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Abstract

Montane cloud forests (MCFs) are characterised by the presence of persistent, frequent
wind-driven, horizontal belt shaped and orographic clouds also known as a cloud band.
The hydroclimatic characteristics of MCFs often acts as a water supply to ecosystems due
to the prevailing perhumid and dim light, where moisture introduced by depositing cloud
can be more efficiently retained. Recent observation has shown that elevated temperatures

may lift cloud band, which would cause colossal impacts on MCFs. The first step to

assess the potential ramification is to quantify the occurrences of fog and low stratus
(FLS) regionally; satellite remote sensing is an ideal tool for the task. However, previous
research efforts may only be effective in limited weather condition, confining the
feasibility in this cloudy region. In this study, we developed an algorithm to detect diurnal
(defined as 07:00-17:00 in this study) FLS occurrence that was insensitive to weather
conditions. We used the visible and infrared bands of the Advanced Himawari Imager on
board Himawari-8 (H-8), sun geometry (solar zenith [SZA] and azimuth [SAA]) angles
of each pixel, dual band differences (DBD), normalised difference vegetation index
(NDVI) and local topographic variables (elevation, slope, topographic position index,
vector ruggedness measure, topographic wetness index) as input data (31 variables) to
model the FLS using “RANdom forest GEneRator” (Ranger), a recently developed
machine learning approach derived from random forest). We carried out the study in
subtropical MCFs of Chi-Lan Mountain in northeast Taiwan. We installed four ground
FLS observation stations across an elevation range of 1151-1811 m a.s.| with 53 358

diurnal time-lapse photographs from 2018-2021 with or without FLS identified by visual
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assessment. We applied three different model (twilight/dawn, cloudy, clear sky) settings
to model FLS occurrence because of the responses of the various bands depending on the
time of day and the underlying surface characteristics. We randomly selected 80% of the
data for Ranger development and the rest of data for validation. We found that it was
possible to detect FLS occurrence in MCFs regardless of the weather conditions using the
proposed method with the overall F1-scores > 0.864, and 0.945 and 0.945 for clear-sky,
twilight/dawn and cloudy conditions. The finding may facilitate systematic mapping of

FLS occurrence in MCFs.
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Chapter 1: Introduction

Montane cloud forests (MCFs) are characterised by persistent and frequent wind-
driven orographic fog and low stratus (FLS) (Grubb 1977; Hamilton 1995). The
distribution of FLS occurrence in MCFs varies depending on winds and rainfall patterns,
latitude, distance from the sea and the size of the mountains and local vegetation
classification. The frequency and duration of FLS occurrence vary greatly as the
irradiance is reduced by 10-50% and the persistent wetting of the leaves leads to reduced
photosynthesis (Bruijnzeel and Veneklaas 1998; Frahm and Gradstein 1991) but see
Dawson and Goldsmith (2018), which forms unigque mountain environments. Moreover,
the prolonged availability of perhumid and dim light conditions in this ecosystem,
enhance vegetation growth in MCF by shortening the desiccation period and lengthening
the period of photosynthetic activity of the plants. Since sea surface temperature and
saturated adiabatic lapse rates and their diurnal and seasonality are highly spatially
variable across tropics, the altitudinal bands where ground-level clouds occur are also
likely to be highly variable (Bruijnzeel and Veneklaas 1998). Accordingly, MCFs is
located between 500 m and 3500 m altitude in the humid tropics (Eva et al. 2002;
LaBastille and Pool 1978) with major occurrence between 1,200 and 2,500m . The diurnal
cycle of FLS occurrence often acts as a water supply to ecosystems (Bruijnzeel et al. 2011,
Glasow and Bott 1999) and, by influencing radiative transfer processes in the atmospheric
boundary layer, it acts as a modifier in the climate system (Vautard et al. 2009). In
particular, the deposition of FLS contributes to nutrient inputs in forests and the

deposition carbon flux of these compounds through the canopy-held epiphytic biomass

doi:10.6342/NTU202300432



over forests is a major contributor to ecosystem acidification and eutrophication (Alewell
et al. 2000; Chang et al. 2002; Conley et al. 2009). Therefore, MCFs play an important
role in regulating the regional hydrological cycle. This unique physical setting harbors

high biodiversity and many of them are endemic (Gentry 1992).

A large body of literature has shown that small changes in temperature and rainfall
can alter microclimate conditions and threaten existing ecological communities; whereas
these ecosystems exist in rugged mountainous regions, narrow microclimate zones can
change significantly over short distances (Gotsch et al. 2017; Nadkarni and Solano 2002;
Ray et al. 2006; Williams-Linera 2003; Williams et al. 2007). Therefore, the rate of
warming is expected to be greater at higher altitudes than at lower altitudes, as it has been
reported in the montane around the world (Bradley et al. 2006; Roméan-Cuesta et al. 2014).
Although uncertainties remain about the effects of temperature and humidity conditions
on cloud band formation in MCFs (Lawton et al. 2001), the upper displacement of the
condensation zone is expected (Halladay et al. 2012; Lawton et al. 2001). Consequently,
the altitude of the cloud band may be shifted upward, and the increase in solar radiation
cloud also increase the evapotranspiration of the forest and causing reduce the
interception of water by the vegetation in MCFs. As a result, changes in the water cycle
will lead to droughts throughout the ecosystem and MCFs be recognised as one of the

most threaten ecosystems in the world.

