathan, and Runkle, 1993): 
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where mt is the dynamic alpha or beta spread; wt is the residual error; ht is the conditional variance process; εt is a Gaussian white noise; Dt is a binary variable with a numerical value of unity if 

wt is negative or zero if wt is positive; a, b, c, d, e, f, and g are the parameters for quasi-maximum likelihood estimation. While the ARMA model serves as the conditional mean specification to 

capture any serial correlation in the dynamic alpha or beta spread between the extreme deciles, the EGARCH or GJR-GARCH model fits the conditional variance specification to encapsulate any 

volatility clusters and asymmetries in the above time-series under study.  

 

 

Table 14 shows the quantitative estimates of the key parameters for each dynamic CMA beta in the ARMA(1,1)-EGARCH(1,1,1) and ARMA(1,1)-GJR-GARCH(1,1,1) conditional mean-variance 

specifications. The main parameters a, b, c, d, e, f, and g correspond to the key coefficients in the above time-series representation. This table reports each coefficient estimate and its corresponding 

t-statistic across the pervasive asset pricing anomalies such as size, value, momentum, investment, profitability, short-term return reversal, and long-term return reversal. Each t-test statistic helps 

examine statistical significance. On this basis, the econometrician can assess the presence or absence of the common properties of a typical financial time-series (cf. autoregressive mean reversion 

in the conditional mean specification and both volatility clusters and asymmetries in the conditional variance specification).  
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Table A2.6: ARMA-GARCH representation of each dynamic conditional CMA beta spread 

 

  

Asset pricing puzzle
Stock portfolio sort a b c d e f g a b c d e f g
Size
Coefficient 0.044 0.898 0.114 -0.009 -0.053 0.992 0.057 0.078 0.890 0.097 0.001 0.006 0.960 0.051
t-ratio 0.4 46.0 2.2 -2.7 -4.1 28362 7.8 0.8 41.3 1.9 2.2 0.8 98.3 2.8
Momentum
Coefficient 0.038 0.922 0.060 -0.010 -0.047 0.977 0.001 0.109 0.926 0.067 0.002 0.000 0.995 0.008
t-ratio 0.1 59.5 1.5 -3.5 -3.6 78097 0.3 0.3 53.4 1.5 1.4 0.0 1076.1 2.0
Book-to-market
Coefficient 0.649 0.866 0.031 -0.697 0.096 0.641 0.192 0.644 0.870 0.026 0.065 0.169 0.434 -0.150
t-ratio 6.2 39.5 0.9 -2.3 2.3 4 2.5 5.5 36.9 0.5 3.1 2.5 3 -2.2
Cashflow-to-price
Coefficient -0.465 0.959 0.213 -0.074 -0.047 0.972 -0.140 0.034 0.953 0.144 0.003 0.000 1.000 -0.025
t-ratio -1264 2157 1387 -2225 -1067 2563 -2295 2.3 68.4 3.7 25.0 0.0 20049 -25.9
Dividend-to-price
Coefficient 1.901 0.944 0.135 -0.025 0.159 0.984 -0.090 0.804 0.934 0.090 0.001 0.024 1.000 -0.055
t-ratio 1737 3885 3314 -1576 98105 3586 -2159 9.0 4752.9 7.0 9.3 66.6 26788 -224.4
Earnings-to-price
Coefficient -0.293 0.884 0.068 -0.332 0.085 0.755 0.190 -0.218 0.927 0.054 0.003 0.000 1.000 -0.025
t-ratio -3.2 47.9 4.8 -1.1 1.5 3.6 2.0 -1.6 64.0 1.5 24.1 0.7 48349 -35.9
Investment
Coefficient -1.341 0.880 0.147 -0.277 -0.028 0.872 0.128 -1.346 0.901 0.146 0.084 0.203 0.075 -0.184
t-ratio -13.1 47.5 6.8 -2.0 -1.0 15 2.6 -9.4 41.0 2.9 4.5 2.3 0 -1.9
Profitability
Coefficient 0.140 0.919 0.056 -0.083 0.000 0.973 -0.132 -0.093 0.925 0.069 0.001 0.000 1.000 -0.012
t-ratio 2287.7 2531.7 16.0 -3552 -3.2 3506 -1720 -0.4 50.7 1.6 3.4 0.0 25955 -3.4
Short-term reversal
Coefficient 0.177 0.923 0.065 -0.976 -0.426 -0.105 0.016 0.166 0.893 0.079 0.001 0.005 1.000 -0.012
t-ratio 0.5 56.8 1.6 -7.3 -6.2 -0.8 0.2 0.6 46.5 1.8 1.6 9.3 3122 -7.4
Long-term reversal
Coefficient -1.119 0.927 0.023 -0.115 -0.034 0.905 0.092 -0.984 0.928 0.024 0.040 0.000 0.818 0.041
t-ratio -12.8 47.0 0.5 -1.4 -0.9 15.1 2.4 -3.9 49.8 0.5 2.1 0.0 9.7 1.3

ARMA(1,1)-EGARCH(1,1,1) ARMA(1,1)-GJR-GARCH(1,1,1)
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Appendix 3: Macroeconomic variable definitions and their data sources 

This appendix describes the main macroeconomic variable definitions and their public data sources in our vector autoregression analysis of Granger mutual causation between fundamental macro 

surprises and dynamic conditional factor premiums. To the extent that macroeconomic innovations manifest in the form of dynamic conditional factor premiums, this causation reveals the marginal 

investor’s fundamental news and rational expectations about the cross-section of average returns. 

 

We specify 15 major monthly time-series in a standard macroeconometric vector autoregressive system. There are 12 macroeconomic variables, 2 financial uncertainty time-series, and 2 investor 

sentiment proxies. For the Baker-Wurgler investor sentiment index, we use the original first principal component as a better empirical proxy. The resultant dataset spans the 285-month sample 

period from April 1990 to December 2013. These macroeconomic time-series include changes in the national economic activity index, Treasury bill rate, unemployment rate, term spread, default 

spread, prime bank loan rate, aggregate equity market dividend yield, and percent changes in U.S. industrial production, non-farm payroll, house price index, consumer price index, exchange rate, 

financial stress index, economic policy uncertainty, and investor sentiment. 

