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Abstract 

  Investigation of system variation is always critical to process/equipment optimization and yield 

enhancement in semiconductor manufacturing. Conventional variation estimate, usually the 

sample variance, cannot truthfully reveal the random variation if data exhibits a patterned profile 

or is of non-stationary distribution. The biased random variation estimate could then impact the 

subsequent analysis greatly. In this research, the concept of moving variance, which calculates 

the variance of a small number of consecutive/adjacent observations within a temporal/spatial 

moving window, is proposed to eliminate the impact of the pattern-induced (systematic) 

variation. By applying the moving variance technique to temporal profiles, such as the process 

states or tool signals, the tool condition can be evaluated by the proposed tool condition indicator. 

When dealing with spatial topography, such as the wafer metrology data, systematic variations 

can be identified and characterized by the proposed spatial variation spectrum (SVS) comprised 

of the spatial moving variances. Diagnosis methodologies are developed to facilitate uncovering 

abnormal tool conditions or systematic patterns. Properties and theories are studied as well to 

justify how the moving variance outperforms the conventional sample variance. With the tool 

condition indicator, possible tool faults can be identified and proper maintenance measures can 

be scheduled accordingly. With the SVS and its summarized indices, systematic variations can be 

characterized and the causal analysis for finding root causes can be further explored. The 

proposed methodologies are further validated through the real cases provided by local 

semiconductor companies. 

Keywords: fault detection and classification (FDC), moving variance, tool condition indicator, 

spatial variation, systematic variation, random variation, wafer CD metrology.  
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中文摘要 

        在半導體製造過程中，為了最佳化製程產能與設備利用率，以致能提升良率，系統變

異的分析研究是一個相當基本且重要的課題，傳統上，工程師以統計學中的樣本變異數來

估計資料的隨機變異，但該統計量在資料呈現特殊走勢或來自非平穩的分配時，往往會遭

到曲解失真，以致於影響接下來進行的製程分析與最佳化。本研究提出了計算平移變異數

的概念以消彌由於資料呈特殊走勢、或來自非平穩分配所造成的影響，平移變異數主要觀

念在於只計算時間軸上小區間中連續(或空間中小區域內相鄰)觀測值的樣本變異數，再藉

由移動該區間(或區域)來覆蓋所有觀測值，以匯整各區間(或區域)中的變異資訊。在處理

時間軸變化為主的資料，例如機台在製造過程中可即時收集的參數與訊號，本研究以平移

變異數為基礎發展了一機台狀態指標，以評估當前機台狀況、找出可能的機台錯誤，使後

續的機台維護保養排程能夠更適當、更有彈性；而為了處理空間座標對應的觀測值，例如

晶圓臨界尺度取樣量測值等，我們則利用平移變異數發展了一空間變異頻譜來描繪晶圓量

測值內含的系統變異，並在空間變異頻譜之上建立了數個指標來量化整體資料的系統變異

量，使後續因果分析的進行能更有效率。同時，我們亦探討了平移變異數相關的性質與理

論，並試著與傳統的樣本變異數比較，證明在資料呈特殊走勢或來自不同分配時，使用平

移變異數能有較精準的估計。本研究在最後並利用了國內數家半導體製造業者提供的真實

數據來驗證所提出的各項理論。 

關鍵字：錯誤偵測與分類，平移變異數，機台狀態指標，空間變異，系統變異，隨機變

異，晶圓臨界尺度量測值。 
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Chapter 1 - Introduction 

1.1 Background and Motivations 

  With improvement of sensor and information technology, modern semiconductor 

manufacturing facilities now generate enormous amount of tool parameters, such as voltage, 

temperature, and wafer metrology data, such as critical dimension (CD), which all must be 

analyzed quickly and effectively for the process/equipment optimization and circuit design. To 

characterize the tool condition or process stability, the investigation of data variation within tool 

parameters or wafer metrology data is the key point, in particular, when the fabrication 

technology continues to advance.  

  In practice, sample variance of a dataset is usually used as the estimation of data variation. 

However, if the mean level of the data changes frequently or the data distribution is non-

stationary, the sample variance easily gets biased. Unfortunately, shifted mean level and 

heterogeneous data distribution are commonly encountered during the analyses of semiconductor 

manufacturing data, such as the chamber temperature trends up to a steady state and then trends 

down according to the tool recipe. Before analyzing the variation of collected data, engineers 

usually need to pre-process it to get a homogeneous dataset or select the stable part of data for 

simplicity, both of which would possibly distort the real variation.  

  As the study of variation serves to be the important basis of every analysis activity for finding 

the root causes of yield loss, to truthfully reveal the data variation becomes an extremely critical 

issue for process control and circuit design and has motivated this research.  
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1.2 Problem Description and Research Objective 

  Nowadays, even with the highly automated and precisely monitored equipments used in a 

nearly dust-free clean room and operated with well-trained engineers, the occurrence of process 

abnormality and metrology non-uniformity still can’t be avoided. With the large amount of 

manufacturing data collected, characterization of tool condition and wafer metrology uniformity 

should be carried out faithfully and efficiently. Among all of the statistical properties, sample 

variance of data is usually the first and the most frequently studied statistic to perform the system 

analyses. 

  The calculation of sample variance, denoted as S2, is well-known and written in the following 

equation: 

1

)(
1

2

2

−

−
=


=

n

MM
S

n

i
ii

,          (1) 

where Mi is the ith random sample in the collected dataset, n denotes the number of random 

samples, and iM is the average of the n random samples. If the mean or variance within the data 

does not change at all, i.e. the data distribution is stationary, the sample variance is good enough 

to estimate the data variation statistically. However, semiconductor manufacturing data such as 

tool parameters and wafer metrology data always exhibit non-stationary profiles. To avoid 

getting a biased variation estimate, techniques for preprocessing the temporal signal data and 

spatial metrology data have been developed separately by engineers. Nevertheless, it would be 

time-consuming to identify the non-stationary properties in order to have proper methodologies 

developed and applied to the data, and not to mention the process data and wafer metrology are 

collected under distinct fundamentals. 



 

3 

 

  In practice, the tool parameters are collected along the time dimension as the wafer is processed 

and can be demonstrated as a temporal profile while the metrology data is measured from the 

sampling sites on the wafer surface and is displayed as a spatial topography. To estimate the 

variation of a non-stationary temporal profile, engineers usually set temporal windows within a 

process run and calculate summarized indicators, such maximum, minimum, average, and 

variance of the observations within every temporal window. The tool condition is then monitored 

based on these summarize indicators. To characterize the variation of a non-stationary spatial 

topography such as wafer metrology, spatial patterns on the wafer topography are usually 

contrasted with a set of known systematic patterns based on engineering knowledge. The causal 

analysis for finding the causes to abnormalities can be done based on the identified pattern. 

  However, handling both temporal and spatial data requires a lot of manual efforts and domain 

knowledge and still might not be able to reveal the data variation truthfully. Therefore, the 

objective of this research is to develop a novel estimation to the non-stationary data collected no 

matter from processing tools or wafer metrologies. In particular, practitioners do not need to trim 

or transform the data in order to get a stationary distribution for further statistical analyses. The 

basic idea of this research is to propose a moving variance, which is calculated using a small 

number of consecutive (or adjacent) observations in a temporal (or spatial) moving window, such 

that the effect of pattern-induced variation can be removed.  

  With development and application of moving variance to the temporal process data, the tool 

condition can be evaluated based on the better estimate of tool variability. A tool condition 

indicator is then proposed to monitor the tool condition and identify tool faults. On the other 

hand, the systematic patterns on the wafer topography can be characterized by applying the 

moving variance technique to the spatial metrology data. Methodology for the identification of 
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significant patterns on wafer topography would be developed as well. In summary, a truthful 

estimation to data variation and its properties will be studied, and the application methodologies 

will be developed according in this research. 

1.3 Research Framework  

  In the following chapters, literatures in relation to conventional characterization of the variation 

of temporal and spatial data are firstly reviewed. Then the moving variance is developed and the 

methodologies for applying moving variance to temporal and spatial data are described in 

chapter 3 and 4, respectively. Case studies are demonstrated in chapter 5 and the preliminary 

results and future work will be discussed in chapter 6. The organization of this research is 

described in Fig. 1. 

Study the related works about variation estimates of 
temporal and spatial data, in particular, the 
applications to semiconductor industry.

Develop the methodologies for applying the moving 
variance to temporal tool parameters and spatial wafer 
metrology.

Future Research

Case Study

Methodology Development

Literature Review

Discuss the pending problems in the current progress 
and the future research plan.

Applying the developed methodologies to real 
fabrication tool data and wafer metrology.

 

Fig. 1.  The framework of this research. 
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Chapter 2 - Literature Review and Preliminary Thoughts 

  In this chapter, the related works of analyzing temporal tool parameters for the evaluation of 

tool condition are firstly reviewed. Then, the literatures which discuss spatial variation for the 

pattern characterization within wafer topography are studied. 

2.1 Analysis of Temporal Tool Parameters 

  Advanced sensor and information technologies have made real-time tool data readily accessible 

to tool and process engineers. A significant number of tool parameters (Status Variable 

Identifications, SVID’s) is collected during wafer processing and a large amount of tool data is 

acquired and available for fault detection and classification (FDC). Many IC makers have 

substantially improved the process capabilities by implementing FDC. With the real-time tool 

data, one can also evaluate the overall tool condition so that tool maintenance can be more 

effectively scheduled and the post-maintenance tool condition can be more easily qualified. 

  Conventional FDC techniques usually require data preprocessing procedures including setting 

temporal windows to signify steps within a process run and calculating summarized indicators, 

such as maximum, minimum, average and standard deviation of each SVID’s observations in 

every temporal window. Model-based statistical process control (SPC) schemes are then used to 

model the temporal patterns and to monitor and detect shifts or drifts in the tool signals (Yue and 

Tomoyasu, 2004, Lacaille and Zagrebnov, 2007, and He and Wang, 2007). However, the FDC 

indicators based on pattern modeling for specific recipes are not suitable to represent the overall 

tool condition, which should be independent of recipe changes or even assignable causes of local 

faults. The purpose of this research is not to detect specific tool faults, as the FDC technique 



 

6 

 

does, but rather to propose a recipe-independent tool condition indicator and diagnosis 

methodologies.  

