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摘要

關聯群落 (metacommunity) 由多個群落所組成，並且被四種生態機制所影

響:競爭 (competition)、環境過濾 (environmental filtering)、遷徙 (dispersal)和隨機

性 (stochasticity)。許多方法被用來量化群落組成背後的機制，但僅有少數研究將

這些方法整合起來。Guzman等人 (2022)整合多種分析方法來量化群落組成背後

的機制並使用模擬資料評估其效力。雖然他們的研究整合了多種分析方法，並

總結只有結合多種分析方法並應用在完整的關聯群落資料上，才有較高的準確

率去量化機制，但他們沒有提出其方法能否應用在實際資料上。本研究討論了

Guzman等人 (2022)的方法能否應用在實際的生態研究中。我們利用關聯群落模

型來產生模擬資料，其模型考慮了非生物和生物間的交互作用以及遷徙等機制。

透過調整模型的參數，我們可以改變機制的強度。本研究考慮了三種分析方法：

beta-diversity variation partitioning、Stegen 方法和 dispersal niche continuum index，

並利用隨機森林 (random forest)將這些分析方法產生的統計量與模擬模型的參數

連結起來。根據模擬資料，本研究顯示，越多的分析方法和完整的時間尺度資料

被結合起來，估計參數的準確率就會變高。本研究也發現，當資料不完整時，我

們對於機制的估計會變得不準確，與 Guzman等人 (2022)指出的相同。本研究另

外展示了 Guzman等人 (2022)的方法在福山森林動態樣區的應用，發現在福山的

物種之間擁有競爭和遷徙之間的權衡 (competition-colonization trade-off)，並探討

在使用其方法時需要考慮的地方。

關鍵字：群落組成、觀察資料、福山森林動態樣區、機制群落模型、隨機森林、
模擬
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Abstract

A metacommunity is a set of interconnected communities that incorporate multiple co-

occurring species with different abundances. The species composition of a metacommu-

nity is shaped by four main ecological processes: competition, environmental filtering,

dispersal and stochasticity. Ecologists have proposed several analytical methods, such as

beta-diversity variation partitioning, to quantify the relative importance of ecological pro-

cesses in shaping metacommunity composition based on information derived from meta-

community composition structure. However, these analytical methods were rarely synthe-

sized. Guzman et al. (2022) integrated multiple analytical methods to estimate the relative

importance of ecological processes and evaluated their framework based on the simulated

data generated by a process-based simulationmodel. They concluded that integratingmul-

tiple analytical methods and high completeness of the metacommunity across space and

time will improve the correctness of the estimation of process-based model parameters.

However, the authors did not discuss whether their framework could be applied to obser-

vational data. In our study, we reconstructed Guzman et al.’s framework and discussed

its application value to the empirical community data. We used the same process-based

model as Guzman et al. to generate simulated metacommunity data, incorporating abi-

otic and biotic interactions, dispersal, and stochasticity. We manipulated the parameters
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of these four processes to generate metacommunity scenarios with different strengths of

underlying processes. We used three analytical methods to calculate summary statistics

of the simulated data: 1) beta-diversity variation partitioning, 2) Stegen’s framework, and

3) dispersal-niche continuum index (DNCI). We then used the random forest algorithm

to estimate the parameters of the process-based model and disentangle different meta-

community scenarios based on the summary statistics. Based on the simulated data, we

showed that if the random forest model incorporated the summary statistics derived from

more analytical methods andmore snapshots of the species composition, it will have better

accuracy for estimating the model parameters. We also showed that the incompleteness of

the species composition data will decrease the accuracy in estimating the model parame-

ters. On the contrary, the accuracy was not influenced by the choice of the snapshots in the

simulation. We also illustrated the application of the trained random forest by analyzing

repeated census of woody plant species in the Fushan Forest Dynamics Plot and showed

that the community of this forest is based mainly on competition-colonization trade-off.

We also discussed what needs to be considered when Guzman et al.’s framework is ap-

plied. We conclude that Guzman et al.’s framework based on integrated analytical meth-

ods could be successfully applied to observational studies to disentangle the ecological

processes shaping observed metacommunity.
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1. Introduction

Diverse ecological processes result in different species composition in themetacommunity

across space and time. Ecologists have proposed several analytical methods to estimate the

strength of these underlying processes. However, since in natural communities we often

do not know the real impact of these processes on the variation of species composition,

those analytical methods are difficult to evaluate and compare. One solution may be to

draw support frommetacommunity simulationmodels. By using community data which is

simulated based on the known strength of ecological processes, we may evaluate whether

the implications derived by the analytical methods is accurate or not. In our study, we

use simulated datasets to explore the behaviors of multiple analytical methods and study

whether they can successfully estimate the strength of the ecological processes underlying

the observed metacommunities.

1.1 Effects of multiple processes on metacommunity structure

Four high-level ecological processes simultaneously affect the species composition dy-

namics within a metacommunity. At a local scale, competition and ecological drift are

the processes that may determine the local community structure (Leibold et al., 2004).

Competition is a negative species interaction that describes the impact of the population

size of a species on the growth rate of itself or the other species. The coexistence of the

competing species may result from the differentiation in resource usage or the similarity in

fitness (or carrying capacity) of the species (MacArthur & Levins, 1967; Chesson, 2000).

