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摘要 

本文提出一種新的橢圓溝槽設計，以改善傳統含人字形溝槽頸軸承的性能。文

中的第一部分，先以寬頻元素法為基礎，發展可求解含人字形溝槽頸軸承的壓力

分佈與動態係數的數值程式。程式中考慮了溝槽與溝岸交接的界面，以質量守恆

處理液膜不連續的問題。此外，程式擁有處理曲線溝槽形狀的彈性。結果顯示，

程式解出的負載，比其他文獻的數值結果更準確。當空蝕現象發生時，採用溝槽

不連續的質量守恆搭配 Elrod 算則處理空蝕現象，可以進一步改善在高偏心比之

負載準確度。 

本文的第二部分，提出含橢圓溝槽之新形狀的軸承，並使用上述發展的數值程

式，分析其性能。橢圓溝槽軸承的負載、穩定性、洩漏量與傳統人字形溝槽軸承

比較，結果顯示，本文提出的橢圓形溝槽擁有高徑向力、高負載、和低洩漏量。

接著，本文找出軸承運轉時，最佳化溝槽參數，使軸承有最大的徑向力。最後，

本文比較人字形、四邊溝槽、八邊溝槽、及橢圓形溝槽軸承表面的負載分布。以

說明橢圓形溝槽的設計，如何增加負載。橢圓形溝槽軸承在軸向的負載分布，較

人字形溝槽軸承均勻。在軸承中央處較人字形溝槽低的負載，會被軸承兩端較高

的負載抵銷，於是達到較人字形溝槽高的負載。 

本文的最後一部分，將橢圓形溝槽應用於可反轉的軸承上，以改善可反轉人字

形溝槽的負載，並以數值方法探討性能改善的程度。橢圓溝槽可反轉軸承的負載、

穩定性、耗能與傳統人字形溝槽可反轉軸承比較。比較結果顯示，橢圓形溝槽可

反轉軸承的負載較高，耗能較低。橢圓溝槽可反轉軸承的高壓區不只在正轉的壓
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力產生區，也在反轉需要的壓力恢復區產生。此外，比較人字形、及橢圓形溝槽

可反轉軸承表面的負載分布。以說明橢圓形溝槽的設計，如何增加負載。最後，

在徑向剛性係數為考量的最佳化參數之下，橢圓形溝槽可反轉軸承的穩定性比人

字形溝槽可反轉軸承優異。 

 

關鍵字:液體動壓軸承、橢圓溝槽、人字形溝槽、空蝕現象、穩定性、寬頻元素法
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Abstract 

A novel elliptical groove is proposed in this work to improve the performance of 

conventional journal bearings. Firstly, the present work utilizes the spectral element 

method to calculate the pressure distribution and dynamic coefficients of 

herringbone-grooved journal bearings (HGJBs), in which the thickness of the fluid film 

changes abruptly in the groove-ridge region. Conservation of mass is adopted to solve 

the problem. Additionally, the present method can be adopted for grooves with curvy 

geometry. It shows that for the case of HGJB, the numerical result by the present 

method is more accurate than the numerical results found in the literature. Furthermore, 

employing the present method with the Elrod’s algorithm can improve the accuracy of 

deriving loads of HGJBs when cavitation occurs.  

In the secondary part of this work, the novel elliptical grooves are proposed. This 

work utilizes novel elliptical grooves on a journal bearing and analyzes the 

characteristics of the elliptical-grooved journal bearings (EGJB) numerically. Load 

capacity, stability parameter, and total side leakage of the EGJB are compared with 
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those of the HGJB. The comparison shows that the introduced EGJB have higher radial 

force, higher load capacity, and lower side leakage than the conventional HGJB. The 

optimum geometrical parameters of groove of EGJB are investigated based on the 

maximum radial force. Finally, the load distributions of several grooved journal 

bearings are compared to elucidate how elliptical grooves enhance load characteristics. 

The load distribution along the axial direction in EGJB is more uniform than that in the 

HGJB. The low load near the bearing center for the EGJB may be offset by the load 

away the bearing center; thus, a higher total load capacity than that of HGJB is 

achieved. 

 In the end of this work, to improve the performance of the reversible rotation 

grooved journal bearing (Rev-HGJB), this work utilizes elliptical grooves on a 

reversible rotation journal bearing (Rev-EGJB) and analyzes its characteristics 

numerically. Load capacity, pressure distribution, power loss, and dimensionless radial 

stiffness of the Rev-EGJB are compared with those of the Rev-HGJB. The comparison 

shows that the introduced Rev-EGJB exhibits higher load capacity and lower power loss 

than the Rev-HGJB. A larger high pressure region in the Rev-EGJB than that in the 
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Rev-HGJB is achieved not only in the pressure-generated region, but also in the 

pressure-restored region. Furthermore, the load distributions of the Rev-HGJB and 

Rev-EGJB are compared to elucidate how elliptical grooves enhance load 

characteristics. Ultimately, the radial stiffness of the Rev-EGJB compared with that of 

the Rev-HGJB with the optimum geometry is also shown to be greater; thus, the 

Rev-EGJB is more stable than the Rev-HGJB. 

 

Keywords: Hydrodynamic journal bearing, Elliptical groove, Herringbone groove, 

Cavitation, Stability, Spectral element method 
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1. Introduction 

1-1  Current Applications of Grooved Journal Bearings 

Hydrodynamic bearings are representative devices because of their low noise, low 

friction and high shock resistance, and they have several applications in data storage 

devices such as DVD and hard disk drive spindles [1, 2]. As data storage requirements 

of large capacities have increased markedly, improving the recording density in hard 

disk drive applications is essential. Conventional disk drive motors are supported by a 

bearing comprised of metal balls between a rotor and shaft. Thus, if any ball is defective, 

track misregistration occurs [3]. Hence, a spindle motor requires a non-contact bearing 

system to meet the demand of low non-repeatable runout of a spindle. Herringbone 

grooves on the journal bearing are used to increase spindle stiffness [4]. These grooves 

can distribute shock responses over an entire bearing, and thereby enhance mechanical 

damping of a bearing system. Herringbone-grooved journal bearings (HGJBs) also 

prevent contact between rotating and stationary parts. Moreover, adding herringbone 

grooves to the journal bearing allows lubricants to be pumped into the bearing, reducing 
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side leakage of the oil film [5]. Therefore, herringbone-grooved journal bearings 

(HGJBs) have been commonly employed in the computer information storage industry 

to provide for high rpm performance, such as that required for HD and DVD drives. 

To widen the applications of HGJBs, Kawabata et al. [6] proposed a novel 

reversible rotation HGJB that can be rotated clockwise or counterclockwise. The helical 

grooves on the surface of journal are engraved with three regions, as shown in Fig. 

1-1-1 When the shaft is rotating normally, the lubricant is pumped into the bearing from 

region 1 to region 2 and from region 2 to region 1; thus, high pressure is generated in 

the region around the border of region 1 and region 2, which is called the 

“pressure-generated region.” The region around the border of region 2 and region 3 is 

restored as the shaft rotates reversely for the purpose of pressure, and is called the 

“pressure-restored region.” 
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Fig. 1-1-1 The reversible rotation type herringbone grooved journal bearing proposed by 
Kawabata et al. [6]  

In contrast, when the shaft is rotating reversely, the lubricant is pushed into the 

bearing from region 3 to region 2 and from region 2 to region 3. Thus, the reversible 

rotation HGJB is beneficial for load when the spindle motor rotates in the opposite 

direction, since it prevents the “no load capacity” condition when the shaft is rotated in 

the reverse direction. However, the load capacity of this bearing is only 70% of that of 

the conventional HGJB. In addition, few studies [7, 8] have investigated the 

characteristics of the reversible rotation HGJB. Therefore, the investigation of reversible 

rotation journal bearings with grooves is clearly warranted. 
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1-2 Research Needs for Groove Appearances 

Although using HGJBs can improve stability characteristics, the smaller load 

capacity of HGJBs than that of plain journal bearings is a significant disadvantage. 

Therefore, some studies investigated ways to improve the herringbone groove profile. 

Kawabata et al. [6] proposed a novel reversible rotation HGJB that can be rotated 

clockwise or counterclockwise. However, the load capacity of this bearing is roughly 

70% of that of the conventional HGJB. Junmei et al.[8], who studied the performance of 

asymmetrical HGJBs with a cavitation effect, concluded that a symmetrical groove 

pattern has the highest load capacity. Leuthold et al. [9] applied a sinusoidal groove 

pattern to a bearing. However, they did not assess the performance of this bearing. Liu 

et al. [10] presented the multi-step hydrodynamic grooved journal bearing. In contrast 

to conventional HGJBs, they developed an HGJB with a single set of helical grooves. 

The load capacity and stability of the multi-step HGJB are better than that of a HGJB.  

    On the other hand, some researchers improved the rectangular profile of 

herringbone grooves. Kang et al. [11] proposed a HGJB with circular-step grooves 

instead of rectangular grooves. They demonstrated that the circular-profile HGJB has 
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approximately 10% higher load capacity than a HGJB with a rectangular profile for 

eccentricity ratios up to 0.5. Gad et al.[12] found that for the circular groove profile in 

convergence over the step, the exit surface is approximately inclined, thereby reducing 

pumping capability. To overcome pressure losses of an abrupt step, they introduced a 

beveled-step groove profile for the HGJB, and increased load capacity and stability. 

Hence, to improve HGJB performance, one can investigate groove geometry. 

    Most studies mentioned employed straight-line grooves, which is similar to the 

herringbone groove. Few studies have examined a journal bearing with curved grooves. 

Additionally, no study has analyzed numerically or experimentally the improved effects 

of curved grooves. Therefore, investigations of journal bearing with curved grooves are 

warranted. 

1-3 Stability Criteria 

Many researchers have written programs to numerically analyze the stability of a 

journal bearing. Kirk and Gunter [13] determined the stability of the journal bearing 

system by the Routh-Hurwitz criterion, and examined the roots of the characteristic 

equation of the system. Similarly, if the journal bearing is perturbed at the equilibrium 
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position, then the threshold of operation for stability, the critical mass, can be obtained 

by solving the eigenvalue of equations of motion [14]. However, only a few studies 

have discussed critical mass and its relation to the stability of HGJBs. For instance, 

Bonneau and Absi [15] discussed the relationship between stiffness coefficients and the 

grooves, but they did not calculate the critical mass. Zirkelback and San Andrés [16] 

also made no mention of the relationship between groove angle and critical mass. Rao 

and Sawiski [17] showed that HGJBs have a higher critical speed than do plain journal 

bearings for concentric operation, but they did not discuss how the shape of groove 

might affect the stability threshold. 

