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Abstract

Cloud occlusions obstruct some applications of remote sensing imagery, such as en-
vironment monitoring, land cover classification, and poverty prediction. In this paper, we
propose the Cloud Transformer Generative Adversarial Network (CTGAN), taking three
temporal cloudy images as input and generating a corresponding cloud-free image. Unlike
previous work using generative networks, we design the feature extractor to maintain the
cloudless region’s weight while reducing the cloudy region’s weight. We then pass the
extracted features to a conformer module to find the most critical representations. Mean-
while, to address the lack of datasets, we collected a new dataset named Sen2 MTC from
the Sentinel-2 satellite and manually labeled each cloudy and cloud-free image. Finally,
we conducted extensive experiments on FS-2, the STGAN dataset, and Sen2 MTC. Our
proposed CTGAN demonstrates higher qualitative and quantitative performance than the
previous work and achieves state-of-the-art performance on these three datasets. We also

perform land-cover classification, which can be viewed as a downstream task after cloud
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removal. The improved performance on the land-cover classification demonstrates that

our model has a high quality of generating cloud-free images compared to the previous

works. The code is available at https://github.com/come880412/CTGAN

Keywords: Cloud removal for multi-temporal cloudy images, generative adversarial net-

work, conformer, Sentinel-2 satellite, FormoSat-2 satellite
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Chapter 1 Introduction

Remote sensing imagery has been used in many geoscience observation fields such as
land cover classification [&, 1 5], environment monitoring [ | 2], change detection [ 18, 19],
forest canopy closure estimation [27], and poverty prediction [4, 16]. However, remote
sensing imagery is inevitably affected by many factors, such as cloud occlusions, weather,
and climate effects. Thick cloud occlusions will lose much of the information. Therefore,
cloud removal is an indispensable preprocessing step before using remote sensing imagery

in various applications.

Cloud removal methods comprise single-image methods and multi-temporal meth-
ods. Single-image methods input one cloudy image to the network and generate a cor-
responding cloud-free image. Singh et al.[25] applied CycleGAN to remove cloud oc-
clusions from synthetically generated cloudy images. Pan et al. [17] proposed a spatial-

attention-based model for detecting the cloud’s location and generating cloud-free images.

Figure 1.1: The visibility of the same region on the temporal satellite images.
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Figure 1.2: Examples of cloud-free images in the STGAN dataset (top row) and the
Sen2 MTC dataset (bottom row)

(b) (c) (d)

Figure 1.3: The examples of Sen2 MTC images. The top row demonstrates the RGB im-
age, while the down row demonstrates the near-infrared (NIR) image. (a) ~(c) are cloudy
images from different time sequences, and (d) is the corresponding cloud-free image.
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Lee et al. [11] proposed a CNN-based model to synthesize realistic cloudy images and
used the synthesized images to train the network for cloud removal. However, thick cloud
occlusions will prevent single-image methods with only a few bands from restoring real-

istic cloud-free images [14].

To date, there is a great deal of research on single-image methods but comparatively
little on multi-temporal methods. Multi-temporal methods can reconstruct thick cloudy
images [17, 31]. Lin ef al. [13] employed an information cloning approach to conduct
cloud removal, which clones information from cloud-free regions over temporal images.
Sintarasirikulchai et al. [26] designed an autoencoder-based model to fuse spectral in-
formation across multi-temporal data. Chen et al. [3] processed multi-temporal data by
integrating feature maps of the spatial and temporal information. Sarukkai ef al. [24]
proposed the spatiotemporal generative network (STGAN) model for multi-temporal end-
to-end training. Fig. 1.1 illustrates that the temporal cloudy images may have different
visibility in the same region. However, [3, 13, 24, 26] did not make additional processing
of the features to differentiate between cloudy and cloud-free regions, which might hinder

the model from restoring a realistic cloud-free image.

In addition, to deal with the problem of synthetic data and the lack of real-world tem-
poral data in this field, Sarukkai et al. [24] assembled the paired cloudy and cloud-free
dataset from the Sentinel-2 satellite. However, Fig. 1.2 illustrates that the images collected
by [24] had low resolution and incorrect annotation, causing the model to have high quan-
titative but low qualitative performance In the early training stage. It also hindered the
model from learning to generate a correct cloud-free image. Therefore, we collected an-
other new dataset named Sen2 MTC from the Sentinel-2 satellite for public use, which

contains 50 non-overlapping tiles and offers RGB and near-infrared (NIR) channels.
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The main contributions of this thesis are summarized as follows.

