國立臺灣大學理學院地質科學系

碩士論文

Department of Geosciences National Taiwan University Master Thesis

台灣西南海域天然氣水合物潛藏區

之孔隙水中鹵素濃度變化

Halogen Profiles of Pore Waters from Gas Hydrate

Potential Area Offshore of SW Taiwan

陳筱琪

Hsiao-Chi Chen

指導教授:楊燦堯 博士

Advisor: Tsanyao Frank Yang, Ph.D.

中華民國 99 年1月

January, 2010

國立臺灣大學地質科學研究所碩士學位論文考試

題目:台灣西南海域天然氣水合物潛藏區

之孔隙水中鹵素濃度變化

Halogen Profiles of Pore Waters from Gas Hydrate Potential Area Offshore of SW Taiwan

考試委員: B

指導教授:楊燦堯 博士

研究生:陳筱琪(R96224201)

考試日期:中華民國九十九年一月二十二日

致 謝

經過一年的扎根訓練,一年的投入,終於完成了碩士論文,也以論文撰寫完成作為 我的學生生涯句點。在這漫長的兩年裡,感謝許多人的幫助與指引,讓我在學術知識與 個人發展上都獲得許多充實與成長。

首先誠摯的感謝指導教授楊燦堯老師,提供我一個無憂無慮的研究空間,不管研究 或生活上都全力的支持我,在課業上也不時的與我討論並指點我正確的方向,並且可以 容忍我破爛到了極點的英文。也非常感謝老師在我的理想上推我一把,願意讓我一邊寫 論文一邊到高中兼課,為我未來的老師之路鋪路。

接著要感謝口試委員林曉武老師在出海時的照顧與協助,並且在我的論文上提供寶 貴與專業的意見;口試委員王詠絢博士費心提供論文相關之資料;口試委員游鎮烽老師 在我大學時的基礎訓練,並且對於我的論文提供深入的見解及許多需要改進的地方。

再來要感謝氣體地球化學實驗室的學長姐及學弟妹。謝謝德芳學姐總是不厭其煩的 修改我的中文式英文;謝謝 Monika 學姐耐心的教我英文並與我練習英文,讓我對於英 文不再恐懼;謝謝曉芬學姐在 GC、IC 和其他實驗上的教導,並且在我熬夜做實驗時會 買消夜來鼓勵我及不時的買食物來餵飽大家;謝謝小州學長容忍我的任性及不禮貌,不 時扮演大哥哥的角色給我指引;謝謝佩涓學姐在出海時自己暈船了還一直叫我去休息, 幫我把出海要做的工作做完,還有在我的論文上提供了許多想法,也時常與我討論論文 的數據;謝謝瑋立學長每次幫我修改英文摘要,聽我英文試講,矯正我的發音,在我的 論文上提供很多寶貴意見,並且給我信心,也謝謝你相信我;謝謝阿笨學長在苦悶的研 究路上不斷的提供笑料,在我每次無法決定吃什麼的時候幫我決定,省去我猶豫的時間; 謝謝乃禎學姐不時在我身邊提醒我玩笑的尺度,在我暈船時幫我捏背,在我煩躁時聽我 發洩;謝謝鈞元學長提供我一些不同的見解;謝謝心怡同學在這段日子的互相砥礪及幫 忙;謝謝艾荻陪我一起出泥火山的野外;謝謝皇伶幫我這個會暈船的人出海;謝謝俊銘 忍受我的搞笑與欺壓;謝謝宣文在出海及樣品分析上的幫忙,不時也與我討論論文新想 法;謝謝惠雯陪我聊天;謝謝建任提供他的人生經驗與我分享,給我另外的啟發。除了 研究上還需要感謝許多人在行政上的幫忙,謝謝佳菱在行政報帳上的協助,還有私下的 聊天,讓我放鬆心情;謝謝世榮給予我的協助;謝謝國維出野外的協助;謝謝承穎與小 熊在出海與實驗上的協助。還要感謝林曉武老師實驗室的裕程、偉誠、盈瑩、凱莉在出 海時的大力幫忙。

再來要感謝我大學同學小咩和銀鏡陪我聊天給我鼓勵。還有可愛的高中同學,謝謝 軒梅當我心情低落時鼓勵我,當我的垃圾桶;謝謝明均陪我逛街發洩研究的苦悶;謝謝 佩潔每次三更半夜被我的電話聲吵醒,聽我說一堆有的沒的,還有在我生日時給我的驚 喜。還有我的前房東姿瑩,不時約我吃飯讓我放鬆心情。

最後要感謝我的家人爸爸和媽媽提供我無慮的生活,讓我能專心在學業上;謝謝外 公外婆及奶奶不時的關心,每次回家都準備豐盛的菜肴給我吃;謝謝我兩位可愛及貼心 的弟弟,每次有好吃得好玩的都會等我回家與我一起分享,同時也要忍受我的霸道。

最後再次感謝我周遭所以幫助過我的人,謝謝你們,因為有你們才讓我能順利完成 論文工作。

摘要

前人研究顯示孔隙水中的溶解碘 (iodide) 是一種親生物性元素,它的成因 與有機物分解有很密切的關係。本研究針對台灣西南海域天然氣水合物潛藏區採 取代表性沈積物岩芯樣品,藉由觀察岩芯樣品孔隙水中溶解鹵素(氯、溴、碘) 和銨根濃度來探討流體之來源與硫酸鹽還原反應之途徑。

本研究中在天然氣水合物潛藏區,根據碘、硫酸鹽、銨根及甲烷氣濃度隨深 度之變化,可以將觀察結果區分成四大類。第一類:碘、硫酸鹽、銨根、及甲烷 氣濃度隨深度沒有明顯變化,此為背景值站。第二類:碘、銨根濃度隨深度增加 有明顯增加趨勢,而硫酸鹽濃度隨深度增加有明顯減少趨勢,其中再依甲烷濃度 是否有隨深度變化而增加分成兩小類;2A:甲烷濃度隨深度增加有明顯增加、2B: 甲烷濃度隨深度增加沒有增加,此類代表有大量深部來源加入之站位。第三類: 碘、銨根、及甲烷氣濃度隨深度增加而增加,而硫酸鹽濃度隨深度增加有明顯減 少趨勢,但是銨根濃度增加斜率大於第二類。第四類:甲烷濃度隨深度有明顯增 加,而硫酸鹽濃度隨深度增加有明顯減少趨勢,但是碘和銨根濃度隨深度增加沒

利用溶解無機碳(DIC)和硫酸鹽消耗之比值我們可以推得以下結論:第二 類樣品之硫酸鹽消耗的途徑,以甲烷厭氧氧化反應(AMO)為主、混合一些有 機物氧化反應;第三類樣品之硫酸鹽消耗的途徑以一些有機物氧化反應為主;而 第四類樣品之硫酸鹽消耗的途徑以AMO為主。

關鍵字:天然氣水合物、甲烷、鹵素、碘、銨根

Abstract

Recent studies showed that iodide is a biophilic species. When the organic matters decomposed, methane and I will be generated and released. Variations of halogen concentrations (Cl⁻, Br^- and I^-) and ammonium (NH₄⁺) in pore water of marine sediments of selected sites were studied to help understanding the fluid source and the pathway of sulfate reduction in the potential gas hydrate area of offshore SW Taiwan. According to the concentration profiles (I⁻, Br⁻, CH₄, SO₄⁻², NH₄⁺), we can classify those studied sites into four groups. In group-1, which represents background group, concentrations of CH_4 , Γ , Br and NH_4^+ show no clear variations with depth. In group-2, rapid reduction of sulfate and significant increase in NH_4^+ and/or CH_4 are observed. In sub-group 2A, the concentrations of CH₄, I, Br⁻ and NH₄⁺ all increase with increasing depth; in 2B, except methane concentration all other species (I, Br, NH_4^+) increase with increasing depth. In group-3, CH₄, Γ , Br⁻ and NH_4^+ all increase with increasing depth. Unlike group-2, NH_4^+ concentration increases faster than those in group-2. In group-4, the CH₄ concentration increases at depth, while there are only very low Γ , Br and NH₄⁺ concentrations. The category except group-1 indicated the mixing of in situ and deep source fluids.

Based on the stoichiometry ratio between sulfate consumption and DIC increasing from the profiles of the studied coring sites, we can summary the pathway of sulfate reduction for group-2 to -4 as followings: For group 2, which could represent the majority sites in offshore SW Taiwan, sulfate is mainly consumed by AMO process with methane from the depth. For group-3, sulfate is consumed by decomposition of local organic matters with very few fluid input from depth. For group-4, almost all sulfates are consumed by AMO process.

Keywords : gas hydrate, methane, halogen, iodide, ammonium

圖目錄

圖 3-1	:台灣西南海域天然氣潛藏區採樣地點	7
圖 3-2	: ORI-860 航次採樣站位圖	7
圖 3-3	: ORI-902A、902B 航次採樣站位圖	8
圖 3-4	: ORIII-1323 航次採樣站位圖	8
圖 3-5	: ORI-1368 航次採樣站位圖	9
圖 3-6	: ORI-1384 航次採樣站位圖	9
圖 3-7	:利用 IC 分析孔隙水中主要陰陽離子流程圖	.15
圖 3-8	: 測沉積物中碘之高溫爐裝置圖	.15
圖 3-9	: CI^{-} 、 Br^{-} 、 SO_4^{-2} 、 I^{-} 、 NH_4^{+} 、 Ca^{+2} 和 Mg^{+2} 之檢量線	.15
圖 4-1	: ORI-860 航次之 Δ (DIC+Ca ⁺² +Mg ⁺²) 對 Δ SO ₄ ⁻² 作圖	.42
圖 4-2	:ORI-902A 航次之Δ (DIC+Ca ⁺² +Mg ⁺²) 對 ΔSO4 ⁻² 作圖	.43
圖 4-3	:ORI-902B 航次之 Δ (DIC+Ca ⁺² +Mg ⁺²) 對 Δ SO ₄ ⁻² 作圖	.43
圖 4-4	:ORIII-1323 航次之 Δ (DIC+Ca ⁺² +Mg ⁺²)對 Δ SO ₄ ⁻² 作圖	.44
圖 4-5	:ORIII-1368 航次之 Δ (DIC+Ca ⁺² +Mg ⁺²)對 Δ SO ₄ ⁻² 作圖	.44
圖 4-6	:ORIII-1384 航次之 Δ (DIC+Ca ⁺² +Mg ⁺²) 對 Δ SO ₄ ⁻² 作圖	.45
圖 5-1	:依據碘、硫酸鹽、銨根及甲烷濃度隨深度之變化分成四類	.56
圖 5-2	:第一類:為背景值站位	.58
圖 5-3	:第二類(2A):有大量深部來源站位	.58
圖 5-4	: 第二類(2B): SMI 較深也有深部來源	.58
圖 5-5	: 第三類: 硫酸鹽之消耗以有機物反應為主	.58
圖 5-6	:第四類:硫酸鹽之消耗以甲烷反應為主	.59
圖 5-7	:各分類孔隙水中溴對銨根作圖	.60
圖 5-8	:各分類孔隙水中碘對銨根作圖	.61
圖 5-9	:各分類孔隙水中碘對溴作圖	.62

目錄					
第一章 前言1					
第二章 研究目的					
2-1 了解天然氣水合物潛藏區是否有深部來源					
第三章 研究方法5					
3-1 台灣西南海域地質構造背景3-2 採樣地點					
3-3 ORI-860; ORI-902A; ORI-902B 航次及 ORIII-1323; ORIII-1368; OPIII 1384 航力接口投送及公托方法					
3-4 分析誤差					
第四章 分析結果20					
 4-1 各航次孔隙水離子分析結果					
4-3 各航次沉積物中碘之分析結果					
第五章 討論					
5-1 台灣西南海域天然氣潛藏區孔隙水中溴、碘、硫酸鹽、銨根離子及甲烷 氣隨深度之變化					
5-2 台灣西南海域天然氣潛藏區流體來源59 5-3 各航次孔隙水Δ(DIC+Ca ⁺² +Mg ⁺²)/ΔSO4 ⁻² 計算結果討論63					
5-4 分類在各航次之空間分布					
第六章 結論					
第七章 參考文獻					

圖 5-10: 孔隙水中 I/NH₄ ⁺ 與沉積物中 I/OC 之投圖	63
圖 5-11:ORI-860 航次 Δ (DIC+Ca ⁺² +Mg ⁺²) : Δ SO ₄ ⁻² 圖	65
圖 5-12:ORI-902A 航次 Δ (DIC+Ca ⁺² +Mg ⁺²) : Δ SO ₄ ⁻² 圖	66
圖 5-13:ORI-902B 航次 Δ (DIC+Ca ⁺² +Mg ⁺²) : Δ SO ₄ ⁻² 圖	66
圖 5-14:ORIII-1323 航次 Δ (DIC+Ca ⁺² +Mg ⁺²) : Δ SO ₄ ⁻² 圖	67
圖 5-15:ORIII-1368 航次 Δ (DIC+Ca ⁺² +Mg ⁺²) : Δ SO4 ⁻² 圖	67
圖 5-16:ORIII-1384 航次 Δ (DIC+Ca ⁺² +Mg ⁺²) : Δ SO ₄ ⁻² 圖	68
圖 5-17:各類在 ORI-860 台南海脊上之空間分布	69
圖 5-18:各類在 ORI-860 永安海脊上之空間分布	69
圖 5-19:各類在 ORI-902A 好景海脊上之空間分布	70
圖 5-20:各類在 ORI-902B 好景海脊上之空間分布	70
圖 5-21:各類在 ORIII-1323 航次之空間分布	71
圖 5-22:各類在 ORIII-1323 航次之空間分布	71
圖 5-23:各類在 ORIII-1368 航次 96 站附近之空間分布	72
圖 5-24:各類在 ORIII-1368 航次被動大陸邊緣之空間分布	72
圖 5-25:各類在 ORIII-1368 航次被動大陸邊緣之空間分布	73
圖 5-26:各類在 ORIII-1384 航次之空間分布	73
圖 5-27:各類在 ORIII-1384 航次之空間分布	74
圖 5-28:線性構造與採樣點位關係圖	74

表目錄

表 3-1: ORI-860 航次採樣測站之站名、經緯度、水深、岩心長度10
表 3-2:OR1-902A 航次採樣測站之站名、經緯度、水深、岩心長度11
表 3-3: OR1-902B 航次採樣測站之站名、經緯度、水深、岩心長度11
表 3-4:OR3-1323 航次採樣測站之站名、經緯度、水深、岩心長度12
表 3-5: OR3-1368 航次採樣測站之站名、經緯度、水深、岩心長度13
表 3-6:OR3-1384 航次採樣測站之站名、經緯度、水深、岩心長度14
表 3-7:各離子之 RSD19
表 4-1: ORI-860 孔隙水主要陰陽離子分析結果
表 4-2: ORI-902A 孔隙水主要陰陽離子分析結果
表 4-3: ORI-902B 孔隙水主要陰陽離子分析結果
表 4-4: ORIII-1323 孔隙水主要陰陽離子分析結果
表 4-5: ORIII-1368 孔隙水主要陰陽離子分析結果
表 4-6: ORIII-1384 孔隙水主要陰陽離子分析結果
表 4-7:ORI-860 航次之 Δ (DIC+Ca ⁺² +Mg ⁺²) 和 Δ SO ₄ ⁻² 計算結果46
表 4-8:ORI-902A 航次之 Δ (DIC+Ca ⁺² +Mg ⁺²) 和 Δ SO ₄ ⁻² 計算結果48
表 4-9:ORI-902B 航次之 Δ (DIC+Ca ⁺² +Mg ⁺²) 和 Δ SO ₄ ⁻² 計算結果50
表 4-10:ORIII-1323 航次之 Δ (DIC+Ca ⁺² +Mg ⁺²) 和 Δ SO ₄ ⁻² 計算結果51
表 4-11:ORIII-1368 航次之Δ(DIC+Ca ⁺² +Mg ⁺²)和 ΔSO4 ⁻² 計算結果52
表 4-12:ORIII-1384 航次之Δ(DIC+Ca ⁺² +Mg ⁺²)和 ΔSO4 ⁻² 計算結53
表 4-13: 沉積物中碘之濃度

第一章 前言

隱沒帶的流體在全球地球化學總量和增生楔之物理特性扮演很重要之角色 (Kastner et al., 1991; Saffer and Bekins, 1999),研究顯示淺層流體來自於沉積物 壓密,深部流體來自於成岩作用反應,例如:黏土礦物脫水(Bekins et al., 1995)。 所以近年來之研究專注在探討流體來源之探討,最近有很多研究利用鋰、鍶、硼、 氧、氯、溴和碘探討甲烷氣來源、成岩過程和流體之傳輸途徑(Chan and Kastner, 2000; Kastner et al., 1995; Martin et al., 1991, Martin et al., 1993, Teichert et al., 2005; Torres et al., 2004)。由於海洋天然氣水合物區之流體化學性質與海水有極 大之差異(Kastner et al., 1991),所以可以藉由鹵素來探討流體來源。

