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Abstract

Investigation of system variation is always critical to process/equipment optimization and yield
enhancement in semiconductor manufacturing. Conventional variation estimate, usually the
sample variance, cannot truthfully reveal the random variation if data exhibits a patterned profile
or is of non-stationary distribution. The biased random variation estimate could then impact the
subsequent analysis greatly. In this research, the concept of moving variance, which calculates
the variance of a small number of consecutive/adjacent observations within a temporal/spatial
moving window, is proposed to eliminate the impact of the pattern-induced (systematic)
variation. By applying the moving variance technique to temporal profiles, such as the process
states or tool signals, the tool condition can be evaluated by the proposed tool condition indicator.
When dealing with spatial topography,/such as th_p __wafer metrology data, systematic variations
can be identified and characterized by, the proji:esed spatial variation spectrum (SVS) comprised

I :
of the spatial moving variances. Diagnosisl ﬁletffédolldgies. are developed to facilitate uncovering
abnormal tool conditions or systematic patterns. Pr_cl)p':e:rties and theories are studied as well to
justify how the moving variance outperforms the conventional sample variance. With the tool
condition indicator, possible tool faults can be identified and proper maintenance measures can
be scheduled accordingly. With the SV'S and its summarized indices, systematic variations can be
characterized and the causal analysis for finding root causes can be further explored. The

proposed methodologies are further validated through the real cases provided by local

semiconductor companies.

Keywords: fault detection and classification (FDC), moving variance, tool condition indicator,

spatial variation, systematic variation, random variation, wafer CD metrology.
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Chapter 1 - Introduction

1.1 Background and Motivations

With improvement of sensor and information technology, modern semiconductor
manufacturing facilities now generate enormous amount of tool parameters, such as voltage,
temperature, and wafer metrology data, such as critical dimension (CD), which all must be
analyzed quickly and effectively for the process/equipment optimization and circuit design. To
characterize the tool condition or process stability, the investigation of data variation within tool
parameters or wafer metrology data is the key point, in particular, when the fabrication

technology continues to advance.

In practice, sample variance of a dataset is usually used as the estimation of data variation.

However, if the mean level of the data chéﬁgés frequently or the data distribution is non-

F s

stationary, the sample variance easily géts [;i'ase_d'. Unfbrtunately, shifted mean level and
heterogeneous data distribution are co@only encountéred during the analyses of semiconductor
manufacturing data, such as the chamber temperature trends up to a steady state and then trends
down according to the tool recipe. Before analyzing the variation of collected data, engineers
usually need to pre-process it to get a homogeneous dataset or select the stable part of data for

simplicity, both of which would possibly distort the real variation.

As the study of variation serves to be the important basis of every analysis activity for finding
the root causes of yield loss, to truthfully reveal the data variation becomes an extremely critical

issue for process control and circuit design and has motivated this research.



1.2 Problem Description and Research Objective

Nowadays, even with the highly automated and precisely monitored equipments used in a
nearly dust-free clean room and operated with well-trained engineers, the occurrence of process
abnormality and metrology non-uniformity still can’t be avoided. With the large amount of
manufacturing data collected, characterization of tool condition and wafer metrology uniformity
should be carried out faithfully and efficiently. Among all of the statistical properties, sample
variance of data is usually the first and the most frequently studied statistic to perform the system

analyses.

The calculation of sample variance, denoted-assS>, is well-known and written in the following

equation:

Z (Mi _Mi)z 5"

§P=r : T . - (1)
n—1 | ==

where M; is the i™ random sample in the collected dataset, n denotes the number of random

samples, and M, is the average of the n random samples. If the mean or variance within the data

does not change at all, i.e. the data distribution is stationary, the sample variance is good enough
to estimate the data variation statistically. However, semiconductor manufacturing data such as
tool parameters and wafer metrology data always exhibit non-stationary profiles. To avoid
getting a biased variation estimate, techniques for preprocessing the temporal signal data and
spatial metrology data have been developed separately by engineers. Nevertheless, it would be
time-consuming to identify the non-stationary properties in order to have proper methodologies
developed and applied to the data, and not to mention the process data and wafer metrology are

collected under distinct fundamentals.



In practice, the tool parameters are collected along the time dimension as the wafer is processed
and can be demonstrated as a temporal profile while the metrology data is measured from the
sampling sites on the wafer surface and is displayed as a spatial topography. To estimate the
variation of a non-stationary temporal profile, engineers usually set temporal windows within a
process run and calculate summarized indicators, such maximum, minimum, average, and
variance of the observations within every temporal window. The tool condition is then monitored
based on these summarize indicators. To characterize the variation of a non-stationary spatial
topography such as wafer metrology, spatial patterns on the wafer topography are usually
contrasted with a set of known systematic patterns based on engineering knowledge. The causal

analysis for finding the causes to abnormalities can.be done based on the identified pattern.

However, handling both temporal and spa_tia} daga._re(iuires_ a lot of manual efforts and domain

knowledge and still might not be -able to reﬁif‘eai .the data +variation truthfully. Therefore, the
1 h :

objective of this research is to develbp a ng\i/el é;s'.tinlla.'tion.to the non-stationary data collected no

matter from processing tools or wafer metrologies. II; p:filrticular, practitioners do not need to trim

or transform the data in order to get a stationary distribution for further statistical analyses. The

basic idea of this research is to propose a moving variance, which is calculated using a small

number of consecutive (or adjacent) observations in a temporal (or spatial) moving window, such

that the effect of pattern-induced variation can be removed.

With development and application of moving variance to the temporal process data, the tool
condition can be evaluated based on the better estimate of tool variability. A tool condition
indicator is then proposed to monitor the tool condition and identify tool faults. On the other
hand, the systematic patterns on the wafer topography can be characterized by applying the

moving variance technique to the spatial metrology data. Methodology for the identification of
3



significant patterns on wafer topography would be developed as well. In summary, a truthful
estimation to data variation and its properties will be studied, and the application methodologies

will be developed according in this research.

1.3 Research Framework

In the following chapters, literatures in relation to conventional characterization of the variation
of temporal and spatial data are firstly reviewed. Then the moving variance is developed and the
methodologies for applying moving variance to temporal and spatial data are described in
chapter 3 and 4, respectively. Case studies are demonstrated in chapter 5 and the preliminary

results and future work will be discussed inrchapter 6. The organization of this research is
*'_ .;_'..;:'._ .; )
\.\E \-__"{ . " b
- N\

Study the related works about variation estimates of
temporal and spatial data, in particular, the
applications to semiconductor industry.

described in Fig. 1. & '/
.ﬁ’-"@

. . e
Literature Review |

Applying the developed methodologies to real

fabrication tool data and wafer metrology.

Discuss the pending problems in the current progress

Future Research and the futureresearch plan.

Fig. 1. The framework of this research.



Chapter 2 - Literature Review and Preliminary Thoughts

In this chapter, the related works of analyzing temporal tool parameters for the evaluation of
tool condition are firstly reviewed. Then, the literatures which discuss spatial variation for the

pattern characterization within wafer topography are studied.

2.1 Analysis of Temporal Tool Parameters

Advanced sensor and information technologies have made real-time tool data readily accessible
to tool and process engineers. A significant number of tool parameters (Status Variable
Identifications, SVID’s) is collected during wafer processing and a large amount of tool data is
acquired and available for fault detection’and ¢lassification (FDC). Many IC makers have
substantially improved the process capabil_i_tiqs b}_’ implementing FDC. With the real-time tool
data, one can also evaluate the owverall toc;l.. gé;idition so that tool maintenance can be more
effectively scheduled and the post-m'aintenlarllce %601 gbnditidn can be more easily qualified.

Conventional FDC techniques usually réquire data preprocessing procedures including setting
temporal windows to signify steps within a process run and calculating summarized indicators,
such as maximum, minimum, average and standard deviation of each SVID’s observations in
every temporal window. Model-based statistical process control (SPC) schemes are then used to
model the temporal patterns and to monitor and detect shifts or drifts in the tool signals (Yue and
Tomoyasu, 2004, Lacaille and Zagrebnov, 2007, and He and Wang, 2007). However, the FDC
indicators based on pattern modeling for specific recipes are not suitable to represent the overall
tool condition, which should be independent of recipe changes or even assignable causes of local

faults. The purpose of this research is not to detect specific tool faults, as the FDC technique



does, but rather to propose a recipe-independent tool condition indicator and diagnosis

methodologies.

To characterize the tool condition, various types of tool data should be accounted for. With the
modern sensors built in the advanced processing tool, there are usually tens or even hundreds of
tool parameters (SVID’s) collected. If the large amount of real-time tool data can be properly
prepared and examined, one should be able to evaluate the overall tool condition for effective
tool predictive maintenance (PM) schedule and for qualification of the post-maintenance tool
condition. It’s always a great challenge to look at so many SVIDs’ real-time data all together.
Gertsbakh (1977) has proposed using Discriminant Analysis to find a linear combination
function of tool parameters that best d?stinguishéé- between a “good” tool and a “failed” one.
Similar to Discriminant Analysis, a linc_ar‘ co_r'nbin.ation_ function of parameters with the
maximum contribution to the tool cendition can:%e ;found through Principal Component Analysis

R :
or Singular Value Decomposition (Stgmgt:is o al.?.'1992).' However, the frequent change of
recipes and the diversity of operations. still:make tllle.::overall tool condition evaluation a very

difficult task.

The difficulties described above have motivated this research to focus on consolidating the
large number of SVID’s into a single tool condition indicator robust to the operation/recipe
changes. Not only should the indicator be able to provide an easy reading for engineers to have a
quick idea on the tool’s overall performance, it should also serve as the basis for condition-based
PM schedule. In this research, we attempt to propose a moving statistic to minimize the effect of
operation/recipe changes. Then, the concept of evaluating the tool condition by observing the
distribution of the tool parameters’ readings (Chen et al., 1998, and Chen and Wu, 2007) is

employed. A tool condition evaluating method is thus proposed based on the ideas of
6



multivariate generalized variance (Johnson, 2002). In addition, the effect of operation/recipe

changes will be minimized by using the moving statistics.

With the tool condition indicator available, the exponentially weighted moving average
(EWMA) control scheme is employed to detect tool condition excursion. A two-step diagnosis
method to find the causes of the abnormalities is then developed. The first step is to decompose
the generalized variance into two parts: one is the variance and the other is covariance. The
second step is to detect the anomalies of the SVID variability and/or relationships by observing
the variance and covariance trends within the process run to discover the root cause and to

predict the tool condition excursion.