In contrast, ecological drift is a stochastic process that describes the cause of demograph-

ical or environmental stochasticity in the death of an individual or the local extinction of

a species within a community (Hubbell, 2011). After an individual dies, the space is re-

1
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leased and the surrounding species may have a chance to establish in the newly available

space (Fukami, 2015). At the regional scale, environmental filtering and dispersal may

play the role in regulating species turnover (Leibold et al., 2004). The species that can not

tolerate given abiotic environmental conditions will be absent from the local community

(Kraft et al., 2015). Different dispersal ability of the species may alleviate or facilitate

the flow of propagules between local communities (Tilman, 1997; MacArthur & Wilson,

1967). These ecological processes may interact with each other and simultaneously drive

the species turnover across spatial and temporal scales (Thompson et al., 2020). Meta-

community archetypes describe different perspectives of a metacommunity and focus on

the effects of various sets of ecological processes (Leibold et al., 2004; Leibold & Chase,

2017) (Tab. 1).

Predicting the future dynamics of the metacommunity structure under the pressure

of anthropogenic activity and climate change has already become an essential topic in

conservation (Clark et al., 2001; Evans, 2012; Chase et al., 2020). By studying the rela-

tionship between anthropogenic factors and climatic conditions to the strength of ecologi-

cal processes across metacommunities, the mechanisms underlying the loss of ecosystem

services may be disentangled. This may improve the management decisions to optimize

ecosystem services (Hodgson & Halpern, 2019; Chase et al., 2020). How to estimate

the strength of ecological processes underlying the observed metacommunities thereby

becomes an urgent question that is related to human welfare.

Process-based modeling is an approach to studying how the ecological processes

would affect the species composition of a metacommunity. A process-based model is de-

fined as“a model that characterizes changes in a system’s state as explicit functions of the

events that drive those state changes＂(Connolly et al., 2017). It does not need to be deter-

2
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ministic, but it can also encompass stochastic ecological processes, such as demographic

stochasticity and dispersal (Connolly et al., 2017). The parameters in the model may rep-

resent the strength of certain ecological processes. By altering the parameters within the

process-based model, we may study the effect of the processes on species coexistence

(Adler et al., 2007, 2010) and the relative abundance of the species (Ke et al., 2015).

Moreover, by fitting the model parameters in the process-based model, the strength of the

ecological processes underlying the observed metacommunity may be disentangled. For

example, Adler et al. (2010) fitted process-based models by four plant species data from

U.S. Sheep Experiment Station and proposed that stabilizing mechanisms are important

to maintain the diversity of plant community.

1.2 Analytical methods to infer the underlying ecological processes

Ecologists have proposed many analytical methods that aim to identify the presence (or

quantify the relative importance) of various ecological processes since the mid of 20th

century (MacArthur, 1958; Diamond, 1975). More recently, ecologists starts to integrate

multiple types of data, e.g. data about the environmental conditions, functional traits and

phylogeny, and propose various analytical methods to summarize the ecological informa-

tion from the observed metacommunity by multiple summary statistics. These summary

statistics serve the purpose to quantify the effect of certain ecological processes on the

species turnover or variation in functional traits and phylogeny structure (Fig. 1a).

Null model is one of the approaches that compare the observed community data to the

one after randomization (Gotelli & McGill, 2006; Gotelli & Ulrich, 2012). Randomized

data is assumed to represent a metacommunity unaffected by certain underlying processes,

which is suggested to be the null hypothesis. If the observed data is considerably differ-

3
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Table 1: Definition of the terms used in our study.

Term Definition

Species turnover The changes in species composition across space and time.

Metacommunity A metacommunity is a set of local communities linked by the

dispersal of multiple interacting species (Wilson, 1992; Leibold

et al., 2004). In our study, the observed metacommunity is de-

fined as the metacommunity in the field, and the simulated meta-

community is the metacommunity generated by the simulation

model.

Ecological process The force that drives the species turnover across space and time.

In the metacommunity ecology framework, four high-level pro-

cesses are proposed to drive species turnover: competition, eco-

logical drift, environmental filtering and dispersal (Leibold &

Chase, 2017).

Metacommunity archetypes Four metacommunity archetypes are the different perspectives to

study the species turnover within the metacommunity (Leibold

et al., 2004; Leibold & Chase, 2017):

Patch dynamics (PD) Competition hierarchy and trade-off in competition and coloniza-

tion ability among species determine the local extinction and col-

onization of the species and further cause the species turnover

within the metacommunity.

Species sorting (SS) Species interaction and demographic differences between

species, which are associatedwith the environmental heterogene-

ity across space and time, are the main drivers of the species

turnover within the metacommunity.

Neutral dynamics (ND) Species in the metacommunity are demographically similar. Dis-

persal limitation among local communities and ecological drift

caused by the demographic stochasticity within the local patches

are the main drivers of species turnover.

Mass effect (ME) The species composition is influenced not only by species inter-

actions and demographic differences resulting from environmen-

tal heterogeneity, but also by the strong dispersal flow of propag-

ules. The strong dispersal ability of species may prevent the local

population of less competitive species from being out-competed

and maintain their presence in the community.

4
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Analytical methods The analytical methods discussed in our study are the statisti-

cal approaches that summarize the ecological information based

on the ecological community data by multiple summary statis-

tics. The summary statistics may indicate the influence of cer-

tain ecological processes on species turnover. For example, beta-

diversity variation partitioning is one of the analytical methods

that uses constrained ordination to relate species composition

with environmental and geographical variables. The variation

explained by environmental and geographical variables are the

summary statistics of this method.

