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Abstract

A novel elliptical groove is proposed in this work to improve the performance of
conventional journal bearings. Firstly, the present work utilizes the spectral element
method to calculate the pressure distribution and dynamic coefficients of
herringbone-grooved journal bearings (HGJBs), in which the thickness of the fluid film
changes abruptly in the groove-ridge region. Conservation of mass is adopted to solve
the problem. Additionally, the pres‘ent._methofd __caﬁ be qdopted for grooves with curvy

o

geometry. It shows that for the case of '%G“'JB, the numerical result by the present
Il M |} :
method is more accurate than theinumerical resﬁltg found in the literature. Furthermore,

employing the present method with the Elrod’s algorithm can improve the accuracy of

deriving loads of HGJBs when cavitation occurs.

In the secondary part of this work, the novel elliptical grooves are proposed. This
work utilizes novel elliptical grooves on a journal bearing and analyzes the
characteristics of the elliptical-grooved journal bearings (EGJB) numerically. Load

capacity, stability parameter, and total side leakage of the EGJB are compared with

iii



those of the HGJB. The comparison shows that the introduced EGJB have higher radial
force, higher load capacity, and lower side leakage than the conventional HGJB. The
optimum geometrical parameters of groove of EGJB are investigated based on the
maximum radial force. Finally, the load distributions of several grooved journal
bearings are compared to elucidate how elliptical grooves enhance load characteristics.
The load distribution along the axial direction in EGJB is more uniform than that in the
HGIJB. The low load near the bearing eénter for the. EGJIB may be offset by the load

away the bearing center; thus,‘a"higher total, load' capacity than that of HGJB is

i

achieved.

A=Wl

In the end of this work, to improve _the-pé:rformance of the reversible rotation
grooved journal bearing (Rev-HGIB), this work utilizes elliptical grooves on a
reversible rotation journal bearing (Rev-EGJB) and analyzes its characteristics
numerically. Load capacity, pressure distribution, power loss, and dimensionless radial
stiffness of the Rev-EGJB are compared with those of the Rev-HGJB. The comparison
shows that the introduced Rev-EGIJB exhibits higher load capacity and lower power loss
than the Rev-HGJB. A larger high pressure region in the Rev-EGJB than that in the

v



Rev-HGJB is achieved not only in the pressure-generated region, but also in the
pressure-restored region. Furthermore, the load distributions of the Rev-HGJB and
Rev-EGJB are compared to elucidate how elliptical grooves enhance load
characteristics. Ultimately, the radial stiffness of the Rev-EGJB compared with that of
the Rev-HGJB with the optimum geometry is also shown to be greater; thus, the

Rev-EGJB is more stable than the Rev-HGIB.

Keywords: Hydrodynamic journal beari’n_g_, Elliptical groove, Herringbone groove,

Cavitation, Stability, Spectral element metﬁga :
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1. Introduction
1-1 Current Applications of Grooved Journal Bearings

Hydrodynamic bearings are representative devices because of their low noise, low
friction and high shock resistance, and they have several applications in data storage
devices such as DVD and hard disk drive spindles [1, 2]. As data storage requirements
of large capacities have increased markedly, improving the recording density in hard
disk drive applications is essential, Co_nvs:nti(.)nal disk-drive motors are supported by a
bearing comprised of metal balls betwec??n.. ;?otor Iand shaft. Thus, if any ball is defective,
track misregistration occurs [3]..Hence,.a-spindle motor requires a non-contact bearing
system to meet the demand of low non-repeatable runout of a spindle. Herringbone
grooves on the journal bearing are used to increase spindle stiffness [4]. These grooves
can distribute shock responses over an entire bearing, and thereby enhance mechanical
damping of a bearing system. Herringbone-grooved journal bearings (HGJBs) also

prevent contact between rotating and stationary parts. Moreover, adding herringbone

grooves to the journal bearing allows lubricants to be pumped into the bearing, reducing



side leakage of the oil film [5]. Therefore, herringbone-grooved journal bearings
(HGJBs) have been commonly employed in the computer information storage industry

to provide for high rpm performance, such as that required for HD and DVD drives.

To widen the applications of HGJBs, Kawabata et al. [6] proposed a novel
reversible rotation HGJB that can be rotated clockwise or counterclockwise. The helical
grooves on the surface of journal are engraved with three regions, as shown in Fig.
1-1-1 When the shaft is rotating normally, the .lﬁbr%cant is pumped into the bearing from
region 1 to region 2 and from region 2t0 ;eg".i(:;n 1; thﬁs, high pressure is generated in

=
the region around the border of region: 1|and ‘region 2, which is called the
“pressure-generated region.” The region around th.ce border of region 2 and region 3 is

restored as the shaft rotates reversely for the purpose of pressure, and is called the

“pressure-restored region.”



+W

11 111

Region |Region |[Region
I [1 I1I

Fig. 1-1-1 The reversible rotation‘type herringbone grooved journal bearing proposed by
Kawabata et al. [6] '::J

In contrast, when the shaft is rotating.‘.reversely, .the lubricant is pushed into the
bearing from region 3 to region 2 aﬁd from region 2 to region 3. Thus, the reversible
rotation HGJB is beneficial for load when the spindle motor rotates in the opposite
direction, since it prevents the “no load capacity” condition when the shaft is rotated in
the reverse direction. However, the load capacity of this bearing is only 70% of that of
the conventional HGJB. In addition, few studies [7, 8] have investigated the

characteristics of the reversible rotation HGJB. Therefore, the investigation of reversible

rotation journal bearings with grooves is clearly warranted.

3



1-2 Research Needs for Groove Appearances

Although using HGJBs can improve stability characteristics, the smaller load
capacity of HGJBs than that of plain journal bearings is a significant disadvantage.
Therefore, some studies investigated ways to improve the herringbone groove profile.
Kawabata et al. [6] proposed a novel reversible rotation HGJB that can be rotated
clockwise or counterclockwise. However, the load capacity of this bearing is roughly
70% of that of the conventional HGJB. Junmei'et al.[8], who studied the performance of

asymmetrical HGJBs with a cavitation-effect,  concluded that a symmetrical groove

N
e
=

pattern has the highest load capacity. Leuthold ietval. [9] applied a sinusoidal groove
pattern to a bearing. However, th;:.y d1d not assess the performance of this bearing. Liu
et al. [10] presented the multi-step hydrodynamic grooved journal bearing. In contrast
to conventional HGJBs, they developed an HGJB with a single set of helical grooves.
The load capacity and stability of the multi-step HGJB are better than that of a HGJB.
On the other hand, some researchers improved the rectangular profile of
herringbone grooves. Kang et al. [11] proposed a HGJB with circular-step grooves

instead of rectangular grooves. They demonstrated that the circular-profile HGJB has



approximately 10% higher load capacity than a HGJB with a rectangular profile for
eccentricity ratios up to 0.5. Gad et al.[12] found that for the circular groove profile in
convergence over the step, the exit surface is approximately inclined, thereby reducing
pumping capability. To overcome pressure losses of an abrupt step, they introduced a
beveled-step groove profile for the HGJB, and increased load capacity and stability.
Hence, to improve HGJB performance, one can investigate groove geometry.

Most studies mentioned employed straight-line grooves, which is similar to the

herringbone groove. Few studies/have examined, a journal bearing with curved grooves.

)
— -
g

Additionally, no study has analyzed numef-i’;i_a-lly orexperimentally the improved effects
of curved grooves. Therefore, invlesti_gations of journal bearing with curved grooves are

warranted.

1-3 Stability Criteria

Many researchers have written programs to numerically analyze the stability of a
journal bearing. Kirk and Gunter [13] determined the stability of the journal bearing
system by the Routh-Hurwitz criterion, and examined the roots of the characteristic

equation of the system. Similarly, if the journal bearing is perturbed at the equilibrium



position, then the threshold of operation for stability, the critical mass, can be obtained
by solving the eigenvalue of equations of motion [14]. However, only a few studies
have discussed critical mass and its relation to the stability of HGJBs. For instance,
Bonneau and Absi [15] discussed the relationship between stiffness coefficients and the
grooves, but they did not calculate the critical mass. Zirkelback and San Andrés [16]
also made no mention of the relationship between groove angle and critical mass. Rao
and Sawiski [17] showed that HGIBs have a higher eritical speed than do plain journal

bearings for concentric operation, but-they did, not. discuss how the shape of groove

‘&t =y
e -}
=

i

might affect the stability threshold.

1-4 Cavitation Model

Lubricants are widely used in fluid film bearing to reduce friction and wear,
provide load capacity. In the region of local converging film thickness, the
hydrodynamic pressure rises to a peak and then decreases to ambient values at the side
and trailing edges of the thin film; In zones where the film thickness locally increases,
the fluid pressure may drop to ambient or below to its vapor pressure leading to the

release of dissolved gases within the lubricant or lubricant vaporization.



As is known, cavitation phenomenon is important in liquid-lubricated journal
bearings. The calculation of hydrodynamic force is dependent on the film model used,
especially at high eccentricities. Some film models treat the cavitation in a simple way.

For example, n-film theory (half-sommerfeld) and Swift-Stieber boundary condition.

Elrod and Adams introduced a computational scheme that mimics JFO theory[18],
which is called “Elrod’s algorithm”. It avoids the complex program to trace the
boundary between grid points. The.algorithm incorporates a switch function and satisfy

the mass continuity and the JFO theofy. ._R,el_aiti\./ely, IFO theory and Elrod’s algorithm

E

are preferable methods to account for ééwitét‘ion boundary conditions for hydrodynamic
liquid-lubricated bearing. Lee et. al [19] and Jang.and Chang[20] analyzed the HGJBs
with cavitation based on these theories. This work employs the Elrod’s algorithm to
account for the cavitation condition.

1-5 Analysis Methods

1-5-1 Discretization Method

When grooves on a journal bearing are curved or have a complex geometry, the

Reynolds equation must be solved using numerical methods with geometric flexibility.



