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Abstract

In this study, we investigated the thermal conductivity of graphene and graphene
nanomesh (GNM) in use of equilibrium molecular dynamic (EMD) simulations with
optimized Tersoff potential. The effect size and temperature dependence were inspected.
Besides, the correlations of the thermal conductivity with the geometric parameters of
nanoholes on GNM were also explored. Finally, we examined if the thermal rectification

exists in the system composed of Graphene and GNM.

We first validated our simulation setup by comparing the calculated phonon
dispersion relation and density of states with those in the literature, including
experimental and MD measurements. Then, we investigated the size effect on the
graphene thermal conductivity at 300K. The thermal conductivity decreases
exponentially with increasing system size and converges as the system size is about
16.0nmx16.2nm. By fixing the film size at 16.0nmx16.2nm, we found the thermal
conductivity of graphene decreases rapidly with increasing temperature while that of
GNMs is much less sensitive to temperature. Among the geometric parameters of
nanoholes, the neck width affects mostly. The GNM thermal conductivity decreases
approximately linearly with decreasing neck width. Moreover, the smaller the neck width,
the weaker the temperature dependence becomes. For those GNMs with neck width of

2nm, the temperature dependence almost completely disappears.

Based on the obtained temperature-dependent thermal conductivities of graphene
films and GNMs, we finally investigated the thermal rectification phenomenon in
nanoribbons composed of Graphene and GNM by solving the heat diffusion equation.
The effects of the mean temperature, temperature difference, length ratio and temperature
dependence of GNMs on the intensity of thermal rectification were studied. According to
the results, we summary some possible directions useful for promoting thermal

rectification.
Keywords : Equilibrium Molecular Dynamics, Thermal Conductivity, Graphene,
Graphene NanoMesh, Thermal Rectification
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HE PR > a2 AptH @ g Sl Opt. Tersoff g it 3 £ 2 B d 4 > K7 eh
Fod 3 x s §_Opt. Tersoff # & & 5 e~ /];Je";fﬁ » TP s 3L 5 Opt. Tersoff & it
ARLEFOEFFE G L HRBEP IR o

2R R 3§ 4 8 (Non-Equilibrium Molecular Dynamics, NEMD) = 2 3+ &
HEBBE G 7 A A FRELF RIS RERAREN £ %ﬁd gz ¥
TRERERGEGE R RRpETR Y R 2 2R > R E AL 7 RS o RU
etal. (2008) [27] % 7= ¢ *t Langevin j* 4t » 7 — B4 ¢t 4 (Random force) » & k st
LP| PP RO S A o F i 2 K ALY A 2 %A - Chen (2010) [28]
¢ Li (2019) [29]% % iz * Nose-Hoover 8 2 (NH) ¢ &7 & F 2 K 4 p 24 7
pARERBERI Y o Fle R NEMD 33 2 5% 2 X F 2 BT BEL -

4
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Hu et al. (2020) [30]4245 & socri B ~ #d B A » 857 & NH 3R 2 T 0 A4

¥

FEAREARAHE S RPESFERG T AREAE Y - Langevin $308 2
2 KR
FH: &7 o Huetal. (2022) [31] testsh /6 B ILpF - I % NH 5g 2 € 715
MO e g L B BT ﬂ"tlblé'?'}*%mrﬁlp PR AR @ PR R g XTI

ot epg

cg_‘r

H G e E R AR oA NHIZEZ R R B RCEARFE TR AR Fo (S

Chen and Kumar (2012) [32], Pereira and Donadio (2013) [33]# 2 Feng and Ruan
(2016) [34]1= K = 1§Je v i * Opt. Tersoff £ ¢ i & 7 &% % sL< < 5 6nmx6nm
21Inmx21nm 2 2 10nmx10nm = i& 7 EMD $icz > #7185 2 # 3 E (hfc s W) 5 1606~
1015 2 1100W/m-Ke-Hu etal. (2009) [35] 2 NEMD == X ## ¢ + 5 5.7nmx1.5nm
€hiE7) 7 & f # 5 F (Graphene Nanoribbon, GNRs) » # .7 f ¥ i & (chirality
degree)sdh & H e H b oo i R 54BN PR (Zigzag) e d B E B B R SRS

#31(Armchain) iR & § 01 20-50%- 4345 11 b v prif v i F ik dc g S o e
2 R A o R R R TR Y gied o A T E BRRES
B R ¥ o

AEFEFLAGE RGNS 2T x> Evansetal. (2010) [36]:< % 7 & 4 <P
TR~ kekER &g 451 (H-termination) > F IR EARF ~ # R Sdekka 2 AR
A RS FE Ao R AT R R 0 B B3R " o Zhangetal. (2011) [37]

%% ¢ Wi H 3 4 re{Single vacancy) sl iR o A R Z 4k € IS i PR
BT BT BAGEGERBPZ TR R F AT ORI E REE 2903W/m-
Ko 87 =3k R 5L 042%0F > #i8E Zfcr < g™ %3 4 118.1W/m-K -
Wang et al. (2014) [38]#-T Jis 4 7% 7 &% H R > 34m A 2 chUT 8 @ & hik
R F IR ST R ¢ RATHARR 2 TR £ % ET % o Yangetal. (2013)
[39] 7 &% 2 £ # (GNR)F K ¥ — B = & 3| chatif » B R4 » 34k § < Hgeh's
FOBE e P FIF N AR A G ey AR F TV S 1.56%PF 0 £ 8
Wikec T "% 40% - Zhan et al. (2019) [40] "2+ 5 L2 ~ R T2 [ = f834 F )
AGGNR AP E£AGE G A BEGEROT RIGAE § 2 R G
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B G ff A T 4R M e Yarifard et al. (2016) [41]% 5 GNM g H 7 3| coft @ 3 %
Bt E R LG AR EMD ¢n7 2873 GNM e @ ificds 34 0 B8 g~ 3
B R foitiF Ak Benbd o S5 FMAPFF LT > 38k #AFHH 4 &
RIS e g R BB R Y PRFZER A B 57 5
HBFRP NRE T REINHTF AP B OE g 2t fiF < 283%

