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摘要

我們使用形式驗證工具 CRYPTOLINE驗證兩個利用 Bernstein-Yang演算法的模

反元素程式，其中一個是目前以模數為 2255 − 19最快的 x86實作。本論文提供了

驗證此程式所用到的驗證細節與技巧。我們利用形式化方法驗證了此程式的正確

性，也展現了一個形式驗證在證明密碼學系統的可信度上的應用。

關鍵字：形式驗證、模型檢測、模反元素、輾轉相除法、密碼學實作、
Curve25519
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Abstract

In this thesis, we conducted formal verification using the CRYPTOLINE tool on two

x86 implementations of the Bernstein-Yang algorithm, both designed to operate in con-

stant time. Notably, one of these implementations represents the current fastest constant

time modular inversion implementation for prime modulus 2255 − 19 on x86. Our study

provides comprehensive details and verification techniques for verifying these assembly

implementations. By formal methods, the correctness of these implementations is system-

atically demonstrated. The results of this study provide substantial evidence for the effec-

tiveness of formal verification in ensuring the accuracy and reliability of cryptographic

systems.

Keywords: formal verification, model checking, modular inversion, gcd, cryptographic

programs, Curve25519

vii

http://dx.doi.org/10.6342/NTU202300852


doi:10.6342/NTU202300852viii

http://dx.doi.org/10.6342/NTU202300852


doi:10.6342/NTU202300852

Contents

Page

Verification Letter from the Oral Examination Committee i

Acknowledgements iii

摘要 v

Abstract vii

Contents ix

List of Figures xiii

List of Tables xv

Denotation xix

Chapter 1 Introduction 1

Chapter 2 Preliminary 3

2.1 Modular Inverse Algorithms . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Original Bernstein-Yang Algorithm . . . . . . . . . . . . . . . . . . 4

2.2.1 Definition of 2-adic division steps . . . . . . . . . . . . . . . . . . 4

2.2.2 Iterations of 2-adic division steps . . . . . . . . . . . . . . . . . . . 5

2.2.3 Fast computation of iterations of 2-adic division steps . . . . . . . . 8

2.2.4 Fast modular inversion computation . . . . . . . . . . . . . . . . . 9

2.3 Improved Bernstein-Yang Algorithm . . . . . . . . . . . . . . . . . 11

ix

http://dx.doi.org/10.6342/NTU202300852


doi:10.6342/NTU202300852

Chapter 3 Introduction to Cryptoline 13

3.1 Why Formal Verification . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 What is CRYPTOLINE . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 The structure of a CRYPTOLINE program . . . . . . . . . . . . . . . 18

3.2.3 CRYPTOLINE instructions . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Examples of modeling . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.2 CRYPTOLINE tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.3 Verify an assembly program . . . . . . . . . . . . . . . . . . . . . 31

Chapter 4 Verifying a Simple Implementation 33

4.1 x86 25519 Implementation . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 C implementation of fpinv25519.c . . . . . . . . . . . . . . . . . 34

4.2 Verifiy Simple Subroutines . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Verify modular addition . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.2 Verify conditional modular negation . . . . . . . . . . . . . . . . . 40

4.2.3 Verify signed multiplication with addition . . . . . . . . . . . . . . 40

4.2.4 Verify modular multiplication . . . . . . . . . . . . . . . . . . . . . 41

4.2.5 Verify signed multi-limb multiplication with addition . . . . . . . . 41

4.3 Verify 62 divstep iterations . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Pseudo code of the subroutine . . . . . . . . . . . . . . . . . . . . 43

4.3.2 Verify 1 divstep iteration . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.3 Model the subroutine . . . . . . . . . . . . . . . . . . . . . . . . . 49

x

http://dx.doi.org/10.6342/NTU202300852


doi:10.6342/NTU202300852

4.3.4 Verify signed multi-limb multiplication and shift . . . . . . . . . . . 51

4.3.5 Completeness of verification of the subroutine . . . . . . . . . . . . 52

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 5 Verifying a Fast Vectorized Implementation 55

5.1 Vectorized x86 25519 Implementation . . . . . . . . . . . . . . . . . 56

5.1.1 Outline of the assembly code . . . . . . . . . . . . . . . . . . . . . 57

5.2 Verify 20 divstep iterations . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 An alternative definition of divstep . . . . . . . . . . . . . . . . . . 63

5.2.2 Verify each divstep iteration . . . . . . . . . . . . . . . . . . . . . 64

5.3 Verify vectorized update . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.1 Pseudo code of the subroutine . . . . . . . . . . . . . . . . . . . . 67

5.3.2 Computing in parallel . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.3 Computing with Montgomery multiplication . . . . . . . . . . . . . 72

5.3.4 Verify signed shift right computed with unsigned shift right . . . . . 74

5.3.5 Use a proof from Coq . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.6 Reduce the output range . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Verify radix 230 number multiplication with reduction . . . . . . . . 78

5.5 Verify simple subroutines . . . . . . . . . . . . . . . . . . . . . . . 80

5.6 Interleaving instructions . . . . . . . . . . . . . . . . . . . . . . . . 82

5.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Chapter 6 Concluding Remarks 85

6.1 Time Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 The Verified Results . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xi

http://dx.doi.org/10.6342/NTU202300852


doi:10.6342/NTU202300852

References 87

Appendix A — Proof 89

A.1 Proof about arithmetic precision . . . . . . . . . . . . . . . . . . . . 89

Appendix B — Table 91

B.1 Verification Time of the Simple Implementation . . . . . . . . . . . 91

B.2 Verification time of the Fast Vectorized Implementation . . . . . . . 92

xii

http://dx.doi.org/10.6342/NTU202300852


doi:10.6342/NTU202300852

List of Figures

xiii

http://dx.doi.org/10.6342/NTU202300852


doi:10.6342/NTU202300852xiv

http://dx.doi.org/10.6342/NTU202300852


doi:10.6342/NTU202300852

List of Tables

B.1 Verification time of the simple implementation. . . . . . . . . . . . . . . 91

B.2 Verification time of the fast vectorized implementation. . . . . . . . . . . 92

xv

http://dx.doi.org/10.6342/NTU202300852


doi:10.6342/NTU202300852xvi

http://dx.doi.org/10.6342/NTU202300852


doi:10.6342/NTU202300852

Listings

2.1 Algorithm divsteps2 to compute (δn, fn, gn) = divstepn(δ, f, g). In-

puts: n, t ∈ Z with 0 ≤ n ≤ t; δ ∈ Z; at least bottom t bits of f, g ∈ Z2.

Outputs: δn; bottom t bits of fn if n = 0, or t − (n − 1) bits if n ≥ 1;

bottom t− n bits of gn; Tn−1 · · · T0. . . . . . . . . . . . . . . . . . . . . 7

2.2 Algorithm jumpdivsteps2 to compute (δn, fn, gn) = divstepn(δ, f, g).

Same inputs and outputs as in Listing 2.1. . . . . . . . . . . . . . . . . . 8

2.3 Algorithm recip2 to compute the reciprocal of gmodulo f when gcd{f, g} =

1. The algorithm assumes that f is odd. . . . . . . . . . . . . . . . . . . 10

3.1 An example of a range property. . . . . . . . . . . . . . . . . . . . . . . 16

3.2 An example of an algebraic property. . . . . . . . . . . . . . . . . . . . . 17

3.3 Outline of a CRYPTOLINE program. . . . . . . . . . . . . . . . . . . . . . 18

3.4 An example of assert and assume. BOOLECTOR will check whether x =

y during verification in the assert. . . . . . . . . . . . . . . . . . . . . 19

3.5 A vpc example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 Outline of a CRYPTOLINE program that uses call. . . . . . . . . . . . . . 22

3.7 Some easy examples of modeling x86 instructions. . . . . . . . . . . . . 24

3.8 An example to model cmp and cmovge. . . . . . . . . . . . . . . . . . . 25

3.9 An example of addition. x, y ∈ Z2255−19 is stored in limbs 64 [rdx,

rcx, r8, rdi], and limbs 64 [L0x7fffffffdd60, L0x7fffffffdd68,

L0x7fffffffdd70, L0x7fffffffdd78] respectively. After Boolector

proves that the last carry is zero, this information can be assumed in Sin-

gular for later use. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.10 Modeling sar instruction in CRYPTOLINE. . . . . . . . . . . . . . . . . . 28

xvii

http://dx.doi.org/10.6342/NTU202300852


doi:10.6342/NTU202300852

3.11 A multiplication intruction right after the sar instruction in Listing 3.10.

The property of the MSB of the multiplicand is stated explicitly to allow

SINGULAR to use later. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.12 A bitwase AND intruction after the sar instruction in Listing 3.10. . . . . 31

4.1 fpinv25519.c implementation. Algorithm fpinv25519 to compute the

reciprocal of g0 modulo 2255 − 19 when gcd{2255 − 19, g0} = 1. . . . . . 36

4.2 Range property after the log2m′-th divstep iteration. . . . . . . . . . . . . 46

5.1 An example of simulating signed shift right using unsigned shift right. . . 75

xviii

http://dx.doi.org/10.6342/NTU202300852


doi:10.6342/NTU202300852

Denotation

ISA Instruction set architecture

CF Carry flag

SF Sign flag

OF Overflow flag

MSB Most significant bit

CNF Conjunctive normal form

DNF Disjunctive normal form

SISD Single instruction single data

SIMD Single instruction multiple data

SSA form Static single assignment form

AVX2 Advanced Vector Extensions 2

xix

http://dx.doi.org/10.6342/NTU202300852


doi:10.6342/NTU202300852xx

http://dx.doi.org/10.6342/NTU202300852


doi:10.6342/NTU202300852

Chapter 1 Introduction

Computing modular inversion is a fundamental operation in cryptography that is fre-

quently used in various cryptographic protocols. It involves finding the multiplicative

inverse of an integer with respect to a given modulus. While the most common case is

computing modular inversion over a prime modulus, the problem can be extended to arbi-

trary modular structures, such as modulo a polynomial. Generally, operations on secrets

should be executed in constant time in cryptographic applications to avoid revealing in-

formation through side-channel attacks. Over the years, a variety of techniques have been

proposed and refined to achieve efficient constant time algorithms for computing modular

inversion, which are crucial for the practicality of the cryptographic systems.

Assessing the efficiency of an algorithm also involves evaluating the speed of its

implementation since it is more practical to compare the execution time of an implemen-

tation. In cryptographic applications, arithmetic operations are often programmed in as-

sembly language, and delicate programming techniques that leverage the strengths of a

given platform are vital for achieving fast implementations.

When it comes to the implementation of a cryptographic systems, another impor-

tant aspect is the correctness of the implementation. Unlike testing, where only a limited

number of inputs can be validated, results from formal verification can be applied to all

1
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possible inputs, making it a more trustworthy approach. Therefore, formal verification of

an implementation is highly desirable in cryptographic systems to ensure its correctness

and enhance its trustworthiness.

Organization of this thesis This thesis presents two case studies that focus on formal

verification of fast modular inversion implementations. In Chapter 2, we introduce the

algorithms used for computing modular inversion. In Chapter 3, we introduce the formal

verification tool we use to verify arithmetic assembly programs. Chapter 4 presents a case

study involving the verification of a simple implementation of modular inversion, while

Chapter 5 presents another case study of the verification of the fastest implementation of

modular inversion at the time. In Chapter 6, we describe the time consumption of the

verification process and summarize the verification results.

2
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Chapter 2 Preliminary

2.1 Modular Inverse Algorithms

To compute the multiplicative inverse in a modular structure, an essential algorithm

is the extended Euclidean algorithm. It can be applied on the modular integersZf where f

is a positive integer and g is coprime with f . With f and g as the input to the algorithm, the

algorithm computes the modular reciprocal 1/g ∈ Zf . This algorithm can also be applied

to the algebraic field extensions, which is typically common on polynomial quotient rings.

It seems like the extended Euclidean algorithm will be a good candidate to compute

modular inversion. However, the Extended Euclidean algorithm and its variations are

vulnerable to attacks in cryptography. The main reason is that these algorithms take vari-

able time depending on the inputs. Oftentimes, the inputs are secret, and the difference in

the execution time leaks information to the attacker through branch timing or cache tim-

ing. Therefore, we need constant time modular inverse algorithms. Here, constant time

means that the execution time is independent of the inputs and therefore is fixed, which is

different from the constant time complexity in the computational complexity theory.

A popular alternative is to compute by Fermat’s little theorem. Given a finite field

Fp whose order is p, i.e., p is the smallest positive integer such that ap = a for all a ∈ Fp.

3
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We compute the inverse of a by 1/a = ap−2 ∈ Fp. This algorithm can be implemented

in constant time, making it a safer choice in cryptography. The bottom line of the cost

of a b-bit Fermat-style inversion is b full precision modular squarings. There are many

decent results on various platforms of fast constant time modular inverse implementation

via Fermat’s little theorem.

Nevertheless, there are other algorithms that are even faster. In this chapter, we in-

troduce some fast constant time alternatives to compute modular inversion.

2.2 Original Bernstein-Yang Algorithm

Bernstein-Yang Algorithm is introduced by Danial J. Bernstein and Bo-Yin Yang in

2019 [1]. This algorithm can be applied to compute not only in polynomial quotient rings

with the x-adic division step but also in modular integers with the 2-adic division step.

The paper also provided various algorithmic choices to use these division steps. In this

section, we will focus on one specific variation which our fast x86 25519 implementation

uses. Given a fixed odd integer f and an integer g which is coprime with f , this algo-

rithm computes 1/g ∈ Zf . Please consult [1] for the correctness of the algorithm. The

implementation details will be provided in Section 4.1.

2.2.1 Definition of 2-adic division steps

Given an odd number f , we have the Bernstein-Yang 2-adic mapping as

divstep : (δ, f, g) 7→


(
δ + 1, f, g+(g mod 2)f

2

)
if δ ≤ 0 or g is even

(
−δ + 1, g, g−f

2

)
if δ > 0 and g is odd

(2.1)

4
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Observe that g + (g mod 2)f is always even and g − f is even when g is odd.

2.2.2 Iterations of 2-adic division steps

Define

T (δ, f, g) =



 1 0

g mod 2
2

1
2

 if δ ≤ 0 or g is even

 0 1

−1
2

1
2

 if δ > 0 and g is odd

fn+1

gn+1

 = T (δn, fn, gn)

fn
gn

 .
Abbreviate T (δn, fn, gn) by Tn. The matrixMi(δn, fn, gn) is defined as follows.

Mi(δn, fn, gn) =



1 0

0 1

 if i = 0

Tn+(i−1)Tn+(i−2) · · · Tn if i > 0

Let

ui vi

ri si

 = Mi(δ0, f0, g0). In Chapter 4 and Chapter 5 we will frequently use

(ui, vi, ri, si) to denote the computation that maps (δ0, f0, g0) to (fi, gi).

We can understandMi(δ, f, g) as the computation of i divstep iterations on (δ, f, g).

5
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Thus, we can compute n+ i divstep iteration as:

fn+i
gn+i

 =Mi(δn, fn, gn)

fn
gn

 .

Also, we can computeMi+j(δn, fn, gn) by:

Mi+j(δn, fn, gn) =Mj(δn+i, fn+i, gn+i)Mi(δn, fn, gn).