Process-based simulation models The process-based approach explicitly models the effect of eco-

logical processes on the state of the system, e.g. population

size. The parameters in the process-based model may regulate

the strength of the ecological processes. By modifying the model

parameters, we may study how species composition would be in-

fluenced by the ecological processes.

ent from the randomized one, i.e. the null hypothesis is rejected, then the presence of

the processes may be confirmed. Without information on the habitat condition, studying

the clustering or over-dispersion of the species composition may disentangle the effect

of environmental filtering and competition on species turnover among local communi-

ties (Diamond, 1975; Connor & Simberloff, 1979; Chase & Myers, 2011). On the other

hand, testing the convergence or the divergence of the functional traits and phylogeny

composition between communities may also identify whether the observed metacommu-

nity is mainly driven by environmental filtering or competition (Mayfield & Levine, 2010;

Borics et al., 2020). The null model approach may also quantify the relative importance

of niche and dispersal processes underlying the metacommunity based on species compo-

sition and their phylogeny or functional traits (Stegen et al., 2013; Ford & Roberts, 2020),

or only based on species composition (Gibert & Escarguel, 2019; Vilmi et al., 2021). En-

vironmental and geographical data are dispensable for these null model-based analytical

5
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methods, which benefits the empiricists to apply these methods in practice. However, it

is difficult to benchmark whether the algorithm of randomization correctly diminishes the

effect of certain ecological processes. The mismatch between the algorithm and the null

hypothesis may result in the wrong type I error rate of the hypothesis testing (Molina &

Stone, 2020).

Other analytical methods are based on the summary statistics derived from the cor-

relation between different types of data, e.g. canonical analysis and hierarchical joint

species distribution approach. By canonical analysis, species composition is regressed on

environmental and geographical attributes (Borcard et al., 1992), or even functional traits

and phylogeny structure within the local communities (Sîrbu et al., 2021). We will refer

to this approach as beta-diversity variation partitioning in the following text. The rela-

tive importance of environmental filtering and dispersal may be estimated by the amount

of compositional variation explained by environmental and geographical data (Cottenie,

2005). The hierarchical joint species distribution approach uses a hierarchical generalized

linear model to relate species composition with environment, traits and phylogeny. In

the hierarchical modeling of species community (HMSC) proposed by Ovaskainen et al.

(2017), the random effects of biotic interaction, and spatial and temporal autocorrelation

are also considered in the model. The effect of environmental filtering, biotic interac-

tion and random processes on the species turnover may be quantified by the variation

partitioning among the explanatory variables in the hierarchical generalized linear model

(Ovaskainen et al., 2017).

Despite these analytical methods being widely used in ecological studies, ecologists

have no consensus on which analytical methods can best disentangle the ecological pro-

cesses underlying the observedmetacommunity. This disagreementmay be caused by sev-

6
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Figure 1: Flow diagram, showing the difference between the path most empiricists would take
(box (a) at the right side), compared to the path proposed by Guzman et al. (2022) (box (b) at
the left side). (a) Most empiricists disentangle the ecological processes underlying the observed
metacommunities based on the summary statistics calculated by a single analytical method. For
example, beta-diversity is one of the analytical methods to quantify the relative importance of
environmental filtering and dispersal on species turnover based on the explained variations in con-
strained ordination. (b) Guzman et al. (2022) extended this process by linking multiple summary
statistics derived from different analytical methods to the parametric space of the process-based
simulation model. The model parameters that regulate the strength of the ecological processes may
be predicted based on the summary statistics derived from the observational data.

eral reasons. One is the complex interrelated effects of the ecological processes on species

turnover. For example, it has been shown that the different relative importance of niche

and neutral processes may result in a similar pattern in species abundance (Chave et al.,

2002; McGill, 2010). Therefore, we may not be successful in disentangling the underly-

ing processes if we only consider species abundance data. The divergence/convergence

of trait was also reported to frequently fail in identifying the effect of competition and

environmental filtering (Mayfield & Levine, 2010). Second is the lack of comprehensive

studies that synthesize or compare the performance of different analytical methods. Even

though their performance has been assessed independently (McGill et al., 2006; Vellend

et al., 2014; Tucker et al., 2016; Ning et al., 2019), and criticized (Smith & Lundholm,

2010; Molina & Stone, 2020; Brown et al., 2017), these analytical methods have not been

compared systematically. Moreover, the lack of experimental studies which control the

7
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strength of multiple processes and generate replicates of experimental metacommunities

may also limit the way to evaluate these analytical methods.

Guzman et al. (2022) is one of the studies that attempted to synthesize multiple ana-

lytical methods to understand the underlying ecological processes (Fig. 1b). By using the

simulated metacommunity data with controlled strength of the ecological processes, the

performance of a single analytical method was evaluated. The authors also showed that

no single analytical method had an outstanding performance in predicting the underlying

ecological processes and proposed that multiple analytical methods should be considered

simultaneously. However, even though Guzman et al. (2022) successfully integrated mul-

tiple analytical methods, the authors did not discuss how their framework could be applied

to observational data.

In our study, we proposed that Guzman et al.’s framework can be applied to observa-

tional data to understand the underlying ecological processes. We reconstructed Guzman

et al.’s framework and demonstrated its application by analyzing repeated census of woody

plant species in the Fushan Forest Dynamics Plot. The performance and the robustness

of this framework were evaluated based on the simulated data. The pros and cons of this

procedure in practice were also discussed.