One of the basic metrics to quantify FLS in mountainous regions is the occurrence
and consequentially the duration; field air temperature, humidity and leaf wetness sensors
are commonly used for the measurement (Bruijnzeel et al. 1993; Chu et al. 2014; Gotsch
et al. 2014). Some field studies utilised ceilometer lidar and cloud-detection radar to

detect FLS occurrence in order to estimate cloud base height (Gaumet et al. 1998; Takano
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etal. 2010). However, the high cost of the instruments constrained to identify liquid water
clouds due to sensor signals are strongly attenuated in rugged mountain regions. Besides,
visibility sensors as ancillary weather monitoring sensors need a specific observation
angle and raised flat ground to determine whether they are immersed in clouds and mists
based on the output of infrared light and the distance of receiving a specific point
(Beiderwieden et al. 2007; Chang et al. 2002). An alternative is time-lapse photography,
but cloud-sensitive of capture image characteristics (contrast, the coefficient of variation
and the entropy of pixel luminance, and image colourfulness) are required a complex
iterative quantisation to quantify spatiotemporal cloud immersion in MCFs (Bassiouni et

al. 2017). In addition, the aforementioned instruments of sparse measurement-based can

represent the monitoring approach of local areas with low spatial coverage, which is

somewhat limited for regional monitoring.

Systematic detection of FLS using satellite imagery permits the quantification
over a vast region. There are several approaches available for FLS detection including (1)
a physical method using the one-dimensional variational system, (2) a split-window
algorithm, and (3) machine learning methods. The physical method is based on modelling
the lifting condensation level of cloud to obtain cloud base height from radiosondes data
and weather station measurements and compared it with a digital elevation model (DEM)
to confirm areas covered by cloud (Stackpole 1967). All parts of the cloud layer during
modelling have uniform geometric thickness, but in the case of orographic fog, terrain
factors need to be considered. The split-window method is based on the dual-band
difference (DBD) of infrared spectral bands to retrieve cloud properties in the atmosphere
(Lee et al. 2011). The most common method involves DBD of thermal (10.8 pm) and

middle infrared (3.7 pm) spectral bands. The middle infrared has a solar component,
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which limits the theoretical use of a combination of brightness temperatures in the middle
infrared and thermal infrared to detect spectral information of FLS (Cermak and Bendix
2008). Moreover, a purely thermal infrared -based detection of FLS is not possible, as the
brightness temperatures of FLS and land surfaces may be similar (Guls and Bendix 1996).
The application of machine learning based has been widely used in the field to quantify
FLS using satellite remote sensing (Liu et al. 2021; Tan et al. 2021; Wang et al. 2021).
Using ground and satellite meteorological attributes data, Li (2022) compared several
machine learning algorithms for monitoring the occurrence of diurnal FLS and finds that
random forests outperform others. However, the approach heavily replied on field

meteorological data preventing spatially continuous FLS mapping.

Therefore, the objective of this study is to develop a novel satellite-based approach
to provide wall-to-wall FLS coverage over subtropical MCFs. We further analysed

variables and seasonal variation that were pivotal for FLS occurrence modelling.
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Chapter 2: Materials and methods

2.1 STUDY AREAS

Taiwan (21°85'- 25°30'N, 120°00'- 122°00'E)) is a 36,000 km? subtropical mountainous
island located in Pacific Asia. According to the National VVegetation Database of Taiwan,
MCFs are mainly located 1500-2500 m a.s.l. (Li et al. 2013; Schulz et al. 2017). The
study site is the 24 400 ha MCFs of Chi-Lan Mountain located in northeast Taiwan with
the elevation range from 310-2845 m a.s.l. (Hu and Huang 2019) (Fig. 1). The regional
climate is generally humid with precipitation of 3000-4000 mm yr! and mean air
temperature of 13.9 °C (Chu et al. 2014). According to the investigation of vegetation
composition, the yellow cypress has the dominant which occupies 82% of the total basal
area (Chang et al. 2006). The MCFs of study site are characterised by increased relative
air humidity through frequent incidence of FLS, high abundance and species richness of
epiphytes, and accumulation of large amounts of epiphytic biomass (Lai et al. 2021; Lai
et al. 2020). In addition, nutrient fluxes were estimated more than 50% of the ecosystems
input was through FLS deposition (Chang et al. 2002). The topography of study site are
relatively homogeneous south-eastern facing slope that extend about 2-km with average
slope of 14% (Chu et al. 2014). Due to rugged terrain, study site is often affected by
orographic lifting FLS, which occurs approximately 38% of the time of a year (Chang et
al. 2006). Furthermore, FLS significantly affects the radiation and horizontal
precipitation, causing its interaction with the atmosphere and ecology, thus increasing air

humidity and water supply; reducing solar radiation and evapotranspiration (Gu et al.
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2021), without distinct wet and dry seasons. Li et al. (2022) depicted that the core cloud

band of the study site was narrow mainly distributed at 1514-1670 m a.s.l.

