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Abstract

To ensure the quality of the nanoprint fabricated optical gratings, optical
scatterometry (OS) is an efficient and effective mean to diagnose the actual fabricated
geometry. To facilitate the diagnosis process, efficient pattern matching algorithms over
a huge database are of great importance. In this thesis, we propose an efficient algorithm
using minimum error square approach used to matching in a huge simulated spectrum
database in order to obtain the original geometric configuration inversely.We use
Singular Value Decomposition to do compression on large database and the use of
hierarchical moment to perform matching algorithm; our searching and diagnosis
algorithm is extremely fast and accurate! It is_over 3000x faster than a exhausted

searching algorithm within 0.1% accuracys

The second part is to introduce the usé%.‘f— parallel computing in the imaging of
microlithography for acceleration. As the VLSI technology feature sizes quickly shrink
smaller than the wavelength of exposure light _sourceé, the diffraction effects have made
the exposed patterns significantly deviated from the original intended mask pattern.
Therefore, the quality of microlithography simulation is an important part of the VLSI
manufacturing process. However, it takes considerable time to produce image. In the
thesis, we use CUDA, which is a general purpose parallel computing architecture that
leverages the parallel compute engine in NVIDIA graphics processing units (GPUs) to

speed up the image generation in Microlithography simulation.

Keywords: Optical Scatterometry, Singular Value Decomposition, Moment Matching,

Abbe’s method, CUD
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Chapter 1. Efficient Ways for Optical Scatterometry

Diagnosis
1.1. Introduction and Background

Since the linewidths of most holographic gratings in modern applications are less
than 100nm, few inspection tools are available. Conventionally, the scanning electron
microscope (SEM) is the powerful tools to characterize such microstructures. With
SEM, which is regarded as the most intuitive means of microstructure measurement, the
grating profile can be determined fromi its.eross-section images. However, this method

is local, expensive, time consuming, destructive, and not extendable to online
j'_'"s:--_ ]

I

monitoring.

In recent years, scatterometry which is based on the measurement of diffraction
efficiencies or polarization responses and encompasses reflectometry, ellipsometry, and
diffractometry, has become popular and widely accepted for accurate grating
topography extraction [1-5].Such kinds of techniques aim to solve inverse diffraction
problems. From a practical point of view, the relationships between grating profiles and
their diffraction responses can be found. Using the well developed grating theory, the

curve of any diffraction response versus grating parameters can be calculated. For the

7



inverse grating problem, an analytical function is unavailable for data got from
complicated numerical calculations. The functions are nonlinear, and the variables are
complexly related from each other. The approaches have been developed the finite
element method to solve the inverse grating problem. Since this approach

fundamentally differs from the usually scatterometric approach, we do not discuss it.

1.2. Previous Work

There’re mainly two approaches te solving _ipverse grating problems: the look-up
table method [2] and the nonlinear regres_si(?n rr}ethod [6=8].The minimum square error
method, which uses huge library with specﬁ;,ﬁzed search.ing algorithms, is a powerful
tool for multi-parameter grating profile fneasuremént__. Niu et al. [1] used this method to
measure CDs of integrated circuit with pseudoperiodic structures. In 1993, Krukar et al.
[6] used an artificial neural network (ANN) model to simulate the relationship between
the reflection at a fixed wavelength and the CDs of gratings with a trapezoidal profile,
but the method is not economical for large scale fabrications because it is difficult to

construct model. Although the look-up table method wastes the huge cost in computing

time and storage space. However, it’s higher accuracy than ANN.
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Figure 1-1 Optical Scatterometry Experimental

1.3. Motivation

I k i ary. We_i the mini
n our work, we focus on ﬁh:#fe%hb I)ng \ e minimum square error
3 )

run’ﬁ needs to be built. Second,

& o
we have to reduce searching ti%ew% n netry of grating. We proposed
. . . %%1%, @ el P @I ﬁ-‘. .
an efficient Grid-based searching witl lmdst-Oﬁé' j&tﬁ complexity. Reserve only 1%
“speeiS”

data size by Segmented Moment Hierarchical SVD. It’s over 3000x faster than a

exhausted searching within 0.1% accuracy.



1.4.  Spectrum Diagnosis Scheme

The spectrum diagnosis scheme involves three phases (Figure 1-2).The first step is
to collect all reflected spectrums by R-Soft simulation to establish database. The second
step is to perform Singular Value Decomposition (SVD) to compact the huge database
and segment the spectrum of zones. Third, feature extraction, the moments distributions
are different between square and trapezoid gratings. Hence, we take advantage of this
feature as classification. Finally, given an unknown reflection spectrum as an input with
the Grid-based searching, we can findithe most ppssible grating. In this work, I devote

to the SVD Compaction and Grid-Based Searching.

i W g

i &
=
¥

5 88
Phase | Database Construction { [ < ."'; :|
SVD | - .= = |

Compaction -

Phase Il
Segmented Moment » A ..u
Matching :- !I A II | -'_ l, f I
l bl
Classification g .
Phase Il J ERER
Grid-based

Searching

Figure 1-2 The spectrum diagnosis scheme
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1.4.1. Database Construction

There are three kinds of grating shapes in our simulation: Rectangle, Upside down

Trapezoid and Trapezoid (Figure 1-3).

Rectangle Trapezoid Upside down
Trapezoid

Figure 1-3 Three kinds of grating shapes in our

/ _;q.;:._l'_FI_--",-l.’-.-'_'.-.i: P,
o - B W
_\ I ..-'_'.r "'i:' : ".-

A 4
.\"k ! ~ =h
17 i P g a7 e
o G =)

We use the R-Soft simulatof.f[9] o ge

=

L 5
1

=

R (D) LOWER CD and PR HEIGHT

Frie W

optical gratings which are dep-éﬁﬂé

(Figure 1-4). '-f'::; 3 . OF _‘.i___.:y"

1 UPPER CD

LOWER CD

Figure 1-4 The parameter of the grating
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However, the space complexity of our database is O (M x N), where M is the range
of reflected spectrum, N is the total number of spectrum in the database. Typically, the

data size of matrix A is 225x10°. Therefore, we can perform Principle Component

Analysis for compaction.

Nyl N ?\ F % F
M g

Grating tar get subsirale L J

ST (T

Figure 1-5 Database construction by R-Soft simulation

1.4.2. Problem Formulation ||
- || .I
&\l \

The light reflectance intensity of éﬁlectmm ran'ge\;from 200nm to 1000nm or more,
searching the most possible pattern of optical gratings is similarity to look for minimum
error least square. Therefore, we can formulate the optical grating pattern recognition to
the following simple equations: Ax=b, where A is a database of reflection spectrum of
different grating shapes, x is a selection spectrum, and b is observed spectrum (Figure

1-6).
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M

Datahase of reflected spectrum
for different grating shapes

Selected spectrum Observed spectrum

Figure 1-6 Problem formulation

With a measure spectrum b, searching process can be fundamentally mapped to a
least square fitting problem in the following, where a; is the i-th column vector of matrix

A

N\
_ e
Ib|—a] (1.1)

1.4.3. Eigenvalue Decomposition

Suppose A is a square matrix of n-by-n, let A;, A, . A, be the eigenvalues of a matrix
A, let x'x%..., x" be a set of corresponding eigenvectors, then: A=XDX'(Figure
1-7),where D is the n-by-n diagonal matrix with A;, X, A, , X is the n-by-n matrix

whose i-th column is x' ; if eigenvectors are orthonormal, then:

13



A=A x DT+ () T+ Ax (x| (1.2)

A X D X1
(nxn) (nxn) (nxn) (nxn)

0‘ : E—
- (T 1] >< 0 ‘\\\\ >< E
K

Figure 1-7 Problem formulation

1.".;'"[ S F-'IEJ- _0’

(1.3)

If the matrix A is not a square matrix, we can perform Singular Value

Decomposition, we will introduce in the next section.
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1.4.4. Compaction by Singular Value Decomposition

A U S '
(mxn) (mxm) (mxn) (nxn)
|

- : I b Ix \\\‘

Figure 1-8 Singular Value Decomposition

R Ji |f SR
Suppose A is an m-by-n math&ﬁrlhwts,a factorization of the form
A=USV'. We perform the Slngular Valu ccom sitio (SVD) (Figure 1-8) operation

=

on A to decompose it into the pip-(Tu 0 4 f’(;_USVT, where the size of U,

A

S, V are mXm , mXnand nXn fl‘?épeC'tl\ieli’ Fl}et matrix U is m-by-m and V is
57 Gy o i

n-by-n. Both matrix U and V are orthonormal. Here S is a matrix the same size as A that

is zero except possibly on its main diagonal where each entry (singular value) in

diagonal denoted the importance of the corresponding columns and rows of U and V,

respectively. In this work, each reflected spectrum (column) of A can be represented by

smaller linear combinations of more compact set of basic kernels. The matrix U is an

orthonormal matrix that each column (orthonormal) is consisted of those kernels. SV'
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are those weighting corresponding to each column of A. A simple concept of SVD can

be illustrated in the following diagram (Figure 1-9).

Original Database Compacted Database
| I
\ I
III m |
III I .\L,-
w
Original Spectrum Compacted Spectrum

Figure 1-9 Database compaction

SfEfE
-'15'--[_[ L -

-5 % T

1| 4 . - . \".
Depends on the decreasing sp@é‘dWsinWlﬁes in S (Figure 1-10), we can
A -
& N

ry o W .
effectively compact A into smaller siz the ratio of singular values; if the

=

——

f
Wlllf be reduced from O ( M x

.._.-#"'
(2N
4

A oF 3
‘*"’/ i
C
i

largest k components are reservied?tk

L _\.{C'-:

L ,’/_F_'_:'(.l - A
X) to O(k x N), where M is the range of reflected spe trum and N is the total number of
' 'JJ": IricaT 5 Tl e

spectrum in the database. According to the singular value distribution, we can get large

p with small k:

o01+0+:-+0) :p% (14)

o1+0+ +0og+ oy
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Singular Value Distribution
350 T T . T T

Singular Value
o~
=4
=
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=
1
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\_

0 50 100 150 200 250 300 350 400

0

Figure 1-10 Singular value distribution of simulated reflected spectrum

With a measured spectrum, b, searehing process can be: rewritten as follow:

i W g

— -
—
b |

" MUfp=svTiy y ™ (1.5)

The speed up of searching time with compact database is 53X faster than original
database. However, it always tries to find the match spectrum in the database exhausted.
When A is getting huge, the time complexity is O (N), where N is the total number
reflected spectrum in the database. To solve this problem, it is crucial to sort the data

into different bins according to its similarity. We will introduce it in the next section.
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1.4.5.

If we can group the data according to its similarity, then it’s efficient to search the

data. The quest is how to easily compute the similarity between reflected spectrums.

The first thought come into our mind is statistical moments [16], that is: mean, variation,

skewness and kurtosis (Figure 1-11). The definition of the k-th moment can be represented

as follows :

Mean

—_—————m =

Classification

Skewness

— k —1yN _k
my = Ex — ¥ = 23N, x!
1 .;|:
Variance
Kurtosis .
< positive
y negative ~
positive

Figure 1-11 The meanings of moments
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With the different shape of different moment distribution (Figure 1-12, 1-13), one can
use this feature to classify the sub-database. Given a spectrum database A, we segment each
spectrum into a few zones (Figure 1-14), and calculate the moments such as mean, variance,
skewness and kurtosis in each zone. Once the moments of each zone are computed, there is

a need to sort the data according to the moments.

The Variance (Second Moment) distribution of different shapes

0.073; T T T T
—+—rectangle
| +— upside down trapezoid
0.0725] Fat ——t{rapezoid
A R A b b b ,.,.,’f...-.., il...‘.,., P FOTPCTIPTOVIRY
0072 oy 7 .
I! II ‘)‘
/ \
0.0715} / \ ,»*"‘
Py F
¢ 4 o
/ Ve
0.071- / N |
@ J
= /
g 0.0705+ i/ -1
g /,-'“-\\\\T
¥ |
0.07- & / |
T .-c-v-H-wv‘v"f
0.0695+ -
0.069+ -
0.0685+ -, i
B aAdAAs """'M e
L 1 L L L L
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Different Height of the shape

Figure 1-12 Variance varying according to shape variation
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The Skewness (Third Moment) distribution of different shapes
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Figure 1-13 Skewness varying according to shape variation
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Figure 1-14 Segmented Spectrums with moment computations
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1.4.6. Segmented Moment Matching

With the segmented moments, our searching process is to first compute its

segmented moments as well and try to search the nearest spectrum with close moments.

To facilitate the process, we can map the segmented moments to a grid structure to store

the spectrum according to the segmented moments. The concept is illustrated in

following diagram (Figure 1-15, 16):
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Figure 1-15 Grid storage structure in moment
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Figure 1-16 Grid storage structure cell in 3D moment spaces
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It’s similar to the idea of space partitioning and locality sensitive hashing. It’s

straightforward that the overall space could be separated into grids as the following

graph (Figure 1-17). The grids act as a index for the grouping. Along each axial

direction, it could be given a code for each grid. Thus, every grid could be represented

as a coded string.

61| 62,| 63 | 64 |65 | 66 |67 of
# I
51| 52 | 8% | 54 |55 9 56 |67
-
it ] T
41| 42 *{%3 4 a4 |as*| a6 [a7 |
g - |
= . T » .
3%( 32 |'934 34 (35 [ 3¢ |3M
21 22 | 23°| 24 |25 | 26.|27 |
LY L) = |
11| 12 | 13 | 14415 | 16 |17 |
N % - _

Figure 1-17 Coded grid
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It’s apparently that to minimize the penalty from the dimension. The effect could be

reduced by reducing the dimension. Singular value decomposition is a powerful tool to

construct a compact representation. With the segmented moment, each spectrum can be

arranged into a moment vector in the following form, where m; is i-th zone of j-th

moment:

[my; - myy my -+ M2e 77 my] (1.7)
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then, the M matrix consists of each moment vector:

1 2 n
My My myq
1 2 n
M=|Mi2 My mj; (1.8)
1 2 n
Mpyg  Mpy m4-%n

The first column is moment vector of spectrum of the first case and the last column
is the moment vector of spectrum of the last case, etc. Then, we perform the Singular

Value Decomposition on matrix M for dimension reduction in the following form:
M =.USVT (1.9)

There’s another critical problem, that thé.:daté'may be intensively clustered in some

i

particular grid. This could nof Be avoided“in a lgeneral sense. However, the SVD
operation illustrates another view for how 'it-is distributed. First, we can rewrite the

SVD operation to M matrix as follow:
U™ = svT (1.10)

The standard deviation of each row in V' is:

1

Emi-wr= REv-Ne = & (110
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That is, the V space might disperse roughly in the same trend for each row.