Generally, the finite element method (FEM) was adopted for spatial discretization.
However, most interpolation functions used in an element are low-order polynomials.
Thus, the solutions obtained by the FEM converge algebraically as the number of
elements increases.

In 1984, Patera [21] proposed the spectral element method (SEM) by combining
geometric flexibility of the FEM with the rapid convergence of the spectral method. The
SEM is highly accurate and can discretize the domain into curvy geometries. The

variables of computational domain—are represented as high-order Lagrangian

A p
— -
g

interpolants that improve the accurac;’g:'__(-)f solution in space with exponential
convergence. For spatial discéétiz_eition in .cu'rved geometries, Patera used an
isoparametric mapping from the physical curvilinear quadrilaterals into the local
standard elements [22]. Additionally, Schneidesch and Deville [23], who also solved the
problem of curvy geometries, generated the curvilinear grid of quadrangle subdomains
using Gordon transfinite interpolation[24].

Some studies have dealt with curved geometries using the SEM. Most studies are

solved the circular geometry via flow problems between rotating cylinders [22, 25], of



cosine channel flow [23], and of two-dimensional compressible flow [26]. Additionally,
the curved elements using the SEM are developed to solve three-dimensional flow
problems [27, 28]. Therefore, spatial discretization using the SEM can be employed to

analyze the improved effects of curved grooves on a journal bearing.

1-5-2 Treatment at the Discontinuity of Groove-Ridge Region

Many researchers have investigated the performance of HGJBs. In previous studies,
the pressure distribution of the fluid film"in _the groove-ridge region was obtained by
applying the narrow groove theory kNC}_T). NGT aésumgs that the number of grooves is

\ -

infinite, such that the pressure distribptioi‘-:rf“c.‘:ah be regarded as essentially linear along
the grooves. Vohr and Chow [29] a’ﬁlalyz;ad tﬂe_::héﬂingbone-grooved gas-lubricated
journal bearing using NGT, but manufacturiﬁg journals or sleeves with as many grooves
as are required would be very expensive. Additionally, NGT overestimated the bearing
load when the number of grooves was less than 16 [15], and when the number of
grooves exceeds 16, the correct results can only be obtained at a low eccentricity. Hence,

numerical methods that can be applied to bearings with a finite number of grooves must

be developed.



In the 1990s, the number of investigations of bearings with finite numbers of
HGIJBs increased rapidly. Bonneau and Absi [15] presented a numerical study of gas
herringbone grooved journal bearings that had a small number of herringbone grooves
and analyzed the domain of validity of the NGT. Zirkelback and San Andrés [16] used
finite element method to analyze HGJB pressure distribution and dynamic force
coefficients. Faria [30] present a way to analyze HGJBs by combining the finite element

method with high-order shape funetions:

Only a few researchers have ”yg}ﬁ_ mentioned” the issue of film thickness
discontinuities in HGJBs witha finite nurgber of grooves. Most of these studies have
involved the application of a finite difference method (FDM) for discretization. For
example, Kang et al. [11] used staggered nodes to avoid a violent change in film
thickness, while Jang and Chang [20] investigated HGJBs by combining the finite
volume method with Elrod’s cavitation algorithm. The latter mentioned the
incompatibility of Cartesian coordinates with grooves. Junmei et al. [8] assumed that

the groove-ridge boundary was a slope because of the viscosity of the fluid film.

However, this assumption was not accurate in practice, and the work also revealed the

10



shortcoming of the use of the FDM in processing the groove-ridge region.

The finite volume method has also been applied to solve the groove-ridge
discontinuity problem. Arghir et al. [31] considered film discontinuities with a
conserved flow rate, and applied the method to thrust bearing. Hernandez and Boudet
[32] analyzed spiral groove gas seals, taking into consideration the continuity of normal
mass flow at the groove boundaries of discontinuities. However, they used the equality
relations of pressure and pressure gradient {0 re-establish the continuity of coupled

nodes, which added computational .complexity in' the regions of film thickness

N
i
g

discontinuities. Accordingly, the diserete rﬁg:_thod_ with discontinuity at the groove-ridge

boundaries in HGJBs must also be improved.

1-6 Dissertation Outline

Firstly, the current work presents an approach for calculating the pressure
distribution in, and dynamic coefficients of, HGJBs, that takes into consideration the
fluid film discontinuity. Because of the abrupt change in the fluid film thickness in the
groove-ridge region, conservation of mass was employed to solve this problem. To

calculate the pressure distribution of the fluid film and carefully treat the cavitation

11



phenomenon, this work also combines the groove-ridge treatment in the Elrod’s
algorithm. The results are compared with experimental and computational results
published in several studies. The comparison shows that the method can be employed to

satisfactorily analyze HGJBs.

Secondly, this work proposes a novel elliptical-grooved journal bearing (EGJB) for
data storage devices. A numerical program is used to analyze the appearance and
characteristics of the EGJB. To ‘calculate the i)res_sure distribution of a fluid film, the
Reynolds equation was solved using the%EM Load cépacity, the stability parameter,
and side leakages of the EGJB" are cdm;;red with these of the HGJB. The EGJB’s
configuration, which maximizes  radial foree, I::is investigated. Finally, the load

distributions of several grooved journal bearings are compared to elucidate how

elliptical grooves enhance load characteristics.

Finally, this work employs the elliptical groove on a reversible rotation journal
bearing. The load distributions of the reverse rotation grooved journal bearings are
compared to elucidate how elliptical grooves enhance load characteristics. Then, the

Rev-EGJB’s configuration, which maximizes radial force, is investigated.

12



2. Governing Equations

2-1 Reynolds Equation

Fig. 2-1-1 shows the coordinate system and geometry of a HGJB. The curvature of

the film in the journal bearings is neglected. Since the film thickness is much less than

the radius of the bearing, the fluid film can be unwrapped into a plane. The Reynolds

equation for steady-state, laminar, isothermal, and incompressible flow is:
-] e,

i e

groove
ridge

Fig. 2-1-1 Sketch of the fluid thickness for grooved bearing
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Fluid thickness in the ridge or groove regions in terms of circumferential coordinate is

shown in Fig. 2-1-2. The fluid thickness in the ridge and the groove regions in

circumferential coordinates are:

h=c(l+&cosg) in the ridge, (2-2a)
and h=c,+c(l+ecosg) in the groove. (2-2b)
groove

4 ridge
[/ A

|~

T

_L
2 > <>
5 6

Fig. 2-1-2 Fluid thickness in the ridge or groove regions in terms of circumferential
coordinate

However, for a smooth bearing, the film thickness changes as the grooved journal
rotates. This problem can be solved by assuming that the groove journal is stationary

14



and the smooth bearing is rotating in the direction opposite to that of the groove journal

[16]. Thus, the Reynolds equation for a smooth bearing is

)2 o] o

%3{ - 2% 2-3)
2 og| 12408 oy|12u0y | 204

where the coordinate system (¢, y) is fixed to the journal.

The pressure field is continuous in the circumferential direction

o(. ) =p(#+2m,Y) (2-4)

3

‘at

and the cavitation algorithm is based on Rer-g?ﬁb'lds condition
11 m ¢
|

i

P, = —1or 00 and e QY (2-5)

. a¢ cav g

Oil film rupture may not occur in the fluid film of HGJBs when there is high
pressure in the bearing and the lubricant supply is sufficient. In this case, the cavitation
pressure is zero. However, as some part of the oil film is under negative pressure, the

influence of negative pressure on the oil film rupture region cannot be disregarded.

The pressure boundary conditions at bearing edges are p ((fjagj =P (¢’ _%j =0

15



Once Eq. (2-1) has been solved for the pressure in the equilibrium state, the radial

and tangential loads can be obtained by integrating the pressure over the bearing area, as

follows:
W, = [ prsin(z - ¢)dydg
A

W, = [ pr cos(z - #)dydg

The load can be expressed as:

W :.(N_z +Wr-~2 )1;2

o> |

. . 1] ,"E- .
In dimensionless form, the load capacity:is: |

W

> (_)2
Hor™ r

(2-6a)

(2-6b)

(2-7)

(2-8)

Also the load distribution along the axial direction can be obtained by integrating the

pressure force circumferentially

W'= [zj prsin(ﬂ—¢)d¢j +U prCOS(ﬂ—¢)d¢} ]

0 0

b

and its dimensionless form, the distribution of dimensionless load capacity, is

16

(2-9)



w-W %2 (2-10)

Lor’

Side leakage, which is induced by the pressure gradient in the direction of bearing
length, can be obtained by integrating the pressure gradient and film thickness over the

circumferential direction. Side leakage from the front end and the rear end are given by

2z h3 apj
q :—2r ( — d¢ (2-11a)
I jo 121 0y y=L/2
o g 6pj ‘
q, =-2r ~a o W e
2 .[0 (12,,4_!;@’_.’.-y_=—uz
=
1 ?

The total side leakage is then given byi -I

(2-12)

q =l +|as|

Notably, the magnitude of the front end and the rear side leakage are the same for

symmetrically grooved patterns, but are different for asymmetrically grooved patterns.

In a dimensionless form, total side leakage is

(2-13)



2-2 Elrod’s Cavitation Algorithm

Hirayama et. al[33] indicated that cavitation may largely influence pressure
distribution. To carefully deal with the cavitation phenomenon, the Elrod’s cavitation
algorithm is applied in many studies and is found to preserve mass conservation
throughout the entire fluid film. This section illustrates that the present treatment of
groove-ridge discontinuity can also be included in<the Reynolds equation with Elrod’s

algorithm[34].

