

國立臺灣大學電機資訊學院電子工程學研究所

碩士論文

Graduate Institute of Electronics Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

頻譜診斷與微顯影平行計算

Spectrum Diagnosis and Parallel Optical Simulation

黃冠儒

Kuan-Lu Huang

指導教授：陳中平 博士

Advisor: Charlie Chung-Ping Chen, Ph.D.

中華民國九十九年一月

January, 2010

碩
士
論
文

頻
譜
診
斷
與
微
顯
影
平
行
計
算

黃
冠
儒

撰

98
1

國

立

臺

灣

大

學

電

子

工

程

學

研

究

所

i

ii

iii

誌謝

 回首這兩年半來的碩士生活，感謝指導教授查理博士的細心教導讓我得以一窺

EDA 領域的深奧，並不時的指點我給與正確的方向。在博理 405 實驗室裡共同的生

活點滴，學術上的討論或者是茶餘飯後的消遣，感謝眾多學長姐的共同砥礪，才

有這樣多采多姿的生活。感謝 Tin 學長、Lulu 學姊、劉繼蔚學長、斯鍇學長、忠

杰學長、宗昱、盟竣、仕杰學弟，有你們的幫忙，本論文才能完成。還有陪我走

過無數個假日的青年公園幫:石頭、達賴、康康、冠瑜、阿多、老大、阿諾、興仔，

與你們一起打球的日子才使我更有動力往前走。以及大學同學:大頭、小曼、跳蛋，

有你們在大學時期的互相砥礪，才得以順利考取研究所。表哥政佑的經驗分享與

陪伴讓我受益匪淺。女朋友晴馨在背後的默默支持，體諒、包容更是我繼續往前

走的動力。最後，僅以此論文獻給我的雙親與姊姊。

iv

摘要

 為了保證奈米壓印製造光柵的品質，光散射(optical scatterometry) 是一個

有效率和有效的方法來診斷實際光柵的幾何形狀。為了方便診斷的過程，一個有

效率針對大型資料庫的匹配演算法是非常重要的。在本篇論文中，我們提出一個

有效的演算法利用最小誤差(MSE)的方式用來比對大型的頻譜資料庫，藉此反推原

始的幾何組態。我們利用奇異值分解(Singular Value Decomposition)對大型的

資料庫作壓縮並使用分層的動差(Moment)匹配方式來執行匹配演算法。我們的搜

尋和診斷演算法是非常快速且精確的。跟傳統的最小誤差比起來，快上了 3000 倍

以上且精確度在 0.1%以內。

 第二部分是介紹使用平行計算的方式來加快微顯影中的成像生成。隨者超大型

積體電路技術的特徵尺寸(feature size)迅速縮小，已小於曝光光的的波長，光

的繞射效應使得曝光後的圖像明顯偏離了原本設計的光罩。因此，微顯影結果的

品質，在超大型積體電路(VLSI)的製造過程中是非常重要的。但是往往花費了相

當多的時間來產生成像。在論文中，我們使用 CUDA 技術，它是一個通用的平行計

算架構，充分利用在 NVIDIA 繪圖晶片(GPU)中的平行計算引擎，用來加快微顯影

中的圖像生成。

關鍵字:光散射、奇異值分解、動差匹配、阿貝成像方法、繪圖處理器平行運算

v

Abstract

 To ensure the quality of the nanoprint fabricated optical gratings, optical

scatterometry (OS) is an efficient and effective mean to diagnose the actual fabricated

geometry. To facilitate the diagnosis process, efficient pattern matching algorithms over

a huge database are of great importance. In this thesis, we propose an efficient algorithm

using minimum error square approach used to matching in a huge simulated spectrum

database in order to obtain the original geometric configuration inversely.We use

Singular Value Decomposition to do compression on large database and the use of

hierarchical moment to perform matching algorithm; our searching and diagnosis

algorithm is extremely fast and accurate. It is over 3000x faster than a exhausted

searching algorithm within 0.1% accuracy.

 The second part is to introduce the use of parallel computing in the imaging of

microlithography for acceleration. As the VLSI technology feature sizes quickly shrink

smaller than the wavelength of exposure light sources, the diffraction effects have made

the exposed patterns significantly deviated from the original intended mask pattern.

Therefore, the quality of microlithography simulation is an important part of the VLSI

manufacturing process. However, it takes considerable time to produce image. In the

thesis, we use CUDA, which is a general purpose parallel computing architecture that

leverages the parallel compute engine in NVIDIA graphics processing units (GPUs) to

speed up the image generation in Microlithography simulation.

Keywords: Optical Scatterometry, Singular Value Decomposition, Moment Matching,

Abbe’s method, CUD

1

Content

中文口試委員審定書 ... i

英文口試委員審定書 .. ii

致謝 ... iii

摘要 ... iv

Abstract .. v

Content .. 1

List of Figures ... 4

List of Tables .. 6

Chapter 1. Efficient Ways for Optical Scatterometry Diagnosis 7

1.1. Introduction and Background ... 7

1.2. Previous Work .. 8

1.3. Motivation .. 9

1.4. Spectrum Diagnosis Scheme .. 10

1.4.1. Database Construction .. 11

1.4.2. Problem Formulation .. 12

1.4.3. Eigenvalue Decomposition ... 13

1.4.4. Compaction by Singular Value Decomposition 15

1.4.5. Classification ... 18

1.4.6. Segmented Moment Matching ... 21

1.4.7. Grid-based Searching ... 27

1.5. Approach to Arbitrary Segment Spectrum Range 32

1.6. Simulation Results .. 34

1.7. Runtime Comparison .. 39

2

1.8. Summary ... 40

1.9. Feature Work .. 40

Chapter 2. Parallel Optical Simulation Using Graphic Processor Unit................ 41

2.1. Introduction and Background ... 41

2.2. Motivation .. 41

2.3. Preliminary ... 42

2.4. Overview of Image Generation .. 43

2.4.1. Imaging Equation ... 43

2.4.2. The Abbe’s Method ... 45

2.4.3. Mask Decomposition .. 48

2.4.4. Lookup Table ... 49

2.4.5. Image Generation Flow .. 53

2.4.6. Mask Pattern Partition .. 54

2.5. Parallel Optical Simulation ... 55

2.5.1. Code Analysis .. 56

2.5.2. The Evolution of Microprocessor ... 58

2.5.3. Multi-core Background Overview ... 58

2.5.4. NVIDIA CUDA .. 60

2.5.5. Architecture of Tesla C1060 ... 61

2.5.6. Software Model .. 64

2.5.7. Approach to Parallel Lookup Table ... 67

2.5.8. Kernel Execution Flow .. 68

2.5.9. The Optimization on Our Work ... 69

2.6. Performance Comparison ... 72

3

2.6.1. Grid size and Block size .. 73

2.6.2. Execution Time Comparison .. 74

2.6.3. Transmission Overhead .. 77

2.6.4. Relative Error .. 78

2.7. Summary ... 79

2.8. Feature work ... 80

Bibliography ... 81

Appendix A ... 85

4

List of Figures

Figure 1-1 Optical Scatterometry Experimental Step ... 9

Figure 1-2 The spectrum diagnosis scheme.. 10

Figure 1-3 Three kinds of grating shapes in our simulation 11

Figure 1-4 The parameter of the grating .. 11

Figure 1-5 Database construction by R-Soft simulation .. 12

Figure 1-6 Problem formulation ... 13

Figure 1-7 Problem formulation ... 14

Figure 1-8 Singular Value Decomposition ... 15

Figure 1-9 Database compaction .. 16

Figure 1-10 Singular value distribution of simulated reflected spectrum 17

Figure 1-11 The meanings of moments .. 18

Figure 1-12 Variance varying according to shape variation 19

Figure 1-13 Skewness varying according to shape variation 20

Figure 1-14 Segmented Spectrums with moment computations 20

Figure 1-15 Grid storage structure in moment spaces .. 21

Figure 1-16 Grid storage structure cell in 3D moment spaces 21

Figure 1-17 Coded grid ... 22

Figure 1-18 Distribution of V space ... 24

Figure 1-19 Disperse the data uniformly according to distribution of V space 25

Figure 1-20 Perform SVD to 3D grid structure .. 26

Figure 1-21 Schematic diagram of the distance between grid 27

Figure 1-22 None-homogeneous grid ... 29

Figure 1-23 Relative to the grid structure of the correspond tree 30

Figure 1-24 The upper bound from observation points .. 31

Figure 1-25 Compensation for a particular spectrum ... 33

Figure 1-26 Direct Searching (MSE) without compact database 35

Figure 1-27 Direct searching (MSE) in compact database 36

Figure 1-28 Grid-based searching in compact database ... 37

Figure 1-29 The input reflected spectrum with 0.5% Gaussian noise on grid-based

searching 38

Figure 1-30 Run time comparison Direct search VS Grid Search............................ 39