In the setup of computing modular inversion, δ0 = 1, f0 = f, g0 = g. This result

shows that we can compute n divstep iterations by computing Mn. Notice that a part of

the advantage of this algorithm is that when computing T , only the bottom bits of f and

g are used. Theorem 1 in Appendix A.1 shows the precision of f and g that is needed

to compute Mn. This theorem implies that we can use lower precision to compute Mn.

Then, whenever we want full precision fn, gn, just simply multiplyMn with full precision

f, g to get the result.

Listing 2.1 shows a simple algorithm in Sage to compute n divstep iterations. This

algorithm first uses truncate to reduce the precision of the loop variables f, g by cropping

them into signed t-bit vectors and taking the values of the signed t-bit vectors. Then,

initialize (u, v, r, s) = (1, 0, 0, 1) and n divstep iterations will be computed in a loop. The

i-th iteration computes Ti and keeps the values of Mi(δ, f, g) in (u, v, r, s). We use ZZ

to convert the domain into the ring of arbitrary precision integers since the computation

contains division. Notice that the values of f, g will always stay in the range of a signed t-

bits vector throughout the loop1. Finally, the output is returned andMn(δ, f, g) is returned

1This is equivalent to using full precision because of Theorem 1 in Appendix A.1.

6
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as a 2× 2 matrix over rational number by the conversion of MatrixSpace(QQ,2).

def truncate(f,t):

if t == 0: return 0

twot = 1<<(t-1)

return ((f+twot)&(2*twot -1))-twot

def divsteps2(n,t,delta ,f,g):

assert t >= n and n >= 0

f,g = truncate(f,t),truncate(g,t)

u,v,r,s = 1,0,0,1

while n > 0:

f = truncate(f,t)

if delta > 0 and g&1: delta ,f,g,u,v,r,s = -delta ,g

,-f,r,s,-u,-v

g0 = g&1

delta ,g,r,s = 1+delta ,(g+g0*f)/2,(r+g0*u)/2,(s+g0*v

)/2

n,t = n-1,t-1

g = truncate(ZZ(g),t)

M2Q = MatrixSpace(QQ,2)

return delta ,f,g,M2Q((u,v,r,s))

Listing 2.1: Algorithm divsteps2 to compute (δn, fn, gn) = divstepn(δ, f, g). Inputs:

n, t ∈ Z with 0 ≤ n ≤ t; δ ∈ Z; at least bottom t bits of f, g ∈ Z2. Outputs: δn; bottom t

bits of fn if n = 0, or t− (n− 1) bits if n ≥ 1; bottom t− n bits of gn; Tn−1 · · · T0.

7
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Notice that during the iterations, since the computation of T contains division-by-2,

to compute viaMn, the iterated variables u, v, r, s are fractions. However, in the assembly

implementation, we want to use registers to store the values. This can be achieved with

a twist to the algorithm. We can postpone the division by two in the computation of the

transition matrix Mi. In other words, we compute 2T instead of T , so we will have

2iMi(δ, f, g) after i-th iteration. In this way, 2iMi(δ, f, g) will always hold integers so we

can use registers to store the values. Notice that with this twist, we need an extra step of

division-by-2n to compute fn, gn as

fn
gn

 = 2nMn(δ, f, g)

f
g

 /2n.

2.2.3 Fast computation of iterations of 2-adic division steps

It is also possible to compute multiple divstep iterations by divide-and-conquer. In

Listing 2.2, jumpdivsteps2 is the algorithm to compute multiple divstep iterations with

a divide-and-conquer method. Instead of directly computing divstepn(δ, f, g), this algo-

rithm first computes divstepj(δ, f, g) to get δj andMj(δ, f, g). Following this, it computesfj
gj

 =Mj(δ, f, g)

f
g

. After that, it computes the remaining divstepn−j(δj, fj, gj) and
merge the result.

from divsteps2 import divsteps2 ,truncate

def jumpdivsteps2(n,t,delta ,f,g):

assert t >= n and n >= 0

if n <= 1: return divsteps2(n,t,delta ,f,g)

8
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j = n//2

delta ,f1,g1,P1 = jumpdivsteps2(j,j,delta ,f,g)

f,g = P1*vector((f,g))

f,g = truncate(ZZ(f),t-j),truncate(ZZ(g),t-j)

delta ,f2,g2,P2 = jumpdivsteps2(n-j,n-j,delta ,f,g)

f,g = P2*vector((f,g))

f,g = truncate(ZZ(f),t-n+1),truncate(ZZ(g),t-n)

return delta ,f,g,P2*P1

Listing 2.2: Algorithm jumpdivsteps2 to compute (δn, fn, gn) = divstepn(δ, f, g). Same

inputs and outputs as in Listing 2.1.

2.2.4 Fast modular inversion computation

Finally, We have the algorithm that computes multiplicative inverse, recip2, in List-

ing 2.3. Assuming f is an odd constant and g ∈ Zf is coprime with f , by theorem2, the

reciprocal of g modulo f can be computed as

g−1 := (2m−1vm) ∗ fm ∗ (
1

2
)m−1 mod f

where (2m−1vm, fm, (
1
2
)m−1) are integers in Zf and fm ∈ {1,−1}.

Integers(f)((f+1)/2)^(m-1) is used to compute the constant as (1
2
)m−1 = ( f+1

2
)m−1 ∈

2Theorem 11.2 in [1]
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Zf . This constant can be pre-computed since it is independent to the input g ∈ Zf . recip2

uses divsteps2/jumpdivsteps2 as subroutines to compute divstep iterations.

In other words, this algorithm computes a fixed number of divstep iterations and

multiples the result with a pre-computed constant to get the modular inverse g−1 ≡ vmfm

(mod f).

from divsteps2 import divsteps2

def iterations(d):

return (49*d+80)//17 if d<46 else (49*d+57)//17

def recip2(f,g):

assert f & 1

d = max(f.nbits(),g.nbits())

m = iterations(d)

precomp = Integers(f)((f+1)/2)^(m-1)

delta ,fm,gm,P = jumpdivsteps2(m,m+1,1,f,g)

V = sign(fm)*ZZ(P[0][1]*2^(m-1))

return ZZ(V*precomp)

Listing 2.3: Algorithm recip2 to compute the reciprocal of gmodulo f when gcd{f, g} =

1. The algorithm assumes that f is odd.

10

http://dx.doi.org/10.6342/NTU202300852


doi:10.6342/NTU202300852

2.3 Improved Bernstein-Yang Algorithm

This is a work by Daniel J. Bernstein, private communication and Pieter Wuille [2].

The new proof shows that if we start with δ0 = 1
2
instead of δ0 = 1, less number of

iterations are needed to get the modular inverse.

Take f = 2255−19 as an example, the original algorithm that starts with δ0 = 1 needs

738 iterations of divstep. With the new proof, only 600 divstep iterations are needed to

compute the modular inverse if we start the algorithm with δ0 = 1
2
.

The improved algorithm is almost exactly the same as the original Bernstein-Yang

algorithm, except for the starting parameters. Therefore, the definition in Section 2.2 can

still be applied.
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Chapter 3 Introduction to Cryptoline

3.1 Why Formal Verification

There are various approaches to verify whether a program behaves correctly as ex-

pected. Using test cases or testbench may be the simplest approach since the test engineers

only need to plug in some different inputs and then check whether the outputs are correct.

However, one weakness with testing is that oftentimes, the input space is so large that it

will be infeasible to try every possible input during testing. Although there are indexes

such as verification coverage to estimate the completeness of testing, there will always be

some input cases left untested.

On the other hand, formal verification uses another approach. Instead of trying a

number of test cases, it specifies the program as a mathematical model and uses math-

ematical checking to prove the properties of the model. Hence, formal verification can

achieve full coverage, i.e., the result can be applied to all inputs.

Despite the advantages, formal verification is often unworkable due to the intensive

work of modeling and mathematical checking. Domain experts are needed to give a model

that captures all the important behaviors of the program. Moreover, proper mathematical

checking algorithms are also needed in order to prove useful properties.
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In cryptography, in addition to the robustness of a cryptosystem which is discussed

in cryptanalysis, the correctness of the implementation is also important. It is common

to implement arithmetic operations in cryptography in assembly for efficiency. However,

assembly programs are complicated to understand. Even if the code passes some test

cases, it is hard to make sure whether there are any hard-to-find bugs such as overflowing

under some special inputs. That’s why formal verification is worthwhile in this case.

With formal verification, we can be confident that the program computes correctly under

all possible inputs and that the outputs will not go out of their defined range.

3.2 What is CRYPTOLINE

CRYPTOLINE is a formal verification tool designed for assembly programmers to

prove the properties of cryptographic assembly programs [4]. The modeling language,

which is also called CRYPTOLINE, contains commonly used arithmetic instructions for

cryptography. To transform an assembly program to its CRYPTOLINE model, the verifi-

cation engineer will specify the semantics of each instruction to CRYPTOLINE by a script

in the toolkit. Therefore, CRYPTOLINE is applicable for assembly programs in different

instruction set architectures (ISAs).

The CRYPTOLINE language is typed. Every variable and constant is associated with its

type in CRYPTOLINE. A type indicates the sign and the bit width of a variable or a constant.

Type errors (such as subtracting an unsigned variable to a signed constant) in CRYPTOLINE

programs are detected by the type system to reduce simple programming errors. Safety

errors (such as adding two signed variable that causes overflow) are also detected.

14
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3.2.1 Property

There are two kinds of properties in CRYPTOLINE: range properties and algebraic

properties.

1. Range property

A range property in CRYPTOLINE is expressed as a propositional formula that sup-

ports logic operations {∧,∨}. A propositional atom in a range property is the rela-

tion of equality, (signed/unsigned) greater than, (signed/unsigned) less than, or con-

gruencemodulo of variable expressions. A variable expression in a range property is

composed of variables and constants with operations {+,−,×, slimbs, ulimbs, sext, uext}

(sext/uext stands for signed/unsigned extension). The value of (slimbs b [a0,

a1, ..., a(n-1)]) is defined as the value in [−2nb−1, 2nb−1−1] whose 2’s com-

plement representation equals the concatenation of [a0, a1, ..., a(n-1)] (little-

endian). Likewise, The value of (ulimbs b [a0, a1, ..., a(n-1)]) is de-

fined as the value in [0, 2nb−1]whose binary representation equals the concatenation

of [a0, a1, ..., a(n-1)] (little-endian). Notice that every variable expression

in a range property is also associated with its bit width.

The CRYPTOLINE tool verifies range properties by transforming each property to

an instance of the satisfiability problem in the Quantified-Free Bit-Vector (QFBV)

logic in Satisfiability Modulo Theories (SMT). The instance is then sent to the SMT

QFBV solver BOOLECTOR [6]. A range property fails if and only if its instance is

satisfiable. Because of the nature of BOOLECTOR, it is effective at recognizing the

range of variables but struggles when the computation includes multi-limb multi-

plications.
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Notice that with such transformation, the result proved by BOOLECTOR is still valid

even if we disable the safety check. However, the overflow flag (OF) is not defined

in CRYPTOLINE. Therefore, the verification engineers have to model the overflow

flag manually if this information is needed. See Section 3.3.1 for examples.

or[and[rax = 0@64, rbx <s 20@64],

eqmod rax 1@64 2@64,

(sext rbx 64) = slimbs 64 [b0, b1]]

Listing 3.1: An example of a range property.

Listing 3.1 shows an example of expressing

((rax = 0) ∧ (rbx < 20)) ∨ (rax is odd) ∨ (rbx = b0 + b1 ∗ 264)

as a range property in CRYPTOLINE where each variable is a signed 64-bit variable.

2. Algebraic property

Algebraic properties are introduced to cover the weakness of BOOLECTOR. An al-

gebraic property in CRYPTOLINE is expressed as a propositional formula that only

supports the logic operation {∧}. A propositional atom in an algebraic property is

the relation of equality or congruence modulo of variable expressions. A variable

expression in an algebraic property is composed of variables and constants with op-

erations {+,−,×, limbs}. Notice that a variable expression in an algebraic prop-

erty does not have its bit width. Therefore, safety conditions must be passed to use

the algebraic check in CRYPTOLINE safely due to the technical limitations of mod-

eling. If a program overflows on some instructions and thus fails safety check, the
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semantics of the program are still defined but cannot be captured by algebraic prop-

erties precisely. In this case, we usually constrain ourselves to use only the range

properties to verify in order to maintain the soundness of the verification.

The CRYPTOLINE tool transforms each algebraic property to an instance of the ideal

membership problem in commutative algebra. Given a polynomial and an ideal in

a commutative ring, the ideal membership problem is to decide whether the poly-

nomial belongs to the ideal. Instances of the ideal membership problem are solved

by the computer algebra system SINGULAR [3]. With SINGULAR, CRYPTOLINE is

capable of verifying computations with multi-limb multiplications efficiently.

and[eqmod limbs 64 [a0, a1]

limbs 64 [b0, b1]

f,

(c - 1)*(c - 2)*(c - 3) = 0]

Listing 3.2: An example of an algebraic property.

Listing 3.2 shows an example of expressing

(a0 + a1 ∗ 264 ≡ b0 + b1 ∗ 264 (mod f)) ∧ ((c = 1) ∨ (c = 2) ∨ (c = 3))

as an algebraic property in CRYPTOLINE where each variable is a 64-bit variable.

With such transformation from range properties to instances for solver BOOLECTOR

and algebraic properties to instances for solver SINGULAR in CRYPTOLINE, a property is

verified if the underlying tool finds a proof for it. If a property fails verification, either

the underlying tool finds a counterproof for it or the underlying tool does not halt in a
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reasonable time limit.

3.2.2 The structure of a CRYPTOLINE program

A CRYPTOLINE program consists of a set of input parameters, the preconditions, the

program body, and the postconditions. The following illustrates the purpose of each part:

1. Input parameters

A set of input variables. Each input variable is associated with its bit width and its

type (signed or unsigned).

2. Preconditions

Specified the properties that hold before the execution of the program. The precon-

ditions will be added as assumptions that hold unconditionally.

3. Program body

A block of CRYPTOLINE instructions. See Section 3.2.3 for details.

4. Postconditions

Specified the properties that hold after the execution of the program. The postcon-

ditions will be checked by the CRYPTOLINE tool during verification.

proc main( INPUT_PARAMETERS )=

{ PRECONDITION }

PROGRAM_BODY

{ POSTCONDITION }

Listing 3.3: Outline of a CRYPTOLINE program.
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A CRYPTOLINE program is verified if: (a) it is well-formed (checked by the type

system), (b) all the range properties in assertions and specifications are verified (checked

by BOOLECTOR), and (c) all the algebraic properties in assertions and specifications are

verified (checked by SINGULAR) and it passes safety check (checked by BOOLECTOR).

3.2.3 CRYPTOLINE instructions

This Section describes the commonly used CRYPTOLINE instructions:

1. Arithmetic instructions

CRYPTOLINE supports a large number of commonly used arithmetic instructions for

cryptography, including addition/subtraction(with/without carry/borrow), (signed/

unsigned) multiplication, (signed/unsigned) shift, move, conditional move, logical

operations such as and/or/not, data type conversions such as (signed/unsigned) split/

join, etc. Notice that currently carry and borrow are the two flags that CRYPTOLINE

supports. See Section 3.3.1 for examples of when other flags are used in the com-

putation.