(a) (b)

120°0'E 121°0'E 122°0'E
T T T T T

I B
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Fig. 1.(a) The study site, MCFs in Chi-Lan Mountain in (b) north-eastern Taiwan (the
black polygon). Four fog observation stations installed on the site, and the black-dashed
lines and red monochromatic coloured indicated H-8 2-km grid and the areas visible by
the stations, respectively. (c) The photographs taken by time-lapse cameras show the field

of views of the stations.

2.2 HIMAWARI-8 OBSERVATION DATA

The Advanced Himawari Imager on-board the Himawari-8 (H-8) launched by Japan
Meteorological Agency, has 16 spectral bands - four visible (VIS), two near-infrared
(NIR), and ten infrared (IR) spectral bands. The satellite enable continuous observation

in East Asia and Western Pacific regions with a 10-minute temporal interval and spatial
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resolutions of VIS (0.5-1 km), NIR (1-2 km) and IR (2 km) spectral bands (Bessho et al.
2016) (Table 1). With these advantages, Himawari-8 AHI provides capability for
atmospheric and environmental monitoring using machine learning (Lee et al. 2019; Tan
et al. 2021). These applications have shown the geostationary satellites have the potential
to draw a spatiotemporally coherent picture of the FLS occurrence (Andersen and Cermak

2018; Egli et al. 2017; Iwabuchi et al. 2018).

To make widespread application of the enhanced monitoring capabilities of
Himawari-8, level-1 grid products have been provided by the Japan Aerospace

Exploration Agency P-Tree System (https://www.eorc.jaxa.jp/ptree). Corresponding

geometric attributes including solar zenith angle (SZA) and solar azimuth angle (SAA)
also came with the spectral data and were utilised for the modelling. The brightness
temperature of window bands (Bu1, Bi3, B14 and Bis) are related to land and sea surface
temperatures, while the water vapor bands (Bs, Be and Bio) are associated with the
distribution of water vapour in three different vertical layers. B12 and Bis correspond to
O3 and CO; absorption. In addition, the differences between the window band and water
vapour band (DBD14.s, DBD14-9, DBD14-10) and themselves (DBD14.11, DBD14.15). Studies
using ground measurements have shown that the spatial distribution of FLS can be
affected by topography and in turn, the distribution of FLS can affect vegetation patterns
(Ball and Tzanopoulos 2020; Gultepe et al. 2007). The Normalised Difference Vegetation
Index (NDVI) (Rouse et al. 1974) calculated using red (centred at 0.64 um, Table 1) and
NIR (0.86 pum) has been extensively used to monitor vegetation greenness and
productivity (Fensholt et al. 2011; Sjostrém et al. 2009). Optical satellite images can be

used to assess and quantify the impacts of FLS on vegetation at large spatial scales, which
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significantly positive relationships in the NDVI were found between FLS and vegetation

attributes (Kaseke et al. 2018; Qiao et al. 2020; Spirig et al. 2019).

Yoo (2010) pointed out that the satellite-observed DBD7.13 values were varies
according to time because B7 (3.9 um) measures both reflectivity and emissivity during
daytime. Therefore, most of the studies have been separately developed for dawn/twilight
or daytime according to SZA (Suh et al. 2017). Purbantoro (2018) compared band pairs
of B13 (10.4 pm) and Bis (12.4 um) and Bis and Bis (13.3 um) to detect different cloud
types in summer and winter seasons; the former combination is useful for clear sky and
low stratus. The initial threshold values of test elements (e.g., DBD7-13, DBD13-15) through
histogram analysis and prepares the background data, such as the ground surface data.
Since the response of the various band depends on the time of day and underlying surface
characteristics, the algorithm (Fig. 2) was developed to detect diurnal FLS occurrences
according to the SZA (dawn/twilight) and a uses the threshold in DBD13-15 to distinguish

clear sky from a cloudy condition.

2.3 TOPOGRAPHY AND LANDFORM DATA

Field observation showed that the spatial distribution of FLS can be influenced by
topography (Gultepe et al. 2007), which may facilitate predicting the spatiotemporal
dynamics over a vast region . The topography of Chi-Lan Mountain is highly variable, so
we characterised FLS occurrence frequency for a DEM with 2-km spatial resolution. We
utilised the Spatial Analyst toolbox in ArcMap v10.7 (Environmental Systems Research
Institute, Inc., Redland, CA, USA) to derive an array of topographic metrics from 30-m
ASTER-GDEM (the Advanced Spaceborne Thermal Emission and Reflection
Radiometer-Global Digital Elevation Model) data. We applied a nearest neighbourhood

approach to resample the data to 2-km to match other data. Topographic variables
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including elevation, slope, the topographic position index (TPI), the vector ruggedness
measure (VRM) and the topographic wetness index (TWI) were used as input variables
derived from GDEM V2 (Table 1). The topographic metrics the TPI used different radii
derived from elevation to measure the difference between a central cell elevation and the
average elevation around it within a predetermined radius (Guisan et al. 1999); the VRM
measured terrain ruggedness as the variation in the three-dimensional orientation of grid
cells within a neighbourhood (Hobson 2019), and the TWI is a commonly used index in
hydrological analysis for describing the tendency of an area to accumulate water and the

probability of the area being wet (Beven and Kirkby 1979).
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Table 1.Summary of the physical characteristics of H-8 observation data and local

topographic variables in the model of detection diurnal FLS occurrence.