8
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2. Materials and Methods

In our study, we reconstructed the framework in Guzman et al. (2022) (Fig. 1b) and illus-

trated the application values by the empirical data. We created the simulated metacommu-

nity data, as in Guzman et al. (2022), by the process-based metacommunity framework

proposed by Thompson et al. (2020) with model parameters regulating the strength of

different ecological processes. A simulated metacommunity contained multiple patches,

referred as multiple local communities or plots. The three model parameters in Thomp-

son et al.’s framework, namely niche width, dispersal ability and competition type of the

species, are related to the relative importance of environmental filtering and stochasticity,

strength of dispersal limitation and different density-dependent biotic interactions under-

lying the metacommunity. We retained beta-diversity variation partitioning and replaced

the hierarchical modeling of species communities (HMSC) considered in Guzman et al.

(2022) by incorporating two alternative analytical methods: Stegen’s framework (Stegen

et al., 2013) and the dispersal-niche continuum index (Vilmi et al., 2021). We used the

random forest (RF) approach to predict the model parameters in Thompson et al.’s model

by using the summary statistics derived from the three analytical methods as predictors.

The performance and the robustness of the trained RF were evaluated by calculating the

correctness of the prediction and the sensitivity test on sampling effect and time steps se-

lection. To illustrate the application of Guzman et al.’s framework, we considered the

observational data from the repeated census of woody plant species in Fushan Forest Dy-

namics Plot in Taiwan and applied Guzman et al.’s framework to disentangle the ecolog-

ical processes underlying the Fushan plot. In our study, the symbols in the formulas were

mostly consistent with the original papers and we have not attempted to harmonize them.

9
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All the simulations and calculations were done in Julia (Bezanson et al., 2017) or R (R

Core Team, 2022).

2.1 Thompson et al.’s process process-based metacommunity simula-

tion model

2.1.1 Configuration of the metacommunity simulation model

Inference of the underlying ecological processes and the evaluation of the integrated ana-

lytical methods were based on the process-based metacommunity framework proposed by

Thompson et al. (2020). Here, metacommunity dynamics is assumed to be a discrete-time

model, including three main mechanisms: (1) density-independent abiotic response, (2)

density-dependent biotic interactions, and (3) dispersal. In addition, demographic stochas-

ticity is also considered in this model. Niche width, competition types and dispersal ability

of the species are the model parameters that modify the strength of these mechanisms and

further regulate the strength of the ecological processes. Rigorously, the narrow niche

width of the species indicates large fitness difference among species, which increase the

strength of environmental filtering in forming the species composition within the local

community; the wide niche width of the species results in similar fitness among species,

which conversely increases the stochasticity within a local community. Different compe-

tition types of species regulate the level of similarity in resource usage, priority effect or

competitive hierarchy. Different strength in the dispersal ability of the species indicates

different level of dispersal limitation for the species within the metacommunity. These

three model parameters are assumed to be independent of each other.

The framework of Thompson et al. (2020) modeled multiple populations of different

species in multiple patches. The population size of the species i in patch x at time t (t-th
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iteration) is denoted by Nix(t). They considered the discrete-time model

Nix(t+ 1) = Nix(t)
rix(t)

1 +
∑S

j=1 αijNjx(t)
+ Iix(t)− Eix(t)

where rix(t) is the density-independent growth rate of species i in patch x at time t, αij is

the per capita effect of species j on species i, S is the total number of species, Iix(t) is the

number of individuals of species i arrive at patch x from elsewhere in the metacommunity

via dispersal at time t, and Eix(t) is the number of individuals of species i leave from

patch x at time t via dispersal.

2.1.2 Parametric space in the metacommunity simulation model

This metacommunity framework assumes that the discrete patches within the metacom-

munity are linked by dispersal of the species. The patches are located on the torus with

equal height and width to avoid edge effect, and the x and y-coordinates of the patches

are randomly generated by uniform distribution between 1 and 100. Multiple individuals

and different species may co-occur within a patch. The distance matrix of the patches is

calculated by the Euclidean distance on the torus. The emigration rate and immigration

rate are related to the distance matrix of the patches. The further the patches are, the fewer

immigrants the patches produce (see next section for detailed explanations). The spatial

autocorrelated environmental condition of the patches is embedded in the simulated meta-

community. The value describing the state of environmental conditions in each patch

(hereafter called environment value) is generated by the stationary isotropic covariance

model (by RMexp() function in the RandomFields R package, Schlather et al., 2015). For

each patch, only one environment value ranging between 0 and 1 is generated. Contrary to

Thompson et al. (2020), in our study, the environment value was set to be constant and not
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fluctuated across time but varied across space with positive spatial autocorrelation. The

environment value directly influences species’ fitness and further causes the variation in

species composition (see next section for detailed explanations).

For each species, the species trait, analogical to niche optima, is generated by a ran-

dom value from a uniform distribution between 0 to 1. The species are assumed to have

the same niche width σ, which controls the relative importance of environmental filtering

and stochasticity in forming the species composition within a patch. The species are also

assumed to have the same dispersal ability a, controls the strength of dispersal limitation.

2.1.3 Modeling ecological processes in the metacommunity simula-

tion model

The density-independent per capita growth rate of species i in patch x at time t depends

on the niche of species i and the environment value in patch x, which is defined as

rix(t) = rmax exp(−
(zi − envx)

2

4σ2
)

where rmax is the maximum growth rate, zi is the species trait (niche optima) of species i,

envx is the environment value in patch x and σ is the niche width of every species. rmax

was set to be 5 in the simulation.