1-4 Cavitation Model 

Lubricants are widely used in fluid film bearing to reduce friction and wear, 

provide load capacity. In the region of local converging film thickness, the 

hydrodynamic pressure rises to a peak and then decreases to ambient values at the side 

and trailing edges of the thin film; In zones where the film thickness locally increases, 

the fluid pressure may drop to ambient or below to its vapor pressure leading to the 

release of dissolved gases within the lubricant or lubricant vaporization.  
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As is known, cavitation phenomenon is important in liquid-lubricated journal 

bearings. The calculation of hydrodynamic force is dependent on the film model used, 

especially at high eccentricities. Some film models treat the cavitation in a simple way. 

For example, π-film theory (half-sommerfeld) and Swift-Stieber boundary condition.  

Elrod and Adams introduced a computational scheme that mimics JFO theory[18], 

which is called “Elrod’s algorithm”. It avoids the complex program to trace the 

boundary between grid points. The algorithm incorporates a switch function and satisfy 

the mass continuity and the JFO theory. Relatively, JFO theory and Elrod’s algorithm 

are preferable methods to account for cavitation boundary conditions for hydrodynamic 

liquid-lubricated bearing. Lee et. al [19] and Jang and Chang[20] analyzed the HGJBs 

with cavitation based on these theories. This work employs the Elrod’s algorithm to 

account for the cavitation condition. 

1-5 Analysis Methods 

1-5-1  Discretization Method 

When grooves on a journal bearing are curved or have a complex geometry, the 

Reynolds equation must be solved using numerical methods with geometric flexibility.  
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Generally, the finite element method (FEM) was adopted for spatial discretization. 

However, most interpolation functions used in an element are low-order polynomials. 

Thus, the solutions obtained by the FEM converge algebraically as the number of 

elements increases. 

   In 1984, Patera [21] proposed the spectral element method (SEM) by combining 

geometric flexibility of the FEM with the rapid convergence of the spectral method. The 

SEM is highly accurate and can discretize the domain into curvy geometries. The 

variables of computational domain are represented as high-order Lagrangian 

interpolants that improve the accuracy of solution in space with exponential 

convergence. For spatial discretization in curved geometries, Patera used an 

isoparametric mapping from the physical curvilinear quadrilaterals into the local 

standard elements [22]. Additionally, Schneidesch and Deville [23], who also solved the 

problem of curvy geometries, generated the curvilinear grid of quadrangle subdomains 

using Gordon transfinite interpolation[24]. 

Some studies have dealt with curved geometries using the SEM. Most studies are 

solved the circular geometry via flow problems between rotating cylinders [22, 25], of 
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cosine channel flow [23], and of two-dimensional compressible flow [26]. Additionally, 

the curved elements using the SEM are developed to solve three-dimensional flow 

problems [27, 28]. Therefore, spatial discretization using the SEM can be employed to 

analyze the improved effects of curved grooves on a journal bearing. 

1-5-2 Treatment at the Discontinuity of Groove-Ridge Region 

Many researchers have investigated the performance of HGJBs. In previous studies, 

the pressure distribution of the fluid film in the groove-ridge region was obtained by 

applying the narrow groove theory (NGT). NGT assumes that the number of grooves is 

infinite, such that the pressure distribution can be regarded as essentially linear along 

the grooves. Vohr and Chow [29] analyzed the herringbone-grooved gas-lubricated 

journal bearing using NGT, but manufacturing journals or sleeves with as many grooves 

as are required would be very expensive. Additionally, NGT overestimated the bearing 

load when the number of grooves was less than 16 [15], and when the number of 

grooves exceeds 16, the correct results can only be obtained at a low eccentricity. Hence, 

numerical methods that can be applied to bearings with a finite number of grooves must 

be developed. 
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In the 1990s, the number of investigations of bearings with finite numbers of 

HGJBs increased rapidly. Bonneau and Absi [15] presented a numerical study of gas 

herringbone grooved journal bearings that had a small number of herringbone grooves 

and analyzed the domain of validity of the NGT. Zirkelback and San Andrés [16] used 

finite element method to analyze HGJB pressure distribution and dynamic force 

coefficients. Faria [30] present a way to analyze HGJBs by combining the finite element 

method with high-order shape functions. 

Only a few researchers have yet mentioned the issue of film thickness 

discontinuities in HGJBs with a finite number of grooves. Most of these studies have 

involved the application of a finite difference method (FDM) for discretization. For 

example, Kang et al. [11] used staggered nodes to avoid a violent change in film 

thickness, while Jang and Chang [20] investigated HGJBs by combining the finite 

volume method with Elrod’s cavitation algorithm. The latter mentioned the 

incompatibility of Cartesian coordinates with grooves. Junmei et al. [8] assumed that 

the groove-ridge boundary was a slope because of the viscosity of the fluid film. 

However, this assumption was not accurate in practice, and the work also revealed the 
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shortcoming of the use of the FDM in processing the groove-ridge region.  

The finite volume method has also been applied to solve the groove-ridge 

discontinuity problem. Arghir et al. [31] considered film discontinuities with a 

conserved flow rate, and applied the method to thrust bearing. Hernandez and Boudet 

[32] analyzed spiral groove gas seals, taking into consideration the continuity of normal 

mass flow at the groove boundaries of discontinuities. However, they used the equality 

relations of pressure and pressure gradient to re-establish the continuity of coupled 

nodes, which added computational complexity in the regions of film thickness 

discontinuities. Accordingly, the discrete method with discontinuity at the groove-ridge 

boundaries in HGJBs must also be improved. 

1-6 Dissertation Outline 

Firstly, the current work presents an approach for calculating the pressure 

distribution in, and dynamic coefficients of, HGJBs, that takes into consideration the 

fluid film discontinuity. Because of the abrupt change in the fluid film thickness in the 

groove-ridge region, conservation of mass was employed to solve this problem. To 

calculate the pressure distribution of the fluid film and carefully treat the cavitation 
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phenomenon, this work also combines the groove-ridge treatment in the Elrod’s 

algorithm. The results are compared with experimental and computational results 

published in several studies. The comparison shows that the method can be employed to 

satisfactorily analyze HGJBs. 

Secondly, this work proposes a novel elliptical-grooved journal bearing (EGJB) for 

data storage devices. A numerical program is used to analyze the appearance and 

characteristics of the EGJB. To calculate the pressure distribution of a fluid film, the 

Reynolds equation was solved using the SEM. Load capacity, the stability parameter, 

and side leakages of the EGJB are compared with those of the HGJB. The EGJB’s 

configuration, which maximizes radial force, is investigated. Finally, the load 

distributions of several grooved journal bearings are compared to elucidate how 

elliptical grooves enhance load characteristics. 

Finally, this work employs the elliptical groove on a reversible rotation journal 

bearing. The load distributions of the reverse rotation grooved journal bearings are 

compared to elucidate how elliptical grooves enhance load characteristics. Then, the 

Rev-EGJB’s configuration, which maximizes radial force, is investigated.  
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2. Governing Equations 

2-1 Reynolds Equation 

Fig. 2-1-1 shows the coordinate system and geometry of a HGJB. The curvature of 

the film in the journal bearings is neglected. Since the film thickness is much less than 

the radius of the bearing, the fluid film can be unwrapped into a plane. The Reynolds 

equation for steady-state, laminar, isothermal, and incompressible flow is: 

  
3 3

2

1
12 12 2
h p h p h

r y y
ω

φ μ φ μ φ
⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂

+ =⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ,                 
(2-1)  

where the coordinate system ( , )yφ is fixed to the bearing. 

  

Fig. 2-1-1 Sketch of the fluid thickness for grooved bearing 
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Fluid thickness in the ridge or groove regions in terms of circumferential coordinate is 

shown in Fig. 2-1-2. The fluid thickness in the ridge and the groove regions in 

circumferential coordinates are:  

 c(1+ cos )h ε φ=   in the ridge,               (2-2a) 

and  gc +c(1+ cos )h ε φ=  in the groove.              (2-2b) 

 

Fig. 2-1-2 Fluid thickness in the ridge or groove regions in terms of circumferential 
coordinate 

However, for a smooth bearing, the film thickness changes as the grooved journal 

rotates. This problem can be solved by assuming that the groove journal is stationary 
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and the smooth bearing is rotating in the direction opposite to that of the groove journal 

[16]. Thus, the Reynolds equation for a smooth bearing is 

3 3

2

1
12 12 2
h p h p h

r y y
ω

φ μ φ μ φ
⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂

+ = −⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ,
                (2-3) 

where the coordinate system ( , )yφ is fixed to the journal. 

The pressure field is continuous in the circumferential direction 

( ) ( ), 2 ,p y p yφ φ π= + ,                        (2-4) 

and the cavitation algorithm is based on Reynolds condition 

1 0cavp or= −      and   0
cav

p
φ
∂

=
∂

.
                         (2-5) 

Oil film rupture may not occur in the fluid film of HGJBs when there is high 

pressure in the bearing and the lubricant supply is sufficient. In this case, the cavitation 

pressure is zero. However, as some part of the oil film is under negative pressure, the 

influence of negative pressure on the oil film rupture region cannot be disregarded. 

The pressure boundary conditions at bearing edges are , , 0
2 2
L Lp pφ φ⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ . 
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Once Eq. (2-1) has been solved for the pressure in the equilibrium state, the radial 

and tangential loads can be obtained by integrating the pressure over the bearing area, as 

follows: 

    sin( )t
A

W pr dydπ φ φ= −∫                         (2-6a) 

cos( )r
A

W pr dydπ φ φ= −∫
.
                        (2-6b) 

The load can be expressed as: 

( )1/ 22 2
t rW W W= +

.
                        (2-7) 

In dimensionless form, the load capacity is:  

2
2 ( )W cW

r rμω
=

.
                         (2-8) 

Also the load distribution along the axial direction can be obtained by integrating the 

pressure force circumferentially  

1/ 22 22 2

0 0

' sin( ) cos( )W pr d pr d
π π

π φ φ π φ φ
⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= − + −⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫

,       

 (2-9) 

  and its dimensionless form, the distribution of dimensionless load capacity, is 
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2
2

'' ( )W cW
r rμω

=
.
                      (2-10) 

Side leakage, which is induced by the pressure gradient in the direction of bearing 

length, can be obtained by integrating the pressure gradient and film thickness over the 

circumferential direction. Side leakage from the front end and the rear end are given by 

32

1 0
/ 2

2
12 y L

h pq r d
y

π
φ

μ
=

⎛ ⎞∂
= − ⎜ ⎟∂⎝ ⎠

∫                     (2-11a) 

32

2 0
/ 2

2
12 y L

h pq r d
y

π
φ

μ
=−

⎛ ⎞∂
= − ⎜ ⎟∂⎝ ⎠

∫
.
                    (2-11b) 

The total side leakage is then given by 

1 2q q q= + .                           (2-12) 

Notably, the magnitude of the front end and the rear side leakage are the same for 

symmetrically grooved patterns, but are different for asymmetrically grooved patterns.  