Figure 2-1 Coherent illumination ... 43

Figure 2-2 Discretization of a conventional partially coherent illumination system 46

5

Figure 2-3 Mask pattern Decomposition .. 49

Figure 2-4 Convolution by pre-computed lookup table ... 51

Figure 2-5 A delta function convolutions with kernel function 52

Figure 2-6 Example for the center of convolution ... 53

Figure 2-7 Image Generation Flow .. 54

Figure 2-8 Mask Partition ... 55

Figure 2-9 Even-bit CSG circuit of 32-bit adder .. 56

Figure 2-9 Even-bit CSG circuit of 32-bit adder .. 57

Figure 2-10 GPU throughput exceeded the CPUS ... 59

Figure 2-11 The GPU devotes more transistors to data processing 61

Figure 2-11 The CUDA hardware model ... 62

Figure 2-13 The CUDA software model .. 65

Figure 2-14 The CUDA warp scheduler .. 66

Figure 2-15 The memory hierarchical on CUDA ... 66

Figure 2-16 Parallel computing on look-up table ... 68

Figure 2-17 Kernel Execution Flow ... 69

Figure 2-18 Performance comparison of grid size and block size 74

Figure 2-19 GPU VS CPU execution Time .. 75

Figure 2-20 CPU VS CPUs (30 Cores) .. 76

Figure 2-21 Transmission Overhead Comparison .. 78

Figure 2-22 Relative Error Comparison ... 79

6

List of Tables

Table 1.1 The SPEC of simulation step .. 35

Table 1.2 Searching time comparison ... 38

Table 2.1 The test case of Even-bit CSG of 32-bit Adder .. 56

Table 2.2 The profile output of optical simulation ... 57

Table 2.3 Hardware information of Tesla C1060 ... 63

Table 2.4 Memory addressing of CUDA .. 67

Table 2.6 Circuit size of our simulation ... 75

Table 2.7 Performance comparison between GPUs and CPUs 76

Table 2.8 GPU overhead comparison ... 78

7

Chapter 1. Efficient Ways for Optical Scatterometry

Diagnosis

1.1. Introduction and Background

Since the linewidths of most holographic gratings in modern applications are less

than 100nm, few inspection tools are available. Conventionally, the scanning electron

microscope (SEM) is the powerful tools to characterize such microstructures. With

SEM, which is regarded as the most intuitive means of microstructure measurement, the

grating profile can be determined from its cross section images. However, this method

is local, expensive, time consuming, destructive, and not extendable to online

monitoring.

In recent years, scatterometry which is based on the measurement of diffraction

efficiencies or polarization responses and encompasses reflectometry, ellipsometry, and

diffractometry, has become popular and widely accepted for accurate grating

topography extraction [1-5].Such kinds of techniques aim to solve inverse diffraction

problems. From a practical point of view, the relationships between grating profiles and

their diffraction responses can be found. Using the well developed grating theory, the

curve of any diffraction response versus grating parameters can be calculated. For the

8

inverse grating problem, an analytical function is unavailable for data got from

complicated numerical calculations. The functions are nonlinear, and the variables are

complexly related from each other. The approaches have been developed the finite

element method to solve the inverse grating problem. Since this approach

fundamentally differs from the usually scatterometric approach, we do not discuss it.

1.2. Previous Work

There’re mainly two approaches to solving inverse grating problems: the look-up

table method [2] and the nonlinear regression method [6-8].The minimum square error

method, which uses huge library with specialized searching algorithms, is a powerful

tool for multi-parameter grating profile measurement. Niu et al. [1] used this method to

measure CDs of integrated circuit with pseudoperiodic structures. In 1993, Krukar et al.

[6] used an artificial neural network (ANN) model to simulate the relationship between

the reflection at a fixed wavelength and the CDs of gratings with a trapezoidal profile,

but the method is not economical for large scale fabrications because it is difficult to

construct model. Although the look-up table method wastes the huge cost in computing

time and storage space. However, it’s higher accuracy than ANN.

9

1.3. Motivation

In our work, we focus on huge library. We improve the minimum square error

method [1]. First, the compact database of reflected spectrums needs to be built. Second,

we have to reduce searching time to find the match geometry of grating. We proposed

an efficient Grid-based searching with almost O(1) time complexity. Reserve only 1%

data size by Segmented Moment Hierarchical SVD. It’s over 3000x faster than a

exhausted searching within 0.1% accuracy.

Figure 1‐1 Optical Scatterometry Experimental

10

1.4. Spectrum Diagnosis Scheme

The spectrum diagnosis scheme involves three phases (Figure 1-2).The first step is

to collect all reflected spectrums by R-Soft simulation to establish database. The second

step is to perform Singular Value Decomposition (SVD) to compact the huge database

and segment the spectrum of zones. Third, feature extraction, the moments distributions

are different between square and trapezoid gratings. Hence, we take advantage of this

feature as classification. Finally, given an unknown reflection spectrum as an input with

the Grid-based searching, we can find the most possible grating. In this work, I devote

to the SVD Compaction and Grid-Based Searching.

Figure 1-2 The spectrum diagnosis scheme

11

1.4.1. Database Construction

There are three kinds of grating shapes in our simulation: Rectangle, Upside down

Trapezoid and Trapezoid (Figure 1-3).

We use the R-Soft simulator [9] to generator a large amount of spectrum by different

optical gratings which are depended on UPPER CD, LOWER CD and PR HEIGHT

(Figure 1-4).

Figure 1‐3 Three kinds of grating shapes in our

Figure 1-4 The parameter of the grating

12

However, the space complexity of our database is O (M x N), where M is the range

of reflected spectrum, N is the total number of spectrum in the database. Typically, the

data size of matrix A is 225×106. Therefore, we can perform Principle Component

Analysis for compaction.

1.4.2. Problem Formulation

The light reflectance intensity of spectrum range from 200nm to 1000nm or more,

searching the most possible pattern of optical gratings is similarity to look for minimum

error least square. Therefore, we can formulate the optical grating pattern recognition to

the following simple equations: Ax=b, where A is a database of reflection spectrum of

different grating shapes, x is a selection spectrum, and b is observed spectrum (Figure

1-6).