  To characterize the tool condition, various types of tool data should be accounted for. With the 

modern sensors built in the advanced processing tool, there are usually tens or even hundreds of 

tool parameters (SVID’s) collected. If the large amount of real-time tool data can be properly 

prepared and examined, one should be able to evaluate the overall tool condition for effective 

tool predictive maintenance (PM) schedule and for qualification of the post-maintenance tool 

condition. It’s always a great challenge to look at so many SVIDs’ real-time data all together. 

Gertsbakh (1977) has proposed using Discriminant Analysis to find a linear combination 

function of tool parameters that best distinguishes between a “good” tool and a “failed” one. 

Similar to Discriminant Analysis, a linear combination function of parameters with the 

maximum contribution to the tool condition can be found through Principal Component Analysis 

or Singular Value Decomposition (Stamatis et al., 1992). However, the frequent change of 

recipes and the diversity of operations still make the overall tool condition evaluation a very 

difficult task. 

  The difficulties described above have motivated this research to focus on consolidating the 

large number of SVID’s into a single tool condition indicator robust to the operation/recipe 

changes. Not only should the indicator be able to provide an easy reading for engineers to have a 

quick idea on the tool’s overall performance, it should also serve as the basis for condition-based  

PM schedule. In this research, we attempt to propose a moving statistic to minimize the effect of 

operation/recipe changes. Then, the concept of evaluating the tool condition by observing the 

distribution of the tool parameters’ readings (Chen et al., 1998, and Chen and Wu, 2007) is 

employed. A tool condition evaluating method is thus proposed based on the ideas of 
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multivariate generalized variance (Johnson, 2002). In addition, the effect of operation/recipe 

changes will be minimized by using the moving statistics. 

  With the tool condition indicator available, the exponentially weighted moving average 

(EWMA) control scheme is employed to detect tool condition excursion. A two-step diagnosis 

method to find the causes of the abnormalities is then developed. The first step is to decompose 

the generalized variance into two parts: one is the variance and the other is covariance. The 

second step is to detect the anomalies of the SVID variability and/or relationships by observing 

the variance and covariance trends within the process run to discover the root cause and to 

predict the tool condition excursion. 

2.2 Analysis of Spatial Wafer Topography 

  As the metrology technology continues to advance, more and more wafer data must be analyzed 

quickly and efficiently for monitoring and controlling the fabrication processes. The wafer 

spatial variations study is a key to yield enhancement especially when the fabrication technology 

enters the 32nm node. Therefore, the study of spatial variation becomes critical to both process 

control and circuit design (Stine et al., 1997, Boning and Chung, 1996). In doing this, the 

systematic and random components, both of which contribute to the spatial variations, must be 

identified before the root cause of yield loss can be found and removed. 

Kibarian et al. (1991) examine the spatial dependencies (referred to as spatial correlations) of 

the process parameters, such as polysilicon line width and film thickness, on circuit testing data. 

Mozumder and Lowenstein (1992), and Guo and Sachs (1993) model the within-wafer variation 

based on multiple response surface methods while Smith et al. (1998) compare it with the single 

response surface methods. Boning and Chung (1996) describe the concept of statistical 
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metrology and the decomposition of spatial variations into wafer-to-wafer, die-to-die, site-to-site 

variations, and residuals. Stine et al. (1997) characterize the wafer-level, die-level, and wafer-die 

spatial variations for correlation studies. The literatures extracting and characterizing the spatial 

variations can be mainly categorized into two groups (Vanoppen et al., 2001). In one group, the 

variation is separated into variance components by employing methods such as analysis of 

variance (ANOVA) or Fourier transform. The other group identifies the distinct exemplar-based 

variation patterns and analyzes the impact of these factors through proper decomposition of the 

wafer and yield data. 

To characterize the wafer-level or die-level variance components, ANOVA methods are 

widely applied (Stine et al., 1996, and Zimmerman et al., 2000, and Cain and Spanos, 2003). 

Significance of the components can be then ranked for further causal analysis. At the process 

level, Steele et al. (2002) assume the total critical dimension (CD) variation to be the 

combination of independent variance components from coating, developing, and baking 

processes and use design of experiments to model and understand the CD uniformity issues. Yu 

et al. (1995) employ the fast Fourier transform (FFT) to decompose the wafer CD’s spatial 

variations into wafer spatial patterns or residual variations. Ye et al. (1995) and Han et al. (1997) 

analyze the pattern generator-induced mask CD errors in the spatial frequency domain and 

identify error contributors using the Fourier transform. Ouyang et al. (1998, 1999) identify the 

amplitude excursions in the spatial frequency domain of CD’s using the spatial Fourier transform 

(SFT). By applying an inverse SFT, the variance components can be separated and used to 

explain the systematic and random errors in spatial variations. The idea of transforming 

observations in the space domain to a spectrum in the frequency domain is very useful for 

understanding the natures of the spatial variations. In particular, the low-frequency parts of the 
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spectra are usually considered caused by the systematic patterns while the high-frequency part is 

believed to be a result of the noise in the space domain (Yu et al., 1995, and Ouyang et al., 1998, 

and 1999). However, the FFT/SFT is not able to reduce the domain dimension. For example, the 

two-dimensional spatial wafer metrology data remains two-dimensional after transforming to the 

frequency domain by the SFT. Moreover, the statistical properties of the SFT spectrum in the 

frequency domain are not clear enough to construct a hypothesis test for identifying the existence 

of systematic variations. 

Systematic wafer spatial variations usually form patterns on the two-dimensional wafer map. 

The advancement of information technology has helped enhance the 2-D/3-D visualization of the 

wafer metrology data and thus facilitate the causal analysis when studying spatial variations. 

Wong et al. (2002) propose a three-step methodology to characterize the line-width variation. 

Spatial analysis first decomposes the CD’s metrology data into several variance components. 

Causes with similar spatial signatures, defined based on engineering knowledge, are then 

classified by contributor-specific measurements. Unanticipated components are finally classified 

as residuals. Vanoppen et al. (2001) apply the methodology for breaking down and ranking of 

the systematic sources of line-width variations. Evaluation of the exposure tool performance in 

relation to the contributors of line-width variation is also presented. Burch et al. (2008) and Inani 

et al. (2006) recently propose a failure signal detection algorithm (FSDA) which serves as a yield 

fault detection and diagnosis solution integrating several practical data mining techniques and 

engineering data analysis methods. FSDA first identifies the known failure metrics and 

spatial/reticle zones in preparation of wafer data. Wafers with similar patterns are then clustered 

together. Characteristics of the patterned clusters are used for the drilldown yield analysis to 

identify the root causes of yield loss. 
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Most existing methods discussed above, no matter pre-assuming the variance components or 

pre-defining the exemplar variation patterns, require knowing related issues/faults of the 

process/tool in advance and categorize the unexplained parts as residuals. Engineering 

knowledge is definitely helpful in analyzing the variation components for specific failure types. 

However, engineering knowledge is usually acquired through a high-price learning process 

where faults or yield losses are found in the later stages of fabrication with corresponding 

engineering causes learned to locate in the much earlier stages.  In fact, any systematic pattern 

must be associated with certain physical issues. The engineering knowledge can thus be 

established through relating the data excursion to the out-of-control processes. It is our belief that 

we should have the data reveals itself as much as possible so that the corresponding engineering 

knowledge can be learned as early as possible. Therefore, a model-free methodology without 

priori knowledge to reveal systematic patterns is proposed in this research so that possible 

problems and respective knowledge can be learned immediately after they occur.  

Since the pattern-dependent uniformity is thought to reveal critical information about the 

spatial variation, a novel spatial variation spectrum (SVS) generated based on the calculation of 

spatial moving variances to characterize the spatial variations is proposed. The SVS, which 

manifests the significance of the topographical systematic patterns, will be further summarized 

as an overall systematic pattern index based on the formation of the spectrum. The objective of 

this research is to provide the methodology for faithfully summarizing spatial topography into 

reasonable indices which thus makes the further causal analyses more efficiently.  
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Chapter 3 - Variation Estimation for Temporal Tool Parameters 

  The idea of tool condition evaluation based on data distribution is firstly introduced in this 

chapter. Moving variance and covariance statistics are then proposed and consolidated to 

evaluate the tool condition. The EWMA control scheme and a two-step procedure are employed 

and developed to identify the root causes to the abnormalities. 

3.1 Distribution-based Tool Condition Evaluation 

  To evaluate a process’s performance by comparing the distribution of the multiple product 

quality characteristics against their specifications, a measure known as multivariate process 

capability indices (PCI’s) is usually employed (Taam et al., 1993, and Kotz and Johnson, 1993). 

The following equation shows the idea of the multivariate process capability indices: 

ondistributi of 7399 containingregion  of volume

regionion specificat of volume

%.
C p = . 

The same idea is used to a machine capability index (MCI) for evaluating the tool condition by 

Chen and Wu (2000 and 2007). 

  In reality, to estimate and obtain the specification region requires prior engineering knowledge 

about the equipment behavior. For example, the chamber pressure is controlled by the throttle 

valve and flow rates of various gases. The pressure level and the flow rates are usually set by the 

recipe. The throttle valve is then manipulated by an internal control loop to attain the target 

pressure level. Even for a given recipe, it’s still quite a difficult task to set the specifications for 

the throttle valve. It’s even more difficult to find its relationship with the pressure to form an 

elliptical spec region. Some works (see, for example, Taam et al., 1993, and Chen and Tsai, 2004) 
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have tried to establish the specification regions. However, in the high-mix production 

environment, it’s just not practical to set specification regions for hundreds or even thousands of 

recipes and modify them each time certain tool maintenance is performed. 