2.2 Analysis of Spatial Wafer Topography

As the metrology technology continues to adv;gce, more and more wafer data must be analyzed
quickly and efficiently for monitoring aﬁd cl-g]-;ltrolling the fabrication processes. The wafer
spatial variations study is a key to yieid er_l:hancemen-t especially when the fabrication technology
enters the 32nm node. Therefore, the study of sf)atial variation becomes critical to both process
control and circuit design (Stine et al., 1997, Boning and Chung, 1996). In doing this, the
systematic and random components, both of which contribute to the spatial variations, must be

identified before the root cause of yield loss can be found and removed.

Kibarian et al. (1991) examine the spatial dependencies (referred to as spatial correlations) of
the process parameters, such as polysilicon line width and film thickness, on circuit testing data.
Mozumder and Lowenstein (1992), and Guo and Sachs (1993) model the within-wafer variation
based on multiple response surface methods while Smith et al. (1998) compare it with the single

response surface methods. Boning and Chung (1996) describe the concept of statistical

7



metrology and the decomposition of spatial variations into wafer-to-wafer, die-to-die, site-to-site
variations, and residuals. Stine et al. (1997) characterize the wafer-level, die-level, and wafer-die
spatial variations for correlation studies. The literatures extracting and characterizing the spatial
variations can be mainly categorized into two groups (Vanoppen et al., 2001). In one group, the
variation is separated into variance components by employing methods such as analysis of
variance (ANOVA) or Fourier transform. The other group identifies the distinct exemplar-based
variation patterns and analyzes the impact of these factors through proper decomposition of the

wafer and yield data.

To characterize the wafer-level or die-level variance components, ANOVA methods are
widely applied (Stine ef al., 1996, and~Zimmerm'a'n et_aly 2000, and Cain and Spanos, 2003).
Significance of the components can;be‘then Fankgzd fo.r forther causal analysis. At the process
level, Steele et al. (2002) assume the t(f)t.;.z;‘,ljf"%é;fi.tical dimension (CD) variation to be the
combination of independent Variah?g c:.ou;mp;ﬁent.s: from.' coating, developing, and baking
processes and use design of experiments to model arlld.:hnderstand the CD uniformity issues. Yu
et al. (1995) employ the fast Fourier transform (FFT) to decompose the wafer CD’s spatial
variations into wafer spatial patterns or residual variations. Ye et al. (1995) and Han et al. (1997)
analyze the pattern generator-induced mask CD errors in the spatial frequency domain and
identify error contributors using the Fourier transform. Ouyang et al. (1998, 1999) identify the
amplitude excursions in the spatial frequency domain of CD’s using the spatial Fourier transform
(SFT). By applying an inverse SFT, the variance components can be separated and used to
explain the systematic and random errors in spatial variations. The idea of transforming

observations in the space domain to a spectrum in the frequency domain is very useful for

understanding the natures of the spatial variations. In particular, the low-frequency parts of the

8



spectra are usually considered caused by the systematic patterns while the high-frequency part is
believed to be a result of the noise in the space domain (Yu et al., 1995, and Ouyang ef al., 1998,
and 1999). However, the FFT/SFT is not able to reduce the domain dimension. For example, the
two-dimensional spatial wafer metrology data remains two-dimensional after transforming to the
frequency domain by the SFT. Moreover, the statistical properties of the SFT spectrum in the
frequency domain are not clear enough to construct a hypothesis test for identifying the existence

of systematic variations.

Systematic wafer spatial variations usually form patterns on the two-dimensional wafer map.
The advancement of information technology has helped enhance the 2-D/3-D visualization of the
wafer metrology data and thus facilita‘fe the causal analysis when studying spatial variations.
Wong et al. (2002) propose a three=step methodqlogy. torcharacterize the line-width variation.
Spatial analysis first decomposes the CD’SE m"‘étmlogy data*into several variance components.
Causes with similar spatial signatﬁ{e:.s, déﬁn:d baéed .oﬁ' engineering knowledge, are then
classified by contributor-specific measurements._Unz;nf:i:cipated components are finally classified
as residuals. Vanoppen et al. (2001) apply the methodology for breaking down and ranking of
the systematic sources of line-width variations. Evaluation of the exposure tool performance in
relation to the contributors of line-width variation is also presented. Burch et a/. (2008) and Inani
et al. (2006) recently propose a failure signal detection algorithm (FSDA) which serves as a yield
fault detection and diagnosis solution integrating several practical data mining techniques and
engineering data analysis methods. FSDA first identifies the known failure metrics and
spatial/reticle zones in preparation of wafer data. Wafers with similar patterns are then clustered

together. Characteristics of the patterned clusters are used for the drilldown yield analysis to

identify the root causes of yield loss.



Most existing methods discussed above, no matter pre-assuming the variance components or
pre-defining the exemplar variation patterns, require knowing related issues/faults of the
process/tool in advance and categorize the unexplained parts as residuals. Engineering
knowledge is definitely helpful in analyzing the variation components for specific failure types.
However, engineering knowledge is usually acquired through a high-price learning process
where faults or yield losses are found in the later stages of fabrication with corresponding
engineering causes learned to locate in the much earlier stages. In fact, any systematic pattern
must be associated with certain physical issues. The engineering knowledge can thus be
established through relating the data excursion to the out-of-control processes. It is our belief that
we should have the data reveals itself asimuch as pqssible so that the corresponding engineering
knowledge can be learned as early as ioossible. Therefore, a model-free methodology without
priori knowledge to reveal systematic pa‘.[‘.fer‘jr_lgn L-_if_s_'..propose.d in this research so that possible

problems and respective knowledge-ecan be'llearr'fgd immediately after they occur.

Since the pattern-dependent uniformity is thouglht.::to reveal critical information about the
spatial variation, a novel spatial variation spectrum (SVS) generated based on the calculation of
spatial moving variances to characterize the spatial variations is proposed. The SVS, which
manifests the significance of the topographical systematic patterns, will be further summarized
as an overall systematic pattern index based on the formation of the spectrum. The objective of
this research is to provide the methodology for faithfully summarizing spatial topography into

reasonable indices which thus makes the further causal analyses more efficiently.
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Chapter 3 - Variation Estimation for Temporal Tool Parameters

The idea of tool condition evaluation based on data distribution is firstly introduced in this
chapter. Moving variance and covariance statistics are then proposed and consolidated to
evaluate the tool condition. The EWMA control scheme and a two-step procedure are employed

and developed to identify the root causes to the abnormalities.

3.1 Distribution-based Tool Condition Evaluation

To evaluate a process’s performance by comparing the distribution of the multiple product
quality characteristics against their specifications, a measure known as multivariate process
capability indices (PCI’s) is usually employed (Taam et a/., 1993, and Kotz and Johnson, 1993).

The following equation shows the idea ofthe multivariate process capability indices:

C = volume of specification region= =
? volume of region containing 99:73% of distribution =

The same idea is used to a machine capability index (MCI) for evaluating the tool condition by

Chen and Wu (2000 and 2007).

In reality, to estimate and obtain the specification region requires prior engineering knowledge
about the equipment behavior. For example, the chamber pressure is controlled by the throttle
valve and flow rates of various gases. The pressure level and the flow rates are usually set by the
recipe. The throttle valve is then manipulated by an internal control loop to attain the target
pressure level. Even for a given recipe, it’s still quite a difficult task to set the specifications for
the throttle valve. It’s even more difficult to find its relationship with the pressure to form an

elliptical spec region. Some works (see, for example, Taam et al., 1993, and Chen and Tsai, 2004)

11



have tried to establish the specification regions. However, in the high-mix production
environment, it’s just not practical to set specification regions for hundreds or even thousands of

recipes and modify them each time certain tool maintenance is performed.

To borrow the idea of using the multivariate distribution as the tool performance and to keep
away from the difficulties of setting the specification regions for all SVID’s, recipes, and tools, a
statistical measure known as generalized variance (Johnson, 2002) is proposed. Generalized
variance, the determinant of the covariance matrix, is in effect proportional to the volume of data
distributed in the multi-dimensional variable space and can be used to measure the dispersion of
a tool’s variability during a process run. The basic assumption here is that there should be a
regular size of data distribution under a normal ‘process run. When a tool condition becomes
unstable, the distribution of SVID’§;grows. le}rge_g. By taking the determinant, the generalized

variance is also able to consolidate the large ameunt of tool data into a single indicator.
1l R

Variances of individual SVID’s and tlie: covaria'nc_? émong SVID’s, i.e., elements of the
generalized variance, are all greatly affected by the .temporal profiles of SVID’s. Different
recipes directly result in different temporal profiles. Recipes, however, are changed frequently
during production and should not be accounted an impact factor on tool condition. This research
proposes to use the moving variance and covariance, of which properties will be studied to
minimize the effect of temporal profiles and, thus, to avoid the influence of recipe changes. The
tool condition indicator is then calculated by taking the determinant of the moving covariance

matrix and is called a generalized moving variance.

12



3.1.1 Moving Variance and Covariance

Tool condition depends greatly on the variability of tool parameters during wafer processing.
Each processing step, no matter it’s a temperature ramp-up step or a deposition step, the smaller
the variability the better the tool condition. However, conventional calculation of sample
variance and covariance is quite sensitive to the non-stationary pattern displayed in each SVID’s
temporal profile. The pattern often incurs a bias in estimation of the tool variability. The non-
stationary patterns are distinct not only among different SVID’s but also from one recipe to
another. Fig. 2 and Fig. 3 show two distinct profile patterns of a tool SVID X under two recipes
(A and B). A variance/covariance estimate independent of recipe changes is thus critically
needed to more faithfully reflect the toql’s real variability: In this research, we propose to use the

pooled moving variance/covariance,.which are calculated using a small number of consecutive

"I

observations in a moving time window, to bfewz @;éstimates of the tool variability. The proposed

Il M :
estimate will be shown model-freed and midimiifng the effect of the patterns.
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Fig. 2. Profile of SVID X under Recipe A.
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Fig. 3: Proﬁ1e|<Jf ﬁDﬂXilunder Recipe B.
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Assume that there are two SVID’s, X" an(k Y, with true Vériability represented by variances o7}
and o, , respectively, and covariance, oxy. Bach SVID collects n sample data from a process run

under a specific recipe. That is, two corresponding temporal series of random samples, Xj, X5, ...,
X,and Y, 15, ..., Y, are collected for SVID X and Y. The sampling rate of SVID observations is

assumed constant; i.e., time intervals between any two successive observations are assumed
equal and fixed. Our attempt now is to estimate the true tool variability, o, o, and Oxy, using

the two temporal series of observations. The conventional estimates are the sample variance,

which is similar to (1), and covariance:

Sy =+ ; Sy =+ ; and )
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> (X, = )1 -1

n—1

3)

Sy =

where X and Y represents the averages of the two series, respectively.