Furthermore, combining the singular value, the standard deviation of each row is :

(1.12)

209

This illustrates that V" is related to the root of the size of the database. Also, for
every row that is normalized by the singular value (o, ) will then have equal standard

deviation. The distribution is similar toinormal distribution in the following graph:

250 T T T

200 -

180

times

100+~

0.2 015 0.1 0.05 ] 0.0s 01
he distribution of V space to each row

Figure 1-18 Distribution of V space
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If w; is and o; are the mean and the standard deviation of i-th row in V matrix. Then

for any real numberk > 0, by Chebyshev’s inequality:
1
P(|x — p| = ko) <z (1.13)

Therefore, we can disperse the data uniformly according to the distribution; then, we

can segment zones to each dimension; the following graph illustrates this concept:

3

=35 - 25 J‘_'I'S +§'| +28 +3s
I \
4 zonel l mnezl zunefll zoned
| | |
-1 W12 W11 w11 W12 1

Figure 1-19 Disperse the data uniformly according to distribution of V space

With an input spectrum b, we can use the following algorithm to calculate the code

locates on the grid.
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Algorithm Enode (b, p, M, z)
Input: b ( input spectrum ), p (dimension of moment space), M (Moment
matrix ), Z (zones)
Output: C (code)
begin
do M=USVT,UTb;
for rowonetop;do
for zone one to z
define :(UT b)pis the p-th row of UT b
observe the (UT b)p locates in which zone;
mark the index of the zone;
end
end el TIE T

C:= the set of marked index; = S
A P

=
)

w2y

Tl
-

Finally, when the number of—t_fi?: d
B B

- 7
S LS

ek o~

LT

. : -.::.;. \
SVD method on the moment spaces to find out the best match. The concept is illustrated

P[0Ty T L

in following diagram:

m3

[ sVT(1,1,3) .

ml

Figure 1-20 Perform SVD to 3D grid structure



1.4.7. Grid-based Searching

However the grid itself is not a perfect replacement to the distance. That is, for any
possible sample in grid G, and G, there is loose distance range, and is roughly the error
tolerance of the grid. Suppose two samples s; and s, are located in grid G, and G,. The

codes of G;and G, are: [C“ ClpJ and [CZ, Csz respectively. See figure

1-21 for a 2-D illustration.

wl

w2

dri

dmgx

Figure 1-21 Schematic diagram of the distance between grid

The orange line in figure 1-21 is the least possible distance while the green one
refers to the farthest distance. If the wy; is the width of the grid in p’th dimension with

code i. Suppose wp; is homogenous, that is:
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Vi, wy = w, , then:

the difference vector are:

Wl X maX{|C11 - C21| - 1,0} T
Ao = : (1.14)
w,, X max{|Cyp, — Cyp| — 1,0}

g Gl LD gy i
S = G

:.-3-‘:I -Tfl‘i"'.!. B i ‘.:?__t_‘.
and I = N
-
g | (1.15)
t 1,0}
- l“.:_\"-
N e_c;_.. : rg;_T Y
then: Sy ey o L2

|dmin|S|51'SZ|S|dmax| (116)

If isotropic property holds, that is:

Vi,w = =w, =w , then:
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T
max{|Cy; — Cp1| — 1,0}

dpin = W X (1.17)

max{|C,, — C,p| — 1,0}

max{|Cy; — Cyy| + 1,0}]"
dipax = W X 2 (1.18)
max{|C,, — C;p| + 1,0}

wll wl2 wl3 wld4 w15 wl6

% >

w2l ﬁf
N

w22 dmax//

4

w24 Méz

Figure 1-22 None-homogeneous grid

If the width 1 is not homogeneous (figure 1-22), that is

3i, wp; # W, , then, we can denote an accumulated function as:

Ap(D) = Tke— oo Wpi (1.19)

, then:
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) T
A;(max{C;4,C31} — 1) — A;(min {Cy;, C34})

(1.20)

dmin

Ap(max{Cyp, Cyp} — 1) — Ap(min {Cyp, Cyp})

A;(max{Cyq, C31}) — Aj(max {min{Cy4, C2;} — 1,0}) !
: (1.21)

dmax

Ap(max{Cyp, Cyp}) — Ap(max {min{Cy, Cp} — 1,03)

So far, we introduced how to calculate the distance between each grid. Therefore,
the code calculated input spectrum, we can do so far from near to the visit. We still have
a problem is that when we calculate the input spectrum of the encoded, we call on how

far the margin?

— by,
% f
f

| 2= ||
Il m |} .
First, we process the grid mapping relA.tive to the tree view, show in figure 1-23.
i 'I '

wll

w2l

111 112 113 121 122 123 131 132 133

Figure 1-23 Relative to the grid structure of the correspond tree

If the wy; is the width of p’th dimension zone with code 1, the upper bound of each
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level to reflected spectrum is:

(w - Vi)? < wp; (1.22)

Oj

With the searching processing of red path, the upper bound distance (uy) is:

0 <D}3 S X, wh = up (1.23)

From near to far to visit, until the center of each grid with minimum distance greater

than the upper bound (Figure 1-24):

! - o

4 /k-‘ | g

. . . » ' »
S ) [ 7 B . T
1 - | '] . I
| * . L
i ** Uy
L3 . * =
. * . .
I 4 - .

Figure 1-24 The upper bound from observation points

So far, we introduced how to calculate the distance between the grid and how to

identify the input spectrum of the upper bound. Therefore, with the input spectrum b,

we can use the following algorithm to find the nearest grating.
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1. Calculate its code and upper bound of measured spectrum b

2. Searching the grid with the same code

3. Calculate the minimum error square with data in the grid with the same code
4. Drop by the gird from nearest to the farthest

5. Repeat 1-4 until the grid with the observation points greater than the upper

bound of the minimum distance

6. From each visited the smallest error in ‘the, grid, find the smallest. And to

\
==
—

identify the corresponding grating

1.5. Approach to Arbitrary Segment Spectrum Range

Sometimes, with a measured spectrum b, the range of wavelength is not fixed. For
example, we usually measure 250nm to 1000nm as standard spectrum range. However,

the range of spectrum probably is located at 400nm to 750nm, or 600nm to 650nm, etc.
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| AEE

Figure 1-25 Compensation for a particular spectrum

Let’s see the form of input spectrum, if it was located at 400nm to 600nm.

— O -

0
b400

b, g oesamEEE (1.24)

524 b.6_00

/_"'\. I '0
-"_\'-'-— r..\| I.
= ||

In this case, we have only to be derclted agalﬁst the 1 range of 400nm to 600nm in
\

database. In order to reduce the errot;we have to* ﬁll up the b vector. The following is

the form:

[ UsvT

start
} —SVT|| (1.25)
UsvT

where, a; is the i-th column vector of matrix A, b; is the i-th element of input spectrum b.