  To borrow the idea of using the multivariate distribution as the tool performance and to keep 

away from the difficulties of setting the specification regions for all SVID’s, recipes, and tools, a 

statistical measure known as generalized variance (Johnson, 2002) is proposed. Generalized 

variance, the determinant of the covariance matrix, is in effect proportional to the volume of data 

distributed in the multi-dimensional variable space and can be used to measure the dispersion of 

a tool’s variability during a process run. The basic assumption here is that there should be a 

regular size of data distribution under a normal process run. When a tool condition becomes 

unstable, the distribution of SVID’s grows larger. By taking the determinant, the generalized 

variance is also able to consolidate the large amount of tool data into a single indicator. 

  Variances of individual SVID’s and the covariance among SVID’s, i.e., elements of the 

generalized variance, are all greatly affected by the temporal profiles of SVID’s. Different 

recipes directly result in different temporal profiles. Recipes, however, are changed frequently 

during production and should not be accounted an impact factor on tool condition. This research 

proposes to use the moving variance and covariance, of which properties will be studied to 

minimize the effect of temporal profiles and, thus, to avoid the influence of recipe changes. The 

tool condition indicator is then calculated by taking the determinant of the moving covariance 

matrix and is called a generalized moving variance.  
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3.1.1 Moving Variance and Covariance 

  Tool condition depends greatly on the variability of tool parameters during wafer processing. 

Each processing step, no matter it’s a temperature ramp-up step or a deposition step, the smaller 

the variability the better the tool condition. However, conventional calculation of sample 

variance and covariance is quite sensitive to the non-stationary pattern displayed in each SVID’s 

temporal profile. The pattern often incurs a bias in estimation of the tool variability. The non-

stationary patterns are distinct not only among different SVID’s but also from one recipe to 

another. Fig. 2 and Fig. 3 show two distinct profile patterns of a tool SVID X under two recipes 

(A and B). A variance/covariance estimate independent of recipe changes is thus critically 

needed to more faithfully reflect the tool’s real variability. In this research, we propose to use the 

pooled moving variance/covariance, which are calculated using a small number of consecutive 

observations in a moving time window, to be the estimates of the tool variability. The proposed 

estimate will be shown model-freed and minimizing the effect of the patterns. 
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Fig. 2.  Profile of SVID X under Recipe A. 
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Fig. 3.  Profile of SVID X under Recipe B. 

  Assume that there are two SVID’s, X and Y, with true variability represented by variances 2
Xσ  

and 2
Yσ , respectively, and covariance, σXY. Each SVID collects n sample data from a process run 

under a specific recipe. That is, two corresponding temporal series of random samples, X1, X2, …, 

Xn and Y1, Y2, …, Yn, are collected for SVID X and Y. The sampling rate of SVID observations is 

assumed constant; i.e., time intervals between any two successive observations are assumed 

equal and fixed. Our attempt now is to estimate the true tool variability, 2
Xσ , 2

Yσ and σXY, using 

the two temporal series of observations. The conventional estimates are the sample variance, 

which is similar to (1), and covariance: 
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where X  and Y  represents the averages of the two series, respectively. 

  With patterns inherent in the temporal profiles, the above estimation could be quite inaccurate. 

In the literature, models are usually built first to describe the patterns. Variability is then 

estimated using the model residuals. This sort of estimates is, however, model-based and 

ineffective because the models themselves are sensitive to operation/recipe changes. To 

minimize the effects of patterns and to find the true variability without modeling the patterns, we 

propose using moving variance and covariance based on the following moving windows of size p 

(<n): 

}  ,,{ , }, , ,{ },, ,{ 1112211 npn
X

pnp
X

p
X XXWXXWXXW  +−+−+ === , and 

} , ,{ , }, , ,{ },, ,{ 1112211 npn
Y

pnp
Y

p
Y YYWYYWYYW  +−+−+ ===  for the temporal series of SVID 

X and Y, respectively. 

  The sample variance is then calculated for each of the moving windows. A total of n−p+1 

sample variances are obtained for each SVID temporal series. These sample variances can be 

now pooled together to obtain a moving sample variance for each SVID, that is, 
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where 2
X
jW

S  and 2
Y
jW

S  are sample variances calculated for the jth moving windows X
jW  and Y

jW , 

respectively. 

  Likewise, a moving covariance can be obtained by pooling together the sample covariance 

calculated from the n−p+1 moving windows:  
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j
X
j

S
pn

σ          (5) 

where 2
Y
j

X
j WW

S  is the sample covariance calculated using the random samples in the jth pair of 

moving windows X
jW  and Y

jW . 

3.1.2 Effects of Patterns 

  To show that the proposed moving statistics are relatively robust against the patterns of SVID 

temporal profiles, we first define two pattern elements: linear drift and step change. The pattern 

of a SVID temporal profile can be seen as formed by segments of linear drifts with step changes 

in between any two successive segments.  

  We first look at the linear drifts. Linear-drift patterns of SVID X and SVID Y can be 

characterized by a linear function of the observation count i during the process run:  

iε+







=








i

b
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Y

X

Y

X

i

i

σ
σ

 for i=1,….,n,        (6) 

where a≠0 and b≠0 are the amounts of drifts, expressed by proportions of σX and σY, between 

two successive observations of SVID X and SVID Y, respectively and  
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iε   for i=1,….,n         (7) 

are independent and follow an identical bivariate normal distribution with the mean vector equal 

to 0 and covariance matrix 


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




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2

YXY

XYX

σσ
σσ

Σ . 

Σ is the true process variability that can be used to evaluate the tool condition and that we intend 

to estimate.  

THEOREM 1.  By setting the size (p) of the moving window smaller than the number (n) of 

observations in one process run, the moving variance and covariance in (4) and (5) as the 

estimates of the true variability Σ under the linear-drift pattern defined in (6) have smaller bias 

than the conventional sample variance and covariance have. That is, 

2222 )()ˆ( XXXX SEE σσσ −<− ; 2222 )()ˆ( YYYY SEE σσσ −<− ; and XYXYXYXY SEE σσσ −<− )()ˆ( . 

Proof:  see Appendix A. 

Corollary 1. With p = 2, the estimate bias of the true variability Σ under the linear-drift pattern 

defined in (6) is minimized by the moving variance and covariance in (4) and (5). 

Proof: This result can be easily obtained from (29) and (31) in Appendix A.    

  Now, we define the step-change patterns of SVID X and Y by a step function of the observation 

count i: 
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where 0<n1<n; c≠0 and d≠0 are the step-change sizes, expressed by proportions of σX and σY, at 

the (n1+1)th observations in the temporal series of SVID X and SVID Y, respectively; that is, 

there are n1 observations taken before the step change while the following n2(=n-n1) observations 

have a constant mean difference from the previous n1 observations. The i.i.d. εi for i=1, …, n are 

as defined as in (7) with a variance/covariance matrix Σ representing the tool variability to be 

estimated. 

THEOREM 2. By setting the size (p) of the moving window smaller than the number of 

observations before and after the step change during one process run, i.e., p ≤ min(n1, n2), and 

such that  

)1(
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nn

nnn

pn

p
,         (9) 

the moving variance and covariance in (4) and (5) as the estimates of the true variability Σ under 

the step-change pattern (8) have smaller biases than the conventional sample variance and 

covariance have. That is, 

2222 )()ˆ( XXXX SEE σσσ −<− ; 2222 )()ˆ( YYYY SEE σσσ −<− ; and XYXYXYXY SEE σσσ −<− )()ˆ( . 

Proof: see Appendix B. 

Corollary 2. With p = 2, the estimate bias of the true variability Σ under the step-change pattern 

(8) is minimized by the moving variance and covariance in (4) and (5).  
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Proof: see Appendix C. 

  Now, back to the examples in Fig. 2 and Fig. 3, though the SVID exhibits distinct temporal 

profiles under two different recipes, the estimate biases, 1.87 and 2.05, by the sample moving 

variance are small while estimate the biases, 27.73 and 37.32, by the conventional sample 

variances are much larger. Fig. 4 and Fig. 5 illustrate the temporal profiles of two SVID’s, X and 

Y, under recipe A and B, respectively. Again, the estimate biases, 0.19 and 0.27, by the sample 

moving covariances of SVID X and Y appear quite small while the estimate biases, 20.62 and 

30.77, by the conventional sample variances are much larger. 
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Fig. 4.  Profiles of SVID X and Y under recipe A. 
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Fig. 5.  Profiles of SVID X and Y under recipe B. 

  With the above moving variances and moving covariances, a moving variance/covariance 

matrix S for a tool with v SVID’s can be then calculated:  
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The generalized moving variance is then the determinant of S and is used as the tool condition 

indicator. The steps to generate a sequence of indicator values to monitor the tool condition are 

summarized in Fig. 6. 
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Monitor the tool condition, i.e. the det(S) by statistical control 
chart.

Calculate det(S) for each wafer.

Calculate the moving variance/covariance matrix S with moving 
window size p = 2 for each wafer.

For each processed wafer, prepare its FDC data consisting of v
SVID’s with n observations for each SVID.

 

Fig. 6.  Steps to monitor the tool condition by the generalized moving variances. 

3.2 Tool Condition Monitoring and Diagnosis 

  Tool condition diagnosis can help determine the type of tool maintenance to be performed when 

the tool condition is found unstable or abnormal. To identify the abnormal patterns shown by the 

tool condition indicator, statistical control charts can be employed. Here, the well-known 

Exponentially Weighted Moving Average (EWMA) control scheme (Lucas and Saccucci, 1990, 

and Borror et al., 1999) is adopted to detect the tool condition excursion. Let Δk be the tool 

condition indicator, i.e., the generalized moving variance, for wafer k. The EWMA statistic, Zk,, 

of the tool condition indicator for wafer k is calculated as follows: 

Zk = λΔk + (1 - λ)Zk-1,          (10) 

where λ (0< λ ≤ 1) is the smoothing constant. 