A=W

The modified Reynolds Equation;introduced by'El_:rod, 18 written as:

3 3 o(6éh o(éh
ﬁ(pch ﬂ@}a(pch gﬂ%]=pc(—)+ ua(eh) (2-14)

x\ 122 o oy T2 2y a0

where @ is the density ratio of fluid density , divided by fluid density in the cavitation

region p, , f is the bulk modulus, and g is a switch function in the flow field with

(2-15)

1 for full — film region
0 for cavitation region

18



In Elrod’s algorithm, JFO theory was incorporated into a single Reynolds equation valid
on both the full film and cavitation zones. A switch function g allows satisfaction of the
boundary conditions at the cavitation interface in the full film and cavitation regions.
The pressure can be obtained from fluid density:

cav

P =P, +94n0) (2-16)

Thus, the load capacity can be obtained from the Eq.(2-6) to Eq.(2-8).

2-3 Stability Parameter .

This study discusses stability using"t;“f_a'fg"__i_i.imensionless radial stiffness, which was

employed by Vohr and Chow [29}; angl'Gac-l:-et al. [12}). The definition of dimensionless

radial stiffness is

B 22W cos ¢
£

= (2-17)

The large radial force parameter is able to restrain the centrifugal force, which is

produced from whirling phenomena [29].
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2-4 Groove Profile

Fig. 2-4-1 shows the shape of the elliptical grooves. Because variation in elliptical
shape affects the pressure distribution of a fluid film, this work varies the elliptical axis
ratio to determine how the shapes of elliptical grooves affect EGJB performance. The

equation of elliptical grooves is

(X_>§0)2 +(y—)2/0)2 Bl (2—18)
La Lb

where the center of the ellipse is at(i,(o;'-,y_o)_"; and L,and L, are the axis length in the
| 1;'-,,_“ . |
. M | 3
x-direction and y-direction, respegt_ivelly. The ellif)ltical axisratiotis — .

L,

20
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Fig. 2-4-1 Parameters of the-‘_E W.J T c Fﬁbﬁ*"engraved on either journal or
bearing surface.) = | E
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The appearance of the e'I_l;pt{;g
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i el ;._. '\-- P = )
groove angle of 90° at the bearing ceni;erjar}c'i ’g_rﬁ_q_v'e éngle of 0° at both ends, meaning

that the groove angle decreases gradually from the center in the direction of bearing
length. Instead of a straight-line groove, the elliptical groove is adopted to improve the

performance of grooved journal bearings.
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3. Numerical Method

This chapter introduces the numerical method used in the program, which solves
the Reynolds Equation. The spatial discretization of fluid film is shown in Section 3-1.
The analysis at the groove-ridge discontinuity of 1-D and 2-D bearing is written in

Section 3-2. Finally, the grid independence test is validated in Section 3-3.

3-1 Spatial Discretization- Spectral Element Method (SEM)

The SEM, a high accuracy and_ efficieneyumethod, is used to discretize the

o

Reynolds equations for HGJB. The Reynol%‘ equations can be written as

©on - o— o—
V-(h’Vp)-6uu.—=0 in Q; V=—e +—e 3-1

b

where Q is the computational domain.

Assume that v=Jp is the test function of p, and multiply Eq. (3-1) by v with

weighted residual method, the first term of Eq. (3-1) yields:

jﬂv (h*VpNdQ = L v(h’Vp)-dS —jQ(h3Vp)-(vV)dQ (3-2)

where S is the boundary of computational domain. Substitute Eq. (3-2) into Eq. (3-1),

23



the weighted-integral form can be derived as :

[ (’Vp)-(vw)dQ = [ v(h’Vp)-dS - | (@OUa—h)de (3-3)
Q s Q OX

b

the first term of RHS is the flow rate on the boundary.

For solving flow field in complex geometries, SEM is provided to divide the flow

elements Q into k spectral elements,
2 :
Q= N (3-4)

Fig. 3-1-1 shows the transformation from'.:fl_l'é*'lbcal coofdinate Q,(x,y) to the physical
i i i
i - .

coordinate system f)(r,s) of ‘a Square' region. '-Tl_:l_e mapping function of each of the

spectral elements is

(x%y)eQ = Qr,8)eAxA, A=[-1]] (3-5)
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-1-1) Q

Fig. 3-1-1 the transformation frem the' local: coordinate to the physical coordinate
system

1 1

| 1\

and its Jacobian of transformation can be written:as :

OX oy
S_lor o
OX oy
o ol

Thus we can derive

o _loy @Z_l@,g: 1ox o0s 10X (3-6)

ox Jos ox  Jor’dy Jos oy Jar

25



Rewrite the Eq. (3-3) in terms of local coordinates :

K _ K
kZJ‘QJLK(@v")-(h3Vp")drds = _kZ:JQVk f*J*drds (3-7)
=1 =1

b

oh
h f=|6ulU—
where [ y7n GXJ
and @:(ﬂi—gﬁ)éﬁ(gi—@i)éy (3-8)
os or or os oros osor

The pressure P is approximated by

N N

P (W)l 52 2 P (D (S) (3-9)
m=0.0=0" ,

g
_AE

S :
where p¥ is an approximate pressute of nodal point (im,n) in the k-th element, and

h () 1is orthogonal Lagrangian intérpolan'ts of degrees n. It satisfies the property

hi(é/j):gij (3-10)
ﬂ(g)—D 3-11
dr o~ ij. (3-11)

h is unity at a single point, and are zero at all other Gauss—Lobatto Legendre points.

The points é/ i are the collocation points, and its quadrature weights is defined by
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the relationship

& =-1& =1&,(j=1,..,N 1) zeroes of L, (3-12)
2 1 .
o, = j=0,...N (3-13)
* N(N+1) I:LN (é'p)]z

Similarly, the test function v can be shown by Lagrangian interpolation function
V(4 Y) = (1) (5). (3-14)

Substitute u and v into Eq. (3-7), and'obtain

"-"'.:-n- ."'_ |
=l

Vpk (éj 9é/j ) = 6:j'mn pr‘;n_! | ﬁf_’-; (;lﬂé/ ) |Jpq pq (3'15)
S| | . 1 :
with \

Ijmn_l:(ay/as)lj im Jn (ay/ar)u im ]I’]:' [(8X/8r) im JI’] (6X/6S) im jn]éy )

Then Eq. (3-7) can be derived in the form of tensor product :

iii( Jmn jmn)( umn) pmnziiiJUBmB; fr:n (3'16)

k=1 m=0 n=0 k=1 m=0 n=0

b

with
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X, 1 2 2
jnfn:pppq‘]_k[(ys) D, me5nq (yr) Dy an5mp
pq
”L(ysyr)2 Dpqungmp+(ysyr)iq Dqi Do nq] (3-17)

1
A]mn _pppq J [(XS)2 D, me5”q+(x )2 DQJ ané‘mp
Pq

(%% )7, DyiDguOmp + (XX, ), Dy Dy (3-18)
and
Brs P | (3-19)
o |

In this way, we could obtain ithe syste:ri_l of élgebraic equations. Since the
collocation point in element is related.to others., the system matrix is dense. This work
employs the conjugate gradient method (CGM) to solve this system. Fig. 3-1-2 shows

the flowchart used in this work.
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Initial Conditions
(pressure, groove geometry, eccentricity ratio...)

I

Solve Revnolds Equation with
the treatment of fluid film discontinuity

I

S —— Find new cavitation points

I

Update switch function at
No new cavitation point

Cavitation boundary changes

No

Pressure difference < tolerance
or Iteration steps < Iteration limits

Yes

End

Fig. 3-1-2 The flowchart of the numerical program (solver)
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3-2 Treatment in Groove-Ridge Discontinuity
3-2-1 For 1-D Step-Slider Bearing

Firstly, a one-dimensional step-slider bearing, shown in Fig. 3-2-1, is analyzed in
detail. The analysis demonstrates the way to deal with the abrupt change in the
thickness of the fluid film in the groove-ridge region of a grooved journal bearing. The
length of the step-slider is L. The discontinuity is assumed to be in the middle of the

step-slider. The film thickness is hy+8, “in the groove region, and h, in the ridge

region.

= AVl 1]

30



L

Lo

7
LI LTSI LS ﬂ
T j

¢ //////

f
/

///////////////’x

u —)

-‘,_.--—; | |
. | }'L I I -
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The governing equation is solved using the SEM, in which the approximate

solution within a typical element is of the form:

n
e_

p_

j=1

Pio; (%) (3-20)

where p? is the value of p° at the j-th node of the element, and ¢,(x) is the

Lagrange interpolation function.
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The first step is to derive the nodal equation. Based on the Galerkin formulation,

the weighting function is equal to the expansion base of the pressure. The weighted

integrated form of the element with boundaries X, and x; is:

Zkep,—Qi

j=1

Xg . de.
where K; :j _99 [ s 89 gy
. x dx dx

The boundary term can be related to'the .V'olumetric flow rate by [35]

—12
€ % ) }
F i S | 5

where

h* dp uh
G =~
Rudx 2 |

(3-21)

(3-22)

(3-23)

(3-24)

is the volumetric flow rate obtained from the continuity equation. Thus, the boundary

term of each node i can be written as:
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Tvee] e
dx J|,_,
Q' = [md_p} Cizn (3-25)
dx ‘x,
0, others

The next step is to assemble the elemental equations into a global equation. The
balance of the boundary terms at the connecting nodes can be simplified by imposing

the balance of flow rate across the interface of the element:

ee+l _ (e e+l
Q' = Qo+ QFfY

=6u[ [ —@k} | (3-26)

0 _for thegnoc-_i:%__ without a step height
6 AspU fpf the node with-a step height s,

322 For 2-D HGJB with Réynolds Equation

The two-dimensional governing equation for HGJB is solved by the SEM, following the
procedure used for the one-dimensional instance above. Discontinuity in the
groove-ridge region of a two-dimensional HGJB is modeled with two adjacent elements,
as shown in Fig. 3-2-2. The volume flow rate at point p, located at the interface between

element 1 and element 2, can be expressed as:
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3 3
= " 8_p‘e=1+ﬂ’ = h a_p|

4= 0 o 2 T Ty

(h+cg)3@ +u(h+cg) _ (h+cy)’

op
e=2 > q2y _|e:2
124 ox 2 12p oy

2X
Conservation of volume flow rate at point p yields:

q1x+q1y:q 2x+q 2y °

Substituting Egs. (3-27) and (3-28) into ]fjﬂn _:(-,?;.;;9) yields:
g, =
&F = F O
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(3-27)

(3-28)

(3-29)

(3-30)



Fig. 3-2-2 Conservation of flow rate af a groove-ridge region

Therefore, the difference between the boundary terms of two neighboring

elements at the groove-ridge region is given by:

Q! = j6ycgﬁ-dl:e (3-31)

where the length of two adjacent elements is L, .