The competition parameter (αij) is defined as the per capita impact of species j on

species i. Five scenarios were considered: (1) no competition (αii = 1 and αij = 0)

(2) equal competition (αii = 1 and αij = αii), (3) stabilizing competition (αii = 1 and

αij ∼ Unif [0, 0.5]), (4) Mixed competition (αii = 1 and αij ∼ Unif [0, 1.5]) and (5)

competition-colonization trade-off. In case of competition-colonization trade-off, one-

third of the species are assigned to be the dominant species which are assumed to impose
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more impact on inferior species (αij ∼ Unif [1, 1.5] and αji ∼ Unif [0, 1] if species j

is a dominant species and species i is an inferior species). The impact from the same

types of species, e.g. one dominant species impacts on another dominant species, is lower

(αji ∼ Unif [0, 1]).

The number of emigrants Eix(t) of species i from patch x at time t is generated by

the binomial distribution where the parameter n is the number of individuals of species

i in patch x, and the parameters p is the dispersal ability of species i. The number of

immigrants is determined by the distances between patches on the torus and the number

of emigrants from the patches. Suppose the distance between patch x and patch y is dxy.

The expected number of emigrants from patch y immigrating to patch x is defined as

Iexp,iyx = Eiy
exp(−0.1dxy)∑M
x ̸=y exp(−0.1dxy)

where M is the total number of patches. Thus, the expected total number of immigrants

to patch x is equal to the total number of emigrants from other patches y to patch x

Iexp,ix =
∑
y ̸=x

Iexp,iyx =
∑
y ̸=x

Eiy exp(−0.1dxy)∑M
x̸=y exp(−0.1dxy)

, or Iexp = ED

where D is the dispersal matrix with non-diagnal elements Dxy =
exp(−0.1dxy)∑M
x ̸=y exp(−0.1dxy)

and diagonal elements = 0, and E is the emigration matrix with entries Eix.The expected

total number of immigrants of species i is equal to the total number of emigrant of species

i:

Iexp,i =
M∑
x=1

Iexp,ix =
M∑
x=1

M∑
y ̸=x

Eiy exp(−0.1dxy)∑M
x ̸=y exp(−0.1dxy)

=
M∑
y=1

Eiy

∑M
x ̸=y exp(−0.1dxy)∑M

x ̸=y exp(−0.1dxy)
=

M∑
y=1

Eiy

The number of immigrants of species i to patch x1, . . . , xM is generated by themultinomial

13

http://dx.doi.org/10.6342/NTU202300163


doi:10.6342/NTU202300163

Figure 2: Flow diagram of process-based metacommunity framework in Thompson et al. (2020).
For each replicate, the coordinates and the environment of the patches, and the trait of species are
independently generated before the iteration. The niche width, competition types and dispersal
ability of the species are the parameters that regulated the ecological processes underlying the
simulated metacommunity. After 2200 iterations, the simulation model generates maximally 100
nonempty patches on a torus. The regional species pool contains maximally 50 species. After
the 1800th iteration, every 20 iterations we records the species composition and abundance of the
species in each patch. Overall we get 20 snapshots of the species composition from a simulated
metacommunity.

distribution with probability (Iexp,ix1/Iexp,i, . . . , Iexp,ixM
/Iexp,i) and n equals to the total

number of emigrants of species i. The number of immigrants of species i to patch x at

time t is denoted as Iix(t). In the case of competition-colonization trade-off, the number of

emigrants of the dominant species (weak colonizers) is assumed to be less than the one of

the inferior species (strong colonizers). That is, the dispersal ability a of dominant species

is 0.1 times the dispersal ability of inferior species.

2.1.4 Simulation of metacommunity data with stochasticity

For each replicate of the simulation, the landscape configuration, including the coordinates

of the patches and the environment value of each patch, and species trait are first generated

before the iteration starts (Fig. 2). The environment value in each patch is fixed across

14

http://dx.doi.org/10.6342/NTU202300163


doi:10.6342/NTU202300163

all the iterations. The initial species abundance of each species in each patch is generated

independently by Poisson distribution with mean 0.5. The simulation ran 2200 iterations,

with 200 iterations for the burn-in stage. Within the burn-in stage, the recruitment event,

which adds individuals with numbers independently generated by Poisson distribution

with mean 0.5 for each species in each patch, is implemented every 20 iterations. The

number of individuals of species i in patch x in time t (t-th iteration) is denoted byNix(t).

Then, the expected individual number of species i in patch x in time t+ 1 is defined as

Nexp,ix(t+ 1) = Nix(t)
rix(t)

1 +
∑S

j=1 αijNjx(t)
− Eix(t) + Iix(t)

The number of individuals of species i in patch x at time t + 1 is generated by Poisson

distribution with mean equal to the expected individual number at time t, i.e. Nix(t+1) ∼

Poisson(Nexp,ix(t + 1)). After 1800 iterations, the abundance for each species in each

patch was recorded until simulation ended for every 20 iterations. We eventually recorded

20 snapshots of the species composition and abundance of a simulated metacommunity

(t = 1, 2, ..., 19, 20) (Fig. 2).

For each replicate, we simulated the metacommunity dynamics with the same pa-

rameters setting proposed by Thompson et al. (2020) (Fig. 2). Thirteen values for niche

width σ were selected from 0.001 to 10. Fifteen values for dispersal ability awere selected

within 0.00001 to 1. The competition type was specified from one of the five scenarios

mentioned in the previous section. Eighteen replicates were run independently.

