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摘要

雲的遮蔽干擾了遙測衛星影像的相關應用，包含環境監測、土地覆蓋分

類以及貧窮預測等等。在這篇論文中，我們提出了 Cloud Transformer Generative

Adversarial Network (CTGAN)模型來進行衛星影像除雲，此模型的輸入為三張時

序的有雲影像，輸出則生成一張對應的無雲影像。相比於過去的生成模型相關的

文獻，我們特別著重在設計特徵擷取器 (feature extractor)使其能保留影像中無雲

區域的權重，並且同時減少有雲區域的權重，接著把取出的特徵經過 conformer，

利用 attention的特性，使其能在時序性的影像中找到最關鍵的特徵表示來進行還

原。同時，為了解決在這個領域中少量資料的問題，我們自行從哨兵二號衛星蒐

集資料進行資料標註，並且提出了 Sen2_MTC資料集貢獻於這領域。最後，我們

也在不同的衛星中進行廣泛的實驗，包括台灣的福爾摩沙衛星二號 (FormoSat-2)

及歐洲的哨兵二號 (Sentinel-2)，實驗表明我們提出的 CTGAN不僅在這些資料集

中都能達到 state-of-the-art的結果，也在下游任務土地覆蓋分類中，有著顯著的進

步，此論文的程式碼公開於此網址中https://github.com/come880412/CTGAN

關鍵字：多時序衛星影像除雲、生成式對抗網路、哨兵衛星二號、福爾摩沙衛星
二號、轉換器
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Abstract

Cloud occlusions obstruct some applications of remote sensing imagery, such as en-

vironment monitoring, land cover classification, and poverty prediction. In this paper, we

propose the Cloud Transformer Generative Adversarial Network (CTGAN), taking three

temporal cloudy images as input and generating a corresponding cloud-free image. Unlike

previous work using generative networks, we design the feature extractor to maintain the

cloudless region’s weight while reducing the cloudy region’s weight. We then pass the

extracted features to a conformer module to find the most critical representations. Mean-

while, to address the lack of datasets, we collected a new dataset named Sen2_MTC from

the Sentinel-2 satellite and manually labeled each cloudy and cloud-free image. Finally,

we conducted extensive experiments on FS-2, the STGAN dataset, and Sen2_MTC. Our

proposed CTGAN demonstrates higher qualitative and quantitative performance than the

previous work and achieves state-of-the-art performance on these three datasets. We also

perform land-cover classification, which can be viewed as a downstream task after cloud
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removal. The improved performance on the land-cover classification demonstrates that

our model has a high quality of generating cloud-free images compared to the previous

works. The code is available at https://github.com/come880412/CTGAN

Keywords: Cloud removal for multi-temporal cloudy images, generative adversarial net-

work, conformer, Sentinel-2 satellite, FormoSat-2 satellite
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Chapter 1 Introduction

Remote sensing imagery has been used inmany geoscience observation fields such as

land cover classification [8, 15], environment monitoring [12], change detection [18, 19],

forest canopy closure estimation [27], and poverty prediction [4, 16]. However, remote

sensing imagery is inevitably affected by many factors, such as cloud occlusions, weather,

and climate effects. Thick cloud occlusions will lose much of the information. Therefore,

cloud removal is an indispensable preprocessing step before using remote sensing imagery

in various applications.

Cloud removal methods comprise single-image methods and multi-temporal meth-

ods. Single-image methods input one cloudy image to the network and generate a cor-

responding cloud-free image. Singh et al.[25] applied CycleGAN to remove cloud oc-

clusions from synthetically generated cloudy images. Pan et al. [17] proposed a spatial-

attention-based model for detecting the cloud’s location and generating cloud-free images.