67 L ERIIED A FB o B T L SR AHILNA 132 £ 14
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% 1.3

(EES LR A =S &

- Potential _ 11
Sample K(W/m-K) System size =
[+ ;’gk] func.
Suspended
1779
Graphene Thermal transport
2012 [32] Opt. Tersoff enmx6nm across graphene
Supported
and other metals
Graphene 1281.5
(copper)
Tuning the thermal
2013 [33] GNM 1015 Opt. Tersoff 21nm x 21nm conductivity
(uniaxial strain)
Tuning the thermal
10nm x10nm - o
2016 [34] GNM 1100 Opt. Tersoff conductivity
800nmx800nm
(Nanomesh)
Length(L)=10nm, Tuning the thermal
2010 [36] GNR 1000~7000 Tersoff Width(W)= conductivity
1nm -10nm (ribbon width, edge)
2903+ 32
Tuning the thermal
2011 [37] | Graphene 118.1 Opt. REBO 2.5nmx 2.5nm conductivity
(porosity (vacancy)
=0.42%)
2710
(pristine) Tuning the thermal
2016 [41] | Graphene Opt. Tersoff - conductivity
100~400 (nanomesh porosity)
(poroused)
7
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% 1.4

LT fELs S h 4 B2 S ;;Je

&N Potential . L
[+ }f%] Sample | K (W/m-K) func. System size # L
12.2nm, 24.5nm for Effects of thermostat
Carbon locit I
(5,5) SWCNTs (velocity rescaling ~
nanotube - REBO . -
2008 [27] 49.1nm. 61.4nm for Berendsen Nose'
(CNT) Hoover and Langevin
(10,10) SWCNTs Thermostat)
si Stillinger— cross-section: Effects of thermostat
i
2010 [28] Nanowire - Weber 3x3U.C. (Nose-Hoover and
potential Length: 10U.C. Langevin Thermostat)
W =10nm
Effects of thermostat
GNR Opt. L =10 -1000nm N H d
- ose-Hoover an
2019 [29] Tersoff L of thermostat = _
Langevin Thermostat)
40nm
cross-section : Effects of thermostat
. . 8x8 U.C. (velocity rescaling ~
2020 [30 Si - Terso
[30] Length : Nose-Hoover and
13 & 56nm Langevin Thermostat)
cross-section :
Effects of thermostat
) 6x6U.C.
2022 [31] Si/Ge - Tersoff (Nose-Hoover and
Length : .
Langevin Thermostat)
200 U.C.
2100 5.7nmx1.5nm
(at 400K) Zigzag(2) Thermal rectification
2009 [35] GNR REBO (Geometry asymmetric,
(at 400K) Armchair(A)
8
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Anisotropic thermal

GNR - AIREBO 6.75nmx 2.83nm
2014 [38] conductivity (wrinkles)
GNR 229.3 AIREBO W = 3.8nm, Thermal rectification
2013 [39] 130~150 L=21.2nm (triangular defect)
Tuning the thermal
W =4.26nm, o
2019 [40] GNR 50~280 REBO L = 20nm conductivity
(defect shape)
1.6nmx5nm (A) Thermal rectification
2011 [42] GNR = Tersoff _ .
2.1nmx5nm (2) (thickness asymmetric)
Ont Thermal rectification
pt. .
2014 [43] GNR = Tersoff Length = 1-100nm | (Geometry asymmetric,

trapezoid & T-shaped)

(min)L=17, W1=22, o
Thermal rectification

GNR Opt. W2=2nm G . "
- eometry asymmetric,
2017 [44] Tersoff (Max)W1=440nm, Y y
trapezoid)
W2=40nm
Thermal rectification
2018 [45] | Graphene - AIREBO 47.5nmx23.5nm

(defect structure)

123 #HEK

Zhong et al. (2011) [42]#= 3 B & 243460 &% 2 & F (GNR) » -4 s F 25
ERTEF R A5 RRBRE I LD o § TIER AT £ B
A AR PIAE R T RARP BE A BR L B R F 0 E T ISR R A B OTRARSS o
FEE ) (AT=20K)chpriz » BB B 3 4 ¢ R BB R g+ 2 > e B 4 X
(AT =60K) > # & m2afsF @ T ' - Wang et al. (2014) [43]% & #7230 e
AHAEFEF A4S FRA K kL 2 pf £ % U (lateral phonon
confinement) ¥ 3 » ¥ & F] 2 WA B v @ 533 0 & MBAPFI ARNEP 0 sl
FELEH AT EHAV- AR PAGKR > BERRS TE )4 - Wangetal.

9
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(2017) [44]» 2 HA52 B P 2L AL E B 2 4 F o # B A B b L

H P R eh- 76.22nm 454 T] 440nm > e hi s 4 2nm < I 40nm > 3 A
BEGETF L RR A A D% % - Pal and Puri (2015) [5]3Fd #-8 i R4 A0

T &2 A ¥ (GNR)SE & = 154l > 240 - B &2 § (AND Gate) » 12 4 + #4
PERRA T R Y ] o B A A R EIRR TR A B @
WA R AR Frg R A P EXTERRE RS RS PSR E
iR A B2k % 300K ~ 100K P » ot 2§ #i § B 47 st (0.275) - Nobakht etal. (2018)
[45)F7 5 & B2 enE F IV F R E (2 B EB)HADS P8 $R= 4
SETH ER I I3 - Srey X A= E0/ U S F L P Il s S

ﬁ@ﬁ%—%ﬁﬂ%ﬁﬁﬁ’%iﬁﬁﬁa%ﬁ’%ﬁmﬁ&AgﬁiT@o

tu}‘

x,éft 7 MD i b > Wang etal. (2017) [44]» * 1 e eh™ 2 7 H K 7 &% &
e B PR Z BIFREAAHFEGEEF - RISREFEY Y -
fﬁdﬁi’ﬁzbrﬁiizﬂ&i‘fﬁ S i 2umx3um 0 = BICHKE A B S 14 BT
72.100nm 3 B4~ 6 BT 323 42 200nm 3t 4~ 3 BT 3B 4T 400nm It o R
R B D N E AT S AT R B GEEEAR Y 2 A T A Bl 8
ZEES SR L a2 “;TF BRIk A cRTE R R R HABE OB
TR fropt - Ky kiie B VA S R BEGERYER AR R F Ao IV
s WRBSLRF H 0 A TR GEY L 26% - @ Liu et al.(2021) [46]
4 ;ga FREPVFREEHELDTEF AN T ZBEN O PR T E R
Bk > FEktEA S 5 05umx12um > FLiF B AT A S 6nm o S B %
B F - RBEEREIFFIESSEFT R B Gl 2 o B R At
R EE 20nm ~ R R 100K T F 00 (B F] 60% crF BE R el @ X %“gé B 4o Euk
FoE IR B RS < (4 20nm H 4 3 30nm) g ¥ o F e
PG RIERRICFPREF N T - B T b E TR

PR TR o PG E MR R R B RO ]

F o e RS B AR A AR & 9 FI# O i - Dames (2009) [47] ¢
*F 2 (power-law) e i A4 A4 B B e R A R BB R A ik > KO