"

/rbs?art-l

|
UTK : +r
bend
0

i
)

0
0
A
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Therefore, we can derive the correct result by compensating the out-side range

spectrum range.
1.6. Simulation Results

We use R-soft to simulate our experimental setup according to the following table at
PC with Intel Core(TM)2 Duo CPUT7300 @ 2.00GHZ RAM:2015MB

0S:VISTA(32-bit).

The pitch and arc height of the gratings are fixed to. 800nm and 165nm respectively.

The upper CD (figure 1-4), the lower/CD, and the height of the grating are centered at
250nm, 250nm, and 350nm, respectively. Tﬁgfﬁaximum varying amount of the upper
’ ; ) I

CD, the lower CD, and the height oif the grellt'ir__lg are 30nm, 30nm, and 50nm,

respectively. With total the resolution in our database is in 1nm scale.

The SPEC of our simulation setup
Parameter Value
Pitch 800 nm
Upper CD 250+/- 30 nm
Steps Increments I nm
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Lower CD 250+/- 30 nm
Steps Increments I nm

PR Height 350+/-50 nm
Steps Increments I nm

ARC Height 165 nm

Table 1.1 The SPEC of simulation step

The search results by direct searching (MSE) and grid-based searching are show in

the following diagrams; At first, we éompéré thedirest search (MSE) without compact

— ~ el

database. The searching time is almost 24 ﬁiixgt;é‘sW(Figure 1-26).

el

Direct Searching
search time:1443.2745sec
0.09 T T ‘ ‘
_____ find waveform:
w1:256:w2:250:h:323.dat
0.081- g observed waveform:
w1:256:w2:250:n:323.dat
- 0.07+ g 5
- 9
2 [

d :
~g08- ¢
E 0.06 6
g @
v
0 0.05-
&
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w
c 004
5]
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S 0.031-
N
b
2 0.021-

0.01-

v ‘
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Wavelengtﬁ (um)

Figure 1-26 Direct Searching (MSE) without compact database
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Second, we use direct searching for compact database, the total searching time about

26.92 seconds. The speed up is about 53 X than direct searching without compacting

(Figure 1-27).

Direct Searching
search time:26.9258sec

0.09 T T T T - L
o.. find waveform:
w1:256:w2:250:h:323 . dat
0.08[- _observed waveform:
g w1:256:w2.250:h:323.dat
@
0.07 ) =
¢
: 3
= &
0% ¢t
-]
z H
5 0.05 4
-] H
= %
L &
goo
E 0.03-
0.02
B
0.01f
1 1 | l | 1
3.2 0.3 0.4 0.5 0.7 0.8 0.9 il

0.6
Wavelength (um)

Figure 1-27 Direct searching (MSE) in compact database

F

Third, we use grid-based searching (Figure 1-28) for compact database; the searching

time is about 0.393 seconds. The speed up is about 68 X speed up than direct searching

(MSE) on entire compact database. Besides, it’s almost 3600 x speed up than direct

searching without compacting.
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Grid-based Searching

search time:0.3939sec
0.09 T T T T L .
... Tind waveform;
w1:256:w2:250:h:323 dat
0.08- . observed waveform:
w1:256:w2:250:h:323.dat
E-3
0.07 1
¢

= :
E Q.06 j
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Figure 1-28 Grid-based searching in compact database
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Fourth, we use grid-based searc ]
7

LR

L

e__('i spectrum with the Gaussian

1+

. —" \.N- o3 . ..
noise of 0.5%. Because we Want,;tSM kno CITOLS 1N the input conditions, the
g 3. W i
2 e« o 4

.r", R
accuracy of the search database is? The error range of grating on each dimensions are
less than 1nm; the searching time is about 0.448 seconds. The speed up is about 3221x

than direct searching (MSE) without compact database.
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Grid-based Searching

search time:0.4482sec
0.1 .
' ' ' ' _ find waveform:
. w1:255:w2:249:h:324.dat
f ... observed waveform{add 0.5% noise):
0.08- .  w1:256:w2:250:h:323.dat
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Figure 1-29 The input reflected spectrum with 0.5% Gaussian noise on grid-based searching

edirect searching:

vy

Searching way '{-' DE&T% : | Speed up | Result

iy ?-:"Z:" ';-_- . B 3
Direct searching Original *+{:1443 .27 1 Exact
Direct searching Compact | 26.92 53 Exact
Grid-based searching Compact | 0.393 3672 Exact
Grid-based +0.5% Gaussian | Compact | 0.448 3221 Less than Inm

Table 1.2 Searching time comparison
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1.7.  Runtime Comparison

From the following graph, we can find that the direct searching method searches the
entire database, so the runtime is linearly proportional to the data size. The runtime for
grid-based searching is almost constant. It can see that our algorithm is significantly
faster than MSE searching algorithm and the runtime remain flat when the database size

increasing. The capability of our algorithm is still expandable.

Direct search VS Grid search

35

L
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Direct searching (MSE)

Run Time (seconds)
s ha M
o o (]

s
=

Grid-based searching

% 100 150 200 250 300 350 400
Data Size (Thounds)

Figure 1-30 Run time comparison Direct search VS Grid Search
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1.8. Summary

In this work, we are mainly aimed at large scale library, so we have chosen to
improve the original MSE approach to search to find the grating inversely. We know
that MSE drawback is that large database storage and searching time is too long. For the
former, we use Singular Value Decomposition to compress our database. And use
segmented moment matching for classification of database to form grid structure. Once
again, we perform SVD of the characteristics of the moment spaces dimension
reduction and based on the distribution of the data to-do the cutting evenly dispersed.

Finally in order to input error can be fpl_erated; we focused the search on the grid for

-
——

visit from near to far. At the appropriate uptfzer bound to find out the smallest minimum

error square and the inverse grating configuration.

1.9. Feature Work

With the reflected spectrum b, the grid-based searching drops by from nearest
to farthest and calculates the least square error to each grid to find the most
possible result. In our work, it’s suitable for parallel computing. We can use the
multi-thread programming to visit each grid in the same time and compute the

minimum error square to each spectrum in the same grid.
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Chapter 2. Parallel Optical Simulation Using Graphic

Processor Unit
2.1. Introduction and Background

Integrated Circuits in a variety of application areas such as biomedical electronics,
multimedia communications, consumer electronics and other products and services, the
development and mass production has always occupied an important position, but with
the electronic circuit technology matures, on VLSI performance and cost of the demand
is growing. In response to thé high—dens.ity high-performance circuit design,

microlithography is the integrated circuit té_’%e the key to' low-cost mass production
2.2.  Motivation

With the evolution of the chip manufacturing process as well as sub-naometer
generation of high-performance components demand mask pattern of the size of
microlithography is challenging the exposure light source wavelength resolution limits
(CD: critical dimension), which makes a variety of optical diffraction, and other
physical phenomena must be taken into account to predict and, while a variety of

resolution enhancement technology is also widely been proposed in order to compensate
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for circuit design and chip as much as possible entities the gap between to maintain the
advanced integrated circuit production yield and functional correctness. To evaluate the
microlithography quality, massive images are often generated for careful inspection

using applications such as OPC.

In recent years, due to multi-core advances, more and more technology used to
speed up parallel to a large number of complex computational problems. NVIDIDA
developed CUDA general-purpose parallel computing architecture that allows graphics
processors have adequate capacity to solve corﬁplex computing problems. If we can use

CUDA for the imaging in microlithography, thien|we can reduce a lot of computing time.