前人研究顯示碘系統提供一個可以指示有機物分解之工具,因為碘是一個強 烈的親生物源的元素(Kennedy and Elderfield, 1987a; Ullman and Aller, 1983), 經由生物作用,碘會大量累積在海洋浮游植物和水草中,當生物死亡後埋藏到沉 積物中(Tsunogai, 1971; Price and Calvert, 1977; Elderfield and Truesdale, 1980; Harvey, 1980),隨著沉積物慢慢深埋,在埋藏的過程中有機物被分解釋放出甲 烷及碘,因為沉積速率大於分解速率,所以甲烷和碘的濃度會在深部較高往上擴 散,在孔隙水中碘濃度隨深度增加的現象在許多已經採到天然氣水合物之地方都 已發現,例如:Peru Margin (Martin et al., 1993)、Blake Ridge (Egeberg and Dickens, 1999)、Hydrate Ridge (Fehn et al., 2006)和Nankai Trough (Muramatsu et al., 2007)。 再加上碘和甲烷的傳輸行為(transport behavior)相近(Martin et al., 1993),因此可藉 由孔隙水中溶解碘來指示甲烷氣之來源。形成天然氣水合物所需之甲烷可能來自 當地產生或是經由裂隙、斷層傳輸至此,然而在大部分研究中顯示,孔隙水中之 碘大部分是由流體帶來而非當地沉積物生成(Muramatsu et al., 2007)。

在海水中主要的碘以IO₃⁻為主(Tsunogai, 1971),在有氧的環境下,有機物 分解釋放碘離子(Γ),碘離子則會進一步氧化成 IO₃⁻和I₂,再和有機碎屑結合, 使得在沉積物海水交界面會有碘富集之現象(Kennedy and Elderfield, 1987 a, b)。 在無氧的環境下,有機物分解會將碘離子釋放到孔隙水中,因為碘離子半徑大所 以不易與其他礦物結合,使得孔隙水中之碘離子濃度增加。

台灣西南海域位於歐亞板塊及菲律賓板塊聚合隱沒交界處,前人研究在台灣 西南海域觀察到許多「海床仿擬反射」(bottom simulating reflection,簡稱BSR), 而「海床仿擬反射」是天然氣水合物在海床之下存在最明顯的證據之一(鐘三雄 與張碩芳,2001; Chi et al., 1998; Schnurle et al., 1999; Liu et al., 2006)。本研究想 要藉由碘元素濃度分佈,來探討台灣西南海域天然氣潛藏區之流體來源,是當地 有機物分解抑或是深部來源。

在海洋沉積物中,兩莫耳有機物會與一莫耳硫酸鹽反應,產生兩莫耳溶解無 機碳(DIC)和一莫耳的銨根,因此可以藉由銨根之差值知道有多少碘是由當地 沉積物分解而產生的;再者一莫耳硫酸鹽也會與底下擴散上來之一莫耳甲烷氣, 產生甲烷厭氧氧化反應,產生一莫耳溶解無機碳(DIC)。

有機物氧化反應

 $2[(CH_2O)(NH_4)x]+SO_4^{-2} \rightarrow 2DIC_{(POC)}+2H_2O+2xNH_4^{+}+S^{2-}$

DIC $_{(POC)}$: -SO₄⁻²=2 : 1

甲烷厭氧氧化反應

 $CH_4+SO_4^{-2} \rightarrow DIC_{(CH_4)}+2H_2O+S^{2-}$

DIC (CH_4) : -SO₄⁻²=1 : 1

所以可以藉由計算溶解無機碳 (DIC) 莫耳數差值與硫酸鹽差值之比值,來 探討硫酸鹽還原反應之途徑之比例,以利計算甲烷之通量。

第二章 研究目的

2-1 了解天然氣水合物潛藏區是否有深部來源

在海水中溶解碘的濃度極低(0.4 μM),且前人研究顯示孔隙水中的溶解碘 (iodide)是一種親生物性元素 (Kennedy and Elderfield, 1987a; Ullman and Aller, 1983), 經生物作用會累積在生物體內(Tsunogai, 1971; Price and Calvert, 1977; Elderfield and Truesdale, 1980; Harvey, 1980), 當生物死亡之後, 掩埋到沉積物 中,隨著沉積物慢慢深埋,在埋藏的過程中有機物被分解釋放出甲烷及碘,因為 沉積速率大於分解速率,所以甲烷和碘的濃度通常會在深部較高,然後往上擴散。 許多碘定年研究結果顯示,孔隙水中之碘大部分是由流體帶來而非當地沉積物生 成(Muramatsu et al., 2007);並且甲烷氣在採樣上會有漏氣的現象,再加上甲 烷會和硫酸鹽產生甲烷厭氧氧化反應而消耗,所以在硫酸鹽甲烷交接面(SMI) 以上的沈積物岩心剖面樣品,其溶解甲烷濃度通常幾近為零;但是碘為一保守元 素,不會與其他物質產生反應,有機會在較淺的沈積物剖面深度可以看到碘濃度 之增加,進而推論有深部來源流體加入。所以本研究想要利用孔隙水中溶解碘來 探討研究區域之流體來源是當地沉積物分解而來、或是深部來源。因為有機物與 硫酸鹽反應會產生銨根,所以可以利用銨根濃度之變化之道有多少有機物分解, 也可以知道有多少碘從有機物分解來,如碘濃度高於有機分解之碘濃度就代表有 深部之來源。

2-2 了解孔隙水中之硫酸鹽還原之反應

在海洋沉積物中,硫酸鹽還原反應有兩個模式,一個是與有機物反應,產生 溶解無機碳 (DIC) 和銨根。或是與由底下擴散上來之甲烷氣,產生甲烷厭氧氧 化反應,產生溶解無機碳 (DIC)。反應式如下 有機物氧化反應

 $2[(CH_2O)(NH_4)x] + SO_4^{-2} \rightarrow 2DIC_{(POC)} + 2H_2O + 2xNH_4^{+} + S^{2-}$

DIC (POC) : $-SO_4^{-2}=2:1$

甲烷厭氧氧化反應

$$CH_4 + SO_4^{-2} \rightarrow DIC_{(CH_4)} + 2H_2O + S^{2-}$$

DIC $_{(CH_4)}$: -SO₄-²=1:1

目前台灣西南海域之硫酸鹽還原反應是與有機物反應消耗還是與甲烷氣反 應消耗一直是一個爭論。所以本研究希望可以藉由Δ(DIC+Ca⁺²+Mg⁺²):ΔSO4⁻² 比值知道此區之硫酸鹽還原反應是以何者反應為主,以利後續甲烷通量之計算。

第三章 研究方法

3-1 台灣西南海域地質構造背景

台灣西南海域位於歐亞板塊及菲律賓板塊聚合隱沒交界處,是隱沒增積作 用轉為弧陸碰撞帶與被動大陸邊緣剛開始接觸之地帶,此區有一系列褶皺與逆衝 斷層構造存在(Liu et al., 1997)。由於受到東北-西南走向大陸棚坡構造影響,這 一系列的褶皺與逆衝斷層構造在大陸坡上轉為南-北走向,並逐漸停止發育。代 表增積岩體最前端的變形前緣,從馬尼拉海溝北端往西北方延伸,在北緯22度左 右緩緩轉向東北方,沿著這些逐一消失的褶皺與逆衝斷層構造前端位置,向東北 延伸到台南市附近上陸(劉家瑄,2002)。由於快速的濁流沉積及活躍的褶皺逆 衝構造發育,使得部分天然氣水合物不穩定,其解離出的流體及氣體常沿著斷層 等破裂面向上傳輸,也有泥火山發育於此區域(Chiu et al., 2006)。

3-2 採樣地點

3-3-1 沉積物間隙水分析方法

本研究區域分佈於台灣西南海域(圖 3-1),分析之海洋沉積物樣品於以下八個航次期間採樣得:海研一號:ORI-860 (2008/3/23~2008/4/1)、ORI-902A 和 ORI-902B (2009/06/05~2009/06/14)等航次;海研三號:ORIII-1323 (2008/10/12~ 2008/10/17)、ORIII-1368 (2009/05/11~2009/05/15)、ORIII-1384 (2009/07/07~ 2009/07/11)等航次。

本研究主要利用岩心採集器採集海洋沉積物岩心樣品,分析孔隙水中主要陰 陽離子的濃度隨深度之變化。2008 年 ORI-860 航次於過去研究中甲烷通量較高 的高區,選擇活動大陸邊緣的「永安海脊」及「台南海脊」(也就是 OR1-718 航 次的 G22;及 OR1-765 航次的 N8、G23 站位附近),進行調查,本航次於 30 個 站位共採集了 23 根活塞岩心沈積物樣品。ORIII-1323 於海底泥火山區進行調查, 本航次於 20 個站位共採集了 17 個重力岩心。2009 年航次 ORIII-1368 於被動大 陸邊緣以及 G96 站位附近進行調查,本航次共採集 23 個重力岩心。ORI-902A 和 902B 於好景海脊區附近,本航次共採集 8 根活塞重力岩心沈積物樣品和 12 根重力岩心沈積物樣品。ORIII-1384 於之前研究顯示之異常站位再進行調查,本 航次共採集了 13 個重力岩心。

分析樣品中孔隙水主要陰、陽離子濃度,並著重於碘濃度隨深度之變化,以 瞭解是否有深部流體來源加入。表 3-1~3-6 詳列各測站所採岩心之相關資料。

6

圖 3-2: ORI-860 航次採樣站位圖

圖 3-4: ORIII-1323 航次採樣站位圖

23

22°12'00"

22°10'48"

20

16

11 KP9

2

13

22°30'

120°24'00"

96F

96E

120°25'12"

96B

22°12'00"

22°10'48"

119°30'

119°30'

22°30'

圖 3-6: ORI-1384 航次採樣站位圖

Gu diana			water	Core Length	Contraction Transie
Station	Latitude(IN)	Longitude(E)	depth(m)	(cm)	Core Type
1	22.3858	119.8247	1186	390	P.C.
2	22.3985	119.8218	1158	399	P.C.
3	22.4293	119.8300	922	401	P.C.
4	22.4380	119.8313	962	420	P.C.
5	22.4537	119.8340	950	161	P.C.
6	22.4538	119.7977	1464	7	P.C.
8	22.4293	119.7983	1477	20	P.C.
9	22.4075	119.7947	1500	26	P.C.
10	22.3947	119.8327	1480	0	P.C.
11	22.3848	119.8457	1324	161	P.C.
12	22.4022	119.8508	1512	7	P.C.
13	22.4265	119.8500	1479	133	P.C.
14	22.4370	119.8495	1405	316	P.C.
15	22.4523	119.8550	1392	210	P.C.
16	22.4458	119.8373	1372	148	P.C.
17	22.2875	119.8413	1077	161	P.C.
18	22.2708	119.8348	1442	401	P.C.
19	22.2560	119.8337	1441	401	P.C.
20	22.2352	119.8283	1411	438	P.C.
21	22.2180	119.8438	1472	451	P.C.
22	22.2395	119.8503	1237	246	P.C.
23	22.2632	119.8583	1037	173	P.C.
24	22.2792	119.8607	886	150	P.C.
25	22.2897	119.8795	979	267	P.C.
26	22.2748	119.8732	1178	366	P.C.
27	22.2478	119.8657	1133	242	P.C.
28	22.2353	119.8637	1166	428	P.C.
29	22.2147	119.8578	1226	433	P.C.
30	22.3858	119.8247	1388	401	P.C.

表 3-1:ORI-860 航次採樣測站之站名、經緯度、水深、岩心長度

註: P.C.=Piston Core

Station	Latitude(N)	Longitude(E)	water depth(m)	Core Length (cm)	Core Type
2	22.2822	119.9343	1095	454	P.C
3	22.3077	119.9357	1088	296	P.C
4	22.2000	119.9658	838	226	P.C
5	22.2142	119.9145	1221	435	P.C
6	22.1705	119.9232	1130	225	P.C
8	22.1188	119.9393	816	320	P.C
9	22.1898	119.9703	897	240	P.C

表 3-2: OR1-902A 航次採樣測站之站名、經緯度、水深、岩心長度

註: P.C=Piston Core

表 3-3: OR1-902B 航次採樣測站之站名、經緯度、水深、岩心長度

Station	Latitude(N)	Longitude(E)	water depth(m)	Core Length (cm)	Core Type
27	22.2747	119.8713	1127	170	P.C
KP5-3	22.2425	119.8753	1254	120	G.C
5	22.2140	119.9148	1223	• 170	G.C
6	22.1700	119.9233	1129	160	G.C
8	22.1188	119.9393	815	130	G.C
MD	22.1530	119.9880	. 1116	100	G.C
KP6-2	22.1578	119.9765	980	140	G.C
9	22.1900	119.9707	890	137	G.C
KP7-1	22.2642	120.0105	991	169	G.C
2	22.2830	119.9342	1094	137	G.C
HSU	22.2960	119.9385	1147	169	G.C
HSU2	22.3248	119.9337	1216	169	G.C
G14	22.3107	119.9793	1043	169	G.C
G3	22.1412	120.0263	1361	137	G.C
T6	22.1115	119.9853	1008	49	G.C
N2	22.0935	119.9815	1070	197	G.C

註:G.C.=Gravity Core P.C=

Ct t			water	Core Length	С	
Station	Latitude(N) Longitude(E)		depth(m)	(cm)	Core Type	
1-1	22.2479	120.5521	378	110	G.C.	
1-2	22.1682	120.5005	545	120	G.C.	
2-3	22.1290	120.3872	480	105	G.C.	
3	22.5102	120.1082	377	107	G.C.	
3-3	22.2465	120.3281	374	105	G.C.	
3-4	22.0795	120.2686	842	103	G.C.	
3-5	21.9986	120.3281	809	45	G.C.	
4	22.5076	120.1367	333	116	G.C.	
4-1	22.3497	120.331	174	87	G.C.	
5-1new	22.4209	120.2497	200	104	G.C.	
5-2	22.5786	120.1382	162	100	G.C.	
6-1	22.5001	120.0795	500	120	G.C.	
6-4new	22.3190	119.9841	1036	138	G.C.	
7-1	22.6616	120.1620	86	50	G.C.	
7-2	22.5986	120.1084	165	50	G.C.	
7-5	22.4017	119.9841	1186	120	G.C.	
8	22.5763	120.1668	185	102	G.C.	
9	22.5072	120,1674			G.C.	
GT39B	21.9878	120.5025	250	70	G.C.	
temp2	22.2965	120.3429	146	85	G.C.	
Temp2new	22.2949	120.3426			G.C.	

表 3-4:OR3-1323 航次採樣測站之站名、經緯度、水深、岩心長度

註:G.C.=Gravity Core

G (-1)	Latitude(N)	Longitude(E)	water	Core Length	0 5
Station			depth(m)	(cm)	Core Type
96B	22.1953	120.4198	380	170	G.C.
96C	22.1870	120.4125	407	120	G.C.
96D	22.1832	120.4107	411	170	G.C.
96E	22.1798	120.4077	435	160	G.C.
96F	22.1723	120.4002	425	130	G.C.
96J	22.1850	120.4102	409	100	G.C.
96L	22.1845	120.4108	408	140	G.C.
1	22.3942	119.5188	762	137	G.C.
2	22.3693	119.5512	1325	169	G.C.
3	22.3437	119.5868	1715	137	G.C.
4	22.3168	119.6258	1609	169	G.C.
5	22.2847	119.6642	1633	169	G.C.
7	22.3370	119.6448	1450	169	G.C.
9	22.3865	119.5833	1225	137	G.C.
KP9	22.4088	119.6025	1102	49	G.C.
11	22.4305	119.5790	793	197	G.C.
12	22.3840	119.6400	1427	77	G.C.
13	22.3630	119.6628	1552	137	G.C.
16	22.3845	119.6925	1628	77	G.C.
19	22.4260	119.6358	1536	109	G.C.
20	22.4387	119.6892	1209	77	G.C.
22	22.4430	119.7505	1301	169	G.C.
23	22.4650	119.7225	1207	169	G.C.

表 3-5:OR3-1368 航次採樣測站之站名、經緯度、水深、岩心長度

註:G.C.=Gravity Core

Station	Latitude(N)	Longitude(E)	water depth(m)	Core Length (cm)	Core Type
FN8	22.4271	119.8283	910	120	G.C.
FGT39B	21.9896	120.4964	260	110	G.C.
FGT39B-2	22.0024	120.5046	285	105	G.C.
FHLC-1	22.2963	120.3429	160	140	G.C.
FYB	22.5680	120.0932	285	90	G.C.
FYB3	22.5444	120.029	523	190	G.C.
FGS5-1	22.1153	119.2858	1140	100	G.C.
FGS5-2	22.1153	119.2854	1123	90	G.C.
F27	22.2739	119.8751	1170	210	G.C.
F28	22.2470	119.8654	1172	45	G.C.
F9	22.1905	119.9705	902	140	G.C.
FGT1	22.3511	119.8155	1240	75	G.C.
FG23	22.3512	119.8157	1240	40	G.C.

