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摘要 

  為了保證奈米壓印製造光柵的品質，光散射(optical scatterometry) 是一個

有效率和有效的方法來診斷實際光柵的幾何形狀。為了方便診斷的過程，一個有

效率針對大型資料庫的匹配演算法是非常重要的。在本篇論文中，我們提出一個

有效的演算法利用最小誤差(MSE)的方式用來比對大型的頻譜資料庫，藉此反推原

始的幾何組態。我們利用奇異值分解(Singular Value Decomposition)對大型的

資料庫作壓縮並使用分層的動差(Moment)匹配方式來執行匹配演算法。我們的搜

尋和診斷演算法是非常快速且精確的。跟傳統的最小誤差比起來，快上了 3000 倍

以上且精確度在 0.1%以內。 

 

  第二部分是介紹使用平行計算的方式來加快微顯影中的成像生成。隨者超大型

積體電路技術的特徵尺寸(feature size)迅速縮小，已小於曝光光的的波長，光

的繞射效應使得曝光後的圖像明顯偏離了原本設計的光罩。因此，微顯影結果的

品質，在超大型積體電路(VLSI)的製造過程中是非常重要的。但是往往花費了相

當多的時間來產生成像。在論文中，我們使用 CUDA 技術，它是一個通用的平行計

算架構，充分利用在 NVIDIA 繪圖晶片(GPU)中的平行計算引擎，用來加快微顯影

中的圖像生成。 

 

 

關鍵字:光散射、奇異值分解、動差匹配、阿貝成像方法、繪圖處理器平行運算 
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Abstract 

  To ensure the quality of the nanoprint fabricated optical gratings, optical 

scatterometry (OS) is an efficient and effective mean to diagnose the actual fabricated 

geometry. To facilitate the diagnosis process, efficient pattern matching algorithms over 

a huge database are of great importance. In this thesis, we propose an efficient algorithm 

using minimum error square approach used to matching in a huge simulated spectrum 

database in order to obtain the original geometric configuration inversely.We use 

Singular Value Decomposition to do compression on large database and the use of   

hierarchical moment to perform matching algorithm; our searching and diagnosis 

algorithm is extremely fast and accurate. It is over 3000x faster than a exhausted 

searching algorithm within 0.1% accuracy. 

  The second part is to introduce the use of parallel computing in the imaging of 

microlithography for acceleration. As the VLSI technology feature sizes quickly shrink 

smaller than the wavelength of exposure light sources, the diffraction effects have made 

the exposed patterns significantly deviated from the original intended mask pattern. 

Therefore, the quality of microlithography simulation is an important part of the VLSI 

manufacturing process. However, it takes considerable time to produce image. In the 

thesis, we use CUDA, which is a general purpose parallel computing architecture that 

leverages the parallel compute engine in NVIDIA graphics processing units (GPUs) to 

speed up the image generation in Microlithography simulation. 

Keywords: Optical Scatterometry, Singular Value Decomposition, Moment Matching, 

Abbe’s method, CUD



 

1 

 

 

Content 

中文口試委員審定書 ................................................................................................. i 

英文口試委員審定書 ................................................................................................ ii 

致謝  ................................................................................................................... iii 

摘要  ............................................................................................................. iv 

Abstract  .............................................................................................................. v 

Content  .............................................................................................................. 1 

List of Figures ............................................................................................................. 4 

List of Tables .............................................................................................................. 6 

Chapter 1. Efficient Ways for Optical Scatterometry Diagnosis ............................ 7 

1.1. Introduction and Background ................................................................... 7 

1.2. Previous Work .......................................................................................... 8 

1.3. Motivation ................................................................................................ 9 

1.4. Spectrum Diagnosis Scheme .................................................................. 10 

1.4.1.  Database Construction ............................................................................ 11 

1.4.2.  Problem Formulation .............................................................................. 12 

1.4.3.  Eigenvalue Decomposition ................................................................... 13 

1.4.4.  Compaction by Singular Value Decomposition ............................. 15 

1.4.5.  Classification ............................................................................................. 18 

1.4.6.  Segmented Moment Matching ............................................................. 21 

1.4.7.  Grid-based Searching ............................................................................. 27 

1.5. Approach to Arbitrary Segment Spectrum Range .................................. 32 

1.6. Simulation Results .................................................................................. 34 

1.7. Runtime Comparison .............................................................................. 39 



 

2 

 

1.8. Summary ................................................................................................. 40 

1.9. Feature Work .......................................................................................... 40 

Chapter 2. Parallel Optical Simulation Using Graphic Processor Unit................ 41 

2.1. Introduction and Background ................................................................. 41 

2.2. Motivation .............................................................................................. 41 

2.3. Preliminary ............................................................................................. 42 

2.4. Overview of Image Generation .............................................................. 43 

2.4.1.  Imaging Equation ..................................................................................... 43 

2.4.2.  The Abbe’s Method ................................................................................. 45 

2.4.3.  Mask Decomposition .............................................................................. 48 

2.4.4.  Lookup Table ............................................................................................. 49 

2.4.5.  Image Generation Flow .......................................................................... 53 

2.4.6.  Mask Pattern Partition ............................................................................ 54 

2.5. Parallel Optical Simulation ..................................................................... 55 

2.5.1.  Code Analysis ............................................................................................ 56 

2.5.2.  The Evolution of Microprocessor ....................................................... 58 

2.5.3.  Multi-core Background Overview ..................................................... 58 

2.5.4.  NVIDIA CUDA ........................................................................................ 60 

2.5.5.  Architecture of Tesla C1060 ................................................................. 61 

2.5.6.  Software Model ........................................................................................ 64 

2.5.7.  Approach to Parallel Lookup Table ................................................... 67 

2.5.8.  Kernel Execution Flow .......................................................................... 68 

2.5.9.  The Optimization on Our Work ........................................................... 69 

2.6. Performance Comparison ....................................................................... 72 



 

3 

 

2.6.1.  Grid size and Block size ........................................................................ 73 

2.6.2.  Execution Time Comparison ................................................................ 74 

2.6.3.  Transmission Overhead .......................................................................... 77 

2.6.4.  Relative Error ............................................................................................ 78 

2.7. Summary ................................................................................................. 79 

2.8. Feature work ........................................................................................... 80 

Bibliography ..................................................................................................... 81 

Appendix A ....................................................................................................... 85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4 

 

List of Figures 

Figure 1-1 Optical Scatterometry Experimental Step ................................................. 9 

Figure 1-2 The spectrum diagnosis scheme.............................................................. 10 

Figure 1-3 Three kinds of grating shapes in our simulation ...................................... 11 

Figure 1-4 The parameter of the grating .................................................................... 11 

Figure 1-5 Database construction by R-Soft simulation .......................................... 12 

Figure 1-6 Problem formulation ............................................................................... 13 

Figure 1-7 Problem formulation ............................................................................... 14 

Figure 1-8 Singular Value Decomposition ............................................................... 15 

Figure 1-9 Database compaction .............................................................................. 16 

Figure 1-10 Singular value distribution of simulated reflected spectrum ................ 17 

Figure 1-11 The meanings of moments .................................................................... 18 

Figure 1-12 Variance varying according to shape variation ..................................... 19 

Figure 1-13 Skewness varying according to shape variation ................................... 20 

Figure 1-14 Segmented Spectrums with moment computations .............................. 20 

Figure 1-15 Grid storage structure in moment spaces .............................................. 21 