Figure 1-5 Database construction by R-Soft simulation

13

With a measure spectrum b, searching process can be fundamentally mapped to a

least square fitting problem in the following, where ai is the i-th column vector of matrix

A:

 b a (1.1)

1.4.3. Eigenvalue Decomposition

Suppose A is a square matrix of n-by-n, let λ1 , λ2, …λn, be the eigenvalues of a matrix

A, let x1,x2,…, xn be a set of corresponding eigenvectors, then: A=XDX-1(Figure

1-7)-,where D is the n-by-n diagonal matrix with λ1 , λ2, …λn , X is the n-by-n matrix

whose i-th column is xi ; if eigenvectors are orthonormal, then:

Figure 1-6 Problem formulation

14

 A λ1x1 x1 T λ2x2 x2 T λnxn xn T (1.2)

We can perform the Principle Component Analysis for matrix A to simplify the

express: (suppose λi 0 if i >2)≒

 A λ1x1 x1 T λ2x2 x2 T (1.3)

If the matrix A is not a square matrix, we can perform Singular Value

Decomposition, we will introduce in the next section.

Figure 1-7 Problem formulation

15

1.4.4. Compaction by Singular Value Decomposition

Suppose A is an m-by-n matrix, then there exists a factorization of the form

A=USVT. We perform the Singular Value Decomposition (SVD) (Figure 1-8) operation

on A to decompose it into the product of three matrices, A=USVT, where the size of U,

S, V are m m , m n and n n , respectively. The matrix U is m-by-m and V is

n-by-n. Both matrix U and V are orthonormal. Here S is a matrix the same size as A that

is zero except possibly on its main diagonal where each entry (singular value) in

diagonal denoted the importance of the corresponding columns and rows of U and V,

respectively. In this work, each reflected spectrum (column) of A can be represented by

smaller linear combinations of more compact set of basic kernels. The matrix U is an

orthonormal matrix that each column (orthonormal) is consisted of those kernels. SVT

Figure 1-8 Singular Value Decomposition

16

are those weighting corresponding to each column of A. A simple concept of SVD can

be illustrated in the following diagram (Figure 1-9).

Depends on the decreasing speed of the singular values in S (Figure 1-10), we can

effectively compact A into smaller sizes. Define the ratio of singular values; if the

largest k components are reserved, the space complexity will be reduced from O (M x

×) to O(k × N), where M is the range of reflected spectrum and N is the total number of

spectrum in the database. According to the singular value distribution, we can get large

p with small k:

σ1 σ2 σk

σ1 σ2 σk σN
p% (1.4)

Figure 1-9 Database compaction

17

With a measured spectrum, b, searching process can be rewritten as follow:

 UTb SVT (1.5)

The speed up of searching time with compact database is 53X faster than original

database. However, it always tries to find the match spectrum in the database exhausted.

When A is getting huge, the time complexity is O (N), where N is the total number

reflected spectrum in the database. To solve this problem, it is crucial to sort the data

into different bins according to its similarity. We will introduce it in the next section.

Figure 1-10 Singular value distribution of simulated reflected spectrum

18

1.4.5. Classification

If we can group the data according to its similarity, then it’s efficient to search the

data. The quest is how to easily compute the similarity between reflected spectrums.

The first thought come into our mind is statistical moments [16], that is: mean, variation,

skewness and kurtosis (Figure 1-11). The definition of the k-th moment can be represented

as follows：

 m E x µ
N
∑ xN (1.6)

Figure 1-11 The meanings of moments

19

With the different shape of different moment distribution (Figure 1-12, 1-13), one can

use this feature to classify the sub-database. Given a spectrum database A, we segment each

spectrum into a few zones (Figure 1-14), and calculate the moments such as mean, variance,

skewness and kurtosis in each zone. Once the moments of each zone are computed, there is

a need to sort the data according to the moments.

Figure 1-12 Variance varying according to shape variation

20

Figure 1-13 Skewness varying according to shape variation

Figure 1-14 Segmented Spectrums with moment computations

21

1.4.6. Segmented Moment Matching

With the segmented moments, our searching process is to first compute its

segmented moments as well and try to search the nearest spectrum with close moments.

To facilitate the process, we can map the segmented moments to a grid structure to store

the spectrum according to the segmented moments. The concept is illustrated in

following diagram (Figure 1-15, 16):

Figure 1-15 Grid storage structure in moment

Figure 1-16 Grid storage structure cell in 3D moment spaces

22

It’s similar to the idea of space partitioning and locality sensitive hashing. It’s

straightforward that the overall space could be separated into grids as the following

graph (Figure 1-17). The grids act as a index for the grouping. Along each axial

direction, it could be given a code for each grid. Thus, every grid could be represented

as a coded string.

It’s apparently that to minimize the penalty from the dimension. The effect could be

reduced by reducing the dimension. Singular value decomposition is a powerful tool to

construct a compact representation. With the segmented moment, each spectrum can be

arranged into a moment vector in the following form, where mij is i-th zone of j-th

moment:

 m11 m14 m21
m24 mij (1.7)

Figure 1-17 Coded grid

23

then, the M matrix consists of each moment vector:

 M

m11
1 m11

2 m11
n

m12
1 m12

2 m12
n

mm4
1 mm4

2 mm4
n

m n

 (1.8)

The first column is moment vector of spectrum of the first case and the last column

is the moment vector of spectrum of the last case, etc. Then, we perform the Singular

Value Decomposition on matrix M for dimension reduction in the following form:

 M USVT (1.9)

There’s another critical problem that the data may be intensively clustered in some

particular grid. This could not be avoided in a general sense. However, the SVD

operation illustrates another view for how it is distributed. First, we can rewrite the

SVD operation to M matrix as follow:

 UTM SVT (1.10)

The standard deviation of each row in VT is:

N
∑ v µ

N
∑v Nµ

√N
 (1.11)

24

That is, the V space might disperse roughly in the same trend for each row.

Furthermore, combining the singular value, the standard deviation of each row is :

√N

 (1.12)

This illustrates that VT is related to the root of the size of the database. Also, for

every row that is normalized by the singular value (σr) will then have equal standard

deviation. The distribution is similar to normal distribution in the following graph:

Figure 1-18 Distribution of V space

25

If μi is and σ are the mean and the standard deviation of i-th row in V matrix. Then

for any real numberk 0, by Chebyshev’s inequality:

 P |x µ| kσ (1.13)

Therefore, we can disperse the data uniformly according to the distribution; then, we

can segment zones to each dimension; the following graph illustrates this concept:

With an input spectrum b, we can use the following algorithm to calculate the code

locates on the grid.

Figure 1-19 Disperse the data uniformly according to distribution of V space

26

Algorithm Enode (b, p, M, z)

Input: b (input spectrum) , p (dimension of moment space), M (Moment

matrix) , z (zones)

Output: C (code)

begin

do M=USVT , UT b ;

for row one to p ; do

 for zone one to z

 define :(UT b)p is the p‐th row of UT b

 observe the (UT b)p locates in which zone;

 mark the index of the zone;

 end

 end

C:= the set of marked index ;

 end

Finally, when the number of the data in one grid is still too large, we again perform

SVD method on the moment spaces to find out the best match. The concept is illustrated

in following diagram:

Figure 1-20 Perform SVD to 3D grid structure

27

1.4.7. Grid-based Searching

However the grid itself is not a perfect replacement to the distance. That is, for any

possible sample in grid G1 and G2, there is loose distance range, and is roughly the error

tolerance of the grid. Suppose two samples s1 and s2 are located in grid G1 and G2. The

codes of G1 and G2 are: pCC 111 and pCC 221 respectively. See figure

1-21 for a 2-D illustration.