2. Assertion

An assert instruction accepts two arguments: an algebraic property and a range

property. Properties in assert instructionswill be checked by SINGULAR or BOOLEC-

TOR. Similar to the postcondition, except that assert instructions are added in the

program body.

assert true && x = y;
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assume x = y && true;

Listing 3.4: An example of assert and assume. BOOLECTOR will check whether x = y

during verification in the assert.

3. Assumption

For verification purposes, CRYPTOLINE also supports assume to add assumptions in

the program body. An assume instruction also accepts two arguments: an algebraic

property and a range property. Similar to the precondition, properties in assume

instructions are assumed to hold unconditionally.

Listing 3.4 shows an example of using assumptions in CRYPTOLINE. This assume

instruction can be safely added after the assert instruction. Typically, an assume

instruction is added right after the property is proved using an assert by the other

solver.

4. Cast/Value-preserving cast

Notice that every variable and constant is typed in CRYPTOLINE. Normally, pro-

grams used assembly instructions as the way it is designed. However, sometimes

assembly programmers use instructions that are not well-formed but actually make

sense in the context. Therefore, CRYPTOLINE supports cast to change the type of a

variable, both its sign and bit width. Value-preserving cast (vpc) is also supported

when the value fits the destination type.

Listing 3.5 shows a simple example of a value-preserving cast. The last addition

would not be well-formed without the vpc instruction before it. Because the range

of rcx falls in the range of a signed 64-bit vector [−263, 263−1], this vpc instruction

will pass the safety check.
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nondet rax@sint64; nondet rbx@uint64;

assume true && and[(-50)@64 <s rax, rax <s 50@64];

assume true && and[0@64 <=u rbx, rbx <=u 200@64];

adds carry rcx rbx 3@uint64;

vpc rcx@sint64 rcx;

adds carry rdx rcx rax;

Listing 3.5: A vpc example.

5. Cut

When a CRYPTOLINE program is huge that it is difficult to verify as one single pro-

gram, verification engineers often try to first break down the program into small

pieces by their functionality to verify their computation, then connect the results

from the verified pieces. The cut instruction is designed to meet the needs. A cut

instruction literally cut a program into halves where each half is verified as an inde-

pendent program. A cut instruction accepts two arguments: a range property and

an algebraic property. The properties will be used as the postconditions for the first

half and as the preconditions for the second half.

6. Call

CRYPTOLINE also supports function calls. call is the keyword for function call.

The purpose is to simplify the process of verification by omitting to prove recur-

ring codes. A call statement is composed of the function’s identifier and a set of

parameters. Similar to the structure of a CRYPTOLINE program in Section 3.2.2, the

definition of a function contains the input/output parameters, the preconditions, the
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function body, and the postconditions.

The current version of call in CRYPTOLINE is actually just a macro for inlining. In

other words, it does not support local variables or other features for function calls.

Therefore, verification engineers have to keep track of the naming of variables when

using call in CRYPTOLINE to avoid conflicts.

However, call is still useful in many cases, it can not only be simply used as a

macro for inlining a concrete subprogram but also serve as an abstraction layer to

introduce the proved properties from a verified subprogram.

In the case of abstraction, which is the main use of call, the function body sim-

ulates a verified program. That is to say, the subprogram should be verified in a

separate file. In the definition of such a function, the preconditions are asserted

before the function body, since they should hold every time before calling the func-

tion. In the function body, the arithmetic instructions for computation are deleted,

what remains is just some nondet instructions to declare every output variable as

nondeterminate variables. After the function body, the postconditions are added as

assumptions, which means the output variables are nondeterminate until the post-

conditions are assumed. Notice that the postconditions often state the exact relation

between input and output variables, so no information should be lost in a perfectly

successful verification.

proc functionid( INPUT/OUTPUT_PARAMETERS )=

{ true && true }

assert PRECONDITION ;

FUNCTION_BODY

assume POSTCONDITION ;
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{ true && true }

proc main( INPUT_PARAMETERS )=

{ PRECONDITION }

PROGRAM_BODY

...

call functionid( INPUT/OUTPUT_PARAMETERS );

...

PROGRAM_BODY

{ POSTCONDITION }

Listing 3.6: Outline of a CRYPTOLINE program that uses call.

3.3 Examples

CRYPTOLINE is capable of verifying assembly programs on various platforms. In this

Section, we use x86 ISA in 64-bit mode to illustrate how to use CRYPTOLINE.

3.3.1 Examples of modeling

Constants and variables Constants can be simply modeled by constants in CRYPTO-

LINE. A register or an effective address is modeled by a variable in CRYPTOLINE. In this

way, we won’t need to care about pointers or pointer aliasing, which simplifies verifica-

tion.

Every register or effective address should be 64-bit wide at the start of the program.
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It is the verification engineer’s responsibility to decide the sign of a variable or a constant

base on the value it represents.

Simple instructions For x86 instructions that CRYPTOLINE has a semantically equiva-

lent instruction, we simply model it with the corresponding CRYPTOLINE instruction.

In Listing 3.7, imul with one operand $1v computes signed multiplication with rax,

and stores the higher signed 64-bit result in rdx, lower unsigned 64-bit result in rax. It is

simply modeled with a CRYPTOLINE instruction smull.

#! add $1v, $2v -> adds carry $2v $1v $2v

#! adc $1v, $2v -> adcs carry $2v $1v $2v carry

#! imul $1v -> smull rdx rax $1v rax

Listing 3.7: Some easy examples of modeling x86 instructions.

Tricky Instructions Tomodel an instruction that uses flags or instructions that CRYPTO-

LINE does not directly support, we use multiple CRYPTOLINE instructions to simulate such

an instruction. The verification engineers are responsible for the semantic equivalence of

the modeling.

Conditional Move Greater or Equal (cmovge) is one of the conditional move instruc-

tions in x86. Its semantics is defined by move if the sign flag (SF) equals the overflow flag

(OF). A cmovge instruction usually appears after a cmp instruction where cmp subtracts its

two operands and set the status flags in the EFLAGS register according to the result of the

subtraction. Notice that if the relation between the two operands is greater than or equal

to, the SF of the subtraction result will be equal to the OF of the subtraction result.
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Listing 3.8 shows an example. A computation that uses a cmp with zero followed

by cmovge is modeled in CRYPTOLINE with a subtraction-with-borrow (subb) to compute

whether SF should be equal to OF. The result is kept in a bit SFeOV which is used as the

flag for the conditional move instruction (cmov) in CRYPTOLINE.

#! cmp \$0, $1v -> subb SFeOF dontcare $1v (-(2)**(63))

@sint64

#! cmovge $1v, $2v -> cmov $2v SFeOF $1v $2v

Listing 3.8: An example to model cmp and cmovge.

3.3.2 CRYPTOLINE tricks

With the above modeling techniques, we can now model an assembly program in

CRYPTOLINE. However, if one just simply tries to verify the postcondition on this model,

often the time it will not work. This is because both BOOLECTOR and SINGULAR are not

strong enough on their own, we usually have to use one to prove some kinds of properties,

the other to prove the rest.

Carry bit Usually, we need to manually transfer information between solvers. A com-

mon example is the carry bit: since BOOLECTOR holds information about the range of

variables while SINGULAR doesn’t, most of the time only BOOLECTOR can prove whether

the value of a carry bit is zero. To transfer this information to SINGULAR, we first use an

assert in BOOLECTOR and then an assume in SINGULAR of the same expression. With

this assume, SINGULAR can use this information in the rest of the program.
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Listing 3.9 is an easy example from the subroutine of modular addition in Z2255−19.

Since we are using 4 64-bit registers to store the input which is less than 2255−19, the last

carry bit after summing up the two inputs will be zero, which is proved by BOOLECTOR.

After assuming this in SINGULAR, we can continue to prove the rest of the program.

adds carry rdx L0x7fffffffdd60 rdx;

adcs carry rcx L0x7fffffffdd68 rcx carry;

adcs carry r8 L0x7fffffffdd70 r8 carry;

adcs carry rdi L0x7fffffffdd78 rdi carry;

assert true && carry = 0@1;

assume carry = 0 && true;

Listing 3.9: An example of addition. x, y ∈ Z2255−19 is stored in limbs

64 [rdx, rcx, r8, rdi], and limbs 64 [L0x7fffffffdd60, L0x7fffffffdd68,

L0x7fffffffdd70, L0x7fffffffdd78] respectively. After Boolector proves that the

last carry is zero, this information can be assumed in Singular for later use.

Assuming a CNF formula proved by BOOLECTOR in SINGULAR An arbitrary CNF for-

mula can be transformed into a DNF formula via the schoolbook transformation where the

length of the resulting DNF formula grows linearly with the size of the CNF but exponen-

tially with the size of the clause of the CNF formula.

Sometimes during verification, a range property in CNF is proved by BOOLECTOR

and we want to assume this property as an algebraic property in SINGULAR. However, it’s

not simple to express a CNF formula in SINGULAR, but it’s straightforward to assume a

DNF in SINGULAR. So we can first transform the CNF into a DNF and then assume the

equivalent DNF in SINGULAR. Notice that we usually do this trick when the size of the

CNF is small which is often the case. We don’t recommend this trick when the size of the
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CNF is so large that it will not be practical to assume the resulting DNF in SINGULAR.

For example, let’s say the following CNF is proved by BOOLECTOR:

or[and[case1, property1], and[case2, property2], and[case3, property3]]

We manually transform this CNF into a DNF via schoolbook transformation:

(case1 ∨ case2 ∨ case3) ∧ (case1 ∨ case2 ∨ property3)∧

(case1 ∨ property2 ∨ case3) ∧ (case1 ∨ property2 ∨ property3)∧

(property1 ∨ case2 ∨ case3) ∧ (property1 ∨ case2 ∨ property3)∧

(property1 ∨ property2 ∨ case3) ∧ (property1 ∨ property2 ∨ property3)

With the transformation, we can easily assume this DNF in SINGULAR as:

assume (case1 ∗ case2 ∗ case3 = 0) && true;

assume (case1 ∗ case2 ∗ property3 = 0) && true;

assume (case1 ∗ property2 ∗ case3 = 0) && true;

assume (case1 ∗ property2 ∗ property3 = 0) && true;

assume (property1 ∗ case2 ∗ case3 = 0) && true;

assume (property1 ∗ case2 ∗ property3 = 0) && true;

assume (property1 ∗ property2 ∗ case3 = 0) && true;
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assume (property1 ∗ property2 ∗ property3 = 0) && true;

Signed multi-limb multiplication To multiply two 128-bit signed integers, a program

loads each input into two 64-bit registers and combines the use of signed/unsigned mul-

tiplication instructions. To verify this computation, we need to specify the behavior of

nonlinear instructions to SINGULAR manually.

Listing 3.10, 3.11, and 3.12 shows the important parts of an example of a program

that computes signed multi-limb multiplication.

In Listing 3.10, the instruction sar $0x3f, %r11, whose semantics is signed divi-

sion r11 by two 63 times, is used to extend the sign bit of r11 to a 64-bit mask. To translate

this instruction, We extract the MSB and simulate the sar instruction with a subtraction

and a conditional move. New variables: msb, flag are created as auxiliary terms. After

BOOLECTOR proves its semantics with assert, the information is transferred to SINGU-

LAR by the use of assume. Similar to the previous example, the range property proved by

BOOLECTOR is a small CNF and we assume the algebraic property in SINGULAR as a DNF.

(* mov %rax ,%r11 *)

mov r11 rax; (* r11 = rax with type sint64 *)

(* sar $0x3f ,%r11 *)

and msb@uint64 r11 0x8000000000000000@uint64;

subc flag dontcare msb 1@uint64;

cmov r11 flag 0xffffffffffffffff@uint64 0@uint64;

assert true &&

or[and[flag = 0@1, r11 = 0@64],

and[flag = 1@1, r11 = 0xffffffffffffffff@64]];
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assume (r11) * (flag - 1) = 0 && true;

assume (r11 - 0xffffffffffffffff) * flag = 0 && true;

Listing 3.10: Modeling sar instruction in CRYPTOLINE.

Right after the sar instruction, we have the the unsigned multiplication instruction

in Listing 3.11. A normal unsigned multiplication computes multiplication of its two

operands in [0, 264 − 1], and the put 128-bit result in [0, 2128 − 265 + 1] in ulimbs 64

[rax, rdx]. In this case, we want to use an unsigned multiplication to compute multi-

plication on a signed operand rax and an unsigned operand r12. This instruction will not

be well-formed if we don’t specify some additional information in CRYPTOLINE. There-

fore, before the unsigned multiplication, a cast from signed to unsigned is used to change

the type of rax. We keep the value of rax as sint64 in raxo for verification purposes.

The cast will not affect BOOLECTOR since the bit width stays the same, but in SINGULAR,

the value of rax after the cast will become raxo+ 263 ∗ dontcare for soundness because

it is not a value-preserving cast.

However, we know that for a 64-bit vector whose MSB is high ∈ [0, 1] and the value

of its lower 63 bits as an unsigned 63-bit vector is low ∈ [0, 263 − 1], if we treat it as a

signed bit vector, its value will be−263 ∗high+ low ∈ [−263, 263−1]. On the other hand,

if we treat it as an unsigned vector, its value will be 263 ∗ high+ low ∈ [0, 264 − 1].

This is what we are going to specify in CRYPTOLINE, because the value of the MSB

of rax after the cast should not be dontcare in this case. We need to explicitly specify that

the value of the MSB is negated after a cast from signed to unsigned. Moreover, we also

specify the fact that the MSB of rax equals the flag in the simulation of sar in Listing

3.10. Finally, after the unsigned multiplication instruction, we explicitly specify that the
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result of the multiplication can also be represented by raxh and raxl instead only by rax.

(* mul %r12 *)

mov raxo rax; (* The type of rax is sint64 *)

cast rax@uint64 rax;

usplit raxh raxl rax 63;

assert true && raxh * const 64 (-(2**63)) + raxl = raxo;

assume raxl - raxh * (2**63) = raxo && true;

assert true && (uext flag 63) = raxh;

assume flag = raxh && true;

umull rdx rax r12 rax;

assert true && limbs 64 [rax, rdx] = (uext r12 64) * ((uext

raxh 64) * (const 128 (2**63)) + (uext raxl 64));

assume limbs 64 [rax, rdx] = r12 * (raxh * 2**63 + raxl) &&

true;

Listing 3.11: A multiplication intruction right after the sar instruction in Listing 3.10.

The property of the MSB of the multiplicand is stated explicitly to allow SINGULAR to use

later.

The bitwise AND instruction in Listing 3.12 shows the usage of the mask computed

by sar in Listing 3.10. The auxiliary variable flag indicated the computed mask in r11

should be an all-zero or all-one vector. Because we cannot express the computation of

bitwise AND as an equation, so we don’t have an algebraic model for such an operation
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in CRYPTOLINE. The verification engineer has to model it manually. In this case, the value

after the bitwise AND with the mask in r11 can be simply expressed with the auxiliary

variable flag.