1. We propose the Cloud Transformer Generative Adversarial Network (CTGAN), a
multi-temporal end-to-end training network. We focus on the design of the fea-
ture extractor and the processing of the downsampled features. The former uses the
cloud mask to force the model to focus on the cloud-free region. The latter uses the
attention mechanism in the conformer module to make the model find the most crit-
ical representations before restoring the cloud-free image. Meanwhile, our model

can simultaneously detect cloud locations and restore the cloud-free image.

2. we collected a new dataset named Sen2 MTC for public use. The images in Sen2 MTC
were gathered from the Sentinel-2 satellite, with manually labeled cloudy and cloud-

free images. The example images are shown in 1.3.
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Chapter 2 Related work

Convolutional Neural Network (CNN) has been widely applied to various computer
vision tasks. These CNN models are usually pretrained on a large-scale dataset such as
ImageNet [22]. With this pretrained weight, CNN models are often chosen as the strong
feature extractors, followed by fine-tuning a fully connected network to conduct a large

variety of image tasks, including classification, object tracking, and generation.

Generative models have been applied to the cloud removal task using synthetic data.
Singh et al.[25] leveraged the unpaired image translation model CycleGAN [32] to restore
the thin and filmy cloudy image. Enomoto ef al. [5] added Perlin noise [20] to synthe-
size the cloudy image from the cloud-free image. Their model Multi-spectral conditional
Generative Adversarial Network (MCGAN) is designed to generate the cloud-free image
using synthetic and original images for model training. Sandhan ef al. [23] designed a
generative model to train on synthetic data, mainly applied on the extremely filmy high-
altitude cloud removal. Bermudez [ 1] et al. applied the conditional generative adversarial
networks to generate the cloud-free image using the synthetic aperture radar data for model
training. However, the synthetic data usually fails to generate a realistic cloud-free image

in the real-world data [24].

Previous works have applied the generative model to the cloud removal task using
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real-world data. Meraner ef al. [14] applied the ResNet [ 7] as encoder backbone to lever-
age the multi-spectral information to generate a cloud-free image from a single cloudy
input image. However, the multi-spectral information can not be apprehended from a dif-
ferent satellite. Pan et al. [17] proposed a spatial-attention-based model for detecting the
cloud’s location and generating cloud-free images. However, their model is limited to
dealing with thin clouds. Sarukkai et al. [24] referred to the ResNet [7] and Unet [21]
models to propose a spatial-temporal generative model to generate the cloud-free image.
However, they ignored the processing of the cloudy and cloud-free patches in the temporal

information.

Overall, the primary key points to generating a realistic cloud-free image are as fol-

lows:

1. Train the generative model using real-world data instead of synthetic data [24].

2. Single-image with multi-spectral information is feasible to generate a realistic cloud-

free image [ | 4]; otherwise, temporal information is required [24].

Considering that most satellites provide information for four bands, namely RGB and NIR,
this thesis focuses on processing temporal information with only RGB and NIR channels

to generate a realistic cloud-free image.
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Chapter 3 Dataset collection

We collect the Sen2 MTC benchmark dataset from the publicly-available Sentinel-2
satellite images for public use. Sentinel-2 satellite has 32,270 distinct tiles, and each tile
has a size of 10,980x10,980 with a resolution of 10m/pixel. The captured images from the
Sentinel-2 satellite have multi-spectral information with 13 different bands, and the same
region was regularly recorded every 6 days on average. In this thesis, we only take the im-
age from RGB and NIR bands. To obtain the data, we randomly pick 50 distinct tiles from
the Sentinel-2 satellite, and each tile has 3 cloudy and 1 cloud-free view. Then, we apply
the sliding window method with an overlapping size of 128x128 to obtain 7,225 patches in
total from each view, where each image patch has a size of 256x256. We manually select
70 cloudy and cloud-free pairs from the 7,225 patches as training data in each distinct tile.
The image we selected as cloudy must be obviously occluded by cloud, while the image
we selected as cloud-free must not have a single piece of cloud. Fig. 1.3 illustrates an
example of cloudy and cloud-free pair. The Sen2 MTC benchmark dataset is collected
by the aforementioned criterion, which has 50 distinct tile locations each with 70 image
patches, a total of 3,500 images. For the model training, we randomly split the data into
training/validation/testing sets with a ratio of 7:1:2 and kept the images from the same tile
together. More elaborately, the training data is composed of 35 non-overlapping tiles, for