With patterns inherent in the temporal profiles, the above estimation could be quite inaccurate.
In the literature, models are usually built first to describe the patterns. Variability is then
estimated using the model residuals. This sort of estimates is, however, model-based and
ineffective because the models themselves are sensitive to operation/recipe changes. To
minimize the effects of patterns and to find the true variability without modeling the patterns, we

propose using moving variance and covariance based on the following moving windows of size p

(<n):
W ={X,,... X}, W, :{Xz’--"Xp+1}"';‘;W%';_;'}f'=:{X
: [fa ||

NN 1
VV]Y :{K""’Yp}9Wv2Y:{)727"'5Yp+1}9“.,WYi ={Y

., X,},and

n=p+1°>°°

Y } for the temporal series of SVID

5in—p+l n—pHat 2o

X and Y, respectively.

The sample variance is then calculated for each of the moving windows. A total of n—p+1
sample variances are obtained for each SVID temporal series. These sample variances can be

now pooled together to obtain a moving sample variance for each SVID, that is,

1 n—p+1
6i=———Y'52, for SVID Xand
Y on-p+l ; ;
oo L N forsviD v, )
n-p+1 "
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. th . .
where SVZVX and SVZVY are sample variances calculated for the /" moving windows WjX and ij ,
J J

respectively.

Likewise, a moving covariance can be obtained by pooling together the sample covariance

calculated from the n—p+1 moving windows:

1 n—p+1

2 S (5)

=

Goo=—
o n—p+1

where S;/.Xw?' is the sample covariance calculated using the random samples in the /™ pair of

moving windows #;* and W;".

3.1.2 Effects of Patterns

To show that the proposed moving statistics-are-tclatively tobust against the patterns of SVID
T . :
temporal profiles, we first define two Patterh elements: Jinear drift and step change. The pattern

of a SVID temporal profile can be seen-as formed by ségments of linear drifts with step changes

in between any two successive segments.

We first look at the linear drifts. Linear-drift patterns of SVID X and SVID Y can be

characterized by a linear function of the observation count i during the process run:

X, _|aoy |, .
= i+g, fori=1,.....n, (6)
Y, bo,

1

where a#0 and b#0 are the amounts of drifts, expressed by proportions of oy and oy, between

two successive observations of SVID X and SVID Y, respectively and
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SY i

£, .
g, ={ X"} for i=1,....,n (7

are independent and follow an identical bivariate normal distribution with the mean vector equal

to 0 and covariance matrix
2
O-X O-XY
O-XY o-Y
2 is the true process variability that can be used to evaluate the tool condition and that we intend

to estimate.

THEOREM 1. By setting the size (p) of the moving window smaller than the number (n) of
observations in one process run, the moving variance, and covariance in (4) and (5) as the

estimates of the true variability X under the Hiif;é.it—drift pattern defined in (6) have smaller bias
T . -
than the conventional sample variance and covatiance/have. That is,

E(é-)z()_a)z( <E(S)2()_O-)2(; E(é-y)_o-}% <E(S}%)_O;)2’; and |E(6-XY)_GXY|<|E(SXY)_GXY|'
Proof: see Appendix A.

Corollary 1. With p = 2, the estimate bias of the true variability X under the linear-drift pattern

defined in (6) is minimized by the moving variance and covariance in (4) and (5).
Proof: This result can be easily obtained from (29) and (31) in Appendix A. O

Now, we define the step-change patterns of SVID X and Y by a step function of the observation

count i:

17



{X} g fori=1,..,n

=!|co
{c X}+si fori=n, +1,..,n (®)
do,

where 0<n<n; c#0 and d#0 are the step-change sizes, expressed by proportions of oy and oy, at
the (n,+1)™ observations in the temporal series of SVID X and SVID Y, respectively; that is,
there are n; observations taken before the step change while the following n,(=n-n;) observations
have a constant mean difference from the previous n; observations. The i.i.d. & for i=1, ..., n are
as defined as in (7) with a variance/covariance matrix X representing the tool variability to be

estimated.

THEOREM 2. By setting the size (p) of-the rhoving window smaller than the number of

observations before and after the step c¢hange during oneprocess run, i.e., p < min(ny, ny), and

\ e

such that =
.‘E \

p+l <”1(n_n1)

6(n—p+1)  nn-1) "~ 2

the moving variance and covariance in (4) and (5) as the estimates of the true variability ¥ under
the step-change pattern (8) have smaller biases than the conventional sample variance and

covariance have. That is,
E(6})-0% < E(S1)- 0% E(6})-07 < E(S) 07 and [E(G )~ 0| <[E(S,)~ 0.
Proof: see Appendix B.

Corollary 2. With p = 2, the estimate bias of the true variability ¥ under the step-change pattern

(8) is minimized by the moving variance and covariance in (4) and (5).
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Proof: see Appendix C.

Now, back to the examples in Fig. 2 and Fig. 3, though the SVID exhibits distinct temporal
profiles under two different recipes, the estimate biases, 1.87 and 2.05, by the sample moving
variance are small while estimate the biases, 27.73 and 37.32, by the conventional sample
variances are much larger. Fig. 4 and Fig. 5 illustrate the temporal profiles of two SVID’s, X and
Y, under recipe A and B, respectively. Again, the estimate biases, 0.19 and 0.27, by the sample
moving covariances of SVID X and Y appear quite small while the estimate biases, 20.62 and

30.77, by the conventional sample variances are much larger.
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Fig. 4. Profiles of SVID X and Y under recipe A.
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With the above moving variances o@g vafiances, a moving variance/covariance
' Ya ionel B
. . &0 '
matrix S for a tool with v SVID’s can-be the ulated: '
= et e N
.—_e-_( oy ___:‘ '\-:s.-" _.-1I
Q. < o b= _l_:.L
o A A ey e oL
0, Op o, —
OA_ZI 6-22
S= .
O-vl O-vv

The generalized moving variance is then the determinant of S and is used as the tool condition

indicator. The steps to generate a sequence of indicator values to monitor the tool condition are

summarized in Fig. 6.
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For each processed wafer, prepare its FDC data consisting of v
SVID’s with n observations for each SVID.

Calculate det(S) for each wafer.

Monitor the tool condition, i.e. the det(S) by statistical control
chart.

iy o

Fig. 6. Steps to monitor the tool cdhﬁi_tiorii;jf the_g’éneralized moving variances.
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3.2 Tool Condition Monitoring and Diagnosis '
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Tool condition diagnosis can heip det@ﬁ}‘n e tl{%ty(\ ofn.toel maintenance to be performed when

the tool condition is found unstable_'-o.i_f%t;ﬁo ma _*.::T@l‘l é,ntlfythe abnormal patterns shown by the
tool condition indicator, statistical c;.)lftroli ch'a_rt’s:; ea'n....be employed. Here, the well-known
Exponentially Weighted Moving Average (EWMA) control scheme (Lucas and Saccucci, 1990,
and Borror et al., 1999) is adopted to detect the tool condition excursion. Let 4; be the tool

condition indicator, i.e., the generalized moving variance, for wafer k. The EWMA statistic, Z;,,

of the tool condition indicator for wafer & is calculated as follows:
Zir = A + (1 - 1)z, (10)
where 4 (0< /1 <1) is the smoothing constant.

The steady-state EWMA control limits are:

21



UCL:;LA+IO'A,/2/1/1 and LCL:,uA—laM/%, (11)

where x4 and o4 are the mean and standard deviation of in-control A4.’s, and / determines the
width of the control window. For a standard Shewhart control chart (Montgomery, 2005) and
data following the normal distribution, the average run length (ARL) with 3¢ is known to be
370.4. Since Ay is not likely to be the normal distribution, we may follow suggestions by Borror
et al. (1999) to use /=2.492, 2.703, and 2.86 with corresponding A=0.05, 0.1, and 0.2,
respectively, for the EWMA control scheme to obtain approximately the same ARL=370.4. In
this research, after discussions with process engineers and experiments from the actual
production data, we set A=0.05 and [=4‘for a lower false alarm rate acceptable to the
semiconductor manufacturing practiee. The__setting of the EWMA control scheme should not be
fixed across all tool types and situations and sfmuld be adjusted according to the natures of the
tool processes, which in turn affect the flla_l!se glzarn?"rate, and by intensive discussions among

engineers.

To investigate the unstable or abnormal tool condition, a two-step diagnosis method is
developed. The first step is to decompose the generalized moving variance into two parts: one is
the moving variance and the other is moving covariance. Given a tool with v SVID’s, a moving

variance/covariance matrix S,

0, Op = Oy
S— 0y Oy
O-vl Ry ce O-vv
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can be calculated for each processed wafer. We can set all the moving covariances on the off-
diagonal to 0’s and then take the determinant of the new matrix D, which is in effect the

multiplication of all moving variances, to be an indicator which only considers SVID variability.

6, 0 - 0
1o 6y,
B 0 . 0

0 0 6

v

To consider the SVID interrelation, the influence of moving variance within S, i.e. the effect of
D, should be removed. Thus, another matrix R, which depends solely on the relationships among

SVID’s, is proposed:

1 0-12 o-lv ;
0,0, 0'1_«15 e
1 1 0, 1 %, "’:
R=(D)S(D) *=| 5 5. 2 dIE:
O-vl 1
_6-116-vv i n

With D and R, the property: det(S)=det(D)det(R) can be directly obtained from the

relationship between the determinants of variance/covariance matrix and correlation matrix,

which is:

1 1

det(R) = det[(D) *S(D) 2] = det(D *)det(S)det(D 2) = 3t(5) det(D)

The determinant of R, which is actually the ratio of determinant of S to that of D, is then used as
the indicator that considers SVID interrelation only. It can be seen that the product of two

decomposed indicators will be exactly the same as the proposed tool condition indicator.
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With the decomposition of the generalized moving variance in the first step, the cause of the
tool condition excursion can be identified to be the SVID variability or the SVID interrelation. If
the tool condition excursion results from the SVID variability, the second step is to one by one
investigate all the sample variances which constitute a moving variance for one SVID as shown

in (4), for example,

Sprs Syt Sy for SVID X,

Similarly, we can one by one investigate the sample covariances within a moving covariance for

a pair of SVID as shown in (5), for example,

Sy s S>> Sy for SVID.Xand Yo,

n—p+1"" n—p+1

if the tool condition excursion results from thc;SVID interrelation. The main purpose of second
Il M |} :
step is to discover the abnormal SVID variability-and/or interrelations among SVID’s.