The boundary terms at the interface nodes, depicted by Eq. (3-26) or Eq. (3-31),
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can also be applied to the finite element method, which is a special case of the SEM.
From the code development point of view, it is evident that a code written for the plain
journal bearing and for either the finite element or the SEM can be readily revised to
adapt to grooved journal bearings. The present method can also be adopted for grooves
with curvy geometry. The author have previously analyze the characteristics of an
elliptic groove based on the present method [36].

3-2-3 For 2-D HGJB with Elrod’s Algarithm

The method of conservation of volume flow rate at point p with two adjacent

\ -

elements is already shown in “seetion 32-17anhd 3-2-2. with the Reynolds equation.
S
Similarly, based on the modiﬁed-’Reyﬁblds equétig:)_n,.conservation of volume flow rate

with two adjacent elements can be derived. The volume flow rate at point p, located at

the interface between element 1 and element 2, are :

! h’ 00 uh h’ 06
=———0f— | t0—, 4\, =———09f—|. 3-32
U= P ot =1, 98 ks (3-32)
, (h+c,)’ o6 uth+c,) (h+c,)’ 06
=— 9 gf— o——3° =——— 9 qgB8— 3-33
q 2X 12[[,[ gﬂ aX |e:2 + 2 9 q 2y 12/,[ gﬁ 5 |e:2 . ( )

By the conservation of volume flow rate at point p from Eq. (3-29), the difference
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between the boundary terms of two neighboring elements at the groove-ridge region is

obtained, considering the Elrod’s algorithm, as follows:

L 00 ,00 .00 (.00 )
(ovary{ororgo] 2 o

(3-34)

Therefore, the difference between the boundary terms of two neighboring

elements at the groove-ridge region 1s given by:

Q" £ [6gut,u-dLy (3-35)

11

3-3 Grid Independent Test; |
3-3-1 HGJB

In this work, the element we used in the first groove was taken apart in the
circumferential direction and treated as a periodic boundary. Therefore, the simulation
was performed with nine grooves and eight ridges, with a total of 17 elements in the
circumferential direction and eight elements in the axial direction. Table 3-3-1 presents
the geometrical parameters of the HGJBs. Fig. 3-3-1 displays the mesh system that was
used in the program.
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Table 3-3-1 Design parameters of the HGJB

Clearance, C 6x10°  (m)
Radius, r 0.002 (m)
Length, L 0.004 (m)
Fluid viscosity, p 0.00124 (Pa-s)
Number of grooves 8

Groove depth ratio, I' 1.0

Groove width ratio, 6 0.5

Journal speed, 03 ST 5000 (rpm)

Groove locatlgn on b’earlng

0.002 7 T T T
. i DL
_ 11717717717
B % L P
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Circumferential Coordinate

Fig. 3-3-1 Mesh system used in the program
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Before the HGJBs were analyzed, a sufficient number of grids in the computational
domain had to be established. The following operating conditions were used: groove
angle = 20 degrees, groove depth ratio = 1.0, groove width ratio = 0.5, eccentricity ratio

= (0.7, and diameter to length ratio = 1.

Table 3-3-2 presents the critical masses (appendix A) evaluated using various
nodes. As the number of nodes increases, the critical masses asymptotically approach a
constant. The deviation of critical mass-of seven nodes per element from that of nine

nodes is very small, and so seven nodesﬁ'yv_t?rg a'_l_dbpted to analyze the HGJBs.

— -
g
_AE

S
Table 3-3-2 Grid independent test:on‘dimensionless critical mass (appendix A)at groove
angle of 20°, groove depth ratio of 1.0, groove width ratio of 0.5, and at eccentricity
ratio of 0.7

Dimensionless
Number of Nodes Critical Mass Deviation

3 18.83 -2.03%
4 18.85 -1.93%
5 18.99 -1.20%
6 19.09 -0.68%
7 19.19 -0.16%
8 19.22 0.00%
9 19.22
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3-3-2 EGJB

This work used curvilinear elements to discretize the elliptical grooves, and mapped
the physical curvilinear quadrilaterals into local standard elements isoparametrically [22]
in this numerical program. The elements used in the first groove were taken apart in the
circumferential direction, and treated as a periodic boundary. Therefore, a simulation
was performed with a total of 17 elements in the circumferential direction and 8

elements in the axial direction. Fig,-3-3-2-shows the mesh system used in the program

for EGIB. ' I

| =5
1 W '
|| = |
s | 1
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Before the EGIBs are" gxaﬁpmm the number of nodes in the

< _.I" e Ol A 3=
computational domain is sufficient must be determined. Operating conditions are

elliptical axis ratio of 1.5, groove depth ratio of 1.0, groove width ratio of 0.5, and

eccentricity ratio of 0.7.

Fig. 3-3-3 and Fig. 3-3-4 present load capacity and side leakage of EGJB evaluated
using various nodes. As the number of nodes per dimension for an element increases,
load capacities asymptotically approach a constant. The difference in load capacity with

41



8 nodes and 10 nodes is very small; thus, 8 nodes were used to analyze the EGJB.

Dimensionless Load Capacity, W
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Fig. 3-3-3 Grid independent test to evaluate the load capacity of EGJB
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4. Validation

This work firstly verifies the numerical programs for a 1-D slider bearing and for
the HGJB in section 4-1 when there is a simple cavitation account in the fluid film.
Secondly, the numerical program of the HGJB with Elrod’s algorithm is validated in
section 4-2. Ultimately, the numerical program of the EGJB is validated.

4-1 Load Capacity
4-1-1 One-dimensional Step-Slider Be'alx'ring

The numerical results were compdrﬁd: yifh the analytical solution for a step with an

g
_AE

infinitely wide Rayleigh step bearing. ‘The*governing“equation for a one-dimensional

slider bearing is written as:

3
d[h dp]_udn )
dx| 12z dx | 2 dx

The equation above can be solved by the SEM mentioned in the previous section.
The parameters used were: s, =1.0x107°m, h, =5.0x10"m, L=1.0m, u=20m/s,
and the number of grid cells used was 17. Notably, two elements, the groove element

and the ridge element, are used to balance the boundary terms.
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To compare the pressure distribution calculated, the central difference method was
also employed here to discretize the slider bearing. To demonstrate the effect of the
treatment at the discontinuity on the accuracy of pressure, there are two ways to deal
with the discontinuity. One is to obtain the derivative of the film thickness with respect
to length in the region of the discontinuity by treating the groove-ridge boundary as a
slope, as was done by Junmei et al. [8]. The other is to apply the conservation of mass at

the discontinuity.

Fig. 4-1-1 plots the pressure distr'i.b.l_%go_ﬁ: (..)btained.by the SEM and by the FDM.
The pressure distribution obtained us'm;the SEM,“m which the treatment at the
discontinuity is taken, is almost identical to the :;:nalytic solution [35]. It can also be
seen that the pressure distribution is 12% less accurate when using the FDM without the
treatment that considers the conservation of mass at the discontinuity. However, when

using the FDM with the treatment at the discontinuity, the pressure distribution is as

accurate as that obtained using SEM.
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4-1-2 Load Comparison of HG\T$ -f-'"_**"
.? -t_ w |

The numerically determmed lofl$ of HG]P with the Reynolds equation can be
verified as follows. For this case, .this.Wo_rk simply adopts the Reynolds condition at the
edge of the cavitation region. Fig. 4-1-2 shows a comparison of bearing load capacities
with the experimental data presented by Hirs [37]. The present method, in which the
groove-ridge discontinuity treatment is considered, is accurate in solving the load of the
HGIJBs except for the case of the load capacity at above the eccentricity ratio 0.6. The
discrepancies may result from the occurrence of cavitation, which will be discussed in

the next section.
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Therefore, by validating the one-dimensional slider bearing and the HGJB, it can be
concluded that the present method — the SEM incorporating the treatment at the

discontinuity by considering conservation of mass — can be applied to correctly

determine the pressure distribution of the fluid film.

On the other hand, the numerical program was verified experimentally using a
prototype spindle motor built in the laboratory. The study [10] designed the geometry of
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a novel multi-step HGJB using our numerical program for HGJB, then the study
showed that the multi-step HGJB has the required load capacity.

4-1-3 Load Comparison of HGJB with Elrod’s Model

The numerical program for a plain journal bearing is first discussed to verify the
accuracy of pressure distribution considering a cavitation analysis. The HGJB with
cavitation appearance is then tested to verify the accuracy of numerically determined
loads when the conservation of mass:flow rate ina discontinuous fluid film is applied
with Elrod’s algorithm.
4-1.3.1 Load of a plain journal bea"i?gng with qavitation

Fig. 4-1-3 shows the compatrison ;)f t-h.-e pﬁesguré (.1istributions for a plain journal
bearing using the present method incor.porating the Elrod’s algorithm and the
experimental data presented by Jakobsson and Floberg [18]. It can be seen that the
agreement is very good. Thus, the present code incorporating the Elrod’s algorithm can

handle the cavitation problem correctly.
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4-1.3.2 Load of a HGJB with cavitation

Fig. 4-1-2 shows a comparison of bearing load capacities, computed numerically
by various methods. The present method, in which the groove-ridge discontinuity is
considered, is more accurate in solving the load of the HGJBs than are the other
numerical methods [8, 20]. Notably, other studies [8, 20] also applied Elrod’s algorithm
to the analysis of cavitation. For the case of Hirs’ experiment, cavitation appears above
an eccentricity ratio of 0.3, as shewn in'Fig.'4-1-4.-With increases in the eccentricity

ratio, the discrepancies of loads/predicted by the Reynolds condition are greater due to

A p
— -
g

the cavitation zone increases. Fl_lrthermoré;?_h-é loads evaluated by the present treatment
are more accurate when cavitatiéfl (_)c;curs. Thi..s may. result from the consideration of
conservation of mass at the groove-ridge region and at the cavitation inception
concurrently by Elrod’s algorithm. Further investigation is needed to understand this

coupling effect.
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Fig. 4-1-4 Cavitation area ratio for the Hirs’ ‘expérimental case

Fig. 4-1-5 plots the pressure distributions at the axial position from centerline L/2
of various eccentricity ratios, and indicates why cavitation occurs above the eccentricity
ratio 0.3. As the eccentricity increases, the hydrodynamic pressure rises gradually in the
converging film region and drops gradually to the ambient pressure or below its vapor

pressure due to lubricant vaporization. Therefore, employing the present method with
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Elrod’s algorithm can improve the accuracy of calculating loads of HGJBs when

cavitation occurs.