For further analysis, the samples with low species occurrence, diversity and abun-

dance, i.e. total occurrence ≤ 200, total abundance ≤ 1000 or regional diversity ≤ 3,

were excluded. Then, four metacommunity archetypes were defined subjectively by a
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specific combination of parameters in the parametric space. Patch dynamics (PD) was

defined as the one with competition-colonization trade-off and arbitrary determined niche

width and dispersal ability; species sorting (SS) were defined as the scenario in species

with relatively narrow niche width, intermediate dispersal ability and stable competition;

neutral dynamics (ND) were defined as the one with relatively wide niche width, inter-

mediate dispersal ability and no competition; mass effect (ME) was defined as the one

with relatively strong dispersal ability, narrow niche width and stable competition. These

archetypes represented the extreme scenarios of the simulatedmetacommunity. Theywere

the samples for testing the effect of the sampling effort and were also used for visualizing

the dynamics of the summary statistics. The simulation in this section was run in Julia

(Bezanson et al., 2017).

2.2 Beta-diversity variation partitioning

Beta-diversity variation partitioning is a popular method for quantifying the relative im-

portance of environmental filtering and dispersal underlying species turnover. Thismethod

was proposed by Borcard et al. (1992) and has been widely used in ecological studies (Cot-

tenie, 2005; Peres-Neto et al., 2006; Smith & Lundholm, 2010). The method is based on

the constrained ordination technique, which quantifies the variation in species composition

explained by environment and distance between plots. Species composition, environmen-

tal data and geographical information for each plot in the observed metacommunity are

needed for this analytical method. The explained variation of environment and space may

be further used to compare the relative importance of environmental filtering and dispersal

in species turnover across metacommunities (Cottenie, 2005). However, several issues of

variation partitioning have already been discussed (Leibold & Chase, 2017, chap. 4). For

example, the more complete the environmental data is, the higher may be the variation
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explained by the environment, which may even change the inference on which process is

the most important (Chang et al., 2013). Another example is that the magnitude of the to-

tal variation of species composition may increase when the regional species pool is larger

(Kraft et al., 2011). In this case, with the fixed environmental and geographical variables,

the unexplained variation of the species composition is expected to increase by chance

(Leibold & Chase, 2017, pp. 124).

We calculated the summary statistics of beta-diversity variation partitioning for the

simulated data generated in section 2.1. Canonical correspondence analysis (CCA) was

considered in our study since we assumed that the response of the species to the envi-

ronment in the simulation model is a Gaussian curve, not a linear line (ter Braak, 1986;

Legendre & Legendre, 2012). A snapshot of the species abundance matrix was assigned

as the response variable, while environment values generated at the beginning of the sim-

ulation and spatial attributes derived from the coordinates of the patches were used as the

explanatory variables in CCA. The spatial attributes were derived from applying distance-

based Moran’s eigenvector maps (dbMEM) on the distance matrix of the patches (Bor-

card & Legendre, 2002). To quantify the pattern of positive autocorrelation in species

abundances, only the eigenfunctions with positive eigenvalues were considered as the ex-

planatory variables. The adjusted R-squared (adjusted R2) (Legendre & Legendre, 2012,

pp. 633) derived from the variation partitioning in CCA represented: (1) variation ex-

plained only by the environment, fraction [a], (2) variation explained only by space, frac-

tion [c], (3) variation explained by both environment and space, fraction [b], and (4) un-

explained variation, fraction [d] (Fig. 3). We defined fractions [a], [b], [c] and [d] as the

summary statistics of beta-diversity variation partitioning. These four partitions of varia-

tion were calculated by following: (1) fraction [a]+[b] is the adjusted R2 with species com-
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Figure 3: Visualization of the statistics of beta-diversity variation partitioning (modified Fig. 1
from Peres-Neto et al., 2006). Fraction [a] represents the variation explained only by the envi-
ronment, fraction [b] represents the variation explained only by space, fraction [c] represents the
variation explained by both environment and space, and fraction [d] represents the unexplained
variation. These four fractions are defined as the summary statistics of beta-diversity variation
partitioning. See section 2.2 for a detailed explanation.

position as response variable and only environment as explanatory variable in CCA; (2)

fraction [b]+[c] is the adjusted R2 with species composition as response variable and only

eigenfunctions corresponding to positive eigenvalues as explanatory variables in CCA; (3)

fraction [a]+[b]+[c] is the adjusted R2 with species composition as response variable and

both environment and eigenfunctions corresponding to positive eigenvalues as explana-

tory variables in CCA; (4) fraction explained only by environment [a] is calculated by ([a]

+[b]+[c])-([b]+[c]); (5) fraction explained only by space [c] is calculated by ([a]+[b]+

[c])-([a]+[b]); (6) fraction explained by both environment and space [b] is calculated by

([a]+[b]+[c])-[a]-[c]; (7) unexplained fraction [d] is calculated by 1-([a]+[b]+[c]). All the

calculation in this section was done in R (R Core Team, 2022).