10
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d 387 e a2 £

-~

**?‘%‘

Nt 22 n ~ 2
VI e ﬁﬁ:j /E 2

E
Poo A 3 LR AR 33T 1 > B Glicptie o Tamura {r

N

By

OgaWa. (2012) [48]);? Eﬁ_,;{/f\";’\‘ = —( m 5{—' iA; /”‘L IIJ :’T\‘ = ’J‘ E’ﬁc\?\? .
BN Gl AR E AR P A RRE RV G

B %
FAOBIEL T F R AE G Ak S Eom B X ERERME R P H A o

Yang et al. (2018) [49] ik H 422 # (8 9 4 i B AR k1 5 AUM > 1 ] Sdcis 9

2. %S PR RAR R ARBFART B € g A% cHE BT, » Zhang et
al. (2020) [50] % 4 4 s @ E G R 2 R 5 T D e o T e E S &
Sud BB iR PR Tl R LR R IR A R BB Tieehl) TR

Hoe S tafier B £ 002 Gk B S MMM (2 - Kobayashi (2020) [51] A @ 3
Chdc e f R B T 5 UM RS AR (2 =0 Sl s g B~ dp B B 1Y i GO0 i) e

BT RERE F 2 (3R D DR A B F R %

/\_
N

Zx)

Je

o BRI EROEGHREERTAL S A FEAEL 3 R BYE

SRR S PIRERFEABEGE e

o
ok

l

13 Fifissp s

dE e P AR LR A2 TR ROEGET AR T R
ok o ¥ b BRIE &% 3 K R4 (GNM)# 8 3 (2 Bicz 7 S Bcdp i > s i

FARAITEINEFFERPGERBE TSNP E o @ éﬁ%[41]&’gtu EMD 3t 7 ¢
GNM # B E hfcip M 2 S8 2L R E D IR o P av 3 &t 4 2afkd

o+

B o A R G B GNM #4 8 H fliedr LIV K R S BF b (5o

Fritkanesd+dd BHR2 2 FLERFEFE R 2 L 2RO
BEE o s T A 4 B T 95 Zouetal. [22] 2 2F 3k 0 B B £
FIrEYE £ B F 2 Opt. Tersoff v iy S e — = 5 LIF AR F2ERHEF
5 ’fﬁ%lﬁ%ﬁmﬁm%% F— 2 50 fRIV AR A P S8k GNM £ id % % i

\\\
5

BE B R d B R ONM e 2k sbehdi sl

(S
&

EEFI AN A TR RCELA R R A BEGEE R REE TR

AL PP -

RSN
o

11
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14 £3%4 EEERERIT S

AT RY L IE S FHEERME S LAMMPS (2> % 5 Large-scale
Atomic/Molecular Massively Parallel Simulator )[52] > ¢* #c %8 5 % W& @ T B 7F %
FRPFH-ELFHS EF RN - E T GNU @ % 2 R iEHR - p &
LAMMPS & L {7 it 2 ;0 a3 s & (CPU %% ¥ GPU %% ) CPU %
LAMMPS d CH+# N F 2 %B > AN Ao ar e S B34
(Message Passing Interface » MPI) &7 %% » £ - B & BT 7ozl » Ajpw
g% % CPU 2w enf P58 7 LAMMPS & & & 4 B fickt > = ﬂ"@ﬁfﬁ*ﬁ;‘)&\'?;ﬁi%% £
pF R GPU s LAMMPS & &% & T {71 aafg;t - £ 48 CUDA {r OpenCL
GPU T {73+% -

v

A2 E A2 BES F-F LR BRFFERANEL, IS ERL SR
BRiE o FHN I AR ER FR CEBERAEAIE LD
R T R LR Rt SUECEAE SRR R HES S R R S EEaE R =
F3end SR T2 L ,@%&fréﬁ%“ﬁi’%}%{ﬁ:ﬁiiﬁ'ﬁi’i’*ﬁ?ﬁﬁ? <12 BB R

it e e X3 FEFRANEROFET AR LIHRE S0 BERBIES
R P RSB P EER R R R T R R BT BB

R RRY B EGE TR AL RS L J R Gl X450 R

-\mb

o

A

Bl * P 2RE o ¥R LEHEAREY o

o

12
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¥2% THgA IR ERLAKE

hFE g A+ 8 4 F 5 (Molecular Dynamics, MD)# 3 ¥ & £ & %
(Graphene)*> # Ir 3t 3% B T o e 44 @ 8 hdicen of sils « MD BRI $ i 5
B BRI AT 4 OAHEAE Y AT RF B R 75 0 £ st B
B E R D E BT g 4 R o

- HECER D SV e B T fFe S # 4 & (Equilibrium Molecular Dynamics, EMD)
fgt g 2L T = & 5 4 & (Non-Equilibrium Molecular Dynamics, NEMD) -4t
» & % EMD fistps o mg/* ST Gk AL 0 B PET U B MR R R 4
B %o » T A RSB AT % ¢ i Green-Kubo B T3¢ > i1 # k Siengun Fad
PE SRRl NEMD BB g AE R S B ORI R S oo 2
ErANUERLAAERANE AL BRLAFI R RS EXERTRBE
dlc o 277 1% BiREH LAMMPS i& 7 EMD ot R 7 2 B 2 B R & ~ ¢ 4T
Mo abE b BRL7- P E NG HR 3w R @il T B
HEEFHE NS - MD 3 7 i Solios he B iR s kg
BB A gl 2 A I 2 AT IR e A 5 o

21 RWBH

BB A BB T 0 SDTIR LR e 2 A A S s A 5
4o 2.1 477 0 R BRI G T e A L 2 e (Armchain) 22 424
v (Zigzag) &~ BT R fRix 2y 2 e [11]-8 & 7 &% 5 & ¥ 5 0.335nm [35]
R F & ok B se(interlayer distance)tp e & S end mffe @ 7 A BARLUR
G0 @@ R4+ % B (Primitive vector)4e s (2-1)% (2-2) 0 H ¢ & % #ica, =/3r -
r=0.142nm % Ap A8 coplt o + B ek ek R R o

%:@”%j (2-1)

13
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3a, . .
a, - Y30 % (2-2)

SOtk AR, ByEaie s 51~ i % 7 B (Reciprocal Space) £ 4 B (7
WP o @ § % &+ & (Reciprocal vector) ¢ 2 2 9 3 M enfufee 4P 2 2 0 M 12