Figure 1.1: The visibility of the same region on the temporal satellite images.
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Figure 1.2: Examples of cloud-free images in the STGAN_dataset (top row) and the
Sen2_MTC dataset (bottom row)

Figure 1.3: The examples of Sen2_MTC images. The top row demonstrates the RGB im-
age, while the down row demonstrates the near-infrared (NIR) image. (a) ~(c) are cloudy
images from different time sequences, and (d) is the corresponding cloud-free image.
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Lee et al. [11] proposed a CNN-based model to synthesize realistic cloudy images and

used the synthesized images to train the network for cloud removal. However, thick cloud

occlusions will prevent single-image methods with only a few bands from restoring real-

istic cloud-free images [14].

To date, there is a great deal of research on single-image methods but comparatively

little on multi-temporal methods. Multi-temporal methods can reconstruct thick cloudy

images [17, 31]. Lin et al. [13] employed an information cloning approach to conduct

cloud removal, which clones information from cloud-free regions over temporal images.

Sintarasirikulchai et al. [26] designed an autoencoder-based model to fuse spectral in-

formation across multi-temporal data. Chen et al. [3] processed multi-temporal data by

integrating feature maps of the spatial and temporal information. Sarukkai et al. [24]

proposed the spatiotemporal generative network (STGAN) model for multi-temporal end-

to-end training. Fig. 1.1 illustrates that the temporal cloudy images may have different

visibility in the same region. However, [3, 13, 24, 26] did not make additional processing

of the features to differentiate between cloudy and cloud-free regions, which might hinder

the model from restoring a realistic cloud-free image.

In addition, to deal with the problem of synthetic data and the lack of real-world tem-

poral data in this field, Sarukkai et al. [24] assembled the paired cloudy and cloud-free

dataset from the Sentinel-2 satellite. However, Fig. 1.2 illustrates that the images collected

by [24] had low resolution and incorrect annotation, causing the model to have high quan-

titative but low qualitative performance In the early training stage. It also hindered the

model from learning to generate a correct cloud-free image. Therefore, we collected an-

other new dataset named Sen2_MTC from the Sentinel-2 satellite for public use, which

contains 50 non-overlapping tiles and offers RGB and near-infrared (NIR) channels.

3
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The main contributions of this thesis are summarized as follows.

1. We propose the Cloud Transformer Generative Adversarial Network (CTGAN), a

multi-temporal end-to-end training network. We focus on the design of the fea-

ture extractor and the processing of the downsampled features. The former uses the

cloud mask to force the model to focus on the cloud-free region. The latter uses the

attention mechanism in the conformer module to make the model find the most crit-

ical representations before restoring the cloud-free image. Meanwhile, our model

can simultaneously detect cloud locations and restore the cloud-free image.

2. we collected a new dataset named Sen2_MTC for public use. The images in Sen2_MTC

were gathered from the Sentinel-2 satellite, withmanually labeled cloudy and cloud-

free images. The example images are shown in 1.3.

4
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Chapter 2 Related work

Convolutional Neural Network (CNN) has been widely applied to various computer

vision tasks. These CNN models are usually pretrained on a large-scale dataset such as

ImageNet [22]. With this pretrained weight, CNN models are often chosen as the strong

feature extractors, followed by fine-tuning a fully connected network to conduct a large

variety of image tasks, including classification, object tracking, and generation.

Generative models have been applied to the cloud removal task using synthetic data.

Singh et al.[25] leveraged the unpaired image translation model CycleGAN [32] to restore

the thin and filmy cloudy image. Enomoto et al. [5] added Perlin noise [20] to synthe-

size the cloudy image from the cloud-free image. Their model Multi-spectral conditional

Generative Adversarial Network (MCGAN) is designed to generate the cloud-free image

using synthetic and original images for model training. Sandhan et al. [23] designed a

generative model to train on synthetic data, mainly applied on the extremely filmy high-

altitude cloud removal. Bermudez [1] et al. applied the conditional generative adversarial

networks to generate the cloud-free image using the synthetic aperture radar data for model

training. However, the synthetic data usually fails to generate a realistic cloud-free image

in the real-world data [24].