Input variable Physical characteristics

H-8 observation data

B1 (0.47 pm) Daytime aerosol over land

B, (0.51 pm) Color composite imagery

Bs; (0.64 pm) Daytime vegetation/burn scar and aerosols over wate

B4 (0.86 um) Daytime cirrus cloud

Bs ( 1.6 pm) Daytime cloud-top phase and particle size,snow

Bs ( 2.3 um) Daytime land/loud properties, particle size, vegetation

Br ( 3.9 um) Low-level cloud/fog/wildfires

Bs ( 6.2 um) High-level atmospheric water vapour

By ( 6.9 um) Mid-level atmospheric water vapour

B ( 7.3 um) Lower-level water vapour

Bi: ( 8.6 um) Total water for stablility, cloud pahse, dust, SO2

B ( 9.6 um) Total ozone, turbulence

Bi3 (10.4 um) Surface and cloud

B4 (11.2 um) Imagery, SST, clouds, rainfall

Bis (12.4 um) Total water, ash SST

B1s (13.3 um) Air temperature, cloud heights and amounts

DBD 14 Upper tropospheric moisture

DBD 149 Mid and upper tropospheric moisture

DBD 14-10 Mid tropospheric moisture

DBD 1411 Amount of water vapour

DBD 1415 Split-window bands (amount of water vapour)

SZA Diurnal observation period

SAA Temporal and seasonal characteristics

NDVI Positive relationships between fog and vegetation attributes

Local topographic variables

Elevation Vertical distance between the sea level and point of sites

Slope Difference in elevation and divide it by the horizontal

TPI Distinguish topographic features by an elevation cell with its
surrounding grid cells

VRM Dispersion of vectors normal (orthogonal) to grid cells within
the specified neighbourhood

TWI Quantify topographic controls on hydrological processes
characterising biological processes

10
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2.4 GROUND OBSERVATION DATA

Four FLS observation stations (MingChih, S9K, S14.5K, S30K, Fig. 1) equipped
with time-lapse cameras (TLC200 PRO [Brinno Inc., Taipei, Taiwan] and Trophy Cam
[Bushnell Corporation, Overland Park, Kansas, USA]) were installed across an elevation
gradient (Li et al. 2022). The data collection was initiated on 2020/03/17 (MingChih),
2020/08/17 (S9K), 2018/01/31 (S14.5K), and 2020/05/29 (S30K). FLS was defined as
visibility less than 1 km according to the World Meteorological Organization. Data
collections were acquired from the field covering the period between 2018/01/31 and
2021/12/31 and are used as the dependent variable and were further classified as binary
(FLS vs. non-FLS) categories. Observation angles were able to view at least 1 km away.
The time interval of data collection was 10 minutes to correspond with H-8. The
observation period was 07:00-17:00 to ensure sufficient solar illumination through
seasons for monitoring FLS (Li et al. 2022). The collocation between H-8 data and time-
lapse photographs is essential because their different spatial and temporal resolutions may
introduce uncertainty. Our matching strategy is to only involve H-8 pixels whose
locations are nearest to the camera facing direction. In parallel, the time differences

between the match-ups are restricted to 5 min.

2.5 RANGER

Random forest is a machine learning algorithm (Breiman 2001) which has the capability
to deal with a complicated relationship between nonlinear input and prediction. Random
forest is a non-parametric approach that subdivides data and explanatory variables in
decision trees. It is based on a divide and conquer algorithm to separate input feature
space into disjoint subsets where improve performance of individually weak decision tree

models and can produce good predictions (Chen et al. 2018). The algorithm has been

11
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widely applied in biological research and gradually related to the fields of satellite remote
sensing (Bax et al. 2021; Woodall et al. 2015). Li et al. (2022) found that the performance
of random forest was superior to other machine learning algorithms (C5.0, CART, Ctree,
cubist, neural network and support vector machine) for quantifying spatiotemporal
dynamics of FLS occurrence in the study site. In this study, we selected an improved
Ranger in r package for the task, which is the fastest and most memory-efficient
implementation version of random forest to analyse high-dimensional data (Wright and
Ziegler 2015). We conducted satellite (H-8 and ASTER) optical and topographic
variables as input variables to model field FLS observation data (Fig. 2). We developed
three models to predict FLS occurrence based on different weather conditions:

dawn/twilight, cloudy, clear sky.
2.6 MODEL EVALUATION

The train-test split is a technique for evaluating the machine learning algorithm
performance. All dataset (dawn/twilight, cloudy, clear sky) is randomly split into a
training dataset (80%) and a test dataset (20%) - the averaged model's performance using
repeated 10-fold cross-validation and taken as the mean from the number of repeats. The
performance of random forests for probability estimation is usually measured using the
Brier score (BS), which is the mean squared error between the variable state and the

predicted probability:
BS =Y, (f, —0)? €[01] (Brier 1950) (1)

The parameter optimisation is conducted based on the BS (eg. 1) for the training
dataset, which is a metric used to examine the goodness of a predicted probability score.

This is applied for prediction probability scores, whose values range between 0 and 1 and
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the model closer to 1 perform better. Additionally, to determine the contribution of each
input variable to the performance of the three models, relative variable importance
indicating how much a given model uses that variable to make accurate predictions is

analysed.

