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摘要 

山地霧林廣義指被雲霧頻繁籠罩的山地森林，通常為濕暖空氣受到地形抬升

作用形成雲霧。獨特的水文氣候特徵為森林提供足夠水源和養分，穩定高濕度環

境減少太陽輻射透射量和森林蒸發散進而增加林相的多樣性。近期觀測研究表明

氣溫的上升可能會影響雲霧帶的時空分佈，這將會對山地霧林的分佈造成威脅。

為瞭解其分佈的變化機制和評估其帶來的影響，光學遙測技術視爲量化雲霧的重

要觀測依據。然而，先前的研究受天氣影響限制了多雲區域的評估可行性。本研

究針對不同的天氣特徵的山地霧林，提出以利用日本氣象衛星向日葵八號連續時

間高密度之可見光、近紅外光、紅外光和太陽幾何角（高度角和天頂角）的觀測

資料，搭配雙頻道亮溫差異、植被指數和地表特徵變數，如海拔、坡度、地形位

置指數、地表粗糙指數和地形湿度指数（共 31變數）作特徵萃取，結合監督式機

器學習模型以建立日間（7時至 17時）霧和低雲(FLS)的偵測算法。研究樣區為植

被同質性較高的亞熱帶山地霧林-台灣棲蘭山區，於海拔 1151-1810 公尺之間安裝

四個縮時攝像作爲現地雲霧觀測依據，以二元方式分類FLS事件。本研究在2018-

2021 期間共蒐集了 53 358 張影像，利用其作爲訓練數據建構三種不同天氣特徵

（黃昏/黎明，晴空，多雲）之隨機森林（Ranger）模型,進行獨立測試結果，並以

F1 分數作爲衡量二分類模型精確度指標。結果顯示晴空條件下 F1 分數為 0.864，

黃昏/黎明和多雲條件下皆爲 0.945，這顯示該模型可在不同天氣條件下穩定地偵

測山地霧林之 FLS 事件。這一發現有助於系統性量化山地霧林 FLS 事件之時空變

化。 
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Abstract 

Montane cloud forests (MCFs) are characterised by the presence of persistent, frequent 

wind-driven, horizontal belt shaped and orographic clouds also known as a cloud band. 

The hydroclimatic characteristics of MCFs often acts as a water supply to ecosystems due 

to the prevailing perhumid and dim light, where moisture introduced by depositing cloud 

can be more efficiently retained. Recent observation has shown that elevated temperatures 

may lift cloud band, which would cause colossal impacts on MCFs. The first step to 

assess the potential ramification is to quantify the occurrences of fog and low stratus 

(FLS) regionally; satellite remote sensing is an ideal tool for the task. However, previous 

research efforts may only be effective in limited weather condition, confining the 

feasibility in this cloudy region. In this study, we developed an algorithm to detect diurnal 

(defined as 07:00-17:00 in this study) FLS occurrence that was insensitive to weather 

conditions. We used the visible and infrared bands of the Advanced Himawari Imager on 

board Himawari-8 (H-8), sun geometry (solar zenith [SZA] and azimuth [SAA]) angles 

of each pixel, dual band differences (DBD), normalised difference vegetation index 

(NDVI) and local topographic variables (elevation, slope, topographic position index, 

vector ruggedness measure, topographic wetness index) as input data (31 variables) to 

model the FLS using “RANdom forest GEneRator” (Ranger), a recently developed 

machine learning approach derived from random forest). We carried out the study in 

subtropical MCFs of Chi-Lan Mountain in northeast Taiwan. We installed four ground 

FLS observation stations across an elevation range of 1151-1811 m a.s.l with 53 358 

diurnal time-lapse photographs from 2018-2021 with or without FLS identified by visual 
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assessment. We applied three different model (twilight/dawn, cloudy, clear sky) settings 

to model FLS occurrence because of the responses of the various bands depending on the 

time of day and the underlying surface characteristics. We randomly selected 80% of the 

data for Ranger development and the rest of data for validation. We found that it was 

possible to detect FLS occurrence in MCFs regardless of the weather conditions using the 

proposed method with the overall F1-scores  0.864, and 0.945 and 0.945 for clear-sky, 

twilight/dawn and cloudy conditions. The finding may facilitate systematic mapping of 

FLS occurrence in MCFs. 

 

Keywords 

Himawari-8, ranger, remote sensing, Taiwan, time-lapse photography, topography   
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Chapter 1: Introduction 

Montane cloud forests (MCFs) are characterised by persistent and frequent wind-

driven orographic fog and low stratus (FLS) (Grubb 1977; Hamilton 1995). The 

distribution of FLS occurrence in MCFs varies depending on winds and rainfall patterns, 

latitude, distance from the sea and the size of the mountains and local vegetation 

classification. The frequency and duration of FLS occurrence vary greatly as the 

irradiance is reduced by 10-50% and the persistent wetting of the leaves leads to reduced 

photosynthesis (Bruijnzeel and Veneklaas 1998; Frahm and Gradstein 1991) but see 

Dawson and Goldsmith (2018), which forms unique mountain environments. Moreover, 

the prolonged availability of perhumid and dim light conditions in this ecosystem, 

enhance vegetation growth in MCF by shortening the desiccation period and lengthening 

the period of photosynthetic activity of the plants. Since sea surface temperature and 

saturated adiabatic lapse rates and their diurnal and seasonality are highly spatially 

variable across tropics, the altitudinal bands where ground-level clouds occur are also 

likely to be highly variable (Bruijnzeel and Veneklaas 1998). Accordingly, MCFs is 

located between 500 m and 3500 m altitude in the humid tropics (Eva et al. 2002; 