In a dimensionless form, total side leakage is 

2
rcL

qq π
ω

=
.
                             (2-13) 
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2-2 Elrod’s Cavitation Algorithm 

Hirayama et. al[33] indicated that cavitation may largely influence pressure 

distribution. To carefully deal with the cavitation phenomenon, the Elrod’s cavitation 

algorithm is applied in many studies and is found to preserve mass conservation 

throughout the entire fluid film. This section illustrates that the present treatment of 

groove-ridge discontinuity can also be included in the Reynolds equation with Elrod’s 

algorithm[34]. 

The modified Reynolds Equation, introduced by Elrod, is written as: 

 
( ) ( )3 3

12 12 2
c c

c c

h hh h ug g
x x y y t x

θ θρ ρθ θβ β ρ ρ
μ μ

∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
+ = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ,

         (2-14) 

where θ  is the density ratio of fluid density ρ divided by fluid density in the cavitation 

region cρ , β is the bulk modulus, and g is a switch function in the flow field with 

     
1
0

for full film region
g

for cavitation region
−⎧

= ⎨
⎩ .

                         (2-15) 
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In Elrod’s algorithm, JFO theory was incorporated into a single Reynolds equation valid 

on both the full film and cavitation zones. A switch function g allows satisfaction of the 

boundary conditions at the cavitation interface in the full film and cavitation regions. 

The pressure can be obtained from fluid density:        

 ln( )cavP P gβ θ= + .                       (2-16) 

Thus, the load capacity can be obtained from the Eq.(2-6) to Eq.(2-8). 

2-3 Stability Parameter 

This study discusses stability using the dimensionless radial stiffness, which was 

employed by Vohr and Chow [29], and Gad et al. [12]. The definition of dimensionless 

radial stiffness is  

2 cos
R

WF π φ
ε

=
                       

 (2-17)
   

The large radial force parameter is able to restrain the centrifugal force, which is 

produced from whirling phenomena [29]. 
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2-4 Groove Profile 

Fig. 2-4-1 shows the shape of the elliptical grooves. Because variation in elliptical 

shape affects the pressure distribution of a fluid film, this work varies the elliptical axis 

ratio to determine how the shapes of elliptical grooves affect EGJB performance. The 

equation of elliptical grooves is  

2 2
0 0

2 2

( ) ( ) 1
a b

x x y y
L L
− −

+ =                          (2-18) 

where the center of the ellipse is at 0 0( , )x y , and aL and bL are the axis length in the 

x-direction and y-direction, respectively. The elliptical axis ratio τ is a

b

L
L

. 
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Fig. 2-4-1 Parameters of the EGJB (The grooves can be engraved on either journal or 
bearing surface.) 

The appearance of the elliptic groove is equivalent to a herringbone groove with a 

groove angle of 90° at the bearing center and groove angle of 0° at both ends, meaning 

that the groove angle decreases gradually from the center in the direction of bearing 

length. Instead of a straight-line groove, the elliptical groove is adopted to improve the 

performance of grooved journal bearings. 
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3. Numerical Method 

This chapter introduces the numerical method used in the program, which solves 

the Reynolds Equation. The spatial discretization of fluid film is shown in Section 3-1. 

The analysis at the groove-ridge discontinuity of 1-D and 2-D bearing is written in 

Section 3-2. Finally, the grid independence test is validated in Section 3-3. 

3-1 Spatial Discretization- Spectral Element Method (SEM) 

The SEM, a high accuracy and efficiency method, is used to discretize the 

Reynolds equations for HGJB. The Reynolds equations can be written as  

3
0( ) 6 0 ;j x y

hh p u in e e
x x y

μ ∂ ∂ ∂
∇⋅ ∇ − = Ω ∇ = +

∂ ∂ ∂ ,
        (3-1) 

where Ω is the computational domain.  

Assume that v pδ=  is the test function of p, and multiply Eq. (3-1) by υ with 

weighted residual method, the first term of Eq. (3-1) yields: 

3 3 3( ) ( ) ( ) ( )
S

h p vd v h p dS h p v d
Ω Ω
∇ ⋅ ∇ Ω = ∇ ⋅ − ∇ ⋅ ∇ Ω∫ ∫ ∫ .

     (3-2) 

where S is the boundary of computational domain. Substitute Eq. (3-2) into Eq. (3-1), 
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the weighted-integral form can be derived as : 

        3 3
0( ) ( ) ( ) 6

s

hh p v d v h p dS vd
x

μ
Ω Ω

∂⎛ ⎞∇ ⋅ ∇ Ω = ∇ ⋅ − Ω⎜ ⎟∂⎝ ⎠∫ ∫ ∫ U
,
       (3-3) 

the first term of RHS is the flow rate on the boundary. 

For solving flow field in complex geometries, SEM is provided to divide the flow 

elements Ω into k spectral elements,  

1
K
k k=Ω = Ω∪ .                           (3-4) 

Fig. 3-1-1 shows the transformation from the local coordinate iΩ (x,y) to the physical 

coordinate system Ω (r,s) of a square region. The mapping function of each of the 

spectral elements is 

( ) [ ]ˆ, ( , ) , 1,1ix y r s∈Ω ⇒ Ω ∈Λ×Λ Λ = −       
,        (3-5) 
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Fig. 3-1-1 the transformation from the local coordinate to the physical coordinate 
system 

 

and its Jacobian of transformation can be written as : 

x y
r rJ
x y
s s

∂ ∂
∂ ∂≡
∂ ∂
∂ ∂ .

 

Thus we can derive 

1 1 1 1r y s y r x s x
x J s x J r y J s y J r
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= = − = − =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 ,  ,  , 
.
        (3-6) 
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Rewrite the Eq. (3-3) in terms of local coordinates : 

 
3

1 1

1 ( ) ( )
K K

k k k k k
k

k k
v h p drds v f J drds

JΩ Ω
= =

∇ ⋅ ∇ = −∑ ∑∫ ∫
,
     (3-7) 

where                         06 hf
x

μ ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
U

                           
 

         and ( ) ( )x y
y y x xe e
s r r s r s s r
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∇ = − + −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ .

            (3-8) 

The pressure P is approximated by 

                   ( )
0 0

, | ( ) ( )k

N N
k
mn m n

m n
p x y p h r h s

Ω
= =

= ∑∑
,
                (3-9) 

where 
k
mnp is an approximate pressure of nodal point (m,n) in the k-th element, and

( )ih ζ  is orthogonal Lagrangian interpolants of degrees n. It satisfies the property 

                           ( )i j ijh ζ δ=                            (3-10) 

                         ( )j
i ij

dh
D

dr
ζ =

.
                          (3-11) 

ih  is unity at a single point, and are zero at all other Gauss–Lobatto Legendre points. 

The points iζ  are the collocation points, and its quadrature weights is defined by 
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the relationship 

'
0 1, 1, ( 1, ..., 1)N j Nj N zeroes of Lξ ξ ξ= − = = −              (3-12) 

2
2 1 0,....,

( 1) ( )
p

N p

j N
N N L

ρ
ζ

= =
+ ⎡ ⎤⎣ ⎦

    

.

               (3-13) 

Similarly, the test function v can be shown by Lagrangian interpolation function 

           ( ) ( ) ( ), | k i jv x y h r h s
Ω
= .                        (3-14) 

Substitute u and v into Eq. (3-7), and obtain 

       ( ) ( ), ,k k k k k k
i j ijmn mn i j ijpq pqp p v vζ ζ ζ ζ∇ = ∇ ∇ = ∇              (3-15) 

with 

( ) ( ) ( ) ( )k k k k k
ijmn ij im jn ij im jn x ij im jn ij im jn yy s D y r D e x r D x s D eδ δ δ δ⎡ ⎤ ⎡ ⎤∇ = ∂ ∂ − ∂ ∂ + ∂ ∂ − ∂ ∂⎣ ⎦ ⎣ ⎦ .

 

Then Eq. (3-7) can be derived in the form of tensor product : 

      ( )( )3, ,

1 0 0 1 0 0

K N N K N N
x k y k k k k k k k
ijmn ijmn ijmn mn ij im jn mn

k m n k m n

A A h p J B B f
= = = = = =

+ =∑∑∑ ∑∑∑
,
        (3-16) 

with 
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( ) ( )2 2, 1 [x k
ijmn p q s pi pm nq r qj qn mpk pq pq

pq

A y D D y D D
J

ρ ρ δ δ= +  

( ) ( )2 2 ]s r pi qn mp s r qj pm nqpq pq
y y D D y y D Dδ δ+ +          (3-17) 

( ) ( )2 2, 1 [y k
ijmn p q s pi pm nq r qj qn mpk pq pq

pq

A x D D x D D
J

ρ ρ δ δ= +  

( ) ( )2 2 ]s r pi qn mp s r qj pm nqpq pq
x x D D x x D Dδ δ+ +          (3-18) 

and 

                        k
im i imB ρ δ= .                          (3-19) 

In this way, we could obtain the system of algebraic equations. Since the 

collocation point in element is related to others, the system matrix is dense. This work 

employs the conjugate gradient method (CGM) to solve this system. Fig. 3-1-2 shows 

the flowchart used in this work. 
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Fig. 3-1-2 The flowchart of the numerical program (solver) 
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3-2 Treatment in Groove-Ridge Discontinuity 

3-2-1  For 1-D Step-Slider Bearing 

Firstly, a one-dimensional step-slider bearing, shown in Fig. 3-2-1, is analyzed in 

detail. The analysis demonstrates the way to deal with the abrupt change in the 

thickness of the fluid film in the groove-ridge region of a grooved journal bearing. The 

length of the step-slider is L. The discontinuity is assumed to be in the middle of the 

step-slider. The film thickness is 0 hh s+  in the groove region, and 0h  in the ridge 

region.  
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Fig. 3-2-1 Geometry of a parallel slider bearing 

The governing equation is solved using the SEM, in which the approximate 

solution within a typical element is of the form: 

1
( )

n
e e

j j
j

p p xϕ
=

= ∑
,
                        (3-20) 

where e
jp  is the value of ep  at the j-th node of the element, and ( )j xϕ  is the 

Lagrange interpolation function.  
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The first step is to derive the nodal equation. Based on the Galerkin formulation, 

the weighting function is equal to the expansion base of the pressure. The weighted 

integrated form of the element with boundaries Ax and Bx is: 

 
1

n
e e e
ij j i

j
k p Q

=

=∑                           (3-21) 

where                   3B

A

x ji
ij x

ddk h dx
dx dx

ϕϕ ⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∫

.
                    (3-22) 

The boundary term can be related to the volumetric flow rate by [35]   

12
2

i

e
i i

x x

uhQ qμ
=

⎡ ⎤= −⎢ ⎥⎣ ⎦ ,
                     (3-23) 

where  

3

12 2
i

i
x x

h dp uhq
dxμ

=

⎡ ⎤
= − +⎢ ⎥
⎣ ⎦

                        (3-24) 

is the volumetric flow rate obtained from the continuity equation. Thus, the boundary 

term of each node i can be written as: 
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1

3

3

, 1

,

0, others

n

e

x x

e
e
i

x x

dph i
dx

dpQ h i n
dx

=

=

⎧ ⎡ ⎤− =⎪ ⎢ ⎥⎣ ⎦⎪
⎪
⎪⎡ ⎤= ⎨ =⎢ ⎥⎪⎣ ⎦
⎪
⎪
⎪⎩ .