_&[«'L‘ ,;E’_\:‘ a‘i ~ bJA\Vqujgf_'?ﬁﬁlff’fi']ﬁﬁﬁ%ﬁ?g%’f%'?"g

(2-3)
o _j;‘?]‘l:}ﬁ,%ﬂﬁ@]ﬁ BEBﬁE"'é"EE’Q"'T >
2r . 2r.
b,=——i+—] (2-4)
3a, @
2r . 2m.
b, =—=—i-—] (2-5)
3a, @

LR B F BN & 2% (Brillouin Zone) 4] 41 o #-
E

B 21 (@h=+#77 5205 5z F[1]

14
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22 g sk

MD i ® » 3 B en 3 08% 4 d Fua0 Sodiedy i Foar Sl A 5 B
(Two-body potential) 22 % %8 % it (many-body potential) ; = $8% 5 5 35 3 B eni¥®
o R R RIFEY AR KT RS R B ARER BSEFT R E
BaF X 3 o A E S A i AN E Y R A R T T
TR AT S MEBER TR B2 Z B BRI Baier > ISR MEH
Ga B EF 4 o

Caoetal. [22][53]4* ¥4 #xhl i ~ B3 LR AR ~ M EFHiE -~ B ¥ PR
BEBE Gl L S 6ot dE 2 2 (Tersoff) ~ & i 1 4% % £ (Opt. Tersoff) ~ & B+ 5%
4t B % (reactive empirical bond order, REBO) & p if s » + B F RIE S %4 R $
(AIREBO) = & %t i S Hcenigiplid % » 2 ¢ & 1 5 1 red 9 ¥ (3 #icen£_Opt. Tersoff

i S Bic[24] 0 F)0t 28T 7 EH Opt. Tersoff $uit S e (F AT -

2.2.1 Opt. Tersoff %% ¥k

Tersoff % s: \Av:@t"l = mﬂ 15k 21w % T 4o 5 _\

U=3U-= ZZU (2-6)

i je
He Uy & RS 0 BhS | 2 F3)3 a4t (bond energy) » # 57 407 3¢
C R A
Uii - fij (fij _bij fij ) (2-7)
R _ Ap Al
fy” =Ae ™ (2-8)
A _ Ra el
f =Be ™ (2-9)
1 I, <R-D
z\r.—R
frc(rr)= l—ESin M ,R-D<r,<R+D (2-10)
P2 2 2D j
0 .t >R+D

KRR AR P Feapegg s fRe AN E RS L e w4 gl
oA et (2-8)5 (2-9) 0 Fid FHEA B AR LEE MO AL BHE

TS ERGA D om QB L AT EF R L B iR g X 4
15
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g B L o] oo d At Tersoff # it Snlichy i chE_ R 3 B eniEARiT® 4 o Sp i A e
B fCw 2 F RS B ageigL 3 - 3;%[%]%53 v o B eniet 4 Wil g0 A5 e
FQ10) B ERFE R F LS RE 28D R AU IET Fond LIER3 0-

Tersoff it Snde? > = R PP P LR A(2-7)Y by Sl s B Sl &

FHRAEFIERF J2 Bt Ry FIE B ApARGR F @ 5353 0 255040

b; = (1"‘,3”4? )71]2” (2-11)
QVU Z fe guk( ,Jk)exp(/ig ( ij — Tk )m) (2'12)
ik (ij):}/ 1+C__ : (2-13)

d*> g2 +(h- cos@uk)
¥ ¢ ey b % rpe i ii(effective coordination number) - ¥ k fFE & RS i) 4R
RANCUPESICVESNEN 2T LV SRS N E Y AR
R gy Sl H e (2-13) G s RFHIjE KRS IS cERB DL R
has$h il 82 0, 2 &z y~c2da%a S8R e 28 3 ER
FREHE T R PR 3 (212) odp eI T B o 48§ i 7 5 Opt Tersoff £+
Sl ET S 4 2.1[24]

16
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% 2.1 Opt. Tersoff %t & & #ic % #c[24]

A (eV) 1393.6
B (eV) 430.0
AR 3.4879
A (A 22119
R (A) 1.95
D (A) 0.15
n 0.72751
Ao (A1) 0.0
m 3.0
Y 1.0
c 3.8049x10"
d 4.3484
h 0.93

2.3 #%Eﬁﬁﬁﬁ
232 A4 RERER

BEAFTEA ERBRPFT R - B A RA R A iERE A RS
Ahe B B A R B d EH AN R DR R o R A B e
5 =

PRT R R 22 i dsE R FEPEA T AT TIE S 00 2 R AE

24

»

BTy ™ i Bit #3094 2L > 4r5t (2-14)

i%m

i=1

3
2 =3 NK; T, (2-14)

!
Vo,i
B NZRRFIBE MIFIMHRAFIOFE Vv, 5 CREPMFIRFDER
Ky 5 L %% & % #c(Boltzmann constant) o d *M -k e,k S 5 #0F hE R A HR R

17
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FHEF L FREEHL R PEAE RN AL 0 # f LSRR R

AfoRER 5 0

(2-15)

Bl 22 7 BF ER

233 FHEERiEE
VSRR 0 A B R AR e
Wk R K f AR S R R i B proa
(minimum image convention): = i + B e $t B %> IR IR G L ke o e
M 23> APEFRELL FHY BT HORT RE LB ¢ U T
G N E@ e R Y RS Chd L T MR S B4 F RS Ch
ERUAMRZ BN B LY HEREE Y RFIF ey 4 @ f Mg HER
L s
P EE % B Ip RS A E A Fr 4 T g4 B5-C4E2 R

FRGOF ORI F R L WAL RF A6 wR 237 > 3}

F T ERPEIRT AL 4 35 o [54][55]

18

doi:10.6342/NTU202300623



O, ) ®
() C>°l C)Q' ®
O] O, ©,
@ 1 |@® 2 |@® s

® ® ® ® C}cﬂ@
©) ©, ©
® 4+ | ® s | ©® s

"0 0% @
®
©  |® s |® s

B 23 = ard ki 3 BI[54][55]

24  F@H S s

A H Y R 2 B F B %2 (velocity-Varlet method) - & & F &

R CERZ L BEFF AR B A ST
ra+5gzru)+vayﬁ+%aayﬁ2 (2-16)
v(t+§t)=v(t)5t+%[a(t)+a(t+5t)]§t (2-17)
Heor(t)v(t)z a(t) s st 4 RS AR nphps ) P R E B R
StEHRPEH A ] o R P ERTEFAR RS R AR bid B ALATR T
S 240 bt gt B r(t) ~ prprad R V() o MR R r(t) &
Foi ST 7t PR R e R a(t) s FR r(t) - v(t) 2 a(t) &~ 5 (2-16)F
@ at+ot R g r(t+ot) - £ - TEEF N B R IT 1+ 5P P ol