By using the proposed two-step diagnosis methiod, ‘one can analyze the abnormal tool condition
to identify the root causes as unstable variability of SVID’s or abnormal relations among SVID’s
are observed. Furthermore, the profiles of SVID’s can be checked to get the full explanations for

the abnormal tool condition.
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Chapter 4 - Variation Estimation for Spatial Topography Data

The variation within spatial topography data usually manifests systematic patterns visually on
the topography. Since the pattern-dependent uniformities are thought to manifest critical
information about the spatial variation, a novel spatial variation spectrum (SVS) generated based
on the calculation of spatial moving variance is proposed to characterize the spatial variations.
The SVS, which reveals the significance of the topographical systematic patterns, is further
summarized as an overall systematic pattern index based on the formation of the spectrum. The
index provides a quick understanding of the systematic patterns displayed in the wafer
topography and can be explained by three levels of variation frequency ratios: high, middle, and
low.

4.1 Characterization of Spatial Variati_gn'. 2

Assume that #» random measurements, Slflchf%as the thickness or linewidth, are taken from
sampled metrology sites. M; denotes £He zth random ﬁe-asurements at the metrology site with an
Euclidian coordinate (m, ;, m, ;) on the wafer (tile origin is referred to the center of the wafer).
As can be seen in Fig. 7, a basic understanding of this kind of dataset could be done by drawing a

2-D contour map (Fig. 7a) or a 3-D response surface (Fig. 7b).
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Fig. 7. The visualization of a hypothetical wafer topography with dome pattern (described in Appendix D):
(a) 2-D contour map; (b) 3-D response surface.

To analyze the spatial variation of wafer:topography, the sample variance described in (1) is
mostly calculated to characterize' the/spatial Vériation. However, the sample variance is
significantly biased if the observations conipri§g s&é}ematic components, which usually result in

=
systematic patterns on the wafer surfaceias|shown in Figi 7. In this section, we further extend the
| 1 \ J
concept of moving variance for a temporal series to '-th_:e_: sit)atial moving variance for spatial area

of observations. The spatial moving varianees of different sizes of spatial moving window then

form a SVS which characterizes the spatial variations of the topography.

4.1.1 Spatial moving variance

The spatial moving variance utilizes the spatial information, i.e. the Euclidian coordinates, to
help decide the size and constituents of a spatial moving window. Given the random
measurements M;, =1, ..., n, we first calculate the Euclidian distances for all pairs of

observations and get a symmetric distance matrix E with all 0’s on its diagonal:
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E= . . B R | (12)

. . .th .th :
where dj; 1s the distance between i~ and j~ observations.

For the /™ row in E, we can sort the distances, d;, ..., di,, in an ascending order and find out the
k"-nearest measurement for measurement i, which is denoted as M;q. One special case is that
My 1s actually M; itself because the nearest observation for i would be itself based on the
distances in (12). A spatial moving window with size p (where 2 < p < n) for observation i can be

then defined as:

WP =M, M

i) Mi@yseees

Ml.(p)},i=1,2,...,nand2_<_p§n‘, (13)

il '
e

The sample variance for the observations within \thet spatial moving window W' is then
4 | == |

calculated and denoted as S, . Giveh'a size pja tc')t'a__l_ of n sample variances will be obtained

from the n spatial moving windows (W,”, i=1,2,".., n). These sample variances are then pooled

together to be the spatial moving variance for window size p, that is,

1 n

S:==>S82, (14)
noi—

where S ;_p is the sample variance calculated for the i spatial moving window W?,and2<p<

n. Furthermore, we can define the expected spatial variance for window size p as the expected

value of S j. That is

o) =E(S;) for2<p=<n.
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When p = n, the moving window becomes the whole dataset, i.e. all n observations are used to

calculate the sample variance. Thus, S’ is exactly equal to the sample variance in (1).

Fig. 8 shows an example for calculating the spatial moving variance given window size p=3.
Assume the sampling locations are equal-spaced vertically or horizontally, and the vertical space
between two adjacent observations is slightly larger than the horizontal one. For the first
observation m, the two nearest observations, i.e. m() and m;3), are m, and ms, respectively. For
the observation at each metrology site, there is a spatial moving window consisting of three

observations accordingly and thus generates a sample variance. Then, the n sample variances for

p=3 can be used to calculate s; in (14).

~N
m) m) () 13_?‘{"11(1) = My, Rty = My, 1) = M} :Si;
[
/ m) () C\ :‘ n
== ||
1 11
- e—— | ;
(\@—@—»@\‘: ; = {’If’z'u) =y, My =My, My = my} = 533
"""""""""" M
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d & 1<
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Fig. 8. An illustration for calculating the spatial moving variance of window size p = 3.

4.1.2 Spatial Variation Spectrum

By varying the size of spatial moving window from 2 to n, we will have n-1 spatial moving

variances:
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S7,87,..,82,,82, (15)
which are defined as the components of the SVS. Since the total number of metrology sites n may
differ from wafer to wafer, using p, whose range depends on n, as the domain for the variance
spectrum is not appropriate. We define the spatial variation frequency f = p / n (0 <f<1) for the
spectrum domain. A smaller (larger) f represents a higher (lower) frequency because it covers a
smaller (larger) area for calculation of spatial moving variances. The spatial variation frequency
not only defines the frequency domain of the spectrum, but also allows comparing spectra
calculated from wafers with different numbers of observations as long as the measurements are

rather symmetrically and uniformly distributed over the entire wafer. The spatial moving

variances can be plotted against the spatial:variation' frequency to illustrate the structure of

spatial variations. Fig. 9 shows a spectrum calculated based on the simulated data in Fig. 7.
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Fig. 9. The SVS of a hypothetical wafer topography with dome pattern.
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The horizontal dashed line in Fig. 9 denotes the sample variance calculated by (1). As can be
seen, the spatial sample variances over the range of middle to low frequencies (f> 0.3) are larger
than those over the range of higher frequency (/< 0.3). The larger sample variances with spatial

windows covering at least 30% portion (p/n > 0.3) of the wafer surface reflect the pattern.

Fig. 10 shows a metrology data with observed variation randomly distributed and its
corresponding SVS. Because there is no dominant pattern, the SV appears to be random around
the overall sample variance. The entire spectrum is rather stationary as compared to that in Fig. 9
despite there are small fluctuations locally. In particular, the spatial moving variances of high
frequencies, i.e. small window sizes, appear to be more unstable. This is because the small
windows are extremely sensitive to the_}ocal randomly formed patterns. However, the impact of

the local, small patterns will be soot gradually canceled ouf as the window size increases, and

1

i

&

the SVS becomes flat. !
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Fig. 10. (a) The contour map of a réna;o}n'ly dil‘s/t;i\l’)pteq@&fer topography; (b) The SVS of the topography.

k.
i | |

To further understand the prope'rtie-_s of.SVS, wjrﬁ gs#ﬂ_lme the wafer spatial variations are purely

the random variations. Let the randomv.'mealshrement M»bé' defined as:

M;=a+¢g fori=1, ..., n, ' (16)
where a#0 is the mean level of all metrology sites, and
g fori=1,...,n, (17)

are independent and follow an identical normal distribution with zero mean and variance ¢*. And
let the spatial systematic variations be variations other than random noises satisfying (16) and

(17). Then we have the following theorem.

THEOREM 3. The spatial variation must consist of variations other than random noises, i.e.

systematic variations, if the expected spatial variance spectrum is uneven for 0 <f< 1.
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Proof: see Appendix E.

Based on THEOREM 3, we know that the expected SV should display as a horizontal line if
the wafer topography purely consists of random variation. Otherwise, the topography with SVS

exhibiting a non-stationary pattern must consist of both the systematic and random variations.

4.1.3 Identification of Systematic Variation

Our attempt is to detect whether the metrology data is only randomly distributed or contains
systematic patterns. To check if the SVS is calculated from the data consisting of random
variation only, we study the relation between the conventional sample variance and the proposed

spatial moving variance, and develop theifollowing theorem.

THEOREM 4. If one takes a sample of p measurements-from a total of » measurements, there

will be C) combinatorial possibilities. The-average of ‘the sample variances of the C,
1l R

combinatorial samples is then equal to;the $aimple variance of the n measurements (1). That is:

1 &
o Z:S;Jc =S2,f0rp=2,...,n, (18)
=l

p k=

where Sik is the sample variance of the ™ sample among the C , possible samples.

Proof: see Appendix F.

THEOREM 4 describes another perspective on the composition of the sample variance in terms
of many sample variances of sampling subsets. Based on this concept, we have the following

conjecture for the proposed spatial moving variances of p < n-1.
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THEOREM 4 provides another perspective on the composition of the sample variance in terms

of sample variances of combinatorial subsets. Based on this theorem, S-, is equal to S_ if the

metrology sites are symmetrically distributed such that the n samples of S 5_1 , 1.€e. W,.”"l , =1, ...,

n, are the same as those in the C); combinatorial samples. From THEOREM 1, to detect the
existence of systematic variations, we need to detect whether the spatial variances are uneven. A

hypothesis test of uneven spatial variances can be developed if the probability distribution of § 12,

is known under (16) and (17). If S2, = S?, it is clear that

(n-DS,

O_Z

-DS?
Nlj—l and %Nj{fl’

where y” | is a chi-square distribution with. the degree of freedomn - 1. For2<p <n-1, C) >n.

. =3 | + 8
The n samples used for calculating the propQSe'cllg'?patlal moving variance, S, are only the subset
i - 1 oy

of the C} combinatorial samples. ItiS thus unclear Whgt distributions S will follow. However,

THEOREM 2 provides some clues that lead to the following conjecture.

Conjecture 1. If §7, 2 < p < n-1, is calculated from a wafer metrology data defined in (16) and
(17), then

2 2 2
VPSP _ VPSP — VPSP

ES?) o o

P

4 25p<nl, (19

where v, denotes the degree of freedom for the y distribution and is no greater than 7 - 1.