We assessed the performance of Ranger using Fi-score (F1 hereafter) (eqgs. 2-4),
Accuracy (eg. 5) and the Matthews correlation coefficient (MCC) (eq. 6). We utilised
these statistics because we consider different unbalanced situations in our dataset, the

following statistical measures were calculated (Delgado and Tibau 2019):

Precision*Recall

Fi =2* ———— €[0,1] (Chinchor and Sundheim 1993)  (2)

Precision+Recall

Where precision and recall are:

Precision = 3)
TP+FP
Recall = —— 4)
TP+FN
_ TN+TP
Acclracy = TN+FPTPAFN © [0.1] (5)
MCC = TPTN PPN €[-1, 1] (Matthews 1975)  (6)

J/(TP+FP)-(TP+EN)-(TN+FP)-(TN+FN)

In this study, a binary confusion matrix (Table 2) was used to assess the

performance.

Table 2. Confusion matrix for binary classification.

Predicted ‘FLS (Actual) Non- FLS (Actual)
FLS TP FP
Non- FLS FN TN

Where are true positive (TP), true negative (TN), false positive (FP) and false negative

(FN), respectively. The F1 sums up the predictive performance of a model by combining
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two otherwise competing metrics, precision and recall for the test dataset (egs. 2-4). In

addition, the accuracy provides an easy-to-understand definition that assumes a binary

classification problem used to tell the percentage of accurate predictions (eg. 5). The

MCC (eq. 6) is in essence a correlation coefficient between the observed and predicted

binary classifications (Chicco and Jurman 2020); it returns a value between —1 and +1. A

coefficient of +1 represents a perfect prediction, 0 is no better than random prediction and

—1 indicates total disagreement between prediction and observation.

Himawari-8 level-1 products (28)

Variables input (count):

Target output:
Ground fog observation

Topographicvariables (5)
[

FLS / non-FLS
]

i

Spatial temporal match

{

Dawn / twilight
SZA 2 76°

]
Diurnal (cloudy)

Diurnal (clearsky)
DBD,4 . > AT & SZA < 76°

[

DBD,,; < AT & SZA < 76°
|

' Split dataset |

/ /

} 1
Train data 80% Test data 20%
10-fold cross- Ground truth &
validation Reference area

Predictive model
QOB prediction error

Peformance assessment

F
Accuracy
MCcC

|

‘,-""‘ Output ‘.""‘J

Fig. 2 The workflow for detecting diurnal FLS occurrence. Parallelograms indicate data

that are available for input or output as well as representing resources used or generated

and the rectangles are a process, action or function. The spatial-temporal matching dataset

follows the different flow according to the observation period (SZA greater than 76°) and

the threshold value (DBD 13.15 greater or less than AT).
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Chapter 3: Results

3.1 DATA PRE-PROCESSING

Diurnal FLS occurrence probability for the four observation stations was observed
in the dataset as 34% (MingChih), 61% (S9K), 57% (S14.5K), and 55% (S30K) (n =
53363). First, Ranger applies SZA greater than 76° that is executed for the dawn/twilight
model. The frequency distribution of DBD 7-13 (Fig. 3a) is used to observe the variation
of each angle when FLS occurs is affected by cloud emissivity. Second, the algorithm
through DBD 13-15 fixed threshold values (AT) as empirical and statistical analysis as 2.38
to distinguish potential clear sky and cloudy pixel (Fig. 3b). Then, these processing steps
are performed for each individual satellite image and the threshold values are determined
empirically. For these potential clear sky pixels (50% above the median), the calculated
AT are checked and classified. All remaining pixels of 50% below the median are
classified as potential cloudy pixels. The performance of the algorithm may depend on
the characteristics of the input variables, mainly relying on the observation data of H-8

for three models of RF algorithms to detect FLS occurring in study site.
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Fig. 3. (a) SZA dependence of DBD7.13 between 76° and 90° with linear regression lines
and mean point (red) in non-FLS and FLS condition. Solar radiation becomes weaker
through during the FLS condition. (b) Histogram analysis of DBD3-5 performed for FLS
and non-FLS conditions and using DBD13-15 threshold values as 2.38 to separate potential

clear sky and cloudy pixel.
3.2 MODEL PERFORMANCE ASSESSMENT

The training (80% of the data, n = 3751, 22670, 22582 for dawn/twilight, cloudy, clear
sky) and test (20%, 937, 5666, 5645) datasets were randomly split; out-of-bag prediction
errors (brier scores) are 0.066 (dawn/twilight), 0.060 (cloudy), and 0.070 (clear-sky). The
results reveal that models are of high performance (Table 3). This justifies the use of
Ranger for diurnal FLS occurrence modelling, while the performance of model of cloudy

was greater than dawn/twilight and clear sky.

Table 3. Model performance assessment of FLS occurrence detection for three models.

TP = true positives; TN = true negatives; FP = false positives; FN = false negatives.

Model TP TN FP FN F1 Accuracy MCC

Dawn/twilight 668 191 66 12 0.945 0.917 0.786

Cloudy 3902 1309 343 112 0.945 0.920 0.802

Clear sky 1678 3439 267 261 0.864 0.907 0.793
16
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According to variable importance analysis of Ranger, the NDVI was the most
important variable followed by the visible bands (B1, B2, B3) (Fig. 4). Additionally, sun

geometry (SAA, SZA) is also playing an important role in diurnal FLS observation.