LaBastille and Pool 1978) with major occurrence between 1,200 and 2,500m . The diurnal 

cycle of FLS occurrence often acts as a water supply to ecosystems (Bruijnzeel et al. 2011; 

Glasow and Bott 1999) and, by influencing radiative transfer processes in the atmospheric 

boundary layer, it acts as a modifier in the climate system (Vautard et al. 2009). In 

particular, the deposition of FLS contributes to nutrient inputs in forests and the 

deposition carbon flux of these compounds through the canopy-held epiphytic biomass 
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over forests is a major contributor to ecosystem acidification and eutrophication (Alewell 

et al. 2000; Chang et al. 2002; Conley et al. 2009). Therefore, MCFs play an important 

role in regulating the regional hydrological cycle. This unique physical setting harbors 

high biodiversity and many of them are endemic (Gentry 1992). 

A large body of literature has shown that small changes in temperature and rainfall 

can alter microclimate conditions and threaten existing ecological communities; whereas 

these ecosystems exist in rugged mountainous regions, narrow microclimate zones can 

change significantly over short distances (Gotsch et al. 2017; Nadkarni and Solano 2002; 

Ray et al. 2006; Williams-Linera 2003; Williams et al. 2007). Therefore, the rate of 

warming is expected to be greater at higher altitudes than at lower altitudes, as it has been 

reported in the montane around the world (Bradley et al. 2006; Román-Cuesta et al. 2014). 

Although uncertainties remain about the effects of temperature and humidity conditions 

on cloud band formation in MCFs (Lawton et al. 2001), the upper displacement of the 

condensation zone is expected (Halladay et al. 2012; Lawton et al. 2001). Consequently, 

the altitude of the cloud band may be shifted upward, and the increase in solar radiation 

cloud also increase the evapotranspiration of the forest and causing reduce the 

interception of water by the vegetation in MCFs. As a result, changes in the water cycle 

will lead to droughts throughout the ecosystem and MCFs be recognised as one of the 

most threaten ecosystems in the world. 

One of the basic metrics to quantify FLS in mountainous regions is the occurrence 

and consequentially the duration; field air temperature, humidity and leaf wetness sensors 

are commonly used for the measurement (Bruijnzeel et al. 1993; Chu et al. 2014; Gotsch 

et al. 2014). Some field studies utilised ceilometer lidar and cloud-detection radar to 

detect FLS occurrence in order to estimate cloud base height  (Gaumet et al. 1998; Takano 
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et al. 2010). However, the high cost of the instruments constrained to identify liquid water 

clouds due to sensor signals are strongly attenuated in rugged mountain regions. Besides, 

visibility sensors as ancillary weather monitoring sensors need a specific observation 

angle and raised flat ground to determine whether they are immersed in clouds and mists 

based on the output of infrared light and the distance of receiving a specific point 

(Beiderwieden et al. 2007; Chang et al. 2002). An alternative is time-lapse photography, 

but cloud-sensitive of capture image characteristics (contrast, the coefficient of variation 

and the entropy of pixel luminance, and image colourfulness) are required a complex 

iterative quantisation to quantify spatiotemporal cloud immersion in MCFs (Bassiouni et 

al. 2017). In addition, the aforementioned instruments of sparse measurement-based can 

represent the monitoring approach of local areas with low spatial coverage, which is 

somewhat limited for regional monitoring.  

Systematic detection of FLS using satellite imagery permits the quantification 

over a vast region. There are several approaches available for FLS detection including (1) 

a physical method using the one-dimensional variational system, (2) a split-window 

algorithm, and (3) machine learning methods. The physical method is based on modelling 

the lifting condensation level of cloud to obtain cloud base height from radiosondes data 

and weather station measurements and compared it with a digital elevation model (DEM) 

to confirm areas covered by cloud (Stackpole 1967). All parts of the cloud layer during 

modelling have uniform geometric thickness, but in the case of orographic fog, terrain 

factors need to be considered. The split-window method is based on the dual-band 

difference (DBD) of infrared spectral bands to retrieve cloud properties in the atmosphere 

(Lee et al. 2011). The most common method involves DBD of thermal (10.8 µm) and 

middle infrared (3.7 µm) spectral bands. The middle infrared has a solar component, 
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which limits the theoretical use of a combination of brightness temperatures in the middle 

infrared and thermal infrared to detect spectral information of FLS (Cermak and Bendix 

2008). Moreover, a purely thermal infrared -based detection of FLS is not possible, as the 

brightness temperatures of FLS and land surfaces may be similar (Güls and Bendix 1996). 

The application of machine learning based has been widely used in the field to quantify 

FLS using satellite remote sensing (Liu et al. 2021; Tan et al. 2021; Wang et al. 2021). 

Using ground and satellite meteorological attributes data, Li (2022) compared several 

machine learning algorithms for monitoring the occurrence of diurnal FLS and finds that 

random forests outperform others. However, the approach heavily replied on field 

meteorological data preventing spatially continuous FLS mapping.  