Reason: see Appendix F.
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To determine v, for 2 < p < n-1, we perform a Monte-Carlo simulation study and obtain the

results in Fig. 11. As p decreases from n, \_%J< p<n-1(1/2 <f<1), the variance of §> (solid
line) increases because the n samples for calculating the S? is becoming a smaller subset of the

C, combinatorial samples. For pSI_%J, the n samples is becoming a larger subset of C)

combinatorial samples as p continues to decrease from \_%j However, the variance of §>

sharply turns up when p is decreased to be less than 30 (f'< 0.05) because these particularly small
window sizes are sensitive to both local random patterns and unbalanced sampling of

observations for calculation of § ,27 .
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Fig. 11. The variance of the SVS and its estimated degrees of freedom.

With the Monte-Carlo estimate of the variances of S and the assumption of the ¥ distribution

(Conjecture 1), v, in (19) can be then estimated as:
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_2EGs) _ 20"

= ,2<p<n 20
Y V(sf,) V(sf,) P (20)

where V(s?) is the sample variance of 100,000 Monte-Carlo simulations s>'s (see Appendix G).

The dashed line in Fig. 11 indicates the estimated degrees of freedom. Based on the estimated

degrees of freedom, we can now construct the following hypothesis test.
Ho: 6} =0l=...=0>, =0 versus
H,: there exist systematic variations.

To reject Hy, we choose the smallest spatial moving variance:

2
S min

=min{S2,S2,...,S2,, 8. X o 1)

as the test base and test if all the rest of the sf)éfﬁl'.;rin'oving variances are equal to S2, :
1l &

Hy: o, =S, for p #argmin{S?, k =1, . Lin}.

min >

Since Siin is used as the comparison base, only the one-sided test is required. Let y; .o denote

the critical value of the chi-square distribution with v, degrees of freedom and the type I error

probability a. An upper control limit (UCL) can be constructed as:

2 2

X e S

2 Vv,,l-a min

LR e —
o

UCL=0 for2<p<n-1. (22)

Vp

With the upper control limit, if there is at least one spatial moving variance exceeds the control
limit, H is rejected and systematic variations are said to exist; otherwise, there is no evidence to

say that the wafer spatial variations consist of any systematic variation. Fig. 12 shows an
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example of using the upper control limit with o = 0.05 to check if there exists any systematic
variation for the pure-noise metrology data in Fig. 10. As can be seen, the whole spectrum lies
within the control limit and there is no sufficient statistical evidence to deny that the metrology

data is only randomly distributed.

1.2 4
1.15 A
1.1 A

1.05 4

0.95

Spatial Moving Variance
(=Y

0.9 -

0.85 -

—— Spatial Variation Spectrum --- Upper Control Limit

0.8

Spatial Variation Frequency (f)

Fig. 12. The SVS and its upper control limit for a randomly distributed wafer topography.

4.2 Spatial Pattern Index

Even with the hypothesis test proposed above, it would be useful to provide simple indices
summarizing the SVS to evaluate the significance of the systematic variations. A spatial pattern
index (SPI) and three variation ratios of high, middle and low frequencies are proposed. The root
causes associated with an identified systematic pattern can be then investigated based on the

index and the three variation ratios.
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Based on THEOREM 1, the spectrum is expected to be a horizontal line if the wafer spatial
variations purely consist of random variations and thus the spatial pattern index for a pure noise
should be near zero accordingly. For the wafers consisting of systematic patterns, we expect to

see a larger SPI value indicating a more significant systematic variation. The spatial pattern

index (SPI) is proposed:
(57 =S5
SP[=22—— (23)

n

25
i=2

where S2, defined in (21) is used as an estimation to the random variation.

. o~
. b .
gt y =y

. i,

e e
Pl e O . N

Total Systematic Variation

Spatial Moving Variance

Total Spatial Variation

Fig. 13. The concept of the calculation of spatial pattern index for the wafer topography with dome-pattern.
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Fig. 14. The concept of calculatmng the SPI for t-ffe randomly distributed wafer topography.

& X I
The denominator in (23) represents_:il:he_: 1 spatMagjmrof the spectrum and the numerator

calculates the total systematic varlation ﬁq g the random variation from the spatial

variation. Therefore, SPI is ranged between 0 arﬁ% gﬁ 3 shows the concept when calculating

o

Ny

the SPI for the SVS of the dome- pattefnﬁd‘i%a:pﬁy dlscussed in Fig. 9, where the spatial
moving variances of middle variation freq’uéndie's arlse due to the domed systematic pattern in
the center of the wafer. As can be seen in Fig. 13, the total spatial variation is illustrated by the
middle-up figure while the systematic variation is depicted by the middle-bottom figure. The
ratio of the total systematic variation to the total spatial variation is said to be the spatial pattern

index (SPI), which is 0.6978 in this example.

For a randomly distributed wafer metrology data as in Fig. 10, its SP/ = 0.0187 shown in Fig.
14 is very close to zero because the systematic variation portion is relatively small compared to
the total spatial variation. To further explain the SPI, three variation ratios are calculated by

dividing the spectrum into three parts, i.e. high, middle, and low frequencies, which are:
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High-frequency variation ratio = (24)

254 2

Mid-frequency variation ratio = x100%, (25)
- 2
o

Low-frequency variation ratio = |/~ g %x100%. (26)

1
o gSJ B

47 e [ '_ _--{: = T

A K= R
A f \ -
W o i '{'F\_ =

Ly ey

The SPI’s and variation ratios for the hy amﬂle§ in Fig. 13 and Fig. 14 are listed in

=

Table I, where the three ratios forsth r dog@f i t;ﬁllféd\'_‘topography are almost the same

W, o
T ? ( 5

iy J & / "u'..}.
because the data is pattern-free. HOWe&gr,‘fmdlﬁefrq Juency variation ratio of the dome-

e -

patterned topography is larger than the high/low ones. 1t implies that the large SPI = 0.8849 is

majorly caused by a medium-size pattern.

With these indices summarized from the SVS, one can quickly grasp the significance of the
systematic variations. These indices provide simple but effective information about the wafer

spatial variations and can be further used to find the root causes.

Table I. SPI and Variation Ratios of the Noise and Dome Pattern.

Spatial Pattern Index (SP/) 0.0187 0.6978
High-freg. Variation Ratio 33.19% 24.60%
Mid-freq. Variation Ratio 33.32% 38.82%
Low-freq. Variation Ratio 33.49% 36.58%
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Chapter S - Case Study
5.1 Real Temporal Tool Parameters for the Evaluation of Tool Condition

5.1.1 The PECVD Tool Case

Real time data of more than 16,000 pieces of wafers with 23 SVID’s are collected from a
PECVD tool of a local Fab. The sampling rate is down to one observation a second. As one can
imagine, the minimum number of SPC charts would be at least 23 for engineers to monitor this
tool. Moreover, observations within different temporal windows over the SVID profile would be
summarized as different indicators and thus result in hundreds of charts. Maintaining these charts
for monitoring a tool is costly and, especially, doéén’t consider the interactions among SVID’s.
In this section, the proposed moving variances and covariances of the collected SVID’s are
firstly calculated to comprise a moving Vari;tﬂ%éévariance matrix for each wafer. As described
in Fig. 6, the generalized moving Vé{iancgs fo-r.: :thesé Wafe.rs are then calculated and used as a
tool condition indicator of the PECVD. tool."We can .:draw a trend chart of the tool condition
indicator by the wafer processing sequence and monitor the tool condition. In Fig. 15, the
proposed indicator of normal tool condition is quite robust against the recipe changes, indicated
by the vertical gray lines despite the SVID profiles under the two of this tool perform obviously

different in patterns and even in processing time-length (see Fig. 16 for an example of throttle

valve profiles).
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Fig. 16. Distinct PECVD Throttle Valve profiles under two recipes.
Furthermore, we can put some vertical lines to indicate the time points of events, such as tool
alarms, or preventive maintenance schedules, and investigate how the trend of the tool condition
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indicator responses to the events. As can be seen in Fig. 17, the dashed vertical line indicates the
time point of a tool event regarding abnormal throttle valve readings in-between two Monthly
PM’s (MPM), and the vertical bold line indicates that a Life PM, which involves part
replacement due to expiration of the expected life spans, is performed right after the event. Fig.
18 shows that the throttle valve readings appear to drift up when the tool event is issued. By
looking at the EWMA control chart in Fig. 19 which is constructed based on equations (10) and
(11) with A=0.05 and /=4, the proposed indicator displays abnormal tool condition starting the
2500™ wafer long before the tool event. However, as can be seen in Fig. 20, the throttle valve
readings appear quite normal during this tool alarm period (2500"~4300" wafers) and, hence, the

tool FDC system is not able to detect any_par_i_iculép fault.

-

Nl
.‘*.

F Foa
—— Tool Condition
190000 + Tool Alarm:
—LifePM abnormal throttle valve
120000 . ——MPM readings
= =FEvent

Generalized Moving Variance

] | Il
1 241 431 7H 961 1501 1441 1681 1931 2161 2401 2641 2R%1 311 3361 3601 IR41 4081 4321 4561 4801 5041 5281
Wafer D

Fig. 17. PECVD Tool condition monitoring based on generalized moving variances.
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Fig. 18. Abnormal throttle valve readings when tool event is issued.
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Fig. 19. EWMA control chart of the PECVD tool condition (4=0.05, /=4).
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Fig. 20. Sampled throttle valve readings of 2500"~4300™ wafers before the tool event in Fig. 19.
To analyze the possible tool problem behind the tool condition alarm, the proposed two-step
diagnosis method is used. First, the generalized moving variances are decomposed into two parts:
SVID variability and SVID interrelation '.WhiOh are-shoWn in Fig. 21 and Fig. 22, respectively. It

!

can be seen that the tool condltlon excursmn is malnly caused by the excursion in the SVID

/—'\ f‘\ X
interrelation while the SVID Varlablhty apﬂ q b¢ quite normal
m I
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Fig. 21. EWMA control chart for the decomposition of PECVD’s generalized moving variances: SVID Variability
(71=0.05, I=4).
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Fig. 22. EWMA control chart for the decompesition of PECVD’s éene_ralized moving variances: SVID Interrelation

' 400 .05, 1="4)'
Since the tool condition excursion results’ fr 1: SVID Interrelation, the trend of moving

-r:"":-* |
1th1ﬁea<#h wafer processing run is then analyzed. In

|l

the process of the PECVD tool, there.jé.r.e,__thr_ee major procéssing steps: ramp-up, deposition, and

covariance of the small moving windows

ramp-down. We first check and draw the trend charts of the moving-windown covariances, i.e.

the S,,x,r in equation (5), between throttle-valve and other SVID’s. Some excursions of the
J J

relationship between gas flow and throttle valve are found. The upper trend chart in Fig. 23
shows the moving-windown covariances between gas flow and throttle valve during the ramp-up
step while the bottom one is of the ramp-down step. As shown in Fig. 23, the relationship
between the gas flow rate and the throttle valve reading has been changed significantly during
the ramp-up and ramp-down steps. The SVID profiles of throttle valve and gas flow are further

investigated and thus the abnormal relationship change between the two SVID’s is confirmed.
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As a result, the cause to the tool élarm P found t‘\d1 be .an abnormal relationship between the
| gt

throttle valve reading and the gas flow rate. The abnormal relationship between the two SVID’s
is detected by the tool condition indicator lo.ng before the tool event. Though this tool event is

recovered by a regular Life PM, our study shows that the PM could have been performed earlier

to minimize the undesired process output.