 

 

 

 
 

 

 

 

  

Macroeconomic variable and name definition Source
Chicago Fed's national economic activity index change from historical trend Chicago Fed
St. Louis Fed Treasury 3-month secondary-market bill rate change St. Louis Fed
St. Louis Fed unemployment rate change (total unemployment/labor force participation) St. Louis Fed
Term spread between the 10-year Treasury and 3-month Treasury constant maturity rates St. Louis Fed
Default spread between Moody's Baa-corporate-bond and 10-year Treasury bill rates St. Louis Fed
Prime bank loan rate change for Top 25 U.S. commercial banks in terms of total assets St. Louis Fed
S&P 500 dividend yield from Professor Robert Shiller's book on irrational exuberance Shiller
St. Louis Fed national industrial production index change with the base year in 2007 St. Louis Fed
Bureau of Labor Statistics non-farm payroll (in thousands of persons) percent change Bureau of Labor Statistics
Freddie Mac U.S. metropolitan-area residential house price index percent change Freddie Mac
Bureau of Labor Statistics consumer price index (for urban consumers) percent change Bureau of Labor Statistics
Federal Reserve U.S. trade-weighted average composite dollar index percent change Federal Reserve Board
Baker-Bloom-Davis U.S. economic policy uncertainty index percent change Baker, Bloom, and Davis (2012)
Kansas City Fed financial stress index change from 11 key financial market variables Kansas City Fed
Baker-Wurgler investor sentiment percent change (from the first principal component) Baker and Wurgler (2006)



doi:10.6342/NTU202300842

57 
 

Appendix 4: Conceptual nexus between our study and several recent contributions 

In this appendix, we discuss the conceptual similarities and differences between the current study and several recent 

contributions. This discussion clarifies the core themes of our study in comparison to several concurrent ideas in the 

recent asset pricing literature. For instance, Harvey, Liu, and Zhu (2015) introduce a multiple testing framework (e.g. 

Harvey and Liu (2014a, 2014b, 2014c, 2014d)) and provide a unique variety of historical significance cut-offs from 

the first empirical tests in the 1960s to the present. This recent strand of asset pricing literature suggests that financial 

economists should lift the test hurdle from a t-ratio of 2.0 to a t-ratio of 3.0 for most cross-sectional tests. Specifically, 

Harvey, Liu, and Zhu (2015) find that this higher hurdle reduces the number of cross-sectional anomalies from 316 

to only 2 (value and momentum) (cf. Asness et al (2013); Fama and French (2016); Hou, Xue, and Zhang (2017)). 

In addition, Harvey, Liu, and Zhu (2015) contend that a theoretically-derived factor should have a lower hurdle than 

an empirically-discovered factor. In accordance with the central thesis of Harvey, Liu, and Zhu (2015), a factor can 

be important in some economic environments but unimportant in some other environments.  

 

While our econometric innovation complements Harvey, Liu, and Zhu’s (2015) multiple testing analysis, the current 

study serves as a time-series equivalent to their cross-sectional adjustment for empirical asset pricing tests. Back-of-

the-envelope calculations suggest that the typical stock portfolio’s Sharpe ratio has to increase by at least 3.1 to 8.2 

times for the dynamic alphas to be jointly significant at the conventional confidence level. The critical values for the 

χ2-test with 525 degrees of freedom are 603.31, 579.4, and 566.9 at the respective 99%, 95%, and 90% confidence 

levels. Table 3 suggests that the highest C-test or Q-test statistic is 59.29 while the lowest C-test or Q-test statistic is 

8.97. Therefore, the smallest Sharpe ratio multiplier can be calculated as (566.932/59.29)1/2=3.092 while the largest 

Sharpe ratio multiplier is (603.31/8.97)1/2=8.201. As a consequence, the econometrician has to specify a higher test 

hurdle for each anomaly. Across the deciles, most dynamic conditional alphas need to be larger on average with 

much less variability for the resultant Sharpe ratio to increase by at least 3 to 8 times. The equivalent Sharpe ratio 

would be in the approximate range of 1.15 to 2.4 (cf. Kozak, Nagel, and Santosh (2017)). In other words, our dynamic 

analysis of conditional factor premiums proposes raising the bar for the econometric time-series asset pricing test. 

This recommendation echoes the cross-sectional counterpart of Harvey, Liu, and Zhu (2015).  

 

McLean and Pontiff (2016) analyze the out-of-sample and post-publication stock return predictability of about 100 

firm characteristics that prior academic papers demonstrate to explain the cross-sectional stock return heterogeneity. 

The long-short portfolio return for the average predictor declines by 26% out-of-sample. Moreover, the long-short 

stock portfolio return for the average predictor shrinks by 58% post-publication. While there is sufficient evidence 

to reject the null hypothesis that stock return predictability does not change post-publication, there is also sufficient 

evidence to reject the null hypothesis that stock return predictability completely vanishes. McLean and Pontiff (2016) 

interpret the results as sufficient evidence in support of the behavioral mispricing conjecture that investors learn from 

anomalous stock returns while the evidence accords with the comovement models of Lee, Shleifer, and Thaler (1991) 

and Barberis, Shleifer, and Wurgler (2005). As academic research draws public attention to many useful predictors, 

stock return predictability gradually dissipates over time.  

 

Our evidence contradicts McLean and Pontiff’s (2016) empirical study. Their study does not apply a dynamic variant 

of the Fama-French (2015) multifactor model. Neither do their regressions with several dummy variables incorporate 

state variables or factors that mimic intertemporal changes in the typical investor’s hedging demand for investment 

opportunities. Our current study proposes the use of a recursive multivariate filter to extract key dynamic conditional 

factor premiums from the Fama-French (2015) multifactor model. The vast majority of dynamic conditional alphas 

turn out to be insignificant at the conventional confidence level. Moreover, most dynamic conditional alphas are not 

jointly different from zero and therefore would need to increase at least 3 to 8 times for the econometrician to reject 

the hypothesis that our chosen dynamic version of the Fama-French (2015) factor model is a correct specification. 

Our work shines skeptical light on McLean and Pontiff’s (2016) behavioral mispricing interpretation of conditional 

factor premiums in the dynamic context. Should investors learn from a diverse set of asset pricing anomalies so that 

these anomalies decay over time, McLean and Pontiff (2016) cannot explain why the anomalous returns persist for 

a prolonged period of time in the first place. In contrast, our analysis suggests that the pervasive asset pricing puzzles 

can be readily reconciled within a dynamic conditional factor model. Regardless of whether investors can learn from 

unique and viable stock portfolio strategies, our dynamic analysis helps demystify at least some ubiquitous anomalies 

to the extent that mutual causation between macroeconomic innovations and dynamic conditional factor premiums 

reflects the rational investor’s fundamental information about the mysterious cross-section of average returns.. 