Previous works have applied the generative model to the cloud removal task using

5
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real-world data. Meraner et al. [14] applied the ResNet [7] as encoder backbone to lever-

age the multi-spectral information to generate a cloud-free image from a single cloudy

input image. However, the multi-spectral information can not be apprehended from a dif-

ferent satellite. Pan et al. [17] proposed a spatial-attention-based model for detecting the

cloud’s location and generating cloud-free images. However, their model is limited to

dealing with thin clouds. Sarukkai et al. [24] referred to the ResNet [7] and Unet [21]

models to propose a spatial-temporal generative model to generate the cloud-free image.

However, they ignored the processing of the cloudy and cloud-free patches in the temporal

information.

Overall, the primary key points to generating a realistic cloud-free image are as fol-

lows:

1. Train the generative model using real-world data instead of synthetic data [24].

2. Single-imagewithmulti-spectral information is feasible to generate a realistic cloud-

free image [14]; otherwise, temporal information is required [24].

Considering that most satellites provide information for four bands, namely RGB andNIR,

this thesis focuses on processing temporal information with only RGB and NIR channels

to generate a realistic cloud-free image.

6
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Chapter 3 Dataset collection

We collect the Sen2_MTC benchmark dataset from the publicly-available Sentinel-2

satellite images for public use. Sentinel-2 satellite has 32,270 distinct tiles, and each tile

has a size of 10,980x10,980 with a resolution of 10m/pixel. The captured images from the

Sentinel-2 satellite have multi-spectral information with 13 different bands, and the same

region was regularly recorded every 6 days on average. In this thesis, we only take the im-

age from RGB and NIR bands. To obtain the data, we randomly pick 50 distinct tiles from

the Sentinel-2 satellite, and each tile has 3 cloudy and 1 cloud-free view. Then, we apply

the sliding windowmethod with an overlapping size of 128x128 to obtain 7,225 patches in

total from each view, where each image patch has a size of 256x256. We manually select

70 cloudy and cloud-free pairs from the 7,225 patches as training data in each distinct tile.

The image we selected as cloudy must be obviously occluded by cloud, while the image

we selected as cloud-free must not have a single piece of cloud. Fig. 1.3 illustrates an

example of cloudy and cloud-free pair. The Sen2_MTC benchmark dataset is collected

by the aforementioned criterion, which has 50 distinct tile locations each with 70 image

patches, a total of 3,500 images. For the model training, we randomly split the data into

training/validation/testing sets with a ratio of 7:1:2 and kept the images from the same tile

together. More elaborately, the training data is composed of 35 non-overlapping tiles, for

a total of about 2450 images; the validation data is composed of 5 non-overlapping tiles,

7
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for a total of about 350 images; the testing data is composed of 10 non-overlapping tiles,

for a total of about 700 images.

8

http://dx.doi.org/


doi:10.6342/NTU202300030

Chapter 4 Proposed method

Like [24], our CTGAN takes three cloudy images to recover a corresponding cloud-

free image. Pairwise cloudy and cloud-free images are required to train CTGAN. We

denote the input of temporal cloudy images as xin = {x1, x2, ..., xn} and the correspond-

ing cloud-free image as y, where n denotes the number of cloudy images as input. In this

thesis, n is set to 3. Given xin, the model learns how to generate the cloud-free image ŷ,

which should be similar to the corresponding cloud-free image y.

4.1 Generator

The overall CTGAN generative network is illustrated in Fig. 4.1(a). Our generator

is based on STGAN [24]. However, unlike STGAN, we focus more on the design of the

feature extractor and the processing of the downsampled multi-temporal features. The

feature extractor structure is illustrated in Fig. 4.1(b). The bottleneck module, as shown

in Fig. 4.2 (a), consisting of three convolutional layers followed by batch normalization

and a rectified linear unit after each convolutional layer, extracts the feature representa-

tion of the image. This representation proceeds through the cloud detection module, as

shown in Fig. 4.2 (b), consisting of three convolutional layers, passing through a sigmoid

function before output. The cloud detection module detects the location of the cloud, and

9
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(a)

(b)

Figure 4.1: Generator of CTGAN (a) Generative network of CTGAN (b) Feature Extrac-
tor.