B0 Bt 58N (2-17)1F ] fet+ St PEH chid B V(t+6t) o [54][55]
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t t+ 6t t t+ 6t t t+ 6t t U0t
r [ @ o 5 ®
v | @ =) 0 = e =5 @
a| ® ® ® W

BTk FAHRT =8 « @B sid B2 1 579 5 [54][55]

éﬁ&l?%ﬂﬁﬂ’Eﬁﬁﬁﬁéﬁ%ﬁﬁﬁﬁﬁﬁ%&4v%ﬁ&’%@
L

7] v R T R R i B R% & I Maxwell-Boltzmann A fF > @ %
A4 iE 2 e ehg Brgt s 50 B R R FlEGRA M- € frA~dni=B Ak o %
R B E RETEET g M T kol o PR R € R ALAT 40 0E 2R 2
PR R e FIM s TRE AN AL TR R - KR R E NI 2 F X R

BAGHERFR=SLRBES R inpd $ B - KRB 0B #5Ap &
BRETOT GG - - A FEd By ¥ @%@ R € ATH I (velocity
rescaling method)[27, 28] ~ Nose-Hoover #3:% ;# [27-31]¥# Langevin #3278 /2 [27-31]4%
4k SRR R o

FREATAEZ AN AFTEREPN o r & F “,f it R R RE R HE

FIPHERE » 4 r & D A £33 8 40T

AE = g Nk [To-T(1)]= %2 m [(’1|Vi (O)) I (t)ﬂ (2-18)
A= |l (2-19)

HP N, ZREBP ORI LB -TET S RERmFELREPRER - A5 62k
(scaling factor) # 77 gepFr s ic 22 P H&de i a0t B> § AAR X o 4e 2 A Mg B AR S o
Nose-Hoover #2/8 ;2 (NH) ¥t 4 soerig B 2 7 3 f’f’;ﬁd @B BREORE L

B AR R R AR RS R ANE R T R T 2 2 58 (2-20)~
(2-21)
d’r, (1) dr, (t)
=—— 2-2
dt? mlqﬁ dt (2-20)
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dC“)_;EEI_iJ (2-21)

B ~F -mMASGRihIhizE X3 2FE > A F BPFR > TET E
GBI R RS FAPERER o d NR22)F A BF BFR o T @AKo BE =
2= ol N AP - B s s ‘Eﬁ%‘uf@"} AT FER LR POERER I ED P RER
FEEF PR RGDRT EAR] AR ho B Eehive s H R g /0
4k ey “Elq*fk oV MRERZRITIRER  PEERERT € A -
Langevin 4778 7% 51 ~ “g#% *t 4 (random force)sife 4 » @ (S Rakdae P &

BRPEE A ZRA A G o Bk 7] 58 (2-22)

) _R()_ o), 6 (2-22)
dt m a m

HP oy &4 %dc(fraction coefficient) » g8 ¢t 4 f R X T33E 5 0~ ¥R #cs
ol =2myK,T [ At g B4 1§ o

R gEs 3 #s 4 8 (Non-Equilibrium Molecular Dynamics, NEMD) = j 3+ &
KL SLE B SRR S SN A 3 R STER R
TERERGE Gl FHAN R Y R EATHFZ RN S E SRR PN D
BRFFLPERER > - 5 AKE 54 5 [30] 5 Nose-Hoover #5708 2

FIBWERF FRANIE 2L R P REERTY Y DR BB E
P AE Y R AT E LTI TR E[BL] A E é;gk[zs, 29] % 3
% NHIEZ € 22 7 p ARrBFIIRL % o 82280 * Langevin 327872 » 7 4
RERA G LD P E AL B AR ZHFH T EG P DRERR G T

i NEMD st ? ¢ i@ * Langevin 47872 > @ NHIZR 2P iR L B E S %

252 R4 4]
B MD s o kT R 2 R R T ONVT S o s AR AR
7 NPT 5 - 3382 5. 251 &7 aqdih— R FiX G PR 4 2 F54]
FIZ G enB 4 g PR NP HRRY AR o 507 F R FRTERR R
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BAPFE AR U A REFAF I TR RS R RE A
BRI RS A EH PR AR o

R4 pF o & % Nose-Hoover 477 /& % [56]~[58] ~ Berendsen 4 /& ;2 [59] » #
73 % Nose-Hoover #7 iR 47/ Riz 4 A el R R4 27 A K= NPT R E™
dkE o o LAMMPS # > B4 358 o Nges(2-23) s mp R4 d BRI R RS
REie® 4 91 & 4 o Nose-Hoover #7278 78 = £ 713t 7% (2-24) ~(2-29)[56]

dor-F
o NkgT 4 (2-23)
Y Y
dr(t) (t)+pgr(t) (2-24)
_Py i
qu_wg (2-25)
m M e (o, (0 -2 T ()]p () (1) (2-26)
Cdt NN, SQr
()= @-27)
Q
1P
p, =V (P-PRl)+ (N ZHJ' £(t)p, (2-28)
h=¢(t)h (2-29)
B Gy p RemAuSEiERT S R BRI TR pr,

PPy A B P R B R R IR e r b R g4 () R S(1) A
PR PRk e i Sl 8(2-25) % (2-27)¢ W, = Nk Tz ~ Q=N kgTry o 7
Tp b PR B RE R PP S AP 2 AP RRA SV Sk pRpE
AR > N, 5 %% p d A& (degree of freedom) - k, % it % & ¥ #c(Boltzmann constant) »
hifmeRel  d FRFRH Az 25t Ead > 87520 Edetfh]=V © o
IR IV R REESHRIER KL U FABBFITAE RS FIF -

RPN P HBF BT LF L RIBLRY DREREFT g E R A
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o E T FRLEDHERPFEEF P IRRS A EET P ERS BORT §4%]
WFE e Fr, TR AT URERIT PR 0 2 @R R E A

26 B4R

SRR R N R S S R S E L R S L Sl A U et
o AR R T s R P2 T
BEE A AT H LT ERAF . B R RP S LS T EEET 4 4L
MABERAET Ui bR AR BET 2 N e F BRIk KRR
T o T Mk it A AT R

~>m

261 M3 &M 4

B Al G R @R hiREF R E A4 SR AR UL T
EFHAR S > R F @R AT EGE R P AP SR s VRS il N E
A EI] e AP Y R PR R E AT D M B

B & W hf & & AR (normal coordinate) o, ¥ 4 7% 43¢ (2-30)

a,(t) =D r(t)-e,cos(q-1,) (2-30)

i
")'d‘é & ébl%;'/ﬁ'—*mﬁﬁﬂi‘?ﬁﬁ_ eqn%#’; ’f?”llm};{"*lfgfl"’“ ’qu;,,)ira»—g_o
SEHS YT W

t)=> Ao, exp(icoqt) (2-31)