The orange line in figure 1-21 is the least possible distance while the green one

refers to the farthest distance. If the wpi is the width of the grid in p’th dimension with

code i. Suppose wpi is homogenous, that is:

Figure 1-21 Schematic diagram of the distance between grid

28

i,wpi wp , then:

 the difference vector are:

 d
w max |C C | 1,0

w max C C 1,0

T

 (1.14)

and

 d
w max |C C | 1,0

w max |C C | 1,0

T

 (1.15)

then:

 |dmin| s1‐s2 |dmax| (1.16)

If isotropic property holds, that is:

i,w1 wp w , then:

29

 d w
max |C C | 1,0

max C C 1,0

T

 (1.17)

 d w
max |C C | 1,0

max C C 1,0

T

 (1.18)

If the width i is not homogeneous (figure 1-22), that is

i,wpi wp , then, we can denote an accumulated function as:

 A i ∑ w (1.19)

, then:

Figure 1-22 None-homogeneous grid

30

 d
A max C , C 1 A min C , C

A max C , C 1 A min C , C

T

 (1.20)

 d
A max C , C A max min C , C 1,0

A max C , C A max min C , C 1,0

T

 (1.21)

So far, we introduced how to calculate the distance between each grid. Therefore,

the code calculated input spectrum, we can do so far from near to the visit. We still have

a problem is that when we calculate the input spectrum of the encoded, we call on how

far the margin?

First, we process the grid mapping relative to the tree view, show in figure 1-23.

If the wpi is the width of p’th dimension zone with code i, the upper bound of each

Figure 1-23 Relative to the grid structure of the correspond tree

31

level to reflected spectrum is:

UT

VT w (1.22)

With the searching processing of red path, the upper bound distance (ub) is:

 0 D ∑ w u (1.23)

From near to far to visit, until the center of each grid with minimum distance greater

than the upper bound (Figure 1-24):

So far, we introduced how to calculate the distance between the grid and how to

identify the input spectrum of the upper bound. Therefore, with the input spectrum b,

we can use the following algorithm to find the nearest grating.

Figure 1-24 The upper bound from observation points

32

1. Calculate its code and upper bound of measured spectrum b

2. Searching the grid with the same code

3. Calculate the minimum error square with data in the grid with the same code

4. Drop by the gird from nearest to the farthest

5. Repeat 1-4 until the grid with the observation points greater than the upper

bound of the minimum distance

6. From each visited the smallest error in the grid, find the smallest. And to

identify the corresponding grating

1.5. Approach to Arbitrary Segment Spectrum Range

Sometimes, with a measured spectrum b, the range of wavelength is not fixed. For

example, we usually measure 250nm to 1000nm as standard spectrum range. However,

the range of spectrum probably is located at 400nm to 750nm, or 600nm to 650nm, etc.

33

Let’s see the form of input spectrum, if it was located at 400nm to 600nm.

 b400‐600

0

0
b400

b600
0

0

 (1.24)

In this case, we have only to be directed against the range of 400nm to 600nm in

database. In order to reduce the error, we have to fill up the b vector. The following is

the form:

 UT

0
b

b
0

A
0

0
A

SVT UT

0
b

b
0

USVT

0

0
USVT

SVT (1.25)

where, ai is the i-th column vector of matrix A, bi is the i-th element of input spectrum b.

Figure 1-25 Compensation for a particular spectrum

34

Therefore, we can derive the correct result by compensating the out-side range

spectrum range.

1.6. Simulation Results

We use R-soft to simulate our experimental setup according to the following table at

PC with Intel Core(TM)2 Duo CPUT7300 @ 2.00GHZ RAM:2015MB

OS:VISTA(32-bit).

The pitch and arc height of the gratings are fixed to 800nm and 165nm respectively.

The upper CD (figure 1-4), the lower CD, and the height of the grating are centered at

250nm, 250nm, and 350nm, respectively. The maximum varying amount of the upper

CD, the lower CD, and the height of the grating are 30nm, 30nm, and 50nm,

respectively. With total the resolution in our database is in 1nm scale.

The SPEC of our simulation setup

Parameter Value

Pitch 800 nm

Upper CD 250+/- 30 nm

Steps Increments 1 nm

35

Lower CD 250+/- 30 nm

Steps Increments 1 nm

PR Height 350+/-50 nm

Steps Increments 1 nm

ARC Height 165 nm

The search results by direct searching (MSE) and grid-based searching are show in

the following diagrams; At first, we compare the direct search (MSE) without compact

database. The searching time is almost 24 minutes (Figure 1-26).

Figure 1-26 Direct Searching (MSE) without compact database

Table 1.1 The SPEC of simulation step

36

Second, we use direct searching for compact database, the total searching time about

26.92 seconds. The speed up is about 53 X than direct searching without compacting

(Figure 1-27).

Third, we use grid-based searching (Figure 1-28) for compact database; the searching

time is about 0.393 seconds. The speed up is about 68 X speed up than direct searching

(MSE) on entire compact database. Besides, it’s almost 3600 x speed up than direct

searching without compacting.

Figure 1-27 Direct searching (MSE) in compact database

37

Fourth, we use grid-based searching; the input reflected spectrum with the Gaussian

noise of 0.5%. Because we want to know there are errors in the input conditions, the

accuracy of the search database is? The error range of grating on each dimensions are

less than 1nm; the searching time is about 0.448 seconds. The speed up is about 3221x

than direct searching (MSE) without compact database.

Figure 1-28 Grid-based searching in compact database

38

The following table is athe speed up is relative to the direct searching:

Searching way Database Time (s) Speed up Result

Direct searching Original 1443.27 1 Exact

Direct searching Compact 26.92 53 Exact

Grid-based searching Compact 0.393 3672 Exact

Grid-based +0.5% Gaussian Compact 0.448 3221 Less than 1nm

Figure 1-29 The input reflected spectrum with 0.5% Gaussian noise on grid-based searching

Table 1.2 Searching time comparison

39

1.7. Runtime Comparison

From the following graph, we can find that the direct searching method searches the

entire database, so the runtime is linearly proportional to the data size. The runtime for

grid-based searching is almost constant. It can see that our algorithm is significantly

faster than MSE searching algorithm and the runtime remain flat when the database size

increasing. The capability of our algorithm is still expandable.

Figure 1-30 Run time comparison Direct search VS Grid Search

Direct searching (MSE)

Grid‐based searching

40

1.8. Summary

In this work, we are mainly aimed at large scale library, so we have chosen to

improve the original MSE approach to search to find the grating inversely. We know

that MSE drawback is that large database storage and searching time is too long. For the

former, we use Singular Value Decomposition to compress our database. And use

segmented moment matching for classification of database to form grid structure. Once

again, we perform SVD of the characteristics of the moment spaces dimension

reduction and based on the distribution of the data to do the cutting evenly dispersed.

Finally in order to input error can be tolerated, we focused the search on the grid for

visit from near to far. At the appropriate upper bound to find out the smallest minimum

error square and the inverse grating configuration.

1.9. Feature Work

With the reflected spectrum b, the grid‐based searching drops by from nearest

to farthest and calculates the least square error to each grid to find the most

possible result. In our work, it’s suitable for parallel computing. We can use the

multi‐thread programming to visit each grid in the same time and compute the

minimum error square to each spectrum in the same grid.

41

Chapter 2. Parallel Optical Simulation Using Graphic

Processor Unit

2.1. Introduction and Background

Integrated Circuits in a variety of application areas such as biomedical electronics,

multimedia communications, consumer electronics and other products and services, the

development and mass production has always occupied an important position, but with

the electronic circuit technology matures, on VLSI performance and cost of the demand

is growing. In response to the high-density high-performance circuit design,

microlithography is the integrated circuit to be the key to low-cost mass production

2.2. Motivation

With the evolution of the chip manufacturing process as well as sub-naometer

generation of high-performance components demand mask pattern of the size of

microlithography is challenging the exposure light source wavelength resolution limits

(CD: critical dimension), which makes a variety of optical diffraction, and other

physical phenomena must be taken into account to predict and, while a variety of

resolution enhancement technology is also widely been proposed in order to compensate

42

for circuit design and chip as much as possible entities the gap between to maintain the

advanced integrated circuit production yield and functional correctness. To evaluate the

microlithography quality, massive images are often generated for careful inspection

using applications such as OPC.