表 3-6: OR3-1384 航次採樣測站之站名、經緯度、水深、岩心長度

註:G.C.=Gravity Core

3-3 ORI-860; ORI-902A; ORI-902B 航次及 ORIII-1323; ORIII-1368; ORIII-1384 航次樣品採樣及分析方法

ORI-860; ORI-902A; ORI-902B及 ORIII-1368 航次沉積物每隔 30cm 取一段 6cm 長沈積物, ORIII-1323 和 ORIII-1384 航次沉積物每隔 10cm 取一段沈積物。 利用其中 5ml 的沈積物分析間隙氣體成分, 5ml 的沈積物分析孔隙度, 剩餘之沈 積物作為分析孔隙水之化學分析之用。

3-3-1 沉積物間隙水分析方法(圖 3-7)

- (1) 將剩餘沉積物分裝到四個 50 ml 離心管中。
- (2) 將裝有沉積物之離心管放入離心機用 4000 rpm 離心 20 分鐘。
- (3)將離完心之離心管上部孔隙水用 10 c.c 針筒取出用 0.45 µm 之濾紙過濾, 並將水樣裝入 PE 瓶中放入 4℃冷藏室冷藏,以待分析。
- (4)把水樣不經稀釋直接用離子層析儀分析碘之濃度,再將水樣稀釋100倍用 離子層析儀分析銨根、鈉、鉀、鈣和鎂之濃度,再將水樣稀釋500倍用離

Ion Chromatograph

圖 3-7:利用 IC 分析孔隙水中主要陰陽離子流程圖

3-3-2 沉積物中碘分析方法 (圖 3-8)

(1) 將 5 ml 沉積物裝入 20 ml 玻璃閃爍計數瓶中。

子層析儀分析氯、硫酸鹽之濃度。

- (2) 把裝有沉積物之閃爍計數瓶裝滿去離子水,並震盪一小時,待沉澱後把水 去除。
- (3) 重複(2)之步驟二次,再把閃爍計數瓶放入 -20 ℃冰箱一小時,再取出以 凍乾機凍乾沉積物。
- (4) 秤 0.5 g 凍乾後之沉積物,放入管狀高溫爐中以 1000℃燒一小時,通氧氣 以 200 ml/min 流速導入 60 ℃水中再進入石英管中,最後以 10 ml、50 ppm 之 Na2SO3 捕捉碘。

圖 3-8: 測沉積物中碘之高溫爐裝置圖

3-3-3 孔隙水中 DIC 之計算方法

在海洋沉積物孔隙水中,硫酸鹽是由海床往下擴散,在向下擴散過程中,會 被有機物(式 3-1)或是甲烷氣(式 3-2)消耗,而產生 DIC。

有機物氧化反應

$$2[(CH_{2}O)(NH_{4})x] + SO_{4}^{-2} \rightarrow 2DIC_{(POC)} + 2H_{2}O + 2xNH_{4}^{+} + S^{2-}$$
(3-1)
DIC (POC): -SO₄^{-2} = 2:1

甲烷厭氧氧化反應

 $CH_4+SO_4^{-2} \rightarrow DIC_{(CH_4)}+2H_2O+S^{2-}$ (3-2)

2.0.00

DIC $_{(CH_4)}$: -SO₄⁻²=1 : 1

而產生之溶解無機碳 DIC 會與孔隙水中之鈣和鎂離子產生碳酸鹽類之沉澱, 所以孔隙水中之溶解無機碳 DIC 可以由有機物消耗硫酸鹽產生之部分(DIC(POC)) 加上甲烷氣消耗硫酸鹽產生之部分(DIC(CH4))再減去鈣和鎂消耗之部分。再者 有機物氧化是會產生銨根,所以可以由銨根濃度之變化計算出有多少之有機物消 耗,而硫酸鹽之消耗扣除有機物消耗之部分剩下就是甲烷氣消耗之部分,所以 DIC 之計算式如式 3-3 表示 (Suess and Whiticar, 1989)

 $DIC=k+\Delta NH_4 + C/N + (\Delta SO_4 - \Delta NH_4 + X1/2 + C/N) - (\Delta Ca^{2+} + \Delta Mg^{2+})$ (3-3)

其中 k 為海水中之 DIC 約為 2.6 mM, C/N 代西南海域沉積物之平均值 6.74 (胡漢杰, 2006)。

3-4 分析誤差

3-4-1 離子層析儀的檢量線

離子層析儀的檢量線校正方面,本研究使用陰離子標準品(Cl⁻、Br⁻、SO₄⁻²、 Γ)和陽離子標準品(NH₄⁺、Ca⁺²、Mg⁺²),Cl⁻、Br⁻、SO₄⁻²濃度各為 0.5、1、5、 10、30 和 50 ppm,Γ濃度為 0.5、1、5、10、20 和 30 ppm,NH₄⁺濃度為 0.5、1、 2.5 和 5 ppm,Ca⁺²、Mg⁺²濃度為 0.5、1、5、10 和 20 ppm。以面積和濃度作圖, 可以得到一檢量線。在每次更換流洗液時重新做一次減量線的校正。

3-4-2 離子層析儀的 RSD

將各已知濃度之樣品帶入所得之檢量線中,會得到一測量值,每一個濃度測量五次,然後計算其相對標準偏差(Relative standard deviation RSD),詳列於下表。

表 3-7:各離子之 RSD

	ppm	RSD (%)
Cl	1	0.131
Cl	5	0.275
Cl	10	0.115
Cl	30	0.405
Cl	50	0.130
Br	1	0.253
Br⁻	5	0.273
Br	10	0.128
Br⁻	30	0.408
Br⁻	50	0.131
SO_4^{-2}	1	0.356
SO_4^{-2}	5	0.523
SO_4^{-2}	10	0.266
SO_4^{-2}	30	0.534
SO_4^{-2}	50	0.291
I a	0.5	0.508
Г		0.637
Г		0.631
I.	10	0.829
Γ	20	0.504
I	30	0.424
$\mathrm{NH_4}^+$	0.5	0.457
$\mathrm{NH_4}^+$	1	1.116
$\mathrm{NH_4}^+$	2.5	0.293
$\mathrm{NH_4}^+$	5	0.29
Ca ⁺²	1	2.556
Ca ⁺²	5	0.802
Ca^{+2}	10	0.947
Ca ⁺²	20	0.202
Mg^{+2}	1	1.251
Mg^{+2}	5	1.02
Mg^{+2}	10	1.194
Mg ⁺²	20	0.263

第四章 分析結果

4-1 各航次孔隙水離子分析結果

本研究分析了各航次沉積物孔隙水中主要陰陽離子濃度(Na^+ 、 NH_4^+ 、 K^+ 、 Ca^{+2} 、 Mg^{+2} 、 Cl^- 、 Br^- 、 SO_4^{-2} 、 Γ),結果詳列於表 4-1~4-6 所示;而本研究將 著重於 NH_4^+ 、 Cl^- 、 Br^- 、 SO_4^{-2} 、 Γ 濃度變化之探討。

台灣西南海域天然氣潛藏區分析結果顯示,本研究大部分站位孔隙水中氣的 濃度隨深度沒有明顯變化,其濃度大部分集中在 19000~20000 ppm,與海水值 相近。而孔隙水中的溴濃度大部分站位有隨深度增加而增加之趨勢,約從 70 ppm 增加到 80 ppm;孔隙水中的碘的濃度大部分站位亦都隨深度有明顯的增加趨勢, 約從海水值 0.05 ppm 增加到最高可達 20 ppm,增加斜率最大可以達到 0.19 ppm/cm (902B-HSU2),其他孔隙水中的碘有增加的站位增加斜率介於 0.01 ppm/cm~0.1 ppm/cm,跟國外已經發現天然氣水合物之地區孔隙水中的碘濃度增 加斜率相比(如 Nankai Trough: 0.002 ppm/cm; Hydrate Ridge: 0.022 ppm/cm; Blake Ridge: 0.004 ppm/cm) (Egeberg and Dickens, 1999、Fehn et al., 2006、 Muramatsu et al., 2007),高出十倍以上。而孔隙水中的銨根濃度大部分站位都 隨深度有明顯的增加趨勢,約從 4 ppm 增加到 40 ppm,增加斜率最大可達 0.24 ppm/cm (902B-HSU2)。

孔隙水中的溶解碘和溴,是由有機物分解來,而海水中之碘濃度非常低, 所以碘濃度增加是由有機物分解釋放到孔隙水中造成;而溴濃度也有些許類似的 變化,但是其敏感度不如碘濃度之變化。當黏土礦物行脫水作用時會產生低濃度 的水,使周圍流體被稀釋(Teichert et al., 2005; Torres et al., 2004)

20

表 4-1:ORI-860	孔隙水主要	宴陰陽離子 %	分析結果
---------------	-------	----------------	------

站位	Depth (ambsf)	Na ⁺	NH_4^+	K^+	Ca^{+2}	Mg^{+2}	Cl ⁻	Br ⁻	SO_4^{-2}	I ⁻
ODI 960		(ppiii)	(ppin)	(ppin)	(ppm)	(ppin)	(ppiii)	(ppiii)	(ppiii)	(ppin)
0KI-800	10-16	11000	4	E 1 7	276	1170	21600	73.2	2560	0.5
1	43-49	11000	4	517	376	1170	21300	/3.1	2530	0.5
	/0-/6	11000	4	515	201	1170	20100	73.2	2420	0.6
	103-109	11000	4	515	381	1170	20300	/3.3	2450	0.6
	130-136	10000	7	517	260	1170	20400	73.2	2470	0.8
	163-169	10900	/	517	369	1170	20500	/3.1	2460	1.2
	190-196	11000		500	252	1150	20000	73.5	2400	1.6
	223-229	11000	11	509	352	1150	20100	73.9	2290	2.6
	250-256	11000	20	507	272	10.00	20200	74.6	2030	4.0
	283-289	11000	20	527	272	1060	19800	76.0	1600	6.1
	310-316						20300	76.9	1300	7.7
	343-349	10800	27	499	182	953	20000	77.9	909	9.7
0.001.070	370-376						20500	78.5	680	10.9
ORI-860	10-16		-							0
2	43-49	11000	5	527	379	1180	20300	72.8	2640	0
	70-76			and the second	distant person					
	103-109	11000	6	507	378	1190	19800	73.3	2560	0.9
	130-136		W.	8/1	1.7	R. 191		_	_	
	163-169	10800	9	519	366	1140	20400	74.8	2490	2.6
	190-196			0	2/01		6			
	223-229	10900	14	503	314	1130	21100	77.0	2170	5.6
	250-256		12/201	<u>(</u>]]	48 14	1/22	<u>.</u>			
	283-289	10900	22	501	244	1080	20400	79.3	1560	9.3
	310-316		182	69 5		D V	1			
	343-349	10900	28	488	188	1030	20600	81.7	1070	16.9
ORI-860	10-16	11000	4	525	379	1210	19900	71.9	2570	0
3	43-49						20600	72.7	2630	0
	70-76									
	103-109	11000	0	522	325	1160	20600	73.2	2160	0
	130-136									
	163-169	11100	4	520	328	1170	21400	73.3	2270	0
	190-196						20300	73.3	2460	0
	223-229	11000	4	508	364	1190	20100	72.5	2430	0
	250-256	11100	4	528	346	1170	20400	72.8	2310	0
	283-289									
	310-316						20300	73.1	1910	0
	343-349									
	370-376	11100	5	509	219	1120				
ORI-860	10-16						19700		2430	
11	43-49									
	70-76						19900		1890	
	103-109									
	130-136						20200		1140	
	163-169									

嫱主/	1 1 · OPI 86	1 3 路水士	西阶唱轴工	八七分里
- 領衣 -	$+1 \cdot 0 \times 1 - 0 0$	口门原小王	女医吻种丁	刀削而不

站位	Depth (cmbsf)	Na ⁺ (ppm)	NH_4^+ (ppm)	K ⁺ (ppm)	Ca ⁺² (ppm)	Mg ⁺² (ppm)	Cl ⁻ (ppm)	Br ⁻ (ppm)	SO_4^{-2} (ppm)	I⁻ (ppm)
ORI-860	10-16	<u> </u>	<u> </u>		<u> </u>	<u> </u>	19800	73.0	2580	0
4	43-49									
	70-76									
	103-109						20400	73.0	2610	0.5
	130-136									
	163-169						20300	73.3	2570	0.6
	190-196									
	223-229						19800	73.2	2480	0.8
	250-256									
	283-289						19900	73.7	2430	1.0
	310-316	_								
	343-349									
	370-376						19400	73.9	2240	1.8
	403-409									
ORI-860	10-16									
13	43-49			and former	(and the same	No.	20000	74.3	2160	1.5
	70-76		101/56				20100	75.1	1990	2.2
	130-136		111	8/1	1	8 10				
ORI-860	10-16						4.9			
14	43-49	10900	9	491	365	1170	18600	73.4	2320	0.6
	70-76						822			
	103-109	11100	14	506	354	1180	19800	73.6	2340	0.9
	130-136									
	163-169	11100	21	516	335	1150	20400	73.9	2270	1.3
	190-196	11.400	20	520	215	1150	20,600	74.0	2100	2.0
	223-229	11400	30	529	315	1150	20600	74.9	2100	2.0
	250-256	11200	42	494	250	1000	21700	75 1	1720	2.0
	283-289	11200	43	484	259	1060	21700	/5.1	1730	3.2
OBI 860	10.16									
18	10-10	11200	4	520	402	1240	20000	73 5	2550	0.6
10	70-76	11200	4	520	402	1240	20000	15.5	2550	0.0
	103-109						20100	73.6	2510	11
	130-136						20100	75.0	2310	1.1
	163-169	9450	7	450	315	1020	19900	73.7	2360	2.0
	190-196	1.00			010	1020	17700	,	2000	2.0
	223-229	9470	10	441	286	997	20400	74.4	2170	3.4
	250-256									
	283-289	10900	17	502	286	1110	20000	75.9	1600	6.1
	310-316									
	343-349	10900	24	490	214	1080	20100	77.9	1010	9.3
	370-376									
	403-409	11000	49	490	137	960				

續表 4-1:ORI-860 孔隙水主要陰陽離子分析結果

站位	Depth (cmbsf)	Na ⁺ (ppm)	NH4 ⁺ (ppm)	K ⁺ (ppm)	Ca ⁺² (ppm)	Mg ⁺² (ppm)	Cl ⁻ (ppm)	Br ⁻ (ppm)	SO ₄ ⁻² (ppm)	I ⁻ (ppm)
ORI-860-19	10-16									
	43-49	11000	8	508	385	1210	20200	73.6	2490	2.2
	70-76									
	103-109	10900	10	504	370	1190				
	130-136	10800	10	512	365	1190	20000	74.4	2380	3.8
	163-169									
	190-196	10800	12	494	360	1190	20000	73.9	2320	4.8
	223-229									
	250-256	10900	13	493	350	1190				
	283-289	10900	14	512	348	1190	20200	74.4	2230	6.8
	310-316									
	343-349	11000	15	505	338	1210	20200	75.2	2140	7.8
	370-376	10900	19	535	299	1150				
	403-409	10900	20	516	305	1160				
ORI-860-20	10-16						19700	73.4	2510	0.8
	43-49	10900	5	517	378	1210				
	70-76						20100	73.6	2450	1.8
	103-109	11100	6	537	381	1220	6			
	130-136						20300	73.8	2460	2.4
	163-169	11100	7	515	382	1220	5) 			
	190-196			1.17			19900	73.7	2460	2.2
	223-229		1-19	71	A 14	5/100				
	250-256						19900	74.2	2240	4.3
	283-289	11100	12	514	356	1200	2			
	310-316						20300	76.8	2110	6.6
	343-349	11000	13	514	341	1170				
	370-376						20100	75.9	2030	7.3
	403-409	11000	14	521	334	1160				
	430-436						20400	76.2	1980	8.3
ORI-860-21	10-16	10700	7	524	360	1220	20200	73.2	2320	1.9
	43-49	10600	9	517	353	1200	20200	73.2	2260	2.8
	70-76	10400	9	509	342	1170	19600	72.9	2140	3.6
	103-109	10600	7	521	344	1180	20100	73.4	2130	4.3
	130-136	10700	10	527	323	1180	20900	75.2	2110	4.9
	163-169	10500	12	525	305	1160	20500	74.0	1990	5.6
	190-196	10700	14	524	300	1180	20300	75.5	1860	6.3
	223-229	10800	14	526	279	1170	19900	74.9	1670	7.1
	250-256	10700	15	522	243	1130	20200	75.7	1500	8.4
	283-289	11000	18	531	213	1150	20200	78.6	1220	10.3
	310-316	10600	19	512	179	1070	20000	77.6	962	11.6
	343-349	10700	22	517	146	1060	20100	79.1	669	13.5
	370-376	10400	23	503	114	1010	20300	79.7	477	14.6
	403-409	10600	26	512	81.3	1020	20300	81.3	167	16.8
	430-436	10700	28	524	61.4	896	19900	80.8	115	18.2