a total of about 2450 images; the validation data is composed of 5 non-overlapping tiles,
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for a total of about 350 images; the testing data is composed of 10 non-overlapping tiles,

for a total of about 700 images.
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Chapter 4 Proposed method

Like [24], our CTGAN takes three cloudy images to recover a corresponding cloud-
free image. Pairwise cloudy and cloud-free images are required to train CTGAN. We
denote the input of temporal cloudy images as " = {xy, 7, ..., z,, } and the correspond-
ing cloud-free image as y, where n denotes the number of cloudy images as input. In this
thesis, n is set to 3. Given 2", the model learns how to generate the cloud-free image 7,

which should be similar to the corresponding cloud-free image y.

4.1 Generator

The overall CTGAN generative network is illustrated in Fig. 4.1(a). Our generator
is based on STGAN [24]. However, unlike STGAN, we focus more on the design of the
feature extractor and the processing of the downsampled multi-temporal features. The
feature extractor structure is illustrated in Fig. 4.1(b). The bottleneck module, as shown
in Fig. 4.2 (a), consisting of three convolutional layers followed by batch normalization
and a rectified linear unit after each convolutional layer, extracts the feature representa-
tion of the image. This representation proceeds through the cloud detection module, as
shown in Fig. 4.2 (b), consisting of three convolutional layers, passing through a sigmoid

function before output. The cloud detection module detects the location of the cloud, and
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Figure 4.2: The modules on the feature extractor. (a) Bottleneck module (b) Cloud detec-
tion module (c) Atrous convolution module. Where the parameters on the conv are kernel
size, stride, and padding, respectively.
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Figure 4.3: The CTGAN discriminator, where the parameters on the conv are kernel size,
stride, and padding, respectively.

the generated cloud mask is multiplied by the feature map to keep the weight of the cloud-
free region while reducing the weight of the cloudy region. In the previous layer of the
feature extractor, we introduce the atrous convolution module [2], as shown in Fig. 4.2
(c), to enlarge the receptive field in the feature extractor. Moreover, inspired by [28], we
include an auxiliary generator in the feature extractor to accelerate its convergence. In
addition to the design of the feature extractor, we introduce the conformer module [6],
which is the modified version of the original Transformer [29], to make the downsampled
multi-temporal features find the most critical representations. Finally, the encoder and the
decoder are convolutional layers with stride 2 to downsample the feature maps and the

transposed convolutional layers with stride 2 to upsample the feature maps, respectively.

4.2 Discriminator

The CTGAN discriminator is a deep convolutional neural network, as demonstrated
in Fig. 4.3. We utilize the conditional generative adversarial network (GAN). The net-

work” s input is the concatenation of the three cloudy images and the one generated or
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cloud-free image. In the prediction phase, the network carries out a binary classification

to determine whether the concatenated image matches a generated or cloud-free image.

4.3 Loss function

In this work, the loss function can be defined as:

L = minmax
¢ D (4.1)
LCGAN(G7 D) + AGLl(G) + Lmask + )\auxLaux,

where the parameters G and D represent the CTGAN generator and discriminator, and A and
Aquz are the reconstruction quality weights of the loss, which are set to 100 and 50 in our model,
respectively. The setting of \g refers to STGAN [24]. Since the output of the generator is the
cloud-free satellite image we would like to obtain, we set Ag to be higher than the weight of other
terms; since the purpose of L, is to speed up the convergence of the feature extractor, while the
quality of the restored auxiliary image is not essential, we set Aqq, to 50 which is lower than \q.
As the other two terms (L.gay and L,,.si) are not the main consideration of this work, we set

their weights as 1.