  The steady-state EWMA control limits are: 
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+= ΔΔ 2
UCL l  and ,

2
LCL

λ
λσμ
−

−= ΔΔ l      (11) 

where μΔ and σΔ are the mean and standard deviation of in-control Δκ’s, and l determines the 

width of the control window. For a standard Shewhart control chart (Montgomery, 2005) and 

data following the normal distribution, the average run length (ARL) with 3σ is known to be 

370.4. Since Δk is not likely to be the normal distribution, we may follow suggestions by Borror 

et al. (1999) to use l=2.492, 2.703, and 2.86 with corresponding λ=0.05, 0.1, and 0.2, 

respectively, for the EWMA control scheme to obtain approximately the same ARL=370.4. In 

this research, after discussions with process engineers and experiments from the actual 

production data, we set λ=0.05 and l=4 for a lower false alarm rate acceptable to the 

semiconductor manufacturing practice. The setting of the EWMA control scheme should not be 

fixed across all tool types and situations and should be adjusted according to the natures of the 

tool processes, which in turn affect the false alarm rate, and by intensive discussions among 

engineers. 

  To investigate the unstable or abnormal tool condition, a two-step diagnosis method is 

developed. The first step is to decompose the generalized moving variance into two parts: one is 

the moving variance and the other is moving covariance. Given a tool with v SVID’s, a moving 

variance/covariance matrix S,  
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can be calculated for each processed wafer. We can set all the moving covariances on the off-

diagonal to 0’s and then take the determinant of the new matrix D, which is in effect the 

multiplication of all moving variances, to be an indicator which only considers SVID variability. 
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D . 

To consider the SVID interrelation, the influence of moving variance within S, i.e. the effect of 

D, should be removed. Thus, another matrix R, which depends solely on the relationships among 

SVID’s, is proposed:  
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With D and R, the property: ))det(det()det( RDS =  can be directly obtained from the 

relationship between the determinants of variance/covariance matrix and correlation matrix, 

which is: 

)det(
)det())det()det(det(])()det[()det( 2

1

2

1

2

1

2

1

D
SDSDDSDR ===

−−−−
.  

The determinant of R, which is actually the ratio of determinant of S to that of D, is then used as 

the indicator that considers SVID interrelation only. It can be seen that the product of two 

decomposed indicators will be exactly the same as the proposed tool condition indicator. 
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  With the decomposition of the generalized moving variance in the first step, the cause of the 

tool condition excursion can be identified to be the SVID variability or the SVID interrelation. If 

the tool condition excursion results from the SVID variability, the second step is to one by one 

investigate all the sample variances which constitute a moving variance for one SVID as shown 

in (4), for example, 

222

121
 , , , X

pn
XX WWW

SSS
+−

 , for SVID X, 

Similarly, we can one by one investigate the sample covariances within a moving covariance for 

a pair of SVID as shown in (5), for example, 

Y
pn

X
pn

YXYX WWWWWW
SSS

112211
 , , ,

+−+−
 , for SVID X and Y, 

if the tool condition excursion results from the SVID interrelation. The main purpose of second 

step is to discover the abnormal SVID variability and/or interrelations among SVID’s. 

  By using the proposed two-step diagnosis method, one can analyze the abnormal tool condition 

to identify the root causes as unstable variability of SVID’s or abnormal relations among SVID’s 

are observed. Furthermore, the profiles of SVID’s can be checked to get the full explanations for 

the abnormal tool condition. 
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Chapter 4 - Variation Estimation for Spatial Topography Data 

  The variation within spatial topography data usually manifests systematic patterns visually on 

the topography. Since the pattern-dependent uniformities are thought to manifest critical 

information about the spatial variation, a novel spatial variation spectrum (SVS) generated based 

on the calculation of spatial moving variance is proposed to characterize the spatial variations. 

The SVS, which reveals the significance of the topographical systematic patterns, is further 

summarized as an overall systematic pattern index based on the formation of the spectrum. The 

index provides a quick understanding of the systematic patterns displayed in the wafer 

topography and can be explained by three levels of variation frequency ratios: high, middle, and 

low. 

4.1 Characterization of Spatial Variation 

  Assume that n random measurements, such as the thickness or linewidth, are taken from 

sampled metrology sites. Mi denotes the ith random measurements at the metrology site with an 

Euclidian coordinate (mx, i, my, i) on the wafer (the origin is referred to the center of the wafer).  

As can be seen in Fig. 7, a basic understanding of this kind of dataset could be done by drawing a 

2-D contour map (Fig. 7a) or a 3-D response surface (Fig. 7b). 



 

26 

 

(b)(a)

 

Fig. 7.  The visualization of a hypothetical wafer topography with dome pattern (described in Appendix D):  

(a) 2-D contour map; (b) 3-D response surface. 

  To analyze the spatial variation of wafer topography, the sample variance described in (1) is 

mostly calculated to characterize the spatial variation. However, the sample variance is 

significantly biased if the observations comprise systematic components, which usually result in 

systematic patterns on the wafer surface as shown in Fig. 7. In this section, we further extend the 

concept of moving variance for a temporal series to the spatial moving variance for spatial area 

of observations. The spatial moving variances of different sizes of spatial moving window then 

form a SVS which characterizes the spatial variations of the topography. 

4.1.1 Spatial moving variance 

The spatial moving variance utilizes the spatial information, i.e. the Euclidian coordinates, to 

help decide the size and constituents of a spatial moving window. Given the random 

measurements Mi, i=1, …, n, we first calculate the Euclidian distances for all pairs of 

observations and get a symmetric distance matrix E with all 0’s on its diagonal: 
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where dij is the distance between ith and jth observations. 

  For the ith row in E, we can sort the distances, di1, …, din, in an ascending order and find out the 

kth-nearest measurement for measurement i, which is denoted as Mi(k). One special case is that 

Mi(1) is actually Mi itself because the nearest observation for i would be itself based on the 

distances in (12). A spatial moving window with size p (where 2 ≤ p ≤ n) for observation i can be 

then defined as: 

} ,, ,{ )()2()1( piii
p

i MMMW = , i=1, 2, …, n and 2 ≤ p ≤ n.     (13) 

The sample variance for the observations within the spatial moving window p
iW  is then 

calculated and denoted as 2
p

iW
S . Given a size p, a total of n sample variances will be obtained 

from the n spatial moving windows ( p
iW , i=1, 2, …, n). These sample variances are then pooled 

together to be the spatial moving variance for window size p, that is, 
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where 2
p

iW
S  is the sample variance calculated for the ith spatial moving window p

iW , and 2 ≤ p ≤ 

n. Furthermore, we can define the expected spatial variance for window size p as the expected 

value of 2
pS . That is 

)( 22
pp SE=σ  for 2 ≤ p ≤ n. 



 

28 

 

  When p = n, the moving window becomes the whole dataset, i.e. all n observations are used to 

calculate the sample variance. Thus, 2
nS  is exactly equal to the sample variance in (1). 

  Fig. 8 shows an example for calculating the spatial moving variance given window size p=3. 

Assume the sampling locations are equal-spaced vertically or horizontally, and the vertical space 

between two adjacent observations is slightly larger than the horizontal one. For the first 

observation m1, the two nearest observations, i.e. m1(2) and m1(3), are m2 and m6, respectively. For 

the observation at each metrology site, there is a spatial moving window consisting of three 

observations accordingly and thus generates a sample variance. Then, the n sample variances for 

p=3 can be used to calculate 2
3s  in (14). 
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Fig. 8.  An illustration for calculating the spatial moving variance of window size p = 3. 

4.1.2 Spatial Variation Spectrum 

  By varying the size of spatial moving window from 2 to n, we will have n-1 spatial moving 

variances: 
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which are defined as the components of the SVS. Since the total number of metrology sites n may 

differ from wafer to wafer, using p, whose range depends on n, as the domain for the variance 

spectrum is not appropriate. We define the spatial variation frequency f = p / n (0 < f ≤ 1) for the 

spectrum domain. A smaller (larger) f represents a higher (lower) frequency because it covers a 

smaller (larger) area for calculation of spatial moving variances. The spatial variation frequency 

not only defines the frequency domain of the spectrum, but also allows comparing spectra 

calculated from wafers with different numbers of observations as long as the measurements are 

rather symmetrically and uniformly distributed over the entire wafer. The spatial moving 

variances can be plotted against the spatial variation frequency to illustrate the structure of 

spatial variations. Fig. 9 shows a spectrum calculated based on the simulated data in Fig. 7. 
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Fig. 9.  The SVS of a hypothetical wafer topography with dome pattern. 
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  The horizontal dashed line in Fig. 9 denotes the sample variance calculated by (1). As can be 

seen, the spatial sample variances over the range of middle to low frequencies (f > 0.3) are larger 

than those over the range of higher frequency (f < 0.3). The larger sample variances with spatial 

windows covering at least 30% portion (p/n > 0.3) of the wafer surface reflect the pattern. 

  Fig. 10 shows a metrology data with observed variation randomly distributed and its 

corresponding SVS. Because there is no dominant pattern, the SVS appears to be random around 

the overall sample variance. The entire spectrum is rather stationary as compared to that in Fig. 9 

despite there are small fluctuations locally. In particular, the spatial moving variances of high 

frequencies, i.e. small window sizes, appear to be more unstable. This is because the small 

windows are extremely sensitive to the local randomly formed patterns. However, the impact of 

the local, small patterns will be soon gradually canceled out as the window size increases, and 

the SVS becomes flat. 

(a)  
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Fig. 10.  (a) The contour map of a randomly distributed wafer topography; (b) The SVS of the topography. 

To further understand the properties of SVS, we assume the wafer spatial variations are purely 

the random variations. Let the random measurement Mi be defined as:  

Mi = a + εi for i=1, …, n,         (16) 

where a≠0 is the mean level of all metrology sites, and  

εi for i=1, …, n,          (17) 

are independent and follow an identical normal distribution with zero mean and variance σ2. And 

let the spatial systematic variations be variations other than random noises satisfying (16) and 

(17). Then we have the following theorem. 