NDVIA I ———

Variables input

0.00 0.04 0.08 012 016
Importance

Dawn / twilight cloudy [ ciear sky

Fig. 4. The variable importance is calculated after the construction of ensemble trees for

the rule-based models of the algorithm.

Furthermore, we analysed NDVI that were pivotal for our algorithm through each
station and seasons (spring [March-May], summer [June-August], fall [September-
November] and winter [December-February]) during the observation period. We
conducted the maximum value compositing (MVC) of the NDVI to observe diurnal cycle

of each station in non-FLS conditions (Fig. 5) (Holben 1986). As the assumption of MVVC

method that the NDVI value was reduced by presence of clouds, haze or snow in pixels,
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the maximum NDVI composite could be effective to obtain cloud-free information
(Gutman and Ignatov 1996). The indices become lower in the afternoon in each station,
especially the S30K stations fluctuates vary after 12pm. In addition, some time series
NDVI value will not be available because the pixel with the SZA greater than 60° are

excluded.

0.8{ Spring 0.8] Summer

07| e 07| e ‘\
N\

06 0.6 \
P—1 b

04 0.4
.
0.3 0.3
80.8 Fall 0.8 Winter
=

06 0.6/ '\

05 0.5
04 0.4
0.3 0.3
07 08 09 10 11 12 13 14 15 16 o7 08 09 10 i 12 13 14 15 16
Time

- MingChih - S9K - $14.5K S30K

Fig. 5. The intra-diurnal cycle of each station in each season under the non-FLS
occurrence conditions.

Non-FLS pixel detects the extensive range of Bz and DBD13.15 values while the
B1s was denser in the non-FLS pixel of four seasons (Fig. 6a and b). The difference of
DBD13.15 is assigned to distinguish between thick and thin clouds that the almost-zero
values as thick clouds and positive values as the thin clouds (Akihiro 2020). The variation
of the B13 between the first quartile was 277 K (269 K) and the third quartile was 290 K

(281 K) under the non-FLS (FLS) condition during the observation period, while
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variation of the DBD13.15 show well-represented between the first quartile was 1.97 K

(0.91 K) and the third quartile was 4.83 K (2.71 K) under the non-FLS (FLS) condition.
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Fig. 6. Scatter plot of the (a) B1z and DBD13.15 values in non-FLS pixel and (b) FLS

pixel for seasonal backgrounds.

3.3 SPATIOTEMPORAL DYNAMICS OF MCFS

The map of FLS probability and spatial variability predicted by the algorithm based
on the H-8 observation data and local topographic variables is present in Fig. 7 (a and b).
FLS occurrences commonly experience orographic fog to be a widespread phenomenon
throughout study site, but the spatial distribution is heterogeneous. Depending on

topography and wind conditions, the general increase toward the mountain’s valleys with
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spatially extensive high values reached and mountain ridges are characterised by
considerably fewer FLS occurrences. Specifically, FLS accumulates against steep
windward slopes and topography, resulting in hotspots of FLS immersion, while lower
FLS probability in leeward side. There was significant seasonality in temperature,
precipitation, FLS duration and amounts of radiation at the study sites. Across months,
FLS probability is lowest in May, June and July, peaks in October, November and

December (Fig. 7c).

We also generated spatial distribution of seasonality FLS probability for mornings
(0700-1020 UTC+8), afternoons (1030-1350 UTC+8), and evenings (1400-1700 UTC+8).
The magnitude of FLS probability is highest in the fall evening and lowest in the summer
morning (Fig. 8). Overall, study sites are largely non-FLS in the mornings. In the evening,

FLS can be seen to develop on the valley on the windward sides of the study sites.
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Fig. 7. (a) Mean FLS occurrence probability, (b) FLS occurrence temporal variability of

each pixel, and (c) monthly FLS occurrence for Chi-Lan Mountain during the observation

period (2018-2021).
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According to the temporal variability affected by the prevailing winds (Fig. 8), we
analysed the FLS probability of windward and leeward sides of intra-diurnal cycle on the
pixel located from 1000-2500 m a.s.l. Our results also show that the FLS probability is
plotted against FLS temporal variability and then decreasing FLS variability with
increasing FLS probability (Fig. 9). Overall, the average of FLS probability of fall is
higher than other seasons (winter > summer > spring) during the observation period. The
FLS associated with orographic lifting leading to cloud condensation usually occurs in
the afternoon. Most of the FLS probability derived on the windward side was higher of a

mountain, except summer affected on the leeward side.

1.00{ Spring 1.004{ Summer
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0.42

o
N
o

- ©
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o
~
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Fig. 9. Predictive results. Hourly diurnal FLS probability of leeward and windward of
prevailing winds in four seasons. Red dash lines mean the average of which season and

red lines and points mean the hourly average of diurnal FLS probability.
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Chapter 4: Discussion

The aim of this study involved assessing the applicability of three satellited-based models
to detect diurnal FLS occurrence of MCFs environment in subtropical. We developed a
random forest type FLS detection algorithm using H-8 observations and ground fog
observation data. In this chapter, we will discuss the potential application for our
algorithm, its uncertain about decreasing the accuracy in each model. We also investigate

the spatiotemporal pattern of FLS in Chi-Lan Mountains.