The loss function comprises four parts, where the first part is the loss function of the condi-
tional GAN. We define the loss function of L.qan as:

Legan(G,D) = E(:Jc'm,y) [log D(xm’ )+
(4.2)

E(yiny[log (1 — D(z™,9))],

where 2" = {x1, 22, ...,¥,}, y is the corresponding ground-truth cloud-free image, and 4 is the
corresponding generated cloud-free image. In this thesis, n is set to 3. The second part is the

standard L4 loss function, defined as:

1 c,w AC, W
Li(G) = mrgr D I = 5o, (43)

c,w,h
where %% denotes the pixels of the generated output image at coordinates (c,w, h). The third
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part is the cloud mask loss, defined as :
Lmask = ||M - M/H%, (44)

where M and M’ denote the ground-truth cloud mask and the predicted cloud mask, respectively.

The fourth part is the auxiliary loss, defined as:

1 . c,w,h caw,h
Lowr = Goig 2 D 07" = Gaua(FE(:)“" |1, (4.5)

i=1 c,w,h

where G, denotes the auxiliary generator in the feature extractor, and F'E(x;) denotes the output

of the feature extractor when feeding x; into the network.
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Chapter S Experiments

In this section, we employed our CTGAN on three different datasets, including FormoSat-2
dataset, STGAN dataset, and Sen2 MTC dataset. The metrics used to evaluate the performance
are root-mean-square error (RMSE), peak signal-to-noise ratio (PSNR), structural similarity index

(SSIM) [20], and spectral angle mapper (SAM) [ 10]. The definition of each metric is given below:

* RMSE

1
fwwE@ww:¢CWH§j@wﬁ—wmw% 1)

c,w,h

where x and y are the generated cloudy image and the ground-truth cloud-free image.

* PSNR
MAX;

PSNR(z,y) = 20logy, (WE(xy)

) (5.2)

where M A X represents the maximal possible value of x, which is set to 255 in this thesis.

- SSIM
2ttty + (1 L)?)(20my + (c2L)?)

SSIM Z, = )
U =G T i+ (Do + 0+ (eaL

(5.3)

where fiz, 11, denote the means of x and vy, o2, UZ denote the variances of x and y, o,
denotes the covariance of x and y, and ¢y, ¢y are adjustable constants. L represents the

value of M AX; — M 1INy, which is set to 255 in this thesis.

+ SAM
Zc,w,h (yc,w,h ' mc,w,h)

SAM (2,) = cos™* (
\/Zc,w,h (zewh)2 . Zc,w,h (yewh)2

) (54)
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5.1 Dataset and Implementation Details

FormoSat-2 (FS-2) dataset is a decommissioned earth observation satellite formerly op-
erated by the National Space Organization of Taiwan. This dataset contains 15 non-overlapping
tiles, each with three cloudy images and a corresponding cloud-free image, C' = 4 channels (R,
G, B, NIR), and pixel value range [0, 10000]. In addition, Due to the lack of data in this dataset,
we conducted 4-fold cross-validation to evaluate the performance and ensure the robustness of our

model compared to previous works [3, 24, 26].

STGAN dataset [24] contains 945 distinct tiles, a total of 3101 images. This dataset was
created using the publicly available Sentinel-2 images. [24] paired each cloud-free image with
the three most recent cloudy images, each with size (w,h) = (256,256), C' = 4 channels (R,
G, B, NIR), and pixel value range [0, 255]. In addition, [24] randomly split the data into training/

validation/testing sets with the ratio of 8:1:1 and kept the images from the same tile together.

Sen2 MTC dataset was collected by us using publicly available Sentinel-2 images to an-
notate a new cloud removal dataset for multi-temporal training. This dataset contains 50 non-
overlapping tiles, each with 70 images, pixel value range [0, 10000], size (w, h) = (256, 256), and
C = 4 channels (R, G, B, NIR). We randomly split the data into training/validation/testing sets

with a ratio of 7:1:2 and kept the images from the same tile together.