Figure 1-16 Grid storage structure cell in 3D moment spaces ................................. 21 

Figure 1-17 Coded grid ............................................................................................. 22 

Figure 1-18 Distribution of V space ......................................................................... 24 

Figure 1-19 Disperse the data uniformly according to distribution of V space ........ 25 

Figure 1-20 Perform SVD to 3D grid structure ........................................................ 26 

Figure 1-21 Schematic diagram of the distance between grid .................................. 27 

Figure 1-22 None-homogeneous grid ....................................................................... 29 

Figure 1-23 Relative to the grid structure of the correspond tree ............................. 30 

Figure 1-24 The upper bound from observation points ............................................ 31 

Figure 1-25 Compensation for a particular spectrum ............................................... 33 

Figure 1-26 Direct Searching (MSE) without compact database ............................. 35 

Figure 1-27 Direct searching (MSE) in compact database ....................................... 36 

Figure 1-28 Grid-based searching in compact database ........................................... 37 

Figure 1-29 The input reflected spectrum with 0.5% Gaussian noise on grid-based 

searching 38 

Figure 1-30 Run time comparison Direct search VS Grid Search............................ 39 

Figure 2-1 Coherent illumination ............................................................................. 43 

Figure 2-2 Discretization of a conventional partially coherent illumination system 46 



 

5 

 

Figure 2-3 Mask pattern Decomposition .................................................................. 49 

Figure 2-4 Convolution by pre-computed lookup table ........................................... 51 

Figure 2-5 A delta function convolutions with kernel function ................................ 52 

Figure 2-6 Example for the center of convolution ................................................... 53 

Figure 2-7 Image Generation Flow .......................................................................... 54 

Figure 2-8 Mask Partition ......................................................................................... 55 

Figure 2-9 Even-bit CSG circuit of 32-bit adder ...................................................... 56 

Figure 2-9 Even-bit CSG circuit of 32-bit adder ...................................................... 57 

Figure 2-10 GPU throughput exceeded the CPUS ................................................... 59 

Figure 2-11 The GPU devotes more transistors to data processing .......................... 61 

Figure 2-11 The CUDA hardware model ................................................................. 62 

Figure 2-13 The CUDA software model .................................................................. 65 

Figure 2-14 The CUDA warp scheduler .................................................................. 66 

Figure 2-15 The memory hierarchical on CUDA ..................................................... 66 

Figure 2-16 Parallel computing on look-up table ..................................................... 68 

Figure 2-17 Kernel Execution Flow ......................................................................... 69 

Figure 2-18 Performance comparison of grid size and block size ........................... 74 

Figure 2-19 GPU VS CPU execution Time .............................................................. 75 

Figure 2-20 CPU VS CPUs (30 Cores) .................................................................... 76 

Figure 2-21 Transmission Overhead Comparison .................................................... 78 

Figure 2-22 Relative Error Comparison ................................................................... 79 

 

 

 

 

 



 

6 

 

List of Tables 

 

Table 1.1 The SPEC of simulation step .................................................................... 35 

Table 1.2 Searching time comparison ....................................................................... 38 

Table 2.1 The test case of Even-bit CSG of 32-bit Adder ........................................ 56 

Table 2.2 The profile output of optical simulation ................................................... 57 

Table 2.3 Hardware information of Tesla C1060 ..................................................... 63 

Table 2.4 Memory addressing of CUDA .................................................................. 67 

Table 2.6 Circuit size of our simulation ................................................................... 75 

Table 2.7 Performance comparison between GPUs and CPUs ................................ 76 

Table 2.8 GPU overhead comparison ....................................................................... 78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

7 

 

Chapter 1. Efficient Ways for Optical Scatterometry 

Diagnosis 

1.1. Introduction and Background 

Since the linewidths of most holographic gratings in modern applications are less 

than 100nm, few inspection tools are available. Conventionally, the scanning electron 

microscope (SEM) is the powerful tools to characterize such microstructures. With 

SEM, which is regarded as the most intuitive means of microstructure measurement, the 

grating profile can be determined from its cross section images. However, this method 

is local, expensive, time consuming, destructive, and not extendable to online 

monitoring. 

In recent years, scatterometry which is based on the measurement of diffraction 

efficiencies or polarization responses and encompasses reflectometry, ellipsometry, and 

diffractometry, has become popular and widely accepted for accurate grating 

topography extraction [1-5].Such kinds of techniques aim to solve inverse diffraction 

problems. From a practical point of view, the relationships between grating profiles and 

their diffraction responses can be found. Using the well developed grating theory, the 

curve of any diffraction response versus grating parameters can be calculated. For the 
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inverse grating problem, an analytical function is unavailable for data got from 

complicated numerical calculations. The functions are nonlinear, and the variables are 

complexly related from each other. The approaches have been developed the finite 

element method to solve the inverse grating problem. Since this approach 

fundamentally differs from the usually scatterometric approach, we do not discuss it. 

 

1.2. Previous Work 

There’re mainly two approaches to solving inverse grating problems: the look-up 

table method [2] and the nonlinear regression method [6-8].The minimum square error 

method, which uses huge library with specialized searching algorithms, is a powerful 

tool for multi-parameter grating profile measurement. Niu et al. [1] used this method to 

measure CDs of integrated circuit with pseudoperiodic structures. In 1993, Krukar et al. 

[6] used an artificial neural network (ANN) model to simulate the relationship between 

the reflection at a fixed wavelength and the CDs of gratings with a trapezoidal profile, 

but the method is not economical for large scale fabrications because it is difficult to 

construct model. Although the look-up table method wastes the huge cost in computing 

time and storage space. However, it’s higher accuracy than ANN.   
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1.3. Motivation 

In our work, we focus on huge library. We improve the minimum square error 

method [1]. First, the compact database of reflected spectrums needs to be built. Second, 

we have to reduce searching time to find the match geometry of grating. We proposed 

an efficient Grid-based searching with almost O(1) time complexity. Reserve only 1% 

data size by Segmented Moment Hierarchical SVD. It’s over 3000x faster than a 

exhausted searching within 0.1% accuracy.   

 

 

 

Figure 1‐1 Optical Scatterometry Experimental 
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1.4. Spectrum Diagnosis Scheme 

The spectrum diagnosis scheme involves three phases (Figure 1-2).The first step is 

to collect all reflected spectrums by R-Soft simulation to establish database. The second 

step is to perform Singular Value Decomposition (SVD) to compact the huge database 

and segment the spectrum of zones. Third, feature extraction, the moments distributions 

are different between square and trapezoid gratings. Hence, we take advantage of this 

feature as classification. Finally, given an unknown reflection spectrum as an input with 

the Grid-based searching, we can find the most possible grating. In this work, I devote 

to the SVD Compaction and Grid-Based Searching. 

 

 

Figure 1-2 The spectrum diagnosis scheme 
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1.4.1. Database Construction 

There are three kinds of grating shapes in our simulation: Rectangle, Upside down 

Trapezoid and Trapezoid (Figure 1-3). 

 

 

We use the R-Soft simulator [9] to generator a large amount of spectrum by different 

optical gratings which are depended on UPPER CD, LOWER CD and PR HEIGHT 

(Figure 1-4).  

 

Figure 1‐3 Three kinds of grating shapes in our 

Figure 1-4 The parameter of the grating 
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However, the space complexity of our database is O (M x N), where M is the range 

of reflected spectrum, N is the total number of spectrum in the database. Typically, the 

data size of matrix A is 225×106. Therefore, we can perform Principle Component 

Analysis for compaction. 