5.1.2 The PVD Tool Case

Another FDC data of more than 40,000 pieces of wafers with 9 SVID’s collected from a PVD
tool is analyzed as well. The sampling rate is also down to one observation a second. Similarly,
the proposed indicator of normal tool condition is quite robust against the recipe changes in Fig.

24. Following the same procedure, the PVD tool condition is calculated and monitored in Fig. 25.
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By looking at the EWMA control chart in Fig. 26, there were some tool alarms occurred after the
Life PM, indicated by the vertical bold line. The tool condition appeared extremely unstable as
compared to the tool condition before the PM. However, the tool FDC system still cannot detect
any particular fault during this tool alarm period. After a regular Quarterly PM (QPM), the tool
condition then became stable again. Therefore, the two-step diagnosis method is applied again.
As can be seen in Fig. 27 and Fig. 28, there’re much more excursions in the SVID variability as
compared to that in the SVID interrelation. Then, individual profiles of the 9 SVID’s are
investigated. As shown in Fig. 29, the nano-torr readings of the wafers in-between the Life PM
and QPM display unstable trends (dashed lines) after being processed for 13 seconds as

compared to the solid lines which indicates nano-totr readings of the wafers after the QPM.
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Fig. 24. PVD condition indicator vs. recipe changes.
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Fig. 26. EWMA control chart for the PVD tool condition (1=0.05, /=4).
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Fig. 29. Abnormal SVID proﬁleS' of naﬁo—tdrr readings vs. normal ones.

In this case, the tool condition excurs1on resulted from an improper PM is detected by the
r""_"\ _/ LY

| I
and the tool condition indicator behaves acr rdfﬁglyu '

. I H‘

5.2 Real Wafer Topography for tl;e éharQEterization of Spatial Variation

proposed indicator. After performmg the rTuE;QPM the nano-torr readings return to normal

To validate the proposed methodology which identifies systematic patterns resulted from
systematic variation within the spatial variation of wafer topography, hypothetical wafer data are

generated and two sets of real wafer CD metrology data are also collected and analyzed.

5.2.1 Hypothetical Wafer Topographies with Common Patterns

Firstly, we simulate four common wafer topography patterns with noise disturbance: x-direction
drift, y direction drift, dome, and donut (see Appendix D), to validate the proposed methodology.
The contour maps for the five wafer topographies (including the random noise) are plotted in Fig.

30 and the spatial variation spectra are calculated as well. As can be seen in Fig. 30, the x- and y-
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direction drifting patterns share very similar spectra where the slight difference is resulted from
the random variation. Theoretically, a rotated pattern wouldn’t change all the sample variances
within spatial moving windows given a window size p. Therefore, the spatial moving variances,
i.e. the spectra, of the two patterns are similar. The spectrum of the forth systematic pattern, the
donut, reaches a stably high level of variation of mid-to-low frequencies because the rise and fall
of the donut pattern almost covers the whole wafer. Only the small-size spatial moving windows

contain nearly-equal measurements and thus result in small sample variances.
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Fig. 30. Analysis of SV'S’s for the hypothetical wafer topographies.

52



(a)x (b)Y

—— Spatial Variation Spectrum ----- Upper Control Limit —— Spatial Variation Spectrum ----- Upper Control Limit

Spatial Moving Variance
Spatial Moving Variance

Spatial Variation Frequency (f) Spatial Variation Frequency (f)
c)Dome d) Donut
, @ . )
—— Spatial Variation Spectrum ----- Upper Control Limit

Spatial Moving Variance
Spatial Moving Variance

2 —— Spatial Variation Spectrum ----- Upper Control Limit

RS
888580330 ERAARRATILIRALERCIBERRARBRIEERIER
===

Spatial Variation Frequency (f)

== |
=z | |

Fig. 31. The upper control limit for the ISV‘S:_’.s of thei yﬁoﬁfgc%llnwafér t_g_)I_.pographies. (The round shapes magnify the
high-_ffré'(;u y pa:ts oii th‘n@ speotra.)

To test if the four spectra are signigbaﬁtlyﬁ dlstlnct from that of a randomly distributed

topography, the upper control limit described in 4.1.3 is built to identify the existence of

systematic variations. As can be seen in Fig. 31, the four spectra go out of the control limits

quickly as fincreases. Therefore, the spatial variations of the four hypothetical topographies are

said to contain not only random but systematic variations.

The spectra are further summarized into the SPI’s and the variation ratios in Table II. The four
topographies with systematic patterns all have significantly-high indices as compared to that of
pure random variation. In particular, the low-frequency variation ratios of x- and y-direction

drifting patterns are very high because the drifting pattern actually covers up the whole wafer.
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Table II. SPI and variation ratios for the hypothetical wafer topographies.

Noise X A Dome Donut

Spatial Pattern Index (SP/) 0.0372 0.5420 0.4882 0.6978 0.7130
High-freq. Variation Ratio 33.11% 21.78% 23.03% 24.60% 29.88%

Mid-freq. Variation Ratio 33.23% 33.39% 33.40% 38.82% 34.70%

Low-freq. Variation Ratio 33.67% 44.84% 43.57% 36.58% 35.42%

5.2.2 Wafer Metrology Data under Different Precision Levels

Real wafer metrology data from a local fab company are also collected for the methodology
validation. Wafers after the post-exposure bake (PEB) process are usually measured by optical
critical dimension (OCD) and scanning electron microscope (SEM), respectively. Although the
measurement precision of OCD is better than SEM for the 65nm technology node, the recipe and
library generation of OCD is more co_m_p_'lica;t:e'd andtlme consuming. Ke et al. (2005) proposed a
concept on OCD-like CD SEM measurement whic/:}i 1s;aldto be the average line width (ALW)
or contact hole diameter (ACD) r__r.leasu'r_emé t @rﬁ\ IIresolution_"and low magnification CD SEM.

- f ||
These measurements, i.e. SEM CD; AL\7\1/t CB; a i

OCD, rhanifest different significances of

&

systematic variation of the same wafer_ due go"'the measurmg precision. Therefore, the proposed
SVS and SPI would be an appropriate way to analyze the systematic variations of wafers, and

thus examine the precision of the measurements.

The spatial variation spectra of the three kinds of measurements and the control limits for the
identification of the systematic variation of the spectra are calculated and plotted in Fig. 32 and
Fig. 33. Then, the SPI’s and variation ratios are summarized in Table III. As shown in Fig. 33,
the overall variation for the less-precise measurements, SEM CD, is much higher than those of
ACD and OCD. This is because SEM CD consists of much noise, and thus the spatial pattern
index (SPI = 0.3384) is much lower than the other two. The OCD which provides measurements

with high precision exhibits a clear pattern on the contour map and a very high SPI (= 0.9465).
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The phenomenon that the high-frequency spatial moving variances of OCD are smaller than that
of ACD explains the ACD actually consists of more random noise than OCD. The high
frequency variation ratios which decrease from SEM CD to OCD as the measurements are more
precise also tell the same story. Moreover, a larger low-frequency variation ratio, as compared to
that of the high or middle frequencies, indicates a clearer pattern with larger coverage of the

wafer.

As a result, the SVS and its summarized indices can be used to examine the precision levels of
different measuring methods for the wafer topography. The systematic and random variations of

a wafer can be truthfully captured as the precision of measuring methods changes.

SEM CD ACD OCD
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Fig. 32. Analysis of spatial variation spectra for the real wafer metrology data under different precision levels.
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Table III. SPI and variation ratios of real wafer metrology data under different precision levels.

SEM CD ACD OCD

Spatial Pattern Index (SP/) 0.3384 0.7581 0.9465
High-freq. Variation Ratio 29.55% 25.60% 23.81%
Mid-freq. Variation Ratio 34.20% 35.16% 36.17%
Low-freq. Variation Ratio 36.25% 39.24% 40.02%

5.2.3 Wafer Metrology Data with Checkerboard Pattern

Another set of wafer metrology data, CD’s from the step-and-scan system, are also analyzed.
Checkerboard patterns are sometimes formed after the scanning process because the scanning
direction of the tool which scans downward when exposing the odd-numbered chips (or fields)

and upward while performing exposures on even-numbered ones (A. Wong et al., 2002). As can
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be seen in Fig. 34, the two wafers not only consist of systematic patterns such as bowl (S1) and
dome (S2), but also contain checkerboard patterns. The spectra of the two wafers are calculated
and tested by the upper control limits in Fig. 35. The spatial pattern indices and variation ratios

are listed in Table IV.

The alternative scanning effect of checkerboard pattern is considered to be characterized by the
high-frequency spatial moving variances because the small-size spatial moving windows would
cover the observations with alternative effect and show large sample variances. As can be seen in
Fig. 35, the SVS starts higher than the upper control limit when the spatial variation frequency is
very high (p=2), and immediately goes lower than the control limit as the frequency becomes
lower (f increases). However, it again goes, out of the control limit because the bowl or dome
pattern soon takes over and impacts; oft the xspegtrxumx. A checkerboard pattern behaves more
similar to a randomly distributed topograp};};ifjr_a::.t; the bowl/dome pattern does will distort the
systematic patterns and result in loWefr.SPiI‘.!% (0T3 aqd 0.5244 in this case). However, it still can
be identified by the high-frequency spatial moying.lva.l:criances through the proposed hypothesis

test.
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Fig. 35. The identification of systematic variations for the real wafer topographies with checkerboard patterns. (The

round shapes magnify the high-frequency parts of the spectra.)

Table IV. SPI and variation ratios of real wafer topographies with checkerboard patterns.