THEOREM 3. The spatial variation must consist of variations other than random noises, i.e. 

systematic variations, if the expected spatial variance spectrum is uneven for 0 < f ≤ 1. 
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Proof: see Appendix E. 

  Based on THEOREM 3, we know that the expected SVS should display as a horizontal line if 

the wafer topography purely consists of random variation. Otherwise, the topography with SVS 

exhibiting a non-stationary pattern must consist of both the systematic and random variations. 

4.1.3 Identification of Systematic Variation 

  Our attempt is to detect whether the metrology data is only randomly distributed or contains 

systematic patterns. To check if the SVS is calculated from the data consisting of random 

variation only, we study the relation between the conventional sample variance and the proposed 

spatial moving variance, and develop the following theorem. 

THEOREM 4. If one takes a sample of p measurements from a total of n measurements, there 

will be n
pC  combinatorial possibilities. The average of the sample variances of the n

pC  

combinatorial samples is then equal to the sample variance of the n measurements (1). That is:  

2

1

2
,

1
SS

C

n
pC

k
kpn

p

=
=

, for p=2, …, n,        (18) 

where 2
,kpS  is the sample variance of the kth sample among the n

pC  possible samples. 

Proof: see Appendix F. 

  THEOREM 4 describes another perspective on the composition of the sample variance in terms 

of many sample variances of sampling subsets. Based on this concept, we have the following 

conjecture for the proposed spatial moving variances of p ≤ n-1. 
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  THEOREM 4 provides another perspective on the composition of the sample variance in terms 

of sample variances of combinatorial subsets. Based on this theorem, 2
1−nS  is equal to 2

nS  if  the 

metrology sites are symmetrically distributed such that the n samples of 2
1−nS , i.e. 1−n

iW , i=1, …, 

n, are the same as those in the n
nC 1−  combinatorial samples. From THEOREM 1, to detect the 

existence of systematic variations, we need to detect whether the spatial variances are uneven. A 

hypothesis test of uneven spatial variances can be developed if the probability distribution of 2
pS  

is known under (16) and (17). If 22
1 nn SS =− , it is clear that 

2
12

2

~
)1(

−
−

n
nSn χ

σ
 and 2

12

2
1 ~

)1(
−

−−
n

nSn χ
σ

, 

where 2
1−nχ  is a chi-square distribution with the degree of freedom n - 1. For 2 < p < n-1, nC n

p > . 

The n samples used for calculating the proposed spatial moving variance, 2
pS , are only the subset 

of the n
pC  combinatorial samples. It is thus unclear what distributions 2

pS  will follow. However, 

THEOREM 2 provides some clues that lead to the following conjecture. 

Conjecture 1. If 2
pS , 2 ≤ p ≤ n-1, is calculated from a wafer metrology data defined in (16) and 

(17), then 

2
2

2

2

2

2

2

~
)( pv

pp

p

pp

p

pp SvSv

SE

Sv
χ

σσ
== , 2 ≤ p ≤ n-1,        (19) 

where νp denotes the degree of freedom for the χ2 distribution and is no greater than n - 1. 

Reason: see Appendix F. 
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  To determine νp for 2 ≤ p ≤ n-1, we perform a Monte-Carlo simulation study and obtain the 

results in Fig. 11. As p decreases from n,   12 −<< npn  (1/2 < f < 1), the variance of 2
pS  (solid 

line) increases because the n samples for calculating the 2
pS  is becoming a smaller subset of the 

n
pC  combinatorial samples. For  2

np ≤ , the n samples is becoming a larger subset of n
pC  

combinatorial samples as p continues to decrease from  2
n . However, the variance of 2

pS  

sharply turns up when p is decreased to be less than 30 (f < 0.05) because these particularly small 

window sizes are sensitive to both local random patterns and unbalanced sampling of 

observations for calculation of 2
pS . 
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Fig. 11.  The variance of the SVS and its estimated degrees of freedom. 

  With the Monte-Carlo estimate of the variances of 2
pS  and the assumption of the χ2 distribution 

(Conjecture 1), νp in (19) can be then estimated as: 
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22

pp

p
p sVsV

sE
v

σ== , 2 ≤ p ≤ n        (20) 

where )( 2
psV  is the sample variance of 100,000 Monte-Carlo simulations s'2

ps  (see Appendix G). 

The dashed line in Fig. 11 indicates the estimated degrees of freedom. Based on the estimated 

degrees of freedom, we can now construct the following hypothesis test. 

H0: 22
1

2
3

2
2   nn σσσσ ==== −  versus 

H1: there exist systematic variations. 

To reject H0, we choose the smallest spatial moving variance: 

} , , , ,min{ 22
1

2
3

2
2

2
min nn SSSSS −=  .        (21) 

as the test base and test if all the rest of the spatial moving variances are equal to 2
minS : 

H0: 
2
min

2 Sp =σ , for } , ,1 ,{minarg 2 nkSp k
i

=≠ . 

Since 
2
minS  is used as the comparison base, only the one-sided test is required. Let 2

-1 , ανχ
p

 denote 

the critical value of the chi-square distribution with vp degrees of freedom and the type I error 

probability α. An upper control limit (UCL) can be constructed as: 

UCL
p

p

S
p

ν
χ

σ αν
2
min

2
-1 ,2

⋅
≤=  for 2 ≤ p ≤ n - 1.       (22) 

  With the upper control limit, if there is at least one spatial moving variance exceeds the control 

limit, H0 is rejected and systematic variations are said to exist; otherwise, there is no evidence to 

say that the wafer spatial variations consist of any systematic variation. Fig. 12 shows an 
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example of using the upper control limit with α = 0.05 to check if there exists any systematic 

variation for the pure-noise metrology data in Fig. 10. As can be seen, the whole spectrum lies 

within the control limit and there is no sufficient statistical evidence to deny that the metrology 

data is only randomly distributed. 

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0.
00

0.
03

0.
05

0.
07

0.
09

0.
12

0.
14

0.
16

0.
19

0.
21

0.
23

0.
25

0.
28

0.
30

0.
32

0.
34

0.
37

0.
39

0.
41

0.
44

0.
46

0.
48

0.
50

0.
53

0.
55

0.
57

0.
59

0.
62

0.
64

0.
66

0.
69

0.
71

0.
73

0.
75

0.
78

0.
80

0.
82

0.
84

0.
87

0.
89

0.
91

0.
94

0.
96

0.
98

Sp
at

ia
l M

ov
in

g 
Va

ri
an

ce

Spatial Variation Frequency (f)

Spatial Variation Spectrum Upper Control Limit

 

Fig. 12.  The SVS and its upper control limit for a randomly distributed wafer topography. 

4.2 Spatial Pattern Index 

  Even with the hypothesis test proposed above, it would be useful to provide simple indices 

summarizing the SVS to evaluate the significance of the systematic variations. A spatial pattern 

index (SPI) and three variation ratios of high, middle and low frequencies are proposed. The root 

causes associated with an identified systematic pattern can be then investigated based on the 

index and the three variation ratios. 
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  Based on THEOREM 1, the spectrum is expected to be a horizontal line if the wafer spatial 

variations purely consist of random variations and thus the spatial pattern index for a pure noise 

should be near zero accordingly. For the wafers consisting of systematic patterns, we expect to 

see a larger SPI value indicating a more significant systematic variation. The spatial pattern 

index (SPI) is proposed: 




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SPI ,          (23) 

where 2
minS  defined in (21) is used as an estimation to the random variation. 
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Fig. 13.  The concept of the calculation of spatial pattern index for the wafer topography with dome-pattern. 
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Fig. 14.  The concept of calculating the SPI for the randomly distributed wafer topography.  

  The denominator in (23) represents the total spatial variation of the spectrum and the numerator 

calculates the total systematic variation by removing the random variation from the spatial 

variation. Therefore, SPI is ranged between 0 and 1. Fig. 13 shows the concept when calculating 

the SPI for the SVS of the dome-patterned topography discussed in Fig. 9, where the spatial 

moving variances of middle variation frequencies arise due to the domed systematic pattern in 

the center of the wafer. As can be seen in Fig. 13, the total spatial variation is illustrated by the 

middle-up figure while the systematic variation is depicted by the middle-bottom figure. The 

ratio of the total systematic variation to the total spatial variation is said to be the spatial pattern 

index (SPI), which is 0.6978 in this example. 

  For a randomly distributed wafer metrology data as in Fig. 10, its SPI = 0.0187 shown in Fig. 

14 is very close to zero because the systematic variation portion is relatively small compared to 

the total spatial variation. To further explain the SPI, three variation ratios are calculated by 

dividing the spectrum into three parts, i.e. high, middle, and low frequencies, which are: 
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High-frequency variation ratio = 

 
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Mid-frequency variation ratio =  
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Low-frequency variation ratio =   %100
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  The SPI’s and variation ratios for the hypothetical examples in Fig. 13 and Fig. 14 are listed in 

Table I, where the three ratios for the randomly distributed topography are almost the same 

because the data is pattern-free. However, the middle-frequency variation ratio of the dome-

patterned topography is larger than the high/low ones. It implies that the large SPI = 0.8849 is 

majorly caused by a medium-size pattern.  

  With these indices summarized from the SVS, one can quickly grasp the significance of the 

systematic variations. These indices provide simple but effective information about the wafer 

spatial variations and can be further used to find the root causes. 

Table I.  SPI and Variation Ratios of the Noise and Dome Pattern. 

 Noise Dome
Spatial Pattern Index (SPI) 0.0187 0.6978
High-freq. Variation Ratio 33.19% 24.60%
Mid-freq. Variation Ratio 33.32% 38.82%
Low-freq. Variation Ratio 33.49% 36.58%  
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Chapter 5 - Case Study 

5.1 Real Temporal Tool Parameters for the Evaluation of Tool Condition 

5.1.1 The PECVD Tool Case 

  Real time data of more than 16,000 pieces of wafers with 23 SVID’s are collected from a 

PECVD tool of a local Fab. The sampling rate is down to one observation a second. As one can 

imagine, the minimum number of SPC charts would be at least 23 for engineers to monitor this 

tool. Moreover, observations within different temporal windows over the SVID profile would be 

summarized as different indicators and thus result in hundreds of charts. Maintaining these charts 

for monitoring a tool is costly and, especially, doesn’t consider the interactions among SVID’s. 