Figure 4.2: The modules on the feature extractor. (a) Bottleneck module (b) Cloud detec-
tion module (c) Atrous convolution module. Where the parameters on the conv are kernel
size, stride, and padding, respectively.

10
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Figure 4.3: The CTGAN discriminator, where the parameters on the conv are kernel size,
stride, and padding, respectively.

the generated cloud mask is multiplied by the feature map to keep the weight of the cloud-

free region while reducing the weight of the cloudy region. In the previous layer of the

feature extractor, we introduce the atrous convolution module [2], as shown in Fig. 4.2

(c), to enlarge the receptive field in the feature extractor. Moreover, inspired by [28], we

include an auxiliary generator in the feature extractor to accelerate its convergence. In

addition to the design of the feature extractor, we introduce the conformer module [6],

which is the modified version of the original Transformer [29], to make the downsampled

multi-temporal features find the most critical representations. Finally, the encoder and the

decoder are convolutional layers with stride 2 to downsample the feature maps and the

transposed convolutional layers with stride 2 to upsample the feature maps, respectively.

4.2 Discriminator

The CTGAN discriminator is a deep convolutional neural network, as demonstrated

in Fig. 4.3. We utilize the conditional generative adversarial network (GAN). The net-

work＇s input is the concatenation of the three cloudy images and the one generated or

11
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cloud-free image. In the prediction phase, the network carries out a binary classification

to determine whether the concatenated image matches a generated or cloud-free image.

4.3 Loss function

In this work, the loss function can be defined as:

L = min
G

max
D

LcGAN (G,D) + λGL1(G) + Lmask + λauxLaux,

(4.1)

where the parameters G and D represent the CTGAN generator and discriminator, and λG and

λaux are the reconstruction quality weights of the loss, which are set to 100 and 50 in our model,

respectively. The setting of λG refers to STGAN [24]. Since the output of the generator is the

cloud-free satellite image we would like to obtain, we set λG to be higher than the weight of other

terms; since the purpose of Laux is to speed up the convergence of the feature extractor, while the

quality of the restored auxiliary image is not essential, we set λaux to 50 which is lower than λG.

As the other two terms (LcGAN and Lmask) are not the main consideration of this work, we set

their weights as 1.

The loss function comprises four parts, where the first part is the loss function of the condi-

tional GAN. We define the loss function of LcGAN as:

LcGAN (G,D) = E(xin,y)[logD(xin, y)]+

E(xin)[log (1−D(xin, ŷ))],

(4.2)

where xin = {x1, x2, ..., xn}, y is the corresponding ground-truth cloud-free image, and ŷ is the

corresponding generated cloud-free image. In this thesis, n is set to 3. The second part is the

standard L1 loss function, defined as:

L1(G) =
1

CWH

∑
c,w,h

∥yc,w,h − ŷc,w,h∥1, (4.3)

where ŷc,w,h denotes the pixels of the generated output image at coordinates (c, w, h). The third

12

http://dx.doi.org/


doi:10.6342/NTU202300030

part is the cloud mask loss, defined as :

Lmask = ∥M −M ′∥22, (4.4)

whereM andM ′ denote the ground-truth cloud mask and the predicted cloud mask, respectively.

The fourth part is the auxiliary loss, defined as:

Laux =
1

CWH

n∑
i=1

∑
c,w,h

∥yc,w,h −Gaux(FE(xi))
c,w,h∥1, (4.5)

whereGaux denotes the auxiliary generator in the feature extractor, andFE(xi) denotes the output

of the feature extractor when feeding xi into the network.