Implementation details. Our proposed CTGAN was implemented via Pytorch and run on
a server with two NVIDIA GeForce RTX 3090 GPUs, each with 24 GB of graphics memory.
We first divided the pixel value by 10,000 and normalized the pixel value range to [—1,1]. We
initially trained our model on the FS-2 dataset in the training phase because we had the ground-truth
cloud mask for the FS-2 dataset images. Next, we applied the semi-supervised learning technique
to the Sentinel-2 dataset, using the feature extractor trained on the FS-2 dataset to generate the
pseudo cloud mask on the Sentinel-2 dataset. In addition, we adopted the Adam optimizer with
a learning rate of 5 x 10~* and exponential decay rates (31, 32) = (0.5, 0.999). We also used the
CosineAnnealing scheduler to decay the learning rate per epoch and stopped training after 200

epochs.

16 doi:10.6342/NTU202300030


http://dx.doi.org/

| | RMSE PSNR  SSIM  SAM |

CTGAN w/o FE and w/o Conformer | 0.1167 18280 0.614  0.272
CTGAN w/o FE and w/ Conformer | 0.1125 18.507 0.624 0.265
CTGAN w/ FE and w/o Conformer | 0.1098 19.033 0.650 0.252
CTGAN w/ FE and w/ Conformer 0.1082 19.375 0.666 0.245

Table 5.1: The ablation study of the effectiveness of each module on our CTGAN.

input images | RMSE  PSNR SSIM SAM # of parameters Inference time (s)
P g

n=1 0.2652 11.536 0.109 0.580 4.99M 7.848
n=2 0.1323 17.878 0.584 0.294 42.97T™M 20.266
n=3 0.1082 19.375 0.666 0.245 43.12M 29.129
n=4 0.1072 19.485 0.666 0.248 43.27N 35.304
n=>5 0.1070 19.496 0.672 0.247 43.42M 43.636

Table 5.2: The ablation study of the effectiveness of the number of input images.

5.2 Ablation study

In this section, we performed ablation studies to evaluate the contribution of each component
of CTGAN and the effectiveness of the number of input cloudy images. In Table 5.1, we evaluated
the contribution of each module in our CTGAN. In this thesis, we focus more on the feature extrac-
tor’s design. As seen in Table 5.1, the improvement rate of the CTGAN with and without feature
extractor design is the highest. It means that the cloud mask attention mechanism in the temporal
information has the most impact on performance improvement. Finally, to make the model find
the most critical representation in the downsampled feature map, we add the conformer module

[6], which further improves the performance of CTGAN.

We also conducted experiments for the effectiveness of the number of input cloudy images.
In this thesis, we take three cloudy images as input and then generate the corresponding cloud-
free image. However, The number of input cloudy images is adjustable. Table 5.2 shows the
performance, # of model parameters, and inference time when increasing the input cloudy images
gradually. As shown in Table 5.2, the model performs better as the number of input cloudy images
grows. The trend of the performance gain is demonstrated in Fig. 5.1. The model cannot remove
the cloud effectively when n=1, while the SSIM performance is significantly improved when n is
increased from 1 to 2. The SSIM performance is slightly improved when n is increased from 2

to 3. However, from n=3 to n=5, the SSIM performance is almost the same. Therefore, in this

17 doi:10.6342/NTU202300030


http://dx.doi.org/

Abalation study of # of input cloudy images
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Figure 5.1: Ablation study of # of input cloudy images. The x-axis denotes the # of input
cloudy images (n) and the y-axis denotes the SSIM metrics.
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RMSE | Foldl Fold2 Fold3 Fold4 Avg |

AE [26] 0.1449 0.1433 0.1422 0.1695 0.1500

ST net [3] 0.1229 0.1230 0.1299 0.1491 0.1312

STGAN [24] | 0.1167 0.1370 0.1242 0.1350 0.1282

CTGAN(ours) | 0.1082 0.1023 0.0941 0.1225 0.1068 + 0.0104
| PSNR | Foldl Fold2 Fold3 Fold4 Avg |