 

 

1.4.2. Problem Formulation 

The light reflectance intensity of spectrum range from 200nm to 1000nm or more, 

searching the most possible pattern of optical gratings is similarity to look for minimum 

error least square. Therefore, we can formulate the optical grating pattern recognition to 

the following simple equations: Ax=b, where A is a database of reflection spectrum of 

different grating shapes, x is a selection spectrum, and b is observed spectrum (Figure 

1-6).  

Figure 1-5 Database construction by R-Soft simulation 
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With a measure spectrum b, searching process can be fundamentally mapped to a 

least square fitting problem in the following, where ai is the i-th column vector of matrix 

A: 

 b a  (1.1) 

 

1.4.3. Eigenvalue Decomposition 

Suppose A is a square matrix of n-by-n, let λ1 , λ2, …λn, be the eigenvalues of a matrix 

A, let x1,x2,…, xn be a set of corresponding eigenvectors, then: A=XDX-1(Figure 

1-7)-,where D is the n-by-n diagonal matrix with λ1 , λ2, …λn , X is the n-by-n matrix 

whose i-th column is xi ; if eigenvectors are orthonormal, then: 

Figure 1-6 Problem formulation 
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 A λ1x1 x1 T λ2x2 x2 T λnxn xn T (1.2) 

 

 

We can perform the Principle Component Analysis for matrix A to simplify the 

express: (suppose λi 0 if i >2)≒  

 A λ1x1 x1 T λ2x2 x2 T (1.3) 

If the matrix A is not a square matrix, we can perform Singular Value 

Decomposition, we will introduce in the next section. 

 

 

Figure 1-7 Problem formulation 
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1.4.4. Compaction by Singular Value Decomposition 

 

 

Suppose A is an m-by-n matrix, then there exists a factorization of the form 

A=USVT. We perform the Singular Value Decomposition (SVD) (Figure 1-8) operation 

on A to decompose it into the product of three matrices, A=USVT, where the size of U, 

S, V are m m , m n and n n , respectively. The matrix U is m-by-m and V is 

n-by-n. Both matrix U and V are orthonormal. Here S is a matrix the same size as A that 

is zero except possibly on its main diagonal where each entry (singular value) in 

diagonal denoted the importance of the corresponding columns and rows of U and V, 

respectively. In this work, each reflected spectrum (column) of A can be represented by 

smaller linear combinations of more compact set of basic kernels. The matrix U is an 

orthonormal matrix that each column (orthonormal) is consisted of those kernels. SVT 

Figure 1-8 Singular Value Decomposition 
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are those weighting corresponding to each column of A. A simple concept of SVD can 

be illustrated in the following diagram (Figure 1-9).  

 

Depends on the decreasing speed of the singular values in S (Figure 1-10), we can 

effectively compact A into smaller sizes. Define the ratio of singular values; if the 

largest k components are reserved, the space complexity will be reduced from O ( M x 

×) to O(k × N), where M is the range of reflected spectrum and N is the total number of 

spectrum in the database. According to the singular value distribution, we can get large 

p with small k: 

 
σ1 σ2 σk

σ1 σ2 σk σN
p% (1.4) 

 

Figure 1-9 Database compaction 
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With a measured spectrum, b, searching process can be rewritten as follow: 

 UTb SVT  (1.5) 

The speed up of searching time with compact database is 53X faster than original 

database. However, it always tries to find the match spectrum in the database exhausted. 

When A is getting huge, the time complexity is O (N), where N is the total number 

reflected spectrum in the database. To solve this problem, it is crucial to sort the data 

into different bins according to its similarity. We will introduce it in the next section. 

 

Figure 1-10 Singular value distribution of simulated reflected spectrum   
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1.4.5. Classification 

If we can group the data according to its similarity, then it’s efficient to search the 

data. The quest is how to easily compute the similarity between reflected spectrums. 

The first thought come into our mind is statistical moments [16], that is: mean, variation, 

skewness and kurtosis (Figure 1-11). The definition of the k-th moment can be represented 

as follows： 

 m E x µ
N
∑ xN  (1.6) 

 

 

 

Figure 1-11 The meanings of moments 
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With the different shape of different moment distribution (Figure 1-12, 1-13), one can 

use this feature to classify the sub-database. Given a spectrum database A, we segment each 

spectrum into a few zones (Figure 1-14), and calculate the moments such as mean, variance, 

skewness and kurtosis in each zone. Once the moments of each zone are computed, there is 

a need to sort the data according to the moments. 

 

 

Figure 1-12 Variance varying according to shape variation 
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Figure 1-13 Skewness varying according to shape variation 

Figure 1-14 Segmented Spectrums with moment computations 
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1.4.6. Segmented Moment Matching 

With the segmented moments, our searching process is to first compute its 

segmented moments as well and try to search the nearest spectrum with close moments. 

To facilitate the process, we can map the segmented moments to a grid structure to store 

the spectrum according to the segmented moments. The concept is illustrated in 

following diagram (Figure 1-15, 16): 

 

 

 

Figure 1-15 Grid storage structure in moment 

Figure 1-16 Grid storage structure cell in 3D moment spaces 
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It’s similar to the idea of space partitioning and locality sensitive hashing. It’s 

straightforward that the overall space could be separated into grids as the following 

graph (Figure 1-17). The grids act as a index for the grouping. Along each axial 

direction, it could be given a code for each grid. Thus, every grid could be represented 

as a coded string. 

 

 

It’s apparently that to minimize the penalty from the dimension. The effect could be 

reduced by reducing the dimension. Singular value decomposition is a powerful tool to 

construct a compact representation. With the segmented moment, each spectrum can be 

arranged into a moment vector in the following form, where mij is i-th zone of j-th 

moment: 

 m11 m14 m21
m24 mij  (1.7) 

Figure 1-17 Coded grid 
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then, the M matrix consists of each moment vector:  

 M

m11
1 m11

2 m11
n

m12
1 m12

2 m12
n

mm4
1 mm4

2 mm4
n

m n

 (1.8) 

The first column is moment vector of spectrum of the first case and the last column 

is the moment vector of spectrum of the last case, etc. Then, we perform the Singular 

Value Decomposition on matrix M for dimension reduction in the following form:  

 M USVT (1.9) 

There’s another critical problem that the data may be intensively clustered in some 

particular grid. This could not be avoided in a general sense. However, the SVD 

operation illustrates another view for how it is distributed. First, we can rewrite the 

SVD operation to M matrix as follow: 

 UTM SVT (1.10) 

The standard deviation of each row in VT is: 

 
N
∑ v µ

N
∑v Nµ

√N
 (1.11) 
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That is, the V space might disperse roughly in the same trend for each row. 

Furthermore, combining the singular value, the standard deviation of each row is : 

 
√N

 (1.12) 

This illustrates that VT is related to the root of the size of the database. Also, for 

every row that is normalized by the singular value (σr ) will then have equal standard 

deviation. The distribution is similar to normal distribution in the following graph: 

 

 

Figure 1-18 Distribution of V space 
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If μi is and σ  are the mean and the standard deviation of i-th row in V matrix. Then 

for any real numberk 0, by Chebyshev’s inequality:  

 P |x µ| kσ  (1.13) 

Therefore, we can disperse the data uniformly according to the distribution; then, we 

can segment zones to each dimension; the following graph illustrates this concept: 

 

 

With an input spectrum b, we can use the following algorithm to calculate the code 

locates on the grid. 