13
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Chapter 5 Experiments

In this section, we employed our CTGAN on three different datasets, including FormoSat-2

dataset, STGAN dataset, and Sen2_MTC dataset. The metrics used to evaluate the performance

are root-mean-square error (RMSE), peak signal-to-noise ratio (PSNR), structural similarity index

(SSIM) [30], and spectral angle mapper (SAM) [10]. The definition of each metric is given below:

• RMSE

RMSE(x, y) =

√
1

CWH

∑
c,w,h

(yc,w,h − xc,w,h)2, (5.1)

where x and y are the generated cloudy image and the ground-truth cloud-free image.

• PSNR

PSNR(x, y) = 20 log10 (
MAXI

RMSE(x, y)
), (5.2)

whereMAXI represents the maximal possible value of x, which is set to 255 in this thesis.

• SSIM

SSIM(x, y) =
(2µxµy + (c1L)

2)(2σxy + (c2L)
2)

(µ2
x + µ2

y + (c1L)2)(σ2
x + σ2

y + (c2L)2
, (5.3)

where µx, µy denote the means of x and y, σ2
x, σ

2
y denote the variances of x and y, σxy

denotes the covariance of x and y, and c1, c2 are adjustable constants. L represents the

value ofMAXI −MINI , which is set to 255 in this thesis.

• SAM

SAM(x, y) = cos−1 (

∑
c,w,h (y

c,w,h · xc,w,h)√∑
c,w,h (x

c,w,h)2 ·
∑

c,w,h (y
c,w,h)2

) (5.4)
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5.1 Dataset and Implementation Details

FormoSat-2 (FS-2) dataset is a decommissioned earth observation satellite formerly op-

erated by the National Space Organization of Taiwan. This dataset contains 15 non-overlapping

tiles, each with three cloudy images and a corresponding cloud-free image, C = 4 channels (R,

G, B, NIR), and pixel value range [0, 10000]. In addition, Due to the lack of data in this dataset,

we conducted 4-fold cross-validation to evaluate the performance and ensure the robustness of our

model compared to previous works [3, 24, 26].

STGAN dataset [24] contains 945 distinct tiles, a total of 3101 images. This dataset was

created using the publicly available Sentinel-2 images. [24] paired each cloud-free image with

the three most recent cloudy images, each with size (w, h) = (256, 256), C = 4 channels (R,

G, B, NIR), and pixel value range [0, 255]. In addition, [24] randomly split the data into training/

validation/testing sets with the ratio of 8:1:1 and kept the images from the same tile together.

Sen2_MTC dataset was collected by us using publicly available Sentinel-2 images to an-

notate a new cloud removal dataset for multi-temporal training. This dataset contains 50 non-

overlapping tiles, each with 70 images, pixel value range [0, 10000], size (w, h) = (256, 256), and

C = 4 channels (R, G, B, NIR). We randomly split the data into training/validation/testing sets

with a ratio of 7:1:2 and kept the images from the same tile together.

Implementation details. Our proposed CTGAN was implemented via Pytorch and run on

a server with two NVIDIA GeForce RTX 3090 GPUs, each with 24 GB of graphics memory.

We first divided the pixel value by 10, 000 and normalized the pixel value range to [−1, 1]. We

initially trained our model on the FS-2 dataset in the training phase because we had the ground-truth

cloud mask for the FS-2 dataset images. Next, we applied the semi-supervised learning technique

to the Sentinel-2 dataset, using the feature extractor trained on the FS-2 dataset to generate the

pseudo cloud mask on the Sentinel-2 dataset. In addition, we adopted the Adam optimizer with

a learning rate of 5 x 10−4 and exponential decay rates (β1, β2) = (0.5, 0.999). We also used the

CosineAnnealing scheduler to decay the learning rate per epoch and stopped training after 200

epochs.
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RMSE PSNR SSIM SAM
CTGAN w/o FE and w/o Conformer 0.1167 18.280 0.614 0.272
CTGAN w/o FE and w/ Conformer 0.1125 18.507 0.624 0.265
CTGAN w/ FE and w/o Conformer 0.1098 19.033 0.650 0.252
CTGAN w/ FE and w/ Conformer 0.1082 19.375 0.666 0.245