In this section, the proposed moving variances and covariances of the collected SVID’s are 

firstly calculated to comprise a moving variance/covariance matrix for each wafer. As described 

in Fig. 6, the generalized moving variances for these wafers are then calculated and used as a 

tool condition indicator of the PECVD tool. We can draw a trend chart of the tool condition 

indicator by the wafer processing sequence and monitor the tool condition. In Fig. 15, the 

proposed indicator of normal tool condition is quite robust against the recipe changes, indicated 

by the vertical gray lines despite the SVID profiles under the two of this tool perform obviously 

different in patterns and even in processing time-length (see Fig. 16 for an example of throttle 

valve profiles). 
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Fig. 15.  PECVD condition indicator vs. recipe changes. 
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Fig. 16.  Distinct PECVD Throttle Valve profiles under two recipes. 

  Furthermore, we can put some vertical lines to indicate the time points of events, such as tool 

alarms, or preventive maintenance schedules, and investigate how the trend of the tool condition 
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indicator responses to the events. As can be seen in Fig. 17, the dashed vertical line indicates the 

time point of a tool event regarding abnormal throttle valve readings in-between two Monthly 

PM’s (MPM), and the vertical bold line indicates that a Life PM, which involves part 

replacement due to expiration of the expected life spans, is performed right after the event. Fig. 

18 shows that the throttle valve readings appear to drift up when the tool event is issued. By 

looking at the EWMA control chart in Fig. 19 which is constructed based on equations (10) and 

(11) with λ=0.05 and l=4, the proposed indicator displays abnormal tool condition starting the 

2500th wafer long before the tool event. However, as can be seen in Fig. 20, the throttle valve 

readings appear quite normal during this tool alarm period (2500th~4300th wafers) and, hence, the 

tool FDC system is not able to detect any particular fault. 

 

Fig. 17.  PECVD Tool condition monitoring based on generalized moving variances. 
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Fig. 18.  Abnormal throttle valve readings when tool event is issued. 

 

Fig. 19.  EWMA control chart of the PECVD tool condition (λ=0.05, l=4). 



 

45 

 

Time

Th
ro

tt
le

 V
al

ve
 R

ea
di

ng

 

Fig. 20.  Sampled throttle valve readings of 2500th~4300th wafers before the tool event in Fig. 19. 

  To analyze the possible tool problem behind the tool condition alarm, the proposed two-step 

diagnosis method is used. First, the generalized moving variances are decomposed into two parts: 

SVID variability and SVID interrelation, which are shown in Fig. 21 and Fig. 22, respectively. It 

can be seen that the tool condition excursion is mainly caused by the excursion in the SVID 

interrelation while the SVID variability appears to be quite normal. 

 

Fig. 21.  EWMA control chart for the decomposition of PECVD’s generalized moving variances: SVID Variability 

(λ=0.05, l=4). 
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Fig. 22.  EWMA control chart for the decomposition of PECVD’s generalized moving variances: SVID Interrelation 

(λ=0.05, l=4). 

  Since the tool condition excursion results from the SVID Interrelation, the trend of moving 

covariance of the small moving windows within each wafer processing run is then analyzed. In 

the process of the PECVD tool, there are three major processing steps: ramp-up, deposition, and 

ramp-down. We first check and draw the trend charts of the moving-windown covariances, i.e. 

the Y
j

X
j WW

s  in equation (5), between throttle-valve and other SVID’s. Some excursions of the 

relationship between gas flow and throttle valve are found. The upper trend chart in Fig. 23 

shows the moving-windown covariances between gas flow and throttle valve during the ramp-up 

step while the bottom one is of the ramp-down step. As shown in Fig. 23, the relationship 

between the gas flow rate and the throttle valve reading has been changed significantly during 

the ramp-up and ramp-down steps. The SVID profiles of throttle valve and gas flow are further 

investigated and thus the abnormal relationship change between the two SVID’s is confirmed. 
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Fig. 23.  Abnormal changes of relationship between gas flow and throttle valve during ramp-up and ramp-down 

steps. 

  As a result, the cause to the tool alarm is found to be an abnormal relationship between the 

throttle valve reading and the gas flow rate. The abnormal relationship between the two SVID’s 

is detected by the tool condition indicator long before the tool event. Though this tool event is 

recovered by a regular Life PM, our study shows that the PM could have been performed earlier 

to minimize the undesired process output. 

5.1.2 The PVD Tool Case 

  Another FDC data of more than 40,000 pieces of wafers with 9 SVID’s collected from a PVD 

tool is analyzed as well. The sampling rate is also down to one observation a second. Similarly, 

the proposed indicator of normal tool condition is quite robust against the recipe changes in Fig. 

24. Following the same procedure, the PVD tool condition is calculated and monitored in Fig. 25. 
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By looking at the EWMA control chart in Fig. 26, there were some tool alarms occurred after the 

Life PM, indicated by the vertical bold line. The tool condition appeared extremely unstable as 

compared to the tool condition before the PM. However, the tool FDC system still cannot detect 

any particular fault during this tool alarm period. After a regular Quarterly PM (QPM), the tool 

condition then became stable again. Therefore, the two-step diagnosis method is applied again. 

As can be seen in Fig. 27 and Fig. 28, there’re much more excursions in the SVID variability as 

compared to that in the SVID interrelation. Then, individual profiles of the 9 SVID’s are 

investigated. As shown in Fig. 29, the nano-torr readings of the wafers in-between the Life PM 

and QPM display unstable trends (dashed lines) after being processed for 13 seconds as 

compared to the solid lines which indicates nano-torr readings of the wafers after the QPM. 

 

Fig. 24.  PVD condition indicator vs. recipe changes. 
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Fig. 25.  PVD tool condition monitoring based on generalized moving variances; abnormal tool condition occurred 

after a Life PM was applied. 

 

Fig. 26.  EWMA control chart for the PVD tool condition (λ=0.05, l=4). 
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Fig. 27.  EWMA control chart for the decomposition of PVD’s generalized moving variances: SVID Variability 

(λ=0.05, l=4). 

 

Fig. 28.  EWMA control chart for the decomposition of PVD’s generalized moving variances: SVID Interrelation 

(λ=0.05, l=4). 
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Fig. 29.  Abnormal SVID profiles of nano-torr readings vs. normal ones. 

  In this case, the tool condition excursion resulted from an improper PM is detected by the 

proposed indicator. After performing the regular QPM, the nano-torr readings return to normal 

and the tool condition indicator behaves accordingly. 

5.2 Real Wafer Topography for the Characterization of Spatial Variation 

  To validate the proposed methodology which identifies systematic patterns resulted from 

systematic variation within the spatial variation of wafer topography, hypothetical wafer data are 

generated and two sets of real wafer CD metrology data are also collected and analyzed. 

5.2.1 Hypothetical Wafer Topographies with Common Patterns 

  Firstly, we simulate four common wafer topography patterns with noise disturbance: x-direction 

drift, y direction drift, dome, and donut (see Appendix D), to validate the proposed methodology. 

The contour maps for the five wafer topographies (including the random noise) are plotted in Fig. 

30 and the spatial variation spectra are calculated as well. As can be seen in Fig. 30, the x- and y-
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direction drifting patterns share very similar spectra where the slight difference is resulted from 

the random variation. Theoretically, a rotated pattern wouldn’t change all the sample variances 

within spatial moving windows given a window size p. Therefore, the spatial moving variances, 

i.e. the spectra, of the two patterns are similar. The spectrum of the forth systematic pattern, the 

donut, reaches a stably high level of variation of mid-to-low frequencies because the rise and fall 

of the donut pattern almost covers the whole wafer. Only the small-size spatial moving windows 

contain nearly-equal measurements and thus result in small sample variances. 

Noise X-direction Drift Y-direction Drift Dome Donut
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Fig. 30. Analysis of SVS’s for the hypothetical wafer topographies. 
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Fig. 31. The upper control limit for the SVS’s of the hypothetical wafer topographies. (The round shapes magnify the 

high-frequency parts of the spectra.) 

  To test if the four spectra are significantly distinct from that of a randomly distributed 

topography, the upper control limit described in 4.1.3 is built to identify the existence of 

systematic variations. As can be seen in Fig. 31, the four spectra go out of the control limits 

quickly as f increases. Therefore, the spatial variations of the four hypothetical topographies are 

said to contain not only random but systematic variations. 

  The spectra are further summarized into the SPI’s and the variation ratios in Table II. The four 

topographies with systematic patterns all have significantly-high indices as compared to that of 

pure random variation. In particular, the low-frequency variation ratios of x- and y-direction 

drifting patterns are very high because the drifting pattern actually covers up the whole wafer. 
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Table II.  SPI and variation ratios for the hypothetical wafer topographies. 

 Noise X Y Dome Donut
Spatial Pattern Index (SPI) 0.0372 0.5420 0.4882 0.6978 0.7130
High-freq. Variation Ratio 33.11% 21.78% 23.03% 24.60% 29.88%
Mid-freq. Variation Ratio 33.23% 33.39% 33.40% 38.82% 34.70%
Low-freq. Variation Ratio 33.67% 44.84% 43.57% 36.58% 35.42%  

5.2.2 Wafer Metrology Data under Different Precision Levels 

  Real wafer metrology data from a local fab company are also collected for the methodology 

validation. Wafers after the post-exposure bake (PEB) process are usually measured by optical 

critical dimension (OCD) and scanning electron microscope (SEM), respectively. Although the 

measurement precision of OCD is better than SEM for the 65nm technology node, the recipe and 

library generation of OCD is more complicated and time consuming. Ke et al. (2005) proposed a 

concept on OCD-like CD SEM measurement which is said to be the average line width (ALW) 

or contact hole diameter (ACD) measurement at high resolution and low magnification CD SEM. 