AE [26] 16.851 17.038 17.419 15.567 16.719

ST net [3] 18.267 18.205 18.145 16.572 17.797

STGAN [24] | 18.275 17.315 18.277 17.403 17.818

CTGAN(ours) | 19.375 19.806 20.585 18.263 19.507 + 0.965

SSIM Foldl Fold2 Fold3 Fold4 Avg

AE [206] 0.577 0.589 0.603  0.541 0.578

ST net [3] 0.620 0.611  0.564 0.598 0.598

STGAN [24] 0.614 0.604 0.589 0.614 0.605

CTGAN(ours) | 0.666 0.662 0.689 0.657  0.669 + 0.012

SAM Foldl Fold2 Fold3 Fold4 Avg

AE [26] 0.324 0334 0.323 0.372 0.338

ST net [3] 0.277 0274 0.310 0.315 0.294

STGAN [24] 0.272 0279 0.294  0.300 0.286

CTGAN(ours) | 0.245 0.240 0.243  0.271 0.250 + 0.012

Table 5.3: The performance was evaluated by 4-fold cross-validation on the FS-2 dataset

experiment, n=2 or n=3 is a good trade-off between the SSIM performance and the inference time.

5.3 Evaluation on the FS-2 dataset

We reproduced [3, 24, 26] on the FS-2 dataset to compare the performance between our
model and the previous works. When the authors provided the source code [24], we used the
provided code to reproduce their model on the FS-2 dataset. Otherwise, we programmed it by
ourselves from the description in their paper [3, 26]. We only evaluated their models’ performance
on our datasets because they did not release their datasets. The results are compared in Table 5.3,
where the values in parentheses represent the standard deviation (STD) of our model. On the FS-2
dataset, the results shown in Table 5.3 demonstrate that the design of our model is effective. The
improvement of SSIM significantly outperformed the previous state-of-the-art model STGAN,

with a breakthrough gain of SSIM 0.064.

We evaluated our CTGAN on the dataset collected by [24]. The performance is shown in
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| Validation set \ PSNR SSIM |

Pix2Pix [9] 23.130 0.442
MCGAN (RGB + NIR) [5] 21.352 0.485
Mean Filter 16.962 0.174
Median Filter 9.081 0.357
Raw Cloudy Images 7.926 0.389
STGAN U-Net (IR) [24] 25.142 0.651
STGAN ResNet(IR) [24] 25.628 0.724
CTGAN(ours) 26.149 + 0.438 0.805 + 0.017
| Testing set \ PSNR SSIM |
Pix2Pix [9] 22.894 0.437
MCGAN (RGB + NIR) [5] 21.146 0.481
Mean Filter 16.893 0.173
Median Filter 9.674 0.395
Raw Cloudy Images 8.289 0.422
STGAN U-Net (IR) [24] 25.388 0.661
STGAN ResNet(IR) [24] 26.186 0.734
CTGAN(ours) 26.264 + 0.204 0.808 + 0.011

Table 5.4: Comparison of PSNR and SSIM results on the STGAN dataset [24].

Table 5.4. [24] did not describe their random seed to split the dataset in their paper, so we trained
our model 10 times using the same data-splitting method with different random seeds and averaged
these results to obtain the final result. The SSIM improvement of our CTGAN is considerable. The
SSIM on the validation and testing sets of the previous state-of-the-art STGAN are 0.724 and 0.734,
respectively. Our CTGAN significantly outperformed the previous state-of-the-art STGAN; the
gain of SSIM on the validation and testing sets are 0.081 and 0.074, respectively. The experimen-
tal result on the STGAN dataset also demonstrates that our CTGAN can achieve state-of-the-art

performance on the STGAN dataset.

5.4 [Evaluation on the Sen2 MTC dataset

The method of reproducing STGAN [24], ST net[3], and AE [26] is the same as described in
section 5.3. We also evaluated CTGAN on the Sen2 MTC dataset. The results shown in Table 5.5
demonstrate that CTGAN achieves higher quantitative performance than [3, 24, 26]. The SSIM
on the validation and testing sets of the previous state-of-the-art STGAN are 0.613 and 0.587,

respectively. Our CTGAN outperformed the previous state-of-the-art STGAN; the gain of SSIM
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| Validation set | RMSE PSNR SSIM SAM._ |

AE [20] 0.1728 16.010 0.431 0.444
ST net [3] 0.1386 17.741 0.467 0.320
STGAN [24] 0.1040 20.612 0.613 0.276
CTGAN(ours) | 0.0953 & 0.0042  21.259 £ 0.046  0.662 £ 0.003  0.241 =+ 0.011
| Testing set | RMSE PSNR SSIM SAM |
AE [20] 0.2088 15.251 0.412 0.420
ST _net [3] 0.1640 16.206 0.427 0.350
STGAN [24] 0.1374 18.152 0.587 0.289
CTGAN(ours) | 0.1353 4 0.0012  18.308 + 0.089 0.609 + 0.007 0.262 =+ 0.009