(* and %r11 ,%r12 *)

mov r12o r12;

and r12@uint64 r11 r12;

assert true && or[and[flag = 0@1, r12 = 0@64],

and[flag = 1@1, r12 = r12o]];

assume (flag) * (r12 - r12o) = 0 && true;

assume (flag - 1) * (r12) = 0 && true;

Listing 3.12: A bitwase AND intruction after the sar instruction in Listing 3.10.

Without these tricks, the algebraic properties of the multi-limb multiplication in the

postcondition would not be provable since there will be some lost information to SINGU-

LAR. Here,We omit the rest of the computations. For the details of the verification of a con-

crete multi-limb multiplication subroutine, please see the verification code at https://

github.com/fmlab-iis/cryptoline/blob/master/examples/ct_inverse/bernstein_

yang/25519/x86/mul2x2s128_25519.cl.

3.3.3 Verify an assembly program

See Chapter 4 and 5 for concrete examples of the verification process of actually used

assembly subroutines.
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Chapter 4 Verifying a Simple

Implementation

We can only discuss the asymptotic computational time complexity of an algorithm if

it is a pseudo algorithm. In practice, the platform support and the efficiency of the imple-

mentation are also crucial when discussing speed. In cryptography, fast implementation

is already a popular topic. A fast implementation will be more valuable if its correctness

is guaranteed.

In this chapter, we show a case study of the verification of a fast implementation

of the original Bernstein-Yang algorithm. Section 4.1 describes a simple (but still pretty

fast) implementation of the original Bernstein-Yang algorithm. Section 4.2 and 4.3 show

how we use CRYPTOLINE to verify this implementation. Section 4.4 describes the verifi-

cation result, and how is it related to the correctness of the implementation. The imple-

mentation and the verification code can be found at https://github.com/fmlab-iis/

cryptoline/tree/master/examples/ct_inverse/bernstein_yang/25519/x86.
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4.1 x86 25519 Implementation

This is an x86 implementation of the 2-adic version of the original Bernstein-Yang al-

gorithmwith f0 = 2255−19written by Bo-Yin Yang. It takes 8778 cycles on Intel Skylake

CPU core, which is decent compared to the state-of-the-art. By theorem 1, 744 iterations is

enough to compute the multiplicative inverse with f0 = 2255−19. We specify the C imple-

mentation of this algorithm in Listing 4.1. This implementation uses divide-and-conquer

to compute divstep744 to simulate recip2 in Listing 2.3. All of the computation in this C

function is implemented with some subroutines written in assembly. These subroutines in

assembly use some counterintuitive tricks to compute efficiently. This makes the program

difficult to read or debug. To boost the confidence of the program, we use CRYPTOLINE

to verify the subroutines. We will give more details about the implementation of these

assembly subroutines while explaining how we verify them in Section 4.2 and 4.3.

4.1.1 C implementation of fpinv25519.c

Following the notation in Chapter 2, we use the notation

(δi, fi, gi) = divstepi(δ0, f0, g0)

and ui vi

ri si

 =Mi(δ0, f0, g0)

in this chapter.

Remember that by the algorithm recip2 in Listing 2.3, we can get the modular in-
1Theorem 11.2 in [1].
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verse by computing g−1
0 = f744v744 (mod f0)where (δ744, f744, g744) = divstep744(1, f0, g0)

and

u744 v744

r744 s744

 = M744(1, f0, g0). Therefore, we can say the goal of this implementa-

tion is to compute f744v744 (mod f0).

Before looking into the subroutines in assembly, let’s first look at the C function that

computes modular inversion. We give the C code in Listing 4.1. Please refer to Section

4.2 and 4.3 for the definitions of the subroutines.

The function fpinv25519 uses divide-and-conquer to compute divstep744 to simulate

recip2 in Listing 2.3. It starts with δ0 = 1, f0 = 2255 − 19 and g0 as the input in

[−2255, 2255 − 1].

The first call to jump64divsteps2_s255 computes δ62, f62, g62 and 262∗M62(δ0, f0, g0)

in b. The second call to jump64divsteps2_s255 computes δ62∗2, f62∗2, g62∗2 and 262 ∗

M62(δ62, f62, g62) in b2. To compute 262∗2 ∗M62∗2(δ0, f0, g0), it simply uses muls64xs64

to compute the 2× 2 to 2× 2 matrix product on b and b2 and stores the result on b3. The

same technique is used to compute δ62∗4, f62∗4, g62∗4 and 262∗2 ∗M62∗2(δ62∗2, f62∗2, g62∗2)

in b4. To compute 2248 ∗ M248(δ0, f0, g0), it uses mul2x2s128_25519 to compute the

2× 2 to 2× 2 matrix product on b3 and b4 and stores the result in b5. That sums up the

computation of the first 248 iterations.

Startingwith δ248, f248, g248, we use the same technique to compute δ248∗2, f248∗2, g248∗2

and 2248∗M248(δ248, f248, g248) in the second 248 iterations. Here, we use fpmul2x2_25519_half

to compute 2 × 2 to 2 × 2 matrix product in Z2255−19, but we only compute the right

half of the resulting 2 × 2 matrix. fpmul2x2_25519_half is implemented with some

calls to fpmul25519 and fpadd25519 for modular multiplication and modular addition

in Z2255−19. Consequently, we have the right half of 2248∗2 ∗M248∗2(δ0, f0, g0) in b7 which
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is 2248∗2 ∗ v248∗2 and 2248∗2 ∗ s248∗2 before the third 248 iterations.

Again, with δ248∗2, f248∗2, g248∗2, we compute 2248∗3 ∗M248(δ248∗2, f248∗2, g248∗2) in

b6with the same technique. To compute the upper right entry of 2248∗3∗M248∗3(δ0, f0, g0)

which is 2248∗3 ∗ v248∗3, we use fpmul2x2_25519_quarter to compute the upper right

entry of the 2 × 2 to 2 × 2 matrix product on b6 and b7. fpmul2x2_25519_quarter is

also implemented with calls to fpmul25519 and fpadd25519 for modular multiplication

and modular addition in Z2255−19.

Finally, with 2744 ∗ v744, we compute g−1
0 by g−1

0 = 2744 ∗ v744 ∗ (12)
744 ∗ f744 ∈

Z2255−19. It uses fpmul25519 for the modular multiplication with the pre-computed con-

stant inv2744 = (1
2
)744 and fpcneg25519 for the modular negation using f744 as the flag

(f744 is guaranteed to be 1 or -1 by theorem, so f[3] = f744).

void fpmul2x2_25519_quarter(unsigned long long m1[16],

unsigned long long m2[16], unsigned long long m3[16]) {

unsigned long long t0[4], t1[4];

fpmul25519(m1,m2+4,t0);

fpmul25519(m1+4,m2+12,t1);

fpadd25519(t0,t1,m3+4);

}

void fpmul2x2_25519_half(unsigned long long m1[16],

unsigned long long m2[16], unsigned long long m3[16]) {

unsigned long long t0[4], t1[4];

fpmul25519(m1,m2+4,t0);

fpmul25519(m1+4,m2+12,t1);

fpadd25519(t0,t1,m3+4);
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fpmul25519(m1+8,m2+4,t0);

fpmul25519(m1+12,m2+12,t1);

fpadd25519(t0,t1,m3+12);

}

void fpinv25519(unsigned long long g[4],

unsigned long long inv_g[4]) {

int delta;

unsigned long long inv2744[4] = {0x5dc1855b1b224df9 ,

0x9ca54469d9422c90 , 0x59639d9db0ccd471 ,

0x38b66f98b076d64f};

unsigned long long f[4] = {-19LL, -1LL, -1LL,

0x7fffffffffffffffULL};

unsigned long long b[4], b2[4];

unsigned long long b3[8], b4[8];

unsigned long long b5[16], b6[16], b7[16];

// start of first 248 iterations

delta = jump64divsteps2_s255(62,1,f,g,b);

delta = jump64divsteps2_s255(62,delta ,f,g,b2);

muls64xs64(b2,b,b3);

delta = jump64divsteps2_s255(62,delta ,f,g,b);

delta = jump64divsteps2_s255(62,delta ,f,g,b2);

muls64xs64(b2,b,b4);
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mul2x2s128_25519(b4,b3,b5);

// start of second 248 iterations

delta = jump64divsteps2_s255(62,delta ,f,g,b);

delta = jump64divsteps2_s255(62,delta ,f,g,b2);

muls64xs64(b2,b,b3);

delta = jump64divsteps2_s255(62,delta ,f,g,b);

delta = jump64divsteps2_s255(62,delta ,f,g,b2);

muls64xs64(b2,b,b4);

mul2x2s128_25519(b4,b3,b6);

fpmul2x2_25519_half(b6,b5,b7);

// start of third 248 iterations

delta = jump64divsteps2_s255(62,delta ,f,g,b);

delta = jump64divsteps2_s255(62,delta ,f,g,b2);

muls64xs64(b2,b,b3);

delta = jump64divsteps2_s255(62,delta ,f,g,b);

delta = jump64divsteps2_s255(62,delta ,f,g,b2);

muls64xs64(b2,b,b4);

mul2x2s128_25519(b4,b3,b6);

fpmul2x2_25519_quarter(b6,b7,b5);

fpmul25519(b5+4,inv2744 ,inv_g);

fpcneg25519(inv_g ,f[3]);
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}

Listing 4.1: fpinv25519.c implementation. Algorithm fpinv25519 to compute the

reciprocal of g0 modulo 2255 − 19 when gcd{2255 − 19, g0} = 1.

4.2 Verifiy Simple Subroutines

This section describes how we verify the implementation while illustrating how as-

sembly programs are verified in CRYPTOLINE.

The translating rules from x86 instructions to CRYPTOLINE instructions as mentioned

in Section 3.3.1 is put with each of the code of the subroutines in a separated .gas format

file. With the .gas file as the input, the to_zdsl.py script in the CRYPTOLINE toolkit

will generate the corresponding .cl format file which is the model of assembly code in

CRYPTOLINE. Then, we manually specify the sign and the bit width of each input variable,

precondition, and postcondition in the .cl file. Finally, we can start to try to verify them.

The following subsections describe how we verify each of the assembly subroutines in

Section 4.1.

4.2.1 Verify modular addition

• void fpadd25519(unsigned long long a[4], unsigned long long b[4],

unsigned long long r[4]);

Input: a, b ∈ Z2255−19;

Output: r = a+ b ∈ Z2255−19.

fpadd25519 is the subroutine that computes modular addition. The input a, b are
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unsigned 256-bit vectors in [0, 2255−20]. Each input is stored in 4 consecutive (unsigned)

64-bit locations in the memory. The range of the inputs and the value of f is specified in

the precondition in BOOLECTOR. The postcondition is specified as a relation of congruence

modulo in BOOLECTOR. This is a rather simple example and can be directly verified using

only range properties this way.

4.2.2 Verify conditional modular negation

• void fpcneg25519(unsigned long long a[4], long long flag);

Input: a ∈ Z2255−19; flag ∈ [−263, 263);

Output: a ∈ Z2255−19 if flag ≥ 0; −a ∈ Z2255−19 if flag < 0.

fpcneg25519 is the subroutine that computes conditional modular negation. Similar

to Subsection 4.2.1, this subroutine is easily verified by BOOLECTOR.

4.2.3 Verify signed multiplication with addition

• void muls64xs64(unsigned long long X[4], unsigned long long Y[4],

unsigned long long M[8]);

Input:

x0 x1

x2 x3

 ,
y0 y1

y2 y3

 where xi, yi ∈ [−262, 262];

Output:

m0 m1

m2 m3

 =

x0 x1

x2 x3


y0 y1

y2 y3

 wheremi ∈ (−2125, 2125).

muls64xs64 is the subroutine that computes signed multiplication with addition.

Similar to Subsection 4.2.1, this subroutine is easily verified by BOOLECTOR.
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4.2.4 Verify modular multiplication

• void fpmul25519(unsigned long long a[4], unsigned long long b[4],

unsigned long long r[4]);

Input: a, b ∈ Z2255−19;

Output: r = ab ∈ Z2255−19.

fpmul25519 is the subroutine that modular multiplication. Unlike the case in Sub-

section 4.2.1, 4.2.2, or 4.2.3, this computation contains unsignedmulti-limbmultiplication

which is one of the weaknesses of BOOLECTOR. Therefore, we use SINGULAR to verify this

computation. As mentioned in Section 3.3.2, we use assert/assume to tell SINGULAR that

some registers/carry bits should be zero during the computation. Also, we use BOOLEC-

TOR to check the range of the modular reduction. With these techniques, we successfully

verified the postcondition of this subroutine.

4.2.5 Verify signed multi-limb multiplication with addition

• void mul2x2s128_25519(unsigned long long X[8], unsigned long long

Y[8], unsigned long long M[16]);

Input:

x0 x1

x2 x3

 ,
y0 y1

y2 y3

 where xi, yi ∈ [−2125 + 1, 2125 − 1];

Output:

m0 m1

m2 m3

 =

x0 x1

x2 x3


y0 y1

y2 y3

.
mul2x2s128_25519 is the subroutine that computes multi-limb signed multiplica-

tion with addition. This subroutine also takes some effort to verify. We use the trick
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mentioned in Section 3.3.2 to specify the properties of the computation of signed multi-

limb multiplication explicitly. We use SINGULAR to verify the algebraic relation between

the inputs and the outputs and use BOOLECTOR to verify the range of the outputs in the

postcondition.
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4.3 Verify 62 divstep iterations

4.3.1 Pseudo code of the subroutine

To explain the computation of this subroutine, we provide the pseudo code in Algo-

rithm 1. We use x̄ to denote the truncated value of x in a lower precision.

Algorithm 1 Pseudo jump64divsteps2_s255
Input: δ ∈ [−260, 260], f, g ∈ Z2255−19.

Output: (δ′62, f ′
62, g

′
62) = divstep62(δ, f, g);

[
u′62 v′62
r′62 s′62

]
= 262M62(δ, f, g).

1: (f̄ , ḡ)← (truncate(f, 64), truncate(g, 64))
2: (f̊ , g̊)← (f̄ , ḡ) ▷ Saved for verification purpose.
3: (u, v, r, s)← (1, 0, 0, 1)
4: for i← 1 to 31 do
5: (δ′, f̄ ′, ḡ′, u′, v′, r′, s′)← DivstepImplementation1(δ, f̄ , ḡ, u, v, r, s)
6: (δ, f̄ , ḡ, u, v, r, s)← DivstepImplementation2(δ′, f̄ ′, ḡ′, u′, v′, r′, s′)

7: (u′62, v
′
62, r

′
62, s

′
62)← (u, v, r, s)

8: δ′62 ← δ
9: f ′

62 ← (u′62f + v′62g) >> 62
10: g′62 ← (r′62f + s′62g) >> 62

• int jump64divsteps2_s255(unsigned long long count, unsigned long long

delta, unsigned long long f[4], unsigned long long g[4], unsigned

long long H[4]);

Input: count = 62; δ ∈ [−260, 260]; f, g ∈ [−2255, 2255 − 1] where 2 ∤ f ;

Output: (δ′62, f ′
62, g

′
62) = divstep62(δ, f, g); H =

u′62 v′62

r′62 s′62

 = 262M62(δ, f, g)

where

δ′62 ∈ [−60− δ,−60 + δ]; f ′
62, g

′
62 ∈ [−2255, 2255 − 1];

u′62, v
′
62, r

′
62, s

′
62 ∈ [−262 + 1, 262];
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This is the most important part of computation to compose the modular inverse algo-

rithm. This is also the most problematic subroutine to verify. jump64divsteps2_s255

is the subroutine that computes 62 divstep iterations. To initialize (Line 1-3), it sets

(u, v, r, s) to (1, 0, 0, 1) and truncates full precision f, g into f̄ , ḡ by simply taking their

lower 64 bits and treat them as signed 64-bit. The loop part (Line 4-6) is a loop that iter-

ates 31 times where each iteration computes 2 divstep iterations. The last part (Line 7-10)

computes the output. δ′62 and (u′62, v′62, r′62, s′62) are the results from the loop. To compute

full precision f ′
62, g

′
62, we need to compute signed multi-limb multiplication with addition

and 62-bit-shift.