 

Berk and Green (2004) derive a canonical model of how the financial market for mutual fund investment equilibrates 

in a way that accords with the empirical facts. In highly competitive financial markets, all mutual funds must have 

enough assets under management such that these funds face diminishing returns to scale. When new information 

arrives and convinces investors that a particular fund represents a positive net-present-value investment opportunity, 

investors react to this opportunity by injecting more capital into that mutual fund. This process continues until enough 

new capital gets invested to eliminate the opportunity. As a result, mutual fund flows reflect past fund performance. 

Investors chase past fund performance because this performance conveys rich information about whether the mutual 

fund manager has skill and expertise in stock selection. By competing to take advantage of this information, investors 

phase out the opportunity to predict future mutual fund performance.  
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Berk and Van Binsbergen (2016) and Barber, Huang, and Odean (2016) independently report that mutual fund flows 

reveal investor preferences for their use of asset pricing models. Their evidence is consistent with the view that the 

single-beta CAPM is the clear “victor” in the empirical horserace against the multifactor Fama-French-Carhart and 

dynamic equilibrium models because the alpha or abnormal fund return seems most heavily discounted by the CAPM. 

This joint evidence has implications for the broader proposition that both the multifactor and dynamic equilibrium 

asset pricing models may not represent true progress toward a better model of the nexus between risk and return. 

Investor preferences appear to be more closely aligned with the CAPM despite the fact that the model has been found 

to perform poorly relative to the other models in explaining the cross-sectional variation in stock returns. This issue 

remains an important puzzle in the asset pricing literature. Kozak, Nagel, and Santosh’s (2017, 2018) recent studies 

shed skeptical light on whether these empirical horseraces can reflect investor beliefs, behaviors, and preferences in 

a clear dichotomy between the rational risk paradigm and the behavioral mispricing counterpart. 

 

Our current study provides a midle refutation of Berk and Van Binsbergen’s (2016) and Barber, Huang, and Odean’s 

(2016) joint inference that the CAPM outperforms the multifactor models in their separate tests on mutual fund flows 

data. There are several major differences between our work and these recent studies. First, Berk and Van Binsbergen 

(2016) and Barber, Huang, and Odean (2016) do not consider the Fama-French (2015) multifactor model. Just as the 

founders of a firm have incentives to employ proprietary technologies, state-of-the-art work mechanisms, or efficient 

means of production, financial economists should make proper use of innovative econometric methods and models 

that help resolve the pervasive anomalies. The exclusion of both asset investment growth and operating profitability 

variables RMB and CMA is likely to introduce a key omitted-variables bias. Second, Berk and Van Binsbergen (2016) 

and Barber, Huang, and Odean (2016) cannot account for the time variation in dynamic conditional factor premiums. 

Their independent studies rest upon the assumption that the multifactor premiums are invariant over time. The static 

analysis does not take into account the key impact of measurement noise that might be present in each factor premium. 

To the extent that conditional factor premiums tend to change over time, this measurement noise does not vanish but 

can persist even in a large long-term dataset. Given this rationale, the emergence of anomalous returns or significant 

alphas can arise from the fact that the conventional static multifactor model cannot properly control for time variation 

in dynamic conditional factor premiums. Finally, Berk and Van Binsbergen (2016) and Barber, Huang, and Odean 

(2016) both find that a large fraction of mutual fund flows remains unknown. Although the use of mutual fund flows 

or quantities is valid and innovative, this empirical work represents a major departure from most prior asset pricing 

literature that focuses on prices, returns, or factor premiums. In contrast to the unconventional use of stock quantities 

rather than stock prices, our current study helps reconcile many ubiquitous asset pricing anomalies with the dynamic 

conditional factor model. Consequently, our new approach poses a conceptual challenge to the behavioral mispricing 

interpretation of anomalous stock returns that the prior factor models cannot explain in practice.  

 

More recent studies contribute to the ongoing debate on whether the Fama-French (2015) multi-factor asset pricing 

model wins the horse race against most alternative static counterparts. For instance, Fama and French (2016) apply 

their factor model to dissect many asset pricing anomalies such as market beta, net share issuance, idiosyncratic 

volatility, accrual, and momentum. Each of these variables sorts stocks into deciles that result in abnormal returns 

or pricing errors. Fama and French (2016) report that the list of anomalies shrinks when the econometrician applies 

their static factor model. Positive exposures to the state variables for investment and profitability RMWt and CMAt 

capture the high average returns on profitable firms that invest conservatively with low market beta, share buyback, 

and low volatility. Conversely, negative exposures to RMWt and CMAt help explain the low average stock returns on 

unprofitable firms that invest aggressively with high market beta, high share buyback, and high volatility. Thus, each 

stock’s fundamental factors such as size, value, investment, and profitability help better explain the cross-section of 

average stock returns.  

 

In addition to Fama and French’s (2016) recent attempt to dissect many anomalies with their factor model, Hou, Xue, 

and Zhang (2016) apply an alternative q-theoretic factor model to examine an extensive database with 430 anomalies. 

In comparison to the Fama-French five-factor model, the q-theoretic factor model yields smaller average static alphas. 

Yet, at least 161 to 216 anomalies persist with significant alphas. Although these separate empirical contributions of 

Fama and French (2016) and Hou, Xue, and Zhang (2016) seem to tell the same economic intuition that fundamental 

characteristics such as asset investment and operating profitability explain much of the cross-sectional variation in 

average returns, it is difficult to draw a clear distinction between both rational risk and behavioral mispricing models 

because numerous anomalies remain statistically significant in the general form of non-trivial static alphas (Kozak, 

Nagel, and Santosh, 2017, 2018). 

 

Contrary to Fama and French’s (2016) and Hou, Xue, and Zhang’s (2016) fixation on the explanatory power of their 

static multifactor models, our current study designs a rigorous conditional specification test to differentiate the new 

and useful dynamic conditional model from the static baseline model. Not only does our dynamic conditional model 

outperform the static counterpart in driving the long-term average pricing errors to zero, but the dynamic conditional 

factor model also passes the conditional specification test that rejects the static counterpart across 104 of 110 deciles 

for the major portfolio tilts. In direct response to Cochrane’s critique (2005: 168), the test evidence corroborates the 

central economic story that most static asset pricing anomalies evaporate after the econometrician properly accounts 

for time variation in conditional factor premiums. Our analysis helps demystify the inexorable puzzle that significant 

asset-pricing errors persist in the static cross-section of average returns.  
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Appendix 5: Fama-French beta coefficients and t-statistics on multiple factors 

Table A5.1 shows the average dynamic conditional MRP betas across the deciles for each anomaly. While there is 

no monotonic relation between average MRP beta and decile rank, the vast majority of these average MRP betas 

hover around unity. Also, the average MRP betas are all significantly greater than nil (p-values>0.001). This key 

evidence affirms the close empirical nexus between the excess returns on both the market portfolio and each portfolio 

tilt.  