                        (3-25) 

 

The next step is to assemble the elemental equations into a global equation. The 

balance of the boundary terms at the connecting nodes can be simplified by imposing 

the balance of flow rate across the interface of the element: 

1

, 1 1
1

16

0 for the node without a step height
6 for the node with a step height 

n

e e e e
n

e e

x x x x

h h

Q Q Q

u h h

s u s

μ

μ

+ +

+

= =

= +

⎡ ⎤= −⎣ ⎦
⎧

= ⎨
⎩ .

         (3-26) 

3-2-2  For 2-D HGJB with Reynolds Equation 

The two-dimensional governing equation for HGJB is solved by the SEM, following the 

procedure used for the one-dimensional instance above. Discontinuity in the 

groove-ridge region of a two-dimensional HGJB is modeled with two adjacent elements, 

as shown in Fig. 3-2-2. The volume flow rate at point p, located at the interface between 

element 1 and element 2, can be expressed as: 
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3

1 112 2x e
h p uhq

xμ =

∂
= − +

∂
｜ , 

3

1 112y e
h pq

yμ =

∂
= −

∂
｜              (3-27) 

3

2 2

( ) ( )
12 2

g g
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Conservation of volume flow rate at point p yields:  

1 1 2 2x y x yq q q q+ = + .                      (3-29) 

Substituting Eqs. (3-27) and (3-28) into Eq. (3-29) yields:  

3 3 3 3

2 1

( ) ( ) 6g g g
e e

p p p ph c h c h h c u
x y x y

μ
= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + + − + =⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ .
   (3-30) 
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Fig. 3-2-2 Conservation of flow rate at a groove-ridge region 

Therefore, the difference between the boundary terms of two neighboring 

elements at the groove-ridge region is given by: 

, 1 6e e
g eQ c u dLμ+ = ⋅∫ ,

                          (3-31) 

where the length of two adjacent elements is eL .  

The boundary terms at the interface nodes, depicted by Eq. (3-26) or Eq. (3-31), 
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can also be applied to the finite element method, which is a special case of the SEM. 

From the code development point of view, it is evident that a code written for the plain 

journal bearing and for either the finite element or the SEM can be readily revised to 

adapt to grooved journal bearings. The present method can also be adopted for grooves 

with curvy geometry. The author have previously analyze the characteristics of an 

elliptic groove based on the present method [36].  

3-2-3 For 2-D HGJB with Elrod’s Algorithm 

The method of conservation of volume flow rate at point p with two adjacent 

elements is already shown in section 3-2-1 and 3-2-2. with the Reynolds equation. 

Similarly, based on the modified Reynolds equation, conservation of volume flow rate 

with two adjacent elements can be derived. The volume flow rate at point p, located at 

the interface between element 1 and element 2, are : 

3
'
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By the conservation of volume flow rate at point p from Eq. (3-29), the difference 
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between the boundary terms of two neighboring elements at the groove-ridge region is 

obtained, considering the Elrod’s algorithm, as follows: 

3 3 3 3

2 1

( ) ( ) 6g g g

e e

h c h c g h h g c u
x y x y
θ θ θ θβ β θμ

= =
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(3-34) 

Therefore, the difference between the boundary terms of two neighboring 

elements at the groove-ridge region is given by: 

, 1 6e e
g eQ c u dLθμ+ = ⋅∫ .                     (3-35) 

3-3 Grid Independent Test 

3-3-1 HGJB 

In this work, the element we used in the first groove was taken apart in the 

circumferential direction and treated as a periodic boundary. Therefore, the simulation 

was performed with nine grooves and eight ridges, with a total of 17 elements in the 

circumferential direction and eight elements in the axial direction. Table 3-3-1 presents 

the geometrical parameters of the HGJBs. Fig. 3-3-1 displays the mesh system that was 

used in the program.  
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Table 3-3-1 Design parameters of the HGJB 
Clearance, c 6×10-6  (m) 

Radius, r 0.002  (m) 

Length, L 0.004  (m) 

Fluid viscosity, μ 0.00124 (Pa ⋅s)

Number of grooves 8 

Groove depth ratio, Γ 1.0 

Groove width ratio, δ 0.5 

Journal speed, ω 5000 (rpm) 

Groove location on bearing 

 

Fig. 3-3-1 Mesh system used in the program  
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Before the HGJBs were analyzed, a sufficient number of grids in the computational 

domain had to be established. The following operating conditions were used: groove 

angle = 20 degrees, groove depth ratio = 1.0, groove width ratio = 0.5, eccentricity ratio 

= 0.7, and diameter to length ratio = 1. 

Table 3-3-2 presents the critical masses (appendix A) evaluated using various 

nodes. As the number of nodes increases, the critical masses asymptotically approach a 

constant. The deviation of critical mass of seven nodes per element from that of nine 

nodes is very small, and so seven nodes were adopted to analyze the HGJBs.  

 

Table 3-3-2 Grid independent test on dimensionless critical mass (appendix A)at groove 
angle of 20°, groove depth ratio of 1.0, groove width ratio of 0.5, and at eccentricity 
ratio of 0.7 

Number of Nodes 
Dimensionless 
Critical Mass Deviation 

3 18.83 -2.03% 
4 18.85 -1.93% 
5 18.99 -1.20% 
6 19.09 -0.68% 
7 19.19 -0.16% 
8 19.22 0.00% 
9 19.22 
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3-3-2 EGJB 

This work used curvilinear elements to discretize the elliptical grooves, and mapped 

the physical curvilinear quadrilaterals into local standard elements isoparametrically [22] 

in this numerical program. The elements used in the first groove were taken apart in the 

circumferential direction, and treated as a periodic boundary. Therefore, a simulation 

was performed with a total of 17 elements in the circumferential direction and 8 

elements in the axial direction. Fig. 3-3-2 shows the mesh system used in the program 

for EGJB.  
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Fig. 3-3-2 Mesh system used in the program of EGJB 

Before the EGJBs are examined, whether the number of nodes in the 

computational domain is sufficient must be determined. Operating conditions are 

elliptical axis ratio of 1.5, groove depth ratio of 1.0, groove width ratio of 0.5, and 

eccentricity ratio of 0.7. 

Fig. 3-3-3 and Fig. 3-3-4 present load capacity and side leakage of EGJB evaluated 

using various nodes. As the number of nodes per dimension for an element increases, 

load capacities asymptotically approach a constant. The difference in load capacity with 
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8 nodes and 10 nodes is very small; thus, 8 nodes were used to analyze the EGJB.  

 

Fig. 3-3-3 Grid independent test to evaluate the load capacity of EGJB 
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Fig. 3-3-4 Grid independent test to evaluate the leakage of EGJB 
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4. Validation 

This work firstly verifies the numerical programs for a 1-D slider bearing and for 

the HGJB in section 4-1 when there is a simple cavitation account in the fluid film. 

Secondly, the numerical program of the HGJB with Elrod’s algorithm is validated in 

section 4-2. Ultimately, the numerical program of the EGJB is validated.  

4-1 Load Capacity 

4-1-1 One-dimensional Step-Slider Bearing 

The numerical results were compared with the analytical solution for a step with an 

infinitely wide Rayleigh step bearing. The governing equation for a one-dimensional 

slider bearing is written as: 

3

12 2
d h dp u dh
dx dx dxμ

⎡ ⎤
=⎢ ⎥

⎣ ⎦
                          (4-1) 

The equation above can be solved by the SEM mentioned in the previous section. 

The parameters used were: 21.0 10hs m−= × , 35.0 10oh m−= × , 1.0L m= , 20 /u m s= , 

and the number of grid cells used was 17. Notably, two elements, the groove element 

and the ridge element, are used to balance the boundary terms.  
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To compare the pressure distribution calculated, the central difference method was 

also employed here to discretize the slider bearing. To demonstrate the effect of the 

treatment at the discontinuity on the accuracy of pressure, there are two ways to deal 

with the discontinuity. One is to obtain the derivative of the film thickness with respect 

to length in the region of the discontinuity by treating the groove-ridge boundary as a 

slope, as was done by Junmei et al. [8]. The other is to apply the conservation of mass at 

the discontinuity.  

Fig. 4-1-1 plots the pressure distribution obtained by the SEM and by the FDM. 

The pressure distribution obtained using the SEM, in which the treatment at the 

discontinuity is taken, is almost identical to the analytic solution [35]. It can also be 

seen that the pressure distribution is 12% less accurate when using the FDM without the 

treatment that considers the conservation of mass at the discontinuity. However, when 

using the FDM with the treatment at the discontinuity, the pressure distribution is as 

accurate as that obtained using SEM.  
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Fig. 4-1-1 The numerical result of pressure distribution in one-dimensional slider 
bearing 

4-1-2 Load Comparison of HGJB 

The numerically determined load of HGJB with the Reynolds equation can be 

verified as follows. For this case, this work simply adopts the Reynolds condition at the 

edge of the cavitation region. Fig. 4-1-2 shows a comparison of bearing load capacities 

with the experimental data presented by Hirs [37]. The present method, in which the 

groove-ridge discontinuity treatment is considered, is accurate in solving the load of the 

HGJBs except for the case of the load capacity at above the eccentricity ratio 0.6. The 

discrepancies may result from the occurrence of cavitation, which will be discussed in 

the next section. 
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Fig. 4-1-2 Comparison of load with studies [8, 20, 37] 

Therefore, by validating the one-dimensional slider bearing and the HGJB, it can be 

concluded that the present method – the SEM incorporating the treatment at the 

discontinuity by considering conservation of mass – can be applied to correctly 

determine the pressure distribution of the fluid film. 