Therefore, the objective of this study is to develop a novel satellite-based approach 

to provide wall-to-wall FLS coverage over subtropical MCFs. We further analysed 

variables and seasonal variation that were pivotal for FLS occurrence modelling.  
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Chapter 2: Materials and methods 

2.1 STUDY AREAS 

Taiwan (21˚85'- 25˚30'N, 120˚00'- 122˚00'E)) is a 36,000 km2 subtropical mountainous 

island located in Pacific Asia. According to the National Vegetation Database of Taiwan, 

MCFs are mainly located 1500-2500 m a.s.l. (Li et al. 2013; Schulz et al. 2017).  The 

study site is the 24 400 ha MCFs of Chi-Lan Mountain located in northeast Taiwan with 

the elevation range from 310-2845 m a.s.l. (Hu and Huang 2019) (Fig. 1). The regional 

climate is generally humid with precipitation of 3000-4000 mm yr-1 and mean air 

temperature of 13.9 °C (Chu et al. 2014). According to the investigation of vegetation 

composition, the yellow cypress has the dominant which occupies 82% of the total basal 

area (Chang et al. 2006). The MCFs of study site are characterised by increased relative 

air humidity through frequent incidence of FLS, high abundance and species richness of 

epiphytes, and accumulation of large amounts of epiphytic biomass (Lai et al. 2021; Lai 

et al. 2020). In addition, nutrient fluxes were estimated more than 50% of the ecosystems 

input was through FLS deposition (Chang et al. 2002). The topography of study site are 

relatively homogeneous south-eastern facing slope that extend about 2-km with average 

slope of 14% (Chu et al. 2014). Due to rugged terrain, study site is often affected by 

orographic lifting FLS, which occurs approximately 38% of the time of a year (Chang et 

al. 2006). Furthermore, FLS significantly affects the radiation and horizontal 

precipitation, causing its interaction with the atmosphere and ecology, thus increasing air 

humidity and water supply; reducing solar radiation and evapotranspiration (Gu et al. 
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2021), without distinct wet and dry seasons. Li et al. (2022) depicted that the core cloud 

band of the study site was narrow mainly distributed at 1514-1670 m a.s.l. 

 

Fig. 1.(a) The study site, MCFs in Chi-Lan Mountain in (b) north-eastern Taiwan (the 

black polygon). Four fog observation stations installed on the site, and the black-dashed 

lines and red monochromatic coloured indicated H-8 2-km grid and the areas visible by 

the stations, respectively. (c) The photographs taken by time-lapse cameras show the field 

of views of the stations. 

2.2 HIMAWARI-8 OBSERVATION DATA 

The Advanced Himawari Imager on-board the Himawari-8 (H-8) launched by Japan 

Meteorological Agency, has 16 spectral bands - four visible (VIS), two near-infrared 

(NIR), and ten infrared (IR) spectral bands. The satellite enable continuous observation 

in East Asia and Western Pacific regions with a 10-minute temporal interval and spatial 
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resolutions of VIS (0.5-1 km), NIR (1-2 km) and IR (2 km) spectral bands (Bessho et al. 

2016) (Table 1). With these advantages, Himawari-8 AHI provides capability for 

atmospheric and environmental monitoring using machine learning (Lee et al. 2019; Tan 

et al. 2021). These applications have shown the geostationary satellites have the potential 

to draw a spatiotemporally coherent picture of the FLS occurrence (Andersen and Cermak 

2018; Egli et al. 2017; Iwabuchi et al. 2018). 

To make widespread application of the enhanced monitoring capabilities of 

Himawari-8, level-1 grid products have been provided by the Japan Aerospace 

Exploration Agency P-Tree System (https://www.eorc.jaxa.jp/ptree). Corresponding 

geometric attributes including solar zenith angle (SZA) and solar azimuth angle (SAA) 

also came with the spectral data and were utilised for the modelling. The brightness 

temperature of window bands (B11, B13, B14 and B15) are related to land and sea surface 

temperatures, while the water vapor bands (B8, B9 and B10) are associated with the 

distribution of water vapour in three different vertical layers. B12 and B16 correspond to 

O3 and CO2 absorption. In addition, the differences between the window band and water 

vapour band (DBD14-8, DBD14-9, DBD14-10) and themselves (DBD14-11, DBD14-15). Studies 

using ground measurements have shown that the spatial distribution of FLS can be 

affected by topography and in turn, the distribution of FLS can affect vegetation patterns 

(Ball and Tzanopoulos 2020; Gultepe et al. 2007). The Normalised Difference Vegetation 

Index (NDVI) (Rouse et al. 1974) calculated using red (centred at 0.64 m, Table 1) and 

NIR (0.86 m) has been extensively used to monitor vegetation greenness and 

productivity (Fensholt et al. 2011; Sjöström et al. 2009). Optical satellite images can be 

used to assess and quantify the impacts of FLS on vegetation at large spatial scales, which 

https://www.eorc.jaxa.jp/ptree
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significantly positive relationships in the NDVI were found between FLS and vegetation 

attributes (Kaseke et al. 2018; Qiao et al. 2020; Spirig et al. 2019). 

Yoo (2010) pointed out that the satellite-observed DBD7-13 values were varies 

according to time because B7 (3.9 µm) measures both reflectivity and emissivity during 

daytime. Therefore, most of the studies have been separately developed for dawn/twilight 

or daytime according to SZA (Suh et al. 2017). Purbantoro (2018) compared band pairs 

of B13 (10.4 µm) and B15 (12.4 µm) and B15 and B16 (13.3 µm) to detect different cloud 

types in summer and winter seasons; the former combination is useful for clear sky and 

low stratus. The initial threshold values of test elements (e.g., DBD7-13, DBD13-15) through 

histogram analysis and prepares the background data, such as the ground surface data. 

Since the response of the various band depends on the time of day and underlying surface 

characteristics, the algorithm (Fig. 2) was developed to detect diurnal FLS occurrences 

according to the SZA (dawn/twilight) and a uses the threshold in DBD13-15 to distinguish 

clear sky from a cloudy condition. 