 

Also, the average conditional MRP beta spread between the extreme deciles is significant for all the portfolio 

strategies except the momentum and investment tilts. One has to interpret this result with caution because the lack 

of a monotonic trend in the average conditional MRP betas does not necessarily suggest the absence of a positive 

relation between risk and average return. It would be important to consider the complete set of results within the 

broader context of dynamic portfolio efficiency. Along with most other dynamic conditional factor betas, the 

conditional MRP beta varies sufficiently to reflect time variation in the sensitivity of each given portfolio to changes 

in the market risk premium. This time variation may arise due to shifts in the marginal investor’s information set or 

changes in the macroeconomic environment. In light of this logic, we defer the assessment of a risk-reward nexus to 

an in-depth subsequent analysis.  

 

Table A5.2 presents the average conditional SMB betas across the deciles for each anomaly. SMB helps capture the 

predictable variation in excess returns on the size deciles. The average conditional SMB beta monotonically declines 

from 1.096 for the smallest size decile to –0.28 for the largest size decile (p-values<0.08). Ceteris paribus small 

stocks carry higher conditional SMB factor premiums than large stocks with an average conditional SMB beta spread 

of –1.376 (p-value<0.01). Moreover, the average conditional SMB beta spread is significant for the value, 

profitability, and long-term reversal tilts (p-values<0.06). Yet, the average SMB beta spread is insignificant for the 

momentum, asset growth, and short-run reversal tilts (p-values>0.18). This evidence suggests that SMB helps 

explain the variation in excess returns on some but not all of the portfolio tilts. The average SMB betas are lower 

than the MRP counterparts by an order of magnitude. Thus, the conditional SMB beta exhibits non-negligible 

heterogeneity over time as a complement to the conditional MRP beta and other factor betas.  

 

Table A5.3 encapsulates the average conditional HML betas on the deciles for each anomaly. The long-term average 

conditional HML betas are predominantly significant across the deciles for the size, value, investment, profitability, 

and long-run return reversal tilts. In particular, the average conditional HML beta monotonically decreases from the 

top decile to the bottom decile for all of the value tilts. For example, the average conditional HML beta declines 

monotonically from 1.118 for the top book-to-market decile to –0.899 for the bottom decile. For the cashflow-to-

price, dividend-to-price, and earnings-to-price value tilts, the mean HML beta monotonically shrinks from 1.001, 

0.983, and 1.028 respectively for the top decile to –0.68, –0.46, and –0.698 for the bottom decile. This evidence 

contradicts the recent studies of Fama and French (2015) and Hou, Xue, and Zhang (2014) who empirically show 

that HML becomes a redundant factor in U.S. data after the econometrician includes the investment and profitability 

return spreads in the factor model. Whether HML serves as an empirical proxy for financial distress risk remains 

open to controversy (Fama and French, 1995, 1996; Griffin and Lemmon, 2002; Vassalou and Xing, 2004; Petkova, 

2006; Campbell, Hilscher, and Szilagyi, 2008; Fama and French, 2016). Notwithstanding this controversy, the 

current study shines new light on the explanatory role of HML in a dynamic conditional context. This rare 

resurrection suggests that one might want to revisit the economic content of HML and even SMB in the Fama-French 

(2015) factor model.  

 

Yet, HML cannot readily contain the time variation in the excess returns on the short-term reversal and momentum 

portfolio tilts. Analogous to SMB, HML helps explain the variation in the excess returns on some but not all of the 

portfolio tilts. Thus, SMB and HML only serve as imperfect states variables that enter the marginal investor’s 

intertemporal information set. The joint economic content of HML and SMB pertains to whether these factors serve 

as proxies for financial distress risk (Griffin and Lemmon, 2002; Vassalou and Xing, 2004), macroeconomic 

innovations in the term and default spreads (Liew and Vassalou, 2000; Vassalou, 2003; Petkova, 2006; Hahn and 

Lee, 2006), or some behavioral mispricing considerations (Campbell, Hilscher, and Szilagyi, 2008). 

 

Table A5.4 presents the average dynamic conditional RMW betas across the deciles for each portfolio tilt. RMW 

explains the variation in the excess returns for the size, momentum, book-to-market, dividend-to-price, investment 

growth, operating profitability, and long-term return reversal tilts (p-values<0.006). However, the average 

conditional RMW betas are insignificant for the cash-flow-to-price, earnings-to-price, and short-run return reversal 

tilts. In stark contrast to the separate cases of SMB and HML, the average RMW beta does not monotonically increase 

from the bottom decile to the top decile for the profitability tilt. It is thus difficult to rationalize whether this result 

represents a statistical aberration or a rotten apple in the barrel of the hefty profitability premium.  

 

Similar to the informative cases of SMB and HML, the absolute values of dynamic RMW betas turn out to be smaller 

by a full order of magnitude than the dynamic MRP beta near unity. On this basis, it is fair to infer that each of the 

state variables (SMB, HML, and RMW) provides at best a partial view of time variation in the excess returns for 

multiple tilts that are known to produce anomalous returns in static regression analysis. Subsequent analysis should 

shed some fresh light on the economic content of each of these factors in a dynamic conditional context. 
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Table A5.5 summarizes the average conditional CMA betas across the deciles for each anomaly. CMA explains the 

variation in excess returns on the top-and-bottom deciles for the size, value, momentum, and long-run return reversal 

tilts and most of the investment deciles. For the former intermediate deciles, however, CMA lacks explanatory power. 

This evidence shows that CMA complements the other state variables only marginally in the dynamic conditional 

factor model. Unlike SMB and HML, CMA does not carry average conditional factor betas that demonstrate a 

monotonic trend across the asset growth deciles. Nevertheless, the average conditional CMA betas are significantly 

positive for the bottom asset growth deciles and become negative for the top asset growth deciles. This evidence 

accords with q-theoretic economic intuition: stocks with high asset growth experience lower subsequent average 

returns. For the extreme asset growth deciles, the conditional CMA factor beta spread of –1.432 is significant at any 

confidence level. CMA complements the other Fama-French (2015) factors in capturing time variation in excess 

returns for a variety of portfolio tilts.  