08

Dimensionless Pressure, P
o
o

-l

1 Ve

Fig. 4-1-5 Pressure distributions at the-axial position from the centerline L/2D under

various eccentricity ratios

In summary, when cavitation does not occur, applying the groove-ridge

discontinuity treatment show a good agreement with the data of Hirs. Furthermore,

incorporating the Elrod’s algorithm also gives a significant agreement when cavitation

occurs. Thus, the proposed method can be employed with HGJBs.

4-1-4 Validation of EGJB

After the numerical program for the HGJB was validated, the numerical program of
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the EGJB is validated here. Because no study has determined the performance of an
EGJB numerically or experimentally, this study validates the EGJB program based on

the numerical results of the HGJB program.

This work increases the number of groove sides of the HGJB to resemble the
elliptical grooves asymptotically. To derive a groove of four sides, this work creates
corner points of groove first. The corner points are obtained by dividing journal length
into equal four parts, and inputs y-coordinateé .'of t_hese points into the elliptical groove

equation. In the end, connect all comér._pigi_rits" on a gfoove (Fig. 4-1-6). Similarly, a

g
|

grooved journal bearing with 8 sides is oi)"tained in ‘this manner. Notably, when the
number of groove sides increases, the shape of the grooved journal bearing is close to

that of an ellipse.

------ herrmgbone groove
groove with 4 sides
elliptical groove

Fig. 4-1-6 Sketch of a herringbone groove, elliptical groove, and groove with four sides
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Fig. 4-1-7 and Fig. 4-1-8 list the load capacities and radial stiffness of the EGJB,
HGIJB, and groove journal bearing with several sides. As the number of groove sides
increases, load capacities and radial stiffness asymptotically approach that of the EGJB.
From these reasonable values, we conclude that the code developed for analyzing the

EGJB performance is also accurate.

25
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Fig. 4-1-7 Load capacities of the EGIB, HGJB, and groove journal bearing with several
sides
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4-2 Validation of Critical Mass =

Fig. 4-2-1 and Fig. 4-2-2 compare the attitude angle(=tan™ (%)) and dynamic
coefficients(appendix A) associated with different groove angles with those published
by Rao and Sawicki [17]. Our numerical results presented here are different from theirs
and have a smoother variation with the groove angle. This difference may result from
the disposition of the groove-ridge region when the result of Rao and Sawicki is

determined using the FDM.
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Critical mass is derived in appendix A. Fig. 4-2-3 indicates that the relationship
between critical mass and eccentricity approaches the analytical solution for a short
plain journal bearing [35] as A, increases. Furthermore, to verify the critical mass of

HGJB, the diameter to length ratio A, was fixed and the groove depth ratio decreased

from 0.1 to 0.01 under the Reynolds condition. As the groove depth ratio was reduced,

the critical mass of the HGJB approached that of a plain journal at 4, = 16, as plotted

in Fig. 4-2-4. Therefore, the code déveloped to'eyaluate eritical mass is validated.
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Fig. 4-2-3 Validation of dimensionless critical mass of a plain journal bearing with

literature [35]
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5. Effect of HGJB’s Appearance on Stability

In the following, the operating eccentricity of the journal bearing is changed,
and the critical mass is observed. Therefore, the influence of variations in the

eccentricity and groove shapes on stability can be inferred.

There is no cavitation in the following cases. If cavitation occurs, the critical
mass of the HGJB could also be analyzed by applying the perturbation method in the

modified Reynolds equation with Elrod’s algorithm:

> NIt

5-1 Effect of Change in.,Groov'é"Athe dn Critical mass

As presented in Fig. 5-1-1, when the eccentricity is lower, the critical mass varies
only slightly with groove angle. When the eccentricity ratio exceeds 0.4, the critical

mass peaks at a groove angle of 20 degrees.
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The distribution of the critical masses associated with a change in groove angles,
as reported in another study [17], is less smooth than that determined in the present
work. This difference may result from the improper disposal in the groove-ridge region;

i.e., the pressure was evaluated using the FDM.

The influence of the groove angle on the critical mass is as follows. As the
eccentricity increases, the critical mass of the bearing increases faster as the groove
angle decreases. This means that HGJBS with.a smaller groove angle are more sensitive

to a change in eccentricity.

A g's I

5-2 Effect of Change ithrpov’é" Dépth on Critical mass

=i

The groove depth ratio is changed from 0.5 to 1.5, with other groove parameters
remaining unchanged. The following sections discuss the influence of the groove depth

ratio and the eccentricity on the critical mass.

As presented in Fig. 5-1-1, for a fixed eccentricity, the critical mass decreases as
the groove depth ratio increases. The critical mass peaks at a groove depth ratio of 0.5;

i.e., the bearing with shallower grooves has a larger critical mass. However, as the
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eccentricity ratio increases, the critical mass of the HGJBs also increases rapidly with
lower groove depth. Hence, for HGJBs with shallow grooves, the critical mass is
sensitive to variations in eccentricity ratio when the eccentricity is large. In contrast, for
bearings with deeper grooves, the critical mass increases less with an increase in
eccentricity, indicating that the critical mass is insensitive to the eccentricity for HGJBs

with large groove depths.

5-3 Effect of Change in Groove Widthon Critical Mass

The influence of changing the width‘g,at_ib-and the éccentricity on the critical mass

.I. 4P P-la

are discussed below.

As shown in Fig. 5-1-2, when the eccentrigity ratio remains constant, the critical
mass decreases as the groove width ratio increases. A larger eccentricity ratio

corresponds to greater changes in critical mass.

The critical mass peaks at a groove width ratio of 0.25. The degree of variation in
the critical mass varies with the groove width. When the groove width ratio increases

over 0.5, the variation in the critical mass decreases.

66



As the eccentricity increases, the critical mass of HGJBs with narrow grooves
increases rapidly. Specifically, the critical mass of HGJBs with smaller groove widths is
more sensitive to variations in the eccentricity ratio. However, when the eccentricity
ratio is high, the critical masses vary little with groove width for HGJBs with large
groove widths, even though a larger groove width reduces stability. Restated, at a high
eccentricity, the critical mass of a HGJB with wide grooves is insensitive to variations
in the eccentricity ratio.

5-4 Efficiency of the Present -l:\.gg’_t_hod on Critical Mass

i

In order to show the efﬁcie.nfc.y o!f Ithe 'I-})'.reser.lt metﬁod, Table 5-4-1 shows the CPU
time needed to obtain the load capaéity of“a bearing with 8 grooves on the stationary
surface, at an eccentricity ratio of 0.5 for various nodal points. This work was compiled
with Compaq Visual Fortran 6.6 on a 1.50GHz Intel Pentium M processor. Thus, the

present method is efficient for analyzing HGJB problems.
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Table 5-4-1 The CPU time needed to obtain the load capacity of a bearing with 8
grooves on the stationary surface, at an eccentricity ratio of 0.5 for various nodal points

(groove angle=40°)

Load

Elements  Nodes CPU time (s) . Deviation
capacity
136 4x4 0.23 3.562 -0.89%
136 5x5 0.39 3.58 -0.39%
136 6x6 0.75 3.587 -0.19%
136 7x7 1.17 3.59 -0.11%
136 8x8 1.48 3.592 -0.06%
136 9x9 2.23 3.593 -0.03%
136 10x10  3.31 3.594 0.00%
"y e

B -k
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6. Performance Enhancement Using Elliptical Grooves

6-1 Performance of EGJB

To assess the utility of the proposed EGJB, the load capacity is compared with the
conventional HGJB by Vohr and Chow[29]. Comparisons are obtained using numerical
results. The optimum groove parameter for the HGJB obtained by Vohr and Chow with
groove angle of 32.8° corresponds the parameter for the EJGB with an elliptical axis

ratio of 1.55. Groove depth ratio'of 0.5 ‘and-gtoove:width ratio of 2.1 used are the same

1

as those of the HGJB obtained by Vohr'z.m_‘d Chow.

o =] I-;HE

6-1-1  Effect on Load Capacity

Effect of load capacity on the location of grooves on the HGJB and EGJB are
shown in Figs. Fig. 6-1-1 and Fig. 6-1-2. Fig. 6-1-1 shows that when the bearing is
grooved, load capacity of the EGJB is about 15% greater than that of the HGJB.
Additionally, as bearing length increases, the load capacity of the EGJB increases.
When length-diameter ratio is 2, the load capacity of the EGJB is up to 30% more than

that of the HGJB.
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Fig. 6-1-2 Variations in load capacities with different eccentricity ratios for grooved

journals
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Fig. 6-1-2 shows that the load capacity of the EGJB is larger than that of HGJB
when the journal is grooved. Comparing the load capacity of EGJB with that of HGJB
indicates that the increase in load capacity of the EGJB with a grooved journal is greater

than that of the EGJB with a grooved bearing.