2.3 TOPOGRAPHY AND LANDFORM DATA 

Field observation showed that the spatial distribution of FLS can be influenced by 

topography (Gultepe et al. 2007), which may facilitate predicting the spatiotemporal 

dynamics over a vast region . The topography of Chi-Lan Mountain is highly variable, so 

we characterised FLS occurrence frequency for a DEM with 2-km spatial resolution. We 

utilised the Spatial Analyst toolbox in ArcMap v10.7 (Environmental Systems Research 

Institute, Inc., Redland, CA, USA) to derive an array of topographic metrics from 30-m 

ASTER-GDEM (the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer-Global Digital Elevation Model) data. We applied a nearest neighbourhood 

approach to resample the data to 2-km to match other data. Topographic variables 
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including elevation, slope, the topographic position index (TPI), the vector ruggedness 

measure (VRM) and the topographic wetness index (TWI) were used as input variables 

derived from GDEM V2 (Table 1). The topographic metrics the TPI used different radii 

derived from elevation to measure the difference between a central cell elevation and the 

average elevation around it within a predetermined radius (Guisan et al. 1999); the VRM 

measured terrain ruggedness as the variation in the three-dimensional orientation of grid 

cells within a neighbourhood (Hobson 2019), and the TWI is a commonly used index in 

hydrological analysis for describing the tendency of an area to accumulate water and the 

probability of the area being wet (Beven and Kirkby 1979).   
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Table 1.Summary of the physical characteristics of H-8 observation data and local 

topographic variables in the model of detection diurnal FLS occurrence. 

Input variable Physical characteristics 

H-8 observation data 

B1  (0.47 µm) Daytime aerosol over land 

B2  (0.51 µm) Color composite imagery 

B3  (0.64 µm) Daytime vegetation/burn scar and aerosols over wate 

B4  (0.86 µm) Daytime cirrus cloud 

B5  (  1.6 µm) Daytime cloud-top phase and particle size,snow 

B6  (  2.3 µm) Daytime land/loud properties, particle size, vegetation 

B7  (  3.9 µm) Low-level cloud/fog/wildfires 

B8  (  6.2 µm) High-level atmospheric water vapour 

B9  (  6.9 µm) Mid-level atmospheric water vapour 

B10 (  7.3 µm) Lower-level water vapour  

B11 (  8.6 µm) Total water for stablility, cloud pahse, dust, SO2 

B12 (  9.6 µm) Total ozone, turbulence 

B13 (10.4 µm) Surface and cloud 

B14 (11.2 µm) Imagery, SST, clouds, rainfall 

B15 (12.4 µm) Total water, ash SST 

B16 (13.3 µm) Air temperature, cloud heights and amounts 

DBD 14-8 Upper tropospheric moisture 

DBD 14-9 Mid and upper tropospheric moisture 

DBD 14-10 Mid tropospheric moisture 

DBD 14-11 Amount of water vapour 

DBD 14-15 Split-window bands (amount of water vapour) 

SZA Diurnal observation period 

SAA Temporal and seasonal characteristics 

NDVI Positive relationships between fog and vegetation attributes 

Local topographic variables 

Elevation Vertical distance between the sea level and point of sites 

Slope Difference in elevation and divide it by the horizontal 

difference TPI Distinguish topographic features by an elevation cell with its 

surrounding grid cells 

VRM Dispersion of vectors normal (orthogonal) to grid cells within 

the specified neighbourhood 

TWI Quantify topographic controls on hydrological processes 

characterising biological processes 
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2.4 GROUND OBSERVATION DATA 

Four FLS observation stations (MingChih, S9K, S14.5K, S30K, Fig. 1) equipped 

with time-lapse cameras (TLC200 PRO [Brinno Inc., Taipei, Taiwan] and Trophy Cam 

[Bushnell Corporation, Overland Park, Kansas, USA]) were installed across an elevation 

gradient (Li et al. 2022). The data collection was initiated on 2020/03/17 (MingChih), 

2020/08/17 (S9K), 2018/01/31 (S14.5K), and 2020/05/29 (S30K). FLS was defined as 

visibility less than 1 km according to the World Meteorological Organization. Data 

collections were acquired from the field covering the period between 2018/01/31 and 

2021/12/31 and are used as the dependent variable and were further classified as binary 

(FLS vs. non-FLS) categories. Observation angles were able to view at least 1 km away. 

The time interval of data collection was 10 minutes to correspond with H-8. The 

observation period was 07:00-17:00 to ensure sufficient solar illumination through 

seasons for monitoring FLS (Li et al. 2022). The collocation between H-8 data and time-

lapse photographs is essential because their different spatial and temporal resolutions may 

introduce uncertainty. Our matching strategy is to only involve H-8 pixels whose 

locations are nearest to the camera facing direction. In parallel, the time differences 

between the match-ups are restricted to 5 min.  

2.5 RANGER 

Random forest is a machine learning algorithm (Breiman 2001) which has the capability 

to deal with a complicated relationship between nonlinear input and prediction. Random 

forest is a non-parametric approach that subdivides data and explanatory variables in 

decision trees. It is based on a divide and conquer algorithm to separate input feature 

space into disjoint subsets where improve performance of individually weak decision tree 

models and can produce good predictions (Chen et al. 2018). The algorithm has been 
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widely applied in biological research and gradually related to the fields of satellite remote 

sensing (Bax et al. 2021; Woodall et al. 2015). Li et al. (2022) found that the performance 

of random forest was superior to other machine learning algorithms (C5.0, CART, Ctree, 

cubist, neural network and support vector machine) for quantifying spatiotemporal 

dynamics of FLS occurrence in the study site. In this study, we selected an improved 

Ranger in r package for the task, which is the fastest and most memory-efficient 

implementation version of random forest to analyse high-dimensional data (Wright and 

Ziegler 2015). We conducted satellite (H-8 and ASTER) optical and topographic 

variables as input variables to model field FLS observation data (Fig. 2). We developed 

three models to predict FLS occurrence based on different weather conditions: 

dawn/twilight, cloudy, clear sky.  