——

]

2.3.  Preliminary

The first part we will give an introduction on the image simulation in
microlithography. The second part, we will introduce the General-purpose computing on
graphics processing (GPGPU). We will apply this technology in parallel to produce the
images. Finally, we will compare the performance of GPU and CPU on the differences

and analyze it.
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2.4. Overview of Image Generation

There are two approaches for imaging, one is Abbe’s method and the other is
Hopkins’s theory. Hopkins’s theory of the light source and system functions as a
representative of the interaction of micro-imaging system, each conversion coefficient
(TCC: transmission cross coefficient), while the Abbe’s theory of malpractices light
source is approximately the same tonal equivalent discrete light source (effective

discrete source points) substituted into the formula into a number of imaging the

convolution kernel to get the result of mask paﬁem. :

2.4.1.

|
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Imaging Equation
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Figure 2-1 Coherent illumination



Initially, we define the cording systems as shown in Figure 2-1. Points in the object

plane, pupil and image plane are specified by (Xo, Yo), ( £, 7), and (X1, Y1) respectively

[11].

The image intensity 1(X1,y1) at the point (x1,y1l) on the image plane can be obtained
Hopkins formula, which can be approximated subsequently by a summation

+00 400 400 400 1; /; * ! !
I(x1,y,) = f_oo f_oo f_oo _o Jo (X0 — X0, Yo — %0) 0 (X0, ¥0) 0" (xg, ¥o)

el o)
XH(x, — X ,y1 — Yo JH (X1 — Xo ,¥1 — Yo )dxodyodxsdy,

Where points (Xo,Yo) and (X’O,Y’o) .are twg arbitrary points on the object plane.
O(Xo,Yo) is an appropriate transmission. o'fl .t:.%;dbject, which is the mask function consists
of complex number or with value 0 aﬁld 1 -t';r Binﬁlry Intensity Mask. For convenience,
we neglect the time and temporal frequenéy, éo the frequency component is omitted.
This simplified quantity is called the mutual intensity of the light and is given by Jo (Xo,

Yo, X’0, Y’0) [10].

Such expression is possible because source points the light source are mutually
incoherent. The quantity delimited by the absolute value is the electric field, arising
from a coherent source point of unit strength located at (f,g). If we denote the square of

this quantity by lcon, we can rewrite the imaging Eq. (2.1) as:
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+

106, Y1) = Qimage Joo S JE ©)leon(f g)dfdg (2.2)

where

[o') o0 . J 2
Lon(f,9) = |[72 [T7H(E+ £/, g + g)O(F, ghe 2 x+emdfdg'|”  (2.3)

There are two approaches for imaging, one is Abbe’s approach and the other is
Hopkins’s approach. In Abbe’s approach'is .based on a spatial discretization of the
source into discrete point sourcés. .Hopkins’s imaging requires calculating the
transmission cross-correlation matrix (TCE%‘Qf the illuminating pattern with the pupil
and its complex conjugate. In our Wdrk, ;Ve fog:us on Abbe’s method, and we will

introduce it in the next section.
2.4.2. The Abbe’s Method

Abbe’s approach [11], which is also called integration approach of the source points,
models imaging with such illuminators [12] .This approach is based on a spatial

discretization of the source into discrete point sources as illustrated in the following:
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Figure 2-2 Discretization of a conventional partially coherent illumination system

Imaging system regards the lightifitensity I(X, %) as the output and the mask function

"I

O(X, y) as the input passing through the.;t"iﬁﬁsfér function K. So we may rewrite the

1
imaging equation (2.2) as: w5 N 1
106,) = Gimage [y |0 1 Dleon(x, Y)df dg (2.4)
where
Leon(£,8) = [H(x y)e 2 )x+(E €« 0, y)| (2.5)

The Abbe’s method first approximates the effective source function J by a finite

number of point sources:
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](f}g)E]A(f'g)=25a56(f_f:wg_gs) (26)

where a ¢ is the effective strength of the discretized point source located at S(f-f;,

g-g; ). The aerial image is then obtained by an incoherent superposition of all the

contributions and becomes

I(X' y) = aimage Zs as Icon (fs: gs) (2-7)

The computation procedure for the Abbe’s approach is given as below:

1. Calculate the object spectrum O(f, g ) from O(Xo, yo )

2. Approximate the effective sdu'r;cr_el_-_]'__('f, g ) by the discretized source ](f,g)

fF

by Eq. (2.6).

3. For each discrete source, computethe component image according to

Eq.(2.5)

4. Sum component images to obtain total intensity by Eq.(2.7)

For an effective source of area A, and an object of area A,, , the computation time scales

according to

tcompute x As : Am (2-8)
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We rewrite the imaging equation in a convolution form at spatial domain as

I(x,y) = a X3 ag |Ks * 0(x, y)|? (2.9)
Where we call K is a kernel function at (fs, gs ).
2.4.3. Mask Decomposition

Mathematically, if O(x, y) is the mask pattern function, it could be represented as a
summation of N rectangular slit functions [14] [15] , it could be represented as a
summation of N rectangular slit fuﬁctiops becauseithe given pattern with any shape can
be composed of rectangular patterns.afs.:%é\.'w in figure 2-3 . We define the pattern

function f(x, y) to be

O(x'}’) = §V=1fl' (x»Y) (210)
where
.0 1.0 1
f(x,y)z{l’ if x; <x<xj,y; <x<y; @2.11)
0, others
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Figure 2-3 Mask pattern Decomposition

2.4.4. Lookup Table

According to the Eq. and Eq:s:and we can get [14]]15]

2
I(X, :V) = aimage Zgource as|Ks * Zévzlfi (x' }J)l

2
= Qimage 20 ag |Z{V=1 K * f; (x, Y)l

Therefore, we expend it to integral form as:

I(x, :V) = aimage

ZSOUT'CE
N

as

(2.12)

N TR (= xy — Yy fi(x, Y )dx' dy!
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Then, we concern the Binary Intensity Mask (BIM), the infinity limit can be

replaced and the equation will be:

~ Yil x: ’ / ’ ’ 2
I(x,y) = Aimage 231 ag ?’:1 fylp fx? Ks (x —x',y —y")dx'dy

(2.14)

Trough the mask of the decomposition, we have built a Rectangle based lookup
table, for each rectangle to do look-up table to calculate the intensity. To consider an
area A of the rectangle for an obs.erva.tion pointi(x, y) of the intensity contributions,
convolution operators, according to. £ﬁéiﬁééiprocal theorem, we apply change of

variables and let u=x;-xy and v=y=yo: Sﬁbstituting these variables into Eq.(2.14)

—yl —x1 2
L f;’_;& f;c_;o‘ K, (u,v)dudv (2.15)

I(x: y) = aimage Zgource Qs

We build lookup table for Abbe’s compact kernel [14] [15] without resolution
restriction. Convolution result can be obtained by overlap area as show in figure
2-4. This means that our Table to record only those in lower left corner of the
rectangle of the convolution results. All areas of the results can be obtained from

the table look-up.
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A Az Az A3

A=A1-AZ-A3+A4

Figure 2-4 Convolution by pre-computed lookup table

In this way, we define the mask function O, which is given by the superposition of

rectangle indicators as f; (X, y):

0= ¥ Ja f(xly) (2.16)

Here N is the number of decemposed re?:_tangles, a;.= 1 for edges included all
the edges or none of slit and a, = —1 for edges included only one edges of slit. The f;
(x, y) means the region of area ranges from (X, yo) to (X1, y1). Apply the linearity of
convolution, it allows the output of a linear system with kernel K(x, y) to be expressed

as a summation of contributions from the individual areas via the generated squares:

1C6,Y) = Qimage 2577 as|Zro1 Ks * arfr(,y) |2 (2.17)
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According to multiplicative identity of the convolution, most collections of
functions can be consisted of several data distributions which allowed that delta

distributions individually convolve with kernel function. Specifically,
K+*6=K (2.18)

Where ¢ is the delta function and K is the kernel function as show in figure 2-5. One
property is that the convolution distribution of the delta function and the kernel function
is only within kK x k block. In other words;the range of its center of convolution result

, ol Tk o 5 -

is k/2.