In recent years, due to multi-core advances, more and more technology used to

speed up parallel to a large number of complex computational problems. NVIDIDA

developed CUDA general-purpose parallel computing architecture that allows graphics

processors have adequate capacity to solve complex computing problems. If we can use

CUDA for the imaging in microlithography, then we can reduce a lot of computing time.

2.3. Preliminary

The first part we will give an introduction on the image simulation in

microlithography. The second part, we will introduce the General-purpose computing on

graphics processing (GPGPU). We will apply this technology in parallel to produce the

images. Finally, we will compare the performance of GPU and CPU on the differences

and analyze it.

43

2.4. Overview of Image Generation

There are two approaches for imaging, one is Abbe’s method and the other is

Hopkins’s theory. Hopkins’s theory of the light source and system functions as a

representative of the interaction of micro-imaging system, each conversion coefficient

(TCC: transmission cross coefficient), while the Abbe’s theory of malpractices light

source is approximately the same tonal equivalent discrete light source (effective

discrete source points) substituted into the formula into a number of imaging the

convolution kernel to get the result of mask pattern.

2.4.1. Imaging Equation

Figure 2-1 Coherent illumination

44

Initially, we define the cording systems as shown in Figure 2-1. Points in the object

plane, pupil and image plane are specified by (x0, y0), (ξ,η), and (x1, y1) respectively

[11].

The image intensity I(x1,y1) at the point (x1,y1) on the image plane can be obtained

Hopkins formula, which can be approximated subsequently by a summation

, , , ,

, ,
 (2.1)

Where points (x0,y0) and (x’0,y’0) are two arbitrary points on the object plane.

O(x0,y0) is an appropriate transmission of the object, which is the mask function consists

of complex number or with value 0 and 1 for Binary Intensity Mask. For convenience,

we neglect the time and temporal frequency, so the frequency component is omitted.

This simplified quantity is called the mutual intensity of the light and is given by J0
-(x0,

y0, x’0, y’0)
 [10].

Such expression is possible because source points the light source are mutually

incoherent. The quantity delimited by the absolute value is the electric field, arising

from a coherent source point of unit strength located at (f,g). If we denote the square of

this quantity by Icon, we can rewrite the imaging Eq. (2.1) as:

45

 , J f, g I f, g dfdg (2.2)

where

 , H f f , g g O f , g e df dg (2.3)

There are two approaches for imaging, one is Abbe’s approach and the other is

Hopkins’s approach. In Abbe’s approach is based on a spatial discretization of the

source into discrete point sources. Hopkins’s imaging requires calculating the

transmission cross-correlation matrix (TCC) of the illuminating pattern with the pupil

and its complex conjugate. In our work, we focus on Abbe’s method, and we will

introduce it in the next section.

2.4.2. The Abbe’s Method

Abbe’s approach [11], which is also called integration approach of the source points,

models imaging with such illuminators [12] .This approach is based on a spatial

discretization of the source into discrete point sources as illustrated in the following:

46

Imaging system regards the light intensity I(x, y) as the output and the mask function

O(x, y) as the input passing through the transfer function K. So we may rewrite the

imaging equation (2.2) as:

 , , , (2.4)

where

 I f, g H x, y e O x, y (2.5)

The Abbe’s method first approximates the effective source function J by a finite

number of point sources:

Figure 2-2 Discretization of a conventional partially coherent illumination system

47

 , ∆ , ∑ , (2.6)

where is the effective strength of the discretized point source located at δ(f-fs,

g-gs). The aerial image is then obtained by an incoherent superposition of all the

contributions and becomes

 , ∑ , (2.7)

The computation procedure for the Abbe’s approach is given as below:

1. Calculate the object spectrum O(f, g) from O(x0, y0)

2. Approximate the effective source J(f, g) by the discretized source JΔ(f,g)

by Eq. (2.6).

3. For each discrete source, compute the component image according to

Eq.(2.5)

4. Sum component images to obtain total intensity by Eq.(2.7)

For an effective source of area A, and an object of area Am , the computation time scales

according to

 A · A (2.8)

48

We rewrite the imaging equation in a convolution form at spatial domain as

 , ∑ | , | (2.9)

Where we call Ks is a kernel function at (fs, gs).

2.4.3. Mask Decomposition

Mathematically, if O(x, y) is the mask pattern function, it could be represented as a

summation of N rectangular slit functions [14] [15] , it could be represented as a

summation of N rectangular slit functions because the given pattern with any shape can

be composed of rectangular patterns as show in figure 2-3 . We define the pattern

function f(x, y) to be

 , ∑ , (2.10)

where

 , 1, ,
0,

 (2.11)

49

2.4.4. Lookup Table

According to the Eq. and Eq. and we can get [14] [15]

, ∑ ∑ ,

∑ ∑ ,
 (2.12)

Therefore, we expend it to integral form as:

, ∑ ∑ , ,

 (2.13)

Figure 2-3 Mask pattern Decomposition

50

Then, we concern the Binary Intensity Mask (BIM), the infinity limit can be

replaced and the equation will be:

, ∑ ∑ ,

 (2.14)

Trough the mask of the decomposition, we have built a Rectangle based lookup

table, for each rectangle to do look-up table to calculate the intensity. To consider an

area A of the rectangle for an observation point (x, y) of the intensity contributions,

convolution operators, according to the reciprocal theorem, we apply change of

variables and let u=x1-x0 and v=y1-y0. Substituting these variables into Eq.(2.14)

 , ∑ ∑ , (2.15)

We build lookup table for Abbe’s compact kernel [14] [15] without resolution

restriction. Convolution result can be obtained by overlap area as show in figure

2‐4. This means that our Table to record only those in lower left corner of the

rectangle of the convolution results. All areas of the results can be obtained from

the table look‐up.

51

In this way, we define the mask function O, which is given by the superposition of

rectangle indicators as fr (x, y):

 , ∑ · | (2.16)

Here N is the number of decomposed rectangles, 1 for edges included all

the edges or none of slit and 1 for edges included only one edges of slit. The fr

(x, y) means the region of area ranges from (x0, y0) to (x1, y1). Apply the linearity of

convolution, it allows the output of a linear system with kernel K(x, y) to be expressed

as a summation of contributions from the individual areas via the generated squares:

 , ∑ |∑ , | (2.17)

Figure 2-4 Convolution by pre-computed lookup table

52

According to multiplicative identity of the convolution, most collections of

functions can be consisted of several data distributions which allowed that delta

distributions individually convolve with kernel function. Specifically,

 (2.18)

Where δ is the delta function and K is the kernel function as show in figure 2-5. One

property is that the convolution distribution of the delta function and the kernel function

is only within k × k block. In other words, the range of its center of convolution result

is k/2.

Apply this property; we only build a look up table whose elements represent the center

of convolution function. For any shapes of rectangles, the center of convolution results

only concerns with the shapes within k/2 range. For example, there are three cases in

Figure 2-5 A delta function convolutions with kernel function

53

figure 2-6, although the rectangles are the gray ones, only the black rectangles

contribute to the center of the convolution result.

Therefore, we will build exact one look up table of k × k size, for every black

rectangle.

2.4.5. Image Generation Flow

The image is calculated by convolution of mask patterns and kernel tables. We

generated look up tables for the convolution operation. From the look up tables, we can

derive the intensity of each observed point. The following figure 2-7 shows a brief

image generation flow.

Figure 2-6 Example for the center of convolution

54

2.4.6. Mask Pattern Partition

We can partition the mask first[15], which has several advantages, usually a circuit

area is quite large, and this will not only target specific areas to do the calculation of

imaging, and can also be used to deal with parallel-oriented individual partition.