41 DIFFERENTIATION OF FLS OCCURRENCE DETECTION

ALGORITHMS

The algorithm is composed of dawn/twilight, cloudy, clear sky models to detect the
diurnal FLS occurrences. This algorithm follows the different flow (Fig. 2) according to
the observation period due to the contamination problem by solar radiation during the
dawn and twilight on B7 centred at 3.9 um (Ebell et al. 2013). There are many other
features affecting the value of DBD7.13, such as azimuth angle, surface types, and
atmospheric profiles; the SZA is simply considered in this model. A more significant
variation indicates the observed DBD7.13 over FLS conditions compared to non- FLS
conditions which can be considered very highly correlation of brightness temperature on
FLS conditions (r = -0.60) is that the 10.4 um contribution to it is greater than 3.9 um due
to their emissivity difference (Fig. 3a) (Yoo et al. 2006). Furthermore, the performance
of machine learning highly depends on the importance variable of the training dataset.

SAA is identified as the most contributing variable in this model due to the characteristics
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position and movement of solar was change over the seasons leading to significant
changes in the solar illumination angles for our study site.

In general, many land surface temperature retrieval algorithms focus on the
differential absorption in B1z and Bis. In this study, we identified the clear sky and cloudy
pixel using a threshold of DBD13.15 because the accuracy and efficiency of land surface
temperature retrieval algorithms are well known (Choi and Suh 2018; Yamamoto and
Ishikawa 2018). Statistical analysis was used in our process to discern pattern and trend
of FLS and non-FLS conditions. Apparently, preliminary application of DBD13.15
threshold technology to distinguish clear sky and cloudy pixels has a good classification

performance (Fig. 3b).

In addition, for stable FLS detection in the long term, it is necessary to improve
the level of FLS detection on complex topographic surface and for weak or local FLS. In
particular, the quality of clear sky model and background data should be improved for the
accurate separation of mainly FLS from variables of NDVI and visible bands. NDV1 is
identified as the most contributing variable in all models (Fig. 4). The volatility of time
series data is relatively large, which is also suitable for trend analysis and information
extraction in the time dimension. Substantial NDVI diurnal variations and negative NDV I
hotspot effects were found due to differential red and NIR band sensitivities to diurnal
phase angle changes, indicating that FLS tends to be rather bright in the red band and
quite dark in the near-infrared band (Tran et al. 2020). Moreover, with the increase of
wavelength, the reflectance of clouds decreases slowly while the reflectance of vegetation
increases, so the pixels which are clouds or vegetation in the pixel can get preliminarily
distinguished by indices (Xiong et al. 2020). Solar radiation is weak during dawn/twilight,
resulting in a relatively high probability of scattering factor due to the low surface air

temperature and high vapour saturation (Ma et al. 2022). Therefore, we observed the
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pattern of intra-diurnal cycle of the NDVI in each season (Fig. 5) except for SZA greater
than 60°. However, the vast majority of changes in albedo values are caused by variations
in clouds, it still found that in the process of collecting satellite remote sensing data. Of
these, it is affected by multiple factors such as water vapour, aerosol, two-way reflection
and data transmission, and abnormal vegetation indices will appear, which makes the

changes of NDVI time series curves of various types appear irregular (Los et al. 1994).

The NDVI with high importance are drivers of the prediction and their values
significantly impact the prediction values. We showed that Ranger variable importance
measures are a sensible means for variables selection but are unreliable in situations
where potential prediction vary in their measurement scale. Thus, we also analysed the
cloud physical under FLS and non-FLS conditions through Biz and DBD13.15 (Fig. 6).
Obviously, both variable quantifies can vary significantly during the non-FLS condition.

By contrast, most of the DBD13.15 are less than 2.71 K under FLS condition.

42  SPATIAL AND TEMPORAL VARIATIONS IN FLS OCCURRENCE

PROBABILITY

Our study demonstrates the average FLS occurrence probability at Chi-Lan
Mountains as retrieved from H-8 satellite data and local topographic variables. It is
apparent that the FLS occurs much more frequently than further inland (Fig. 7a). The
frequency and fluctuation of FLS formation is significantly higher (reddish areas) on the
southern and eastern slopes, especially at low elevations, compared to the western slopes
of the study site (Fig. 7b). The probability of FLS mainly high (>0.5) at high elevations
between 1500 and 2000 m.a.s.l. and the highest FLS occurrences probability is 0.6, while
the very high elevations (>2000m.a.s.l.) are yield lower FLS probability compared to high

elevations as less than 0.5. However, it can be observed that FLS frequency stability in
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bluish area both (Fig. 7b). As results, we verified that the rising temperatures may reduce

the zone of cloud band in MCFs .

A causal relationship with the East Asia monsoon can be assumed since the spatial
pattern is particularly pronounced during the month from October and February (Fig. 7c).
One explanation for this pattern at eastern slopes is that at lower elevations, the valley is
larger and deeper and oriented with their mouths in a windward direction, and therefore
can persist FLS occurrences. By contrast, the valley of higher elevations is shallower and
oriented in various directions. Thus, FLS passes over them, assisted by the higher wind
speeds at elevation. The seasonal pattern of FLS occurrence can be explained by
examining the wind direction as easterly or westerly. In summer, the FLS frequency is
higher at inland windward slopes because of the southwest monsoon prevailed enhances
the local convection. The FLS frequency was derived by eastward winds prevailed in

other seasons (Lai et al. 2006).