Figure 2-5 A delta function convolutions with kernel function

Apply this property; we only build a look up table whose elements represent the center

of convolution function. For any shapes of rectangles, the center of convolution results

only concerns with the shapes within k/2 range. For example, there are three cases in
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figure 2-6, although the rectangles are the gray ones, only the black rectangles

contribute to the center of the convolution result.

(a) Case 1 (b) Case 2 (c) Case 3

Figure 2-6 Example for the center of convolution

Therefore, we will build exaet lone loo]g‘nup table  of k x k size, for every black
T

rectangle.
2.4.5. Image Generation Flow

The image is calculated by convolution of mask patterns and kernel tables. We
generated look up tables for the convolution operation. From the look up tables, we can
derive the intensity of each observed point. The following figure 2-7 shows a brief

image generation flow.
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2.4.6. Mask Pattern Partition | L

o

= 1

| 1 |
..“ 1/
We can partition the mask ﬁrst[ls], .whixch. ﬁas several advantages, usually a circuit
area is quite large, and this will not only target specific areas to do the calculation of
imaging, and can also be used to deal with parallel-oriented individual partition.
Considering the influence scope of a point light source, we must make an appropriate
extension for the adjacent regions. According to the size of the lookup table, we let the

extension width is a half of the table width. So each partition region and its adjacent

regions have overlap. The following is the graph of mask partition:
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Figure 2-8 Mask Partition

2.5.  Parallel Optical Simulation =

N\

| I~ |

| =L

So far, we have introduced-how to gﬁ'-_ii;l:‘atpll the/images in the OPC as a quality
m |

Y \
assessment, however, time is often gelderéted ilj;Lgeﬁ'-heed to be considered. The time
complexity of image simulation is O((n/;-)z),‘wl.lére r is the resolution, and n is mask size.
For example, n=104(nm), r=10 (nm), then the total size of simulation is almost 10°, that
means we need to calculate about 10° points in image simulation. Usually this will
take a period of about six minutes. Taking into account the image simulation is actually
a mask on the right to do look-up table for each point action. The look-up table

operations are mutually independent. It’s similar to do vector addition for times. Besides,

the flow control is few used in look-up table. Therefore, it’s suitable for
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parallel-oriented operations. Next we have to verify that the look-up table accounts for
high percentage in image simulation. We must use the profiling tool to observe it, we

will introduce in the next section.
2.5.1. Code Analysis

To determine which function would be rewrite, we have to know what portion the
total running time they take. Therefore, we can use a profiling tool to analysis it. The
GNU profiler tool [18], GNU gprof which wgs used to gather the information during
program run time that include _thé pe.r_centage. of .the total execution time and total

" )

number of times the function was kalled. I—E_:':fbilbwing table and graph is our test case:

-
g . I flres; .éasé:jl 4
Circuit E\.fen—.bit CSG of 32-bit Adder
Size 10740nm x 8210 nm
Layer METAL 1
Resolution 50(nm)
Level 5

Table 2.1 The test case of Even-bit CSG of 32-bit Adder
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Figure 2-9 Even-bit CSG circuit of 32-bit adder
The following table is the gﬁgw rof ou =
IS~ b ¢
Function Y ; i s'(%jé;:onds) function calls
Lookup table:table look up() 439538656
XY:XY() 0.72 0.12 3595213
Polygon:add_point() 0.18 0.01 400142
GDSii:Record::read data() 0.06 0.01 60304

Table 2.2 The profile output of optical simulation
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From the profile output, the look-up table dominate the great majority of total
execute time. Therefore, we would parallel the look-up table in order to speed up. To
take advantage of multi-core hardware environments coupled with the software
interface to do parallelism. Today, however, there are many choices of platforms to do.

The next section, we will gradually introduce multi-core development history.
2.5.2.  The Evolution of Microprocessor

The field of microprocessor design.is approa_ching a problem: the physical limitations.
In the traditional, in order to prombte Performance, increasing the clock frequency of
microprocessor is a basic method. Howfe.\lz.;,‘j%;:the limitations of the power consumption
became more and more ascended.-Therefo-r;:, the I:architecture of multi-core processors
was born. However an efficient way to téke advantage of multi-core processors is
difficult. Many algorithms cannot split up to parallel completely. Several designs of

multi-core have been researched in order to apply the wide computational applications.
2.5.3.  Multi-core Background Overview

In the year 2004, IBM introduced the POWERS processor. [23] It is a dual-core

processor with support for simultaneous multithreading with two threads, so it

58



implements four logical processor. Instead, AMD introduced its first multi-core
Opterons in the year 2005. The Intel Core architecture unveiled in the year 2006. Since
the advantage of multi-core on multi-tasks, the multi-processor generation is coming.
However, in the recent year, not only graphic card being used in entertainment and 3D
imaging but can help us to calculate the computational intensive work. The graphics
processing units contain multiple processing elements which are alike multi-core
processors being used to operate simultaneously on streams of data. And in early 2003,

the GPU throughput exceeded the CPUsiin‘following graph [17]:

—=FY
g - ;
L .‘.*.

1Ak GT200
1000
HVIDLA GPU o
) s intel (U Ggso  G92 |
(= Ult“ '
2 GB0
(-9
o
e 4
] -
x GT1
H :
[-%
GT70 f
250 3.2 GHz
Nvgs  NV4O A 3.0 GHz Harpertown

Jan Jun Apr Jun Mar Nov May Jun
2003 2004 2005 2006 2007 2008
GT200 = GoForce GTX 280 GT1 = GeForce 7900 GTX NV35 = GeForce FX 5950 Ultra
G892 = GeForco 9800 GTX GT0 = GeForce 7800 GTX NV30 = GeForce FX 5800
GB0 = GeForce BBOOD GTX NV40 = GeForce 6800 Ultra

Figure 2-10 GPU throughput exceeded the CPUS
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2.54. NVIDIA CUDA

The following is the reason why we choose the graphics processing units: At first,
the architecture of graphics processing units is specialized for compute-intensive which
means more transistors can be devoted to data processing rather data caching and flow
control (Figure 2-11). Second, the programming interface is similarly to C code, which
is called “CUDA”. [17] The application programming interface “CUDA”, developed by
NVIDIA corporation. CUDA stands for Compute Unified Device Architecture that
leverages the parallel compute engine to solve.'rnany complex computational problems

in variety of professional and home 'aipp_lica‘ti()ns. Third, the architecture of CPU is

-
——

designed for efficient instruction execution. For example, branch prediction, data
dependence and logic determination.” However, GPU'lis characterized by dealing with
the same type of data-intensive computing without dependence. Its advantage is that no
logical relationship of data computing. Under CUDA programming, we usually called

GPU as device instead of CPU is host.
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Figure 2-11 The GPU devotes more transistors to data processing

2.5.5.  Architecture of Tesla 010601 il T ey

*"’ 2 R

'-"' \‘.?\ o r:-" r“u'
of multiple that was called Muft p‘lﬁcgcasors }%lh%ﬁ fﬁontalns a number of Streaming
:‘f‘-.- 2: }' '?i’ ;.. 1'};;_1

Processor. A Streaming Processor is a SIMD ALU. Single Instruction Multiple Data

(SIMD) means every Streaming Processor within a Multiprocessor executes the same

instruction at the same time but the data may vary. Figure 2-11 shows the execution

hierarchical level on CUDA.
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Each Stream processor accesses thé: re glsters The Multiprocessor has the
shared memory that is available to the Streaming Processors on the same Multiprocessor.