Spatial Pattern Index (SP/) 0.3000 0.5244
High-freq. Variation Ratio 28.60% 24.97%
Mid-freq. Variation Ratio 35.09% 38.08%
Low-freq. Variation Ratio 36.31% 36.95%

58



Chapter 6 - Conclusion

6.1 Preliminary Results

A novel estimation to data variation, i.e. the moving variance calculation, for temporal profiles
and spatial topographies is proposed and applied, in particular, to the semiconductor engineering
data in this research. The developed moving variance technique is utilized to be the basis of the
estimation methods. With truthful variation estimation, methodologies for the monitor of tool

condition and the characterization of systematic variation are developed and validated.

Firstly, the calculation of moving variance and covariance to estimate the variability underlying
multiple SVIDs’ temporal profiles, during ‘a proééss run'is developed. Then, the generalized
moving variance is shown by both theoretical .deri\{ations and examples to be quite robust against
the recipe changes. However, its insensiti\{itl'y %ﬁﬁttem shifts and drifts of the temporal profiles
also makes it incapable of detectiné _speciiﬁic t(-):(-)l fgﬁlts. 'Tﬁe proposed indicator is thus a very
good complementary to the existing FDC system to' se;ve as an overall tool condition indicator.
In this research, an EWMA control scheme to monitor the tool condition indicator is employed.
A two-step diagnosis method is proposed to drill down the tool condition into two individual
SVID variability and SVID interrelations. In 5.1.1, the change in the relationship between the gas
flow and the throttle valve reading is found by the proposed tool condition diagnosis to cause the
abnormal PECVD condition, which eventually leads to a tool event and a corresponding Life PM.
In 5.1.2, the PVD nano-torr’s abnormal reading is also correctly detected by the indicator and

disappears after Quarterly PM. Both cases show all the detected abnormalities are due-to PM-

related issues and the condition-based predictive maintenance could have been performed earlier.
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For the analysis of topographical spatial variation, a similar idea of calculating the moving
variance for a temporal series of observations to reduce the estimate bias may be used for the
spatial data. Instead of the moving variance of a temporal series, the sample variance is
calculated for observations from a spatial area. A model-free spatial variance spectrum (SVS) to
analyze the spatial metrology data is proposed so that any engineering problems and issues can
be learned as early as possible through identification of systematic patterns. The SVS is generated
by the spatial moving variances with different spatial window sizes. A hypothesis test has been
developed based on the statistical properties of SVS to detect the existence of systematic
variations. Spatial pattern index (SP/) and three variation ratios are also developed to provide
engineers with a quick look at the systematic variations: Both hypothetical and actual metrology
cases are used to validate the proposed xmethodology. Results show that systematic patterns can
be truthfully characterized by the proposed SV@F-Sven for met.rology with low precision levels and

for the unusual checkerboard patterns. 1 A1

It is worth noting that the metrology sites:sampled on d wafer during production may not be

uniformly distributed. For the proposed spatial moving variances to work in this case, the
moving window W7/, which consists of p random measurements including M; and its p - 1

neighboring measurements, should be now redefined as a circular area with the center at M; and a

radius 7. Such an area-based moving window may cover indefinite numbers of observations. Let
this area-based moving window be denoted as c; . By increasing » from 0 to the diameter of the
wafer, R, we can still calculate the spatial moving variances for different frequencies /', which is
now calculated as */R>. Using ¢; as the moving window is to uphold the meaning of the

variance spectrum where the spatial variation for smaller 7’s indicate the high-frequency
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variations and are usually generated by the noises while larger »’s represent the low to mid range
of frequency and are typically produced by systematic patterns. With a limited number of
sampling sites (usually five or nine sites sampled per wafer) during production, the SVS
resolution becomes lower and the spatial variance analysis may not be as effective. However,
compared to conventional analysis based on just the overall sample variance, the SVS still reveals
more information about the spatial variations and its corresponding pattern indices still provide a
quick look at the significance of systematic patterns, but are, of course, less truthful due to the

low sampling resolution.

6.2 Future Study

Despite the impact of recipe-change-can.be re&ﬁced and:the systematic variation would be
signified through applying the moving Variatlg?’tgqhhique, pooling, i.e. taking the average of, the
variances within moving windows, as calcul!ate.%rf({), (8), and (14), will offset the high (or low)
variances within minor moving windoWé: su;il th.a‘g thé ‘moving variance would be more
insensitive to pattern changes. Sometimes., pattem-céuséd faults, such as a sudden ramp up/down
in tool signals, signify critical tool abnormalities as well. As can be seen in the simulated
example in Fig. 36, SVID X* shows an abnormal profile with irregular ramp rate as compared to

the normal profile of SVID X. The temporal moving variances for SVID X and X are 0.14 and

0.21, respectively, which do not vary a lot while the underlying variance of pure noise is 0.09.
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variances altogether. Therefore, the moving statis
~ T e

tIfQ§ 'pf"éposed in this research perform to be

quite insensitive to pattern shifts and drifts usually caused by tool recipe changes or tool faults.
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To detect abnormal patterns like DC sh1ft| r {adkge n rarﬁp .rate conventional FDC practices
select meaningful temporal-windows: or Lfocess st]p S of SVID’s and summarize significant
statistics to be the indicators. By monlt;rlng Fﬁese 1ndlcat0rs, the abnormal patterns of SVID
profiles can be captured. However, the indicators based on the pattern modeling method are too

problem-specific to represent a tool condition. Instead, the nature of variance and/or covariance

is more like an indication of the process run stability.

To complement the insufficiency of moving variance, another moving statistic is proposed to
justify the situation when the pattern shift or drift occurs. As compared to the calculation of
moving variance described in (4) or (14), which takes the average of all moving-windown
variances, we calculate the variance of all moving-windown variances for SVID X given the

moving window size p, denoted as VoV, x.
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n—p+l

VoV, = Z(S =S,)" 27

where §;}X is the average of all moving-windown variances. Based on (27), the two variances of

all moving-windown variances for SVID X and X, denoted as VoV, x and VoV, x-, are 0.03 and

0.31, which now become rather distinguishable.

For the spatial wafer topography, we can apply the same idea to extend the spatial variation
spectrum as well. By calculating the VoV,’s for 2 < p < n, there will be another spectrum, defined
as VoVS. Fig. 38 shows an example for the VoV'S of the randomly distributed dataset used in Fig.
10 (a randomly distributed wafer topography). As can be seen, the spectrum quickly decreases to
nearly 0 as the spatial variation frequency.(f) increéses from 0. When the window size p=n, 1.e.
/=1, the VoV, = 0 because all the moving—i).\gil_i;(il_oyi_zﬁ~ variances are the same and all equal to the

conventional sample variance. It is alse -rpas'ézj;lable_ to have the largest Vol at the smallest
moving window, i.e. p=2. As there ate only two ob'seg'vations in each of the moving windows,

the overlap between moving windows is very. limited: Therefore, the moving-windown variances

of p=2 would vary a lot and their variance becomes the largest.
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As a result, the further study is to app1y| Jﬁ nce| <|>f mov1ng -windown variances to construct
another variance/covariance matrix. for [tpe temdl(iral tool parameters. The corresponding
generalized statistic will be developed 'end its usefulneee would be discussed. The properties of
the VoV'S calculated from wafer topography will be studied through mathematical treatments and
simulated cases. Finally, we will investigate and argue if there exists any complementary
property between the temporal/spatial moving variance and the variance of moving-windown

variances in the applications of temporal and spatial datasets.
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Appendix

A. Proof for THEOREM 1

Since the expected value of the sample variance under the linear-drift pattern (6):

E(S3)
nZXZ—(Z)O nY E(X2) - E[(O X))
1=
n(n—1) n(n—1)
Zl +ZE(8X,> o (X +ES ey,)]
n(n—1)

_az(,;Mw;:Mm;,
n(n—1) 12

the estimate bias size by the conventional sample variance can be obtained as:
E(Sy)—-0, =n(n+Da’cy /12. -

| |
Following (28), it can be also shown that l |

E(S;,))=p(p+Dd’oy 12+ 0% vj=1,,,,,',,,_‘p+'1

and thus

n—p+l1
A2 2
E(O.X)_ Oy =

X 5]
=p(p+Da’cy /12.
Therefore,

E(6y)-0y <E(Sy)-0y
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for a SVID X moving window size p < n. Following the same procedure above, it can be easily

proved that

E(6y)-0y <E(S;)-0y

for a SVID Y moving window size p<n.

Similarly, because

E(Syy)
:E[nZXiK —ZXI-ZYI-]: ny E(XY)-E[(Q X, ) Y)]
n(n—1) n(n—1)
_aboyo, Y i+ ) E(ey,E,) aboyoy(Q ) HEIQ £y, )]
B n—1 - n(n —1)
cabo.o, "L TR nukDibags, | Ny
n(n—1) 12 P P

-
e

the estimate bias size by the conventional s_hripl-@; cox:{a;lriance_becomes:

5\ 1
_n(n+1)abo o, 2 %

12

E(Sy)—0,y

Following (30), it can be shown that:

E(Syy )=p(p+Dabo,o,/12+0,, Vj=L...,n—p+l

and thus

1 n—p+l1
E6,,)-0,, = ES,, . )-O
@)=0n =27 LEGw)=0n
= p(p+Dabo,o, /12.

Since a # 0; b # 0 and p < n, we have
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|E(6-XY)_GXY| < |E(SXY)_O-XY|'

B. Proof for THEOREM 2

Since the expected value of the sample variance under the step-change pattern (8)

E(S7)
ny X=X nY E(XH-EQ.X)’]
= E[ 1=
n(n—1) n(n—1)
_(n—n)c’oy +noy, _(n—n, Y:cloy +no
n—1 n(n—1)
2 .2
_ n(n—n))c oy ro, (32)
n(n—1)
the estimate bias by the conventional sample variancelis:
2 2 | -\Iﬂ: ::f'r' ) I:
. | = ||
E(S})-oy =10 R | (33)
n(n—1) - 1138 '
1] i\
The expected moving variance can be calculated.ast
E(63)= 1 nflE(S 20
Yon—pr1 g
1 m—p+1 n n—p+1
=———[ D ES. )+ >, ESL)+ D ES2 0l (34)
n—p +1 j=1 ! Jj=n—p+2 ! J=n+1 !