On the other hand, the numerical program was verified experimentally using a 

prototype spindle motor built in the laboratory. The study [10] designed the geometry of 
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a novel multi-step HGJB using our numerical program for HGJB, then the study 

showed that the multi-step HGJB has the required load capacity. 

4-1-3  Load Comparison of HGJB with Elrod’s Model 

The numerical program for a plain journal bearing is first discussed to verify the 

accuracy of pressure distribution considering a cavitation analysis. The HGJB with 

cavitation appearance is then tested to verify the accuracy of numerically determined 

loads when the conservation of mass flow rate in a discontinuous fluid film is applied 

with Elrod’s algorithm. 

4-1.3.1 Load of a plain journal bearing with cavitation  

Fig. 4-1-3 shows the comparison of the pressure distributions for a plain journal 

bearing using the present method incorporating the Elrod’s algorithm and the 

experimental data presented by Jakobsson and Floberg [18]. It can be seen that the 

agreement is very good. Thus, the present code incorporating the Elrod’s algorithm can 

handle the cavitation problem correctly.  
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Fig. 4-1-3 Comparison of experimental data of reference [18] along circumference (a) 
axial position from centerline (L/5D), (b) axial position from centerline (3L/5D) 
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4-1.3.2 Load of a HGJB with cavitation 

Fig. 4-1-2 shows a comparison of bearing load capacities, computed numerically 

by various methods. The present method, in which the groove-ridge discontinuity is 

considered, is more accurate in solving the load of the HGJBs than are the other 

numerical methods [8, 20]. Notably, other studies [8, 20] also applied Elrod’s algorithm 

to the analysis of cavitation. For the case of Hirs’ experiment, cavitation appears above 

an eccentricity ratio of 0.3, as shown in Fig. 4-1-4. With increases in the eccentricity 

ratio, the discrepancies of loads predicted by the Reynolds condition are greater due to 

the cavitation zone increases. Furthermore, the loads evaluated by the present treatment 

are more accurate when cavitation occurs. This may result from the consideration of 

conservation of mass at the groove-ridge region and at the cavitation inception 

concurrently by Elrod’s algorithm. Further investigation is needed to understand this 

coupling effect.  
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Fig. 4-1-4 Cavitation area ratio for the Hirs’ experimental case 

Fig. 4-1-5 plots the pressure distributions at the axial position from centerline L/2 

of various eccentricity ratios, and indicates why cavitation occurs above the eccentricity 

ratio 0.3. As the eccentricity increases, the hydrodynamic pressure rises gradually in the 

converging film region and drops gradually to the ambient pressure or below its vapor 

pressure due to lubricant vaporization. Therefore, employing the present method with 
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Elrod’s algorithm can improve the accuracy of calculating loads of HGJBs when 

cavitation occurs.  

 

Fig. 4-1-5 Pressure distributions at the axial position from the centerline L/2D under 
various eccentricity ratios 

In summary, when cavitation does not occur, applying the groove-ridge 

discontinuity treatment show a good agreement with the data of Hirs. Furthermore, 

incorporating the Elrod’s algorithm also gives a significant agreement when cavitation 

occurs. Thus, the proposed method can be employed with HGJBs. 

4-1-4 Validation of EGJB 

  After the numerical program for the HGJB was validated, the numerical program of 
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the EGJB is validated here. Because no study has determined the performance of an 

EGJB numerically or experimentally, this study validates the EGJB program based on 

the numerical results of the HGJB program. 

This work increases the number of groove sides of the HGJB to resemble the 

elliptical grooves asymptotically. To derive a groove of four sides, this work creates 

corner points of groove first. The corner points are obtained by dividing journal length 

into equal four parts, and inputs y-coordinates of these points into the elliptical groove 

equation. In the end, connect all corner points on a groove (Fig. 4-1-6). Similarly, a 

grooved journal bearing with 8 sides is obtained in this manner. Notably, when the 

number of groove sides increases, the shape of the grooved journal bearing is close to 

that of an ellipse. 

 

Fig. 4-1-6 Sketch of a herringbone groove, elliptical groove, and groove with four sides 
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Fig. 4-1-7 and Fig. 4-1-8 list the load capacities and radial stiffness of the EGJB, 

HGJB, and groove journal bearing with several sides. As the number of groove sides 

increases, load capacities and radial stiffness asymptotically approach that of the EGJB. 

From these reasonable values, we conclude that the code developed for analyzing the 

EGJB performance is also accurate. 

 

Fig. 4-1-7 Load capacities of the EGJB, HGJB, and groove journal bearing with several 
sides 
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Fig. 4-1-8 Dimensionless radial stiffness of the EGJB, HGJB, and groove journal 
bearing with several sides 

  

4-2 Validation of Critical Mass 

Fig. 4-2-1 and Fig. 4-2-2 compare the attitude angle(=tan-1 ( t

r

W
W

)) and dynamic 

coefficients(appendix A) associated with different groove angles with those published 

by Rao and Sawicki [17]. Our numerical results presented here are different from theirs 

and have a smoother variation with the groove angle. This difference may result from 

the disposition of the groove-ridge region when the result of Rao and Sawicki is 

determined using the FDM.  
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Fig. 4-2-1 Validation of attitude angle of HGJB with Rao and Sawicki [17] 

 
Fig. 4-2-2 Comparisons of HGJBs on dynamic coefficients with Rao and Sawicki [17] 
at a groove angle of 70° 
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Critical mass is derived in appendix A. Fig. 4-2-3 indicates that the relationship 

between critical mass and eccentricity approaches the analytical solution for a short 

plain journal bearing [35] as kλ increases. Furthermore, to verify the critical mass of 

HGJB, the diameter to length ratio kλ was fixed and the groove depth ratio decreased 

from 0.1 to 0.01 under the Reynolds condition. As the groove depth ratio was reduced, 

the critical mass of the HGJB approached that of a plain journal at kλ = 16, as plotted 

in Fig. 4-2-4. Therefore, the code developed to evaluate critical mass is validated. 

  

Fig. 4-2-3 Validation of dimensionless critical mass of a plain journal bearing with 
literature [35] 
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Fig. 4-2-4 Validation of HGJB on dimensionless critical mass 
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5. Effect of HGJB’s Appearance on Stability 

In the following, the operating eccentricity of the journal bearing is changed, 

and the critical mass is observed. Therefore, the influence of variations in the 

eccentricity and groove shapes on stability can be inferred.  

There is no cavitation in the following cases. If cavitation occurs, the critical 

mass of the HGJB could also be analyzed by applying the perturbation method in the 

modified Reynolds equation with Elrod’s algorithm. 

 

5-1 Effect of Change in Groove Angle on Critical mass 

As presented in Fig. 5-1-1, when the eccentricity is lower, the critical mass varies 

only slightly with groove angle. When the eccentricity ratio exceeds 0.4, the critical 

mass peaks at a groove angle of 20 degrees.  
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Fig. 5-1-1(a) Dimensionless critical mass at a groove depth ratio of 0.5 

 

Fig. 5-1-1(b) Dimensionless critical mass at a groove depth ratio of 1.0 
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Fig. 5-1-1(c) Dimensionless critical mass at a groove depth ratio of 1.5 

 

Fig. 5-1-2 (a) Dimensionless critical mass at a groove width ratio of 0.25 
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Fig. 5-1-2(b) Dimensionless critical mass at a groove width ratio of 0.5 

 

Fig. 5-1-2(c) Dimensionless critical mass at a groove width ratio of 0.75 
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The distribution of the critical masses associated with a change in groove angles, 

as reported in another study [17], is less smooth than that determined in the present 

work. This difference may result from the improper disposal in the groove-ridge region; 

i.e., the pressure was evaluated using the FDM. 

The influence of the groove angle on the critical mass is as follows. As the 

eccentricity increases, the critical mass of the bearing increases faster as the groove 

angle decreases. This means that HGJBs with a smaller groove angle are more sensitive 

to a change in eccentricity.  

5-2 Effect of Change in Groove Depth on Critical mass 

The groove depth ratio is changed from 0.5 to 1.5, with other groove parameters 

remaining unchanged. The following sections discuss the influence of the groove depth 

ratio and the eccentricity on the critical mass.   

As presented in Fig. 5-1-1, for a fixed eccentricity, the critical mass decreases as 

the groove depth ratio increases. The critical mass peaks at a groove depth ratio of 0.5; 

i.e., the bearing with shallower grooves has a larger critical mass. However, as the 
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eccentricity ratio increases, the critical mass of the HGJBs also increases rapidly with 

lower groove depth. Hence, for HGJBs with shallow grooves, the critical mass is 

sensitive to variations in eccentricity ratio when the eccentricity is large. In contrast, for 

bearings with deeper grooves, the critical mass increases less with an increase in 

eccentricity, indicating that the critical mass is insensitive to the eccentricity for HGJBs 

with large groove depths.  

5-3 Effect of Change in Groove Width on Critical Mass 

The influence of changing the width ratio and the eccentricity on the critical mass 

are discussed below.  

As shown in Fig. 5-1-2, when the eccentricity ratio remains constant, the critical 

mass decreases as the groove width ratio increases. A larger eccentricity ratio 

corresponds to greater changes in critical mass.   

The critical mass peaks at a groove width ratio of 0.25. The degree of variation in 

the critical mass varies with the groove width. When the groove width ratio increases 

over 0.5, the variation in the critical mass decreases.   
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As the eccentricity increases, the critical mass of HGJBs with narrow grooves 

increases rapidly. Specifically, the critical mass of HGJBs with smaller groove widths is 

more sensitive to variations in the eccentricity ratio. However, when the eccentricity 

ratio is high, the critical masses vary little with groove width for HGJBs with large 

groove widths, even though a larger groove width reduces stability. Restated, at a high 

eccentricity, the critical mass of a HGJB with wide grooves is insensitive to variations 

in the eccentricity ratio.   