The Device memory is available to all Streaming Processors for read and write. Besides,

the texture and constant caches are available on each Multiprocessor.

In this work, we use the NVIDIA Tesla C1060 on CUDA programming. There are
30 Multiprocessors in Tesla C1060, and each Multiprocessor contains 8 streaming

Multiprocessors. Therefore, the total Stream Multiprocessors in Tesla C1060 are 240.
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The total global memory is 4GB and memory bandwidth reaches 102GB/sec. Besides,

each stream multiprocessor has shared memory, constant memory and texture memory.

However, it is only read for constant memory and texture memory. The following table

is the detail hardware information in Tesla C1060 [19]:

Device Name Tesla C1060
# of multiprocessor 30

# of streaming processor cores 240
Frequency of processor cores 1.3GHz
Total Dedicated Memory 4GB DDR3
Memory Speed 800MHz
Memory Interface ,.-:';__ 512-bit
Memory Bandwidth 11\ 102GB/sec
System Interface ;- PCIE x 16
Compute capability 1.3

Table 2.3 Hardware information of Tesla C1060

However, the compute capability that means the standard of instructions, size of grid,

size of block, memory per block and register. The minor revision number corresponds to

an incremental architecture, possibly including new features. Therefore it’s also another

estimation way to evaluate the compute ability. In our work, the Tesla C1060 is the
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version of 1.3 on compute capability. The detail can reference the appendix A.
2.5.6. Software Model

When we run a CUDA program, the CPU will distribute the data to GPU. In this
process, the task on GUP is called kernel. Such a kernel is executed in the SIMD model.
A grid is included of thread blocks and each block mapped to one Multiprocessors.
Multiple thread blocks can be mapped onto the same block. [17][21][22] However, the
resources, such as registers and shared memory_ will limit the maximum blocks. A thread
block is a batch of threads that cah cgoperate with each other. Moreover, the thread
blocks are grouped called warps. Wraps"%are executed by scheduling them on the
Streaming Processors of a Multi-pro'césso-r.: The.: current available warp size is 32.
Therefore, at least 4 clock cycles to execute .an i.nstruction by 8 Streaming processors. A

Multiprocessor executes the wrap in one block (Figure 2-13) .
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Figure 2-13 The CUDA software model
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Figure 2-14 The CUDA warp scheduler

There are many memory addresses on CUDA as following: Registers, shared memory,

constant memory, texture memory and global memory (figure 2-15).

(Device) Grid

Block (0, 0) Block (1, 0)

Ea

Thread (o,:)—‘ Thread (1, 0)

F s r s F W

.

Thread (0, 0) | Thread (1, 0)

Figure 2-15 The memory hierarchical on CUDA

The following table is the feature of address:

Memory Type Read/Write Speed Usage Data lifetime
Register R/W faster Thread Thread lifetime
Shared memory R/W faster Block Block lifetime
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Constant memory | R faster Grid From allocation
to deallocation

Texture memory | R faster oGird From allocation
to deallocation

Global memory R/W slower Grid From allocation

to deallocation

Table 2.4 Memory addressing of CUDA

Threads may access data from multiple memory spaces during their execution time.

Y

Each thread has the private local memory-atid-registers. Each block has shared memory

to all threads that are in the same block. Finally they can access to the global memory.

Besides, there are two read-only memory spaces accessible by all threads: the constant

and texture memory. They are optimized for memory usages by the data they only to

read. For example, in our work the table is suitable for it.

2.5.7. Approach to Parallel Lookup Table

From the profile output, the look-up table dominates the great majority of total

execution time. According to the operation of look-up table, it’s similar to the vector
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addition. Taking into account the impact of kernel, each mask of the partition has to

calculate the impact respectively. Therefore, a table look-up is actually a kernel, the

corresponding rectangle to make a addition. For the two-dimensional mask of the

look-up table by the operator that we can flat into a loop to do thread synchronization of

one-dimensional look-up table calculation.

EEEe
||
{

Figure 2-16 Parallel computing on look-up table
N 4 WK

2.5.8. Kernel Execution Flov'v\'._"""? ;

There are five steps to run kernel function [20] in our work. At first, we have to
dispose the host and device memory. Second, using the function cudaBindTexture () to
bind global memory to texture reference. Therefore, we can take advantage of texture
cache in stream multiprocessor and copy look-up table to it. Third, using function
cudaMemcpy( ) to transfer data from host memory to global memory. Fourth, using

function Run_GPU( ) to initiate the kernel and to calculate. Fifth, the result from GPU
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must be written back to host memory.

Host Device

Main ()

1. cudaN{loc ()

— Run_GPUI)

3. cudaMemcy( ) :> Global
{a Memew
4. cudaMemcy( | _& 2. cudaBindTexture

o Texture
" Memory

Figure 2-17 Kernel Execution Flow
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2.5.9. The Optimization onJOm“Au H’

h
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It’s important to promote performance on CUDA [17][18][21]. Therefore, there are

several basic concepts for optimization on CUDA.

At first, the clock cycle of accessing data from global memory is almost 500. It will
reduce the performance under I/O time. Therefore, we can use the shared memory or
texture memory than global memory. The look-up table records the results of a variety

of rectangular convolution, and we do not need to write back to it. Therefore, it’s very
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suitable for texture cache to access.

Second, we have to arrange grid size and block size appropriately. The resources
consumption of switching wrap is an important part on CUDA. We have to use up the
Multiprocessors rather than idle some. Notice that there is a limit to distribute the
registers to thread. If we exceed the rule, it will run error message in program. The
maximum size of block per Multiprocessor are determined some reasons, the important
part is the shared memory usage in our program. To observe it, we can use the
flag —ptxa-options=-v in compiling step. 1f the ﬁsage of shared memory greater than the

half shared in each Multiprocessor thé'?e._a_ch Multiprocessor map one block only. The

- &
g—

following formula is the to determined the maximuii block per Multiprocessor by

shared memory:

If shared memory/block >8KB, block=1
LimitTotalSharedMoemory (2' 1 9)

else block = FLOOR( \yShared )

The register affects the block size per Multiprocessor, too. Use the

flag —maxrregcount to limit the size of registers per thread and —ptx-options=-v to

observe the registers usage per thread. Finally, we can use the following formula to
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calculate the maximum blocks per Multiprocessor approximately:

R
B X ceil(T, 32)

(2.20)

where,

1. Ris the total number of registers per Multiprocessor
2. Bisthe number of active blocks per Multiprocessor
3. Tis the number of threads pér Block

4. Ceil(T,32) means the T roundéd:ﬁa'-_fo nearest-of 32

Finally, the maximum of blocks"per Mli:l-tiprocessor determined the minimum of the

limited by registers and limited by shared mémdry.