 

 

Figure 1-19 Disperse the data uniformly according to distribution of V space 
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Algorithm Enode (b, p, M, z) 

Input: b ( input spectrum ) , p (dimension of moment space), M (Moment 

matrix ) , z (zones) 

Output: C (code)   

begin 

do M=USVT , UT b ; 

for    row one to p ; do 

          for zone one to z 

                define :(UT b)p is the p‐th row of UT b 

                observe the (UT b)p locates in which zone; 

                mark the index of the zone; 

          end 

            end 

C:= the set of marked index ;         

    end 

  

Finally, when the number of the data in one grid is still too large, we again perform 

SVD method on the moment spaces to find out the best match. The concept is illustrated 

in following diagram: 

 
Figure 1-20 Perform SVD to 3D grid structure 
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1.4.7. Grid-based Searching 

However the grid itself is not a perfect replacement to the distance. That is, for any 

possible sample in grid G1 and G2, there is loose distance range, and is roughly the error 

tolerance of the grid. Suppose two samples s1 and s2 are located in grid G1 and G2. The 

codes of G1 and G2 are:  pCC 111   and  pCC 221   respectively. See figure 

1-21 for a 2-D illustration. 

 

 

The orange line in figure 1-21 is the least possible distance while the green one 

refers to the farthest distance. If the wpi is the width of the grid in p’th dimension with 

code i. Suppose wpi is homogenous, that is: 

Figure 1-21 Schematic diagram of the distance between grid 
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i,wpi wp , then: 

 

 the difference vector are: 

 d
w max |C C | 1,0

w max C C 1,0

T

 (1.14) 

 

and 

 d
w max |C C | 1,0

w max |C C | 1,0

T

 (1.15) 

then: 

 |dmin| s1‐s2 |dmax| (1.16) 

If isotropic property holds, that is: 

i,w1 wp w , then: 

 



 

29 

 

 d w
max |C C | 1,0

max C C 1,0

T

 (1.17) 

 

 d w
max |C C | 1,0

max C C 1,0

T

 (1.18) 

 

 

If the width i is not homogeneous (figure 1-22), that is 

i,wpi wp , then, we can denote an accumulated function as: 

 A i ∑ w  (1.19) 

, then: 

Figure 1-22 None-homogeneous grid  
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 d
A max C , C 1 A min  C , C

A max C , C 1 A min  C , C

T

 (1.20) 

 

 d
A max C , C A max  min C , C 1,0

A max C , C A max  min C , C 1,0

T

 (1.21) 

So far, we introduced how to calculate the distance between each grid. Therefore, 

the code calculated input spectrum, we can do so far from near to the visit. We still have 

a problem is that when we calculate the input spectrum of the encoded, we call on how 

far the margin? 

First, we process the grid mapping relative to the tree view, show in figure 1-23. 

 

 

If the wpi is the width of p’th dimension zone with code i, the upper bound of each 

Figure 1-23 Relative to the grid structure of the correspond tree  
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level to reflected spectrum is:  

 
UT

VT w  (1.22) 

With the searching processing of red path, the upper bound distance (ub) is: 

 0 D ∑ w u  (1.23)  

From near to far to visit, until the center of each grid with minimum distance greater 

than the upper bound (Figure 1-24): 

 

 

So far, we introduced how to calculate the distance between the grid and how to 

identify the input spectrum of the upper bound. Therefore, with the input spectrum b, 

we can use the following algorithm to find the nearest grating. 

Figure 1-24 The upper bound from observation points 
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1. Calculate its code and upper bound of measured spectrum b 

2. Searching the grid with the same code 

3. Calculate the minimum error square with data in the grid with the same code 

4. Drop by the gird from nearest to the farthest 

5. Repeat 1-4 until the grid with the observation points greater than the upper 

bound of the minimum distance  

6. From each visited the smallest error in the grid, find the smallest. And to 

identify the corresponding grating 

 

1.5. Approach to Arbitrary Segment Spectrum Range 

Sometimes, with a measured spectrum b, the range of wavelength is not fixed. For 

example, we usually measure 250nm to 1000nm as standard spectrum range. However, 

the range of spectrum probably is located at 400nm to 750nm, or 600nm to 650nm, etc.  



 

33 

 

 

 

Let’s see the form of input spectrum, if it was located at 400nm to 600nm. 

 b400‐600

0

0
b400

b600
0

0

 (1.24)  

In this case, we have only to be directed against the range of 400nm to 600nm in 

database. In order to reduce the error, we have to fill up the b vector. The following is 

the form: 

 UT

0
b

b
0

A
0

0
A

SVT UT

0
b

b
0

USVT

0

0
USVT

SVT (1.25)  

where, ai is the i-th column vector of matrix A, bi is the i-th element of input spectrum b. 

Figure 1-25 Compensation for a particular spectrum 
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Therefore, we can derive the correct result by compensating the out-side range 

spectrum range. 

1.6. Simulation Results 

We use R-soft to simulate our experimental setup according to the following table at 

PC with Intel Core(TM)2 Duo CPUT7300 @ 2.00GHZ RAM:2015MB 

OS:VISTA(32-bit).  

The pitch and arc height of the gratings are fixed to 800nm and 165nm respectively. 

The upper CD (figure 1-4), the lower CD, and the height of the grating are centered at 

250nm, 250nm, and 350nm, respectively. The maximum varying amount of the upper 

CD, the lower CD, and the height of the grating are 30nm, 30nm, and 50nm, 

respectively. With total the resolution in our database is in 1nm scale.  

The SPEC of our simulation setup 

Parameter Value 

Pitch 800 nm 

Upper CD  250+/- 30 nm 

Steps Increments 1 nm 
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Lower CD 250+/- 30 nm 

Steps Increments 1 nm 

PR Height  350+/-50 nm 

Steps Increments 1 nm 

ARC Height 165 nm 

 

The search results by direct searching (MSE) and grid-based searching are show in 

the following diagrams; At first, we compare the direct search (MSE) without compact 

database. The searching time is almost 24 minutes (Figure 1-26).  

 

Figure 1-26 Direct Searching (MSE) without compact database  

Table 1.1 The SPEC of simulation step 
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Second, we use direct searching for compact database, the total searching time about 

26.92 seconds. The speed up is about 53 X than direct searching without compacting 

(Figure 1-27). 

 

 

Third, we use grid-based searching (Figure 1-28) for compact database; the searching 

time is about 0.393 seconds. The speed up is about 68 X speed up than direct searching 

(MSE) on entire compact database. Besides, it’s almost 3600 x speed up than direct 

searching without compacting. 

Figure 1-27 Direct searching (MSE) in compact database  
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Fourth, we use grid-based searching; the input reflected spectrum with the Gaussian 

noise of 0.5%. Because we want to know there are errors in the input conditions, the 

accuracy of the search database is? The error range of grating on each dimensions are 

less than 1nm; the searching time is about 0.448 seconds. The speed up is about 3221x 

than direct searching (MSE) without compact database.  