續表 4-1:	ORI-860 7] 隙水主	要陰陽離-	子分析結果

计估	Depth	Na^+	$\mathrm{NH_4}^+$	\mathbf{K}^+	Ca ⁺²	Mg^{+2}	Cl	Br⁻	SO_4^{-2}	I
山位	(cmbsf)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
ORI-860	10-16	11200	5	569	358	1160	20400	73.2	2590	0.5
22	43-49						21000	74.3	2390	2.0
	70-76									
	103-109	11600	17	574	235	1030	21500	76.9	1580	6.0
	130-136	12100	20	597	195	1010		78.2		8.3
ORI-860	10-16						20000	71.0	2530	0.4
26	43-49	10900	7	517	331	1150	20500	71.2	2450	1.4
	70-76	10800	9	539	292	1110	18700	72.4	2070	2.4
	103-109	11000	13	535	268	1100	20000	72.6	2040	3.8
	130-136	11200	15	538	256	1110	19500	73.5	1830	5.0
	163-169	11200	18	547	230	1070	20500	74.8	1650	6.7
	190-196	10900	19	501	208	1050	20300	74.8	1430	7.9
	223-229	10800	23	479	189	1030	19500	75.3	1150	9.5
	250-256	11800	24	547	167	1060	21500	82.7	983	12.0
	283-289	10900	30	491	142	961	19800	77.1	659	12.9
	310-316	10600	31	459	121		20000	78.3	349	15.1
	343-349	11200	37	485	110	935	20200	82.8	204	18.4
	370-376	11100	41	475	111	914	19800	79.9	254	18.8
ORI-860	10-16						20100	70.8	2630	0
27	43-49	11200	0	526	288	1190	20400	70.6	2090	0
	70-76						19900	73.1	1160	0
	103-109	11200	0	528	44 14	1130	20600	74.1	303	0
	130-136						20400	74.4	211	0
	163-169	10700	6	520		1030	20500		178	0
	190-196						20400	75.6	177	0
	223-229	11000	6	529	THE REAL PROPERTY.	1050	20900	73.1	224	0
ORI-860	10-16	11100	0	520	379	1200	20900	70.8	2680	0.4
28	43-49	11100	0	521	361	1180	19900	71.6	2450	1.1
	70-76									
	103-109	11100	9	537	305	1130	19900	72.2	2110	2.7
	130-136	11000	12	523	295	1110	19900	72.6	1910	3.7
	163-169	11300	14	515	404	1060	20300	75.5	1730	5.0
	190-196	11000		530	238	1070	20300	74.7	1460	6.2
	223-229	10900	19	496	188	1030	19000		1120	
	250-256						20500		547	
	283-289	11000	25	493	138	978	19500	76.2	140	10.9
	310-316	11100	28	494	130	970	19700	77.8	272	13.0
	343-349	11100	31	491	106	931		78.9	154	16.5
	370-376						19500			
	403-409	11000	40	479	97.9	861		79.1		19.1

站位	Depth (cmbsf)	Na ⁺ (ppm)	NH_4^+	K ⁺	Ca^{+2}	Mg^{+2}	Cl ⁻	Br ⁻	SO_4^{-2}	I ⁻ (ppm)
	(emosi)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
ORI-860	10-16	10900	4	529	371	1170	20300	72.7	2580	0.3
30	43-49	11000	6	531	351	1160	20200	73.3	2340	1.1
	70-76	11000	10	544	313	1140				
	103-109	11200	13	546	293	1130	20400	75.0	1940	2.7
	130-136	11100	14	557	257	1090	19800	75.2	1740	3.3
	163-169	11000	16	520	214	1080	19900	75.2	1500	4.3
	190-196	11000	19	541	211	1050	17600	75.6	1230	4.9
	223-229	11200	21	542	163	1040	19900	76.3	1120	6.0
	250-256	11000	22	499	154	1040	19800	76.6	950	6.6
	283-289	11000	25	489	125	1000	20200	77.1	744	7.5

續表 4-1:ORI-860 孔隙水主要陰陽離子分析結果

表 4-2: ORI-902A 孔隙水主要陰陽離子分析結果

站位	Depth	Na^+	$\mathrm{NH_4}^+$	\mathbf{K}^+	Ca ⁺²	Mg^{+2}	Cl	Br	SO_4^{-2}	I
	(cmbsf)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
902A	10-17	10800	0	518	371	1190	20800	70.5	2710	
9	43-49									
	70-77									
	103-109	10800	8	490	91.9	805	19800	73.2	381	8.7
	130-137									
	163-169	10800	10	471	64.3	654	18600	74.6	208	14.7
	190-197	10300	15	434	70.9	614	19400	73.9	226	15.5
	223-229	10100	15	415	62.4	545	18500	74.2	136	17.7
902A	10-17	11000	0	514	368	1210	20000	70.2	2570	
4	43-49	11200	4	530	380	1220	20000	70.8	2540	
	70-77	11000	4	533	365	1180	20000	70.3	2560	
	103-109	11000	4	530	329	1170	20200	70.4	2460	0.3
	130-137									
	163-169									
	190-197									
	223-229			and the	of the state of th	No.				
902A	10-17	11700	6	539	416	1280	20000	72.9	2540	0.7
3	43-49		S.V	5-1		8.10	i.			
	70-77	11100	16	534	339	1200	20100	74.1	2130	3.0
	103-109			0	201	100	100			
	130-137	11000	27	524	288	1120	20200	75.1	1700	5.5
	163-169		181-1	71	44 10	5/100				
	190-197	11000	34	518	266	1110	20300	75.5	1510	6.5
	223-229		AS &	AN S		an 1	8			
	250-257	11000	37	511	249	1080	20500	75.9	1360	7.4
	283-289			- Antonio	CHU SHE MAN	e e e e e e e e e e e e e e e e e e e				
902A	10-17	11000	4	502	387	1220	20300	70.5	2600	0.7
2	39-45									
	70-77	10900	7	512	358	1180	19600	71.6	2380	1.8
	103-109	11000	8	523	347	1170				
	30-137									
	163-169	10900	11	535	324	1140	20200	71.9	2290	3.3
	190-197									
	223-229	11000	11	521	327	1170	20300	72.0	2310	3.6
	250-257									
	283-289	11000	9	530	344	1170	19700	71.7	2390	2.7
	310-317									
	343-349	10900	11	524	310	1150	20100	72.2	2280	3.9
	370-377									
	403-409	11000	14	531	246	1100	18100	73.0	1810	6.1
	430-437									

續表 4-2: ORI-902A 孔隙水主要陰陽離子分析結果

* 4	Depth	Na^+	$\mathrm{NH_4}^+$	\mathbf{K}^+	Ca^{+2}	Mg^{+2}	Cl	Br⁻	SO_4^{-2}	ľ
西征	(cmbsf)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
902A-8	43-49	11100	0	564	353	1160	20700	70.8	2590	
	70-77	10900	0	526	358	1170	20300	70.3	2580	
	103-109									
	130-137	11000	4	542	309	1130	20500	70.3	2160	
	163-169									
	190-197									
	223-229									
	250-257	11100	4	541	136	1050	20500	70.6	813	0.5
	283-289									
	310-317	10900	5	535	106	984	18800	70.8	176	0.8
902A-6	10-17	11200	4	582	374	1170	23200	73.5	2970	
	43-49									
	70-77	11100	8	577	330	1130	20100	74.1	2460	1.0
	103-109									
	130-137	11300	12	588	295	1100	20500	74.9	2250	2.2
	163-169			1000	WED Spectron	Mar.				
	190-197	11300	13	565	275	1080	20300	75.4	2000	3.2
	223-229		31	5-1	1	S. 19	1			
902A-5	10-17	11000	5	511	383	1190	20600	72.6	2610	1.1
	43-49		151	6	1401	1	Test.			
	70-77	10900	12	509	355	1170	19900	73.6	2230	3.6
	103-109		12 Y	1711	AR H	1/10				
	124-131	11000	17	507	330	1160	20100	74.2	2000	5.2
	157-163		183	100		6 60	12			
	190-197	10800	22	489	291	1110	19900	75.0	1660	7.5
	223-229				STUSTO					
	250-253	10800	25	506	276	1100	19600	75.5	1450	8.7
	283-289									
	310-317	11000	27	510	256	1110	20100	76.3	1270	10.0
	343-349									
	370-377	10700	30	470	227	1060	19900	76.5	1070	11.1
	403-409									
站位	Depth (cmbsf)	Na ⁺ (ppm)	$\overline{\mathrm{NH}_{4}^{+}}$ (ppm)	K ⁺ (ppm)	Ca ⁺² (ppm)	Mg ⁺² (ppm)	Cl ⁻ (ppm)	Br ⁻ (ppm)	SO_4^{-2} (ppm)	I ⁻ (ppm)
--------	------------------	--------------------------	--	-------------------------	---------------------------	---------------------------	--------------------------	--------------------------	-------------------	-------------------------
902B	8-16						20300		2510	
8	24-30						19900		2560	
	68-76						20300		1740	
902B	8-16						20100	70.0	2610	
MD	24-30						20300	0.0	2630	
	68-76						19600	70.1	2520	
	84-90						20000	70.1	2570	
902B	8-16									
9	24-30						20000	69.0	2630	
	54-60									
	68-74	11100	0	555	356	1150	19900	69.1	2440	
	114-120									
	128-134	10900	6	517	150	1020	19800	69.9	402	1.3
902B	10-20	11100	5	511	378	1000	19800	70.1	2490	0.6
27	40-50	11000	13	493	318	1140	19800	70.7	2120	2.3
	74-80				OSuch (Change					
	130-140	10900	30	481	180	984	20100	74.0	1160	8.4
	220-230	10800	46	465	138	876	20600	78.3	434	16.7
	250-260									
	260-265		81.1	(2)	10)		3			
902B	8-16	11000	5	522	390	1190	19700	69.4	2530	0.9
K P5-3	58-66	11100	17	7 532	336	1180	19100	71.2	1900	5.6
	74-80	11000	19	559	306	1150	20400	72.5	1900	6.7
	128-136		all bea		- All	No as	19600	70.6	1370	9.8
	144-150									
902B	8-16			- and the	nestron Home	1970-0	20000	70.1	2520	1.1
5	24-30									
	84-90						21100	72.2	2230	4.2
	98-106									
	114-122	10900	23	508	305	1150	20400	72.1	1730	7.1
	130-136	11000	27	539	281	1130	20500	73.0	1580	8.1
902B	38-46	11000	8	501	343	1160	19700	72.6	2200	4.0
HSU2	84-90	11000	17	492	262	1100	20600	77.7	1620	10.1
	98-102	10900	20	482	216	1070	20000	77.3	1230	12.8
	144-150	10800	30	451	124	975	19700	82.3	216	21.8
	158-166	10700	37	442	112	922	0	85.6	0	26.8
902B	8-16						20000	70.7	2570	
N2	24-30									
	68-76						19500	70.3	2570	0.5
	84-90						20000	69.4	2560	0.5
902B	54-60	11000	0	510	361	1170	19700	71.3	2390	1.4
KP7-1	68-76	10900	0	511	350	1160	20500	71.5	2450	1.3
	114-120	10900	8	516	298	1140	19800	71.2	2150	2.5
	128-136	10800	8	487	288	1130	19600	714	2010	3.0

表 4-3: ORI-902B 孔隙水主要陰陽離子分析結果

站位	Depth	Na^+	$\mathrm{NH_4}^+$	\mathbf{K}^+	Ca ⁺²	Mg^{+2}	Cl	Br⁻	SO_4^{-2}	ľ
石臣	(cmbsf)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
902B	8-16	10900	5	496	388	1190	19700	70.4	2550	0.5
HSU1	28-34	10700	30	478	232	1080	20200	74.2	1270	9.6
	60-68	11000	14	503	335	1160	20000	71.6	2060	4.0
	78-87	11100	18	504	323	1180	20700	72.2	1980	5.0
	112-120	10900	29	497	255	1120	19900	74.3	1380	8.7
	128-134									
902B	38-46						19900		2430	
2	54-60						20300		2410	
	98-106						20200		2160	
	114-120						19700		2070	
902B	38-46	11100	0	542	362	1180	20000	70.7	2570	
T6	54-60	11200	0	535	355	1170	20200	70.7	2530	
	98-106	11200	0	531	320	1160	20500	74.9	2240	
	114-120	11100	4	534	283	1120	19300	70.7	1880	0.3

續表 4-3: ORI-902B 孔隙水主要陰陽離子分析結果

表 4-4: ORIII-1323 孔隙水主要陰陽離子分析結果	2
---------------------------------	---

站位	Depth (cmbsf)	Na^+	NH_4^+	K^+	Ca^{+2}	Mg^{+2}	Cl ⁻	Br ⁻	SO_4^{-2}	I ⁻
1202	0.10	(ppiii)	(ppiii)	(ppiii)	(ppiii) 294	(ppiii)	(ppiii)	(ppiii)	(ppiii)	(ppiii)
1525	10.20	10800	9	414	384	1200	20200	/1.1	2580	1.0
1-1	20.20	10200	20	126	249	1220	20200	71.0	2250	26
	20-30	10800	20	430	348	1220	20300	/1.9	2230	2.0
	40.50	11/00	27	153	338	1270	20200	71.0	2160	33
	-+0-50 50-60	11400	21	455	550	1270	20200	/1.7	2100	5.5
	60-70	10800	27	428	299	1190	20000	723	2080	3.8
	70-80	10000	21	420	2))	1170	20000	12.5	2000	5.0
	80-90	10700	29	422	285	1170	20100	72.5	2040	4.1
	90-100	10,00	_,		200	1170	20100	7210	2010	
	100-110	10800	32	432	273	1160	19900	72.8	1930	4.5
1323	0-10	10900	0	445	394	1220	19700	70.4	2580	
1-2	10-20									
	20-30	10800	9	448	380	1220	19600	70.8	2440	1.3
	30-40									
	40-50	10800	17	447	371	1210	19900	70.8	2300	2.4
	50-60									
	60-70	10800	20	455	340	1210	20500	71.4	2230	3.1
	70-80									
	80-90	10800	23	443	332	1210	20400	70.9	2130	3.8
	90-100									
	100-110	10700	24	445	333	1210	19800	71.6	2030	4.2
1323	0						20000	70.6	2640	
2-3	0-15	10700	0	433	395	1220	20100	71.2	2640	0.0
	15-30									
	30-45	10800	0	465	388	1220	20200	71.8	2640	0.0
	45-60		-							
	60-75	10700	0	462	384	1200	18900	70.8	2490	0.0
	75-90									
1202	90-105						20100	70 5	2640	
1323	0 10	10000	0	424	202	1020	20100	70.5	2640	0.5
3	10-10	10800	0	434	392	1230	20000	/0.0	2390	0.5
	20-30	10800	6	449	394	1230	19800	71.0	2530	1.0
	30-40									
	40-50									
	50-60									
	60-70	10800	8	450	387	1230	20400	71.9	2530	1.4
	70-80									
	80-90	10700	8	440	379	1210	20600		2520	
	90-100									
	100-110						20000	71.0	2450	1.8

續表 4-4: ORIII-1323 孔隙水主要陰陽離子分析結果

站位	Depth	Na ⁺	$\mathrm{NH_4}^+$	K ⁺	Ca ⁺²	Mg ⁺²	Cl	Br	SO_4^{-2}	Γ
	(cmbsf)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
1323	0	10500	5	378	382	1220	19700	69.9	2600	
3-3	0-15	10800	7	421	397	1230	19600	70.3	2540	0.7
	15-30	_								
	30-45									
	45-60	10600	10	430	374	1210	20500	70.0	2520	1.1
	60-75	10700	10	440	383	1210	19600	70.8	2380	1.2
	75-90									
	90-105	10800	12	453	364	1210	19800	70.1	2330	1.3
1323	0	10800	0	424	386	1230	19500	0.0	2580	
3-4	0-15	10900	0	469	396	1220	19700	71.3	2610	
	15-30									
	30-45	10900	5	489	382	1210	20400	70.9	2670	
	45-60									
	60-75	10800	0	476	374	1210	20100	70.7	2650	
	75-90									
	90-105	10600	0	482	378	1170	19300	70.6	2560	
1323	0						20000	70.8	2630	
4-1	0-10	10800	5	404	397	1250	20100	71.2	2650	0.4
	10-20									
	20-30		61 - 1	6	510)	100	19900	70.9	2600	0.5
	30-40									
	40-50	11000	6	424	415	1260	20100	71.8	2590	0.7
	50-60									
	60-70	11000	8	424	400	1260	19800	71.7	2510	1.0
	70-80									
	80-90			1000M	THE REAL PROPERTY.	Str.				
1323	0	10800	0	387	395	1260				
4	0-10	10800	0	433	402	1230	19500	70.3	2540	0.7
	10-20									
	20-30	10800	7	439	392	1220	19900	70.6	2550	1.2
	30-40									
	40-50	10700	9	439	392	1220	19300	70.0	2460	1.5
	50-60									
	60-70	10800	9	440	395	1230	19800	70.7	2500	1.8
	70-80									
	80-90	10900	9	450	392	1230	15700	70.8	2040	2.0
	90-100			-						
	100-110									