As a summary, more load capacity of the EGJB than that of HGJB can be gained
no matter where the grooves are located in the bearing or journal. Additionally, the load
capacity of the EGJB with a grooved bearing' is_larger than that of the EGJB with a

grooved journal. This analytical resulf is, in _zigfeement with those in literature [6, 29].

g
_AE

Hence, adopting elliptical grooves to irl.lc::reagé load capacity is beneficial.
6-1-2 Effect on Stability

After determining the load capacity of the EGJB, the stability of the HGJB and
EGIJB are compared. Fig. 6-1-3 compares dimensionless radial stiffness of the EGJB at

various eccentricity ratios and length-diameter ratios with those of the HGJB.
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Fig. 6-1-3 Dimensionless radial stiffne.'s-g'_-of ithe EGJB and HGJB with various

eccentricity ratios and length-diargleter: ratios and for a grooved bearing

At a low eccentricity ratio, the dimensibnléss radial stiffness of the EGJB does not
differ markedly from that of the HGJB. When the eccentricity ratio exceeds 0.3, the
dimensionless radial stiffness of the EGJB is consistently larger than those of the HGJB.
At an eccentricity ratio of 0.6, the dimensionless radial stiffness of the EGJB is 25%
greater than those for the HGJB. Moreover, for the grooved journal (Fig. 6-1-4), the
dimensionless radial stiffness of the EGJB does not differ significantly from those of the

HGIJB at a low eccentricity ratio, but are consistently greater than those of the HGJB
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when the eccentricity ratio exceeds 0.3, which is same as the dimensionless radial

stiffness of the grooved bearing.
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Fig. 6-1-4 Dimensionless radial stiffness of the EGJB and HGIJB with various

eccentricity ratios and length-diameter ratios for grooved journals

6-1-3 Effect on Side Leakage

Side leakage is also an important characteristic for hydrodynamic journal bearings.
Leakage, which results from the impact between rotating and stationary parts, reduces
load capacity. As shown in Fig. 6-1-5, when the eccentricity ratio is low, side leakage of

the EGJB decreases notably compared with that of the HGJB. This difference may
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result from elliptical grooves reducing the leakage in the end of bearing. Therefore, we
conclude that in the case of optimum groove geometry of the HGJB, the performance of
the EGJB is superior to that of the HGJB in terms of load capacity, radial stiffness, and

side leakage.
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Fig. 6-1-5(a) Dimensionless total side leakage of the EGJB and HGJB with various

eccentricity ratios and length-diameter ratios for grooved journals
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Fig. 6-1-5 (b) Dimensionless total side leltcﬁkége_of the. EGJB and HGJB with various

eccentricity ratios and length-diameter ratios for| grooved bearings

6-1-4 Effect on Reducing Cavitation.

The cavitation region in the fluid film of the HGJB and EGJB is discussed in this
section. The groove parameter used here for the HGJB is also obtained by Vohr and
Chow. Fig. 6-1-6 and Fig. 6-1-7 show the load capacities of the HGJB and EGJB with
the increase of eccentricity ratio. It can be seen that when journal load is fixed, the
operating eccentricity of EGJB is obviously lower than that of HGJB. This may be

because the high pressure region of EGJB is markedly larger than that of HGJB.
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Table 6-1-1 and Table 6-1-2 show the cavitation ratio of the HGJB and EGJB at an

eccentricity ratio of 0.1 to 0.9. Comparing the cavitation ratio of the EGJB with that of

HGIJB indicates that the adopting of elliptical groove can reduce the cavitation when the

load of HIGB and EGJB is same.

grooved journal
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Dimensionless Load Capacity

Fig. 6-1-6 Load of the HGJB and EGJB for a grooved journal with optimum groove

parameter
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Table 6-1-1 The Cavitation ratio of the HGJB and EGJB for a grooved journal with
optimum groove parameter

Eccentricity
ratio HGJB EGJB

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9]

Olo|lo|lo|lo|lo|lo]|o

S
[y
W

wlo | olo|lo|lo|lo|o |

— e

grooved bearing

E ccentricity Ratio

0 5 10 15 20
Dimensionless Load Capacity

Fig. 6-1-7 Load of the HGJB and EGJB for a grooved bearing with optimum groove
parameter
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Table 6-1-2 The Cavitation ratio of the HGJB and EGJB for a grooved bearing with

optimum groove parameter

Eccentricity ratio HGIB EGIB
0.1 0 0
0.2 0 0
0.3 0 0
0.4 0 0
0.5 0 0
0.6 0 0
0.7 =) 0
0.8 0:551 1255

N 2
6-2 Optimum Groove Ii_{ara'}ﬂne-férs, for Stability

The optimum groove parameters fof mr;tximum radial force of the EGJB are
investigated in this section. Since groove geometry has several parameters, this work
simplifies the processes for seeking the optimum groove parameters as follows. Firstly,
groove width is fixed, while the elliptical axis ratio and groove depth are varied. Then
groove depth is fixed to the value, determined by maximum radial force in the previous
step, while the elliptical axis ratio and the groove width are varied. Via these procedures,

the optimum groove parameters are identified. Table 6-2-1 presents geometrical
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parameters of the EGJB.

Table 6-2-1 Design parameters of the EGJB

Clearance, C 6x10° (m)
Radius, r 0.002 (m)
Length, L 0.004 (m)
Fluid viscosity, p 0.00124 (Pa-s)
Number of grooves 8

Groove depth ratio, I 1.0

Groove width.ratio,.6 e 0:5

Journal speed, o ™ 5000 (rpm)

Groove location

=N

on.bearing

Fig. 6-2-1 shows the dimens;(;nl_e:ss rad.ial s_tiffness with a groove width ratio of 0.5
for various eccentricity ratios. As the groove depth ratio increases from 0.5 to 1.0, the
dimensionless radial stiffness increases rapidly. However, when the groove depth ratio
increases further, the dimensionless radial stiffness varies a little. It can be seen that the
dimensionless radial stiffness reaches the maximum as the groove depth ratio is 2.0.

When the groove depth ratio exceeds 2.0, the dimensionless radial stiffness decreases.
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eccentricity ratio of 0.3
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The optimum groove parameters: for different‘groove widths are studied as follows.
The groove depth ratio is fixed at 2.0 which maximize the dimensionless radial stiffness
from the discussion above. The elliptical axis ratio is increased from 0.5 to 2 and the
groove width ratio is increased from 0.3 to 0.7 (Fig. 6-2-2). It can also be seen that a
suitable groove width increases stability for all three eccentricity ratios. When the

groove width ratio is 0.5, the dimensionless radial stiffness peaks at an elliptical axis

ratio of 1.5. In summary, the optimum groove parameter values for EGJB are a groove

81



width ratio of 0.5, groove depth ratio of 2.0, and elliptical axis ratio of 1.5. These

optimum groove parameters are close to those obtained by Vohr and Chow [29].
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Fig. 6-2-2(a) Dimensionless radial stiffness under a groove depth ratio of 2.0 and

eccentricity ratio of 0.1
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6-3 Comparison of the Load Distribution

To examine how elliptical grooves impact load characteristics, the multi-sided
herringbone-grooved journal bearings with 4 sides and 8 sides, are used to investigate
differences in the load distributions of fluid film. Operating conditions used are groove
angle of 37°, groove depth ratio of 1.0, groove width ratio of 0.5, and eccentricity ratio

of 0.4. The corresponding elliptical axis ratio is 1.327.

Fig. 6-3-1 presents the load distribution along:the axial direction. The area below
the curve is the load capacity of bearirig.‘:-'-'é't__;_t.he axis of bearing symmetry (y=0), the
: 1 ? _ ;
load of HGJB is higher than that ef'the 'EGIJB. On the contrary, the load of the HGJB is

lower than that of EGJB as y is away from the cefiter. Notably, the load distribution of

the grooved journal bearing with 4 sides is close to that of the EGJB.
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It can also be seen that the load di‘striiaution of EGJB along the axial direction is
more uniform than that of HGJB. The low load at the bearing center of EGJB may be
offset by the load away from the bearing center; thus, a higher total load capacity for the
EGIJB than that of HGJB is achieved. The same trend of the load distribution along the
axial direction for the other operation conditions can also be found. On the other hand,

the load capacities of grooved journal bearing with 4 sides are close to that of the EGJB.
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Hence, resembling an elliptical shape with grooves with more than 4 sides is

unnecessary.

As 1s well known, axial leakage is proportional to the pressure gradient at both
ends of the bearing. Fig. 6-3-2 shows total side leakage of grooved bearings. EGJB can
lower the leakages of the lubricants with the curvature variation of the elliptical shape.
Accordingly, side leakage of the HGJB is greater than that of EGJB. In addition, side
leakage can also be reduced by using multi.-.'side‘d grooves. However, reducing side
leakage by using grooves with moré.,tf;g_n_."_.él:‘ sides ‘is also unnecessary. Supposing

<

manufacturing elliptical grooves is difficult, one canuse multi-side grooves whose

corner points are on the equation of an cllipse.
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7. Performance Enhancement on Rev-EGJB

This chapter proposes a novel reversible rotation journal bearing with elliptical
grooves (Rev-EGJB). Instead of a helical groove, the elliptical groove is adopted to
improve the performance of the reversible rotation HGJB (Rev-HGJB). A numerical
program is used to analyze the appearance and characteristics of the Rev-EGJB. To
calculate the pressure distribution of a fluid film, the Reynolds equation was solved
using the SEM [38]. The load distributions. éf the reverse rotation grooved journal

bearings are compared to elucidate how, éjlipfical groovés enhance load characteristics.

— -
g
_AE

Load capacity, power loss, and'the stability=parameterare compared with those of the
Rev-HGIJB. Finally, the Rev-EGJB’s conﬁguratidil, which maximizes radial force, is

investigated.