2.3 Stegen’s framework

Stegen et al. (2013) is a null model-based method proposed to quantify the relative im-

portance of selection, dispersal limitation, homogenizing dispersal and drift underlying

the microbial metacommunity. Phylogenetic data and species composition data of the
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Figure 4: Flow diagram of modified Stegen’s framework of two-step null model (modified Fig.
3 from Stegen et al. (2013)). The relative importance of selection, dispersal limitation, ecological
drift and homogenizing dispersal underlying the metacommunity are quantified based on the dif-
ferences in functional traits and species composition between plots. These four values are defined
as the summary statistics of modified Stegen’s framework. See section 2.3 for a detailed explana-
tion.

observed metacommunity are required in this framework. Compared to most of the null

model-based methods that can only disentangle the presence of some ecological processes

(Ulrich & Gotelli, 2010; Chase &Myers, 2011), Stegen et al. (2013) applied two-step null

model to every pair of plots within the metacommunity. The significance of the diver-

gence or the convergence of the phylogeny structure and species composition between the

two plots was tested. The relative importance of the four ecological processes is summa-

rized by the significances derived from all pairs (Fig. 4). Ford & Roberts (2020) modified

Stegen’s framework and used community-level functional trait data instead of phyloge-

netic data to quantify the relative importance of selection in the fish metacommunity. In

our study, we used the trait-based modified version of Stegen’s framework proposed by

Ford & Roberts (2020).
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The framework proposed by Stegen et al. (2013) and modified by Ford & Roberts

(2020) consists of two steps. In the first step, abundance-weighted β-mean-nearest taxon

distance (βMNTD) quantifies the functional distance between two plots. βMNTD be-

tween plot k and plotm is

βMNTDkm = 0.5 ·

[
nk∑

ik=1

fik min(∆ik,m) +
nm∑

im=1

fim min(∆im,k)

]

where nk is the number of species in plot k, fik is the relative abundance of ik-th species

in plot k and min(∆ik,m) is the minimum of trait difference between ik-th species in plot

k and any species in plot m. To calculate the deviation of the observed βMNTD from

the null model expectation, species traits are permuted, and βMNTD is recalculated by

the permuted species traits. After repeating 999 times of permutation and recalculation,

β-nearest taxon index (βNTI) is calculated by the difference of observed βMNTD and

mean of the null model βMNTD in the unit of the standard deviation of βMNTD. If βNTI

is larger than 2 or less than -2, then we conclude that the functional turnover is larger than

expected and selection is the main process underlying this pair of plots. If βNTI is within

-2 to 2, then go to the second step.

In the second step, the modified Raup-Crick probability metric (RCbray) of Chase &

Myers (2011) is applied to identify the most important process from the remaining pro-

cesses, i.e. dispersal limitation, homogenizing dispersal, or drift. The Bray-Curtis distance

between two plots is calculated first, and it is recalculated 999 times after the permutation

in species abundance. The total abundance and number of species in each plot and the

abundance of the species in the whole metacommunity are consistent in the permutation.

The observed Bray-Curtis distance and the set of Bray-Curtis distances generated by the

null model are combined and standardized into the range of -1 to 1. The modified Raup-
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Crick probability metric (RCbray) is then the standardized observed Bray-Curtis distance.

According to the thresholds introduced by Chase & Myers (2011), if RCbray > 0.95, the

main process underlying these two plots is dispersal limitation with drift. If RCbray < -

0.95, homogenizing dispersal is the main process. If RCbray is within -0.95 and 0.95, pure

drift is acting on the species turnover.

In our study, we applied this twe-step null model to all the possible pairs of patches in

a simulated metacommunity, and calculated the relative importance (fraction) of selection,

dispersal limitation with drift, homogenizing dispersal, and pure drift based on the species

composition and species traits. These relative importances were treated as the summary

statistics of Stegen’s framework. All the calculation in this section was done in Julia

(Bezanson et al., 2017).

2.4 Dispersal-niche continuum index (DNCI)

Dispersal-niche continuum index (DNCI) is another null model-based method that aims

to quantify the relative importance of niche and dispersal assembly processes underlying

the paleontological community data (Vilmi et al., 2021) (Fig. 5). Only grouped species

composition data is required to calculate DNCI. This parsimony benefits understanding

the ecological processes underlying the paleontological community, whose environment

and functional trait data are difficult to collect. The group can be defined based on any

cluster analysis or ordination methods.

To calculate DNCI for the simulatedmetacommunity, we clustered the patches within

the metacommunity into two groups based on Ward’s minimum variance method (Legen-

dre & Legendre, 2012, pp360). Then the similarity percentage (SIMPER) of each species

in the metacommunity, which indicates the contribution of the species to the overall av-
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erage dissimilarity (OAD) between two groups of patches, was calculated (Clarke, 1993).

The contribution of species i to the dissimilarity between patch j and k is defined by Clarke

(1993) as the Bray-Curtis dissimilarity between patch j and k:

δjk(i) =
|yij − yik|∑p
i=1(yij + yik)

where yij and yik are the abundance of species i in patch j and patch k respectively; p is

the number of species in the metacommunity. The raw contribution of species i to OAD

δi is defined as the average of the contribution of species i to the dissimilarity between

every pair of patches in different groups, i.e.

δi =
1

M1M2

∑
j∈G1
k∈G2

δjk(i)

where G1 and G2 are the set of patches in group 1 and group 2, and M1 and M2 are

the numbers of patches in group 1 and group 2 respectively. The OAD δ is defined by

the summation of the raw contribution of all the species, i.e. δ =
∑p

i=1 δi. Finally, the

SIMPER profile is derived from the decreasing ranking of the contribution ratio of the

species γi = δi/δ.