續表 4-4:	ORIII-1323	孔隙水主	要陰陽離	子分析結果

站位	Depth (cmbsf)	Na ⁺	NH_4^+	K ⁺	Ca^{+2}	Mg^{+2}	Cl ⁻	Br ⁻	SO_4^{-2}	I ⁻
1222	0	(ppiii)	(ppiii)	(ppiii)	(ppiii)	(ppiii)	10700	70.8	2600	(ppiii)
1525 5 1new	0.10	11000	0	422	403	1250	20400	70.8	2000	0.4
J-THEW	10-20	11000	0	422	405	1250	20400	/1.5	2070	0.4
	20-30	10900	6	428	401	1240	20200	71.3	2610	0.6
	30-40	10700	0	420	401	1240	20200	/1.5	2010	0.0
	40-50	10700	7	424	390	1230	19800	70.9	2560	0.6
	50-60	10700			070	1200	1,000	7015	2000	010
	60-70	10800	8	422	390	1230	20300	71.5	2590	0.7
	70-80		-							
	80-90	10900	10	442	397	1240	19800	72.0	2500	0.9
	90-100									
1323	0							70.9		
5-2	0-10	10900	8	434	405	1250	19900	71.3	2590	1.1
	10-20									
	20-30	10800	10	435	389	1230	19900	71.2	2490	1.6
	30-40				(10) Such (12)					
	40-50	10800	12	434	378	1220	20100	71.5	2460	1.8
	50-60		13	3-17	T	£ 10	1			
	60-70	10800	14	441	374	1220	19800	71.6	2370	2.1
	70-80		Gil II	6	561	100	10			
	80-90	10900	15	448	370	1220	21100	71.7	2470	2.4
	90-100		13/201	7	44 14	5/200				
1323	0	10600	0	383	387	1240	19700	69.4	2600	
6-4new	0-15	10800	0	445	398	1230	20000	70.3	2640	
	15-30									
	30-45	10500	6	452	378	1170	20400	70.3	2600	0.7
	45-60									
	60-75						22300	70.9	2760	1.1
	75-90	10000	7	472	200	1010	20200	71.0	2510	1.4
	90-105	10800	/	473	380	1210	20300	/1.2	2510	1.4
	105-120	11100	0	472	202	1240	20400	71.0	2470	1.0
	120-155	11100	0	472	383	1240	20400	/1.2	2470	1.8
1323	0.10	10000	0	/01	303	1210	20300	71.5	2660	0.0
1525	10.20	10900	0	491	393	1210	20300	/1.5	2000	0.0
7-5	20-30	10700	0	475	383	1200	19800	71.2	2610	0.0
	30-40	10700	U	475	505	1200	17000	/1.2	2010	0.0
	40-50	10700	5	486	377	1190	19800	717	2560	0.6
	60-70	10900	6	484	382	1200	22700	73.8	2690	1.1
	70-80	10,00	Ū		001	1200		,,,,,,	2070	
	80-90	11000	5	484	369	1200	20400	71.1	2490	1.4
	90-100									
	100-110	10900	5	480	352	1180	20100	71.7	2470	1.6
	110-120									

續表 4-4: ORIII-1323 孔隙水主要陰陽離子分析結果

计位	Depth	Na^+	$\mathrm{NH_4}^+$	\mathbf{K}^+	Ca ⁺²	Mg^{+2}	Cl	Br⁻	SO_4^{-2}	I-
西征	(cmbsf)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
1323	0-10	10900	0	459	392	1230	20000	70.9	2650	0
GT39B	10-20							71.0		0
	20-30	11100	0	482	398	1250	19700	70.8	2610	0
	30-40							70.9		0
	40-50	11100	0	580	377	1150	21800		2890	
	50-60									
	60-70									
	70-80									
	80-90									
	90-100						21200		2780	
1323	0-15	10800		387	373	1240	19400	71.1	2560	0
Temp2	15-30									
	30-45	11000	0	427	389	1260	20300	72.0	2580	0
	45-60									
	60-75	10900	0	428	350	1210	19900	71.9	2360	0
	75-90			and States	annan team	1				
1323	0-10	10700	4	386	392	1250	20100	70.9	2650	0
Temp2new	10-20		St.	8-1	1	8. 10				
	20-30						20300	71.7	2670	0
	30-40			102	101	1-1				
	40-50	10900	5	392	398	1270	20000	70.6	2640	0
	50-60		1213	71	11 42	5/100				
	60-70	10600	0	381	397	1240	19900	70.5	2620	0
1323-9	0-10	11000	0	392	404	1290	19600	70.5	2590	0
	10-20									
	20-30	10700	0	382	392	1250	20100	70.9	2650	0
	30-40									
	40-50	10600	4	380	391	1230	19600	70.7	2590	0
	50-60									
	60-70	10700	0	382	388	1250	19700	70.7	2600	0
	70-80									
	80-90	10600	0	378	382	1240	19700		2690	

表	4-5	:	ORIII-1368 孔序	翁水主 -	要陰陽	離子分	·析結果

计位	Depth	Na^+	$\mathrm{NH_4}^+$	\mathbf{K}^+	Ca ⁺²	Mg^{+2}	Cl	Br⁻	SO_4^{-2}	I-
山江	(cmbsf)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
1368	6-10						20200	73.0	2100	0
96J	16-20	10700	5	452	297	1170	19500	73.0	1800	0
	26-30						19800	73.3	962	0
	36-40	10700	6	448	95.8	1130	19900	73.2	508	0
	46-50						19900	73.0	337	0
	56-60	11000	5	470	117	1150	20000	73.0	390	0
	66-70						20000	73.1	347	0
	76-80	11100	0	473	108	1180	20600	73.1	480	0
	86-90						19500	73.0	358	0
	96-100	10600	0	449	76.9	1120	20400		795	
1368	6-10						19700	0.0	2600	0
96L	16-20	10900	0	445	394	1230	19500	72.6	2560	0
	26-30						19900	72.7	2660	0
	36-40	10900	0	453	401	1240	19900	72.7	2610	0
	46-50						20800	72.7	2620	0
	56-60	10700	0	444	374	1200	20200	72.8	2560	0
	66-70						20000	72.6	2530	0
	76-80	10700	0	447	367	1200	18600	72.1	2450	0
	86-90						20300	0.0	2490	0
	96-100	10700	0	443	344	1180	19900	73.0	2360	0
	106-110						20400	73.2	2190	0
	116-120	10800	0	453	255	1200	20400	73.3	1780	0
	126-130						20200		1310	
	136-140	10700	0	438	123	1110	6			
1368	6-10	10800	б	444	389	1160	19900	69.3	2540	0.5
96C	16-20				CHONOMED D	Ster.				
	26-30	10800	8	441	379	1210	20200	69.2	2480	0.7
	36-40									
	46-50	10700	0	437	358	1200	19800	69.0	2420	0.7
	56-60									
	66-70	10700	10	443	344	1190	19800	69.0	2370	1.0
	76-80									
	86-90	10800	11	488	371	1190	19800	69.2	2360	1.0
	96-100									
	106-110	10600	11	441	319	1180	19700	69.0	2350	1.1
1368-	10-17	10800	0	479	409	1230	19600	0.0	2610	
16	43-49	10600	0	459	406	1210	19600	0.0	2600	
	70-77	10700	5	479	401	1210	20200	0.0	2590	
1368	10-17	10600	4	482	393	1210	19700	0.0	2540	
23	43-49	10600	5	488	373	1180		0.0		
	70-77	10700	7	526	362	1180	19800	0.0	2370	
	103-109	10700	8	504	354	1180		0.0		
	130-137	10700	8	488	349	1180	19700	0.0	2200	
	163-169	10700	9	498	332	1170		0.0		

站位	Depth (amhaf)	Na ⁺	NH_4^+	K ⁺	Ca^{+2}	Mg^{+2}	Cl ⁻	Br ⁻	SO_4^{-2}	I ⁻
1269	(CIIIDSI)	(ppiii)	(ppiii)	(ppiii)	(ppiii)	(ppiii)	(ppiii)	(ppiii)	(ppiii)	(ppiii)
1508 06B	16.20									
900	26.30									
	20-30	_								
	46.50									
	40-50 56-60	10700	6	132	371	1200	20000	69.6	2460	0.4
	66-70	10700	0	432	371	1200	20000	09.0	2400	0.4
	76-80	11100	7	442	371	1220	20100	70.0	2420	0.5
	86-90	11100	1	772	571	1220	20100	70.0	2420	0.5
	96-100	10900	8	471	324	1220	20000	69.8	2360	0.6
	106-110	10700	0	771	524	1220	20000	07.0	2300	0.0
	116-120	11000	8	454	364	1250	20200	697	2350	0.7
	126-130	11000	0		201	1200	20200	0,11	2000	017
	136-140	10800	8	438	359	1200	20600	69.8	2350	0.7
	146-150		-							
	158-160	10800	8	427	343	1120	20300	70.0	2300	0.7
	166-170	_								
1368	6-10	10700	5	453	420	1260	19600	69.9	2530	
96D	16-20			12.1	1					
	26-30	10600	5	449	405	1240	19700	70.3	2460	
	36-40			1.7.9						
	46-50	10600	6	446	397	1240	20600	70.1	2520	
	56-60									
	66-70	10600	6	445	398	1230	20100	69.8		
	76-80									
	86-90	10700	6	444	408	1240	20000	70.1	2500	
	96-100									
	106-110	10800	6	459	404	1240	20500	70.4	2530	0.3
	116-120									
	126-130	10700	7	459	394	1210	21800	70.0	2640	0.3
	136-140									
	146-150	10600	7	459	384	1210	21000	70.1	2550	0.4
	166-170	10100	7	429	370	1150	19900	70.1	2420	0.4
1368	10-17	11200	0	498	383	1230	19500	73.9	2460	1.0
22	43-49	_					21300	75.2	2320	2.8
	70-77	11000	0	471	253	1120	19300	76.5	1710	5.0
	103-109	10800	13	480	181	1070	19500	78.1	1260	7.6
	130-137	10700	15	474	136	1030	19400	78.8	915	9.4
	163-169	10800	17	480	78.6	1000	19500	80.7	478	11.9
1368	10-17	10600	4	469	397	1210	19800		2560	
20	43-49	10700	5	481	396	1230	20400		2600	
	70-77	10800	6	493	397	1210	19900		2510	
1368	10-17	10600	0	473	414	1220	20100	0.0	2650	
KP9	43-49	10700	4	471	440	1220	20000	0.0	2610	

續表 4-5: ORIII-1368 孔隙水主要陰陽離子分析結果

續去 4-5:	ORIII-1368	习陷水士	亜哈陽離 子	- 分析 仕里
頃れすり・	ORIH 1500	コロホハー	女伝 汤 种 1	カードロート

站位	Depth (cmbsf)	Na ⁺ (ppm)	NH_4^+ (ppm)	K ⁺ (ppm)	Ca ⁺² (ppm)	Mg ⁺² (ppm)	Cl ⁻ (ppm)	Br ⁻ (ppm)	SO_4^{-2} (ppm)	I ⁻ (ppm)
1368	6-10	10400	5	437	405	1210	21000	70.0	2700	0.3
96F	16-20	10100	U				21000	, 010	2,00	0.0
	26-30	10600	6	443	410	1230	20100	70.3	2550	0.5
	36-40		-							
	46-50	10500	7	452	403	1220	19900	70.2	2510	0.5
	56-60									
	66-70	10600	7	454	401	1240	19700	70.0	2440	0.7
	76-80									
	86-90	10600	8	457	392	1220	19800	69.9	2400	0.8
	96-100									
	106-110	10500	9	447	391	1230	19800	70.0	2370	1.0
	116-120									
	126-130	10600	9	461	388	1220	19800	71.6	2340	1.1
1368	6-10	11000	4	500	447	1240	19100	69.2	2500	
96E	16-20									
	26-30	10800	5	448	386	1210	19500	69.2	2500	
	36-40									
	46-50	11300	7	452	391	1220	19900	69.4	2520	
	56-60									
	66-70	10800	8	450	376	1210	19600	69.7	2480	0.4
	76-80									
	86-90	10900	9	458	382	1220	20200	69.8	2510	0.4
	96-100									
	106-110	11000	10	467	383	1230	19800	69.7	2450	0.5
	116-120									
	126-130	10800	9	463	372	1200	20300	70.0	2480	0.5
	136-140									
	146-150	10700	11	452	371	1190	20500	69.9	2470	0.6
	158-160	10500		4.4.0	2.50	1210		5 0 1		0.6
10.00	166-170	10700	11	449	359	1210	20000	70.1	2(2)	0.6
1368	10-17	10800	4	471	417	1240	20000	70.3	2620	
11	43-49	10700	0	100	207	1020	20100	70.7	2470	0.5
	/0-//	10700	8	466	397	1230	20100	/0./	2470	0.5
	103-109	10700	10	161	202	1220	20200	70.9	2240	0.0
	150-157	10700	12	401	382	1220	20500	/0.8	2340	0.9
	100 107	10600	16	151	360	1100		70.6		13
1368	10 17	10000	1	405	408	1220	10000	70.0	2570	1.5
1308	10-17	10700	4	493	408	1220	19900	70.8	2370	
,	+J-49 70_77	10700	10	481	361	1100	20300	71 1	2340	1.0
	103-109	10700	10	+04	501	1190	20300	/1.1	2340	1.0
	130-137	10800	12	487	333	1170	20600	71.5	2100	17
	163-169	10000			200		_0000		_100	

續表 4-5: ORIII-1368 孔隙水主要陰陽離子分析結果

站位	Depth	Na^+	$\mathrm{NH_4}^+$	\mathbf{K}^+	Ca ⁺²	Mg^{+2}	Cl	Br	SO_4^{-2}	I
- LI 13E	(cmbsf)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
1368	10-17	10800	13	471	404	1250	20500	71.3	2380	2.6
9	43-49									
	70-77	10700	19	459	380	1230	20800	72.1	2150	4.9
	103-109									
	130-137	10600	21	462	353	1200	20000	72.8	1920	5.5
1368	10-17									
19	43-49									
	70-77	10600	17	449	388	1220	20000	0.0	2200	
	103-109	10500	26	448	340	1200	19500	0.0	1690	
1368	10-17	10700	6	493	363	1160	20700	70.5	2530	0.5
12	43-49	10700	5	486	374	1170	20400	70.3	2640	
	70-77	10700	7	485	341	1120	19900	71.1	2270	0.9
1368	10-17	10800	6	470	356	1180	20200	70.2	2580	0.6
13	43-49									
	70-77	10800	6	515	360	1140	20100	71.2	2510	1.1
	103-109		_	1000	offer sheet in the	No.				
	130-137	11000	7	542	349	1230	20400	71.4	2460	1.6
1368	10-17	10800	4	498	412	1220	20500	70.6	2670	
5	43-49	4.0	12134					- 4 0		
	70-77	10700	7	496	386	1210	20600	71.0	2520	1.7
	103-109	10500	10	100		1000			2250	• •
1.0.10	130-137	10700	10	492	374	1200	20000	71.7	2350	2.9
1368	10-17	17500	6	670	739	2240	20000	70.5	2570	1.3
4	43-49	1 < 1 0 0	10	610	- CO 1	2000	10000	71.0	22.40	25
	/0-//	16100	12	657	621	2080	19900	/1.3	2340	3.5
	103-109	16600	20	(2)	600	2120	10000	70.0	2000	<i>с 7</i>
	130-137	16600	20	636	680	2120	19900	12.2	2080	5.7
1269	10.17	10000	7	520	200	1170	20000	70.4	25(0)	1.4
1308	10-17	10000	/	529	398	1170	20000	/0.4	2560	1.4
3	43-49	10200	10	407	266	1210	_	71.2	_	2.2
	102 100	10000	19	477	300	1210		/1.5		5.2
	130 137	10700	12	471	300	1170	20300	71.0	2010	4.0
1368	10.17	10700	12	4/1	355	1200	20300	70.9	2010	4.9
2	10-17	10700	10	457	355	1200	20100	10.9	2470	2.0
2	70-77	10800	20	161	363	1260	20200	72.5	2130	65
	103-109	10000	20	404	505	1200	20200	12.5	2150	0.5
	130-137	10600	28	476	333	620	20100	73.9	1860	92
	163-169	10000	20	770	555	020	20100	13.7	1000	7.2
1368	10-17	10700	9	450	380	1200	19600	70.4	2500	14
1	43-49	10700	,	150	500	1200	17000	70.7	2300	1.7
	70-77	10700	17	457	357	1210	20000	71.5	2240	4 2
	103-109	10700	17		551	1210	20000	71.5	2210	1.2
	130-137	10700	26	469	265	1190	20900	71.9	2270	5.5
	100 101	10,00	-0	/	-00		_0/00		22,0	5.5

表 4-6:ORIII-1384	孔隙水主	要陰陽離子	分析結果
------------------	------	-------	------

站位	Depth	Na ⁺	NH_4^+	K ⁺	Ca ⁺²	Mg ⁺²	Cl	Br	SO_4^{-2}	I ⁻
	(cmbsf)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
1384	0-10									
FGT39B	10-20	10900	5	459	403	1270		70.4		
	20-30									
	30-40	10800	4	450	405	1250		70.6		
	40-50									
	50-60	10700	4	459	405	1240		71.0		
	60-70									
	70-80	10800	0	455	407	1260		70.4		
	80-90									
	90-100	11100	5	480	410	1280		71.0		
	100-110									
1384	0-10									
FGT39B-2	10-20						19700		2620	
	20-30									
	30-40						19800		2630	
	40-50									
	50-60						19900		2630	
	60-70		387 4	1-1	179	10 3				
	70-80	_					20100		2650	
	80-90			12	201	100	1			
	90-100				23.55.71.0		20400		2700	
	100-105		1200	71	A II	5/200				
1384	0						19700		2610	
FHLC-1	0-10	10800	5	417	409	1270	20100	69.9	2620	0
	10-20									
	20-30			- and the	1000 million		20300	69.9	2620	0
	30-40									
	40-50	10700	6	421	234	1280	19900	69.8	2560	0
	50-60									
	60-70	11400	7	652	402	1260	19700	70.0	2530	0
	70-80	_								
	80-90						19600	69.9	2490	0.3
	90-100									
	100-110						19900	69.8	2510	0.4
	110-120									
	120-130						19800	69.7	2500	0.4
1384-	0-10	10600	0	421	413	1220	20000	69.8	2640	0.0
FYB	10-20									
	20-30	10700	0	428	411	1250	20000	70.0	2650	0.3
	30-40									
	40-50	10700	4	431	412	1240	20000	70.2	2620	
	50-60						19800	69.8	2600	0.3
	60-70	10800	4	435	411	1260				
	80-90	10800	5	453	417	1250				