B oo bk B QHEI BT S o 55 (231) 6 = F k- 97

o (0.0) = [, (Dexpiat)dt =3 A, 7 [ii((“:j __aa’)))t 1

AU S HERARPEE o K50 (2-32)T B

A T O=0
Fot) | v
=1 (1 . (2-33)

SR U AR PE o F S0l O I G 6 ARPY BT > a8 8 $HR T e
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X FUAW L o TS 4k B FI[55] -

262 HBR

> a-

BFRERFERAE > CRAAFERFIERDA AAM I B L7007

a{salgr) o

HP k3 5k BT ¥5(ensemble average) ottt N iR i@ A2 A {8 eOpE R T S %

Brimeqy ()Er Rt EE T ERA (o) T [55]

7, (t):Jg(a))cos(a)t)da) (2-35)
9 (o) :% [17.(t)cos(wt)t (2-36)
[u(0)do=1 (2-37)

2.7 #H G iadk
2.7.1 Green-Kubo 32

AT fEe G Eed B > ARt Green-Kubo B RN E MR g i @
Wikdic 4o 50

Ko =

k\iTZI (12(0) J, (1))t (2-38)

Green-Kubo B % 3% 2 1295 i@ #4732 % (Fluctuation-dissipation theory) @ % » 4
oLt AT Rk B T oeh# )t po4p B 30 B (Heat current autocorrelation function,
HCACF) ¥ 3+ 5 ittt B 3 fhdic - 58(2-38) ¢ F 5Lz Rl + Rlepky ~V ~ T 2
JAE R ABE Gl R ¥ i AU R 2 #0053 & (heat current) > @
THa kTR e o A NP e RSN L & & T 35(Ensemble average) o & *

LAMMPS 2+ 5 #7558 & 1= X 4o 2 [60] -

- Vl{zi“eivi —Zsivi} (2-39)

He jafinn e ® oVE s eV SEFIAFFT TR E HR

ek
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2 4 5% £ (Stress tensor) o € & S, N K 40T

& (t)=%mivi2 +U, (2-40)
$i =Siap = ~MViaVip — Wi (2-41)
1Y 1N
Vvi,ab = EZ(rlaFlb + rzaFZb)"'EZ(rlaFlb + rZaFZb)
i=1 i=1

1
+§Z(rla|:lb + r2aF2b + r3aF3b)
i=1
Ng
+_Z(r1a Fio + N0 Fop + 150 Fap + TiaFy ) (2-42)
i=1
N;
+_Z(rla Flb + 6y sz + I3, FSb 1 F4b )
-1

N
+Kspace(r,,Fy )+ > r,F

f
ia’ ib
i=1

HP 8 (2-40)42 7 % i3 R+ F 3 hae £ 5 %R+ iy B iy 2 foo 58 (2-41) 5§

I E o F BB R BT A ke E Hd a, brREAX Y, 22w o
R+ BRI v ¢ g = $HIT* (pairwise) ~ 4.5 (8% (bond) ~ &£ & £ % (angle) ~ & &
% i * (dihedral) ~ = & % (improper dihedral) ~ % 4% 1% * (long-range Coulombic, K
Space)¥? i &+ ¥ & (internal constraint) 4~ %] 7|3+ 3%(2-42) » T {E#kF N A - B T 0F

®Eht RSB No s Ny~ N~ N~ NN A B[R E 2T i g

2.7.2 ¥&EH A Green-Kubo = 3¢

WA A E Green-Kubo B @25V pF » & d ;N (2-38)4t#vn p AP M Sl i B
LA g s~ > 2 2R EHRITY > 27 0 # HCACF i 4 DR & 85 < >
AR EEE AR kBT PR R T BRS04t (243) 0 &

#5 fie ¥ 12 3K (ergodic hypothesis) » 3% f L 32% pEfF L 350 NB o, plpr it
FEME % FIRR PP F B BB R X B TR R S ¢ BB A
a7 3.5.2 a3t PR AR A F U HORPR R B 2 R A O GR A h R e
MpER T3S X8 g HCACF 7 4 1 5 5% (2-44)

1 Yorrel / :
Ko (tcorrel ) = k VTZ J.O | <Ja (0) Jo (t)> dt (2-43)
B
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1 N

(1. (0) J, (mf At)) =

F2-44)7 0, (MPAL) 2 7 &% mfAt f) Btk cha = » #inas B o & f B R

>, (nfat)j, [(men) fat] (2-44)

S n=!

o AL E S Al 0 Ng & BUERB R B e BofS R * 72 4% 4 2 (trapezoidal rule)

T G A R A B e B o
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% 3% %‘%’3& P&_\ths
AROPREER PG ORGET AV E R EGL F RMGEER A
FREE B HRE DAL E R BB EMD ERE R chE e s A BE R
G M GEERAED ZRFE -REFFALLF RO E gD F BB RN
SRAE R TR A L oS 2 T SR ARG 2 R T A4
FOE G RAPEREEFTT o

31 HCEREEH AL E B
§E AR L P R T SRR R % 7 i PR 2
E P A FIRAPEFmERRES L) AEFPEEFL AT ET BT
Beif & ey < o) o 50 AR AT DS < ] 0 VIR LG Sl (7 F] =
AAT PR R R R o 3 T AT i R E BT X ] RORE
FrEEE MD R RERSR LR P ATE RN <] o

311 RIFIFREFEFR
FBEFANZAFTAPECRIEFFF I RS TEM ~ Filcd B L ERE
Pl £ e o1 0 4038 (3-1) -

ML2
&

7= (3-1)

BE & 22° 4 8E @& Opt Tersoff it Sty it en ke > 3+ 1 &2 R

F j 2o BFA, 2 e i (bond energy) » ¥ 4 o 40T 50

Uij = fijC ( fin _bij fijA) (3-2)
,Zﬂr‘l

£, = Ae ™ (39
,Azrl

fy"=Be ™ (3-4)

Opt. Tersoff 4t i dnic? » 42 % 4 314 coghigeic £ 5% 6% 4 R 3 30T i 1,
P WS T i & 0
gf=1f" =AeP (3-5).
1].eq
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h=f" =Be N (3-6)
1],eq
o Tl SR RS Famxild P sd ¢ X [ pE 2 paF P