Figure 1-28 Grid-based searching in compact database 
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The following table is athe speed up is relative to the direct searching: 

Searching way Database Time (s) Speed up Result 

Direct searching Original 1443.27 1 Exact 

Direct searching Compact 26.92 53  Exact 

Grid-based searching Compact 0.393 3672  Exact 

Grid-based +0.5% Gaussian  Compact 0.448 3221 Less than 1nm  

 

Figure 1-29 The input reflected spectrum with 0.5% Gaussian noise on grid-based searching 

Table 1.2 Searching time comparison 
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1.7. Runtime Comparison 

From the following graph, we can find that the direct searching method searches the 

entire database, so the runtime is linearly proportional to the data size. The runtime for 

grid-based searching is almost constant. It can see that our algorithm is significantly 

faster than MSE searching algorithm and the runtime remain flat when the database size 

increasing. The capability of our algorithm is still expandable.  

 

 

 

Figure 1-30 Run time comparison Direct search VS Grid Search 

Direct searching (MSE) 

Grid‐based searching
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1.8. Summary 

In this work, we are mainly aimed at large scale library, so we have chosen to 

improve the original MSE approach to search to find the grating inversely. We know 

that MSE drawback is that large database storage and searching time is too long. For the 

former, we use Singular Value Decomposition to compress our database. And use 

segmented moment matching for classification of database to form grid structure. Once 

again, we perform SVD of the characteristics of the moment spaces dimension 

reduction and based on the distribution of the data to do the cutting evenly dispersed. 

Finally in order to input error can be tolerated, we focused the search on the grid for 

visit from near to far. At the appropriate upper bound to find out the smallest minimum 

error square and the inverse grating configuration. 

1.9. Feature Work 

With the reflected spectrum b, the grid‐based searching drops by from nearest 

to  farthest  and  calculates  the  least  square  error  to  each  grid  to  find  the  most 

possible  result.  In  our work,  it’s  suitable  for  parallel  computing. We  can  use  the 

multi‐thread  programming  to  visit  each  grid  in  the  same  time  and  compute  the 

minimum error square to each spectrum in the same grid. 
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Chapter 2. Parallel Optical Simulation Using Graphic 

Processor Unit 

2.1. Introduction and Background 

Integrated Circuits in a variety of application areas such as biomedical electronics, 

multimedia communications, consumer electronics and other products and services, the 

development and mass production has always occupied an important position, but with 

the electronic circuit technology matures, on VLSI performance and cost of the demand 

is growing. In response to the high-density high-performance circuit design, 

microlithography is the integrated circuit to be the key to low-cost mass production 

2.2. Motivation 

With the evolution of the chip manufacturing process as well as sub-naometer 

generation of high-performance components demand mask pattern of the size of 

microlithography is challenging the exposure light source wavelength resolution limits 

(CD: critical dimension), which makes a variety of optical diffraction, and other 

physical phenomena must be taken into account to predict and, while a variety of 

resolution enhancement technology is also widely been proposed in order to compensate 
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for circuit design and chip as much as possible entities the gap between to maintain the 

advanced integrated circuit production yield and functional correctness. To evaluate the 

microlithography quality, massive images are often generated for careful inspection 

using applications such as OPC.  

In recent years, due to multi-core advances, more and more technology used to 

speed up parallel to a large number of complex computational problems. NVIDIDA 

developed CUDA general-purpose parallel computing architecture that allows graphics 

processors have adequate capacity to solve complex computing problems. If we can use 

CUDA for the imaging in microlithography, then we can reduce a lot of computing time. 

2.3. Preliminary 

The first part we will give an introduction on the image simulation in 

microlithography. The second part, we will introduce the General-purpose computing on 

graphics processing (GPGPU). We will apply this technology in parallel to produce the 

images. Finally, we will compare the performance of GPU and CPU on the differences 

and analyze it. 
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2.4. Overview of Image Generation 

There are two approaches for imaging, one is Abbe’s method and the other is 

Hopkins’s theory. Hopkins’s theory of the light source and system functions as a 

representative of the interaction of micro-imaging system, each conversion coefficient 

(TCC: transmission cross coefficient), while the Abbe’s theory of malpractices light 

source is approximately the same tonal equivalent discrete light source (effective 

discrete source points) substituted into the formula into a number of imaging the 

convolution kernel to get the result of mask pattern. 

2.4.1. Imaging Equation 

 

 

 

Figure 2-1 Coherent illumination 
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Initially, we define the cording systems as shown in Figure 2-1. Points in the object 

plane, pupil and image plane are specified by (x0, y0), (ξ,η), and (x1, y1) respectively 

[11]. 

The image intensity I(x1,y1) at the point (x1,y1) on the image plane can be obtained 

Hopkins formula, which can be approximated subsequently by a summation 

 
, , , ,

, ,
 (2.1)  

Where points (x0,y0) and (x’0,y’0) are two arbitrary points on the object plane. 

O(x0,y0) is an appropriate transmission of the object, which is the mask function consists 

of complex number or with value 0 and 1 for Binary Intensity Mask. For convenience, 

we neglect the time and temporal frequency, so the frequency component is omitted. 

This simplified quantity is called the mutual intensity of the light and is given by J0
-(x0, 

y0, x’0, y’0)
 [10].  

Such expression is possible because source points the light source are mutually 

incoherent. The quantity delimited by the absolute value is the electric field, arising 

from a coherent source point of unit strength located at (f,g). If we denote the square of 

this quantity by Icon, we can rewrite the imaging Eq. (2.1) as: 
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 , J f, g I f, g dfdg (2.2) 

where 

 , H f f , g g O f , g e df dg  (2.3) 

 

There are two approaches for imaging, one is Abbe’s approach and the other is 

Hopkins’s approach. In Abbe’s approach is based on a spatial discretization of the 

source into discrete point sources. Hopkins’s imaging requires calculating the 

transmission cross-correlation matrix (TCC) of the illuminating pattern with the pupil 

and its complex conjugate. In our work, we focus on Abbe’s method, and we will 

introduce it in the next section.    

2.4.2. The Abbe’s Method 

Abbe’s approach [11], which is also called integration approach of the source points, 

models imaging with such illuminators [12] .This approach is based on a spatial 

discretization of the source into discrete point sources as illustrated in the following: 
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Imaging system regards the light intensity I(x, y) as the output and the mask function 

O(x, y) as the input passing through the transfer function K. So we may rewrite the 

imaging equation (2.2) as: 

 , , ,  (2.4) 

where 

 I f, g H x, y e O x, y  (2.5) 

The Abbe’s method first approximates the effective source function J by a finite 

number of point sources: 

Figure 2-2 Discretization of a conventional partially coherent illumination system 
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 , ∆ , ∑   ,  (2.6) 

where     is the effective strength of the discretized point source located at δ(f-fs, 

g-gs ). The aerial image is then obtained by an incoherent superposition of all the 

contributions and becomes 

 , ∑ ,  (2.7) 

The computation procedure for the Abbe’s approach is given as below: 

1. Calculate the object spectrum O(f, g ) from O(x0, y0 ) 

2. Approximate the effective source J(f, g ) by the discretized source JΔ(f,g) 

by Eq. (2.6). 

3. For each discrete source, compute the component  image according to 

Eq.(2.5) 

4. Sum component images to obtain total intensity by Eq.(2.7) 

For an effective source of area A, and an object of area Am , the computation time scales 

according to 

   A · A  (2.8) 
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We rewrite the imaging equation in a convolution form at spatial domain as 

 , ∑ | , |  (2.9) 

Where we call Ks is a kernel function at (fs, gs ). 