2.6 MODEL EVALUATION 

The train-test split is a technique for evaluating the machine learning algorithm 

performance. All dataset (dawn/twilight, cloudy, clear sky) is randomly split into a 

training dataset (80%) and a test dataset (20%) - the averaged model's performance using 

repeated 10-fold cross-validation and taken as the mean from the number of repeats. The 

performance of random forests for probability estimation is usually measured using the 

Brier score (BS), which is the mean squared error between the variable state and the 

predicted probability: 

BS =
1

N
∑ (ft − ot)2N

t=1     ∈ [0,1]     (Brier 1950) (1) 

The parameter optimisation is conducted based on the BS (eq. 1) for the training 

dataset, which is a metric used to examine the goodness of a predicted probability score. 

This is applied for prediction probability scores, whose values range between 0 and 1 and 
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the model closer to 1 perform better. Additionally, to determine the contribution of each 

input variable to the performance of the three models, relative variable importance 

indicating how much a given model uses that variable to make accurate predictions is 

analysed. 

We assessed the performance of Ranger using F1-score (F1 hereafter) (eqs. 2–4), 

Accuracy (eq. 5) and the Matthews correlation coefficient (MCC) (eq. 6). We utilised 

these statistics because we consider different unbalanced situations in our dataset, the 

following statistical measures were calculated (Delgado and Tibau 2019): 

F1  = 2 * 
Precision∗Recall

Precision+Recall
   ∈ [0,1]  (Chinchor and Sundheim 1993) (2) 

Where precision and recall are:  

Precision = 
TP

TP+FP
          (3) 

Recall = 
TP

TP+FN
         (4) 

Accuracy = 
TN+TP

TN+FP+TP+FN
   ∈ [0,1]       (5) 

MCC = 
TP∙TN-FP∙FN

√(TP+FP)∙(TP+FN)∙(TN+FP)∙(TN+FN)
 ∈ [-1, 1]   (Matthews 1975) (6) 

In this study, a binary confusion matrix (Table 2) was used to assess the 

performance. 

Table 2. Confusion matrix for binary classification. 

Predicted FLS (Actual) Non- FLS (Actual) 

FLS TP FP 

Non- FLS FN TN 

Where are true positive (TP), true negative (TN), false positive (FP) and false negative 

(FN), respectively. The F1 sums up the predictive performance of a model by combining 
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two otherwise competing metrics, precision and recall for the test dataset (eqs. 2-4). In 

addition, the accuracy provides an easy-to-understand definition that assumes a binary 

classification problem used to tell the percentage of accurate predictions (eq. 5). The 

MCC (eq. 6) is in essence a correlation coefficient between the observed and predicted 

binary classifications (Chicco and Jurman 2020); it returns a value between −1 and +1. A 

coefficient of +1 represents a perfect prediction, 0 is no better than random prediction and 

−1 indicates total disagreement between prediction and observation.  

 

Fig. 2 The workflow for detecting diurnal FLS occurrence. Parallelograms indicate data 

that are available for input or output as well as representing resources used or generated 

and the rectangles are a process, action or function. The spatial-temporal matching dataset 

follows the different flow according to the observation period (SZA greater than 76°) and 

the threshold value (DBD 13-15 greater or less than ΔT).  
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Chapter 3: Results 

3.1 DATA PRE-PROCESSING 

Diurnal FLS occurrence probability for the four observation stations was observed 

in the dataset as 34% (MingChih), 61% (S9K), 57% (S14.5K), and 55% (S30K) (n = 

53363). First, Ranger applies SZA greater than 76° that is executed for the dawn/twilight 

model. The frequency distribution of DBD 7−13 (Fig. 3a) is used to observe the variation 

of each angle when FLS occurs is affected by cloud emissivity. Second, the algorithm 

through DBD 13−15 fixed threshold values (ΔT) as empirical and statistical analysis as 2.38 

to distinguish potential clear sky and cloudy pixel (Fig. 3b). Then, these processing steps 

are performed for each individual satellite image and the threshold values are determined 

empirically. For these potential clear sky pixels (50% above the median), the calculated 

ΔT are checked and classified. All remaining pixels of 50% below the median are 

classified as potential cloudy pixels. The performance of the algorithm may depend on 

the characteristics of the input variables, mainly relying on the observation data of H-8 

for three models of RF algorithms to detect FLS occurring in study site.  
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Fig. 3. (a) SZA dependence of DBD7-13 between 76° and 90° with linear regression lines 

and mean point (red) in non-FLS and FLS condition. Solar radiation becomes weaker 

through during the FLS condition. (b) Histogram analysis of DBD13−15 performed for FLS 

and non-FLS conditions and using DBD13−15 threshold values as 2.38 to separate potential 

clear sky and cloudy pixel. 