BE > T & o1 Ao (3-7) °

o (izlﬂi)' [Bl j &

SN (3-3)E N(B-4)T A R 4 AR B 5 1/A 0 R4 AR B 51/ A o
WA B BAE RS RS TR A NGB T E N A4 ok 5 4 (e

TR R AR o B R A4 AR 31

2 31 P54 oril4 oz $3cE RS iR 5 R Y

P4 ik ERTRE S S
(R) (A)

M (kg) 1.9932x107% 1.9932x107%
A (eV) 1393.6 1393.6
B (eV) 430.0 430.0
A (A 3.4879 2.2119
r. (A) 1.2785 1.2785
L (&) 0.2867 0.4521
£ (V) 16.1275 25.4311
z (fs) 10.0793 12.6596

312 pEH AR

oo T R R R E T < 95 A 10fs 24 0 ¥ s
iR B i A7 0 F]ULiE B 1fs ~ 0.5fs ~ 0.1fs = fEPFH ] i FHE O L RR G e
B i o

Fr

g
R\

e

& 5 49

e

WK E @ % 5x8BH 82 (* 9 2.1nmx2.2nm » 47 442K 5 0.142nm)0 %
St <t o & NVE & ™ fi8t 1ps » %Jk. gy — 3E RS anE RAERER R0 B (FER
KEZ A 32 g E 2 BEH <P ENPRIFRS TR 2B A

A Bl E e G ) L B o de ) 1) EFHHE TEL L 2 R F
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BT 500fs 74 » B4l B3| b < ) fs 252 Hpn2 5 24P LR > 4o
Bl 3.1(C)> # P4 T 5 MpEH <] 0.5fs itk 00fs SRR B E B AL B o

d 3 & EMD e > AP FREFRPFRORR 0 2 ARFH <) 5 Ifs
22 0.5fs pF gt e 1ps s £ o RR HE Plc et S R Rk o TR 4
» Py o] 0.05fs g FRE F o wE Y <P B i R L AR
it LR 325 ¥ og IpEH &) 0.1fs chip %k & pEh < ) 0.05fs gk £ B A
% >t 10ps B eruig B L3000 20 1A /ps o E B ETR ¥ pEA 2 ) 0.0fs @ i Flicag o
Py <o) Ofs g T i@ R F E R R Ly TR A TR Y LD
HhFERRN O F AP MR T ERFH S ] 0.1fs &7 0k -

% 32 REFEFEAH PR

P 2.1nmx2.2nm
S8 S s "_f
(5x8 U.C)
B R K 180 #f
B3 A4k B B R 300K ~ T3aE L 0hE Srptdes #
Frdod LR 0.142nm
z3w ipd @R

EUTE °d Opt. Tersoff % s & #c

PEH < o] 1fs, 0.5fs, 0.1fs

ECSUE A NVE #-#¢ 1ps
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“:"‘- ‘ s (s i |
a 0f ’ § i
< f l JATARTR!
- L | i 1
X ) 4 ¥ I\ 0
_5 T .‘
[timestep size|
—1fs
e 051
A0t 1
0 0.11s
1] 100 200 300 400 500 600 700 800 900 1000

t(fs)

.
- )
a “ g
é - . |
= o
> 2 '
25— ‘ |
= . timestep size|
- g —o-1fs
35 . T o 05fs |-
o E AL
4l . _
25 30 35 40 45
t (fs)
@
a
=
o

:ﬂmes:lep size} LY 4 Py
A0 s
== 05fs
0.1fs

-15
500 520 540 560 580 600 620

t(fs)

Bl 3.1 (@F#H <] 5 1fs~05fs 2 0.1fs (& % 5 2 ~ F ~ &= ¢ BE) & NVE #

% 1ps [ g A EPE 9 1 B o (D) 2 WO 9 (25fs~45fs) s~ ] (€) 5 HoHR 15
#p (500fs~625fs) e3< ~ ] °
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Ay

timestep size
—1fs
A5 osts
0.11s
.20 1 1 I I L I
0 1 2 3 4 5 6 7 8 9 10

t(ps)
B 3.2 BH x5 Ufs~05fs22 0.lfs(» B 5 2 ~ -~ =4 BHE) & NVE ik
10ps A& pF4h ~ -] 0.05fs g & X B o

32 EwRA AT

dNAPETOER T EFER S e B - RS 0 ARERTERY TS
B Rz e i@h s §REWA T RBEL DR FAR L ERE 4§
PRI A GEREhT it o Flpt & 506 5 T A isEaY v

ST R AR Xodih R e i R SRR T T e Bk cnsg i )

B

Bt - P S8 BH =8 f (% 9 2.Inmx2.2nm 4~ a4t E 5 0.142nm)
F EF R F A Hks 1 NVT #05 Ins B 8 woengg <% > JE & 12 Nose-Hoover
Fog i 24 A 300K - & 0.01ps 31;?] M ARR I Y L ERT 23 % 28 s
(2) 2 8 £ (o) » £ 0B & (d) il 200 - 280 90T BER - 5B 3.3 T35
RSP RCET S SR A o B oA R REL A 15%
HPIT RS o
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1 T T T T | |

(a) — MUY E
08 - — - — SRR |
06| l
04 )

z/d

-06 -

-08 -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t(ns)

0.25 T T T T T T T

(b)

0.2

015

o /d

0.1 .

0.05

0 1 1 | | L 1 | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1

t(ns)

B 33  21nmx22nm = &% NVT H#37T @k + z 2 w2 T RWTHEE

D)+ z2 %2 0 HRIHEEL o

BFA- a5k % AT o et NPT 5% Ins> #H ¢ ;8 B ~ &4 12 Nose-

T
o
o
<
@

4
R
i
¥
W
R
e

| & 300K 2 1 = § & o & 0.01ps #i5 &1 ki siena + 28 0
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Ped A

Yo 34 87
5% T BT o B B+ & 5 8.6% (5 0.27ns)

LB RS 20 % ) hTIaR BRI L T AR -
BRI PRz G e S B RG R 2 PRI EREL Y

SRR NVT iefs

B % o (NVT &2 NPT o & 730 4 3.3)
%33 xETEYAREASHIR
NVT #-5K & NPT #-5X &

2, L P
-5
PRI

2.1lnmx2.2nm (5x8 U.C.)

/J ""‘ 7\.}»}%" + g{

180 7

R A heid R

BB 300K ~ o 5 0 ehd Srptdes

Ao he A R

0.142nm

X~y o G g R aE

i R i i z> % s pd @R

T Opt. Tersoff %t it & #c

B 4| 0.1fs

N 12 Nose-Hoover 78 i# (300K) ™4 Nose-Hoover £ £ & =

& NVT #4 1ns (300K » 1 * 7 /&) % NPT 4 1ns
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%10

1 T T T T T T T T T
(a) EAULPEI R
08 — - - - WErEIRITY |
06| _
04 i

z/d

-04 -

-06 .