續 寿 4-6:	ORIII-1384 孔 陷水主要陰陽離子分析结果	
頃れてい	OKIII 1501 101家水工 文 法 18 种 1 万 州 哈木	

站位	Depth (cmbsf)	Na ⁺	NH_4^+	K ⁺	Ca^{+2}	Mg^{+2}	Cl ⁻	Br ⁻	SO_4^{-2}	I ⁻
1204		(ppiii)	(ppiii)	(ppiii)	(ppiii)	(ppiii)	20000	(ppiii)	(ppiii)	(ppiii)
1304 EVB3	0.10	10800	0	421	430	1270	10600	70.4	2030	0
11105	10.20	10800	0	421	439	1270	19000	70.4	2700	0
	20-30	10800	0	431	417	1280	20300	70.8	2780	0
	30-40	10000	0	431	717	1200	20300	70.0	2700	0
	40-50	10800	0	479	396	1250	19600	70.2	2660	0
	50-60	10000	Ũ	,	070	1200	17000	7012	2000	Ū
	60-70	10700	0	444	393	1250	20900	70.5	2650	0.3
	70-80	0								
	80-90	10800	0	469	383	1240	20300	70.9	2660	0.4
	90-100									
	100-110						20200	70.7	2610	0.6
	110-120									
	120-130	10900	4	460	369	1390	20100	71.2	2540	0.8
	130-140									
	140-150			1000	of Denet Line	No.	20400	71.5	2510	1.0
	150-160									
	160-170	10700	5	461	453	1150	19900	70.9	2330	1.3
	170-180									
	180-190		51	6	10/01	10	20000	71.4	2270	1.5
1384	0						20000		2640	
FGS5-1	0-10	10800	0	488	407	1230	19900	70.4	2620	0.0
	10-20									
	20-30	10900	0	497	351	1210	20000	70.2	2360	0.0
	30-40									
	40-50	11000	3	509	317	1220	19900	70.6	2000	0.3
	50-60			10.1	• • •					
	60-70	10800	4	486	281	1190	20300	70.7	1770	0.3
	70-80	11000		500	222	1200	20.400	71.0	1.400	0.4
	80-90	11000	5	509	232	1200	20400	/1.2	1490	0.4
1204	90-100						10200		2620	
1384 ECS5 2	0 10						20400	70.7	2620	0
F055-2	10.20						20400	/0./	2090	0
	20.30						10000	70.3	2620	0
	30-40						17900	10.5	2020	0
	40-50						20000	70.3	2600	0
	50-60						20000	10.5	2000	0
	60-70						20000	71.1	2560	0
	70-80						20000	, 1.1		
	80-90						20500	70.9	2430	0

續表 4-6: ORIII-1384 孔隙水主要陰陽離子分析結果

站位	Depth (cmbsf)	Na ⁺ (ppm)	NH_4^+	K ⁺ (ppm)	Ca^{+2}	Mg ⁺² (ppm)	Cl ⁻ (ppm)	Br ⁻ (ppm)	SO_4^{-2}	I ⁻ (ppm)
1384	0	(pp)	(pp)	(pp)	(pp)	(pp)	20100	(pp)	2650	(pp)
F27	0-10	10600	0	469	390	1200	18000	69.9	2380	0
	10-20	10000	0	109	070	1200	10000	0,1,1		0
	20-30	10600	5	484	364	1200	19600	70.0	2420	0
	30-40									
	40-50	10600	0	472	346	1180	20300	70.2	2400	0.4
	50-60									
	60-70	10800	6	490	357	1200	19500	70.4	2270	0.5
	70-80									
	80-90	10600	6	478	350	1190	19700	70.2	2260	0.6
	90-100	-								
	100-110						20300	70.6	2290	0.7
	110-120									
	120-130						20200	70.5	2260	0.7
	130-140									
	140-150	10900	7	498	339	1200	19900	70.8	2170	0.8
	150-160									
	160-170	10800	8	489	331	1190	20600	71.0	2200	0.9
	170-180		(100) - W.C.							
	180-190	10700	7	482	325	1180	20000	70.4	2130	0.9
	190-200	10000	0	100		51100	2 0000	70.0	2020	
1204	200-210	10800	8	493	314	1180	20000	70.8	2020	1.1
1384 F29	0-10				<u> </u>		19500	/0.6	2560	_
F28	10-20	11000	E	520	204	1200	20100	71.0	2520	07
	20-30	11000	5	520	384	1200	20100	/1.2	2530	0.7
	40.45	11100	7	561	366	1100	20400	72 4	2460	12
138/	0.10	11100	/	501	300	1190	20400	72.4	2400	1.2
F9	10-20	10800	5	507	402	1210	20600	70.4	2710	
17	20-30	10000	5	507	402	1210	20000	70.4	2710	
	30-40	10900	4	512	390	1210	21500	70 7	2750	04
	40-50	10,00		012	070	1210	21000	,,	2700	
	50-60	11000	5	515	370	1210	18400	71.3	2400	0.7
	60-70		-			-		0.0		
	70-80							71.2		1.0
	80-90							0.0		
	90-100	11000	7	504	359	1190	19100	71.2	2390	1.3
	100-110									
	110-120	10800	5	498	345	1160	20000	71.5	2410	1.8
	120-130									
	130-140	10800	7	492	335	1160	20800	72.0	2440	2.1

站位	Depth (cmbsf)	Na ⁺ (ppm)	NH4 ⁺ (ppm)	K ⁺ (ppm)	Ca ⁺² (ppm)	Mg ⁺² (ppm)	Cl ⁻ (ppm)	Br ⁻ (ppm)	SO ₄ ⁻² (ppm)	I ⁻ (ppm)
1384	0-10									
FGT1	10-20	10900	5	506	394	1230	20600	70.7	2580	0.5
	20-30									
	30-40	10800	8	497	375	1180	19200	70.9	2250	1.3
	40-50									
	50-60	10900	11	491	363	1170	19600	71.4	2160	2.0
	60-70									
	70-75	11200	12	482	354	1160	19900	71.3	2110	2.4
1384	0						20400		2690	
FG23	0-10	10600	5	467	396	1200				
	10-20	10300	6	480	373	1140	19900	70.1	2490	0.5
	20-30	10900	8	486	378	1190				
	30-40	10800	11	487	361	1170	22800		2510	

續表 4-6:ORIII-1384 孔隙水主要陰陽離子分析結果

4-2 各航次孔隙水Δ (DIC+Ca⁺²+Mg⁺²) /ΔSO4⁻² 計算結果

依據式 3-3 的計算方式,將所有站位去除硫酸鹽沒變化之站位後計算出 ΔSO_4^{-2} 和 $\Delta (DIC+Ca^{+2}+Mg^{+2})(結果詳列於表 4-8~4-12),並以 \Delta SO_4^{-2} 為橫軸,$ $<math>\Delta (DIC+Ca^{+2}+Mg^{+2}) 為縱軸畫圖(圖 4-1~4-6),可看出分析樣品大致可以分$ 為三群:第一群斜率落在2附近,以 ORIII-1323 航次的站位為主;第二群斜率落在1.2附近,大多數站位屬於這一群;第三群斜率落在1附近,包括 ORI-860-27、ORI-902A-8、ORI-902B-9、ORIII-1369-96L、ORIII-1368-96J、ORIII-1384-FGS5-1等站位樣品。

圖 4-1:ORI-860 航次之Δ (DIC+Ca⁺²+Mg⁺²) 對ΔSO₄⁻² 作圖

圖 4-3:ORI-902B 航次之Δ (DIC+Ca⁺²+Mg⁺²) 對ΔSO4⁻² 作圖

圖 4-5:ORIII-1368 航次之 Δ (DIC+Ca⁺²+Mg⁺²) 對 Δ SO₄⁻²作圖

站位	Depth	ΔNH_4^+	ΔSO_4^{-2}	$\Delta (\text{DIC+Ca}^{+2} + \text{Mg}^{+2})$
	(cmbsf)	(mM)	(mM)	(mM)
ORI-860-1	10-16			
	43-49	0.0	0.0	0.0
	70-76		1.2	
	103-109		0.8	
	130-136		0.7	
	163-169	0.1	0.8	1.2
	190-196		1.4	
	223-229	0.4	2.6	3.9
	250-256		5.4	
	283-289	0.9	9.9	12.8
	310-316	_	13.1	-
	343-349	1.3	17.3	21.6
	370-376			
ORI-860-2	10-16			
	43-49	0.0	0.0	0.0
	70-76		and the second second	
	103-109	0.1	0.8	1.0
	130-136	14-1	- Se 1	
	163-169	0.2	1.6	2.4
	190-196	1 AL	(a) V	
	223-229	0.5	5.0	6.7
	250-256	171 4	145/2	3
	283-289	1.0	11.5	14.7
	310-316		You .	Y
	343-349	1.3	16.6	20.9
ORI-860-18	10-16	al series	A COLORIST	
	43-49	0.0	0.0	0.0
	70-76			
	103-109			
	130-136			
	163-169	0.2	2.0	2.6
	190-196			
	223-229	0.3	4.1	5.2
	250-256			
	283-289	0.7	10.1	12.6
	310-316			
	343-349	1.1	16.4	20.2
	370-376			
	403-409	2.6	27.1	35.7

表 4-7:ORI-860 航次之Δ(DIC+Ca⁺²+Mg⁺²)和ΔSO4⁻²計算結果

站位	Depth	ΔNH_4^+	ΔSO_4^{-2}	$\Delta (DIC+Ca^{+2}+Mg^{+2})$
	(cmbsf)	(mM)	(mM)	(mM)
ORI-860-19	10-16			
	43-49	0.0	0.0	0.0
	70-76			
	103-109			
	130-136	0.2	1.2	1.7
	163-169			
	190-196	0.2	1.8	2.5
	223-229			
	250-256			
	283-289	0.4	2.7	3.9
	310-316			
	343-349	0.4	3.8	5.2
ORI-860-21	10-16	0.0	0.0	0.0
	43-49	0.1	0.6	0.9
	70-76	0.1	1.9	2.3
	103-109	and for the year	No.	
	130-136	0.2	2.2	2.9
	163-169	0.3	3.5	4.4
	190-196	0.4	4.9	6.2
	223-229	0.4	6.9	8.2
	250-256	0.5	8.7	10.2
	283-289	0.6	11.6	13.7
	310-316	0.7	14.4	16.7
ORI-860-22	10-16	0.0	0.0	0.0
	43-49			
	70-76	and the first	No. 10 States	
	103-109	0.7	10.7	13.1
ORI-860-26	10-16			
	43-49	0.0	0.0	0.0
	70-76	0.1	4.1	4.4
	103-109	0.3	4.3	5.5
	130-136	0.5	6.6	8.2
	163-169	0.6	8.5	10.5
	190-196	0.7	10.8	13.0
	223-229	0.9	13.9	16.8
	250-256	1.0	15.6	18.8
ORI-860-28	10-16	0.0	0.0	0.0
	43-49	0.0	2.4	2.4
	70-76			
	103-109	0.5	6.0	7.8
	130-136	0.7	8.2	10.3
	163-169	0.8	10.1	12.7
	190-196			
	223-229	1.1	16.6	20.2

續表 4-7:ORI-860 航次之Δ(DIC+Ca⁺²+Mg⁺²)和ΔSO4⁻²計算結果

站位	Depth (cmbsf)	$\Delta \mathrm{NH_4^+}$ (mM)	$\frac{\Delta SO_4^{-2}}{(mM)}$	$\begin{array}{c} \Delta \hspace{0.1 in} (\hspace{0.1 cm} \text{DIC+Ca}^{+2} \hspace{-0.1 cm} + \hspace{-0.1 cm} \text{Mg}^{+2} \hspace{0.1 cm}) \\ (\hspace{0.1 cm} \text{mM} \hspace{0.1 cm}) \end{array}$
ORI-860-27	10-16			
	43-49	0.0	0.0	0.0
	70-76			
	103-109	0.0	19.0	19.0
ORI-860-30	10-16	0.0	0.0	0.0
	43-49	0.1	2.6	3.0
	70-76	0.3	27.5	28.6
	103-109	0.5	6.8	8.4
	130-136	0.6	9.0	10.8
	163-169	0.7	11.5	13.7
	190-196	0.9	14.3	17.2
	223-229	1.0	15.6	18.8
	250-256	1.0	17.4	20.8
	283-289		19.6	23.5

續表 4-7:ORI-860 航次之A(DIC+Ca⁺²+Mg⁺²)和ASO4⁻²計算結果

表 4-8:ORI-902A 航次之Δ (DIC+Ca⁺²+Mg⁺²) 和ΔSO4⁻²計算結果

站位	Depth (cmbsf)	ΔNH_4^+ (mM)	$\frac{\Delta SO_4^{-2}}{(mM)}$	$\frac{\Delta (DIC+Ca^{+2}+Mg^{+2})}{(mM)}$
902A-9	10-17	0.0	0.0	0.0
	43-49		311 /	0
	70-77			
	103-109	0.4	24.7	26.1
902A-3	10-17	0.0	0.0	0.0
	43-49	2.	TO TO	7
	70-77	0.6	4.3	6.3
	103-109			
	130-137	1.2	8.9	12.8
	163-169			
	190-197	1.6	11.0	16.3
	223-229			
	250-257	1.8	12.5	18.4
902A-2	10-17	0.0	0.0	0.0
	39-45			
	70-77	0.2	2.3	2.9
	103-109	0.3	27.6	
	130-137			
	163-169	0.4	3.3	4.6
	190-197			
	223-229	0.4	3.1	4.4
	250-257			
	283-289	0.3	2.3	3.2
	310-317			
	343-349	0.4	3.4	4.6
	403-409	0.6	8.4	10.4

站位	Depth (cmbsf)	ΔNH_4^+ (mM)	$\frac{\Delta SO_4^{-2}}{(mM)}$	$\frac{\Delta (\text{DIC+Ca}^{+2}+\text{Mg}^{+2})}{(\text{mM})}$
902A-8	43-49	0.0	0.0	0.0
	70-77			
	103-109			
	130-137	0.2	4.5	5.1
	163-169			
	190-197			
	223-229			
	250-257	0.2	18.8	19.6
	283-289			
	310-317	0.3	25.6	26.6
902A-6	10-17	0.0	0.0	0.0
	43-49			
	70-77-2/2	0.2	5.4	6.2
	103-109			
	130-137	0.4	7.6	9.1
	163-169	and the first of the	No. California	
	190-197	0.5	10.3	12.1
	223-229	8/1	1 - Sp	66
902A-5	10-17	0.0	0.0	0.0
	43-49	1 ab	101 1	
	70-77	0.4	4.1	5.4
	103-109	171 4	145/2	
	124-131	0.7	6.5	8.8
	157-163		NOV.	<u> </u>
	190-197	1.0	10.1	13.3
	223-229	and the first	Real Property in the second	
	250-253	1.1	12.4	16.1
	283-289			
	310-317	1.3	14.2	18.4
	343-349			
	370-377	1.4	16.4	21.0

續表 4-8:ORI-902A 航次之Δ(DIC+Ca⁺²+Mg⁺²)和ΔSO4⁻²計算結果

站位	Depth	$\Delta \mathrm{NH_4}^+$	ΔSO_4^{-2}	$\Delta (DIC+Ca^{+2}+Mg^{+2})$
-0 12	(cmbsf)	(mM)	(mM)	(mM)
902B-9	8-16			
	24-30		0.0	
	54-60			
	68-74	0.0	2.0	2.0
	114-120			
	128-134	0.4	23.7	24.9
902B-27	10-20	0.0	0.0	0.0
	40-50	0.4	4.0	5.4
	74-80			
	130-140	1.4	14.2	18.8
	220-230	2.3	21.9	29.6
	250-260			
	260-265			
902B-KP5-3	8-16	0.0	0.0	0.0
	58-66	0.7	6.7	8.9
	74-80	0.8	6.7	9.4
	128-136		12.3	
	144-150	3-1	- S. M	
902B-HSU-2	38-46	0.0	0.0	0.0
	84-90	0.5	6.2	7.8
	98-102	0.7	10.3	12.5
	144-150	7 1.3	21.1	25.3
	158-166	1.6	23.4	28.8
902B-HSU1	8-16	0.0	0.0	0.0
	28-34	1.4	13.6	18.3
	60-68	0.5	5.1	6.9
	78-87	0.7	6.1	8.5
	112-120	1.4	12.4	17.0
902B-KP7-1	54-60	0.0	0.0	0.0
	68-76			
	114-120	0.4	2.6	4.0
	128-136	0.5	4.0	5.6
902B-T6	38-46	0.0	0.0	0.0
	54-60	0.0	0.4	0.4
	98-106	0.0	3.5	3.5
	114-120	0.2	7.2	7.9