3.2 MODEL PERFORMANCE ASSESSMENT 

The training (80% of the data, n = 3751, 22670, 22582 for dawn/twilight, cloudy, clear 

sky) and test (20%, 937, 5666, 5645) datasets were randomly split; out-of-bag prediction 

errors (brier scores) are 0.066 (dawn/twilight), 0.060 (cloudy), and 0.070 (clear-sky). The 

results reveal that models are of high performance (Table 3). This justifies the use of 

Ranger for diurnal FLS occurrence modelling, while the performance of model of cloudy 

was greater than dawn/twilight and clear sky. 

Table 3. Model performance assessment of FLS occurrence detection for three models. 

TP = true positives; TN = true negatives; FP = false positives; FN = false negatives. 

Model TP TN FP FN F1 Accuracy MCC 

Dawn/twilight 668 191 66 12 0.945 0.917 0.786 

Cloudy 3902 1309 343 112 0.945 0.920 0.802 

Clear sky 1678 3439 267 261 0.864 0.907 0.793 
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According to variable importance analysis of Ranger, the NDVI was the most 

important variable followed by the visible bands (B1, B2, B3) (Fig. 4). Additionally, sun 

geometry (SAA, SZA) is also playing an important role in diurnal FLS observation.  

 

Fig. 4. The variable importance is calculated after the construction of ensemble trees for 

the rule-based models of the algorithm. 

Furthermore, we analysed NDVI that were pivotal for our algorithm through each 

station and seasons (spring [March-May], summer [June-August], fall [September-

November] and winter [December-February]) during the observation period. We 

conducted the maximum value compositing (MVC) of the NDVI to observe diurnal cycle 

of each station in non-FLS conditions (Fig. 5) (Holben 1986). As the assumption of MVC 

method that the NDVI value was reduced by presence of clouds, haze or snow in pixels, 
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the maximum NDVI composite could be effective to obtain cloud-free information 

(Gutman and Ignatov 1996). The indices become lower in the afternoon in each station, 

especially the S30K stations fluctuates vary after 12pm. In addition, some time series 

NDVI value will not be available because the pixel with the SZA greater than 60° are 

excluded.  

 

Fig. 5. The intra-diurnal cycle of each station in each season under the non-FLS 

occurrence conditions. 

Non-FLS pixel detects the extensive range of B13 and DBD13-15 values while the 

B13 was denser in the non-FLS pixel of four seasons (Fig. 6a and b). The difference of 

DBD13-15 is assigned to distinguish between thick and thin clouds that the almost-zero 

values as thick clouds and positive values as the thin clouds (Akihiro 2020). The variation 

of the B13 between the first quartile was 277 K (269 K) and the third quartile was 290 K 

(281 K) under the non-FLS (FLS) condition during the observation period, while 
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variation of the DBD13-15 show well-represented between the first quartile was 1.97 K 

(0.91 K) and the third quartile was 4.83 K (2.71 K) under the non-FLS (FLS) condition. 

 

 

Fig. 6. Scatter plot of the (a) B13 and DBD13-15 values in non-FLS pixel and (b) FLS 

pixel for seasonal backgrounds. 

3.3 SPATIOTEMPORAL DYNAMICS OF MCFS 

The map of FLS probability and spatial variability predicted by the algorithm based 

on the H-8 observation data and local topographic variables is present in Fig. 7 (a and b). 

FLS occurrences commonly experience orographic fog to be a widespread phenomenon 

throughout study site, but the spatial distribution is heterogeneous. Depending on 

topography and wind conditions, the general increase toward the mountain’s valleys with 
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spatially extensive high values reached and mountain ridges are characterised by 

considerably fewer FLS occurrences. Specifically, FLS accumulates against steep 

windward slopes and topography, resulting in hotspots of FLS immersion, while lower 

FLS probability in leeward side. There was significant seasonality in temperature, 

precipitation, FLS duration and amounts of radiation at the study sites. Across months, 

FLS probability is lowest in May, June and July, peaks in October, November and 

December (Fig. 7c). 

We also generated spatial distribution of seasonality FLS probability for mornings 

(0700-1020 UTC+8), afternoons (1030-1350 UTC+8), and evenings (1400-1700 UTC+8). 

The magnitude of FLS probability is highest in the fall evening and lowest in the summer 

morning (Fig. 8). Overall, study sites are largely non-FLS in the mornings. In the evening, 

FLS can be seen to develop on the valley on the windward sides of the study sites. 
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Fig. 7. (a) Mean FLS occurrence probability, (b) FLS occurrence temporal variability of 

each pixel, and (c) monthly FLS occurrence for Chi-Lan Mountain during the observation 

period (2018-2021).
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Fig. 8. Diurnal patterns of FLS probability shown for (left) mornings, (middle) afternoons, 

and (right) evenings of each season. 
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According to the temporal variability affected by the prevailing winds (Fig. 8), we 

analysed the FLS probability of windward and leeward sides of intra-diurnal cycle on the 

pixel located from 1000-2500 m a.s.l. Our results also show that the FLS probability is 

plotted against FLS temporal variability and then decreasing FLS variability with 

increasing FLS probability (Fig. 9). Overall, the average of FLS probability of fall is 

higher than other seasons (winter > summer > spring) during the observation period. The 

FLS associated with orographic lifting leading to cloud condensation usually occurs in 

the afternoon. Most of the FLS probability derived on the windward side was higher of a 

mountain, except summer affected on the leeward side. 

 

Fig. 9. Predictive results. Hourly diurnal FLS probability of leeward and windward of 

prevailing winds in four seasons. Red dash lines mean the average of which season and 

red lines and points mean the hourly average of diurnal FLS probability. 
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Chapter 4: Discussion 

The aim of this study involved assessing the applicability of three satellited-based models 

to detect diurnal FLS occurrence of MCFs environment in subtropical. We developed a 

random forest type FLS detection algorithm using H-8 observations and ground fog 

observation data. In this chapter, we will discuss the potential application for our 

algorithm, its uncertain about decreasing the accuracy in each model. We also investigate 

the spatiotemporal pattern of FLS in Chi-Lan Mountains. 