Considering the influence scope of a point light source, we must make an appropriate

extension for the adjacent regions. According to the size of the lookup table, we let the

extension width is a half of the table width. So each partition region and its adjacent

regions have overlap. The following is the graph of mask partition:

Figure 2-7 Image Generation Flow

55

2.5. Parallel Optical Simulation

 So far, we have introduced how to generate the images in the OPC as a quality

assessment, however, time is often generated images need to be considered. The time

complexity of image simulation is O((n/r)2), where r is the resolution, and n is mask size.

For example, n=104(nm), r=10 (nm), then the total size of simulation is almost 106 , that

means we need to calculate about 106 points in image simulation. Usually this will

take a period of about six minutes. Taking into account the image simulation is actually

a mask on the right to do look-up table for each point action. The look-up table

operations are mutually independent. It’s similar to do vector addition for times. Besides,

the flow control is few used in look-up table. Therefore, it’s suitable for

Figure 2-8 Mask Partition

56

parallel-oriented operations. Next we have to verify that the look-up table accounts for

high percentage in image simulation. We must use the profiling tool to observe it, we

will introduce in the next section.

2.5.1. Code Analysis

To determine which function would be rewrite, we have to know what portion the

total running time they take. Therefore, we can use a profiling tool to analysis it. The

GNU profiler tool [18], GNU gprof which was used to gather the information during

program run time that include the percentage of the total execution time and total

number of times the function was called. The following table and graph is our test case:

Test Case:

Circuit Even-bit CSG of 32-bit Adder

Size 10740nm × 8210 nm

Layer METAL 1

Resolution 50(nm)

Level 5

Table 2.1 The test case of Even‐bit CSG of 32‐bit Adder

57

The following table is the show of gprof output:

The profile from gprof:

Function % times(seconds) function calls

Lookup_table:table_look_up() 98.3 16.48 439538656

XY:XY() 0.72 0.12 3595213

Polygon:add_point() 0.18 0.01 400142

GDSii:Record::read_data() 0.06 0.01 60304

Table 2.2 The profile output of optical simulation

Figure 2-9 Even-bit CSG circuit of 32-bit adder

58

From the profile output, the look-up table dominate the great majority of total

execute time. Therefore, we would parallel the look-up table in order to speed up. To

take advantage of multi-core hardware environments coupled with the software

interface to do parallelism. Today, however, there are many choices of platforms to do.

The next section, we will gradually introduce multi-core development history.

2.5.2. The Evolution of Microprocessor

The field of microprocessor design is approaching a problem: the physical limitations.

In the traditional, in order to promote performance, increasing the clock frequency of

microprocessor is a basic method. However, the limitations of the power consumption

became more and more ascended. Therefore, the architecture of multi-core processors

was born. However an efficient way to take advantage of multi-core processors is

difficult. Many algorithms cannot split up to parallel completely. Several designs of

multi-core have been researched in order to apply the wide computational applications.

2.5.3. Multi-core Background Overview

In the year 2004, IBM introduced the POWER5 processor. [23] It is a dual-core

processor with support for simultaneous multithreading with two threads, so it

59

implements four logical processor. Instead, AMD introduced its first multi-core

Opterons in the year 2005. The Intel Core architecture unveiled in the year 2006. Since

the advantage of multi-core on multi-tasks, the multi-processor generation is coming.

However, in the recent year, not only graphic card being used in entertainment and 3D

imaging but can help us to calculate the computational intensive work. The graphics

processing units contain multiple processing elements which are alike multi-core

processors being used to operate simultaneously on streams of data. And in early 2003,

the GPU throughput exceeded the CPUs in following graph [17]:

Figure 2-10 GPU throughput exceeded the CPUS

60

2.5.4. NVIDIA CUDA

The following is the reason why we choose the graphics processing units: At first,

the architecture of graphics processing units is specialized for compute-intensive which

means more transistors can be devoted to data processing rather data caching and flow

control (Figure 2-11). Second, the programming interface is similarly to C code, which

is called “CUDA”. [17] The application programming interface “CUDA”, developed by

NVIDIA corporation. CUDA stands for Compute Unified Device Architecture that

leverages the parallel compute engine to solve many complex computational problems

in variety of professional and home applications. Third, the architecture of CPU is

designed for efficient instruction execution. For example, branch prediction, data

dependence and logic determination. However, GPU is characterized by dealing with

the same type of data-intensive computing without dependence. Its advantage is that no

logical relationship of data computing. Under CUDA programming, we usually called

GPU as device instead of CPU is host.

61

2.5.5. Architecture of Tesla C1060

Unlike CPUs that are designed for high sequential performance, GPUs are designed

for computational data-parallel work [17][21]. A GPU is implemented as an aggregation

of multiple that was called Multiprocessors which contains a number of Streaming

Processor. A Streaming Processor is a SIMD ALU. Single Instruction Multiple Data

(SIMD) means every Streaming Processor within a Multiprocessor executes the same

instruction at the same time but the data may vary. Figure 2-11 shows the execution

hierarchical level on CUDA.

Figure 2-11 The GPU devotes more transistors to data processing

62

Each Stream processor accesses the local registers. The Multiprocessor has the

shared memory that is available to the Streaming Processors on the same Multiprocessor.

The Device memory is available to all Streaming Processors for read and write. Besides,

the texture and constant caches are available on each Multiprocessor.

In this work, we use the NVIDIA Tesla C1060 on CUDA programming. There are

30 Multiprocessors in Tesla C1060, and each Multiprocessor contains 8 streaming

Multiprocessors. Therefore, the total Stream Multiprocessors in Tesla C1060 are 240.

Figure 2-11 The CUDA hardware model

63

The total global memory is 4GB and memory bandwidth reaches 102GB/sec. Besides,

each stream multiprocessor has shared memory, constant memory and texture memory.

However, it is only read for constant memory and texture memory. The following table

is the detail hardware information in Tesla C1060 [19]:

Device Name Tesla C1060

of multiprocessor 30

of streaming processor cores 240

Frequency of processor cores 1.3GHz

Total Dedicated Memory 4GB DDR3

Memory Speed 800MHz

Memory Interface 512-bit

Memory Bandwidth 102GB/sec

System Interface PCIE x 16

Compute capability 1.3

However, the compute capability that means the standard of instructions, size of grid,

size of block, memory per block and register. The minor revision number corresponds to

an incremental architecture, possibly including new features. Therefore it’s also another

estimation way to evaluate the compute ability. In our work, the Tesla C1060 is the

Table 2.3 Hardware information of Tesla C1060

64

version of 1.3 on compute capability. The detail can reference the appendix A.

2.5.6. Software Model

When we run a CUDA program, the CPU will distribute the data to GPU. In this

process, the task on GUP is called kernel. Such a kernel is executed in the SIMD model.

A grid is included of thread blocks and each block mapped to one Multiprocessors.

Multiple thread blocks can be mapped onto the same block. [17][21][22] However, the

resources, such as registers and shared memory will limit the maximum blocks. A thread

block is a batch of threads that can cooperate with each other. Moreover, the thread

blocks are grouped called warps. Wraps are executed by scheduling them on the

Streaming Processors of a Multiprocessor. The current available warp size is 32.

Therefore, at least 4 clock cycles to execute an instruction by 8 Streaming processors. A

Multiprocessor executes the wrap in one block (Figure 2-13) .

65

However, an instruction of the wrap doesn’t have to be done at a time. When the

wrap was need wait a long cycle. For example, the global memory access from the warp.

It will switch another wrap. The following is a graph for our concept (Figure 2-14):

Figure 2-13 The CUDA software model

66

There are many memory addresses on CUDA as following: Registers, shared memory,

constant memory, texture memory and global memory (figure 2-15).