2.4.3. Mask Decomposition 

Mathematically, if O(x, y) is the mask pattern function, it could be represented as a 

summation of N rectangular slit functions [14] [15] , it could be represented as a 

summation of N rectangular slit functions because the given pattern with any shape can 

be composed of rectangular patterns as show in figure 2-3 . We define the pattern 

function f(x, y) to be 

 , ∑ ,  (2.10) 

where 

 , 1,   ,
0,

 (2.11) 
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2.4.4. Lookup Table 

According to the Eq. and Eq. and we can get [14] [15] 

 
, ∑ ∑ ,

∑ ∑ ,
 (2.12) 

Therefore, we expend it to integral form as: 

 

, ∑ ∑ , ,  

     (2.13)                

Figure 2-3 Mask pattern Decomposition 
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Then, we concern the Binary Intensity Mask (BIM), the infinity limit can be 

replaced and the equation will be: 

 

, ∑ ∑ ,  

  (2.14) 

Trough the mask of the decomposition, we have built a Rectangle based lookup 

table, for each rectangle to do look-up table to calculate the intensity. To consider an 

area A of the rectangle for an observation point (x, y) of the intensity contributions, 

convolution operators, according to the reciprocal theorem, we apply change of 

variables and let u=x1-x0 and v=y1-y0. Substituting these variables into Eq.(2.14) 

 , ∑ ∑ , (2.15) 

We build  lookup table  for Abbe’s compact kernel  [14] [15] without resolution 

restriction. Convolution  result  can be obtained by overlap area as  show  in  figure 

2‐4.  This  means  that  our  Table  to  record  only  those  in  lower  left  corner  of  the 

rectangle of  the convolution results. All areas of  the results can be obtained from 

the table look‐up.   
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In this way, we define the mask function O, which is given by the superposition of 

rectangle indicators as fr (x, y): 

 , ∑ · |  (2.16) 

Here N is the number of decomposed rectangles, 1 for edges included all 

the edges or none of slit and 1 for edges included only one edges of slit. The fr 

(x, y) means the region of area ranges from (x0, y0) to (x1, y1). Apply the linearity of 

convolution, it allows the output of a linear system with kernel K(x, y) to be expressed 

as a summation of contributions from the individual areas via the generated squares: 

 , ∑ |∑ , |  (2.17) 

 

Figure 2-4 Convolution by pre-computed lookup table 
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According to multiplicative identity of the convolution, most collections of 

functions can be consisted of several data distributions which allowed that delta 

distributions individually convolve with kernel function. Specifically, 

  (2.18) 

Where δ is the delta function and K is the kernel function as show in figure 2-5. One 

property is that the convolution distribution of the delta function and the kernel function 

is only within k × k block. In other words, the range of its center of convolution result 

is k/2. 

 

 

Apply this property; we only build a look up table whose elements represent the center 

of convolution function. For any shapes of rectangles, the center of convolution results 

only concerns with the shapes within k/2 range. For example, there are three cases in 

Figure 2-5 A delta function convolutions with kernel function 
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figure 2-6, although the rectangles are the gray ones, only the black rectangles 

contribute to the center of the convolution result. 

 

 

Therefore, we will build exact one look up table of k × k size, for every black 

rectangle. 

2.4.5.   Image Generation Flow 

The image is calculated by convolution of mask patterns and kernel tables. We 

generated look up tables for the convolution operation. From the look up tables, we can 

derive the intensity of each observed point. The following figure 2-7 shows a brief 

image generation flow.  

Figure 2-6 Example for the center of convolution 
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2.4.6. Mask Pattern Partition 

We can partition the mask first[15], which has several advantages, usually a circuit 

area is quite large, and this will not only target specific areas to do the calculation of 

imaging, and can also be used to deal with parallel-oriented individual partition. 

Considering the influence scope of a point light source, we must make an appropriate 

extension for the adjacent regions. According to the size of the lookup table, we let the 

extension width is a half of the table width. So each partition region and its adjacent 

regions have overlap. The following is the graph of mask partition: 

Figure 2-7 Image Generation Flow 
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2.5. Parallel Optical Simulation 

   So far, we have introduced how to generate the images in the OPC as a quality 

assessment, however, time is often generated images need to be considered. The time 

complexity of image simulation is O((n/r)2), where r is the resolution, and n is mask size. 

For example, n=104(nm), r=10 (nm), then the total size of simulation is almost 106 , that 

means we need to calculate about 106 points in  image simulation. Usually this will 

take a period of about six minutes. Taking into account the image simulation is actually 

a mask on the right to do look-up table for each point action. The look-up table 

operations are mutually independent. It’s similar to do vector addition for times. Besides, 

the flow control is few used in look-up table. Therefore, it’s suitable for 

Figure 2-8 Mask Partition 
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parallel-oriented operations. Next we have to verify that the look-up table accounts for 

high percentage in image simulation. We must use the profiling tool to observe it, we 

will introduce in the next section. 

2.5.1. Code Analysis 

To determine which function would be rewrite, we have to know what portion the 

total running time they take. Therefore, we can use a profiling tool to analysis it. The 

GNU profiler tool [18], GNU gprof which was used to gather the information during 

program run time that include the percentage of the total execution time and total 

number of times the function was called. The following table and graph is our test case: 

Test Case: 

Circuit  Even-bit CSG of 32-bit Adder 

Size 10740nm × 8210 nm 

Layer METAL 1 

Resolution 50(nm) 

Level 5 

 

Table 2.1 The test case of Even‐bit CSG of 32‐bit Adder 
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The following table is the show of gprof output: 

The profile from gprof: 

Function  % times(seconds) function calls 

Lookup_table:table_look_up() 98.3 16.48 439538656 

XY:XY() 0.72 0.12 3595213 

Polygon:add_point() 0.18 0.01 400142 

GDSii:Record::read_data() 0.06 0.01 60304 

 

 

Table 2.2 The profile output of optical simulation 

Figure 2-9 Even-bit CSG circuit of 32-bit adder 
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From the profile output, the look-up table dominate the great majority of total 

execute time. Therefore, we would parallel the look-up table in order to speed up. To 

take advantage of multi-core hardware environments coupled with the software 

interface to do parallelism. Today, however, there are many choices of platforms to do. 

The next section, we will gradually introduce multi-core development history. 

2.5.2. The Evolution of Microprocessor 

The field of microprocessor design is approaching a problem: the physical limitations. 

In the traditional, in order to promote performance, increasing the clock frequency of 

microprocessor is a basic method. However, the limitations of the power consumption 

became more and more ascended. Therefore, the architecture of multi-core processors 

was born. However an efficient way to take advantage of multi-core processors is 

difficult. Many algorithms cannot split up to parallel completely. Several designs of 

multi-core have been researched in order to apply the wide computational applications. 

2.5.3. Multi-core Background Overview 

In the year 2004, IBM introduced the POWER5 processor. [23] It is a dual-core 

processor with support for simultaneous multithreading with two threads, so it 
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implements four logical processor. Instead, AMD introduced its first multi-core 

Opterons in the year 2005. The Intel Core architecture unveiled in the year 2006. Since 

the advantage of multi-core on multi-tasks, the multi-processor generation is coming. 