4.1 DIFFERENTIATION OF FLS OCCURRENCE DETECTION 

ALGORITHMS 

The algorithm is composed of dawn/twilight, cloudy, clear sky models to detect the 

diurnal FLS occurrences. This algorithm follows the different flow (Fig. 2) according to 

the observation period due to the contamination problem by solar radiation during the 

dawn and twilight on B7 centred at 3.9 µm (Ebell et al. 2013). There are many other 

features affecting the value of DBD7-13, such as azimuth angle, surface types, and 

atmospheric profiles; the SZA is simply considered in this model. A more significant 

variation indicates the observed DBD7-13 over FLS conditions compared to non- FLS 

conditions which can be considered very highly correlation of brightness temperature on 

FLS conditions (r = -0.60) is that the 10.4 m contribution to it is greater than 3.9 m due 

to their emissivity difference (Fig. 3a) (Yoo et al. 2006). Furthermore, the performance 

of machine learning highly depends on the importance variable of the training dataset. 

SAA is identified as the most contributing variable in this model due to the characteristics 
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position and movement of solar was change over the seasons leading to significant 

changes in the solar illumination angles for our study site. 

In general, many land surface temperature retrieval algorithms focus on the 

differential absorption in B13 and B15. In this study, we identified the clear sky and cloudy 

pixel using a threshold of DBD13-15 because the accuracy and efficiency of land surface 

temperature retrieval algorithms are well known (Choi and Suh 2018; Yamamoto and 

Ishikawa 2018). Statistical analysis was used in our process to discern pattern and trend 

of FLS and non-FLS conditions. Apparently, preliminary application of DBD13-15 

threshold technology to distinguish clear sky and cloudy pixels has a good classification 

performance (Fig. 3b).  

In addition, for stable FLS detection in the long term, it is necessary to improve 

the level of FLS detection on complex topographic surface and for weak or local FLS. In 

particular, the quality of clear sky model and background data should be improved for the 

accurate separation of mainly FLS from variables of NDVI and visible bands. NDVI is 

identified as the most contributing variable in all models (Fig. 4). The volatility of time 

series data is relatively large, which is also suitable for trend analysis and information 

extraction in the time dimension. Substantial NDVI diurnal variations and negative NDVI 

hotspot effects were found due to differential red and NIR band sensitivities to diurnal 

phase angle changes, indicating that FLS tends to be rather bright in the red band and 

quite dark in the near-infrared band (Tran et al. 2020). Moreover, with the increase of 

wavelength, the reflectance of clouds decreases slowly while the reflectance of vegetation 

increases, so the pixels which are clouds or vegetation in the pixel can get preliminarily 

distinguished by indices (Xiong et al. 2020). Solar radiation is weak during dawn/twilight, 

resulting in a relatively high probability of scattering factor due to the low surface air 

temperature and high vapour saturation (Ma et al. 2022). Therefore, we observed the 
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pattern of intra-diurnal cycle of the NDVI in each season (Fig. 5) except for SZA greater 

than 60°. However, the vast majority of changes in albedo values are caused by variations 

in clouds, it still found that in the process of collecting satellite remote sensing data. Of 

these, it is affected by multiple factors such as water vapour, aerosol, two-way reflection 

and data transmission, and abnormal vegetation indices will appear, which makes the 

changes of NDVI time series curves of various types appear irregular (Los et al. 1994).  

The NDVI with high importance are drivers of the prediction and their values 

significantly impact the prediction values. We showed that Ranger variable importance 

measures are a sensible means for variables selection but are unreliable in situations 

where potential prediction vary in their measurement scale. Thus, we also analysed the 

cloud physical under FLS and non-FLS conditions through B13 and DBD13-15 (Fig. 6). 

Obviously, both variable quantifies can vary significantly during the non-FLS condition. 

By contrast, most of the DBD13-15 are less than 2.71 K under FLS condition. 

4.2 SPATIAL AND TEMPORAL VARIATIONS IN FLS OCCURRENCE 

PROBABILITY 

Our study demonstrates the average FLS occurrence probability at Chi-Lan 

Mountains as retrieved from H-8 satellite data and local topographic variables. It is 

apparent that the FLS occurs much more frequently than further inland (Fig. 7a). The 

frequency and fluctuation of FLS formation is significantly higher (reddish areas) on the 

southern and eastern slopes, especially at low elevations, compared to the western slopes 

of the study site (Fig. 7b). The probability of FLS mainly high (>0.5) at high elevations 

between 1500 and 2000 m.a.s.l. and the highest FLS occurrences probability is 0.6, while 

the very high elevations (>2000m.a.s.l.) are yield lower FLS probability compared to high 

elevations as less than 0.5. However, it can be observed that FLS frequency stability in 
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bluish area both (Fig. 7b). As results, we verified that the rising temperatures may reduce 

the zone of cloud band in MCFs . 

A causal relationship with the East Asia monsoon can be assumed since the spatial 

pattern is particularly pronounced during the month from October and February (Fig. 7c). 