The following table is the feature of address:

Memory Type Read/Write Speed Usage Data lifetime

Register R/W faster Thread Thread lifetime

Shared memory R/W faster Block Block lifetime

Figure 2-14 The CUDA warp scheduler

Figure 2-15 The memory hierarchical on CUDA

67

Constant memory R faster Grid From allocation

to deallocation

Texture memory R faster oGird From allocation

to deallocation

Global memory R/W slower Grid From allocation

to deallocation

Threads may access data from multiple memory spaces during their execution time.

Each thread has the private local memory and registers. Each block has shared memory

to all threads that are in the same block. Finally they can access to the global memory.

Besides, there are two read-only memory spaces accessible by all threads: the constant

and texture memory. They are optimized for memory usages by the data they only to

read. For example, in our work the table is suitable for it.

2.5.7. Approach to Parallel Lookup Table

From the profile output, the look-up table dominates the great majority of total

execution time. According to the operation of look-up table, it’s similar to the vector

Table 2.4 Memory addressing of CUDA

68

addition. Taking into account the impact of kernel, each mask of the partition has to

calculate the impact respectively. Therefore, a table look-up is actually a kernel, the

corresponding rectangle to make a addition. For the two-dimensional mask of the

look-up table by the operator that we can flat into a loop to do thread synchronization of

one-dimensional look-up table calculation.

2.5.8. Kernel Execution Flow

There are five steps to run kernel function [20] in our work. At first, we have to

dispose the host and device memory. Second, using the function cudaBindTexture () to

bind global memory to texture reference. Therefore, we can take advantage of texture

cache in stream multiprocessor and copy look-up table to it. Third, using function

cudaMemcpy() to transfer data from host memory to global memory. Fourth, using

function Run_GPU() to initiate the kernel and to calculate. Fifth, the result from GPU

Figure 2-16 Parallel computing on look-up table

69

must be written back to host memory.

2.5.9. The Optimization on Our Work

It’s important to promote performance on CUDA [17][18][21]. Therefore, there are

several basic concepts for optimization on CUDA.

At first, the clock cycle of accessing data from global memory is almost 500. It will

reduce the performance under I/O time. Therefore, we can use the shared memory or

texture memory than global memory. The look-up table records the results of a variety

of rectangular convolution, and we do not need to write back to it. Therefore, it’s very

Figure 2-17 Kernel Execution Flow

70

suitable for texture cache to access.

 Second, we have to arrange grid size and block size appropriately. The resources

consumption of switching wrap is an important part on CUDA. We have to use up the

Multiprocessors rather than idle some. Notice that there is a limit to distribute the

registers to thread. If we exceed the rule, it will run error message in program. The

maximum size of block per Multiprocessor are determined some reasons, the important

part is the shared memory usage in our program. To observe it, we can use the

flag –ptxa-options=-v in compiling step. If the usage of shared memory greater than the

half shared in each Multiprocessor the each Multiprocessor map one block only. The

following formula is the to determined the maximum block per Multiprocessor by

shared memory:

If shared memory/block 8KB, block 1

else block FLOOR L T S M

M S

 (2.19)

The register affects the block size per Multiprocessor, too. Use the

flag –maxrregcount to limit the size of registers per thread and –ptx-options=-v to

observe the registers usage per thread. Finally, we can use the following formula to

71

calculate the maximum blocks per Multiprocessor approximately:

R
B ceil T, 32

 (2.20)

where,

1. R is the total number of registers per Multiprocessor

2. B is the number of active blocks per Multiprocessor

3. T is the number of threads per Block

4. Ceil(T,32) means the T rounded up to nearest of 32

Finally, the maximum of blocks per Multiprocessor determined the minimum of the

limited by registers and limited by shared memory.

Third, the data transfer path between host and device is slow. By means of limit in

PCI-Express bus of 8GB/sec is slower than the GPU memory bandwidth 102GB/sec

(Tesla C1060). Therefore, the reduction transmission between host and device

transmission is important. The mask should be observed for the purpose of calculation,

do not always pass so many partition to the device.

72

Fourth, the branch condition just like while (), if () and switch () cause the

divergence on multi-threads. The reason is that the switch on warp must have to be

synchronization until the next cycle. It will spend twice time to execute the instruction.

Therefore, in the program, we should avoid excessive writing to determine process

control.

2.6. Performance Comparison

The environment of host PC is the following table and the information of GPU was

mentioned about in section 2.5.5

CPU AMD Athlon(tm) 64 X2 Dual Core Processor 5600+

Memory 4GB

VGA Card Nvidia Tesla C1060

VGA Memory 4GB

Operating System SUSE Linux

Compiler GNU gcc 4.3.1

Nvidia CUDA NVCC Complier

Table 2.5 The hardware environment

73

2.6.1. Grid size and Block size

The set up for block size and grid size is an important part to run the kernel program.

The shared memory used in our work is less than the half of the Multiprocessor, we

don’t worry the grid size will limit one Multiprocessor that mapped into the one block.

However, the compute capability 1.3 has the rule that the maximum of the active block

per Multiprocessor is 8. That means at a time, the Multiprocessor just to manage the 8

block only. In our work, the shard memory usage per block about 4288bytes, and the

Tesla C1060 have the shared memory 16384bytes per Multiprocessor. Therefore, the

maximum of active blocks per Multiprocessor is 3. However, the registers of usage per

thread also will limit the active block per Multiprocessor. In our work, registers per

thread is 22, the limited of register by Eq.(2.20). If the block size is 512, then the

maximum of active blocks per Multiprocessor is 1. Instead, the block size is 256, the

maximum of active blocks per Multiprocessor is 2. However, the exceeding usage block

size or registers will reduce the performance because the local memory will simulate the

register for our program. The figure 2-18 is the performance between the different block

size and grid size. The test circuit is Even-bit CSG which size is 2500nm × 4699nm in

a 32-bit adder. Its entire layout shows in figure 2-9.

74

From the result, the best choice for our work is block size equal to256 and grid size

equal to 60. However, the block size equal to 512 and grid size equal 30 is another

acceptable choice.

2.6.2. Execution Time Comparison

At first, let’s see the total execution time on CUDA that include the I/O time and

compare the execution time on CPU. The following graph compares the total time of

GPU versus the CPU for different circuit size of layer METAL 1 of 32-bit adder tested.

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300

Ex
e
cu
te
 T
im

e
 (
s)

Grid Size

Block size = 64

Block size = 256

Block size = 512

Figure 2-18 Performance comparison of grid size and block size

75

Circuit CMS CMD Latch_ EvenCSG_ OddCSG_

Size × 104(nm2) 2538 3058 6554 8817 10939

 For all layout size tested, the GPU finishes before CPU does. There are roughly 40

accelerations on maximum layout size. If we rule out the I/O time, the roughly speed up

is 45. These results tell us the multi-thread programming on CUDA is useful to promote

performance. However, we also have to compare the multi-cores of CPU between GPU.

The following is graph is the result:

0

50

100

150

200

250

300

350

400

0 2000 4000 6000 8000 10000 12000

Ex
e
cu
ti
o
n
 T
im

e
(s
)

Size x 104 (nm2)

GPU VS CPU Execution Time

CPU Time

GPU Total Time

Figure 2-19 GPU VS CPU execution Time

Table 2.6 Circuit size of our simulation

76

Size × 104(nm2) 2538 3058 6554 8817 10939

GPU Only Calculation (s) 23.87 25.30 38.12 39.63 44.84

GPU Total (s) 19.88 22.43 32.62 35.90 40.24

CPU (30 Cores) (s) 23.6 23.88 24.6 25.2 25.35

Although, the multi-cores of CPU have a good speed up roughly 28 and one can

0

5

10

15

20

25

30

35

40

45

50

0 2000 4000 6000 8000 10000 12000

Sp
e
e
d
 U
p

Size x 104(nm2)

GPU VS. CPUs Performance Comparison

GPU

CPUs MPI(30
Cores)

GPU Caculation
Only

Figure 2-20 CPU VS CPUs (30 Cores)

Table 2.7 Performance comparison between GPUs and CPUs

77

estimate that it’s direct proportion to the cores. That means if someone want to promote

the performance on multi-threading programming. The cost must high rather than just

buy a GPU card only. Therefore, we can claim that use CUDA to speed up the parallel

code on multi-threading programming is a wise choice.