7-1 Groove Profile

Fig. 7-1-1 shows the shape of the elliptical grooves. Since variation in elliptical
shape affects the pressure distribution of a fluid film, in this work the elliptical axis ratio

is varied to investigate how the shapes of elliptical grooves affect Rev-EGJB
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The equation of the ellipti%_@l@
L NI
, &gy 7 .iz-r z
=% =Y _,
2 2 -
L, L,

(7-1),

where the center of the ellipse is at(X,,Y,) , and L, and L, are the axis length in the

x-direction and y-direction, respectively. The elliptical axis ratio tis — . For example,

L,

the groove parameter for the Rev-HGJB with a groove angle of 32.8° corresponds the

parameter for the Rev-EJGB with an elliptical axis ratio of 1.55 (=cot32.8° ).
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The elliptical grooves on the surface of the journal are engraved with three regions.
This work varies the bearing length of region 2 (L;), while the bearing lengths of region
1 (L) and region 3 (L3) are the same. The ellipse has two centers on the groove surface,

at the boundary of region 1 and region 2 (X,,Y,,) and at the boundary of region 2 and

region 3 (X2,3’ YZ,3) .

After the center of the ellipse is determined, the elliptical shape is obtained by
giving the elliptical axis ratio. The three regioh's of elliptical grooves are of three values

of the elliptical axis ratios (T, 12, T3), fes_bg_c_t’ively. The elliptical axis ratio of region 1

g
_AE

equals that of region 3 (t;=t3). The shape in-region 2 _below y=0 is determined from the
center of the ellipse at (X,,Y,,) ;and’the shape in region 2 above y=0 is determined

from the center of the ellipse at (X3, Y,3) -

7-2 Validation

Since no study has been done previously to investigate the performance of a
Rev-EGIJB, either numerically or experimentally, this study validates the Rev-EGJB

program based on the numerical results of the Rev-HGJB program. The numerically
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determined load capacity for the Rev-HGJB was verified using data from [6]. Fig. 7-2-1

shows that the present numerical results are in good agreement with those in [6]. The

differences at the high eccentricity ratio may result from groove discontinuity and the

cavitation model [38]. Thus, the numerical program used in this study can be employed

to analyze Rev-HGJB performance. In the following, the load capacity of Rev-HGJB is

numerically investigated by our program.
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Fig. 7-2-1 The numerical program for the Rev-HGJB was verified using data from [6].

After the numerical program for the Rev-HGJB was validated, the numerical
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program of the Rev-EGJB was validated. This study increased the number of the
Rev-HGJB’s groove sides to asymptotically resemble the elliptical grooves. The details
of deriving a groove for eight sides of the Rev-HGJB to resemble the elliptical grooves
are found in [36]. Notably, when the number of groove sides increases, the shape of the
grooved journal bearing is close to that of an ellipse. Fig. 7-2-2 shows that as the
number of groove sides increases, load capacities asymptotically approach that of the
Rev-EGJB. In summary, from theivalidation ifi relation to the loads of Rev-HGJB and

Rev-EGJB, we conclude that''the eode developed:to analyze the Rev-EGIB’s

-

e -}
=
i

performance is also accurate.
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Fig. 7-2-2 The numerical program of the 'ReV-EGJB was validated by increasing the

number of groove sides of the ReV-HGJb

7-3  Comparison of the Rev-EGJBand the Rev-HGJB

Firstly, the load capacities of the Rev-HGJB and Rev-EGJB are discussed. Then,
the pressure distributions on the fluid film are investigated. Finally, the power losses are
compared. The bearing parameters in Table 3-3-1 are used; this was applied in reference

[6] for the Rev-HGIJB.
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Table 7-3-1 Parameters of the Rev-GJB (grooved member rotation)

Clearance 6 um

Radius 0.002 m
Length 0.008 m
Fluid viscosity 0.00124 Paes
Number of grooves 8

Groove elliptical axis ratio 173
for Rev-EGJB '
(Groove angle 30 deg for Rev-HGJB)

Groove depth ratio 1.0
Groove width ratio 0.5
Journal speed 5000 rpm
Bearing length of'region
2/ bearing length
7-3-1 Rev-EGJB Mesh (=i

Il M

This work developed nur.n.,e_ricail ': co-(:i-es to eValﬁate the performance of the
Rev-EGIJB, and used curvilinear elerﬁents to diécretize the elliptical grooves. There are
8 grooves on the bearing or journal surface in this work. A simulation was performed
with a total of 17 elements in the circumferential direction and 16 elements in the axial

direction. Fig. 7-3-1 shows the mesh system used in the program for the Rev-EGJB.
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<
Fig. 7-3-1 The mesh system used

Tl

Fig. 7-3-2 shows the load capaeities of theLRe\?_;HGJB and Rev-EGJB with grooved

- ‘fl.f..;}_:j._- -,II:"ﬂ': 4
journals for a length-diameter ratio of 1 and 2. It can be seen that the load capacity of
the Rev-EGJB does not differ significantly from that of the Rev-HGJB at a low
eccentricity ratio, but is consistently greater than that of the Rev-HGJB. Moreover, the
larger the length-diameter ratio, the higher the load capacity. This may be because the
high pressure region of Rev-EGJB is not markedly larger than that of the Rev-HGJB at

a low length-diameter ratio; this is discussed in next section. Hence, the improvements
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of adopting the elliptical grooves in the loads of reversible rotation bearings are obvious

at a high length-diameter ratio.

B —%F— Rev-HGJB
8 —4&— Rev-EGJE

Dimensionless Load Capacity

0.2 04 0.6
Eccentricity Ratio

Fig. 7-3-2 Comparison of the load capacities of the conventional HGJB, Rev-HGIJB,

and Rev-EGJB with the increase of the eccentricity ratio (grooved journal)

The effect of load capacity on the location of grooves on the Rev-HGJB and

Rev-EGIJB is shown in Fig. 7-3-3. The figure shows that when the bearing is grooved,

the load capacity of the Rev-EGJB is about 12-15% greater than that of the Rev-HGJB
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at a length-diameter ratio of 2. Comparing the load capacity of the Rev-EGJB with that
of Rev-HGIJB indicates that the increase in load capacity of the Rev-EGJB with a
grooved journal is greater than that of the Rev-EGJB with a grooved bearing. This
analytical result is in agreement with those in literature [36]. In summary, this work
concludes that more load capacity of the Rev-EGJB than that of Rev-HGJB can be
gained no matter where the grooves are located in the bearing or journal. Furthermore,
adopting elliptical grooves to sincrease load capacity is beneficial at a high

length-diameter ratio.

A=W
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7-3-3 Comparison of the Préssure Distrlibhtions in the Fluid Film

To examine how elliptical grooves profit load characteristics, this work investigates
differences in the pressure distributions of fluid film on an Rev-HGJB and Rev-EGJB
with the same operating conditions, as shown in Table 1. Fig. 7-3-4 displays the
pressure distributions of fluid film. Although the peak pressure in the Rev-HGIB is
higher than that in the Rev-EGJB, a larger portion of high pressure is achieved in the
pressure-generated region of Rev-EGJB than in that of the Rev-HGIB, since the
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elliptical grooves pump more lubricants inward on the bearing than herringbone grooves

do. This is similar to the results of a study on the characteristics of EGJBs [36].

Region ITT
Region IT —
Region I
% 0.005 0.01 0015
Circumferential Coordinate

= Region T || | 03

0.005 0.2
Region IT 0.1
Region I

1
0 0.005 0.01 0015
Circumferential Coordinate

Fig. 7-3-4 The pressure distributions of fluid film of a Rev-EGJB and of a Rev-HGJB
under the operating conditions in Fig. 7-3-2 (¢=0.3)

Furthermore, a larger high pressure region in Rev-EGJB than that in Rev-HGIJB is
not only achieved in the pressure-generated region, but also in the pressure-restored
region. Notably, the groove shape changes smoothly in the pressure-generated region

and pressure-restored region of Rev-EGIJB, but that of Rev-HGJB changes abruptly.
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Hence, the shape of herringbone is beneficial for the peak pressure, but is not beneficial
for the pressure-generated region. In contrast, adopting the elliptical grooves is able to
increase the high-pressure area in the fluid film, which contributes to the load of the
bearing. Therefore, a high load capacity results from the integration of a large high

pressure portion, which can be seen in equation (6), which is for load evaluation.

To understand how the high pressure area contributes to the load, this work
investigates differences in the 1oad~distributio.n's of fluid film. Fig. 7-3-5 plots the load

per unit length along the y direction. Thé area Bélow the cutve is the load capacity of the

g
o

bearing. The peak of the curve for Rev'rHCfIB is'-higher'-than that for the Rev-EGJB. In
contrast, the load of the Rev-HGJB.is lower than ‘;flat of Rev-EGJB, as it is away from
the peak of the load curve. Notably, the load in the pressure-restored region of the
Rev-EGJB is obviously greater than that in Rev-HGJB, since adopting the elliptical
groove increases the pumping effect. Hence, the load of the Rev-EGIJB is apparently

greater than that of the Rev-HGJB.
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Power consumption is also an important characteristic for hydrodynamic journal
bearings. As shown in Table 2, the power loss of the Rev-EGJB decreases slightly
compared to that of the Rev-HGJB. Thus employing the elliptical grooves on reversible
rotation bearings causes reduction in the friction in the fluid film, and the power

consumption is slightly lower, while the load 1s enhanced.
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Table 7-4-1 Comparison of the power loss of the Rev-HGJB and Rev-EGJB at an

eccentricity ratio of 0.1

power loss(W) Rev-HGJB(Rev-EGJB

groove member rotation| 1.62E-02| 1.59E-02

7-5 The Effect of Groove’s Appearance on Radial Stiffness

The effects of groove parameters'such as theelliptical axis ratio, groove depth ratio,

groove width ratio, and length of region 2 *6;1"'1' 'S“.ltability are investigated in this section for
; : wL { . -

an eccentricity ratio of 0.1. The'groove param'etlj:i_c matrix is given by taking several

values in the range of each groove parameter: 7 for an elliptical axis ratio from 0.5 to 2,

9 for a groove width ratio from 0.4 to 0.6, 9 for a groove depth ratio from 0.5 to 2, and 9

for a length of region 2 from 0.4 to 0.6. A total of 35721 cases were used in the groove

parametric matrix.