Furthermore, the study site exhibits affected by the eastward winds prevailed from
the morning to the afternoon due to the different thermal effects of the ridges and valleys
during the daytime and moist air masses and frequently leading to FLS conditions
(Klemm et al. 2006). There is usually more high variability of FLS occurrence at the early
morning. In addition, several studies have demonstrated the peak of solar radiation in the
cloud forest is in the early morning instead of noon in study site (Gu et al. 2021; Li et al.
2022), and thus the fluctuation as well as extent of FLS is lowest in the morning and
highest in the evening(Fig. 8). This can be attributed to convergence of surface wind as it
approaches the island and leads to the lifting of surface air to the condensation level,

resulting in FLS formation.
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Seasonally, the fluctuation of FLS probability is more significant in Fall because
the northeast monsoon was pronounced, and the disturbance with increaseed water vapour
content. (Fig. 9). On the contrary, there is less water vapour in summer, mainly due to the
water vapour brought from the coast by the convection of heterogeneous terrain, so the
higher probability is formed in the afternoon. In addition, the variability of temporal
distribution in spring is more stable than others, and FLS distribution of both sides is

consistent.

As a detailed statistical analysis of the full life cycle of FLS and its interannual
behaviour is not within the scope of this paper, this example is intended to illustrate the
potential of the novel algorithm for the analysis of spatiotemporal patterns of FLS over

land.

43 POTENTIAL APPLICATIONS

The novel algorithm is thereby relatively independent from exact DBD thresholds and
thus has the potential to be easily applied to other regions and to generate climate datasets.
An operational deployment is possible with slight adjustments in algorithm design and
holds the potential for the prediction of FLS dissipation. In the future, the value of the
derived FLS occurrence may be further enhanced with the retrieval of cloud-based
altitudes for the separation of low-level stratus from the ground fog. Furthermore, this
algorithm can quickly process large raw data from satellite observations data with a low
compute cost, which may be conducive to potential operational applications.

The performance of predictive modelling is dependent on the amount and quality
of available data. In this work, we utilise match-ups between H-8 and ground observation
data for four years, from January 2018- December 2021, to reduce the effects of seasonal

variation. We have some inevitable limitations on the way to observe ground FLS by
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time-lapse camera. For example, in the case of our spatial resolution of 2km, the
occurrence of FLS events in front of the facing direction of the camera may be
inconsistent with the events in front of the lens 1 km. Still, we will be considering high
temporal resolution and the FLS occurrence events will be continuous; the misleading
events would be well reduced by long-term observation time in order to obtain
information about ground fog. In practice, the accuracy of fog observation by the human-
judgment is high (90%) and 70.5% using a visibility meter (Egli et al. 2018). To avoid
these inevitable factors, we put considerable effort into systematically evaluating the
classification of three models. Considering these arguments, the validation results give
confidence in the skill of the novel algorithm, which is well suited for the purpose of

characterising the spatial and temporal pattern of FLS occurrence probability in MCFs.

Moreover, we explore potential application of the NDVI value in FLS and non-FLS
condition in observation region of H-8. The land cover of the main observation region is
more suitable for the NDVI value because the most of those areas may not be covered by
snow or ice, especially in Southeast Asia where there are important areas of MFC sites.
Otherwise, the high temporal resolution of H-8 observation data would be obtained and
real-time processing by the algorithm. Then, the Ranger can process data effectively and

retrieve the FLS occurrence.
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Chapter 5: Conclusions

The central aim of this study was to develop the first satellite-based and local topographic
data and thereby diurnally stable satellite retrieval of FLS. The algorithm design uses an
observation period (SZA >76°) and DBD threshold condition to model three different
atmospheric conditions to retrieve FLS.

The algorithm was applied to detect spatial and temporal patterns of Chi-Lan
Mountains FLS and was validated against the confusion matrix. The algorithm shows
good overall detection accuracy, F1 and MCC with imbalance data, which are reliable
concordant scores for predictions. The NDVI was more important than other variable and
provided an adaptive model for FLS occurrence detection as an indicator of importance
for identification.

FLS most frequently occur close to the south-eastern facing ridge, with the cloud
belt between 1500 and 2000 m. a.s.l., confirming findings from Chang (2008), Lai (2006)
and Li (2022). The diurnal cycle of FLS is described for the location of the four stations.
Marked differences in the timing of FLS occurrence and temporal persistence are found.
The time lag of FLS occurrence from the low elevation to high elevation region may be
attributed to the orographic of FLS from the lowland, a typical feature of the region. FLS
persists a longer time in the mid-elevation than in further high altitudes regions but then
dissipates more rapidly after evening, with stronger winds due to strong convection.

The study shows the potential of the diurnal FLS algorithm to study FLS patterns

and life cycles. Future research efforts should focus on coherently mapping diurnal
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characteristics of FLS, further understanding FLS formation processes and potentially
detecting changes in FLS occurrence. This may best be achieved by combining the

satellite retrievals with numerical modelling and ground-based observation.
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