Table 5.1: The ablation study of the effectiveness of each module on our CTGAN.

input images RMSE PSNR SSIM SAM # of parameters Inference time (s)
n = 1 0.2652 11.536 0.109 0.580 4.99M 7.848
n = 2 0.1323 17.878 0.584 0.294 42.97M 20.266
n = 3 0.1082 19.375 0.666 0.245 43.12M 29.129
n = 4 0.1072 19.485 0.666 0.248 43.27N 35.304
n = 5 0.1070 19.496 0.672 0.247 43.42M 43.636

Table 5.2: The ablation study of the effectiveness of the number of input images.

5.2 Ablation study

In this section, we performed ablation studies to evaluate the contribution of each component

of CTGAN and the effectiveness of the number of input cloudy images. In Table 5.1, we evaluated

the contribution of each module in our CTGAN. In this thesis, we focus more on the feature extrac-

tor’s design. As seen in Table 5.1, the improvement rate of the CTGAN with and without feature

extractor design is the highest. It means that the cloud mask attention mechanism in the temporal

information has the most impact on performance improvement. Finally, to make the model find

the most critical representation in the downsampled feature map, we add the conformer module

[6], which further improves the performance of CTGAN.

We also conducted experiments for the effectiveness of the number of input cloudy images.

In this thesis, we take three cloudy images as input and then generate the corresponding cloud-

free image. However, The number of input cloudy images is adjustable. Table 5.2 shows the

performance, # of model parameters, and inference time when increasing the input cloudy images

gradually. As shown in Table 5.2, the model performs better as the number of input cloudy images

grows. The trend of the performance gain is demonstrated in Fig. 5.1. The model cannot remove

the cloud effectively when n=1, while the SSIM performance is significantly improved when n is

increased from 1 to 2. The SSIM performance is slightly improved when n is increased from 2

to 3. However, from n=3 to n=5, the SSIM performance is almost the same. Therefore, in this
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Figure 5.1: Ablation study of # of input cloudy images. The x-axis denotes the # of input
cloudy images (n) and the y-axis denotes the SSIM metrics.
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RMSE Fold1 Fold2 Fold3 Fold4 Avg
AE [26] 0.1449 0.1433 0.1422 0.1695 0.1500
ST_net [3] 0.1229 0.1230 0.1299 0.1491 0.1312
STGAN [24] 0.1167 0.1370 0.1242 0.1350 0.1282
CTGAN(ours) 0.1082 0.1023 0.0941 0.1225 0.1068 ± 0.0104
PSNR Fold1 Fold2 Fold3 Fold4 Avg
AE [26] 16.851 17.038 17.419 15.567 16.719
ST_net [3] 18.267 18.205 18.145 16.572 17.797
STGAN [24] 18.275 17.315 18.277 17.403 17.818
CTGAN(ours) 19.375 19.806 20.585 18.263 19.507 ± 0.965
SSIM Fold1 Fold2 Fold3 Fold4 Avg
AE [26] 0.577 0.589 0.603 0.541 0.578
ST_net [3] 0.620 0.611 0.564 0.598 0.598
STGAN [24] 0.614 0.604 0.589 0.614 0.605
CTGAN(ours) 0.666 0.662 0.689 0.657 0.669 ± 0.012
SAM Fold1 Fold2 Fold3 Fold4 Avg
AE [26] 0.324 0.334 0.323 0.372 0.338
ST_net [3] 0.277 0.274 0.310 0.315 0.294
STGAN [24] 0.272 0.279 0.294 0.300 0.286
CTGAN(ours) 0.245 0.240 0.243 0.271 0.250 ± 0.012

Table 5.3: The performance was evaluated by 4-fold cross-validation on the FS-2 dataset

experiment, n=2 or n=3 is a good trade-off between the SSIM performance and the inference time.