 

It is important to further explain the q-theoretic prediction of a negative empirical relation between corporate 

investment and average return performance. Recent literature focuses on the q-theory that connects a given firm’s 

sequential investment decisions to its market risk exposure and subsequent average return (Berk, Green, and Naik, 

1999; Gomes, Kogan, and Zhang, 2003; Carlson et al, 2004, 2006; Zhang, 2005; Cooper, 2006; Anderson and 

Garcia-Feijoo, 2006; Liu, Whited, and Zhang, 2009; Li, Livdan, and Zhang, 2009). When the firm invests in M&A 

and capital stock, this investment transforms risky real options into less risky assets that yield steady streams of 

future cash flows. This transformation continues until the firm exhausts its positive net-present-value investment 

projects. As a result, the firm reduces its exposure to systematic risk during this investment transformation while 

most rational investors require a lower average stock return. So the q-theory predicts a negative empirical nexus 

between corporate investment and subsequent average stock return performance. Anderson and Garcia-Feijoo (2006) 

confirm this negative nexus.  

 

Overall, the Fama-French factors serve as useful state variables for the typical investor who cares about his or her 

intertemporal payoffs (Merton, 1973; Campbell, 1993; Fama, 1996; Fama and French, 2004). Each of these state 

variables carries significant long-run average conditional betas across the deciles for a variety of portfolio tilts that 

are known to generate abnormal return spreads in a static regression analysis. In fact, the collective wisdom of the 

Fama-French factors suggests that the dynamic conditional recursion exhausts nearly all time variation in the excess 

returns on most deciles. As a consequence, the vast majority of average conditional alphas turn out to be insignificant 

at the conventional confidence level. More formal hypothesis tests further affirm that these alphas exhibit substantial 

variability around nil. Therefore, there is insufficient evidence for the econometrician to infer that dynamic 

conditional alphas jointly differ from nil. Thus, the evidence suggests an affirmative case for the dynamic conditional 

factor model. The resultant tangency portfolio is multifactor mean-variance efficient in a dynamic sense that this 

portfolio achieves the highest excess returns for a unique set of return variances and covariances. As one swallow 

does not make a summer, the transient emergence of mispricing opportunities does not necessarily indicate an 

econometrically persistent trend. Dynamic conditional alphas thus converge toward zero, and transitory price 

misalignment vanishes on the conditional mean-variance efficient frontier. 
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Table A5.1: Average dynamic MRP betas, MRP beta spreads, and Newey-West t-tests 

Over the 50-year period from January 1964 to December 2013, the econometrician applies the recursive multivariate Filter to extract dynamic factor premiums from the Fama-French (2015) five-

factor asset pricing model. At each time increment, the econometrician takes into account the Fama-French (2015) factors such as the excess return on the market portfolio (MRP), the return 

spread between the top 30% small and bottom 30% big stocks (SMB), the return spread between the top 30% high book-to-market and bottom 30% low book-to-market stocks (HML), the return 

spread between the top 30% robust and bottom 30% weak stocks in terms of their relative profitability (RMW), and the return spread between the top 30% conservative investment and bottom 

30% aggressive investment stocks (CMA) to explain the variation in the excess return on each stock decile for size, momentum, value (cf. book-to-market, cashflow-to-price, dividend-to-price, 

and earnings-to-price), investment, profitability, short-term return reversal, and long-term return reversal. The econometrician presents the mathematical time-series representation below: 

 

 

( ) ttcttrtthttstftmttmtftkt CMARMWHMLSMBRRRR  +++++−+=−  

 

 

Table A5.1 sums up the long-run mean MRP beta for each stock decile sorted on size, value, momentum, investment, profitability, short-run return reversal, and long-run return reversal. The first 

10 columns summarize each long-term average MRP beta and its corresponding p-value for the null hypothesis of zero dynamic MRP beta. The next column encapsulates the long-term average 

MRP beta spread for the long-short trading strategy that entails both a long position in the top decile and a short position in the bottom decile in the 50-year period from January 1964 to December 

2013. For each hypothesis test, the econometrician uses the Newey-West (1987) method with quadratic spectral kernel estimation to correct the standard errors to safeguard against any serial 

correlation and heteroskedasticity.  
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Table A5.1: Average dynamic MRP betas, MRP beta spreads, and Newey-West t-tests 

Portfolio Low Decile 2 Decile 3 Decile 4 Decile 5 Decile 6 Decile 7 Decile 8 Decile 9 High Spread
Size
Beta (test statistic) 0.892 1.057 1.073 1.065 1.051 1.044 1.077 1.082 1.030 0.957 0.065
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.038
Momentum
Beta (test statistic) 1.225 1.128 0.997 0.977 0.921 0.983 0.996 0.993 1.009 1.124 -0.101
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.268
Book-to-market
Beta (test statistic) 0.891 0.991 1.035 1.077 1.029 1.025 1.017 1.015 1.073 1.124 0.234
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Cashflow-to-price
Beta (test statistic) 0.966 0.926 0.949 1.029 0.996 1.014 1.007 1.077 1.069 1.091 0.125
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009
Dividend-to-price
Beta (test statistic) 1.022 0.959 0.992 0.996 1.014 1.019 1.032 1.000 0.925 0.806 -0.215
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Earnings-to-price
Beta (test statistic) 0.954 0.971 0.949 0.935 0.990 1.020 0.970 1.016 1.087 1.130 0.176
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Investment
Beta (test statistic) 1.122 1.040 1.054 0.954 0.987 0.952 0.962 0.967 0.989 1.103 -0.019
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.595
Profitability
Beta (test statistic) 1.193 1.008 1.033 0.972 0.990 1.029 1.046 1.018 0.989 0.891 -0.302
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Short-term reversal
Beta (test statistic) 1.199 1.101 1.054 1.057 1.010 0.971 0.936 0.963 0.983 0.985 -0.214
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005
Long-term reversal
Beta (test statistic) 1.250 1.091 1.061 1.029 1.015 0.946 0.965 0.907 0.983 1.065 -0.185
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002
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Table A5.2: Average dynamic SMB betas, SMB beta spreads, and Newey-West t-tests 