To verify this subroutine, we first break down this subroutine into smaller pieces to

verify some intermediate properties. Then, some verification tricks are used to combine

the results and finish the verification. This section gives details on how we verify this

subroutine.

4.3.2 Verify 1 divstep iteration

We first take a look at the loop of the subroutine, Line 4-6. As mentioned in Section

2.2.2, we use the loop variables u, v, r, s to store 2iMi. Starting with δ, truncated f̄ , ḡ, and

(u, v, r, s) = (1, 0, 0, 1) (the identity matrix) as the inputs for the loop, the loop computes

divstep iterations via 2iMi to keep the intermediate values in registers as integers.

Two implementations The computation of 62 divstep iterations is implemented with a

loop that iterates 31 times where each iteration computes divstep twice. The purpose is

to utilize more registers to avoid swaps. The result will always be in the desired registers

after each iteration. To verify this loop body, we split the loop body into two parts (Line 5
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and Line 6). Both parts compute one divstep, and the difference is just the set of registers

used. Then, we verify both parts individually to show that the behavior of both parts

follows the definition of divstep in Section 2.2.2.

Verify by case Given 2 ∤ f , we can equivalently define divstep as:

divstep : (δ, f, g) 7→



(
δ + 1, f, g

2

)
if 2|g

(
δ + 1, f, g+f

2

)
if δ ≤ 0 and 2 ∤ g

(
−δ + 1, g, g−f

2

)
if δ > 0 and 2 ∤ g

The definition of divstep depends on the value of input parameters and can be split

into 3 cases. We verify the program under these three different conditions individually.

To verify each case, we first not only specify the precondition but also assume that the

input parameters meet the desired case. Each of the results of one iteration is kept in a

64-bit register, so the results here have only 64-bit precision. We use BOOLECTOR to prove

that under each of the 3 cases, the corresponding result will be correctly computed by the

program.

Take one of the implementations of a divstep as an example (Line 5), (δ, f̄ , ḡ, u, v, r, s,m)

is the set of input variables and (δ′, f̄ ′, ḡ′, u′, v′, r′, s′,m′) is the set of output variables.

Starting from 1,m is used as an auxiliary variable that is doubled every iteration to spec-

ify the output range of (u′, v′, r′, s′).

The range property after i-th divstep iteration is shown in Listing 4.2. Notice that

this range property in Listing 4.2 is a CNF. To assume this property in SINGULAR (except

the properties related tom, since we don’t need the range in SINGULAR), we can transform
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it to a DNF and specify the DNF in SINGULAR using the trick in Section 3.3.2.

or[

(* case 1 *)

and[δ <=s 0@64, eqmod ḡ 1@64 2@64,

ḡ′ * 2@64 = f̄ + ḡ,

f̄ ′ = f̄ ,

(sext δ′ 1) = 1@65 + (sext δ 1),

(sext u′ 1) = (sext u 1) * 2@65,

(sext v′ 1) = (sext v 1) * 2@65,

(sext r′ 1) = (sext r 1) + (sext u 1),

(sext s′ 1) = (sext s 1) + (sext v 1),

(-1)@64 * m′ <=s u′, u′ <=s m′,

(-1)@64 * m′ <=s v′, v′ <=s m′,

(-1)@64 * m′ <=s r′, r′ <=s m′,

(-1)@64 * m′ <=s s′, s′ <=s m′,

1@64 <s m′, m′ <=s (2**62)@64,

m′ = m * 2@64

],

(* case 2 *)

and[δ >s 0@64, eqmod ḡ 1@64 2@64,

ḡ′ * 2@64 = ḡ - f̄ ,
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f̄ ′ = ḡ,

(sext δ′ 1) = 1@65 - (sext δ 1),

(sext u′ 1) = (sext r 1) * 2@65,

(sext v′ 1) = (sext s 1) * 2@65,

(sext r′ 1) = (sext r 1) - (sext u 1),

(sext s′ 1) = (sext s 1) - (sext v 1),

(-1)@64 * m′ <=s u′, u′ <=s m′,

(-1)@64 * m′ <=s v′, v′ <=s m′,

(-1)@64 * m′ <=s r′, r′ <=s m′,

(-1)@64 * m′ <=s s′, s′ <=s m′,

1@64 <s m′, m′ <=s (2**62)@64,

m′ = m * 2@64

],

(* case 3 *)

and[eqmod ḡ 0@64 2@64,

(sext ḡ′ 1) * 2@65 = (sext ḡ 1),

f̄ ′ = f̄ ,

(sext δ′ 1) = 1@65 + (sext δ 1),

(sext u′ 1) = (sext u 1) * 2@65,

(sext v′ 1) = (sext v 1) * 2@65,

r′ = r,

s′ = s,
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(-1)@64 * m′ <=s u′, u′ <=s m′,

(-1)@64 * m′ <=s v′, v′ <=s m′,

(-1)@64 * m′ <=s r′, r′ <=s m′,

(-1)@64 * m′ <=s s′, s′ <=s m′,

1@64 <s m′, m′ <=s (2**62)@64,

m′ = m * 2@64

]

]

Listing 4.2: Range property after the log2m′-th divstep iteration.

Nonetheless, when the results proved by BOOLECTOR have only 64-bit precision, it

is not so easy to interpret these properties in SINGULAR, since properties are represented

as mathematical equations in SINGULAR. To deal with this problem, we use the following

trick:

Take one of the terms as an example: ḡ′ ∗ 2@64 = ḡ − f̄ is proved by BOOLECTOR

as one of the properties, where the variables ḡ′, ḡ, f̄ are 64 bit vectors. This means the

MSB of (ḡ′) is not used and BOOLECTOR does not check whether the subtraction causes

overflow, i.e., the result has only 64-bit precision. This is equivalent to ḡ′ × 2 ≡ ḡ − f̄

(mod 264).

To express this property in SINGULAR as a mathematical equation, we accomplish

this by introducing a free variable z. With z, we can precisely express this property as an

equation:

(ḡ′ ∗ 2)− (ḡ − f̄)− (z ∗ 264) = 0

48

http://dx.doi.org/10.6342/NTU202300852


doi:10.6342/NTU202300852

With these methods, we can express the behavior of the program that calculates one

divstep iteration in SINGULAR.

After assuming the property of one divstep in SINGULAR, we use it to prove a lemma

that BOOLECTOR cannot prove.

Remember that f̊ and g̊ denote the truncated f and g, we can use SINGULAR to prove

the following lemma after the i-th divstep iteration:

Lemma 1. u′f̊+v ′̊g ≡ 0 (mod 2i), r′f̊+s′̊g ≡ 0 (mod 2i), u′f̊+v ′̊g ≡ 2if̄ ′ (mod 264),

and r′f̊ + s′̊g ≡ 2iḡ′ (mod 264) after the i-th iteration, where f̊ = truncate(f, 64), g̊ =

truncate(g, 64)

This lemma can be directly proved by SINGULAR from the properties of a divstep that

is assumed as a DNF. With the range properties and this lemma, we finished proving all

the properties needed for one divstep iteration.

4.3.3 Model the subroutine

After verifying one divstep iteration separately, we can model the loop by using call

as an abstraction layer in the main function of the subroutine with the techniques men-

tioned in Section 3.2.3. This way we can directly use the proved properties of one divstep

without proving the same thing 62 times.

In this case, the function is one divstep iteration. For the precondition of the function,

we use assert to check that the precondition of one divstep holds before every call.

Then, we use nondet to initialize every output variable to avoid conflicts in the function

body. Finally, we use assume to specify the properties of the output variables.
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Since the implementation uses two different sets of registers to compute divstep62,

we alternate the parameters of the 62 calls according to the implementation.

After the 62 calls, we want to summarize the range of the output variables of the

loop. While most of the properties can be extracted directly with an assert, there is

one range property that BOOLECTOR cannot directly prove. However, we noticed that

BOOLECTOR can prove a stronger set of properties which is the premise of the properties

we want.

Denote (u′, v′, r′, s′) after the 62-th divstep iteration as (u′62, v′62, r′62, s′62). The fol-

lowing is the set of properties we used BOOLECTOR to prove:

−262 < u′62, v
′
62 ≤ 262; |u′62|+ |v′62| ≤ 262;−262 < u′62 + v′62;−2255 ≤ f, g < 2255

(4.1)

And the range property we want is:

−2317 ≤ u′62 ∗ f + v′62 ∗ g < 2317 (4.2)

To make sure that Property 4.1 is indeed the premise of Property 4.2, we used Coq

to prove this relation.

The verification of assembly implementations is a task in which CRYPTOLINE demon-

strates utility, but its capabilities are limited when it comes to the verification of complex

mathematical theorems. On the other hand, Coq is an open-source interactive theorem

prover and formal verification tool that is useful for proving mathematical theorems. It
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allows the user to write mathematical statements and proofs in formal language and pro-

vides a powerful proof assistant that verifies the correctness of these proofs using a type

theory-based logic.

With the proof from Coq, we are confident that the properties we want will hold.

Therefore, we directly assume Property 4.2 right after the assertion of Property 4.1 in

CRYPTOLINE. This way we can use Property 4.2 to continue the verification process.

Before moving on to the last part of the computation, we use a cut to split the veri-

fication process into two parts to simplify the verification process. In the cut statement,

we explicitly specify all the important properties of the results of the loop.

The properties in the cut statement contains:

1. The range of δ′62 is [−60− δ,−60 + δ],

2. The range of u′62, v′62, r′62, s′62 is [−262 + 1, 262],

3. Lemma 1 with i = 62 which shows that u′62f + v′62g ≡ r′62f + s′62g ≡ 0 (mod 262)

and that they represent the desired output of 62 divstep iterations f ′
62, g

′
62,

4. The range of u′62f + v′62g and r′62f + s′62g which is proved by Coq.

Afterwards, we can use this as the precondition for the rest of the program after the

cut.

4.3.4 Verify signed multi-limb multiplication and shift

Finally, let’s move on to the last part of the subroutine (Line 9-10). The last part

computes the exact output of 62 divstep iterations with full 256-bit precision using the
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results of the loop. This computation contains 256-to-64-bit signed multiplication and

62-bit-shift-to-right to compute:

f ′
62 = (u′62 ∗ f + v′62 ∗ g) >> 62

g′62 = (r′62 ∗ f + s′62 ∗ g) >> 62

With the tricks mentioned in Section 3.3.2, we also managed to verify this computation.

4.3.5 Completeness of verification of the subroutine

To state that we finished verifying this subroutine, we combine the following results:

1. In Subsection 4.3.2, we show that the computation of one divstep iteration (Line

4-5) is verified with 64-bit precision.

2. By Theorem 1 in Appendix A.1, we prove that the precision of the loop variables is

sufficient. Therefore, the values of signed 64-bit (u′, v′, r′, s′) from the i-th iteration

is exactly 2iMi, and the 64-bit f̄ ′, ḡ′ is sufficient to compute the next divstep iteration

correctly throughout the loop. Combine this with the results in Subsection 4.3.2, we

conclude that the results (δ′62, u′62, v′62, r′62, s′62) of 62 divstep iteration (Line 4-6) is

verified with full precision.

3. In Subsection 4.3.3, wemodel the subroutine jump64divsteps2_s255 and verified

the range of δ′62, u′62, v′62, r′62, s′62 (Line 7-8).

4. In Subsection 4.3.3 and 4.3.4, we use Coq to verify the range of f ′
62, g

′
62 and use

CRYPTOLINE to verified that f ′
62, g

′
62 are correctly computed using the output from

the loop (Line 9-10).
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With these results, we can state that this subroutine correctly computes 262M62(δ, f, g), δ
′
62, f

′
62, g

′
62

and thus is verified.

4.4 Results

With all the subroutines verified, we are very close to claiming that the C implemen-

tation fpinv25519.c is also formally verified since all of the computations happen in these

subroutines. The remaining question is whether we called these subroutines correctly.

However, this problem is very tricky because this involves proving some highly non-trivial

mathematical theorems in [1] 2, which seems to be not easily provable by solvers/tools of

the time. We may just use the proof in [1]2 for the correctness of the C implementation.

To formally verify the theorems2, we leave it as future work.

2Such as Theorem 11.2 in [1] with f0 = 2255 − 19, which shows 744 iterations are indeed sufficient to
compute the modular inverse.
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Chapter 5 Verifying a Fast Vectorized

Implementation

With the introduction of the improved Bernstein-Yang algorithm in Section 2.3, less

number of divstep iterations are needed to compute modular inversion. Instead of 744, we

only need to compute 600 divstep iterations when f0 = 2255 − 19. Therefore, it is pretty

clear that an implementation based on the improved Bernstein-Yang algorithmwould have

better performance.

In this chapter, we show another case study of the verification of a fast vectorized

implementation of the improved Bernstein-Yang algorithm. Section 5.1 describes a fast

vectorized implementation of the improved Bernstein-Yang algorithm. From Section 5.2

to 5.6, we describe the details of the computation and explain how to verify them. Section

5.7 explains the verification result.

The implementation and the verification code can be found at https://github.

com/fmlab-iis/cryptoline/tree/master/examples.
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5.1 Vectorized x86 25519 Implementation

This vectorized x86 implementation with f0 = 2255 − 19 is also written by Bo-Yin

Yang. It is an assembly implementation of the improved Bernstein-Yang algorithm that

utilizes both SISD and SIMD on x86 with some delicate implementation choices. It takes

only 3880 cycles on Intel Skylake core, whichmakes it the fastest implementation compare

to the state-of-the-art.

Again, we follow the notation in Chapter 2. We use the notation

(δi, fi, gi) = divstepi(δ0, f0, g0)

and ui vi

ri si

 =Mi(δ0, f0, g0)

in this chapter.

Similar to the implementation in Chapter 4, by theorem, we can get the modular

inverse by computing g−1
0 = f600v600 (mod f0) where

(δ600, f600, g600) = divstep600(
1

2
, f0, g0); f600 ∈ {1,−1}

and u600 v600

r600 s600

 =M600(
1

2
, f0, g0).

Again, we can say that the goal of this algorithm is to compute f600v600 (mod f0).

In the following sections, we will describe the implementation choices to exploit the
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potential of assembly programming.

5.1.1 Outline of the assembly code

Pseudo code We provide the pseudo code of this implementation in Algorithm 2. We

use x̄ when it represents a truncated value of x that is in a lower precision. Also, we use

capital letters F, V,G, S to denote radix 230 numbers in full precision where taking F as

example, F =
∑8

i=0 2
30iF [i] and F [i] are 64-bit variables. Moreover, we use f̃ [0], f̃ [1]

to denote the first two coefficients of F as a radix 260 number where f̃ [0] + 260f̃ [1] = F

mod 2120.