5.3 Evaluation on the FS-2 dataset

We reproduced [3, 24, 26] on the FS-2 dataset to compare the performance between our

model and the previous works. When the authors provided the source code [24], we used the

provided code to reproduce their model on the FS-2 dataset. Otherwise, we programmed it by

ourselves from the description in their paper [3, 26]. We only evaluated their models’ performance

on our datasets because they did not release their datasets. The results are compared in Table 5.3,

where the values in parentheses represent the standard deviation (STD) of our model. On the FS-2

dataset, the results shown in Table 5.3 demonstrate that the design of our model is effective. The

improvement of SSIM significantly outperformed the previous state-of-the-art model STGAN,

with a breakthrough gain of SSIM 0.064.

We evaluated our CTGAN on the dataset collected by [24]. The performance is shown in
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Validation set PSNR SSIM
Pix2Pix [9] 23.130 0.442
MCGAN (RGB + NIR) [5] 21.352 0.485
Mean Filter 16.962 0.174
Median Filter 9.081 0.357
Raw Cloudy Images 7.926 0.389
STGAN U-Net (IR) [24] 25.142 0.651
STGAN ResNet(IR) [24] 25.628 0.724
CTGAN(ours) 26.149 ± 0.438 0.805 ± 0.017
Testing set PSNR SSIM
Pix2Pix [9] 22.894 0.437
MCGAN (RGB + NIR) [5] 21.146 0.481
Mean Filter 16.893 0.173
Median Filter 9.674 0.395
Raw Cloudy Images 8.289 0.422
STGAN U-Net (IR) [24] 25.388 0.661
STGAN ResNet(IR) [24] 26.186 0.734
CTGAN(ours) 26.264 ± 0.204 0.808 ± 0.011

Table 5.4: Comparison of PSNR and SSIM results on the STGAN dataset [24].

Table 5.4. [24] did not describe their random seed to split the dataset in their paper, so we trained

our model 10 times using the same data-splitting method with different random seeds and averaged

these results to obtain the final result. The SSIM improvement of our CTGAN is considerable. The

SSIMon the validation and testing sets of the previous state-of-the-art STGAN are 0.724 and 0.734,

respectively. Our CTGAN significantly outperformed the previous state-of-the-art STGAN; the

gain of SSIM on the validation and testing sets are 0.081 and 0.074, respectively. The experimen-

tal result on the STGAN dataset also demonstrates that our CTGAN can achieve state-of-the-art

performance on the STGAN dataset.

5.4 Evaluation on the Sen2_MTC dataset

The method of reproducing STGAN [24], ST_net [3], and AE [26] is the same as described in

section 5.3. We also evaluated CTGAN on the Sen2_MTC dataset. The results shown in Table 5.5

demonstrate that CTGAN achieves higher quantitative performance than [3, 24, 26]. The SSIM

on the validation and testing sets of the previous state-of-the-art STGAN are 0.613 and 0.587,

respectively. Our CTGAN outperformed the previous state-of-the-art STGAN; the gain of SSIM
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Validation set RMSE PSNR SSIM SAM
AE [26] 0.1728 16.010 0.431 0.444
ST_net [3] 0.1386 17.741 0.467 0.320
STGAN [24] 0.1040 20.612 0.613 0.276
CTGAN(ours) 0.0953 ± 0.0042 21.259 ± 0.046 0.662 ± 0.003 0.241 ± 0.011
Testing set RMSE PSNR SSIM SAM
AE [26] 0.2088 15.251 0.412 0.420
ST_net [3] 0.1640 16.206 0.427 0.350
STGAN [24] 0.1374 18.152 0.587 0.289
CTGAN(ours) 0.1353 ± 0.0012 18.308 ± 0.089 0.609 ± 0.007 0.262 ± 0.009

Table 5.5: The performance compared with the previous works on the Sen2_MTC dataset.

on the validation and testing sets are 0.049 and 0.022, respectively. The improvement for SSIM is

usually shown that the model is more capable of restoring the visible structure. Therefore, CTGAN

can reconstruct more information in the generated cloud-free image than the previous state-of-the-

art model STGAN, as demonstrated in Fig. 5.2.