5-4 Efficiency of the Present Method on Critical Mass 

In order to show the efficiency of the present method, Table 5-4-1 shows the CPU 

time needed to obtain the load capacity of a bearing with 8 grooves on the stationary 

surface, at an eccentricity ratio of 0.5 for various nodal points. This work was compiled 

with Compaq Visual Fortran 6.6 on a 1.50GHz Intel Pentium M processor. Thus, the 

present method is efficient for analyzing HGJB problems. 
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Table 5-4-1 The CPU time needed to obtain the load capacity of a bearing with 8 
grooves on the stationary surface, at an eccentricity ratio of 0.5 for various nodal points 
(groove angle=40°) 

Elements Nodes CPU time (s)
Load 

capacity 
Deviation 

136 4x4 0.23 3.562 -0.89% 
136 5x5 0.39 3.58 -0.39% 
136 6x6 0.75 3.587 -0.19% 
136 7x7 1.17 3.59 -0.11% 
136 8x8 1.48 3.592 -0.06% 
136 9x9 2.23 3.593 -0.03% 
136 10x10 3.31 3.594 0.00% 
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6. Performance Enhancement Using Elliptical Grooves 

6-1 Performance of EGJB 

To assess the utility of the proposed EGJB, the load capacity is compared with the 

conventional HGJB by Vohr and Chow[29]. Comparisons are obtained using numerical 

results. The optimum groove parameter for the HGJB obtained by Vohr and Chow with 

groove angle of 32.8° corresponds the parameter for the EJGB with an elliptical axis 

ratio of 1.55. Groove depth ratio of 0.5 and groove width ratio of 2.1 used are the same 

as those of the HGJB obtained by Vohr and Chow. 

 

6-1-1    Effect on Load Capacity 

    Effect of load capacity on the location of grooves on the HGJB and EGJB are 

shown in Figs. Fig. 6-1-1 and Fig. 6-1-2. Fig. 6-1-1 shows that when the bearing is 

grooved, load capacity of the EGJB is about 15% greater than that of the HGJB. 

Additionally, as bearing length increases, the load capacity of the EGJB increases. 

When length-diameter ratio is 2, the load capacity of the EGJB is up to 30% more than 

that of the HGJB. 
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Fig. 6-1-1 Load capacities with various eccentricity ratios for grooved bearings 

 

Fig. 6-1-2 Variations in load capacities with different eccentricity ratios for grooved 
journals 
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     Fig. 6-1-2 shows that the load capacity of the EGJB is larger than that of HGJB 

when the journal is grooved. Comparing the load capacity of EGJB with that of HGJB 

indicates that the increase in load capacity of the EGJB with a grooved journal is greater 

than that of the EGJB with a grooved bearing.  

As a summary, more load capacity of the EGJB than that of HGJB can be gained 

no matter where the grooves are located in the bearing or journal. Additionally, the load 

capacity of the EGJB with a grooved bearing is larger than that of the EGJB with a 

grooved journal. This analytical result is in agreement with those in literature [6, 29]. 

Hence, adopting elliptical grooves to increase load capacity is beneficial.  

6-1-2 Effect on Stability 

After determining the load capacity of the EGJB, the stability of the HGJB and 

EGJB are compared. Fig. 6-1-3 compares dimensionless radial stiffness of the EGJB at 

various eccentricity ratios and length-diameter ratios with those of the HGJB.  
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Fig. 6-1-3 Dimensionless radial stiffness of the EGJB and HGJB with various 
eccentricity ratios and length-diameter ratios and for a grooved bearing 

At a low eccentricity ratio, the dimensionless radial stiffness of the EGJB does not 

differ markedly from that of the HGJB. When the eccentricity ratio exceeds 0.3, the 

dimensionless radial stiffness of the EGJB is consistently larger than those of the HGJB. 

At an eccentricity ratio of 0.6, the dimensionless radial stiffness of the EGJB is 25% 

greater than those for the HGJB. Moreover, for the grooved journal (Fig. 6-1-4), the 

dimensionless radial stiffness of the EGJB does not differ significantly from those of the 

HGJB at a low eccentricity ratio, but are consistently greater than those of the HGJB 
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when the eccentricity ratio exceeds 0.3, which is same as the dimensionless radial 

stiffness of the grooved bearing.  

 

Fig. 6-1-4 Dimensionless radial stiffness of the EGJB and HGJB with various 
eccentricity ratios and length-diameter ratios for grooved journals 

6-1-3 Effect on Side Leakage 

    Side leakage is also an important characteristic for hydrodynamic journal bearings. 

Leakage, which results from the impact between rotating and stationary parts, reduces 

load capacity. As shown in Fig. 6-1-5, when the eccentricity ratio is low, side leakage of 

the EGJB decreases notably compared with that of the HGJB. This difference may 
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result from elliptical grooves reducing the leakage in the end of bearing. Therefore, we 

conclude that in the case of optimum groove geometry of the HGJB, the performance of 

the EGJB is superior to that of the HGJB in terms of load capacity, radial stiffness, and 

side leakage.  

 

Fig. 6-1-5(a) Dimensionless total side leakage of the EGJB and HGJB with various 
eccentricity ratios and length-diameter ratios for grooved journals 
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Fig. 6-1-5 (b) Dimensionless total side leakage of the EGJB and HGJB with various 
eccentricity ratios and length-diameter ratios for grooved bearings 

6-1-4 Effect on Reducing Cavitation 

The cavitation region in the fluid film of the HGJB and EGJB is discussed in this 

section. The groove parameter used here for the HGJB is also obtained by Vohr and 

Chow. Fig. 6-1-6 and Fig. 6-1-7 show the load capacities of the HGJB and EGJB with 

the increase of eccentricity ratio. It can be seen that when journal load is fixed, the 

operating eccentricity of EGJB is obviously lower than that of HGJB. This may be 

because the high pressure region of EGJB is markedly larger than that of HGJB.  
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Table 6-1-1 and Table 6-1-2 show the cavitation ratio of the HGJB and EGJB at an 

eccentricity ratio of 0.1 to 0.9. Comparing the cavitation ratio of the EGJB with that of 

HGJB indicates that the adopting of elliptical groove can reduce the cavitation when the 

load of HJGB and EGJB is same.  

 

Fig. 6-1-6 Load of the HGJB and EGJB for a grooved journal with optimum groove 
parameter 
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Table 6-1-1 The Cavitation ratio of the HGJB and EGJB for a grooved journal with 
optimum groove parameter 

Eccentricity 
ratio HGJB EGJB 

0.1 0 0 
0.2 0 0 
0.3 0 0 
0.4 0 0 
0.5 0 0 
0.6 0 0 
0.7 0 0 
0.8 0 0.915
0.9 1.31   

 

Fig. 6-1-7  Load of the HGJB and EGJB for a grooved bearing with optimum groove 
parameter 
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Table 6-1-2 The Cavitation ratio of the HGJB and EGJB for a grooved bearing with 
optimum groove parameter 

Eccentricity ratio
HGJB EGJB 

0.1 0 0 

0.2 0 0 

0.3 0 0 

0.4 0 0 

0.5 0 0 

0.6 0 0 

0.7 0 0 
0.8 0.551 1.255

 

6-2 Optimum Groove Parameters for Stability 

The optimum groove parameters for maximum radial force of the EGJB are 

investigated in this section. Since groove geometry has several parameters, this work 

simplifies the processes for seeking the optimum groove parameters as follows. Firstly, 

groove width is fixed, while the elliptical axis ratio and groove depth are varied. Then 

groove depth is fixed to the value, determined by maximum radial force in the previous 

step, while the elliptical axis ratio and the groove width are varied. Via these procedures, 

the optimum groove parameters are identified. Table 6-2-1 presents geometrical 
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parameters of the EGJB. 

Table 6-2-1 Design parameters of the EGJB 

Clearance, c 6×10-6  (m) 

Radius, r 0.002  (m) 

Length, L 0.004  (m) 

Fluid viscosity, μ 0.00124 (Pa ⋅s)

Number of grooves 8 

Groove depth ratio, Γ 1.0 

Groove width ratio, δ 0.5 

Journal speed, ω 5000 (rpm) 

Groove location on bearing 

    Fig. 6-2-1 shows the dimensionless radial stiffness with a groove width ratio of 0.5 

for various eccentricity ratios. As the groove depth ratio increases from 0.5 to 1.0, the 

dimensionless radial stiffness increases rapidly. However, when the groove depth ratio 

increases further, the dimensionless radial stiffness varies a little. It can be seen that the 

dimensionless radial stiffness reaches the maximum as the groove depth ratio is 2.0. 

When the groove depth ratio exceeds 2.0, the dimensionless radial stiffness decreases.  
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Fig. 6-2-1(a) Dimensionless radial stiffness under a groove width ratio of 0.5 and 
eccentricity ratio of 0.1 

 

Fig. 6-2-1(b) Dimensionless radial stiffness under a groove width ratio of 0.5 and 
eccentricity ratio of 0.3 
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Fig. 6-2-1(c) Dimensionless radial stiffness under a groove width ratio of 0.5 and 
eccentricity ratio of 0.5 

The optimum groove parameters for different groove widths are studied as follows. 

The groove depth ratio is fixed at 2.0 which maximize the dimensionless radial stiffness 

from the discussion above. The elliptical axis ratio is increased from 0.5 to 2 and the 

groove width ratio is increased from 0.3 to 0.7 (Fig. 6-2-2). It can also be seen that a 

suitable groove width increases stability for all three eccentricity ratios. When the 

groove width ratio is 0.5, the dimensionless radial stiffness peaks at an elliptical axis 

ratio of 1.5. In summary, the optimum groove parameter values for EGJB are a groove 
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width ratio of 0.5, groove depth ratio of 2.0, and elliptical axis ratio of 1.5. These 

optimum groove parameters are close to those obtained by Vohr and Chow [29]. 

 

Fig. 6-2-2(a) Dimensionless radial stiffness under a groove depth ratio of 2.0 and 
eccentricity ratio of 0.1 
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Fig. 6-2-2(b) Dimensionless radial stiffness under a groove depth ratio of 2.0 and 
eccentricity ratio of 0.3 

 

Fig. 6-2-2(c) Dimensionless radial stiffness under a groove depth ratio of 2.0 and 
eccentricity ratio of 0.5 
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6-3 Comparison of the Load Distribution 

To examine how elliptical grooves impact load characteristics, the multi-sided 

herringbone-grooved journal bearings with 4 sides and 8 sides, are used to investigate 

differences in the load distributions of fluid film. Operating conditions used are groove 

angle of 37°, groove depth ratio of 1.0, groove width ratio of 0.5, and eccentricity ratio 

of 0.4. The corresponding elliptical axis ratio is 1.327.  