The program is written in assembly. All of the computations are written in one as-

sembly subroutine. To verify this program, we split the program into small code blocks

by their functionality for simplicity. Notice that there is no overhead caused by calling

convention or maintaining the stack since they belong to the same subroutine. For consis-

tency, we still call these code blocks ”subroutines” in this chapter.

This outline of the program is depicted as follows:

1. Initialization (Line 1-7):

Given input g0 ∈ [0, 2256 − 1], the program reduces g0 to Z2255−19 (Line 2) and

represents it in a radix-230 number (Line 3). Then, it loads some useful constants

from the memory to the stack (Line 4) and initializes m = δ0 − 1
2
and the loop

variables (Line 5-7).

2. 60 divsteps (Line 14-31):
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Algorithm 2 Pseudo 25519 vectorized safegcd (600 iterations)
Input: δ0 = 1

2
, f0 = 2255 − 19. g0 ∈ [0, 2256 − 1].

Output: g−1
0 ∈ Z2255−19 when gcd{2255−19, g0} = 1.

1: ▷ Initialization:
2: x← mod25519(g0)
3: G← split9(x)
4: (F, V,G, S)← (2255 − 19, 0, G, 1

2

60
) ∈ Z2255−19

5: m← 0
6: (f̃ [0], g̃[0], f̃ [1], g̃[1])← (−19, G[0] + 230G[1], 0, 0)
7: (û, v̂, r̂, ŝ)← (260, 0, 0, 260)
8: ▷ Bigloop:
9: for j ← 1 to 10 do
10: (f̄ , ḡ)← transition_portion(f̃ [0], g̃[0], f̃ [1], g̃[1], û, v̂, r̂, ŝ)
11: (F, V,G, S)← vector_mul_30(F, V,G, S, û, v̂, r̂, ŝ)
12: (f̃ [0], f̃ [1])← (F [0] + 230F [1], F [2] + 230F [3])
13: (g̃[0], g̃[1])← (G[0] + 230G[1], G[2] + 230G[3])
14: ▷ 60 divsteps:
15: (m̊, f̊ , g̊)← (m, f̄ , ḡ) ▷ Saved for verification purpose.
16: (û, v̂, r̂, ŝ)← (1, 0, 0, 1)
17: for i← 1 to 2 do
18: ( ¯̄f, ¯̄g) = (f̄ mod 220, ḡ mod 220)
19: (u, v, r, s)← (−1, 0, 0,−1)
20: fwx← ¯̄f + 241u+ 262v
21: gyz ← ¯̄g + 241r + 262s
22: (m, fwx, gyz)← loop20(m, fwx, gyz)
23: (u, v, r, s)← extract(fwx, gyz)
24: (û, v̂, r̂, ŝ, f̄ , ḡ)← updateuvrs(û, v̂, r̂, ŝ, u, v, r, s, f̄ , ḡ)
25: ( ¯̄f, ¯̄g) = (f̄ mod 220, ḡ mod 220)
26: (u, v, r, s)← (−1, 0, 0,−1)
27: fwx← ¯̄f + 241u+ 262v
28: gyz ← ¯̄g + 241r + 262s
29: (m, fwx, gyz)← loop20(m, fwx, gyz)
30: (u, v, r, s)← extract(fwx, gyz)
31: (û, v̂, r̂, ŝ)← lastloop(û, v̂, r̂, ŝ, u, v, r, s)
32: ▷ Termination:
33: (ǔ, v̌)← lastuv(f̃ [0], f̃ [1], g̃[0], g̃[1], û, v̂)
34: g−1

0 ← cneg(V, S, ǔ, v̌)
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Given input (m̊, f̊ , g̊), this part will compute the output

(m+
1

2
, fdontcare, gdontcare) := divstep60(m̊+

1

2
, f̊ , g̊)

and û v̂

r̂ ŝ

 := −260M60(m̊+
1

2
, f̊ , g̊)

To compute 60 divstep iterations, it computes 20 divstep iterations with 21-bit pre-

cision three times. For the first and second time where i = 1, 2, it first reduces the

precision of (f̄ , ḡ) to 20-bit ( ¯̄f, ¯̄g) (Line 18)1. Then, it computes (Line 19-23)

(m+
1

2
, fdontcare, gdontcare) := divstep20(m+

1

2
, ¯̄f, ¯̄g)

and u v

r s

 := −220M20(m+
1

2
, ¯̄f, ¯̄g).

Lastly, it updates (Line 24)

û v̂

r̂ ŝ

 :=

u v

r s


û v̂

r̂ ŝ

 = (−220)iM20i(m̊+
1

2
, f̊ , g̊)

andf̄
ḡ

 :=
1

220

u v

r s


f̄
ḡ

 ≡ (−1)i

truncate(f60(j−1)+20i, 60− 20i)

truncate(g60(j−1)+20i, 60− 20i)

 (mod 260−20i)

using the results from the previous 20 divstep iterations.

1By Theorem 1 in Appendix A.1, truncating to b-bits is equivalent to computing (mod 2b) because their
results are equivalent in Z2b .
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As for the third 20 divstep iterations, the computation (Line 25-31) is similar to the

computation of the first two except that it does not update the last (f̄ , ḡ). The output

of the third 20 divstep iterations will be

(m+
1

2
, fdontcare, gdontcare) := divstep60(m̊+

1

2
, f̊ , g̊)

and û v̂

r̂ ŝ

 := −260M60(m̊+
1

2
, f̊ , g̊)

3. Bigloop (Line 8-31):

Bigloop iterates 10 times with j = 1, 2, 3, ..., 10. Each Bigloop iteration computes

60 divstep iterations and maintains the global variables F, V,G, S in full precision.

At the beginning of a Bigloop iteration, it first computes (Line 10)

f̄
ḡ

 := (−1)j−1

truncate(f60(j−1), 60)

truncate(g60(j−1), 60)

 (mod 260)

using loop variables from the previous iteration. Then, it computes (Line 11)

F V

G S

 :=
1

260

û v̂

r̂ ŝ


F V

G S

 = (−1)j−1

f60(j−1)
1
260
v60(j−1)

g60(j−1)
1
260
s60(j−1)

 (mod 2255−19)

with full precision expressed as radix 230 numbers and update (f̃ [0], f̃ [1]), (g̃[0], g̃[1])

with the computed F,G (Line 12-13).

Notice that in the first Bigloop iteration where j = 1, Line 10-13 are redundant and

can be merged in the initialization, but we still keep them in the code for simplicity

of execution.
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Nextly, it prepares (Line 14-16) to compute 60 divstep iteration by initializing m̊, f̊ , g̊

where

m̊ = m60(j−1);

f̊
g̊

 = (−1)j−1

truncate(f60(j−1), 60)

truncate(g60(j−1), 60)


and û v̂

r̂ ŝ

 =

1 0

0 1

 = 20M0(m̊+
1

2
, f̊ , g̊).

With these variables, it starts to compute 60 divstep iterations on them.

4. Termination (Line 32-34):

After 10 Bigloop iterations, the program holds

f̃ [0] + 260f̃ [1] ≡ f540 (mod 2120), g̃[0] + 260g̃[1] ≡ g540 (mod 2120),

û v̂

r̂ ŝ

 = −260M60(δ540, f540, g540)

V and S where

U V

R S

 = − 1

260
M540(δ0, f0, g0) (mod 2255 − 19).

With these results, it first computes2 (Line 33) f600 ∈ {1,−1} and set (ǔ, v̌) as:

(ǔ, v̌) := (f600û, f600v̂).

Finally, g−1 ∈ Z2255−19 can be computed by (Line 34):

g−1
0 ≡ f600 ∗ v600 ≡

[
f600û f600v̂

]V
S

 = ǔV + v̌S (mod 2255 − 19)

2f600 = 1 or −1 by theorem.

61

http://dx.doi.org/10.6342/NTU202300852


doi:10.6342/NTU202300852

The result is expressed in binary representation in 4 64-bit limbs.

In Section 5.2, 5.3, 5.4, and 5.5, we will take a deeper look at the subroutines that

compose this program while explaining how to verify them.

5.2 Verify 20 divstep iterations

• (m20, fwx20, gyz20) := loop20(m, fwx, gyz)

Input:

m ∈ [−600, 600]; fwx = f + 241u+ 262v; gyz = g + 241r + 262s

where

m = δ − 1
2
; f, g ∈ [0, 220 − 1];

u v

r s

 =

−1 0

0 −1


Output:

m20; fwx20 = ϕ20 + 221w20 + 242x20; gyz20 = ψ20 + 221y20 + 242z20

where

(m20 +
1
2
, ϕ20, ψ20) = divstep20(m+ 1

2
, f, g);w20 x20

y20 z20

 = −220M20(m+ 1
2
, f, g) and w20, x20, y20, z20 ∈ [−220, 220 − 1].

Let’s take a look at the subroutine that computes 20 divstep iterations first. loop20

is the inner loop in Bigloop that loops three times and each computes 20 divstep itera-

tions (Line 22 and Line 29 in Algorithm 2). Different from the Original Bernstein-Yang

algorithm, the improved algorithm starts with δ0 = 1
2
, so the loop variable δ is always a

fraction. To compute this version, some different implementation choices are applied.
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loop20 computes divstepk(δ, f, g) at its k-th iteration. In this section, with input

(m, f, g) and δ = m+ 1
2
, we define

(d0,m0, ϕ0, ψ0, w0, x0, y0, z0) = (δ,m, f, g, u, v, r, s)

and

(dk, ϕk, ψk) = divstepk(δ, f, g);mk = dk −
1

2
;

wk xk

yk zk

 = −2kMk(δ, f, g)

where k = 1, 2, 3, ..., 20.

5.2.1 An alternative definition of divstep

In this implementation, to utilize the registers as integers, we use a signed 64-bit

register m to store the value δ − 1
2
which is an integer. Also, to make the best use of the

range of signed bit vectors, instead of calculating 2kMk, we calculate −2kMk in the k-th

iteration. This is because the range of the entries of 2kMk(δ, f, g) after the k-th divstep

iteration lies in [−2k + 1, 2k] which requires a signed (k + 2)-bit vector to store. If we

calculate−2kMk(δ, f, g) instead, the range will become [−2k, 2k−1]which can be stored

in signed (k + 1)-bit vectors.

With these implementation choices, we can equivalently define divstep with m =

δ − 1
2
as follow:
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divstepm : (m,ϕ, ψ) 7→



(
m+ 1, ϕ, ψ

2

)
if 2|ψ

(
m+ 1, ϕ, ψ+ϕ

2

)
ifm < 0 and 2 ∤ ψ

(
−m,ψ, ψ−ϕ

2

)
ifm ≥ 0 and 2 ∤ ψ

Notice that we can still apply the definitions in Section 2.2.1 and 2.2.2, but in this

implementation, we compute withm = δ − 1
2
and −2kMk instead.

5.2.2 Verify each divstep iteration

loop20 iterates 20 times. Each iteration calculates one divstep iteration using the

loop variables (mk, ϕk, ψk, wk, xk, yk, zk). At the start of the loop, it initializes (w0, x0, y0, z0) :=

(u, v, r, s) = (−1, 0, 0,−1). We can view (w0, x0, y0, z0) as the negative 2 × 2 identity

matrix in the initialization of loop20.

By definition, the k-th divstep iteration can be computed using the matrix represen-

tation, k = 1, 2, ..., 20:

(mk,

ϕk wk xk

ψk yk zk

) :=



mk−1 + 1,

2 0

0 1

×

ϕk−1

2
wk−1 xk−1

ψk−1

2
yk−1 zk−1


 if 2|ψk−1

mk−1 + 1,

2 0

1 1

×

ϕk−1

2
wk−1 xk−1

ψk−1

2
yk−1 zk−1


 ifmk−1 < 0 and 2 ∤ ψk−1

−mk−1,

 0 2

−1 1

×

ϕk−1

2
wk−1 xk−1

ψk−1

2
yk−1 zk−1


 ifmk−1 ≥ 0 and 2 ∤ ψk−1
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Notice that the computation of (ϕk, wk, xk) and (ψk, yk, zk) can be calculated in par-

allel. To be specific, Instead of assigning each variable to a 64-bit register and computing

using the above definition, for k = 0, 1, 2, ..., 20, we define

fwxk = (sext ϕk 44) + (sext wk 43) ∗ 240−k + (sext xk 62-k) ∗ 261−k

gyzk = (sext ψk 44) + (sext yk 43) ∗ 240−k + (sext zk 62-k) ∗ 261−k
(5.1)

With this definition, we can just use three 64-bit variables m, fwx, gus to storemk, fwxk, gyzk

where the content of fwxk, gyzk are depicted as follow:

fwx gyz
sign of ϕk ϕk

sign of wk wk
xk

k + 3 21 40− k

sign of ψk ψk
sign of yk yk

zk
k + 3 21 40− k

Let (fwx0, gyz0) = (fwx, gyz) be the input of the first iteration. With this definition,

we can calculate divstep parallelly where (fwxk, gyzk) is the output of the k-th iteration

as:

(mk, fwxk, gyzk) :=



(
mk−1 + 1, fwxk−1,

gyzk−1

2

)
if 2|gyzk−1(

mk−1 + 1, fwxk−1,
gyzk−1+fwxk−1

2

)
ifmk−1 < 0 and 2 ∤ gyzk−1(

−mk−1, gyzk−1,
gyzk−1−fwxk−1

2

)
ifmk−1 ≥ 0 and 2 ∤ gyzk−1

This is exactly what one loop20 iteration computes. To verify this computation,
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besides mk−1, fwxk−1, gyzk−1 as 64-bit vectors, we also explicitly specify ϕk−1, ψk−1 as

20-bit vectors, wk−1, yk−1 as signed 21-bit vectors, and xk−1, zk−1 as k-bit vectors in the

input parameters of each divstep. Then, we specify the range of

(mk−1, ϕk−1, ψk−1, wk−1, xk−1, yk−1, zk−1)

and the relation between fwxk−1, gyzk−1 and ϕk−1, ψk−1, wk−1, xk−1, yk−1, zk−1 as the

definition in Property 5.1.

Notice that the range of wk−1, xk−1, yk−1, zk−1 lies in [−2k−1, 2k−1 − 1] in the pre-

condition which will be verified in the previous iteration.

Secondly, we use some simple modeling techniques to model the computation in-

structions in CRYPTOLINE. Thirdly, after the program body, wemanually extract the signed

20-bit ϕk, ψk, signed 21-bit wk, yk, and signed (k + 1)-bit xk, zk with some additional

CRYPTOLINE instructions. Finally, in the postcondition, we state the properties of

(mk, ϕk, ψk, wk, xk, yk, zk)

in the three cases as a CNF, similar to the properties in Listing 4.2 in Section 4.3.2. In

addition, we also state the relation of fwxk, gyzk and their represented variables.

Notice that the range of wk, xk, yk, zk lies in [−2k, 2k− 1] which is verified by CRYP-

TOLINE in the postcondition, so the bit width for them in fwx and gyz are enough to keep

their values.