5.5 Visualization on the Sen2_MTC dataset

We visualize the generated results using CTGAN and the previous state-of-the-art STGAN

[24]. The results are shown in Fig. 5.2. From top to bottom are the three cloudy input images,

three cloud masks generated by CTGAN, the cloud-free image generated by STGAN, the cloud-

free image generated by CTGAN, and the corresponding ground-truth cloud-free image. Fig. 5.2

shows that our CTGAN can restore a cloudy image more like the actual image, while the image

generated by STGAN has many artifacts. Even if the details of the three images are nearly lost,

our CTGAN can still roughly restore the shapes under the clouds (first column of Fig. 5.2). To

verify why our CTGAN can do such generation, Fig. 5.3 illustrates the NIR bands for the cloudy

images of the first column in Fig. 5.2. From Fig. 5.3, the road under the cloud can be seen in the

NIR bands. Note that CTGAN can roughly restore the shapes under the cloud, while STGAN [24]

generates vague cloud-free images despite also having the NIR information available.
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Figure 5.2: Visualized results of the generated images on the Sen2_MTC dataset, where
the cloud masks are generated by our CTGAN’s feature extractor.

Figure 5.3: The corresponding NIR bands visualization for the cloudy images of the top
three rows in the first column in Fig. 5.2

22

http://dx.doi.org/


doi:10.6342/NTU202300030

Model Accuracy(%)
Cloud-free image 97.65
Cloudy image 39.11
AE [26] 41.08
ST_net [3] 51.35
STGAN [24] 68.38
CTGAN(ours) 77.54*

Table 5.6: Evaluated the performance of our model through the downstream task land-
cover classification, where the accuracy of the cloud-free image can be viewed as an upper
bound while the accuracy of the cloudy image can be viewed as a lower bound.

5.6 Evaluation on the downstream task

In this section, we evaluated the downstream task land-cover classification performance of

images after cloud removal by CTGANmodel trained on the Sen2_MTC dataset. We first trained a

baseline model ResNet50 on the EuroSat dataset [8]. This dataset contains 27,000 labeled images

from the Sentinel-2 satellite and consists of 10 categories of land cover (sea, lake, river, residential,

permanent crop, pasture, industrial, highway, herbaceous vegetation, forest, and annual crop). To

compare the performance, we hand-labeled the images on the testing set of the Sen2_MTC dataset

with an approximately equal distribution of all ten categories of land cover.

As shown in Table 5.6, the cloud-free image generated from CTGAN performs the highest

accuracy, an improvement of 9% compared with the previous state-of-the-art model. In addition,

we also list the accuracy of the ground-truth cloud-free image and the cloudy image, where the

former can be viewed as the upper bound, and the latter can be considered as the lower bound. Our

model improves the classification accuracy of land-cover from 39% to 77%.
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Chapter 6 Conclusion

We propose CTGAN for multi-temporal cloud removal. Unlike previous work, We focus

more on the feature extractor’s design and processing of the downsampled multi-temporal features.

In addition, to solve the lack of datasets for multi-temporal cloud removal, we collect a new dataset

from Sentinel-2, which we name Sen2_MTC, and manually labeled each cloudy and cloud-free

image. Finally, we experimentally demonstrate that CTGAN can achieve high qualitative and

quantitative performance and significantly outperform the previous state-of-the-art models. In

addition, experiments on the downstream task land-cover classification also verify that the cloud-

free images generated by our CTGAN are of high quality enough to perform the classification task.

Finally, We will also release the Sen2 MTC dataset for public use.
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