One explanation for this pattern at eastern slopes is that at lower elevations, the valley is 

larger and deeper and oriented with their mouths in a windward direction, and therefore 

can persist FLS occurrences. By contrast, the valley of higher elevations is shallower and 

oriented in various directions. Thus, FLS passes over them, assisted by the higher wind 

speeds at elevation. The seasonal pattern of FLS occurrence can be explained by 

examining the wind direction as easterly or westerly. In summer, the FLS frequency is 

higher at inland windward slopes because of the southwest monsoon prevailed enhances 

the local convection. The FLS frequency was derived by eastward winds prevailed in 

other seasons (Lai et al. 2006). 

Furthermore, the study site exhibits affected by the eastward winds prevailed from 

the morning to the afternoon due to the different thermal effects of the ridges and valleys 

during the daytime and moist air masses and frequently leading to FLS conditions 

(Klemm et al. 2006). There is usually more high variability of FLS occurrence at the early 

morning. In addition, several studies have demonstrated the peak of solar radiation in the 

cloud forest is in the early morning instead of noon in study site (Gu et al. 2021; Li et al. 

2022), and thus the fluctuation as well as extent of FLS is lowest in the morning and 

highest in the evening(Fig. 8). This can be attributed to convergence of surface wind as it 

approaches the island and leads to the lifting of surface air to the condensation level, 

resulting in FLS formation.  
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Seasonally, the fluctuation of FLS probability is more significant in Fall because 

the northeast monsoon was pronounced, and the disturbance with increaseed water vapour 

content. (Fig. 9). On the contrary, there is less water vapour in summer, mainly due to the 

water vapour brought from the coast by the convection of heterogeneous terrain, so the 

higher probability is formed in the afternoon. In addition, the variability of temporal 

distribution in spring is more stable than others, and FLS distribution of both sides is 

consistent. 

As a detailed statistical analysis of the full life cycle of FLS and its interannual 

behaviour is not within the scope of this paper, this example is intended to illustrate the 

potential of the novel algorithm for the analysis of spatiotemporal patterns of FLS over 

land. 

4.3 POTENTIAL APPLICATIONS 

The novel algorithm is thereby relatively independent from exact DBD thresholds and 

thus has the potential to be easily applied to other regions and to generate climate datasets. 

An operational deployment is possible with slight adjustments in algorithm design and 

holds the potential for the prediction of FLS dissipation. In the future, the value of the 

derived FLS occurrence may be further enhanced with the retrieval of cloud-based 

altitudes for the separation of low-level stratus from the ground fog. Furthermore, this 

algorithm can quickly process large raw data from satellite observations data with a low 

compute cost, which may be conducive to potential operational applications.  

The performance of predictive modelling is dependent on the amount and quality 

of available data. In this work, we utilise match-ups between H-8 and ground observation 

data for four years, from January 2018- December 2021, to reduce the effects of seasonal 

variation. We have some inevitable limitations on the way to observe ground FLS by 
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time-lapse camera. For example, in the case of our spatial resolution of 2km, the 

occurrence of FLS events in front of the facing direction of the camera may be 

inconsistent with the events in front of the lens 1 km. Still, we will be considering high 

temporal resolution and the FLS occurrence events will be continuous; the misleading 

events would be well reduced by long-term observation time in order to obtain 

information about ground fog. In practice, the accuracy of fog observation by the human-

judgment is high (90%) and 70.5% using a visibility meter (Egli et al. 2018). To avoid 

these inevitable factors, we put considerable effort into systematically evaluating the 

classification of three models. Considering these arguments, the validation results give 

confidence in the skill of the novel algorithm, which is well suited for the purpose of 

characterising the spatial and temporal pattern of FLS occurrence probability in MCFs. 

Moreover, we explore potential application of the NDVI value in FLS and non-FLS 

condition in observation region of H-8. The land cover of the main observation region is 

more suitable for the NDVI value because the most of those areas may not be covered by 

snow or ice, especially in Southeast Asia where there are important areas of MFC sites. 

Otherwise, the high temporal resolution of H-8 observation data would be obtained and 

real-time processing by the algorithm. Then, the Ranger can process data effectively and 

retrieve the FLS occurrence.  
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Chapter 5: Conclusions  

The central aim of this study was to develop the first satellite-based and local topographic 

data and thereby diurnally stable satellite retrieval of FLS. The algorithm design uses an 

observation period (SZA >76°) and DBD threshold condition to model three different 

atmospheric conditions to retrieve FLS. 

 The algorithm was applied to detect spatial and temporal patterns of Chi-Lan 

Mountains FLS and was validated against the confusion matrix. The algorithm shows 

good overall detection accuracy, F1 and MCC with imbalance data, which are reliable 

concordant scores for predictions. The NDVI was more important than other variable and 

provided an adaptive model for FLS occurrence detection as an indicator of importance 

for identification. 

FLS most frequently occur close to the south-eastern facing ridge, with the cloud 

belt between 1500 and 2000 m. a.s.l., confirming findings from Chang (2008), Lai (2006) 

and Li (2022). The diurnal cycle of FLS is described for the location of the four stations. 

Marked differences in the timing of FLS occurrence and temporal persistence are found. 

The time lag of FLS occurrence from the low elevation to high elevation region may be 

attributed to the orographic of FLS from the lowland, a typical feature of the region. FLS 

persists a longer time in the mid-elevation than in further high altitudes regions but then 

dissipates more rapidly after evening, with stronger winds due to strong convection. 

The study shows the potential of the diurnal FLS algorithm to study FLS patterns 

and life cycles. Future research efforts should focus on coherently mapping diurnal 
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characteristics of FLS, further understanding FLS formation processes and potentially 

detecting changes in FLS occurrence. This may best be achieved by combining the 

satellite retrievals with numerical modelling and ground-based observation. 
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