Fig. 6-3-1 presents the load distribution along the axial direction. The area below 

the curve is the load capacity of bearing. At the axis of bearing symmetry (y=0), the 

load of HGJB is higher than that of the EGJB. On the contrary, the load of the HGJB is 

lower than that of EGJB as y is away from the center. Notably, the load distribution of 

the grooved journal bearing with 4 sides is close to that of the EGJB.  
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Fig. 6-3-1 The distribution of load capacity along the axial direction 

 

It can also be seen that the load distribution of EGJB along the axial direction is 

more uniform than that of HGJB. The low load at the bearing center of EGJB may be 

offset by the load away from the bearing center; thus, a higher total load capacity for the 

EGJB than that of HGJB is achieved. The same trend of the load distribution along the 

axial direction for the other operation conditions can also be found. On the other hand, 

the load capacities of grooved journal bearing with 4 sides are close to that of the EGJB. 



 

86 

 

Hence, resembling an elliptical shape with grooves with more than 4 sides is 

unnecessary.  

As is well known, axial leakage is proportional to the pressure gradient at both 

ends of the bearing. Fig. 6-3-2 shows total side leakage of grooved bearings. EGJB can 

lower the leakages of the lubricants with the curvature variation of the elliptical shape.  

Accordingly, side leakage of the HGJB is greater than that of EGJB. In addition, side 

leakage can also be reduced by using multi-sided grooves. However, reducing side 

leakage by using grooves with more than 4 sides is also unnecessary. Supposing 

manufacturing elliptical grooves is difficult, one can use multi-side grooves whose 

corner points are on the equation of an ellipse.   
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Fig. 6-3-2 Total Side leakage of the EGJB, HGJB and grooved journal bearings with 4 
and 8 sides 
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7. Performance Enhancement on Rev-EGJB 

This chapter proposes a novel reversible rotation journal bearing with elliptical 

grooves (Rev-EGJB). Instead of a helical groove, the elliptical groove is adopted to 

improve the performance of the reversible rotation HGJB (Rev-HGJB). A numerical 

program is used to analyze the appearance and characteristics of the Rev-EGJB. To 

calculate the pressure distribution of a fluid film, the Reynolds equation was solved 

using the SEM [38]. The load distributions of the reverse rotation grooved journal 

bearings are compared to elucidate how elliptical grooves enhance load characteristics. 

Load capacity, power loss, and the stability parameter are compared with those of the 

Rev-HGJB. Finally, the Rev-EGJB’s configuration, which maximizes radial force, is 

investigated.  

7-1 Groove Profile  

Fig. 7-1-1 shows the shape of the elliptical grooves. Since variation in elliptical 

shape affects the pressure distribution of a fluid film, in this work the elliptical axis ratio 

is varied to investigate how the shapes of elliptical grooves affect Rev-EGJB 
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performance.  

 

Fig. 7-1-1 The shape of the reversible rotation journal bearing with elliptical grooves 

The equation of the elliptical grooves is:  

2 2
0 0

2 2

( ) ( ) 1
a b

x x y y
L L
− −

+ =
,
                        (7-1), 

where the center of the ellipse is at 0 0( , )x y , and aL and bL are the axis length in the 

x-direction and y-direction, respectively. The elliptical axis ratio τ is a

b

L
L

. For example, 

the groove parameter for the Rev-HGJB with a groove angle of 32.8° corresponds the 

parameter for the Rev-EJGB with an elliptical axis ratio of 1.55 ( cot 32.8= ). 
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The elliptical grooves on the surface of the journal are engraved with three regions. 

This work varies the bearing length of region 2 (L2), while the bearing lengths of region 

1 (L1) and region 3 (L3) are the same. The ellipse has two centers on the groove surface, 

at the boundary of region 1 and region 2 1,2 1,2( , )x y and at the boundary of region 2 and 

region 3 2,3 2,3( , )x y .  

After the center of the ellipse is determined, the elliptical shape is obtained by 

giving the elliptical axis ratio. The three regions of elliptical grooves are of three values 

of the elliptical axis ratios (τ1, τ2, τ3), respectively. The elliptical axis ratio of region 1 

equals that of region 3 (τ1=τ3). The shape in region 2 below y=0 is determined from the 

center of the ellipse at 1,2 1,2( , )x y , and the shape in region 2 above y=0 is determined 

from the center of the ellipse at 2,3 2,3( , )x y .  

7-2 Validation  

Since no study has been done previously to investigate the performance of a 

Rev-EGJB, either numerically or experimentally, this study validates the Rev-EGJB 

program based on the numerical results of the Rev-HGJB program. The numerically 
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determined load capacity for the Rev-HGJB was verified using data from [6]. Fig. 7-2-1 

shows that the present numerical results are in good agreement with those in [6]. The 

differences at the high eccentricity ratio may result from groove discontinuity and the 

cavitation model [38]. Thus, the numerical program used in this study can be employed 

to analyze Rev-HGJB performance. In the following, the load capacity of Rev-HGJB is 

numerically investigated by our program. 

 

Fig. 7-2-1 The numerical program for the Rev-HGJB was verified using data from [6]. 

After the numerical program for the Rev-HGJB was validated, the numerical 
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program of the Rev-EGJB was validated. This study increased the number of the 

Rev-HGJB’s groove sides to asymptotically resemble the elliptical grooves. The details 

of deriving a groove for eight sides of the Rev-HGJB to resemble the elliptical grooves 

are found in [36]. Notably, when the number of groove sides increases, the shape of the 

grooved journal bearing is close to that of an ellipse. Fig. 7-2-2 shows that as the 

number of groove sides increases, load capacities asymptotically approach that of the 

Rev-EGJB. In summary, from the validation in relation to the loads of Rev-HGJB and 

Rev-EGJB, we conclude that the code developed to analyze the Rev-EGJB’s 

performance is also accurate. 
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Fig. 7-2-2 The numerical program of the Rev-EGJB was validated by increasing the 
number of groove sides of the Rev-HGJB. 

7-3  Comparison of the Rev-EGJB and the Rev-HGJB 

Firstly, the load capacities of the Rev-HGJB and Rev-EGJB are discussed. Then, 

the pressure distributions on the fluid film are investigated. Finally, the power losses are 

compared. The bearing parameters in Table 3-3-1 are used; this was applied in reference 

[6] for the Rev-HGJB. 

 
 



 

95 

 

Table 7-3-1 Parameters of the Rev-GJB (grooved member rotation) 

Clearance 6  μm 
Radius 0.002  m 
Length 0.008  m 
Fluid viscosity 0.00124  Pa•s
Number of grooves 8 
Groove elliptical axis ratio 
for Rev-EGJB 

1.732 

(Groove angle 30 deg for Rev-HGJB) 
Groove depth ratio 1.0 
Groove width ratio 0.5 
Journal speed 5000  rpm 
Bearing length of region 
2/ bearing length 

0.5 

 
7-3-1  Rev-EGJB Mesh 

This work developed numerical codes to evaluate the performance of the 

Rev-EGJB, and used curvilinear elements to discretize the elliptical grooves. There are 

8 grooves on the bearing or journal surface in this work. A simulation was performed 

with a total of 17 elements in the circumferential direction and 16 elements in the axial 

direction. Fig. 7-3-1 shows the mesh system used in the program for the Rev-EGJB. 
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Fig. 7-3-1 The mesh system used in the program for Rev-EGJB 

7-3-2 Comparison of the Load Capacities 

Fig. 7-3-2 shows the load capacities of the Rev-HGJB and Rev-EGJB with grooved 

journals for a length-diameter ratio of 1 and 2. It can be seen that the load capacity of 

the Rev-EGJB does not differ significantly from that of the Rev-HGJB at a low 

eccentricity ratio, but is consistently greater than that of the Rev-HGJB. Moreover, the 

larger the length-diameter ratio, the higher the load capacity. This may be because the 

high pressure region of Rev-EGJB is not markedly larger than that of the Rev-HGJB at 

a low length-diameter ratio; this is discussed in next section. Hence, the improvements 
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of adopting the elliptical grooves in the loads of reversible rotation bearings are obvious 

at a high length-diameter ratio. 

 

Fig. 7-3-2 Comparison of the load capacities of the conventional HGJB, Rev-HGJB, 
and Rev-EGJB with the increase of the eccentricity ratio (grooved journal) 

 

The effect of load capacity on the location of grooves on the Rev-HGJB and 

Rev-EGJB is shown in Fig. 7-3-3. The figure shows that when the bearing is grooved, 

the load capacity of the Rev-EGJB is about 12-15% greater than that of the Rev-HGJB 
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at a length-diameter ratio of 2. Comparing the load capacity of the Rev-EGJB with that 

of Rev-HGJB indicates that the increase in load capacity of the Rev-EGJB with a 

grooved journal is greater than that of the Rev-EGJB with a grooved bearing. This 

analytical result is in agreement with those in literature [36]. In summary, this work 

concludes that more load capacity of the Rev-EGJB than that of Rev-HGJB can be 

gained no matter where the grooves are located in the bearing or journal. Furthermore, 

adopting elliptical grooves to increase load capacity is beneficial at a high 

length-diameter ratio.  
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Fig. 7-3-3 The load capacity of the Rev-HGJB and Rev-EGJB with grooved bearing for 
L/D =1,2 

7-3-3 Comparison of the Pressure Distributions in the Fluid Film 

To examine how elliptical grooves profit load characteristics, this work investigates 

differences in the pressure distributions of fluid film on an Rev-HGJB and Rev-EGJB 

with the same operating conditions, as shown in Table 1. Fig. 7-3-4 displays the 

pressure distributions of fluid film. Although the peak pressure in the Rev-HGJB is 

higher than that in the Rev-EGJB, a larger portion of high pressure is achieved in the 

pressure-generated region of Rev-EGJB than in that of the Rev-HGJB, since the 
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elliptical grooves pump more lubricants inward on the bearing than herringbone grooves 

do. This is similar to the results of a study on the characteristics of EGJBs [36]. 

 

Fig. 7-3-4 The pressure distributions of fluid film of a Rev-EGJB and of a Rev-HGJB 
under the operating conditions in Fig. 7-3-2 (ε=0.3) 

Furthermore, a larger high pressure region in Rev-EGJB than that in Rev-HGJB is 

not only achieved in the pressure-generated region, but also in the pressure-restored 

region. Notably, the groove shape changes smoothly in the pressure-generated region 

and pressure-restored region of Rev-EGJB, but that of Rev-HGJB changes abruptly. 
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Hence, the shape of herringbone is beneficial for the peak pressure, but is not beneficial 

for the pressure-generated region. In contrast, adopting the elliptical grooves is able to 

increase the high-pressure area in the fluid film, which contributes to the load of the 

bearing. Therefore, a high load capacity results from the integration of a large high 

pressure portion, which can be seen in equation (6), which is for load evaluation. 