Table 5.5: The performance compared with the previous works on the Sen2 MTC dataset.

on the validation and testing sets are 0.049 and 0.022, respectively. The improvement for SSIM is
usually shown that the model is more capable of restoring the visible structure. Therefore, CTGAN
can reconstruct more information in the generated cloud-free image than the previous state-of-the-

art model STGAN, as demonstrated in Fig. 5.2.

5.5 Visualization on the Sen2 MTC dataset

We visualize the generated results using CTGAN and the previous state-of-the-art STGAN
[24]. The results are shown in Fig. 5.2. From top to bottom are the three cloudy input images,
three cloud masks generated by CTGAN, the cloud-free image generated by STGAN, the cloud-
free image generated by CTGAN, and the corresponding ground-truth cloud-free image. Fig. 5.2
shows that our CTGAN can restore a cloudy image more like the actual image, while the image
generated by STGAN has many artifacts. Even if the details of the three images are nearly lost,
our CTGAN can still roughly restore the shapes under the clouds (first column of Fig. 5.2). To
verify why our CTGAN can do such generation, Fig. 5.3 illustrates the NIR bands for the cloudy
images of the first column in Fig. 5.2. From Fig. 5.3, the road under the cloud can be seen in the
NIR bands. Note that CTGAN can roughly restore the shapes under the cloud, while STGAN [24]

generates vague cloud-free images despite also having the NIR information available.
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#1
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#2

Cloud mask
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Cloud-free
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Figure 5.2: Visualized results of the generated images on the Sen2 MTC dataset, where
the cloud masks are generated by our CTGAN’s feature extractor.

Figure 5.3: The corresponding NIR bands visualization for the cloudy images of the top
three rows in the first column in Fig. 5.2
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| Model | Accuracy(%) |

Cloud-free image 97.65
Cloudy image 39.11
AE [20] 41.08
ST net [3] 51.35
STGAN [24] 68.38
CTGAN(ours) 77.54*

Table 5.6: Evaluated the performance of our model through the downstream task land-
cover classification, where the accuracy of the cloud-free image can be viewed as an upper
bound while the accuracy of the cloudy image can be viewed as a lower bound.

5.6 Evaluation on the downstream task

In this section, we evaluated the downstream task land-cover classification performance of
images after cloud removal by CTGAN model trained on the Sen2 MTC dataset. We first trained a
baseline model ResNet50 on the EuroSat dataset [8]. This dataset contains 27,000 labeled images
from the Sentinel-2 satellite and consists of 10 categories of land cover (sea, lake, river, residential,
permanent crop, pasture, industrial, highway, herbaceous vegetation, forest, and annual crop). To
compare the performance, we hand-labeled the images on the testing set of the Sen2 MTC dataset

with an approximately equal distribution of all ten categories of land cover.

As shown in Table 5.6, the cloud-free image generated from CTGAN performs the highest
accuracy, an improvement of 9% compared with the previous state-of-the-art model. In addition,
we also list the accuracy of the ground-truth cloud-free image and the cloudy image, where the
former can be viewed as the upper bound, and the latter can be considered as the lower bound. Our

model improves the classification accuracy of land-cover from 39% to 77%.
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Chapter 6 Conclusion

We propose CTGAN for multi-temporal cloud removal. Unlike previous work, We focus
more on the feature extractor’s design and processing of the downsampled multi-temporal features.
In addition, to solve the lack of datasets for multi-temporal cloud removal, we collect a new dataset
from Sentinel-2, which we name Sen2 MTC, and manually labeled each cloudy and cloud-free
image. Finally, we experimentally demonstrate that CTGAN can achieve high qualitative and
quantitative performance and significantly outperform the previous state-of-the-art models. In
addition, experiments on the downstream task land-cover classification also verify that the cloud-
free images generated by our CTGAN are of high quality enough to perform the classification task.

Finally, We will also release the Sen2 MTC dataset for public use.
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