表 4-9:ORI-902B 航次之Δ(DIC+Ca⁺²+Mg⁺²)和ΔSO4⁻²計算結果

站位	Depth (comb of)	ΔNH_4^+	ΔSO_4^{-2}	$\Delta (\text{DIC+Ca}^{+2} + \text{Mg}^{+2})$
	(cmbsi)	$(\mathbf{m}\mathbf{w})$	(mM)	(mivi)
1323-1-1	0-10	0.0	0.0	0.0
	10-20			
	20-30	0.6	3.5	5.5
	30-40			
	40-50	1.0	4.4	
	50-60			
	60-70	1.0	5.3	8.7
	70-80			
	80-90	1.2	5.7	9.5
	90-100			
	100-110	1.3	6.8	11.2
13231-2	0-10	0.0	0.0	0.0
	10-20			
	20-30		1.5	
	30-40			
	40-50		3.0	
	50-60			
	60-70	10/1	3.7	
	70-80			
	80-90	1.3	4.8	9.1
	90-100			
	100-110	1.3	5.9	10.4

表 4-10:ORIII-1323 航次之Δ(DIC+Ca⁺²+Mg⁺²)和ΔSO4⁻²計算結果

站位	Depth	$\Delta \mathrm{NH_4}^+$	ΔSO_4^{-2}	$\Delta (DIC+Ca^{+2}+Mg^{+2})$
	(cmbsf)	(mM)	(mM)	(mM)
1368-96J	6-10			
	16-20	0.0	0.0	0.0
	26-30			
	36-40	0.1	13.7	13.9
1368-96L	6-10			
	16-20	0.0	0.0	0.0
	26-30			
	36-40			
	46-50			
	56-60	0.0	0.0	0.0
	66-70			
	76-80	0.0	1.2	1.2
	86-90			
	96-100	0.0	2.2	2.2
	106-110			
	116-120	0.0	8.3	8.3
1368-23	10-17	0.0	0.0	0.0
	43-49	1-1	1 N 19	
	70-77	0.1	1.7	2.1
	103-109	1 al	61 19	10
	130-137	0.2	3.5	4.3
	163-169	71 44	115/0	7 M
1368-22	10-17	0.0	0.0	0.0
	43-49		2 CON	1
	70-77	0.0	7.9	7.9
	103-109	0.8	12.7	15.2
	130-137	0.8	16.4	19.1
	163-169	1.0	21.0	24.2
1368-20	10-17	0.0	0.0	0.0
	43-49			
	70-77	0.1	0.5	0.9
1368-19	10-17			
	43-49			
	70-77	0.0	0.0	0.0
	103-109	0.5	5.4	7.2
1368-12	10-17	0.0	0.0	0.0
	43-49			
	70-77	0.1	2.8	3.2
1368-9	10-17	0.0	0.0	0.0
	43-49			
	70-77	0.3	2.3	3.5
	103-109			
	130-137	0.5	4.9	6.4

表 4-11:ORIII-1368 航次之Δ(DIC+Ca⁺²+Mg⁺²)和ΔSO4⁻²計算結果

站位	Depth (cmbsf)	$\Delta \mathrm{NH_4^+}$ (mM)	ΔSO_4^{-2} (mM)	$\begin{array}{c} \Delta \ (\ \text{DIC+Ca}^{+2}\text{+}\text{Mg}^{+2}) \\ (\ \text{mM} \) \end{array}$
1368-3	10-17	0.0	0.0	0.0
	43-49			
	70-77			
	103-109			
	130-137	0.3	5.9	6.8
1368-2	10-17	0.0	0.0	0.0
	43-49			
	70-77	0.6	3.6	5.5
	103-109			
	130-137	1.0	6.5	9.8

續表 4-11:ORIII-1368 航次之Δ(DIC+Ca⁺²+Mg⁺²)和ΔSO4⁻²計算結果

表 4-12:ORIII-1384 航次之Δ(DIC+Ca⁺²+Mg⁺²)和ΔSO4⁻²計算結

站位	Depth (cmbsf)	$\Delta \mathrm{NH_4^+}$ (mM)	ΔSO_4^{-2} (mM)	$\begin{array}{c} \Delta \ (\ \text{DIC+Ca}^{+2} \text{+} \text{Mg}^{+2} \) \\ (\ \text{mM} \) \end{array}$
1384-FGS5-1	0-10	0.0	0.0	0.0
	10-20	ye the	AN SE	
	20-30	0.0	2.8	2.8
	30-40	(a)	AND	
	40-50	0.2	6.6	7.2
	50-60	198	21/	
	60-70	0.2	9.0	9.9
	70-80		1/98	1
	80-90	0.3	12.1	13.0
1384-FGT1	0-10		and state	
	10-20	0.0	0.0	0.0
	20-30			
	30-40	0.2	3.5	4.1
	40-50			
	50-60	0.3	4.5	5.5
	60-70			
	70-75	0.4	5.0	6.3

4-3 各航次沉積物中碘之分析結果

各站位沉積物中碘的濃度有明顯差異,範圍約從5(μg/g)~35(μg/g), 大部分為10(μg/g),但是 ORI-860-14 站位的樣品濃度偏低,而 ORI-902B-HSU1 和 ORIII-1368-22 的樣品濃度則偏高。

而孔隙水中的碘與有機碳之比值集中在10~13(×10⁻⁴)(g/g),而ORI-860-1、 ORI-902B-HSU1和ORIII-1368-22站位樣品之比值則是高出許多,最高可達113 (×10⁻⁴)(g/g)(表 4-14)。

	Depth (cmbsf)	Ι (μg/g)	Organic Carbon* (wt. %)	I/OC (g/g) (x10 ⁴)
860-1	10-16	9.4	0.4	23.6
	250-256	8.2	0.3	32.6
860-3	70-76	10.5	0.6	17.4
	190-196	9.3	0.8	11.6
	310-316	8.0	0.7	11.4
860-27	70-76	8.3	0.6	13.9
	190-196	9.5	1.0	9.5
860-26	163-169	9.2	0.8	12.3
	343-349	9.5	0.7	13.6
860-14	10-16	5.6	0.5	11.2
	310-316	4.6	0.5	9.3
902B-HSU1	128-134	34.4	0.4	86.1
1368-22	10-17	18.1	0.4	45.3
	103-109	14.8	0.3	59.3
	163-169	28.2	0.3	112.7

表 4-13: 沉積物中碘之濃度

*資料來源為林曉武(2008、2009)

第五章 討論

5-1 台灣西南海域天然氣潛藏區孔隙水中溴、碘、硫酸鹽、銨根離子 及甲烷氣隨深度之變化

由前人研究顯示,孔隙水中的溶解碘(iodide)是一種親生物性元素(Ullman and Aller, 1983; Kennedy and Elderfield, 1987a),它的生成與有機物分解有很密 切的關係。再加上溶解碘和甲烷的傳輸行為(transport behavior)相近(Martin et al., 1993),因此可藉由孔隙水中溶解碘的濃度隨深度之變化曲線,來推斷孔隙水 中的溶解碘是由當地沉積物成岩作用所生成、還是由其他地區生成再遷移至此區 域,可以更進一步探討是否有深部流體之加入。

依據本研究樣品之孔隙水中碘、硫酸鹽、銨根、及沉積物中甲烷氣濃度隨 深度之變化,可以將結果區分成四大類(圖 5-1)。第一類:孔隙水中碘、硫酸 鹽、銨根及沉積物中甲烷氣濃度隨深度沒有變化;第二類:孔隙水中碘、銨根濃 度隨深度增加有明顯增加趨勢,而孔隙水中硫酸鹽濃度隨深度增加有明顯減少趨 勢,其中再依沉積物中甲烷濃度是否有隨深度變化而增加分成兩小類,2A 沉積 物中甲烷濃度隨深度增加有明顯增加,2B 沉積物中甲烷濃度隨深度增加沒有增 加;第三類:孔隙水中碘、銨根及沉積物中甲烷氣濃度隨深度增加有增加,而孔 隙水中硫酸鹽濃度隨深度增加有明顯減少趨勢,但是孔隙水中銨根濃度增加斜率 大於第二類;第四類:沉積物中甲烷濃度隨深度有明顯增加,而孔隙水中硫酸鹽 濃度隨深度增加有明顯減少趨勢,但是孔隙水中發根濃度隨深度並沒有增加

55

圖 5-1:依據孔隙水中碘(圖中紅色方形)、硫酸鹽(圖中空心圓圈)、銨根(圖 中綠色菱形)及沉積物中甲烷濃(圖中黑色圓圈)度隨深度之變化分成四類, 第一類黑色框,第二類紅色框,第三類黃色框,第四類藍色框。

第一類:孔隙水中碘、硫酸鹽、銨根及沉積物中甲烷氣濃度隨深度沒有變化, 跟一般海洋環境相同,所以此類為背景值站(圖5-2);第二類:(2A)孔隙水中 碘、銨根和沉積物中甲烷氣濃度隨深度增加有明顯增加趨勢,而孔隙水中硫酸鹽 濃度隨深度增加有明顯減少趨勢,這代表有深部來源的甲烷及碘由深部往上擴散, 所以我們可以看到沉積物中甲烷及孔隙水中碘隨深度有明顯增加之趨勢(圖 5-3),(2B) 孔隙水中碘和銨根濃度隨深度增加有明顯增加趨勢,而孔隙水中硫 酸鹽濃度隨深度增加有明顯減少趨勢,但是沉積物中甲烷氣濃度隨深度增加沒有 增加 (圖 5-4), 可知此類有產生甲烷厭氧氧化反應, 但是 SMI (甲烷硫酸鹽交界 面)深度較深,造成沉積物中甲烷氣濃度在 SMI 之上都為零,所以在此類中並沒 有看到沉積物中甲烷濃度隨深度之變化,因為甲烷厭氧氧化反應並不會消耗碘, 所以還是可以看到孔隙水中碘的濃度有隨深度增加可以證明有深部之流體;第三 類:孔隙水中碘、銨根及沉積物中甲烷氣濃度隨深度增加有增加,而孔隙水中硫 酸鹽濃度隨深度增加有明顯減少趨勢,但是孔隙水中銨根濃度增加斜率大於第二 類(圖 5-5),當有機物跟硫酸鹽反應分解時會釋放出銨根離子,由銨根濃度隨 深度增加斜率很高可知此類有機物分解速率高;第四類:沉積物中甲烷濃度隨深 度有明顯增加,而孔隙水中硫酸鹽濃度隨深度增加有明顯減少趨勢,但是孔隙水 中碘和銨根濃度隨深度增加沒有增加趨勢(圖 5-6),代表此類有機物分解少, 硫酸鹽的消耗是以與甲烷行甲烷厭氧氧化反應為主。

57

圖 5-4: 第二類(2B): SMI 較深也有深部來源

圖 5-5: 第三類: 硫酸鹽之消耗以有機物反應為

主

圖 5-6: 第四類: 硫酸鹽之消耗以甲烷厭氧氧化反應為主

5-2 台灣西南海域天然氣潛藏區流體來源

在有機物分解的過程中,會把溴、碘和銨根離子釋放到孔隙水中,且這三個 離子有相似的擴散速率,所以假設孔隙水中的溴、碘和銨根是由有機物分解而釋 放的那其相對比例(I⁻/NH⁴⁺、Br⁻/NH⁴⁺、I⁻/Br⁻)應該與海洋有機物中的比例 (I/N=1.1*10⁻³、Br/N=1.7*10⁻²、I/Br=0.6*10⁻¹)相似(Martin et al., 1993),如 果比例不相似代表有其他來源之加入。

如前面所示,本研究分析結果顯示,研究區域中許多站位沈積物孔隙水中的 碘離子濃度隨深度增加而有明顯增加趨勢。一般說來海水中的碘離子濃度很低, 而碘的來源為有機物分解,可分為當地有機物分解或是深部有機物分解;為了想 了解這些孔隙水中的高碘濃度是從何處來,所以我們依據孔隙水中溴、碘和銨根 離子兩兩作圖,並跟海洋有機物中的溴、碘和銨根離子濃度作比較。

圖 5-7 為各類站位孔隙水中溴對銨根作圖,第一類、第三類、與第四類樣品 之孔隙水溴和銨根投圖的斜率與海洋有機物斜率(圖中虛線)相似,這代表孔隙 水中溴與銨根在大部分站位是由當地有機物分解而釋放到孔隙水中;在第二類樣 品孔隙水中溴和銨根投圖的斜率是大於海洋有機物的,代表可能此區的孔隙水中 溴除了當地有機物分解產生之外可能還有其他來源。

圖 5-7:各分類孔隙水中溴對銨根作圖,長虛線為海洋有機物之溴和銨根之值

圖 5-8 為各分類孔隙水中碘對銨根作圖,第一類、第三類、與第四類樣品其 孔隙水中碘對銨根濃度作圖斜率則接近海洋有機物,這代表孔隙水中碘與銨根在 大部分站位是由當地有機物分解而釋放到孔隙水中。第二類樣品孔隙水中碘對銨 根濃度作圖(圖 5-8),其投圖的斜率遠高於海洋有機物斜率(圖中虛線),代表 此區的孔隙水中碘成份,除了當地有機物分解產生之外可能還有其他來源。

60

圖 5-8:各分類孔隙水中碘對銨根作圖,長虛線為海洋有機物之碘和銨根之值

圖 5-9 為各分類孔隙水中碘對溴作圖,第一類和第四類樣品孔隙水中碘和溴 投圖斜率接近海洋有機物,這代表孔隙水中碘與溴在這兩類地區是由當地有機物 分解而釋放到孔隙水中。而第二類與第三類樣品孔隙水中碘和溴投圖的斜率遠高 於海洋有機物斜率(圖中虛線),代表此區的孔隙水中碘除了當地有機物分解產 生之外可能還有其他來源。再者第二類和第三類樣品孔隙水中碘溴比值斜率都相 近,代表可能為另一個相似的端成分來源。

圖 5-9:各分類孔隙水中碘對溴作圖,長虛線為海洋有機物之碘和溴之值

為了進一步釐清孔隙水中碘的異常高值,是受控於當地沉積物中碘之含量還 是有其他高碘來源之加入,因此本研究亦分析了沉積物中碘之含量。

圖 5-10 可看出 ORI-860-3、ORI-860-27、ORI-860-26 和 ORI-860-14 站位沉 積物中之 I/OC 比值相近,都介於 10~13 (x10⁻⁴)(g/g),但是孔隙水中之 I⁻/NH⁴ 卻有差異,這代表此區樣品孔隙水中之碘的高值,並非受控於沉積物中碘之含量, 可能是有其他來源加入,此結果與 You et al. (2004) 由硼同位素證明泥火山有 深部流體加入結果相呼應。

而 ORI-860-26 和 ORIII-1368-22 站位樣品孔隙水中有相近之 I⁻/NH4⁺比值, 但是沉積物中 I/OC 比值卻有極大之差異,這代表 ORI-860-26 樣品之碘高值可能 受控於其他高碘來源之加入,而 ORIII-1368-22 站位樣品卻是受控於沉積物中之 高 I/OC 比值。

5-3 各航次孔隙水∆ (DIC+Ca+2+Mg+2) /△SO4-2 計算結果討論

研究顯示, 孔隙水中之硫酸鹽消耗有兩個途徑, 一個是與有機物反應, 兩莫 耳的有機物會消耗一莫耳的硫酸鹽反應產生兩莫耳的 DIC (式 3-1); 另一個途徑 是與甲烷氣行甲烷厭氧氧化反應, 一莫耳的甲烷消耗一莫耳的硫酸鹽產生一莫耳 的 DIC (式 3-2), 所以我們可以利用硫酸鹽的消耗量與 DIC 增加量的比值, 進一 步區分硫酸鹽是以有機物消耗為主、還是被甲烷無氧氧化反應 (AMO) 消耗為主。 而 DIC 會與孔隙水中的鈣、鎂離子產生沉澱, 使得 DIC 濃度下降, 所以必須經由 鈣、鎂離子校正後再對硫酸鹽的消耗量做圖, 如果點落在 2:1(Δ (DIC+Ca⁺²+Mg⁺²): Δ SO4⁻²) 線上, 代表是以有機物 消耗硫酸鹽 為主, 如果點落在 1:1 (Δ (DIC+Ca⁺²+Mg⁺²): Δ SO4⁻²) 線上, 代表是以甲烷氣消耗硫酸鹽為主。
分析結果顯示, ORI-860、ORI-902A、ORI-902B 航次大部分站位樣品屬於第 二類,其Δ(DIC+Ca⁺²+Mg⁺²):ΔSO4⁻²比值大多集中在1.2-1.3 附近(圖 5-11、 5-12、5-13),代表著此區的硫酸鹽消耗主要與甲烷氣反應但是混合少部分有機 物消耗反應;而在 ORI-860-27、ORI-902A-8、ORI-902B-9、ORI-902B-T6 等站位 之樣品,其Δ(DIC+Ca⁺²+Mg⁺²):ΔSO4⁻²比值接近1,代表這些站位的樣品以甲 烷消耗硫酸鹽為主。