These measurements, i.e. SEM CD, ALW/ACD, and OCD, manifest different significances of 

systematic variation of the same wafer due to the measuring precision. Therefore, the proposed 

SVS and SPI would be an appropriate way to analyze the systematic variations of wafers, and 

thus examine the precision of the measurements. 

  The spatial variation spectra of the three kinds of measurements and the control limits for the 

identification of the systematic variation of the spectra are calculated and plotted in Fig. 32 and 

Fig. 33. Then, the SPI’s and variation ratios are summarized in Table III. As shown in Fig. 33, 

the overall variation for the less-precise measurements, SEM CD, is much higher than those of 

ACD and OCD. This is because SEM CD consists of much noise, and thus the spatial pattern 

index (SPI = 0.3384) is much lower than the other two. The OCD which provides measurements 

with high precision exhibits a clear pattern on the contour map and a very high SPI (= 0.9465). 
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The phenomenon that the high-frequency spatial moving variances of OCD are smaller than that 

of ACD explains the ACD actually consists of more random noise than OCD. The high 

frequency variation ratios which decrease from SEM CD to OCD as the measurements are more 

precise also tell the same story. Moreover, a larger low-frequency variation ratio, as compared to 

that of the high or middle frequencies, indicates a clearer pattern with larger coverage of the 

wafer. 

  As a result, the SVS and its summarized indices can be used to examine the precision levels of 

different measuring methods for the wafer topography. The systematic and random variations of 

a wafer can be truthfully captured as the precision of measuring methods changes. 
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Fig. 32.  Analysis of spatial variation spectra for the real wafer metrology data under different precision levels. 
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Fig. 33. The identification of systematic variations for the real wafer metrology data under different precision levels. 

(The round shapes magnify the high-frequency parts of the spectra.) 

Table III.  SPI and variation ratios of real wafer metrology data under different precision levels. 

 SEM CD ACD OCD
Spatial Pattern Index (SPI ) 0.3384 0.7581 0.9465
High-freq. Variation Ratio 29.55% 25.60% 23.81%
Mid-freq. Variation Ratio 34.20% 35.16% 36.17%
Low-freq. Variation Ratio 36.25% 39.24% 40.02%  

5.2.3 Wafer Metrology Data with Checkerboard Pattern 

  Another set of wafer metrology data, CD’s from the step-and-scan system, are also analyzed. 

Checkerboard patterns are sometimes formed after the scanning process because the scanning 

direction of the tool which scans downward when exposing the odd-numbered chips (or fields) 

and upward while performing exposures on even-numbered ones (A. Wong et al., 2002). As can 
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be seen in Fig. 34, the two wafers not only consist of systematic patterns such as bowl (S1) and 

dome (S2), but also contain checkerboard patterns. The spectra of the two wafers are calculated 

and tested by the upper control limits in Fig. 35. The spatial pattern indices and variation ratios 

are listed in Table IV.  

  The alternative scanning effect of checkerboard pattern is considered to be characterized by the 

high-frequency spatial moving variances because the small-size spatial moving windows would 

cover the observations with alternative effect and show large sample variances. As can be seen in 

Fig. 35, the SVS starts higher than the upper control limit when the spatial variation frequency is 

very high (p=2), and immediately goes lower than the control limit as the frequency becomes 

lower (f increases). However, it again goes out of the control limit because the bowl or dome 

pattern soon takes over and impacts on the spectrum. A checkerboard pattern behaves more 

similar to a randomly distributed topography than the bowl/dome pattern does will distort the 

systematic patterns and result in lower SPI‘s (0.3 and 0.5244 in this case). However, it still can 

be identified by the high-frequency spatial moving variances through the proposed hypothesis 

test. 

S1 S2
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Fig. 34.  Analysis of spatial variation spectra for the real wafer topographies with checkerboard patterns. 
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Fig. 35.  The identification of systematic variations for the real wafer topographies with checkerboard patterns. (The 

round shapes magnify the high-frequency parts of the spectra.) 

Table IV.  SPI and variation ratios of real wafer topographies with checkerboard patterns. 

 S1 S2
Spatial Pattern Index (SPI) 0.3000 0.5244
High-freq. Variation Ratio 28.60% 24.97%
Mid-freq. Variation Ratio 35.09% 38.08%
Low-freq. Variation Ratio 36.31% 36.95%  
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Chapter 6 - Conclusion 

6.1 Preliminary Results 

  A novel estimation to data variation, i.e. the moving variance calculation, for temporal profiles 

and spatial topographies is proposed and applied, in particular, to the semiconductor engineering 

data in this research. The developed moving variance technique is utilized to be the basis of the 

estimation methods. With truthful variation estimation, methodologies for the monitor of tool 

condition and the characterization of systematic variation are developed and validated. 

  Firstly, the calculation of moving variance and covariance to estimate the variability underlying 

multiple SVIDs’ temporal profiles during a process run is developed. Then, the generalized 

moving variance is shown by both theoretical derivations and examples to be quite robust against 

the recipe changes. However, its insensitivity to pattern shifts and drifts of the temporal profiles 

also makes it incapable of detecting specific tool faults. The proposed indicator is thus a very 

good complementary to the existing FDC system to serve as an overall tool condition indicator. 

In this research, an EWMA control scheme to monitor the tool condition indicator is employed. 

A two-step diagnosis method is proposed to drill down the tool condition into two individual 

SVID variability and SVID interrelations. In 5.1.1, the change in the relationship between the gas 

flow and the throttle valve reading is found by the proposed tool condition diagnosis to cause the 

abnormal PECVD condition, which eventually leads to a tool event and a corresponding Life PM. 

In 5.1.2, the PVD nano-torr’s abnormal reading is also correctly detected by the indicator and 

disappears after Quarterly PM. Both cases show all the detected abnormalities are due-to PM-

related issues and the condition-based predictive maintenance could have been performed earlier. 
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  For the analysis of topographical spatial variation, a similar idea of calculating the moving 

variance for a temporal series of observations to reduce the estimate bias may be used for the 

spatial data. Instead of the moving variance of a temporal series, the sample variance is 

calculated for observations from a spatial area. A model-free spatial variance spectrum (SVS) to 

analyze the spatial metrology data is proposed so that any engineering problems and issues can 

be learned as early as possible through identification of systematic patterns. The SVS is generated 

by the spatial moving variances with different spatial window sizes. A hypothesis test has been 

developed based on the statistical properties of SVS to detect the existence of systematic 

variations. Spatial pattern index (SPI) and three variation ratios are also developed to provide 

engineers with a quick look at the systematic variations. Both hypothetical and actual metrology 

cases are used to validate the proposed methodology. Results show that systematic patterns can 

be truthfully characterized by the proposed SVS even for metrology with low precision levels and 

for the unusual checkerboard patterns. 

  It is worth noting that the metrology sites sampled on a wafer during production may not be 

uniformly distributed. For the proposed spatial moving variances to work in this case, the 

moving window p
iW , which consists of p random measurements including Mi and its p - 1 

neighboring measurements, should be now redefined as a circular area with the center at Mi and a 

radius r. Such an area-based moving window may cover indefinite numbers of observations. Let 

this area-based moving window be denoted as r
ic . By increasing r from 0 to the diameter of the 

wafer, R, we can still calculate the spatial moving variances for different frequencies f , which is 

now calculated as r2/R2. Using r
ic  as the moving window is to uphold the meaning of the 

variance spectrum where the spatial variation for smaller r’s indicate the high-frequency 
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variations and are usually generated by the noises while larger r’s represent the low to mid range 

of frequency and are typically produced by systematic patterns. With a limited number of 

sampling sites (usually five or nine sites sampled per wafer) during production, the SVS 

resolution becomes lower and the spatial variance analysis may not be as effective. However, 

compared to conventional analysis based on just the overall sample variance, the SVS still reveals 

more information about the spatial variations and its corresponding pattern indices still provide a 

quick look at the significance of systematic patterns, but are, of course, less truthful due to the 

low sampling resolution. 

6.2 Future Study 

  Despite the impact of recipe-change can be reduced and the systematic variation would be 

signified through applying the moving variance technique, pooling, i.e. taking the average of, the 

variances within moving windows, as calculated in (4), (5), and (14), will offset the high (or low) 

variances within minor moving windows such that the moving variance would be more 

insensitive to pattern changes. Sometimes, pattern-caused faults, such as a sudden ramp up/down 

in tool signals, signify critical tool abnormalities as well. As can be seen in the simulated 

example in Fig. 36, SVID X’ shows an abnormal profile with irregular ramp rate as compared to 

the normal profile of SVID X. The temporal moving variances for SVID X and X’ are 0.14 and 

0.21, respectively, which do not vary a lot while the underlying variance of pure noise is 0.09.  
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Fig. 36.  Two SVID profiles with different ramp rates. 

  Through looking into the moving-windown variances as shown in Fig. 37, the change of ramp 

rate did result in a few distinguishable variances which, however, are offset by pooling the 

variances altogether. Therefore, the moving statistics proposed in this research perform to be 

quite insensitive to pattern shifts and drifts usually caused by tool recipe changes or tool faults. 
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Fig. 37.  Moving-windown variances for SVID X and X’. 

  To detect abnormal patterns like DC shift or a change in ramp rate, conventional FDC practices 

select meaningful temporal-windows or process steps of SVID’s and summarize significant 

statistics to be the indicators. By monitoring these indicators, the abnormal patterns of SVID 

profiles can be captured. However, the indicators based on the pattern modeling method are too 

problem-specific to represent a tool condition. Instead, the nature of variance and/or covariance 

is more like an indication of the process run stability.  