We verified the postcondition of each of the 20 iterations separately and make sure

that the postcondition of an iteration is exactly the precondition of the next iteration. After
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CRYPTOLINE checked all of the 20 iterations, we can conclude that the 20 iterations of

loop20 will compute

(m20, fwx20, gyz20, ϕ20, ψ20, w20, x20, y20, z20)

, and by definition, this will be the desired result after 20 divstep iterations where

(m20 +
1

2
, ϕ20, ψ20) = divstep20(m+

1

2
, f, g)

and [
w20 x20
y20 z20

]
= −220M20(m+

1

2
, f, g).

We verified the outputs fit their precision and they will not go out of their ranges. More-

over, we use SINGULAR to prove a lemma similar to the one in Section 4.3.2, but with the

variables (mk, ϕk, ψk, wk, xk, yk, zk). Hence, the loop20 implementation is verified.

5.3 Verify vectorized update

5.3.1 Pseudo code of the subroutine

Pseudo code To explain the computation in this subroutine, we provide the pseudo code

of the subroutine vec_mul_30 in Algorithm 3.

This Algorithm works as follows:

• (Line 1-3) For each input u, v, r, s, express it as a radix 230 number and keep each

of them in two 64-bit registers.
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• (Line 4-27) Compute four independent Montgomery multiplications. Take the com-

putation of V ′ in Lane 2 as an example, it first computes the Montgomery terms as

radix 230 numbers by (Line 4-8)

dV [0] + 230dV [1] = dV = ((−(2255 − 19)−1 mod 260) ∗ V ) mod 260.

Then, it computes (Line 9-27)

V ′ = uV + rS + dV (2
255 − 19)

• (Line 28-32) Again, we take the computation of V ′ in Lane 2 as an example, it

computes

V ′ :=
1

260
V ′

and reduce it to its desired range.
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Algorithm 3 Pseudo vec_mul_30
Input: u, v, r, s ∈ [−260, 260],F,G ∈ [−2255+1, 2255−1], V, S ∈ [−229+1, 2255+229−1].
Output: F ′, G′ ∈ [−2255 + 1, 2255 − 1], V ′, S ′ ∈ [−229 + 1, 2255 + 229 − 1].
1: ▷ Transform to radix 230:
2: (u[0], v[0], r[0], s[0])← (u mod 230, v mod 230, r mod 230, s mod 230)
3: (u[1], v[1], r[1], s[1])← (u >> 30, v >> 30, r >> 30, s >> 30)
4: ▷Montgomery term:
5: (dF , dG, dV , dS)← MontgomeryTerm(u[0], v[0], r[0], s[0], u[1], v[1], r[1], s[1], F, V,G, S)
6: ▷ Transform to radix 230:
7: (dF [0], dG[0], dV [0], dS[0])← (dF mod 230, dG mod 230, dV mod 230, dS mod 230)
8: (dF [1], dG[1], dV [1], dS[1])← (dF >> 30, dG >> 30, dV >> 30, dS >> 30)
9: ▷ radix 230 multi-limb multiplication with addition:
10: carryF , F ′[0]← F [0]u[0] +G[0]v[0]
11: carryV , V ′[0]← V [0]u[0] + S[0]v[0]
12: carryG, G′[0]← F [0]r[0] +G[0]s[0]
13: carryS, S ′[0]← V [0]r[0] + S[0]s[0]
14: for i← 1 to 8 do
15: carryF , F

′[i]← carryF + F [i]u[0] +G[i]v[0] + F [i− 1]u[1] +G[i− 1]v[1]
16: carryV , V

′[i]← carryV + V [i]u[0] + S[i]v[0] + V [i− 1]u[1] + S[i− 1]v[1]
17: carryG, G

′[i]← carryG + F [i]r[0] +G[i]s[0] + F [i− 1]r[1] +G[i− 1]s[1]
18: carryS, S

′[i]← carryS + V [i]r[0] + S[i]s[0] + V [i− 1]r[1] + S[i− 1]s[1]

19: F ′[10], F ′[9]← carryF + F8u[1] +G8v[1]
20: V ′[10], V ′[9]← carryV + V8u[1] + S8v[1]
21: G′[10], G′[9]← carryG + F8r[1] +G8s[1]
22: S ′[10], S ′[9]← carryS + V8r[1] + S8s[1]
23: ▷ radix 230 multi-limb multiplication-by-19 with addition:
24: F ′ ← F ′ + dF [0](2

255 − 19) + dF [1](2
255 − 19) ▷ F ′ ≡ 0 (mod 260) at this point.

25: V ′ ← V ′ + dV [0](2
255 − 19) + dV [1](2

255 − 19) ▷ V ′ ≡ 0 (mod 260) at this point.
26: G′ ← G′ + dG[0](2

255 − 19) + dG[1](2
255 − 19) ▷ G′ ≡ 0 (mod 260) at this point.

27: S ′ ← S ′ + dS[0](2
255 − 19) + dS[1](2

255 − 19) ▷ S ′ ≡ 0 (mod 260) at this point.
28: ▷ shift and reduce range:
29: F ′ ← F ′ >> 60 ∈ [−2255 + 1, 2255 − 1]
30: V ′ ← V ′ >> 60 ∈ [−229 + 1, 2255 + 229 − 1]
31: G′ ← G′ >> 60 ∈ [−2255 + 1, 2255 − 1]
32: S ′ ← S ′ >> 60 ∈ [−229 + 1, 2255 + 229 − 1]
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• (F ′, V ′, G′, S ′) := vec_mul_30(F, V,G, S, u, v, r, s)

Input:

u, v, r, s ∈ [−260, 260] in 64-bit registers; F,G ∈ [−2255 + 1, 2255 − 1]; and V, S ∈

[−229 + 1, 2255 + 229 − 1]. Each of F, V,G, S are kept in 9 in 64-bit locations

where

|u|+ |v| ≤ 260; |r|+ |s| ≤ 260;

F =
∑8

i=0 2
30iF [i]; F [i] ∈ [0, 230−1] for i = 0, 1, ..., 7; F [8] ∈ [−216+1, 215−1];

V =
∑8

i=0 2
30iV [i]; V [0] ∈ [−229 + 1, 230 + 229 − 1]; V [i] ∈ [0, 230 − 1] for

i = 1, 2, ..., 7; V [8] ∈ [0, 215 − 1];

G =
∑8

i=0 2
30iG[i];G[i] ∈ [0, 230−1] for i = 0, 1, ..., 7;G[8] ∈ [−216+1, 215−1];

S =
∑8

i=0 2
30iS[i]; S[0] ∈ [−229 + 1, 230 + 229 − 1]; S[i] ∈ [0, 230 − 1] for

i = 1, 2, ..., 7; S[8] ∈ [0, 215 − 1];

and uF + vG ≡ 0 (mod 260); rF + sG ≡ 0 (mod 260).

Output:[
F ′ V ′

G′ S ′

]
= 1

260

[
u v
r s

] [
F V
G S

]
(mod 2255 − 19)

Each of F ′, V ′, G′, S ′ are kept in 9 64-bit locations

where

F ′ =
∑8

i=0 2
30iF ′[i]; F ′[i] ∈ [0, 230− 1] for i = 0, 1, ..., 7; F ′[8] ∈ [−216+1, 215−

1];

V ′ =
∑8

i=0 2
30iV ′[i]; V ′[0] ∈ [−229 + 1, 230 + 229 − 1]; V ′[i] ∈ [0, 230 − 1] for

i = 1, 2, ..., 7; V ′[8] ∈ [0, 215 − 1];
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G′ =
∑8

i=0 2
30iG′[i];G′[i] ∈ [0, 230− 1] for i = 0, 1, ..., 7;G′[8] ∈ [−216+1, 215−

1];

S ′ =
∑8

i=0 2
30iS ′[i]; S ′[0] ∈ [−229 + 1, 230 + 229 − 1]; S ′[i] ∈ [0, 230 − 1] for

i = 1, 2, ..., 7; S ′[8] ∈ [0, 215 − 1].

Let’s take a look at a more complicated subroutine to verify, vec_mul_30. At the start

of the 2nd to 10th Bigloop iteration (from j = 2 to j = 10),
[
û v̂
r̂ ŝ

]
= −260M60(δ60(j−2), f60(j−2), g60(j−2))

are computed with 64-bit precision (except for j = 1 this subroutine is idle). The algo-

rithm needs to compute full precision (−1)j−1f60(j−1), (−1)j−1g60(j−1) and the right half

of the full precision (−1)j−1 1
260
M60(j−1)(

1
2
, 2255− 19, g0) and then keep them in the stack

(Line 11 in Algorithm 2).

vec_mul_30 is the subroutine for this computation. The full precision numbers

F, V,G, S are represented as radix 230 numbers and should be in Z2255−19. However, the

implementation does not reduce F, V,G, S to Z2255−19 on the fly but will guarantee that

every time they are put back into the stack they will stay in a fixed range. Notice that the

range is the same for the inputs and outputs and will be verified by CRYPTOLINE.

5.3.2 Computing in parallel

Notice that the computation of F ′, V ′, G′, S ′ can be computed in parallel using the

SIMD instructions. The implementation uses ymm registers to compute. A 256-bit ymm

register in x86 can be viewed as 4 64-bit lanes. Various AVX2 arithmetic instructions are

supported to manipulate ymm registers and 256-bit memory locations.

It is not very difficult to model this implementation in CRYPTOLINE. A ymm register

can be modeled by 4 64-bit CRYPTOLINE variables and a vector instruction can be modeled
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by 4 CRYPTOLINE instructions. During verification, we will use CRYPTOLINE to check the

computation in all 4 lanes independently.

5.3.3 Computing with Montgomery multiplication

Notice that the computation of the subroutine can be viewed as a modular matrix

product: [
F ′ V ′

G′ S ′

]
:=

1

260

[
u v
r s

] [
F V
G S

]
(mod 2255 − 19)

To compute multiplication in modular arithmetic, this implementation uses a tech-

nique called Montgomery multiplication [5]. It achieves fast computation by leveraging

arithmetic shifts to reduce the number of multiplication instructions. To be specific, the

implementation wants to compute dF , dV , dG, dS ∈ [0, 260 − 1] such that

(uF + vG+ dF (2
255 − 19)) ≡ 0 (mod 260)

(uV + vS + dV (2
255 − 19)) ≡ 0 (mod 260)

(rF + sG+ dG(2
255 − 19)) ≡ 0 (mod 260)

(rV + sS + dS(2
255 − 19)) ≡ 0 (mod 260)

Since F, V,G, S are represented as radix 230 numbers with 9 coefficients, we nat-

urally choose the base as 230 to compute multi-limb Montgomery multiplication. First,

u, v, r, swill be also transformed to radix 230 numbers with 2 coefficients (Line 1-3). Sec-

ond, we compute dF , dV , dG, dS ∈ [0, 260 − 1] by Montgomery multiplication and also

express them as radix 230 numbers with 2 coefficients (Line 4-8). We easily verified that
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dF , dV , dG, dS satisfy their property with SINGULAR and BOOLECTOR.

Then, with dF , dV , dG, dS , the implementation computes (Line 9-27)

F := (uF + vG+ dF (2
255 − 19)) >> 60 (mod 2255 − 19)

V := (uV + vS + dV (2
255 − 19)) >> 60 (mod 2255 − 19)

G := (rF + sG+ dG(2
255 − 19)) >> 60 (mod 2255 − 19)

S := (rV + sS + dS(2
255 − 19)) >> 60 (mod 2255 − 19)

using radix 230 multi-limb multiplication with addition.

To verify this computation, the verification engineer has to keep track of the sign of

each coefficient of the radix 230 numbers. Notice that as specified in the properties of the

input and output, the sign of each coefficient of F, V,G, S is different where some are

signed (for those that may be negative) and others are unsigned (for those in [0, 230 − 1]).

cast and vpc are used to maintain well-formedness while keeping track of the values

they represent. The type system in CRYPTOLINE captures the information of the sign of

each coefficient and the safety check is passed to ensure that there shall be no overflow

during the radix 230 multi-limb multiplication with additions.

Notice that by the definition of divstep, it is guaranteed that uF +vG ≡ 0 (mod 260)

and rF + sG ≡ 0 (mod 260). Therefore, dF = 0 and dG = 0 in this computation.
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5.3.4 Verify signed shift right computed with unsigned shift right

Most of the computation of the radix 230 multi-limb multiplication with additions

can be verified with some simple CRYPTOLINE tricks. Here, we will present a special

computation technique that is used and explain how to verify it.

During the computation, we need to compute signed-division-by-230, namely, 30-

bit-signed-shift-right on a signed 64-bit register in each lane. However, the platform only

supports unsigned-shift-right for the vector instructions. To utilize vector instructions, we

use unsigned-shift-right to simulate signed-shift-right. Specifically, for a signed 64-bit

register rax, we compute

rbx := ((rax+ 263) >>u 30)− 263−30

in 64-bit precision. Surprisingly, the result rbx will be equivalent to rax >>s 30 in

63-bit precision. Luckily, 63-bit precision is enough for this subroutine, so we can still

compute with vector instructions.

To verify this computation, before we add/subtract the constants 263/233, we cast

rax to unsigned since adding/subtracting the constants might overflow. Also, we use

BOOLECTOR to explicitly prove the properties after every shift and assume it in SINGULAR

since shift which is a non-linear instruction. Lastly, we have to cast the result rbx back to

signed for the computation later.

Listing 5.1 shows a simplified example. Notice that the properties of rbx that BOOLEC-

TOR proved have only 93− 30 = 63-bit precision. The verification engineer has to make
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sure that only the lower 63 bits of rbx will be used in the rest of the program to assume

this property in SINGULAR.

(* rax is sint64 *)

cast rbx@uint64 rax;

adds carry rbx rbx (2**(63))@uint64;

usplit rbx low rbx 30;

subb borrow rbx rbx (2**(63-30))@uint64;

cast rbx@sint64 rbx;

assert true &&

(uext low 29) + (sext rbx 29) * (2**(30))@93 = (sext rax

29);

assume low + rbx * (2**(30)) = rax && true;

(* rbx is the signed -shift -right -30 result of rax

and only the lower 63 bits of rbx will be used *)

Listing 5.1: An example of simulating signed shift right using unsigned shift right.

5.3.5 Use a proof from Coq

Similar to the simple implementation in Chapter 4, there are some implications in the

range property that BOOLECTOR cannot prove, so we turn to Coq again. In this case, we

will use two kinds of implications from Coq. The first one is similar to the example in

Section 4.3.3, the only difference is that we only compute 60 divstep iterations instead of

62, so the range of the inputs and outputs is slightly different. With the proof from Coq,
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we can safely assume

−2315 < uF + vG < 2315;−2315 < rF + sG < 2315

in CRYPTOLINE for BOOLECTOR.

The second implication is more complicated, let’s take the computation of V ′ as

an example (we can apply the same method for the computation of S ′), remember that

BOOLECTOR holds the following range property

|u|+ |v| ≤ 260;−229 < V, S < 2255 + 229; 0 ≤ dV < 260 (5.2)

while the property we want is

−2316 < uV + vS + dV ∗ (2255 − 19) < 2316 (5.3)

Again, we use Coq to check that Property 5.2 is indeed the premise of Property 5.3

formally. With the proof from Coq, we can assume Property 5.3 in BOOLECTOR can con-

tinue the verification.