2.6.3. Transmission Overhead

The I/O overhead is an important part on performance. From the following graph,

we observe the overhead percent overhead is high on small case. The reason is that the

calculation time under CUDA almost equal to the transfer time from host to device.

These results provide us useful information that CUDA as possible as promote the

device time that means more calculation under CUDA or large layout size will reduce

the ratio of transfer time. The following formula is the percentage of transmission

overhead:

T T W B T

GPU T T
 (2.21)

78

Sizex104 (nm2) 2538 3058 6554 8817 10939

GPU Overhead (%) 42.74% 39.05% 24.15% 19.96% 16.26%

2.6.4. Relative Error

Finally, we have to sure that the result from GPU is correct. Therefore, we can use

the relative error to examine the total error. To compare the two arrays which are used to

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

0 5000 10000 15000

P
e
rc
e
n
t
Tr
an

sm
is
si
o
n
 O
ve
rh
e
ad

 (
%
)

Size x 104 (nm2)

Transmission Overhead Comparison

GPU Over Head

Figure 2-21 Transmission Overhead Comparison

Table 2.8 GPU overhead comparison

79

storing the optic intensity. First array is generated by CUDA and the other is host PC.

The following formula is the relative error between two arrays and the following graph

is the comparison between different layout sizes:

∑ imageCUDA i ‐imageHost i

2N
i 1

∑ imageCUDA
2 iN

i 1
 (2.22)

2.7. Summary

In this chapter, we described how to speed up for the optical simulation image

generation. We use CUDA to apply parallel computing in look-up table method. It is

faster 40× than a single CPU in order to save the quality evaluation time in OPC. In

3E‐08
3.05E‐08
3.1E‐08

3.15E‐08
3.2E‐08

3.25E‐08
3.3E‐08

3.35E‐08
3.4E‐08

3.45E‐08
3.5E‐08

0 5000 10000 15000

Size x104

Relative Error Comparison

Relative error

Figure 2-22 Relative Error Comparison

80

today’s , when the physical limitations of CPU to exercise restraint when the clock has

become the key factors of continuous growth. Oriented parallel processing architecture

has become the current trend.

2.8. Feature work

The boundary of the mask will determine whether to do look‐up table. However,

for each thread, the judge needs twice times to run the flow control. (if and else

will be over‐doing it) Therefore, we can fill a number to the most peripheral in the

mask. In this way can use this number to test whether the boundary in order to

reduce the unnecessary waste of time.

81

Bibliography

[1] X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, “Specular spectroscopic

scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97–111 (2001).

[2] R. Antos, J. Pistora, I. Ohlidal, K. Postava, J. Mistrik, T. Yamaguchi, S.

Visnovsky, and M. Horie, “Specular spectroscopic ellipsometry for the critical

dimension monitoring of gratings fabricated on a thick transparent plate,” J.

Appl. Phys. 97, 053107 (2005).

[3] H. Huang and F. L. Terry, “Spectroscopic ellipsometry and reflectometry from

gratings (scatterometry) for critical dimension measurement and in situ,

real-time process monitoring,” Thin Solid Films 455, 828–836 (2004).

[4] C. J. Raymond, M. R. Murnane, S. S. H. Naqvi, and J. R. McNeil, “Metrology

of subwavelength photoresist gratingsusing optical scatterometry,” J. Vac. Sci.

Technol. B 13, 1484–1495 (1995).

[5] J. Garnaes, P. E. Hansen, N. Agersnap, J. Holm, F. Borsetto, and A. Kühle,

“Profiles of a high-aspect-ratio grating determined by spectroscopic

scatterometry and atomic-force microscopy,” Appl. Opt. 45, 3201–3212 (2006).

82

[6] R. H. Krukar, S. L. Prins, D. M. Krukar, G. A. Petersen, S. M. GasparGaspar, J.

R. McNeil, S. S. H. Naqvi, and D. R. Hush, “Using scattered light modeling for

semiconductor critical dimension metrology and calibration,” Proc. SPIE 1926,

60–71 (1993).

[7] I. Kallioniemi, J. Saarinen, and E. Oja, “Optical scatterometry of

subwavelength diffraction gratings: neural network approach,” Appl. Opt. 37,

5830–5835 (1998).

[8] S. Robert, A. M. Ravaud, S. Reynaud, S. Fourment, F. Carcenac, and P. Arguel,

“Experimental characterization of subwavelength diffraction gratings by an

inverse-scattering neural method,” J. Opt. Soc. Am. A 19, 2394–2402 (2002)

[9] http://www.rsoftdesign.com

[10] Max Born and Emil Wolf. Principle of Optics. Press Syndicate of The University

of Cambridge, 7 edition, 2005. pp.569-572.

[11] Max Born and Emil Wolf. Principle of Optics. Press Syndicate of The University

of Cambridge, 7 edition, 2005.

[12] A. K. Wong. Optical Imaging in Projection Microlithography. SPIE Press, 2005

[13] H.H. Hopkins. “The Concept of Partial Coherence in Optics.” In Proc. Royal

Soc.London,A208:263-277,1951

83

[14] Ming-Feng Tsai "Abbe-PCA:Compact Abbe's Kernel Generation for

Microlithography Aerial Imags Simulation using Principal Compoents

Analysis",National Taiwan University

[15] Szu-Kai Lin "An Efficient Contour Generation Algorithm for Microlithograhy

Aerial Image", Naitional Taiwan University

[16] Jui-Hsiang Liu, Kuan-Lu huang, Tsung-Yu Li, Meng-Chun Chiu, Charlie

Chung-Ping Chen Chih-Sheng Jao, Lon Wang "Efficient and Accurate Optical

Scatterometry Diagnosis of Grating Variation Based on Segmented Moment

Matching and Singular Value Decomposition Method",Graduate Insitute of

Photonics and Optoelectronics Enginerring ,National Taiwan University

[17] NVIDIA(2008)."CUDA Programming Guide v2.0"

[18] Steven Cook (2007). "Examining Suitability of Multicore Processor

Architectures for Solving Realistic Computationally Intensive Problems by

Simulating Synaptic Behavior in Large Neural Networks".

[19] Wikipedia(2009). Tesla, http://en.wikipedia.org/wiki/NVIDIA_Tesla

84

[20] 林壽佑(2008) A Preliminary Study of Using Graphic Processors on Discrete

Element Method Computation 國立台灣科技大學營建工程系

[21] J. Breitbart CuPP -- A framework for easy CUDA integration, HiPS 2009

workshop with IPDPS 2009, Rome, Italy, May 2009..

[22] J. Breitbart: Case studies on GPU usage and data structure design, Master

Thesis, University of Kassel, 2008.

[23] http://en.wikipedia.org/wiki/Central_processing_unit#History

85

Appendix A

The following table is the compute capability 1.3:

The maximum number of threads per block is 512

The maximum sizes of the x-, y-, and z-dimension of a thread block

are

(512,512,

64)

The warp size is 32

The number of registers per multiprocessor is 16384

The amount of shared memory available per multiprocessor is 16KB

The total amount of constant memory 64KB

The maximum number of active blocks per multiprocessor 8

The maximum number of active warps per multiprocessor 32

The maximum number of active threads per multiprocessor 1024

The cache working set for constant memory per multiprocessor 8KB

The cache working set for texture memory per multiprocessor 6KB to

8KB