To understand how the high pressure area contributes to the load, this work 

investigates differences in the load distributions of fluid film. Fig. 7-3-5 plots the load 

per unit length along the y direction. The area below the curve is the load capacity of the 

bearing. The peak of the curve for Rev-HGJB is higher than that for the Rev-EGJB. In 

contrast, the load of the Rev-HGJB is lower than that of Rev-EGJB, as it is away from 

the peak of the load curve. Notably, the load in the pressure-restored region of the 

Rev-EGJB is obviously greater than that in Rev-HGJB, since adopting the elliptical 

groove increases the pumping effect. Hence, the load of the Rev-EGJB is apparently 

greater than that of the Rev-HGJB. 
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Fig. 7-3-5 The load per unit length along y direction 

7-4 Comparison of Power Losses 

Power consumption is also an important characteristic for hydrodynamic journal 

bearings. As shown in Table 2, the power loss of the Rev-EGJB decreases slightly 

compared to that of the Rev-HGJB. Thus employing the elliptical grooves on reversible 

rotation bearings causes reduction in the friction in the fluid film, and the power 

consumption is slightly lower, while the load is enhanced. 
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Table 7-4-1 Comparison of the power loss of the Rev-HGJB and Rev-EGJB at an 
eccentricity ratio of 0.1 

power loss(W) Rev-HGJB Rev-EGJB

groove member rotation 1.62E-02 1.59E-02

7-5 The Effect of Groove’s Appearance on Radial Stiffness 

The effects of groove parameters such as the elliptical axis ratio, groove depth ratio, 

groove width ratio, and length of region 2 on stability are investigated in this section for 

an eccentricity ratio of 0.1. The groove parametric matrix is given by taking several 

values in the range of each groove parameter: 7 for an elliptical axis ratio from 0.5 to 2, 

9 for a groove width ratio from 0.4 to 0.6, 9 for a groove depth ratio from 0.5 to 2, and 9 

for a length of region 2 from 0.4 to 0.6. A total of 35721 cases were used in the groove 

parametric matrix.  

To observe the influence of each groove parameter on stability, only one of the 

groove parameters is varied while others are fixed. The influence of variations in groove 
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appearances on stability can be inferred by observing the computed radial stiffness.  

Fig. 7-5-1 to Fig. 7-5-4 show the result of the grooved member rotation for L/D = 2 

and ε = 0.1. To study the effects of the elliptical axis ratio on radial stiffness, the groove 

elliptical axis ratios of region 1 and region 2, τ1 andτ2, are varied from 0.5 to 2.0, while 

the groove depth and groove width are fixed at Γ=1.0 and δ=0.5. Fig. 7-5-1 shows that 

dimensionless radial stiffness varies less when the elliptical axis ratio of region 1, τ1, 

changes from 1.2 to 2, which corresponds to 40 deg to 26 deg of a herringbone groove, 

and reaches the maximum in between for allτ2. Furthermore, it can be seen that the 

radial stiffness reaches its maximum betweenτ2=1 and 2 when τ1 is fixed to a value 

below 2. 
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Fig. 7-5-1 The influences of elliptical axis ratio of region 1 and region 2 on 
dimensionless radial stiffness 

To study the influences of groove depth on dimensionless radial stiffness, the 

groove depth ratio is increased from 0.5 to 2.0, while the groove elliptical axis ratio and 

groove width are fixed at τ1=τ2=1.0 and δ=0.5. Fig. 7-5-2 shows that the dimensionless 

radial stiffness reaches a peak value at Γ= 1 to 1.5 for all cases. 
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Fig. 7-5-2 The influences of groove depth on dimensionless radial stiffness 

To study the effects of groove width on dimensionless radial stiffness, the groove 

width ratio is increased from 0.4 to 0.6, while the groove elliptical axis ratio and groove 

depth are fixed at τ1=τ2=1.0 and Γ=1.0. Fig. 7-5-3 shows that groove width has little 

effect on dimensionless radial stiffness when the groove width ratio is less than 0.5, but 

radial stiffness decreases when the groove width ratio exceeds 0.5. It can also be seen 

that dimensionless radial stiffness is greater when the length of region 2 is larger than 

about half of the bearing length.  
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Fig. 7-5-3 The effects of groove width on dimensionless radial stiffness 

To study the influences of the length of region 2 on dimensionless radial stiffness, 

the length of region 2 is increased from 0.4L to 0.6L, while the groove elliptical axis 

ratio, groove depth, and groove width are fixed at τ1=τ2=0.5,1.0,1.5, and 2.0, δ=0.5, and 

Γ=1.0. Fig. 7-5-4 shows that the dimensionless radial stiffness reaches a peak at L2= 

0.45L to 0.55L for all cases.  
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Fig. 7-5-4 The effect of bearing length of region 2 on dimensionless radial stiffness 

 

7-6 The Optimum Parameters of Rev-EGJB for Stability 

From the parametric study, the values of the optimum groove parameters, given in 

Table 3, for the Rev-EGJB to reach the maximum radial force, are a groove width ratio 

of 0.4, groove depth ratio of 1.5, L2/L = 0.575, and elliptical axis ratio of τ1=τ3=2, 

τ2=1.25. These optimum groove parameters are different from those obtained by 

Kawabata et al.[6]. The radial stiffness of the Rev-EGJB compared with that of the 
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Rev-HGJB with the optimum geometry is also shown in Table 7-6-1. It can be seen that 

the radial stiffness of the Rev-EGJB does not differ markedly from that of the 

Rev-HGJB. Moreover, for the grooved bearing, the Rev-EGJB is more stable than the 

Rev-HGJB. The optimum groove parameter values for the Rev-EGJB to reach the 

maximum radial force are a groove width ratio of 0.575, groove depth ratio of 1.625, 

L2/L = 0.425, and elliptical axis ratio ofτ1=τ3=1.0, τ2=2.0. 

Table 7-6-1 the values of the optimum groove parameters 

grooved journal grooved bearing 
  Rev-EGJB Rev-HGJB Rev-EGJB Rev-HGJB 

Length of Region 2, L2/L 0.575 0.467 0.425 0.48 
Groove depth ratio, Γ 1.5 1.034 1.625 1.068 
Groove width ratio, δ 0.4 0.5 0.575 0.5 

elliptical axis ratio, τ1=τ3 
2 32.18 1.0 148.75 or groove angle (deg) 

of region 1 and 3 
elliptical axis ratio, τ2 

or groove angle (deg) 
of region 2 

1.25 43.09 2.0 135.31 

dimensionless radial 
stiffness 

18.7 19.1 10.6 9.1 
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8. Conclusions 

This work developed a numerical program for analyzing the characteristics of the 

grooved journal bearing. Then a novel elliptical groove is proposed to enhance the 

performance of the hydrodynamic journal bearing. The conclusions are drawn as 

follows:  

1. The Reynolds equation was solved using the SEM in order to obtain the 

distribution of pressure in the fluid film. The groove-ridge discontinuity is treated 

by conservation of mass. It can be shown that the present method can be applied 

to correctly determine the pressure distribution of the fluid film. Furthermore, 

employing the present method and incorporating the Elrod’s algorithm can 

improve the accuracy of evaluating loads of HGJBs when cavitation occurs. 

2. The performances of the EGJB are superior to that of the HGJB due to the high 

load capacity, high radial stiffness, and low side leakage of lubricants. For the 

EGJB, groove parameters can be set at maximum radial force of EGJB. These 

values are a groove width ratio of 0.5, groove depth ratio of 2.0, and elliptical axis 

ratio of 1.5. These optimum groove parameters are similar to those obtained by 
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Vohr and Chow [29].  

3. The load distribution of EGJB along the axial direction is more uniform than that 

of HGJB. The low load at the bearing center of EGJB may be offset by the load 

away from the bearing center; thus, a higher load capacity for the EGJB than that 

of HGJB is achieved. 

4. Adopting the elliptical grooves on reversible rotation journal bearings can 

enhance the pumping effect to a greater extent than adopting herringbone grooves. 

The performance of the Rev-EGJB is superior to that of the Rev-HGJB due to its 

high load capacity and slight low-power loss. 

5. Observing the load distribution along the axial direction, the lower peak load of 

Rev-EGJB than that of Rev-HGJB may be offset by the load away from the lower 

peak load. In addition, the load in the pressure-restored region of the Rev-EGJB is 

obviously greater than that in the Rev-HGJB. Thus, a higher load capacity is 

achieved for the Rev-EGJB than that of the Rev-HGJB. 

6. The Rev-EGJB is also more stable than the Rev-HGJB.  
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9. Future Work 

1. The loads evaluated are more accurate when cavitation occurs, which may result 

from the consideration of conservation of mass at the groove-ridge region and at 

the cavitation inception concurrently by Elrod’s algorithm. Further investigation is 

needed to understand this coupling effect.  

2. The oil inlet conditions are also important parameters to affect the bearing pressure 

and cavitation region[39], and should be further investigated.   

3. The effect of temperature of the lubricant on the characteristics of the bearings may 

be more significant than that of the HGJB due to less leakage, and should be 

further investigated. 

4. The enhancements of elliptical grooves on air journal bearings and 

elastohydrodynamic journal bearings are warranted. 

5. The critical mass incorporates to Elrod’s algorithm is needed to derive as by the 

small perturbation to Elrod’s Universal Equation. 

6. The performances of the EGJB and the Rev-EGJB can be verified experimentally  
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using a prototype spindle motor built in the laboratory. 
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Appendix A  Evaluation of Dimensionless Critical Mass 

When the journal position is changed slightly from the equilibrium state by the 

excitation force, the journal vibration may increase and result in instability. Based on 

the assumption that a small reaction occurs in the equilibrium state, the pressure and the 

thickness of the fluid film can be expressed as first-order functions of a small 

perturbation, as follows: 

0 x z x zp p p x p z p x p z= + Δ + Δ + Δ + Δ                     (A1) 

0 cos cosh h x zφ φ= + Δ + Δ                         (A2) 

Substituting Eqs. (A1) and (A2) into Eq. (2-1) yields the changes in the pressure of 

the journal close to an equilibrium position: 
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Once the perturbation pressure is known, dynamic coefficients can be calculated by 

integrating the pressure over the bearing area [35]. For example, the non-dimensional 

coefficient Kxx can be obtained using: 
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cosxx x
y

cK p rdyd
W φ

φ φ= ∫ ∫                       (A4) 

The perturbation pressure xp  is determined by collecting the terms of ( )O xΔ  in 

Eq. (A3): 
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Notably, the linear perturbation equation, Eq. (A5), is similar to the Reynolds 

equation, Eq. (2-1), so the code developed for the equilibrium state can be directly 

applied. 

The dimensionless critical mass is derived from the eigenvalue for “threshold of 

instability“ of the equation of motion [14]: 
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