To observe the influence of each groove parameter on stability, only one of the

groove parameters is varied while others are fixed. The influence of variations in groove
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appearances on stability can be inferred by observing the computed radial stiffness.

Fig. 7-5-1 to Fig. 7-5-4 show the result of the grooved member rotation for L/D = 2
and € = 0.1. To study the effects of the elliptical axis ratio on radial stiffness, the groove
elliptical axis ratios of region 1 and region 2, 1, andt,, are varied from 0.5 to 2.0, while
the groove depth and groove width are fixed at I'=1.0 and 6=0.5. Fig. 7-5-1 shows that
dimensionless radial stiffness varies less when the elliptical axis ratio of region 1, 1,
changes from 1.2 to 2, which corresponds-to 40 dexg to 26 deg of a herringbone groove,

and reaches the maximum in betweeﬁ,fb_r__al'l_rz. Furthérmore, it can be seen that the

—

N - Wy LR .
radial stiffness reaches its maximum H»etweem:g.tl and 2 when 1, is fixed to a value

| 1
i \

below 2.
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Fig. 7-5-1 The influences of ellipt_ﬁ('fal axis| ratio of region 1 and region 2 on
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To study the influences of groove de'pth. on dimensionless radial stiffness, the
groove depth ratio is increased from 0.5 to 2.0, while the groove elliptical axis ratio and
groove width are fixed at 1,=1,=1.0 and 6=0.5. Fig. 7-5-2 shows that the dimensionless

radial stiffness reaches a peak value at I'=1 to 1.5 for all cases.

105



17

16

15

14

13

Dimensionless R adial Stiffness

12

0.5 1 1.5 2
Groove Depth Ratio, T
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To study the effects of grooyewidth*on"dimensionless radial stiffness, the groove
width ratio is increased from 0.4 to 0.6, while the groove elliptical axis ratio and groove
depth are fixed at 1,=1,=1.0 and I'=1.0. Fig. 7-5-3 shows that groove width has little
effect on dimensionless radial stiffness when the groove width ratio is less than 0.5, but
radial stiffness decreases when the groove width ratio exceeds 0.5. It can also be seen

that dimensionless radial stiffness is greater when the length of region 2 is larger than

about half of the bearing length.
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Fig. 7-5-3 The effects of groove _Widthi(jn .&i'ﬁ_len.slionless__ radial stiffness

To study the influences of the lcngth of reg'i;)r'l 2 .on dimensionless radial stiffness,
the length of region 2 is increased from 0.4L to 0.6L, while the groove elliptical axis
ratio, groove depth, and groove width are fixed at 1,=1,=0.5,1.0,1.5, and 2.0, 6=0.5, and

I'=1.0. Fig. 7-5-4 shows that the dimensionless radial stiffness reaches a peak at L,=

0.45L to 0.55L for all cases.
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Fig. 7-5-4 The effect of bearing length/of régjén 2 on dimensionless radial stiffness

7-6 The Optimum Parameters of Rev-EGJB for Stability

From the parametric study, the values of the optimum groove parameters, given in
Table 3, for the Rev-EGJB to reach the maximum radial force, are a groove width ratio
of 0.4, groove depth ratio of 1.5, Lo/L = 0.575, and elliptical axis ratio of t,=15=2,
1,=1.25. These optimum groove parameters are different from those obtained by

Kawabata et al.[6]. The radial stiffness of the Rev-EGJB compared with that of the
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Rev-HGJB with the optimum geometry is also shown in Table 7-6-1. It can be seen that
the radial stiffness of the Rev-EGJB does not differ markedly from that of the
Rev-HGIJB. Moreover, for the grooved bearing, the Rev-EGJB is more stable than the
Rev-HGJB. The optimum groove parameter values for the Rev-EGJB to reach the
maximum radial force are a groove width ratio of 0.575, groove depth ratio of 1.625,

L,/L = 0.425, and elliptical axis ratio oft;=t3=1.0, 1,=2.0.

Table 7-6-1 thevalues.of the optimum groove parameters

gro%:\'fé"c'l journal grooved bearing
Re\}-EGEJB Rev-HGIB[Rev-EGJB|Rev-HGIB
Length of Region 2, L2/L"™" 0,575 | ! -0.467 0.425 0.48
Groove depth ratio, I' _BS5 . 1 1.034 1.625 1.068
Groove width ratio, 6 04 0.5 0.575 0.5
elliptical axis ratio, T,=T;,
or groove angle (deg) 2 32.18 1.0 148.75
of region 1 and 3
elliptical axis ratio, T,
or groove angle (deg) 1.25 43.09 2.0 135.31
of region 2
dimensionless radial
. 18.7 19.1 10.6 9.1
stiffness
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8. Conclusions

This work developed a numerical program for analyzing the characteristics of the

grooved journal bearing. Then a novel elliptical groove is proposed to enhance the

performance of the hydrodynamic journal bearing. The conclusions are drawn as

follows:

l.

The Reynolds equation was solved using the SEM in order to obtain the
distribution of pressure in the fluid-film: The groove-ridge discontinuity is treated

by conservation of mass. It can be shown'that the present method can be applied

—=1
to correctly determine the pressure /distribution ‘of the fluid film. Furthermore,
[ |1

employing the present métho_(i and. inqlo.rﬁorating the Elrod’s algorithm can
improve the accuracy of evaluating loads of HGJBs when cavitation occurs.

The performances of the EGJB are superior to that of the HGJB due to the high
load capacity, high radial stiffness, and low side leakage of lubricants. For the
EGIJB, groove parameters can be set at maximum radial force of EGJB. These

values are a groove width ratio of 0.5, groove depth ratio of 2.0, and elliptical axis

ratio of 1.5. These optimum groove parameters are similar to those obtained by

111



Vohr and Chow [29].

The load distribution of EGJB along the axial direction is more uniform than that
of HGJB. The low load at the bearing center of EGJB may be offset by the load
away from the bearing center; thus, a higher load capacity for the EGJB than that
of HGJB is achieved.

Adopting the elliptical grooves on reversible rotation journal bearings can
enhance the pumping effect to a greater €xtent than adopting herringbone grooves.

The performance of the Rev-EGJB-is superior'to that of the Rev-HGJB due to its

-
e -}
-

high load capacity and slight low-po;?__r- ios_s.

Observing the load distribu:ti.on :along the.. axial direction, the lower peak load of
Rev-EGIJB than that of Rev-HGJB may be offset by the load away from the lower
peak load. In addition, the load in the pressure-restored region of the Rev-EGJB is
obviously greater than that in the Rev-HGJB. Thus, a higher load capacity is
achieved for the Rev-EGJB than that of the Rev-HGJB.

The Rev-EGJB is also more stable than the Rev-HGJB.
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9. Future Work

The loads evaluated are more accurate when cavitation occurs, which may result
from the consideration of conservation of mass at the groove-ridge region and at
the cavitation inception concurrently by Elrod’s algorithm. Further investigation is

needed to understand this coupling effect.

The oil inlet conditions are also important parameters to affect the bearing pressure

and cavitation region[39], and should be ﬁirther mvestigated.

The effect of temperature of the lubr'iéa*ntfén the characteristics of the bearings may
<\

I i i | -
be more significant than that'of .‘the'HGJ:B due_to less leakage, and should be

further investigated.

The enhancements of elliptical grooves on air journal bearings and

elastohydrodynamic journal bearings are warranted.

The critical mass incorporates to Elrod’s algorithm is needed to derive as by the

small perturbation to Elrod’s Universal Equation.

The performances of the EGJB and the Rev-EGJB can be verified experimentally
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using a prototype spindle motor built in the laboratory.
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Appendix A Evaluation of Dimensionless Critical Mass

When the journal position is changed slightly from the equilibrium state by the
excitation force, the journal vibration may increase and result in instability. Based on
the assumption that a small reaction occurs in the equilibrium state, the pressure and the
thickness of the fluid film can be expressed as first-order functions of a small

perturbation, as follows:
p=p,+ Pp,AX+ p,AZ+ p,AX+ p,AZ (A1)

h = hg+ AXCos ¢ + Azcose . (A2)

A L
—

|

Substituting Egs. (A1) and(A2) into Eq. (2-1) yields the changes in the pressure of

the journal close to an equilibrium position:

1 0 | (h,+AXcosg+Azcos@)’ O(p, + P AX+ P,AZ+ p,AX+ p,AZ)
F%{ 124 of }
+i[(ho +AXcos@+Azcos @)’ O(p, + P AX+ P,AZ+ p,AX+ p,AZ)
oy 124 oy

_ @ 0(h, +Axcos ¢+ Az cos @)
T2 Y

} (A3)

+ AXcos @+ AZcos¢@

Once the perturbation pressure is known, dynamic coefficients can be calculated by

integrating the pressure over the bearing area [35]. For example, the non-dimensional

coefficient Ky can be obtained using:

A5



Ky = [ [ p, cos graydg (Ad)
w y ¢

The perturbation pressure p, is determined by collecting the terms of O(AX) in

Eq. (A3):

Li{ﬁ%}i{h_o}%}_

06| 121 04 | oy| 121 oy
(A5)
N Sin¢_|_3cos¢8_ho _h’ p, 0 (cosg
2 h 0p ) 4ur’ 04 dp| h

Notably, the linear perturbation equation; BEq..(AS5), is similar to the Reynolds
equation, Eq. (2-1), so the code developed for the €quilibrium state can be directly

applied. | Y

The dimensionless critical mass-is derived from. the eigenvalue for “threshold of
instability of the equation of motion [14]:

M, = % (A6)
0

(Kxx _KO)(KZZ _KO)_ szsz
D.D_-D,D

XX~ 7z XZ = ZX

with @, =

(A7)

and K, = Kxx Dzz + Kzz Dxx — sz sz — sz sz (A8)

DXX + DZZ
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