  To complement the insufficiency of moving variance, another moving statistic is proposed to 

justify the situation when the pattern shift or drift occurs. As compared to the calculation of 

moving variance described in (4) or (14), which takes the average of all moving-windown 

variances, we calculate the variance of all moving-windown variances for SVID X given the 

moving window size p, denoted as VoVp,X. 
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where 2
X
jW

S  is the average of all moving-windown variances. Based on (27), the two variances of 

all moving-windown variances for SVID X and X’, denoted as VoVp,X and VoVp,X’, are 0.03 and 

0.31, which now become rather distinguishable. 

  For the spatial wafer topography, we can apply the same idea to extend the spatial variation 

spectrum as well. By calculating the VoVp’s for 2 ≤ p ≤ n, there will be another spectrum, defined 

as VoVS. Fig. 38 shows an example for the VoVS of the randomly distributed dataset used in Fig. 

10 (a randomly distributed wafer topography). As can be seen, the spectrum quickly decreases to 

nearly 0 as the spatial variation frequency (f) increases from 0. When the window size p=n, i.e. 

f=1, the VoVn = 0 because all the moving-windown variances are the same and all equal to the 

conventional sample variance. It is also reasonable to have the largest VoV at the smallest 

moving window, i.e. p=2. As there are only two observations in each of the moving windows, 

the overlap between moving windows is very limited. Therefore, the moving-windown variances 

of p=2 would vary a lot and their variance becomes the largest.  
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Fig. 38.  VoVS for a randomly distributed topography. 

  As a result, the further study is to apply variance of moving-windown variances to construct 

another variance/covariance matrix for the temporal tool parameters. The corresponding 

generalized statistic will be developed and its usefulness would be discussed. The properties of 

the VoVS calculated from wafer topography will be studied through mathematical treatments and 

simulated cases. Finally, we will investigate and argue if there exists any complementary 

property between the temporal/spatial moving variance and the variance of moving-windown 

variances in the applications of temporal and spatial datasets. 
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Appendix 

A. Proof for THEOREM 1 

  Since the expected value of the sample variance under the linear-drift pattern (6): 

)1(

])[()(

1

)(

)1(

])[()(
]

)1(

)(
[

)(

2
,

2222
,

222

2222

2

−
+

−
−
+

=

−
−

=
−

−
=

 



nn

Eia

n

Eia

nn

XEXEn

nn

XXn
E

SE

iXXiXX

iiii

X

εσεσ

,
12

)1(

)1(

)( 2
22

2
22

22
X

X
XX

ann

nn

iin
a σσσσ ++=+

−
−

=        (28) 

the estimate bias size by the conventional sample variance can be obtained as: 
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Following (28), it can be also shown that: 
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Therefore, 
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for a SVID X moving window size p < n. Following the same procedure above, it can be easily 

proved that 

2222 )()ˆ( YYYY SEE σσσ −<−  

for a SVID Y moving window size p<n. 

Similarly, because 
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the estimate bias size by the conventional sample covariance becomes: 
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Following (30), it can be shown that: 
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Since a ≠ 0; b ≠ 0 and p < n, we have 
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B. Proof for THEOREM 2 

  Since the expected value of the sample variance under the step-change pattern (8) 
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 the estimate bias by the conventional sample variance is: 
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The expected moving variance can be calculated as: 
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Because p≤min(n1, n2) where the moving windows from the 1st to the (n1−p+1)th and from the 

(n1+1)th to the (n−p+1)th will not contain the step change while each of the (n1−p+2)th,…,n1
th 

moving windows contains the step change. Therefore, following (34) we have 
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From the right-hand sides of (33) and (35), we obtain the following condition: 
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sample covariance under the step-change pattern (8) 
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the estimate bias by the conventional sample covariance is: 
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Under the condition (9), c≠0; d≠0 and p<n, it can be easily proved that 

XYXYXYXY SEE σσσ −<− )()ˆ( .         

C. Proof for Corollary 1 

  Substitute p=2 in (9),  
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Because p=2≤ min(n1, n2), n would be at least equal to or larger than 3. It can be easily seen that 

(40) holds when n≥3. In addition, the biases in (36) and (39) can be shown monotonically 

increasing with p and are minimized as p=2.        

D. The Simulation of Hypothetical Wafer Topography 

  To simulate the wafer topography, a set of spatial coordinate must be generated. Firstly, we 

define the coordinates ranged from -135 to 135mm with a 10mm interval for a 300mm wafer and 

get 28×28=784 grid points. After screening out the points which have radii larger than 140mm, 

616 points are left and settled to be the metrology sites for generating observations. The 

topographies contain x- and y-direction drifting patterns, denoted as mi(X) and mi(Y), can be 

generated as: 
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i s

m
aYm ε++= ,)(  for i=1, …, 616,       (42) 

where mx,i and my,i are the generated coordinates, a is a constant, s is a scalar, and εi, for i=1, …, 

616, are independent and follow an identical normal distribution with zero mean and variance σ2.  

  To generate the dome and donut patterns, cosine function is employed and the radii for all the 

616 points are calculated: 

2
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2
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The topographies with dome and donut patterns, denoted as mi(Dome) and mi(Donut), can be 

then generated as: 
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for i=1, …, 616, 

where k denotes a multiplier which magnifies/minifies the dome and donut pattern, and max(ri) 

and min(ri) return the maximal and minimal radii among ri’s in (43), for i=1, …, 616, 

respectively. 

  Lastly, the noise data is generated from N(0, σ2). In this research, a, s, and k are set to 50, 25, 

and 5, respectively. εi ‘s of examples in Section I~III are generated based on N(0, 1) while those 

in the first case study are generated by N(0, 4). 

E. Proof for THEOREM 3 

  Since the wafer spatial variations only consist of random variation, the sample variance within a 

moving window, i.e. 2
p

iW
S , can be expressed as: 
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,  is the average of observations within the moving window p

iW . It is 

known that the sample variance is an unbiased estimator of the variance, i.e. 
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Therefore, the expected value of spatial variance for window size p can be simply derived as: 
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As a result, if the spatial variations are only random noises as in (16) and (17), the expected 

values of the spatial moving variances for 2 ≤ p ≤ n must be all equal. That is, if the expected 

spatial moving variances are not all equal, then the spatial variations must consist of variations 

other than random noises.          

F. Proof for THEOREM 4 

Let )(,1 inM −  and 2
)(,1 inS −  denote the sample mean and variance based on n-1 random measurements 

wherein the ith random measurement, i.e. Mi, is excluded. It is straightforward to derive 

2
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n
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by replacing the overall sample mean M  in (1) with 

n

MnM
M nnn )(,1)1( −−+

=  (Casella and Berger, 2001). 

Similarly, the excluded measurement in (46) can be replaced by the other n-1 measurements in 

the metrology data, and we have the following equations: 
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We can then derive the following relation 

2
)1(,1

2
)1(,1

2
)(,1

2
)1(,11

2
)1(,11

2
)(,1 )(

1
)(

1
)(

1

−−−−

−−−−−

+++=

−−++−−+−−

nnnnn

nnnnnnn

SSS

MM
n

n
MM

n

n
MM

n

n






=

−
=

− =−−


n

i
in

n

i
ini SMM

n

n

1

2
)(,1

1

2
)(,1 )(

1
       (48) 

by expanding the sample variances in (47) with the conventional calculation of sample variances, 

that is: 
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If all the RHS’s in (47) are summed up, we get: 



 

76 

 







=
−

=
−

=
−

=
−

=
−

−−

−−−−−

−−

−=

+−=

−−+−=

−−+−+

+

−−+−+

−−+−=

−

n

i
in

n

i
in

n

i
in

n

i
ini

n

i
in

nn

nnnnn

nnnnn

Sn

SSn

MM
n

n
Sn

MM
n

n
Sn

MM
n

n
Sn

MM
n

n
Sn

Snn

1

2
)(,1

1

2
)(,1

1

2
)(,1

1

2
)(,1

1

2
)(,1

2
)1(,11

2
)1(,1

2
)1(,11

2
)1(,1

2
)(,1

2
)(,1

2

)1(

)2(

)(
1

)2(

)(
1

)2(   

   

)(
1

)2(   

)(
1

)2(

)1(



 


=

−=
n

i
inS

n
S

1

2
)(,1

2 1
          (49) 

Given p=n-1 in (18), we have 
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which is identical to (49). 

Each 2
)(,1 inS −  can be further expressed in terms of the sample variances of the samples with n-2 

measurements, and (49) becomes: 
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where 2
),(,2 jinS −  denotes the sample variance based on n-2 random measurements wherein the ith 

and jth measurements are both excluded. Each 2
),(,2 jinS −  in the RHS of (50) is repeatedly 

calculated, ex: 2
)2,1(,2−nS  and 2

)1,2(,2−nS  are identical and counted. Therefore, (50) can be revised as: 
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which is also identical to (18) with p=n-2. 

By applying the result in (49) recursively, THEOREM 4 is proved.     

G. Reasoning for Conjecture 1 

To reason Conjecture 1, in addition to the inspiration by THEOREM 4, Monte-Carlo simulations 

are performed to study the distributions of the spatial moving variances. 100,000 randomly 

distributed wafers are generated from N(0, 1), and their spectra are calculated accordingly. One 

can draw a histogram and perform goodness of fit test to see how the distribution of the 100,000 

spatial moving variances fit to the chi-square distributions. Here, we use p=2 and 308 (n=616) as 

two examples to show how they resemble the chi-square distribution. Fig. 39(a) and (b) show the 

histograms fit to the chi-square distributions and the p-values of the chi-square goodness of fit 

tests. The p-values are all near zero and the histograms look perfectly fit to the chi-square 

distribution curves for both p=2 and 308 (f=0.0032 and 0.5).     
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(a) f = 0.0032, Distribution: Chi-Square
Chi-Square test = 189.64687, p = 0.00000
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(b) f = 0.5, Distribution: Chi-Square
Chi-Square test = 236.63442, p = 0.00000
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Fig. 39.  Histograms of the simulated spatial moving variances under spatial variation frequencies: (a) f = 0.0032 (p 

= 2); (b) f = 0.5 (p = 308). 
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