Because p<min(n;, n;) where the moving windows from the 1* to the (n]—erl)th and from the
(m+1)™ to the (n—p+1)™ will not contain the step change while each of the (nl—p+2)th,...,n1th

moving windows contains the step change. Therefore, following (34) we have
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n—p+l

nl p+l n
E(S )+ E(S2,)+ E(S2)]
n-— P+1 Z j—nlz;m K j=znl:+1 "
m—p+l n—p+l . _ s 2.2
(Soi+Sote 3 IOk g
n-— p+1 Jj=m+l Jj=m—p+2 p(p )
_ 52 q(p = q)c
T pﬂz p(p-
2 p+l 2 2
=0, +————c’o 35
¥ 6(n—p+1) ¥ (35)
and thus
1
E(G2)—o? = pt+ 262 . 36
(0%)=0% 6(n—p+1) (36)

From the right-hand sides of (33) and (35),we obtalih the following condition:

p+1 <n1(n—n1) _ 5. E,..: ':a
m '

6(n—p+1)  nn-1) _ ||
il i\

It can be easily seen that E(6}) =0, < E(Sf(_)——_a)z;". Following the same procedure above,

E(67)—0, <E(S;)-0, can be also proved. Similarly, because the expected value of the

sample covariance under the step-change pattern (8)

E(Syy)
_ ny XY, -Y X, ZY nZE(X,.Yl.)—E[(ZXI.ZYi)]
n(n—-1) n(n—1)
_ (n—ny)edo oy + ZE(gX,igY,i) (n _nl)zch-XO-Y + E[(ng,izgy,f)]
- n-1 - n(n—1)
_ (nn, —n}) _n(n—n))cdo 0o, (37)

cdo,o, +0 )
n(n—l) XYy Xy = n(n l) Xy

the estimate bias by the conventional sample covariance is:
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n(n—n))cdo o,
n(n—1)

E(Syy) =0y =

Following (34), it can be shown that:

Eé- = ES X y
( XY) n— p+1 z ( W W
n] —p+l n n—p+l
ES XY + ES XY + ES XY
e DICCHRIED WRZCH Z (0]
1 ongy g +)(p—n + j—1)edo,o
ZO-XY+ ZO-XY+ Z ( —j+D(p—n+j-1) X Y+O'Xy)]
n-— p+1 J=m+l J=m=p+2 p(p_l)
_ Z ~q(p —q)edo 0y
T p+1 p(p-1)
p+l1
=0,,+————~cdo,o _ 38
XY 6(7’1—p+1) XYYy L '-,._. ( )
and thus y 4F O\
8—=30
| ==\
p+1 | f'! I

| S
E(Gyy)—0yy = cdooy! |[ | (39)

6(n—p+1)
Under the condition (9), c¢#0; d#0 “and "p<n, it can be easily proved that

|E(6 1) =0 x| <|E(Syy) = Oyl O

C. Proof for Corollary 1

Substitute p=2 in (9),

1 <n1(n—n])'
2(n—-1) nn-1)

Condition (9) becomes:
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- -2 +n(n-2
noynn=2) - nrymn=2) (40)
2 2
Because p=2< min(n,, ny), n would be at least equal to or larger than 3. It can be easily seen that
(40) holds when n>3. In addition, the biases in (36) and (39) can be shown monotonically

increasing with p and are minimized as p=2. 0

D. The Simulation of Hypothetical Wafer Topography

To simulate the wafer topography, a set of spatial coordinate must be generated. Firstly, we
define the coordinates ranged from -135 to 135mm with a 10mm interval for a 300mm wafer and
get 28x28=784 grid points. After screening out the points which have radii larger than 140mm,
616 points are left and settled to b the metrol.ogy sites . for generating observations. The

topographies contain x- and y-direction dﬁftin.g_fbattems, denoted as mi(X) and m«(Y), can be

=
generated as: : I R
| B
m._, . s
m(X)=a+—+¢,,and » 3 (41)
s
m,; .
m,(Y)=a+—-+¢, fori=l, ..., 616, (42)
s

where m,; and m,; are the generated coordinates, a is a constant, s is a scalar, and ¢;, for i=1, ...,

616, are independent and follow an identical normal distribution with zero mean and variance o”.

To generate the dome and donut patterns, cosine function is employed and the radii for all the

616 points are calculated:

r=1m,)* +(m,,)* fori=l, ..., 616. (43)
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The topographies with dome and donut patterns, denoted as m(Dome) and m(Donut), can be

then generated as:

m, (DOme) =a+k- COS([ = l’l’lln(r;.)

max() — min(r )] )+ €, and (44)

m; (Donut) =a-k- COS([ r mln(”})

max(r) —min(ry 6 )

fori=1, ..., 616,

where k denotes a multiplier which magnifies/minifies the dome and donut pattern, and max(r;)
and min(r;) return the maximal and minimal radii among r’s in (43), for i=1, ..., 616,

respectively.

" %

Lastly, the noise data is generated. from N(O?;E'f.).‘ In thisresearch, a, s, and k are set to 50, 25,
1 M

and 5, respectively. & ‘s of examples in Sec_{ion"‘féHI are gefierated based on N(0, 1) while those
iy W) 1

in the first case study are generated by N(0, 4).

E. Proof for THEOREM 3

Since the wafer spatial variations only consist of random variation, the sample variance within a

2

,» » can be expressed as:

moving window, i.e. S

— 2 M. ..
where M fp =Z& is the average of observations within the moving window W.”. It is
=1 P

known that the sample variance is an unbiased estimator of the variance, i.e.
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z (Mi i _M[ )2
E(S},) = EQ 0 ) =0
J=1 -

Therefore, the expected value of spatial variance for window size p can be simply derived as:

2 R (R
E(Sp)=E(;ZISW/]):;ZIE(SW)=;ZO- o’

i=1

As a result, if the spatial variations are only random noises as in (16) and (17), the expected
values of the spatial moving variances for 2 < p < n must be all equal. That is, if the expected
spatial moving variances are not all equal, then the spatial variations must consist of variations

other than random noises. |

F. Proof for THEOREM 4

N\ N

Let M, 1 and Sffl,( ; denote the sample m¢a1?&d variance based on n-1 random measurements
Il M|

wherein the i™ random measurement, 1e ]\/II,-; 18 é;-;éluﬂpd. It ié straightforward to derive
n—1 — = =
(”‘DSZ = (”_Z)S:—l,(n) +T(Mn _Mn—l,(n))z (46)

by replacing the overall sample mean M in (1) with

M, +(n-1)M
=DM, (Casella and Berger, 2001).
n

M =

Similarly, the excluded measurement in (46) can be replaced by the other n-1 measurements in

the metrology data, and we have the following equations:
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(n-1)S>

n-—1 Iva
= (=28, g+ = (M, =M, )

n—1 v
=(n- 2)5571,@71) + T(Mn—l - ZMH,(H))2

n—1 —
=(n— 2)Snz—1,(1) + (M, - Mn—l,(l))z 47)
n

We can then derive the following relation

n— 1 =5 2 n-— 1 7 2 n-— ]. 5 2
(Mn _Mn—l,(n)) + (Mn—l _Mn—l,(n—l)) +ee-t (M1 _Mn—l,(l))
n n n
_ Q2 2 Q2
- Sn—l,(n) + Sn—l,(n—l) + + Sn—l,(l) e ey
~n—1 — MR RN |
= ZT (M, - Mn—l,(i)) = Z Sn—l,(i) oy (48)
i=1 =Ll =¥ @
!-’";\ -\'. :'I( R |
by expanding the sample variances in (47) “'[it@éc%dnventional calculation of sample variances,
8 |

that is: : l i
&\l| 19

(n=1) Y M2 —(Y M)

2 =L, #i j=l,j#i
n=100) —
n—2

,fori=1, ..., n.

If all the RHS’s in (47) are summed up, we get:
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n(n-13S*
- (n Z)S —1,(n) + (M Mn l(n))

n—1 —
+(n- 2)Sn 1,(n-1) T(Mn—l _Mn—l,(n—l))z

+
n—1 _
+(n— 2)Sn Ly T —(M, _Mn—l,(l))2
n n
=(n— 2)2 Sn 1.(1) Z n—l,(i>)2
=(n- 2)2Sn 1,(i) +ZSn 1,(i)
=(n~ 1>2Sn o
5 1 n 5 L4 : -_
=8 ==>5 v T (49)
n i1 e 5
-”_“'\II le’q“.:
Given p=n-1 in (18), we have ﬁﬁ__,; 'I s
,l | r"t,_l I :
ZSZ =12S12”{’ v I ll ":‘-C
= niea &y B W

which is identical to (49).

Each Sj—l,(i) can be further expressed in terms of the sample variances of the samples with n-2

measurements, and (49) becomes:

ZSn L = Z Z n=2,(0,7) > (50)

=1 j =1,j#i
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. . .th
where S’ denotes the sample variance based on 7-2 random measurements wherein the 7'

n=2,(i,j)

and ;™ measurements are both excluded. Each S2 in the RHS of (50) is repeatedly

n=2,(i,j)

calculated, ex: S., ,, and S, , ,, are identical and counted. Therefore, (50) can be revised as:

an “2.(i,)) ) 52

- 2 J=lj#i n=2,(i,j)
ZS"‘“) Z—l 2 _n(n—l)zz 2

=1 j=1,j#i

-3 3 2w 6

n=2 i=l j=l,j#i
which is also identical to (18) with p=n-2.

By applying the result in (49) recursivelil, THEOREM4 is proved. O

G. Reasoning for Conjecture'1l 3':: '
To reason Conjecture 1, in addition tosthe irispiratiori, by THEOREM 4, Monte-Carlo simulations

are performed to study the distributions- of the spatial moving variances. 100,000 randomly
distributed wafers are generated from N(0, 1), and their spectra are calculated accordingly. One
can draw a histogram and perform goodness of fit test to see how the distribution of the 100,000
spatial moving variances fit to the chi-square distributions. Here, we use p=2 and 308 (n=616) as
two examples to show how they resemble the chi-square distribution. Fig. 39(a) and (b) show the
histograms fit to the chi-square distributions and the p-values of the chi-square goodness of fit
tests. The p-values are all near zero and the histograms look perfectly fit to the chi-square

distribution curves for both p=2 and 308 (/~0.0032 and 0.5). 0
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(a) £=0.0032, Distribution: Chi-Square
Chi-Square test = 189.64687, p = 0.00000

(b) £= 0.5, Distribution: Chi-Square
Chi-Square test = 236.63442, p = 0.00000
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Fig. 39. Histograms of the simulated spatial moving variances under spatial variation frequencies: (a) /= 0.0032 (p

=2): (b) = 0.5 (p = 308).
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