5.3.6 Reduce the output range

Finally, the subroutine reduces the range of the output (Line 28-32). Notice that

the 60-bit shift will be exact because of Montgomery multiplication, so this shift can be

merged in the radix 230 multi-limb multiplication with additions by simply manipulating

the index of each coefficient.
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With all these verification tricks, we can finally check all the properties in the post-

condition which include the algebraic property

[
F ′ V ′

G′ S ′

]
:=

1

260

[
u v
r s

] [
F V
G S

]
(mod 2255 − 19)

and the range property

F ′ =
8∑
i=0

230iF ′[i];F ′[i] ∈ [0, 230 − 1]fori = 0, 1, ..., 7;F ′[8] ∈ [−216 + 1, 215 − 1];

V ′ =
8∑
i=0

230iV ′[i];V ′[0] ∈ [−229+1, 230+229−1];V ′[i] ∈ [0, 230−1] for i = 1, 2, ..., 7;V ′[8] ∈ [0, 215−1];

G′ =
8∑
i=0

230iG′[i];G′[i] ∈ [0, 230 − 1]fori = 0, 1, ..., 7;G′[8] ∈ [−216 + 1, 215 − 1];

S ′ =
8∑
i=0

230iS ′[i];S ′[0] ∈ [−229+1, 230+229−1];S ′[i] ∈ [0, 230−1] for i = 1, 2, ..., 7;S ′[8] ∈ [0, 215−1].

That being said, we verified the algebraic relation between the inputs and outputs

and verified that the outputs will be in their range as specified. Hence, the subroutine

vec_mul_30 is verified.
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5.4 Verify radix 230 numbermultiplicationwith reduction

• g−1
0 := cneg(V, S, ǔ, v̌)

Input:

ǔ, v̌ ∈ [−260, 260] in 64-bit registers and V, S ∈ [−229 + 1, 2255 + 229 − 1]. Each of

V, S are kept in 9 64-bit locations

where

ǔ = f600û, v̌ = f600v̂ and
[
û v̂
r̂ ŝ

]
= −260M60(δ540, f540, g540);

V =
∑8

i=0 2
30iV [i]; V [0] ∈ [−229 + 1, 230 + 229 − 1]; V [i] ∈ [0, 230 − 1] for

i = 1, 2, ..., 7; V [8] ∈ [0, 215 − 1];

S =
∑8

i=0 2
30iS[i]; S[0] ∈ [−229 + 1, 230 + 229 − 1]; S[i] ∈ [0, 230 − 1] for

i = 1, 2, ..., 7; S[8] ∈ [0, 215 − 1];

and
[
U V
R S

]
≡ − 1

260
M540(

1
2
, 2255 − 19, g0) (mod 2255 − 19).

Output:

g−1
0 ∈ [0, 2255 − 19− 1] represented as 4 64-bit unsigned limbs

where

g−1
0 ≡ f600v600 ≡

[
f600û f600v̂

] [V
S

]
≡ ǔV + v̌S (mod 2255 − 19).

Let’s take a look at another important subroutine in this implementation. cneg is

the subroutine that is used in the last part of the computation of the algorithm (Line 33

in Algorithm 2). As we mentioned in Chapter 2.3, the modular inverse can be computed

by g−1
0 ≡ f600v600 (mod f0) where

[
u600 v600
r600 s600

]
=M600(δ0, f0, g0). This is what exactly

subroutine computes. Because we want the output of the implementation to be represented
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as 4 64-bit limbs in Z2255−19, this subroutine has to convert its result to 4 64-bit limbs in

Z2255−19.

This subroutine contains two parts. In the first part, it computes the multiplication

of radix 230 numbers (V, S) and 64-bit registers (ǔ, v̌) with addition and represents the

result as 5 64-bit signed limbs as a radix 264 number. To compute this, it sequentially

computes the multiplication of (ǔ, v̌) and (V [i], S[i]) and adds the results to the 5 64-bit

limbs destination. Because the radixes of the sources and destination are different, the

results are shifted before adding to the destination. This computation of the shift can be

verified by BOOLECTOR, and consequently SINGULAR can show that the 5 64-bit signed

limbs destination will be equal to ǔV + v̌S.

The second parts reduce the 5 64-bit signed limbs to [0, 2255− 19− 1] which is com-

puted by several multiplication-by-19 and additions. Notice that this involves computing

sign extension. To verify the second part, we use BOOLECTOR to prove that the value stays

the same after the sign extension and assume this in SINGULAR.

Finally, in the postcondition, we verified the algebraic property

g−1
0 ≡ ǔV + v̌S (mod 2255 − 19)

with SINGULAR and the range property

g−1
0 ∈ [0, 2255 − 19− 1]

with BOOLECTOR. Hence, the last subroutine cneg is also verified.
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5.5 Verify simple subroutines

The program is made up of multiple subroutines. Finally, let’s look at the simple

ones. We will introduce them as the order of execution.

1. mod25519: Given g0 ∈ [0, 2256 − 1] in 4 64-bit limbs, compute x ∈ Z2255−19 in 4

64-bit limbs such that x ≡ g0 (mod 2255 − 19).

2. split9: Convert x ∈ Z2255−19 in 4 64-bit limbs into a radix-230 number G. G is

represented as
∑8

i=0 2
30iG[i] and is stored in 9 64-bit locations in the stack. Mean-

while, load some constants into the stack.

3. transition_portion: Given 64-bit precision (û, v̂, r̂, ŝ) from the previous 60 di-

vstep iterations, the 60-bit (f̃ [0], f̃ [1], g̃[0], g̃[1]) in [0, 260−1], compute 60-bit (f̄ , ḡ)

for the current Bigloop iteration. The 60-bit output is computed by

f̄ := (û(f̃ [0] + 260f̃ [1]) + v̂(g̃[0] + 260g̃[1])) >> 60

ḡ := (r̂(f̃ [0] + 260f̃ [1]) + ŝ(g̃[0] + 260g̃[1])) >> 60

Notice that the output satisfies

[
f̄
ḡ

]
:= (−1)j−1

[
truncate(f60(j−1), 60)
truncate(g60(j−1), 60)

]
(mod 260)

in the j-th Bigloop iteration.

4. extract and updateuvrs: After every first and second loop20 (i = 1, 2), extract
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(u, v, r, s) from 64-bit fwx and gyz. Then, update (û, v̂, r̂, ŝ) by

[
û v̂
r̂ ŝ

]
:=

[
u v
r s

] [
û v̂
r̂ ŝ

]
.

Meanwhile, update the 64-bit loop variables (f̄ , ḡ) for the next loop20 using the

old (60− 20(i− 1))-bit precision (f̄ , ḡ) by

[
f̄
ḡ

]
:=

1

220

[
u v
r s

] [
f̄
ḡ

]
.

Notice that the output satisfies

[
û v̂
r̂ ŝ

]
= (−220)iM20i(δ60(j−1), f60(j−1), g60(j−1))

and

[
f̄
ḡ

]
≡ (−1)i

[
truncate(f60(j−1)+20i, 60− 20i)
truncate(g60(j−1)+20i, 60− 20i)

]
(mod 260−20i)

in the j-th Bigloop iteration.

5. extract and lastloop: After every third loop20, extract (u, v, r, s) from 64-bit

fwx and gyz. Then, update (û, v̂, r̂, ŝ) by

[
û v̂
r̂ ŝ

]
:=

[
u v
r s

] [
û v̂
r̂ ŝ

]
.

Notice that the output satisfies

[
û v̂
r̂ ŝ

]
= −260M60(δ60(j−1), f60(j−1), g60(j−1))

in the j-th Bigloop iteration.
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6. lastuv: After the 10 bigloop iterations, the program completes computing the

600 divstep iterations. Therefore, the inputs of lastuv satisfy

[
û v̂
r̂ ŝ

]
= −260M60(δ540, f540, g540)

and

f̃ [0] + 260f̃ [1] = (f540 mod 2120); g̃[0] + 260g̃[1] = (g540 mod 2120).

By theorem, it is guaranteed that f600 = 1 or − 1. This subroutine computes f600

with (f̃ [0], g̃[0], f̃ [1], g̃[1], û, v̂) by

f600 := (û(f̃ [0] + 260f̃ [1]) + v̂(g̃[0] + 260g̃[1])) >> 60.

Then, compute the output ǔ, v̌ by

(ǔ, v̌) := (f600û, f600v̂)

These are the subroutines that the computation is rather straightforward. Without

using many CRYPTOLINE verification tricks, we verified these subroutines by specifying

their precondition and postcondition as they are designed. Please see the verification code

for more details.

5.6 Interleaving instructions

After verifying all the subroutines, there is still one more problem to deal with.

Notice that this implementation spendsmost of the execution time in the Bigloog that
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loops 10 times. The loop body contains SISD instructions and SIMD instructions. Notice

that the vectorized update, vel_mul_30, uses only SIMD instructions while the rest of

the loop uses only SISD instructions, and the computation of vel_mul_30 is independent

of the rest of the loop. That being said, the set of registers and memory addresses that

they affect are disjoint. Therefore, we can interleave the SISD and SIMD instructions for

execution efficiency while maintaining equivalence.

A randomized algorithm is used to find an efficient permutation of the instructions

while maintaining the execution sequence for the two independent parts. The speed record

is achieved using this fast permutation. To verify this implementation, we model all the

independent subroutines separately and verify them with CRYPTOLINE. Then, we just need

to show that the permuted loop body is equivalent to the subroutines in order by inspecting

the SSA form.

5.7 Results

We have verified all of the computations of the subroutines separately. Again, to

show that the implementation will correctly compute modular inversion, we need to apply

the theorem from the improved Bernstein-Yang Algorithm3 as mentioned in Section 2.3.

To verify the theorems3 formally, which is also highly non-trivial, we leave it as future

work as well.

3Such as f600 = 1 or − 1 and the proof that implies 600 divstep iterations are enough.
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Chapter 6 Concluding Remarks

6.1 Time Consumption

Weuse CRYPTOLINE to verify the implementation in Chapter 4 and 5. All experiments

are executed on an Ubuntu 20.04.2 LTS with 2.30GHz Intel Xeon and 755GB RAM with

multi-thread enabled. Table B.1 and B.2 show the verification time. The simple subrou-

tines can be verified in seconds while the complicated ones may take up to a couple of

hours. This implies the verification engineer may wait for hours to get the verification

result during debugging. Nonetheless, the time is still tolerable for verification.

Moreover, letting CRYPTOLINE check the specified properties is not the most time-

consuming task. To verify an assembly implementation, the verification engineer needs to

first understand the algorithm and figure out the proper precondition/postcondition. Then,

they should model the implementation delicately and apply the proper verification tricks.

Despite the extensive workload, the writer managed to verify both implementations with

the help of his instructor Bow-Yaw Wang, the programmer/inventor of the algorithm Bo-

Yin Yang, and his research fellow Zih-Ming Li. It is hard to estimate the human time spent

to verify the two implementations since it involves many people and the writer finished

this work while studying for his Master’s degree. What we can say is that it took around a

year to verify the simple implementation in Chapter 4. After finishing verifying that, we
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continued to verify the fast vectorized implementation in Chapter 5 in less than a month

with the techniques learned from the previous experience.

6.2 The Verified Results

The strength of CRYPTOLINE is verifyingwhether the assembly implementationmatches

the specification. In the two case studies in Chapter 4 and 5, we successfully verified that

the assembly implementations behave the way they are designed on all inputs. Notice that

the most common bugs on assembly code are unexpected overflowing because it is hard

to detect this kind of bug by test cases. Our result ensures that this will not happen in this

implementation. As for the correctness of the implementation as a whole, we still need

the proof for the correctness of the algorithm which is mentioned in Section 4.4 and 5.7.

To verify the proofs formally, we leave it as future work.

Combining the proof in [2] for the correctness and the verification of the implemen-

tation in Chapter 5, we can assure the correctness of the fast vectorized implementation.

This makes our implementation the fastest verified implementation of modular inversion

with f0 = 2255 − 19 on Intel Skylake. With the verification techniques in this work, we

believe it won’t be hard to verify another implementation of Bernstein-Yang algorithm

with different f0 on different platforms.
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Appendix A — Proof

A.1 Proof about arithmetic precision

To explain why signed 64 bits registers is enough to compute divstep62, we show the

following theorem1:

Theorem 1. Tn(δ, f, g) = Tn(δ, f ′, g′) if f − f ′ ≡ g − g′ ≡ 0 (mod 2n). Otherwise put,

the 2-adic Bezout Coefficients depends on bottom bits.

Proof. We will use mathematical induction. It is clear that the condition holds for n = 1.

We take as a hypothesis that

Tn(δ, f, g) = Tn(δ, f mod 2n, g mod 2n) for n ≤ k − 1

We note that since δ1 also depends only on g&1, we have

Tk(δ, f, g) = Tk−1(δ1, f1, g1)

Tk(δ, f ′, g′) = Tk−1(δ1, f
′
1, g

′
1)

1This proof is provided by Bo-Yin Yang.
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We further notice that since g&1 = g′&1

f1 − f ′
1 =


f − f ′ if δ ≤ 0 or 2|g

g − g′ if δ > 0 and 2 ∤ g

≡ 0 (mod 2k), hence also (mod 2k−1);

and

2(g1 − g′1) =


(g − g′) + (g mod 2)(f − f ′) if δ ≤ 0 or 2|g

(g − g′)− (f − f ′) if δ > 0 and 2 ∤ g

≡ 0 (mod 2k).

or g1 − g′1 ≡ 0 (mod 2k−1). Thus by the induction hypothesis, the desired result

holds.
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Appendix B — Table

B.1 Verification Time of the Simple Implementation

Table B.1 shows the time consumption by CRYPTOLINE to verify each subroutine in

the simple x86 implementation rounded up in seconds. Multi-thread are enabled for speed.

Safety check can be disabled when the algebraic properties are unused.

Table B.1: Verification time of the simple implementation.

Subroutine Name Safety(s) Algebraic(s) Range(s) Total(s)

fpadd25519 1 1 2 2

fpcneg25519 1 N/A 1 1

muls64xs64 5931 N/A 1 5932

fpmul25519 1 1 37 38

mul2x2s128_25519 285 2 341 627

1 divstep N/A N/A 2 2

Lemma 1 N/A 29109 N/A 29109

jump64divsteps2_s255 3508 9 2068 5585
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B.2 Verification time of the Fast Vectorized Implementa-

tion

Table B.2 shows the time consumption by CRYPTOLINE to verify each subroutine in

the x86 fast vectorized implementation rounded up in seconds. Multi-thread are enabled

for speed. Safety check can be disabled when the algebraic properties are unused.

Table B.2: Verification time of the fast vectorized implementation.

Subroutine Name Safety(s) Algebraic(s) Range(s) Total(s)

mod25519 N/A N/A 4 4

split9 1 N/A 2 2

transition_portion 1 1 1 1

extract 1 1 1 1

updateuvrs 1 1 10776 10776

lastloop 1 1 6253 6255

lastuv 1 1 1 1

Each 1 divstep N/A N/A 26 26

A variation of Lemma 1 N/A 1 N/A 1

vec_mul_30 1051 567 725 2343

cneg 30209 1 43 30252
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