However, in the recent year, not only graphic card being used in entertainment and 3D 

imaging but can help us to calculate the computational intensive work. The graphics 

processing units contain multiple processing elements which are alike multi-core 

processors being used to operate simultaneously on streams of data. And in early 2003, 

the GPU throughput exceeded the CPUs in following graph [17]: 

 

 

 

Figure 2-10 GPU throughput exceeded the CPUS 
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2.5.4. NVIDIA CUDA 

The following is the reason why we choose the graphics processing units: At first, 

the architecture of graphics processing units is specialized for compute-intensive which 

means more transistors can be devoted to data processing rather data caching and flow 

control (Figure 2-11). Second, the programming interface is similarly to C code, which 

is called “CUDA”. [17] The application programming interface “CUDA”, developed by 

NVIDIA corporation. CUDA stands for Compute Unified Device Architecture that 

leverages the parallel compute engine to solve many complex computational problems 

in variety of professional and home applications. Third, the architecture of CPU is 

designed for efficient instruction execution. For example, branch prediction, data 

dependence and logic determination. However, GPU is characterized by dealing with 

the same type of data-intensive computing without dependence. Its advantage is that no 

logical relationship of data computing. Under CUDA programming, we usually called 

GPU as device instead of CPU is host. 
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2.5.5. Architecture of Tesla C1060 

Unlike CPUs that are designed for high sequential performance, GPUs are designed 

for computational data-parallel work [17][21]. A GPU is implemented as an aggregation 

of multiple that was called Multiprocessors which contains a number of Streaming 

Processor. A Streaming Processor is a SIMD ALU. Single Instruction Multiple Data 

(SIMD) means every Streaming Processor within a Multiprocessor executes the same 

instruction at the same time but the data may vary. Figure 2-11 shows the execution 

hierarchical level on CUDA.   

Figure 2-11 The GPU devotes more transistors to data processing 
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Each Stream processor accesses the local registers. The Multiprocessor has the 

shared memory that is available to the Streaming Processors on the same Multiprocessor. 

The Device memory is available to all Streaming Processors for read and write. Besides, 

the texture and constant caches are available on each Multiprocessor.  

In this work, we use the NVIDIA Tesla C1060 on CUDA programming. There are 

30 Multiprocessors in Tesla C1060, and each Multiprocessor contains 8 streaming 

Multiprocessors. Therefore, the total Stream Multiprocessors in Tesla C1060 are 240. 

Figure 2-11 The CUDA hardware model   
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The total global memory is 4GB and memory bandwidth reaches 102GB/sec. Besides, 

each stream multiprocessor has shared memory, constant memory and texture memory. 

However, it is only read for constant memory and texture memory. The following table 

is the detail hardware information in Tesla C1060 [19]: 

Device Name Tesla C1060 

# of multiprocessor 30 

# of streaming processor  cores 240 

Frequency of processor cores 1.3GHz 

Total Dedicated Memory 4GB DDR3 

Memory Speed  800MHz 

Memory Interface 512-bit 

Memory Bandwidth  102GB/sec 

System Interface PCIE x 16 

Compute capability  1.3 

 

However, the compute capability that means the standard of instructions, size of grid, 

size of block, memory per block and register. The minor revision number corresponds to 

an incremental architecture, possibly including new features. Therefore it’s also another 

estimation way to evaluate the compute ability. In our work, the Tesla C1060 is the 

Table 2.3 Hardware information of Tesla C1060 
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version of 1.3 on compute capability. The detail can reference the appendix A. 

2.5.6. Software Model 

When we run a CUDA program, the CPU will distribute the data to GPU. In this 

process, the task on GUP is called kernel. Such a kernel is executed in the SIMD model. 

A grid is included of thread blocks and each block mapped to one Multiprocessors. 

Multiple thread blocks can be mapped onto the same block. [17][21][22] However, the 

resources, such as registers and shared memory will limit the maximum blocks. A thread 

block is a batch of threads that can cooperate with each other. Moreover, the thread 

blocks are grouped called warps. Wraps are executed by scheduling them on the 

Streaming Processors of a Multiprocessor. The current available warp size is 32. 

Therefore, at least 4 clock cycles to execute an instruction by 8 Streaming processors. A 

Multiprocessor executes the wrap in one block (Figure 2-13) . 
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However, an instruction of the wrap doesn’t have to be done at a time. When the 

wrap was need wait a long cycle. For example, the global memory access from the warp. 

It will switch another wrap. The following is a graph for our concept (Figure 2-14): 

 

Figure 2-13 The CUDA software model  
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There are many memory addresses on CUDA as following: Registers, shared memory, 

constant memory, texture memory and global memory (figure 2-15). 

 

 

The following table is the feature of address: 

Memory Type  Read/Write Speed Usage Data lifetime 

Register R/W faster Thread Thread lifetime 

Shared memory R/W faster Block Block lifetime 

Figure 2-14 The CUDA warp scheduler  

Figure 2-15 The memory hierarchical on CUDA  
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Constant memory R faster Grid From allocation 

to deallocation 

Texture memory R faster oGird From allocation 

to deallocation 

Global memory R/W slower Grid From allocation 

to deallocation 

 

Threads may access data from multiple memory spaces during their execution time. 

Each thread has the private local memory and registers. Each block has shared memory 

to all threads that are in the same block. Finally they can access to the global memory. 

Besides, there are two read-only memory spaces accessible by all threads: the constant 

and texture memory. They are optimized for memory usages by the data they only to 

read. For example, in our work the table is suitable for it. 

2.5.7. Approach to Parallel Lookup Table 

From the profile output, the look-up table dominates the great majority of total 

execution time. According to the operation of look-up table, it’s similar to the vector 

Table 2.4 Memory addressing of CUDA 
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addition. Taking into account the impact of kernel, each mask of the partition has to 

calculate the impact respectively. Therefore, a table look-up is actually a kernel, the 

corresponding rectangle to make a addition. For the two-dimensional mask of the 

look-up table by the operator that we can flat into a loop to do thread synchronization of 

one-dimensional look-up table calculation. 

 

2.5.8. Kernel Execution Flow 

There are five steps to run kernel function [20] in our work. At first, we have to 

dispose the host and device memory. Second, using the function cudaBindTexture ( ) to 

bind global memory to texture reference. Therefore, we can take advantage of texture 

cache in stream multiprocessor and copy look-up table to it. Third, using function 

cudaMemcpy( ) to transfer data from host memory to global memory. Fourth, using 

function Run_GPU( ) to initiate the kernel and to calculate. Fifth, the result from GPU 

Figure 2-16 Parallel computing on look-up table 
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must be written back to host memory.   

 

2.5.9. The Optimization on Our Work 

It’s important to promote performance on CUDA [17][18][21]. Therefore, there are 

several basic concepts for optimization on CUDA.  

At first, the clock cycle of accessing data from global memory is almost 500. It will 

reduce the performance under I/O time. Therefore, we can use the shared memory or 

texture memory than global memory. The look-up table records the results of a variety 

of rectangular convolution, and we do not need to write back to it. Therefore, it’s very 

Figure 2-17 Kernel Execution Flow 
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suitable for texture cache to access.  

 Second, we have to arrange grid size and block size appropriately. The resources 

consumption of switching wrap is an important part on CUDA. We have to use up the 

Multiprocessors rather than idle some. Notice that there is a limit to distribute the 

registers to thread. If we exceed the rule, it will run error message in program. The 

maximum size of block per Multiprocessor are determined some reasons, the important 

part is the shared memory usage in our program. To observe it, we can use the 

flag –ptxa-options=-v in compiling step. If the usage of shared memory greater than the 

half shared in each Multiprocessor the each Multiprocessor map one block only. The 

following formula is the to determined the maximum block per Multiprocessor by 

shared memory: 

 

If shared memory/block  8KB,  block 1

else  block FLOOR L T S M

M S

 (2.19) 

 

The register affects the block size per Multiprocessor, too. Use the 

flag –maxrregcount to limit the size of registers per thread and –ptx-options=-v to 

observe the registers usage per thread. Finally, we can use the following formula to 
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calculate the maximum blocks per Multiprocessor approximately:  

R
B ceil T, 32

 

   (2.20) 

where,  

1. R is the total number of registers per Multiprocessor 

2. B is the number of active blocks per Multiprocessor 

3. T is the number of threads per Block 

4. Ceil(T,32) means the T rounded up to nearest of 32   

Finally, the maximum of blocks per Multiprocessor determined the minimum of the 

limited by registers and limited by shared memory. 