ORI11-1323 航次大部分站位為第一類,沒有硫酸鹽的消耗所以沒有投在此圖 上,而 1-1 站和 1-2 站屬於第三類,其Δ (DIC+Ca⁺²+Mg⁺²):ΔSO4⁻²比值接近 2 (圖 5-14),代表著此區的硫酸鹽消耗主要是與有機物消耗反應為主; ORI11-1368 航次 96 站附近的站位大部分屬於第一類,沒有硫酸鹽的消耗所以沒 有投在此圖上,其中只有 96J 和 96L 兩個站位樣品屬於為第四類,其Δ (DIC+Ca⁺²+Mg⁺²):ΔSO4⁻²比值接近 1 (圖 5-15),代表此站位樣品為甲烷消 耗硫酸鹽為主,其他在被動大陸邊緣的站位大部分為第一類,其中 2 和 22 站位 樣品屬於第二類 (2B),其Δ (DIC+Ca⁺²+Mg⁺²);ΔSO4⁻²比值大多集中在 1.2 附 近 (圖 5-15),代表著此區的硫酸鹽消耗主要與甲烷氣反應但是混合少部分有 機物消耗反應;ORI11-1384 航次大部分為第一類,其中 GT1 站位樣品為第二類 (2B),其Δ (DIC+Ca⁺²+Mg⁺²):ΔSO4⁻²比值大多集中在 1.2 附 近 (圖 5-16), 代表著此區的硫酸鹽消耗主要與甲烷氣反應但是混合少部分有機物消耗反應, FGS5-1 站位樣品屬於第四類,其Δ (DIC+Ca⁺²+Mg⁺²):ΔSO4⁻²比值接近 1 (圖 5-16)代表著此區的硫酸鹽消耗主要與甲烷氣反應但是混合少部分有機物消耗反 應。

綜合結果顯示,第一類因為沒有硫酸鹽的消耗所以沒有投在此圖上;第二類 樣品,其 Δ (DIC+Ca⁺²+Mg⁺²) : Δ SO₄⁻² 比值大多集中在 1.2 附近,代表著此區 的硫酸鹽消耗主要與甲烷氣反應但是混合少部分有機物消耗反應;第三類,其 Δ (DIC+Ca⁺²+Mg⁺²) : Δ SO₄⁻² 比值接近 2,代表著此區的硫酸鹽消耗主要是與有 機物消耗反應為主;第四類,其 Δ (DIC+Ca⁺²+Mg⁺²) : Δ SO₄⁻² 比值接近 1 代表 著此區的硫酸鹽消耗主要與甲烷氣反應但是混合少部分有機物消耗反應。所以 ORI-860 航次之台南海脊及永安海脊和ORI-902A、902B之好景海脊和ORIII-1368 航次和 ORIII-1384 航次站位的硫酸鹽消耗主要是偏向甲烷氣消耗為主;只有在 ORIII-1323 航次的 1-1 和 1-2 站位的硫酸鹽消耗是以有機物反應為主。所以台 灣西南海域大多數站位之硫酸鹽消耗是以甲烷氣消耗為主,有少部分站位樣品之 硫酸鹽消耗為有機物氧化為主。因此再藉由硫酸鹽之消耗量估算甲烷通量時,應 經由此方法之校正扣除有機物消耗之硫酸鹽,方得以得甲烷之通量。

圖 5-11:ORI-860 航次 Δ (DIC+Ca⁺²+Mg⁺²) : Δ SO₄⁻² 圖

圖 5-13:ORI-902B 航次 Δ (DIC+Ca⁺²+Mg⁺²) : Δ SO₄⁻² 圖

圖 5-15:ORIII-1368 航次 Δ (DIC+Ca⁺²+Mg⁺²) : Δ SO₄⁻² 圖

在空間上的分布, ORI-860 航次於台南海脊附近所採集之樣品主要為第一類 和第二類(2A)為主(圖 5-17), 而永安海脊主要屬於第二類(除了一個站位(27 站)屬於第四類)(圖 5-18)。ORI-902A 航次的好景海脊主要屬於第二類(除了 一個站位(8站)屬於第四類)(圖 5-19)。ORI-902B 航次的好景海脊主要是第 二類為主(除了兩個站位(9站和 T6站)屬於第四類)(圖 5-20)。ORIII-1323 航次因為岩心長度較短,所以大部分為第一類,只有 1-1 和 1-2 站為第三類(圖 5-21、5-22)。ORIII-1368 航次在 96 附近的站位大部分為第一類,其中只有 96J 和 96L 兩個站屬於第四類(圖 5-23),其他在被動大陸邊緣的站位大部分為第一 類,其中 2 和 22 站為第二類(2B)(圖 5-24、5-25)。ORIII-1384 航次大部分為 第一類,其中 GT1 為第二類(2B), FGS5-1 為第四類(圖 5-26、5-27)。

圖 5-18:各類在 ORI-860 永安海脊上之空間分布

圖 5-20: 各類在 ORI-902B 好景海脊上之空間分布

圖 5-22: 各類在 ORIII-1323 航次之空間分布

圖 5-24: 各類在 ORIII-1368 航次被動大陸邊緣之空間分布

圖 5-26: 各類在 ORIII-1384 航次之空間分布

圖 5-27: 各類在 ORIII-1384 航次之空間分布

把本研究採樣位置與西南海域線性構造一起做圖(圖 5-28),可看出台南 海脊、永安海脊和好景海脊都有密集之線性構造通過,所以在此三個海脊之站 位在分類上都是以第二類為主,有明顯之深部流體加入之分類。而ORIII-1323、 ORIII-1368和 ORIII-1384之航次所採之站位沒有密集之線性構造通過,且採 集之岩心較短,所以多為背景值第一分類為主。

圖 5-28:線性構造與採樣點位關係圖 (修改 Lin et al, 2008),紅色為 ORI-860 航次採樣位置,藍色為 ORI-902A、902B 航次之採樣位置,紫色為 ORIII-1323 航次採樣位置,灰色為 ORIII-1368 航次採樣位置,橘色為 ORIII-1384 航次採樣位置

第六章 結論

- 台灣西南海域天然氣潛藏區分析結果顯示,大部分站位孔隙水樣品中的溴濃 度有隨深度增加而增加之趨勢,約從70ppm增加到80ppm;大部分站位孔 隙水的碘濃度都隨深度有明顯的增加趨勢,從海水值0.05ppm增加到最高 可達20ppm,增加斜率最大可以達到0.19ppm/cm(902B-HSU2);而大部分 站位樣品孔隙水的銨根濃度亦都隨深度有明顯的增加趨勢,約從4ppm增加 到40ppm,增加斜率最大可達0.24ppm/cm(902B-HSU2)。
- 依據沈積物樣品孔隙水中碘、硫酸鹽、銨根、及甲烷氣濃度隨深度之變化, 可以把分析結果區分成四大類。

第一類:孔隙水中碘、硫酸鹽、銨根、及沉積物中甲烷氣濃度隨深度沒有變 化,此為背景值站;代表一般海洋環境沒有深部流體之加入,孔隙水中碘和 沉積物中甲烷氣濃度沒有增加,而有機物分解速率很慢,使得孔隙水中銨根 沒有明顯增加,硫酸鹽沒有明顯減少。

第二類: 孔隙水中碘、銨根濃度隨深度增加有明顯增加趨勢,而孔隙水中硫酸鹽濃度隨深度增加有明顯減少趨勢,其中再依沉積物中甲烷濃度是否有隨深度變化而增加分成兩小類: 2A 類,沉積物中甲烷濃度隨深度增加有明顯 增加; 2B 類,沉積物中甲烷濃度隨深度增加沒有增加,此類代表有大量深 部來源加入之站位,才使得孔隙水中碘和沉積物中甲烷氣濃度有明顯增加和 孔隙水中硫酸鹽濃度明顯減少, 2A 與 2B 之差別在於我們採岩心之深度是否 已經達到 SMI 之深度, 2A 代表已採到 SMI 深度, 2B 代表還沒採到 SMI 之深 度。

第三類:孔隙水中碘、銨根、及沉積物中甲烷氣濃度隨深度增加有增加,而 孔隙水中硫酸鹽濃度隨深度增加有明顯減少趨勢,但是孔隙水中銨根濃度增 加斜率大於第二類,當有機物跟硫酸鹽反應分解時會釋放出銨根離子,由孔 隙水中銨根濃度隨深度增加斜率很高可知此類硫酸鹽的消耗可能大部分是 跟有機物消耗而非與甲烷行甲烷厭氧氧化反應消耗。

第四類:沉積物中甲烷濃度隨深度有明顯增加,而孔隙水中硫酸鹽濃度隨深 度增加有明顯減少趨勢,但是孔隙水中碘和銨根濃度隨深度增加沒有增加趨 勢,硫酸鹽濃度有消耗甲烷氣濃度有增加但銨根濃度沒有變化,代表此類硫 酸鹽的消耗是以與甲烷行甲烷厭氧氧化反應為主。

- 由Δ(DIC+Ca⁺²+Mg⁺²):ΔSO4⁻²之投圖,可以將樣品區分為三群:第一群樣品 的比值接近2,代表硫酸鹽的消耗是以與有機物消耗為主,為分類上的第三 類為主;第二群樣品的比值接近1.2,代表硫酸鹽之消耗以與甲烷行厭氧氧 化反應為主,但是還是有些許比例是與有機物反應,為分類上之第二類(2A、 2B);第三群樣品的比值接近1,代表硫酸鹽之消耗以與甲烷行厭氧氧化反 應為主,為分類上之第四類。
- 由孔隙水中之溴對銨根濃度、碘對銨根濃度和碘對溴濃度作圖,可知本研究 區樣品之孔隙水中高濃度碘來源,除了當地有機物分解而來之外,還有其他 來源加入。
- 5. ORI-860-3、ORI-860-27、ORI-860-26和 ORI-860-14站位沉積物中之 I/OC 比值相近,但是孔隙水中之 I⁻/NH⁴卻有差異,這代表此區之孔隙水中之碘的 高值非受控於沉積物中碘之含量,可能是有其他來源加入。
- 6. ORI-860-26 和 ORIII-1368-22 孔隙水中有相近之 I⁻/NH⁴比值,但是沉積物中 I/OC 比值卻有極大之差異,代表 ORI-860-26 樣品之碘高值,主要受控於 其他高碘來源之加入,而 ORIII-1368-22 樣品卻是受控於沉積物中之高 I/OC 比值。
- 台南海脊、永安海脊和好景海脊都有密集之線性構造通過,所以在此三個海 脊之站位在分類上都是以第二類為主,有明顯之深部流體加入之分類。

第七章 参考文獻

林曉武(2008)台灣西南海域新興能源—天然氣水合物資源調查與評估地球化學 調查研究(1/4)—台灣西南海域自生性碳酸鹽及硫物種之變化與天然氣

水合物賦存之關係。中央地質調查所報告第97-29C號,80頁。

- 林曉武(2009)台灣西南海域新興能源—天然氣水合物資源調查與評估地球化學 調查研究(2/4)—台灣西南海域自生性碳酸鹽及硫物種之變化與天然氣 水合物賦存之關係。中央地質調查所報告第98—27C號,90頁。
- 胡漢杰(2006)水體中顆粒與沈積物之有機碳、氮及其穩定同位素研究:南海及 翠峰湖。國立中央大學水文科學研究所論文,136頁。
- 鍾三雄、張碩芳 (2001) 甲烷氣水包合物的研究調查回顧與展望。經濟部中央 地質調查所彙刊,第14號,第35-82頁。

劉家瑄 (2002) 臺灣大地構造,黃奇瑜主編,中國地質學會出版,共210頁。

- Bekins, B.A., McCaffrey, A.M. and Dreiss, S.J., 1995. Episodic and constant flow models for the origin of low-chloride waters in a modern accretionary complex. Water Resources Research, 31(12): 3205-3215.
- Chan, L.H. and Kastner, M., 2000. Lithium isotopic compositions of pore fluids and sediments in the Costa Rica subduction zone: Implications for fluid processes and sediment contribution to the arc volcanoes. Earth and Planetary Science Letters, 183(1-2): 275-290.
- Chi, W.C., Reed, D.L., Liu, C.S. and Lundberg, N., 1998. Distribution of the bottom-simulating reflector in the offshore Taiwan collision zone. Terrestrial Atmospheric and Oceanic Sciences, 9(4): 779-794.
- Chiu, J.K., Tseng, W.H. and Liu, C.S., 2006. Distribution of gassy sediments and mud volcanoes offshore southwestern Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 17(4): 703-722.
- Egeberg, P.K. and Dickens, G.R., 1999. Thermodynamic and pore water halogen constraints on gas hydrate distribution at ODP Site 997 (Blake Ridge). Chemical Geology, 153(1-4): 53-79.
- Elderfield, H. and Truesdale, V.W., 1980. On the biophilic nature of iodine in seawater. Earth and Planetary Science Letters, 50(1): 105-114.
- Fehn, U., Lu, Z. and Tomaru, H., 2006. Data report: ¹²⁹I/I ratios and halogen concentrations in pore water of hydrates ridge and their relevance for the origin of gas hydrates; a progress report. Proceedings of the Ocean Drilling Program, Scientific Results, 204: 1-25.

- Harvey, G.R., 1980. Study of the chemistry of iodine and bromine in marinesediments. Marine Chemistry, 8(4): 327-332.
- Kastner, M., Elderfield, H. and Martin, J.B., 1991. Fluids in convergent margins- what do we know about their composition, origin, role in diagenesis and importance for oceanic chemical fluxes. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 335(1638): 243-259.
- Kastner, M., Sample, J. C., Whiticar, J., Hovland, M., Cragg, B. A. and Parkes, J. R., 1995. Geochemical evidence for fluid flow and diagenesis at the Cascadia Margin convergent margin. Proceedings of the Ocean Drilling Program, Scientific Results, 146: 375-384.
- Kennedy, H.A. and Elderfield, H., 1987a. Iodine diagenesis in non-pelagic deep-sea sediments. Geochimica et Cosmochimica Acta, 51(9): 2505-2514.
- Kennedy, H.A. and Elderfield, H., 1987b. Iodine diagenesis in pelagic deep-sea sediments. Geochimica et Cosmochimica Acta, 51(9): 2489-2504.
- Lin, A.T., Liu, C.-S., Lin, C.-C., Schnurle, P., Chen, G.-Y., Liao, W.-Z., Teng, L.S., Chuang, H.-R. and Wu, M.-S. 2008. Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: An example from Taiwan. Marine Geology, 255: 186-203.
- Liu, C.S., Huang, I.L. and Teng, L.S., 1997. Structural features off southwestern Taiwan. Marine Geology, 137(3-4): 305-319.
- Liu, C.S., Schnurle, P., Wang, Y. S., Chung, S. H., Chen, S. C. and Hsiuan, T. H., 2006. Distribution and characters of gas hydrate offshore of southwestern Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 17(4): 615-644.
- Martin, J.B., Kastner, M. and Elderfield, H., 1991. Lithium-sources in pore fluids of Peru slope sediments and implications for oceanic fluxes. Marine Geology, 102(1-4): 281-292.
- Martin, J.B., Gieskes, J.M., Torres, M. and Kastner, M., 1993. Bromine and iodine in Peru Margin sediments and pore fluids: implications for fluid origins. Geochimica et Cosmochimica Acta, 57(18): 4377-4389.
- Muramatsu, Y., Doi, T., Tomaru, H., Fehn, U., Takeuchi, R. and Matsumoto, R., 2007. Halogen concentrations in pore waters and sediments of the Nankai Trough, Japan: Implications for the origin of gas hydrates. Applied Geochemistry, 22(3): 534-556.
- Price, N.B. and Calvert, S.E., 1977. The contrasting geochemical behaviours of iodine and bromine in recent sediments from the Namibian shelf. Geochimica et Cosmochimica Acta, 41(12): 1769-1755.
- Saffer, D.M. and Bekins, B.A., 1999. Fluid budgets at convergent plate margins:

Implications for the extent and duration of fault-zone dilation. Geology, 27(12): 1095-1098.

- Schnurle, P., Hsiuan, T. H. and Liu, C. S., 1999. Constrains on free gas and gas hydrate bearing sediments from multi-channel seismic data, offshore southwestern Taiwan. Petroleum Geology of Taiwan, 33: 21-42
- Suess, E. and Whiticar, M.J., 1989. Methane-derived CO₂ in pore fluids expelled from the oregon subduction zone. Palaeogeography Palaeoclimatology Palaeoecology, 71(1-2): 119-136.
- Teichert, B.M.A., Torres, M.E., Bohrmann, G. and Eisenhauer, A., 2005. Fluid sources, fluid pathways and diagenetic reactions across an accretionary prism revealed by Sr and B geochemistry. Earth and Planetary Science Letters, 239(1-2): 106-121.
- Torres, M.E., Teichert, B.M.A., Trehu, A.M., Borowski, W. and Tomaru, H., 2004. Relationship of pore water freshening to accretionary processes in the Cascadia margin: Fluid sources and gas hydrate abundance. Geophysical Research Letters, 31, L22305, doi:10.1029/2004GL021219
- Tsunogai, S. and Henmi, T., 1971. Iodine in the Surface Water of the Ocean. Journal of the Oceanographical Society of Japan, 27(2): 67-72.
- Ullman, W.J. and Aller, R.C., 1983. Rates of iodine remineralization in terrigenous near-shore sediments. Geochimica Et Cosmochimica Acta, 47(8): 1423-1432.
- You, C.F., Gieskes, J.M., Lee, T., Yui, T.F. and Chen, H.W., 2004. Geochemistry of mud volcano fluids in the Taiwan accretionary prism. Applied Geochemistry, 19(5): 695-707.