Over the 50-year period from January 1964 to December 2013, the econometrician applies the recursive multivariate Filter to extract dynamic factor premiums from the Fama-French (2015) five-

factor asset pricing model. At each time increment, the econometrician takes into account the Fama-French (2015) factors such as the excess return on the market portfolio (MRP), the return 

spread between the top 30% small and bottom 30% big stocks (SMB), the return spread between the top 30% high book-to-market and bottom 30% low book-to-market stocks (HML), the return 

spread between the top 30% robust and bottom 30% weak stocks in terms of their relative profitability (RMW), and the return spread between the top 30% conservative investment and bottom 

30% aggressive investment stocks (CMA) to explain the variation in the excess return on each stock decile for size, momentum, value (cf. book-to-market, cashflow-to-price, dividend-to-price, 

and earnings-to-price), investment, profitability, short-term return reversal, and long-term return reversal. The econometrician presents the mathematical time-series representation below: 

 

 

( ) ttcttrtthttstftmttmtftkt CMARMWHMLSMBRRRR  +++++−+=−  

 

 

Table A5.2 sums up the long-run mean SMB beta for each stock decile sorted on size, value, momentum, investment, profitability, short-run return reversal, and long-run return reversal. The first 

10 columns summarize each long-term average SMB beta and its corresponding p-value for the null hypothesis of zero dynamic SMB beta. The next column encapsulates the long-term average 

SMB beta spread for the long-short trading strategy that entails both a long position in the top decile and a short position in the bottom decile in the 50-year period from January 1964 to December 

2013. For each hypothesis test, the econometrician uses the Newey-West (1987) method with quadratic spectral kernel estimation to correct the standard errors to safeguard against any serial 

correlation and heteroskedasticity.  
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Table A5.3: Average dynamic SMB betas, SMB beta spreads, and Newey-West t-tests  

 

Portfolio Low Decile 2 Decile 3 Decile 4 Decile 5 Decile 6 Decile 7 Decile 8 Decile 9 High Spread
Size
Beta (test statistic) 1.096 1.044 0.919 0.856 0.703 0.513 0.350 0.184 0.046 -0.280 -1.376
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.079 0.000 0.000
Momentum
Beta (test statistic) 0.380 0.079 -0.022 0.017 0.016 -0.070 -0.108 0.046 0.053 0.411 0.031
p-value 0.000 0.231 0.655 0.681 0.659 0.046 0.006 0.249 0.395 0.000 0.843
Book-to-market
Beta (test statistic) -0.031 -0.061 -0.001 -0.036 -0.073 0.041 0.004 0.100 0.141 0.362 0.393
p-value 0.343 0.088 0.964 0.322 0.051 0.257 0.902 0.002 0.001 0.000 0.000
Cashflow-to-price
Beta (test statistic) 0.113 -0.033 -0.124 -0.095 -0.071 -0.053 0.001 -0.058 0.068 0.206 0.093
p-value 0.025 0.342 0.001 0.021 0.075 0.111 0.978 0.229 0.064 0.000 0.223
Dividend-to-price
Beta (test statistic) 0.140 0.011 -0.058 -0.047 -0.042 -0.154 -0.201 -0.131 -0.210 -0.139 -0.279
p-value 0.004 0.771 0.122 0.284 0.342 0.000 0.000 0.004 0.000 0.010 0.000
Earnings-to-price
Beta (test statistic) 0.118 -0.030 -0.056 -0.185 -0.064 -0.072 -0.052 0.058 0.035 0.268 0.150
p-value 0.012 0.389 0.079 0.000 0.058 0.062 0.101 0.166 0.382 0.000 0.059
Investment
Beta (test statistic) 0.333 0.213 -0.027 -0.054 -0.056 -0.114 -0.109 -0.083 0.033 0.247 -0.085
p-value 0.000 0.000 0.411 0.055 0.081 0.000 0.007 0.010 0.281 0.000 0.283
Profitability
Beta (test statistic) 0.455 0.084 0.042 0.049 -0.088 -0.045 -0.074 -0.042 -0.082 0.003 -0.451
p-value 0.000 0.002 0.336 0.264 0.018 0.252 0.030 0.201 0.005 0.920 0.000
Short-term reversal
Beta (test statistic) 0.434 0.159 0.046 -0.034 -0.099 -0.041 -0.094 -0.087 -0.015 0.279 -0.155
p-value 0.000 0.003 0.320 0.332 0.006 0.224 0.020 0.014 0.737 0.000 0.188
Long-term reversal
Beta (test statistic) 0.697 0.225 0.090 0.038 -0.010 -0.110 -0.068 -0.187 -0.065 0.128 -0.570
p-value 0.000 0.000 0.064 0.416 0.783 0.001 0.051 0.000 0.109 0.011 0.000
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Table A5.3: Average dynamic HML betas, HML beta spreads, and Newey-West t-tests 

Over the 50-year period from January 1964 to December 2013, the econometrician applies the recursive multivariate Filter to extract dynamic factor premiums from the Fama-French (2015) five-

factor asset pricing model. At each time increment, the econometrician takes into account the Fama-French (2015) factors such as the excess return on the market portfolio (MRP), the return 

spread between the top 30% small and bottom 30% big stocks (SMB), the return spread between the top 30% high book-to-market and bottom 30% low book-to-market stocks (HML), the return 

spread between the top 30% robust and bottom 30% weak stocks in terms of their relative profitability (RMW), and the return spread between the top 30% conservative investment and bottom 

30% aggressive investment stocks (CMA) to explain the variation in the excess return on each stock decile for size, momentum, value (cf. book-to-market, cashflow-to-price, dividend-to-price, 

and earnings-to-price), investment, profitability, short-term return reversal, and long-term return reversal. The econometrician presents the mathematical time-series representation below: 

 

 

( ) ttcttrtthttstftmttmtftkt CMARMWHMLSMBRRRR  +++++−+=−  

 

 

Table A5.3 sums up the long-run mean HML beta for each stock decile sorted on size, value, momentum, investment, profitability, short-run return reversal, and long-run return reversal. The first 

10 columns summarize each long-term average HML beta and its corresponding p-value for the null hypothesis of zero dynamic HML beta. The next column encapsulates the long-run average 

HML beta spread for the long-short trading strategy that entails both a long position in the top decile and a short position in the bottom decile in the 50-year period from January 1964 to December 