Third, the data transfer path between host and device is slow. By means of limit in 

PCI-Express bus of 8GB/sec is slower than the GPU memory bandwidth 102GB/sec 

(Tesla C1060). Therefore, the reduction transmission between host and device 

transmission is important. The mask should be observed for the purpose of calculation, 

do not always pass so many partition to the device.  
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Fourth, the branch condition just like while ( ), if ( ) and switch ( ) cause the 

divergence on multi-threads. The reason is that the switch on warp must have to be 

synchronization until the next cycle. It will spend twice time to execute the instruction. 

Therefore, in the program, we should avoid excessive writing to determine process 

control. 

2.6. Performance Comparison 

The environment of host PC is the following table and the information of GPU was 

mentioned about in section 2.5.5 

CPU AMD Athlon(tm) 64 X2 Dual Core Processor 5600+ 

Memory 4GB 

VGA Card Nvidia Tesla C1060 

VGA Memory 4GB 

Operating System SUSE Linux 

Compiler GNU gcc 4.3.1 

Nvidia CUDA NVCC Complier 

 

 

Table 2.5 The hardware environment 
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2.6.1. Grid size and Block size 

The set up for block size and grid size is an important part to run the kernel program. 

The shared memory used in our work is less than the half of the Multiprocessor, we 

don’t worry the grid size will limit one Multiprocessor that mapped into the one block. 

However, the compute capability 1.3 has the rule that the maximum of the active block 

per Multiprocessor is 8. That means at a time, the Multiprocessor just to manage the 8 

block only. In our work, the shard memory usage per block about 4288bytes, and the 

Tesla C1060 have the shared memory 16384bytes per Multiprocessor. Therefore, the 

maximum of active blocks per Multiprocessor is 3. However, the registers of usage per 

thread also will limit the active block per Multiprocessor. In our work, registers per 

thread is 22, the limited of register by Eq.(2.20). If the block size is 512, then the 

maximum of active blocks per Multiprocessor is 1. Instead, the block size is 256, the 

maximum of active blocks per Multiprocessor is 2. However, the exceeding usage block 

size or registers will reduce the performance because the local memory will simulate the 

register for our program. The figure 2-18 is the performance between the different block 

size and grid size. The test circuit is Even-bit CSG which size is 2500nm × 4699nm in 

a 32-bit adder. Its entire layout shows in figure 2-9. 
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From the result, the best choice for our work is block size equal to256 and grid size 

equal to 60. However, the block size equal to 512 and grid size equal 30 is another 

acceptable choice. 

2.6.2. Execution Time Comparison 

At first, let’s see the total execution time on CUDA that include the I/O time and 

compare the execution time on CPU. The following graph compares the total time of 

GPU versus the CPU for different circuit size of layer METAL 1 of 32-bit adder tested.  
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Figure 2-18 Performance comparison of grid size and block size 
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Circuit CMS CMD Latch_ EvenCSG_ OddCSG_

Size × 104(nm2) 2538 3058 6554 8817 10939 

 

 

 

  For all layout size tested, the GPU finishes before CPU does. There are roughly 40 

accelerations on maximum layout size. If we rule out the I/O time, the roughly speed up 

is 45. These results tell us the multi-thread programming on CUDA is useful to promote 

performance. However, we also have to compare the multi-cores of CPU between GPU. 

The following is graph is the result:   
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Figure 2-19 GPU VS CPU execution Time 

Table 2.6 Circuit size of our simulation 
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Size × 104(nm2) 2538 3058 6554 8817 10939 

GPU Only Calculation (s)   23.87 25.30 38.12 39.63 44.84 

GPU Total (s) 19.88  22.43 32.62 35.90 40.24 

CPU (30 Cores) (s) 23.6 23.88 24.6 25.2 25.35 

 

Although, the multi-cores of CPU have a good speed up roughly 28 and one can 
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Table 2.7 Performance comparison between GPUs and CPUs 
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estimate that it’s direct proportion to the cores. That means if someone want to promote 

the performance on multi-threading programming. The cost must high rather than just 

buy a GPU card only. Therefore, we can claim that use CUDA to speed up the parallel 

code on multi-threading programming is a wise choice.  

2.6.3. Transmission Overhead  

The I/O overhead is an important part on performance. From the following graph, 

we observe the overhead percent overhead is high on small case. The reason is that the 

calculation time under CUDA almost equal to the transfer time from host to device. 

These results provide us useful information that CUDA as possible as promote the 

device time that means more calculation under CUDA or large layout size will reduce 

the ratio of transfer time. The following formula is the percentage of transmission 

overhead: 

 
T  T W  B  T

GPU T  T
 (2.21) 
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Sizex104 (nm2) 2538 3058 6554 8817 10939 

GPU Overhead (%) 42.74% 39.05% 24.15% 19.96% 16.26% 

 

2.6.4. Relative Error  

Finally, we have to sure that the result from GPU is correct. Therefore, we can use 

the relative error to examine the total error. To compare the two arrays which are used to 
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Table 2.8 GPU overhead comparison   
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storing the optic intensity. First array is generated by CUDA and the other is host PC. 

The following formula is the relative error between two arrays and the following graph 

is the comparison between different layout sizes: 

 
∑ imageCUDA i ‐imageHost i

2N
i 1

∑ imageCUDA
2 iN

i 1
 (2.22) 

 

 

2.7. Summary 

In this chapter, we described how to speed up for the optical simulation image 

generation. We use CUDA to apply parallel computing in look-up table method. It is 

faster 40× than a single CPU in order to save the quality evaluation time in OPC. In 
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Figure 2-22 Relative Error Comparison 
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today’s , when the physical limitations of CPU to exercise restraint when the clock has 

become the key factors of continuous growth. Oriented parallel processing architecture 

has become the current trend.  

2.8. Feature work 

The boundary of the mask will determine whether to do look‐up table. However, 

for each  thread,  the  judge needs  twice  times  to  run  the  flow control.  (if  and else 

will be over‐doing it) Therefore, we can fill a number to the most peripheral in the 

mask.  In  this way  can use  this number  to  test whether  the boundary  in order  to 

reduce the unnecessary waste of time. 
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Appendix A 

The following table is the compute capability 1.3: 

The maximum number of threads per block is 512 

The maximum sizes of the x-, y-, and z-dimension of a thread block 

are 

(512,512, 

64) 

The warp size is 32 

The number of registers per multiprocessor is 16384 

The amount of shared memory available per multiprocessor is 16KB 

The total amount of constant memory 64KB 

The maximum number of active blocks per multiprocessor 8 

The maximum number of active warps per multiprocessor 32 

The maximum number of active threads per multiprocessor 1024 

The cache working set for constant memory per multiprocessor 8KB 

The cache working set for texture memory per multiprocessor 6KB to 

8KB 

 