-08 -

_ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t(ns)
0.1 T T

(b)

0.08 [

0.08

0.07

0.06

o /d

~ 0.05 |
0.04
0.03

0.02 {*

0.01

0 1 I | I I | I ! I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t(ns)
B 34 2inmx22nm 7 5% NPT H3% T @A+ 2 w2 2 R0 T}

D)y z2 e i¥ 2 0 HRIHEEL

A2 L BOROTEERE R R A BRERY AP bt R R
® 3 0.142nm > 7 4 iR A i ) 300K p¥ > & * Opt. Tersoff 4t i & $ech & & 7%
&3 %R T (NPTEEE ¥ £ 3 % 4 0.1442nm[63] » & 35 MR F A B H
$RAE T T cg £ S84 3t A dadE o 4 w5 0.14290nm (NVT) 2 0.14421nm(NPT)
d 3 NVT Hoged ¥ AR Rf 0 R @A R 2 ATa S pd B pphe

FEAP S R AAE Uz S e o BREWA L R R T - 2
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mWWTﬁﬁ?uﬁﬁmwﬁ&i&%@éé%&’ﬁﬁaﬂwﬁ%%agiﬁ
PR E T e e LR ARG T A iR Y o ViR e
NPT ik i s se{ ¥ 0 AT gk i -

1.52 T T |

(a) | | =— bondl length

15} ———— average

1.48

1.46

144 W

Bond Length (A)

1.36 1 | 1 1 | 1 1 1 1
0 0.1 02 0.3 04 0.5 0.6 0.7 0.8 0.9 1

time (ns)

— bond length
———— average

- -
~ ~
(=2} (o2}

Bond Length (A)
>
B

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
time (ns)

B 35 2.1nmx2.2nm 7 &% (QNVT (0)NPT Higg st i & & % 1

FFEN L A0 L NPT £ 2233 NVE ficsiis aniEgnaj ik > # * 5x8

i

BEH>&He(*521nmx2.2nm » 4~ 4edEE 5 0.1442nm)=0 k3L o L2 NPT fichkt
05ns & ~ B4 %X B 5 300K 1 + 7 & » 4% 3 5| NVE #58 Ins(Hkek % 71
4 34) & 001ps B ARG =R P EEWALERRT 23 v mk

Tz AR BETE T SRR R o F g IV MR IR 3
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INVES » R ELRT A FR ] > B RRpE R d Nt Ao
TV fpd @ % NPT ASmw et fi p o B > P 4 i = R 0 1)
B it FANVE SR Y 0 7 B ERE AT g KT B Ak o )
37 & B 38 & u 4 43nmx4.2nm -~ 8.2nmx8.2nm ~ 16.0nmx16.2nm %
32.0nmx32.2nm = & ¢ < 7 5 fdAp b eORCEREE 2 T chT 5o 2 R4 R (I
BIFET 244 34 02 LA T EGANA 35 ARY > THE PRI

REFCARAEBE L 0 A RUMRNL D A B LT RE PR -

i

% 34 RETEFREASITHER

B 2.lnmx2.2nm (5x8 U.C))
gL R S B 180 3¢
ERINTY BB 300K~ T35 5 0 ehg B A b
AdeAE R R R 0.1442nm

X~y SR iE e
z3w i pd R

o S#ic Opt. Tersoff #ti; & #c

B R i i

pEH % ] 0.1fs

2 Nose-Hoover #78 47 /& 7 (300K » 1 = 5 /&)

AL & NPT %t 0.5ns 4% % 7 NVE ## 1ns
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(a) ! ——— ERCE R
6 ! — - — - R |
i
4 | 4
i
i

0 0.5 1 1.5

time (ns)
0.08

0.07
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0.05
|

o /d

N 0.04

0.03

0.02 7

0.01

time (ns)

-
»
oo

Bond Length (A)
B

0 05 1 1.5
time (ns)

B 3.6 21nmx2.2nm % &% NPT ## 0.5ns i *7 3% 2 NVE it Ins & (a) = +
273w E D)AhFz2e RV HERL CORFHELEER - 25 NPT 23
2 NVE 2. p=fF gk o
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.\.J»

2 ET LY

2, +
S Bk "_f

BRI

2.1nmx2.2nm

.
(5x8 U.C.) 180 *
4.3nmx4.2nm 680 37
(10x17 U.C) R
8.2nmx8.2nm

3F

(19x33 U.C) 2,508 %7
16.0nmx16.2nm 9.620 37
(37x65 U.C.) 00 7E
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) 38,184 1

(74x129 U.C))

L
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time (ns)

B 3.7

1
05

time (ns)
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time (ns)

(@) 4.3nmx4.2nm ~ (b)8.2nmx8.2nm -~ (¢)16.0nmx16.2nm ~

(d)32.0nmx32.2nm = & R+ 23 % T § o NPT 44 0.50s 1+ 4% 1 NVE
Bt lns > s s NPT *# 46 1 NVE 2 gk o
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0 05 1 15 0 05

time (ns) time (ns)

o fd
2
=
2
o_id

0 05 1 15 0 05 1 15
time (ns) time (ns)

Bl 3.8 (a)4.3nmx4.2nm ~ (b)8.2nmx8.2nm ~ (¢)16.0nmx16.2nm -~
(d)32.0nmx32.2nm 7 £ R+ z * e & R HRE L o NPT #05% 0.5ns 1427 4 3
NVE #i#t Ins > =4 2 NPT *» 3¢ T NVE 2. pF ¥ & -

33 R

i€ * Green-Kubo ;23 B # @ E Gl AP F LB BT HR T T
Lo A BRI AR R SRR TR R R R 2 2 3 5 NVE fik e o Ta’ g7 - &
PWHEFHE g E AR KB iR TR-2Y
#7725 L B RSP R R (B0 00) A R RARER T R 1 o F 0 il f e

o a-

%mfa&}"

—

RO TEHITHYE o R H|ET kAL AR o
| ox S NPT 5 B T #52 0.5ns > 2 % Nose-Hoover #7738 477 B & #- % suidF f

300K ~ 1+ f B » Z 3| T HFs 7 3 B NVE i 55 > Fl 5 s 4 gl & 0 &
FET- B B R ARANVE JFTRE - R H 47 B R E
FTaler 5x8 B H & % ch 7 &% & BI(% ¥ 2.1nmx2.2nm 4~ 4a4E & 5 1.442nm)>
e NPT i 5s#c4% 05ns > H @ g & ~ B4 g 5 300K ~1 = F B4 > 3%F 35
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