Third, the data transfer path between host and device is slow. By means of limit in
PCI-Express bus of 8GB/sec is slower than the GPU memory bandwidth 102GB/sec
(Tesla C1060). Therefore, the reduction transmission between host and device
transmission is important. The mask should be observed for the purpose of calculation,

do not always pass so many partition to the device.
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Fourth, the branch condition just like while ( ), if ( ) and switch ( ) cause the
divergence on multi-threads. The reason is that the switch on warp must have to be
synchronization until the next cycle. It will spend twice time to execute the instruction.
Therefore, in the program, we should avoid excessive writing to determine process

control.

2.6. Performance Comparison

The environment of host PC is the following table and the information of GPU was

mentioned about in section 2.5.5

CPU AMD Athlon(ftr..rgi.ﬁzll -X2 Dual Core Processor 5600+
Memory 4GB | ? | .

VGA Card Nvidia Tesla €1060

VGA Memory 4GB

Operating System SUSE Linux

Compiler GNU gec 4.3.1

Nvidia CUDA NVCC Complier

Table 2.5 The hardware environment
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2.6.1. Grid size and Block size

The set up for block size and grid size is an important part to run the kernel program.
The shared memory used in our work is less than the half of the Multiprocessor, we
don’t worry the grid size will limit one Multiprocessor that mapped into the one block.
However, the compute capability 1.3 has the rule that the maximum of the active block
per Multiprocessor is 8. That means at a time, the Multiprocessor just to manage the 8
block only. In our work, the shard memory usage per block about 4288bytes, and the
Tesla C1060 have the shared memory 16384Bytes per Multiprocessor. Therefore, the

maximum of active blocks per Multiprbfc,_e_ssor‘ is 3. However, the registers of usage per

-
——

thread also will limit the active block'peEMuItiprocessor. In our work, registers per
thread is 22, the limited of regi.:si;er- ;by Eq.(2.20):. If the block size is 512, then the
maximum of active blocks per Multiprocessor is 1. Instead, the block size is 256, the
maximum of active blocks per Multiprocessor is 2. However, the exceeding usage block
size or registers will reduce the performance because the local memory will simulate the
register for our program. The figure 2-18 is the performance between the different block
size and grid size. The test circuit is Even-bit CSG which size is 2500nm x 4699nm in

a 32-bit adder. Its entire layout shows in figure 2-9.
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Figure 2-18 Performance comparison of grid size and block size
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From the result, the best choice for Fuﬁvyﬂr lis block size equal t0256 and grid size

R | {

equal to 60. However, the block: sizel equal to'|,§12 and grid size equal 30 is another

acceptable choice.

2.6.2. Execution Time Comparison

At first, let’s see the total execution time on CUDA that include the I/O time and

compare the execution time on CPU. The following graph compares the total time of

GPU versus the CPU for different circuit size of layer METAL 1 of 32-bit adder tested.
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Circuit
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CMD

Latch EvenCSG

0ddCSG

Size x 10*(nm?) 2538

3058

6554 8817

10939
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Table 2.6 Circuit size of our simulation

GPU VS CPU Execution Time
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Figure 2-19 GPU VS CPU execution Time

For all layout size tested, the GPU finishes before CPU does. There are roughly 40

accelerations on maximum layout size. If we rule out the I/O time, the roughly speed up

is 45. These results tell us the multi-thread programming on CUDA is useful to promote

performance. However, we also have to compare the multi-cores of CPU between GPU.

The following is graph is the result:
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GPU VS. CPUs Performance Comparison
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Size x 104(nm2) 2538~ 3058 6554 8817 10939
GPU Only Calculation (s) 23.87 25.30 38.12 39.63 44.84
GPU Total (s) 19.88 2243 32.62 35.90 40.24
CPU (30 Cores) (s) 23.6 23.88 24.6 25.2 25.35

Table 2.7 Performance comparison between GPUs and CPUs

Although, the multi-cores of CPU have a good speed up roughly 28 and one can
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estimate that it’s direct proportion to the cores. That means if someone want to promote
the performance on multi-threading programming. The cost must high rather than just
buy a GPU card only. Therefore, we can claim that use CUDA to speed up the parallel

code on multi-threading programming is a wise choice.
2.6.3. Transmission Overhead

The I/O overhead is an important part on performance. From the following graph,
we observe the overhead percent overhead is .h_igh on small case. The reason is that the
calculation time under CUDA almbst .equal to the transfer time from host to device.
These results provide us useful infornflz;{'_fé?ri.':that CUDA as possible as promote the
device time that means more caléulation u-r.l-der 'CEJDA or large layout size will reduce

the ratio of transfer time. The following formula is the percentage of transmission

overhead:

Transfer Time+Write Back Time
GPU Total Time

(2.21)
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Figure 2-21 Transmission Overhead Comparison

i il
| 1

Sizex10* (nm?) 2538 3058 o | 6554 8817 10939

GPU Overhead (%) | 42.74% 39.05% 24.15% 19.96% 16.26%

Table 2.8 GPU overhead comparison

2.6.4. Relative Error

Finally, we have to sure that the result from GPU is correct. Therefore, we can use

the relative error to examine the total error. To compare the two arrays which are used to
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storing the optic intensity. First array is generated by CUDA and the other is host PC.

The following formula is the relative error between two arrays and the following graph

is the comparison between different layout sizes:

N - 7 1
Xi=1 imagegypa i

\/ YN, (imagecypa [i]'imageﬂost[i])z (2.22)

Relative Error Comparison
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Figure 2-22 Relative Error Comparison

2.7. Summary

In this chapter, we described how to speed up for the optical simulation image

generation. We use CUDA to apply parallel computing in look-up table method. It is

faster 40x than a single CPU in order to save the quality evaluation time in OPC. In
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today’s , when the physical limitations of CPU to exercise restraint when the clock has
become the key factors of continuous growth. Oriented parallel processing architecture

has become the current trend.

2.8. Feature work

The boundary of the mask will determine whether to do look-up table. However,
for each thread, the judge needs twice times to run the flow control. (if and else
will be over-doing it) Therefore, we can'fill anumber to the most peripheral in the

mask. In this way can use this number to testiwhether the boundary in order to

Wit

reduce the unnecessary waste of time, ~===

)
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Appendix A

The following table is the compute capability 1.3:

The maximum number of threads per block is 512

The maximum sizes of the x-, y-, and z-dimension of a thread block | (512,512,

are 64)

The warp size is 32

The number of registers per multiprocessor is 16384

The amount of shared memory availabl.ét.'per~ multiprocessor is 16KB

The total amount of constant me"rllllc_k)'};y 64KB

The maximum number of aptiv?: _bloefilés pet mu}tiprocessor 8

The maximum number of active Iwarps per rﬁultiprocessor 32

The maximum number of active threads per multiprocessor 1024

The cache working set for constant memory per multiprocessor 8KB

The cache working set for texture memory per multiprocessor 6KB  to
8KB
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