2013. For each hypothesis test, the econometrician uses the Newey-West (1987) method with quadratic spectral kernel estimation to correct the standard errors to safeguard against any serial 

correlation and heteroskedasticity.  
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Table A5.3: Average dynamic HML betas, HML beta spreads, and Newey-West t-tests 

 

Portfolio Low Decile 2 Decile 3 Decile 4 Decile 5 Decile 6 Decile 7 Decile 8 Decile 9 High Spread
Size
Beta (test statistic) 0.476 0.288 0.181 0.206 0.119 0.186 0.156 0.204 0.232 -0.147 -0.624
p-value 0.000 0.000 0.000 0.000 0.002 0.000 0.004 0.000 0.000 0.000 0.000
Momentum
Beta (test statistic) 0.216 0.075 0.256 0.175 0.136 0.153 0.195 0.109 -0.010 -0.199 -0.415
p-value 0.234 0.519 0.006 0.016 0.059 0.007 0.002 0.084 0.903 0.068 0.109
Book-to-market
Beta (test statistic) -0.899 -0.475 -0.092 0.174 0.374 0.610 0.833 0.896 0.870 1.118 2.016
p-value 0.000 0.000 0.150 0.015 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Cashflow-to-price
Beta (test statistic) -0.686 -0.586 -0.229 0.014 0.089 0.250 0.303 0.411 0.743 1.001 1.687
p-value 0.000 0.000 0.007 0.793 0.269 0.000 0.001 0.000 0.000 0.000 0.000
Dividend-to-price
Beta (test statistic) -0.462 -0.394 -0.309 -0.081 -0.110 0.172 0.382 0.515 0.631 0.983 1.445
p-value 0.000 0.000 0.000 0.284 0.129 0.019 0.000 0.000 0.000 0.000 0.000
Earnings-to-price
Beta (test statistic) -0.698 -0.506 -0.365 -0.176 -0.036 0.306 0.444 0.536 0.818 1.028 1.726
p-value 0.000 0.000 0.000 0.014 0.687 0.000 0.000 0.000 0.000 0.000 0.000
Investment
Beta (test statistic) 0.249 0.221 0.267 0.018 0.272 0.126 0.074 -0.127 -0.373 -0.412 -0.661
p-value 0.001 0.000 0.000 0.764 0.000 0.030 0.131 0.031 0.000 0.000 0.000
Profitability
Beta (test statistic) 0.314 0.452 0.514 0.366 0.227 0.035 0.079 -0.156 -0.213 -0.533 -0.847
p-value 0.000 0.000 0.000 0.000 0.000 0.508 0.092 0.016 0.000 0.000 0.000
Short-term reversal
Beta (test statistic) -0.001 -0.037 0.027 0.185 0.077 0.002 0.095 -0.013 0.000 -0.116 -0.116
p-value 0.994 0.535 0.696 0.005 0.092 0.964 0.130 0.818 0.994 0.150 0.419
Long-term reversal
Beta (test statistic) 0.399 0.418 0.145 0.359 0.313 0.209 0.191 -0.006 -0.176 -0.601 -1.000
p-value 0.007 0.000 0.141 0.000 0.000 0.000 0.004 0.913 0.004 0.000 0.000
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Table A5.4: Average dynamic RMW betas, RMW beta spreads, and Newey-West t-tests  

Over the 50-year period from January 1964 to December 2013, the econometrician applies the recursive multivariate Filter to extract dynamic factor premiums from the Fama-French (2015) five-

factor asset pricing model. At each time increment, the econometrician takes into account the Fama-French (2015) factors such as the excess return on the market portfolio (MRP), the return 

spread between the top 30% small and bottom 30% big stocks (SMB), the return spread between the top 30% high book-to-market and bottom 30% low book-to-market stocks (HML), the return 

spread between the top 30% robust and bottom 30% weak stocks in terms of their relative profitability (RMW), and the return spread between the top 30% conservative investment and bottom 

30% aggressive investment stocks (CMA) to explain the variation in the excess return on each stock decile for size, momentum, value (cf. book-to-market, cashflow-to-price, dividend-to-price, 

and earnings-to-price), investment, profitability, short-term return reversal, and long-term return reversal. The econometrician presents the mathematical time-series representation below: 

 

 

( ) ttcttrtthttstftmttmtftkt CMARMWHMLSMBRRRR  +++++−+=−  

 

 

Table A5.4 shows the long-run mean RMW beta for each stock decile sorted on size, value, momentum, investment, profitability, short-run return reversal, and long-run return reversal. The first 

10 columns summarize each long-term average RMW beta and its corresponding p-value for the null hypothesis of zero dynamic RMW beta. The next column presents the long-run average RMW 

beta spread for the long-short trading strategy that entails both a long position in the top decile and a short position in the bottom decile in the 50-year period from January 1964 to December 2013. 

For each hypothesis test, the econometrician uses the Newey-West (1987) method with quadratic spectral kernel estimation to correct the standard errors to safeguard against any serial correlation 

and heteroskedasticity.  
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Table A5.4: Average dynamic RMW betas, RMW beta spreads, and Newey-West t-tests  

 

Portfolio Low Decile 2 Decile 3 Decile 4 Decile 5 Decile 6 Decile 7 Decile 8 Decile 9 High Spread
Size
Beta (test statistic) -0.461 -0.289 -0.323 -0.149 -0.104 -0.270 -0.169 -0.307 -0.281 0.203 0.664
p-value 0.000 0.000 0.000 0.044 0.011 0.000 0.007 0.000 0.000 0.000 0.000
Momentum
Beta (test statistic) -0.479 -0.218 -0.291 0.036 -0.066 -0.100 0.000 -0.002 0.082 0.093 0.572
p-value 0.003 0.027 0.000 0.589 0.384 0.163 0.996 0.982 0.216 0.336 0.006
Book-to-market
Beta (test statistic) 0.498 0.166 0.242 -0.142 -0.282 -0.230 -0.305 -0.532 -0.568 -0.590 -1.088
p-value 0.000 0.009 0.000 0.102 0.003 0.001 0.000 0.000 0.000 0.000 0.000
Cashflow-to-price
Beta (test statistic) 0.152 0.195 0.117 -0.053 -0.122 -0.198 -0.198 0.246 0.194 -0.030 -0.183
p-value 0.066 0.003 0.093 0.467 0.105 0.006 0.007 0.009 0.016 0.734 0.153
Dividend-to-price
Beta (test statistic) 0.373 0.197 0.046 0.125 0.174 0.030 -0.168 -0.013 -0.186 -0.737 -1.111
p-value 0.000 0.006 0.528 0.264 0.032 0.652 0.090 0.885 0.088 0.000 0.000
Earnings-to-price
Beta (test statistic) 0.017 0.230 0.150 -0.022 -0.083 -0.110 -0.071 0.044 0.048 -0.103 -0.119
p-value 0.850 0.002 0.046 0.713 0.296 0.199 0.417 0.596 0.540 0.363 0.414
Investment
Beta (test statistic) -0.442 -0.029 -0.103 -0.092 -0.013 -0.036 0.062 0.167 0.166 0.184 0.626
p-value 0.000 0.687 0.142 0.137 0.863 0.524 0.373 0.003 0.015 0.016 0.000
Profitability
Beta (test statistic) -1.006 -1.016 -0.776 -0.587 -0.378 0.299 0.101 0.395 0.464 0.562 1.567
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.197 0.000 0.000 0.000 0.000
Short-term reversal
Beta (test statistic) -0.394 -0.138 -0.142 -0.031 -0.005 0.028 -0.021 0.045 0.142 -0.047 0.347
p-value 0.000 0.229 0.145 0.594 0.948 0.708 0.792 0.538 0.047 0.620 0.051
Long-term reversal
Beta (test statistic) -0.345 -0.584 -0.186 -0.283 -0.116 0.013 0.108 0.118 0.136 0.299 0.644
p-value 0.022 0.000 0.059 0.001 0.167 0.853 0.171 0.235 0.039 0.000 0.000
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Table A5.5: Average dynamic CMA betas, CMA beta spreads, and Newey-West t-tests 

Over the 50-year period from January 1964 to December 2013, the econometrician applies the recursive multivariate Filter to extract dynamic factor premiums from the Fama-French (2015) five-

factor asset pricing model. At each time increment, the econometrician takes into account the Fama-French (2015) factors such as the excess return on the market portfolio (MRP), the return 

spread between the top 30% small and bottom 30% big stocks (SMB), the return spread between the top 30% high book-to-market and bottom 30% low book-to-market stocks (HML), the return 

spread between the top 30% robust and bottom 30% weak stocks in terms of their relative profitability (RMW), and the return spread between the top 30% conservative investment and bottom 

30% aggressive investment stocks (CMA) to explain the variation in the excess return on each stock decile for size, momentum, value (cf. book-to-market, cashflow-to-price, dividend-to-price, 

and earnings-to-price), investment, profitability, short-term return reversal, and long-term return reversal. The econometrician presents the mathematical time-series representation below: 

 

 

( ) ttcttrtthttstftmttmtftkt CMARMWHMLSMBRRRR  +++++−+=−  

 

 

Table A5.5 shows the long-run mean CMA beta for each stock decile sorted on size, value, momentum, investment, profitability, short-run return reversal, and long-run return reversal. The first 

10 columns summarize each long-term average CMA beta and its corresponding p-value for the null hypothesis of zero dynamic CMA beta. The next column presents the long-run average CMA 

beta spread for the long-short trading strategy that entails both a long position in the top decile and a short position in the bottom decile in the 50-year period from January 1964 to December 2013. 

For each hypothesis test, the econometrician uses the Newey-West (1987) method with quadratic spectral kernel estimation to correct the standard errors to safeguard against any serial correlation 

and heteroskedasticity.  
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Table A5.5: Average dynamic CMA betas, CMA beta spreads, and Newey-West t-tests  

 

 

Portfolio Low Decile 2 Decile 3 Decile 4 Decile 5 Decile 6 Decile 7 Decile 8 Decile 9 High Spread
Size
Beta (test statistic) 0.039 0.047 -0.046 -0.146 -0.173 -0.203 -0.099 -0.140 -0.168 0.107 0.069
p-value 0.689 0.332 0.377 0.004 0.011 0.035 0.277 0.061 0.013 0.005 0.444
Momentum
Beta (test statistic) -0.608 -0.188 -0.044 -0.039 -0.130 0.118 0.076 0.002 0.190 -0.249 0.359
p-value 0.004 0.222 0.769 0.710 0.140 0.112 0.386 0.980 0.014 0.108 0.255
Book-to-market
Beta (test statistic) -0.318 0.061 0.116 0.038 0.220 0.072 0.168 -0.027 0.145 0.333 0.651
p-value 0.000 0.278 0.108 0.667 0.003 0.297 0.018 0.753 0.015 0.002 0.000
Cashflow-to-price
Beta (test statistic) -0.362 -0.134 0.011 -0.035 0.188 0.240 0.266 0.408 0.024 -0.415 -0.052
p-value 0.000 0.056 0.875 0.671 0.034 0.011 0.009 0.000 0.846 0.017 0.763
Dividend-to-price
Beta (test statistic) -0.444 -0.167 -0.083 -0.029 0.142 0.088 0.217 0.409 0.335 0.274 0.718
p-value 0.000 0.125 0.210 0.758 0.075 0.359 0.004 0.000 0.010 0.112 0.001
Earnings-to-price
Beta (test statistic) -0.384 -0.094 0.041 0.213 0.119 0.208 0.260 0.077 -0.033 -0.650 -0.266
p-value 0.000 0.064 0.521 0.004 0.123 0.007 0.002 0.451 0.620 0.000 0.109
Investment
Beta (test statistic) 0.622 0.639 0.669 0.671 0.297 -0.094 -0.202 -0.230 -0.594 -0.809 -1.432
p-value 0.000 0.000 0.000 0.000 0.000 0.203 0.013 0.001 0.000 0.000 0.000
Profitability
Beta (test statistic) 0.136 -0.014 -0.029 0.010 0.038 -0.004 0.055 0.042 0.018 -0.071 -0.207
p-value 0.109 0.830 0.747 0.895 0.574 0.955 0.429 0.447 0.753 0.337 0.116
Short-term reversal
Beta (test statistic) -0.262 -0.188 0.032 -0.005 -0.007 -0.026 -0.091 0.130 -0.152 -0.282 -0.021
p-value 0.136 0.080 0.765 0.956 0.911 0.662 0.234 0.221 0.078 0.016 0.933
Long-term reversal
Beta (test statistic) 0.477 0.295 0.467 0.138 0.077 0.185 -0.002 -0.212 -0.224 -0.480 -0.957
p-value 0.001 0.020 0.000 0.181 0.401 0.030 0.980 0.028 0.016 0.001 0.000