Three null models are implemented to disentangle the effect of niche and dispersal

assembly processes. Let’s suppose that the species composition is with rows as patches

and columns as species. The first null hypothesis is H0d: only dispersal assembly pro-

cesses are driving the species turnover within the metacommunity. Under this null hy-

pothesis, the column sum is constrained, and within each column, the abundances are

permuted among all patches independently. Additionally, the sum of the abundances of

all the species within each plot is constrained to be nonzero. In this case, the total abun-
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dance of each species in the metacommunity is kept constant but there may be a different

number of individuals and species in a single patch in every permutation. The second

null hypothesis was H0n: only niche assembly processes are driving the species turnover

within the metacommunity. Under this null hypothesis, the row sum was constrained, and

within each row, the abundances were permuted independently. In this case, the sum of

the abundances of all species in each patch was kept constant, but the total abundance of

any of the species is likely to vary in every permutation. The third null hypothesis isH0dn:

both dispersal and niche assembly processes are driving the species turnover in the meta-

community. Under this null hypothesis, the species composition matrix was permuted

with constrained column sum and row sum. Under each of these three null hypotheses,

the species composition matrix was permuted 99 times and the SIMPER profile was recal-

culated by using the permuted species composition. The permutation with three different

types of constraint is implemented by the function permatfull() in package vegan in R

(R Core Team, 2022). To compare the observed SIMPER profile with each null SIMPER

profile, the logarithm of the sum of squared deviations E was calculated:

E = log10(
p∑

i=1

(γi,null − γi,obs)
2)

Finally, for each null hypothesis, we got 99 E values, which were denoted by Ed(q), En(q)

and Edn(q), for H0d, H0n and H0dn, and q is the index from 1 to 99. The standard effect

sizes (SES) of Ed and En are defined as the mean of the standardized Ed and En:

SESd =
1

Q

Q∑
q=1

Ed(q) − Edn

σdn

=
1

Q

Q∑
q=1

SESd(q)

SESn =
1

Q

Q∑
q=1

En(q) − Edn

σdn

=
1

Q

Q∑
q=1

SESn(q)
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where Q is the total number of permutations plus one, which is 100, Edn is the mean of

Edn(q) and σdn is the standard deviation of Edn(q). In the end, the dispersal-niche contin-

uum index (DNCI) is defined as

DNCI = SESd − SESn

and its standard deviation is defined as the squared root of the sum of the square of the

standard deviation of the standardized Ed(q) and En(q):

σDNCI =
√
σ2(SESd(q)) + σ2(SESn(q))

The width of the confidence interval of DNCI is defined as 2σDNCI.

DNCI and its standard deviation were used to infer the relative importance of dis-

persal and niche assembly processes underlying the metacommunity. If DNCI is signifi-

cantly larger than 0, then niche assembly processes are the dominant processes driving the

species turnover. If DNCI is significantly lower than 0, then dispersal assembly processes

are the most influential in affecting species composition. If DNCI is not significantly

different from 0, then both these two processes may be similarly important for the com-

munity assembly. The significance is determined by whether the confidence interval of

DNCI encompasses 0. In our study, we treated DNCI and its standard deviation as the

summary statistics of the metacommunity. Additionally, since in some cases, the species

composition was too sparse (contained too many zeros) and failed to find the column per-

mutation with nonzero row sums, we added the time limitation that if the permutation

cannot be found in 30 seconds then we dropped that whole sample. All the calculation in

this section was done in R (R Core Team, 2022).
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Figure 5: Flow diagram for calculating dispersal-niche continuum index (modified Fig. 1 from
Vilmi et al. (2021)). By studying the contribution of the species to the dissimilarity within themeta-
community, the relative importance of dispersal and niche assembly processes can be identified
by the dispersal-niche continuum index (DNCI). Positive DNCI represents the metacommunity
is mainly driven by niche assembly processes; negative DNCI represents the metacommunity is
mainly driven by dispersal assembly processes. DNCI and its standard deviation are defined as the
summary statistics of these analytical methods. See section 2.4 for a detailed explanation.
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2.5 Random forest approach linking summary statistics with para-

metric space

Random forest (RF) is a statistical classifier that constructs a mapping between variables

by the training data. The correctness of classification and prediction can be quantified

by giving the testing data. We applied this statistical approach to construct the link be-

tween the summary statistics, which are derived from beta-diversity variation partitioning,

Stegen’s framework and DNCI, and the model parameters in Thompson et al.’s process-

based metacommunity framework. The trained RF were then applied to the empirical data

to disentangle underlying the ecological processes.

To construct the RF, the first 12 replicates of the simulated data (two-thirds of 18

replicates) were used as the training data and the last 6 replicates of them were used as

the testing data. The response variables were the model parameters that influenced the

relative importance of ecological processes underlying the metacommunity: niche width,

competition type and dispersal ability of the species. Niche width and dispersal ability

were treated as ordinal variables (Hornung, 2020), and competition type was treated as a

categorical variable. We constructed 12 RFs for each model parameter. The explanatory

variables of these RFs consisted of four sets of summary statistics and three sets of time

steps. We considered the summary statistics derived from only beta-diversity variation

partitioning, only Stegen’s framework, only DNCI or all three analytical methods with

one snapshot (t = 20), four snapshots (t = 20, 16, 12, 8) or all 20 snapshots of the species

composition as the explanatory variables. To evaluate the prediction of the trained RFs,

the statistics calculated by the testing data were then entered into the trained RFs, and the

accuracy of prediction was estimated by the proportion of the correct link between the pre-

diction of the parameter and the exact model parametric setting. The importance of each

26

http://dx.doi.org/10.6342/NTU202300163


doi:10.6342/NTU202300163

explanatory variable, i.e. the statistics derived from the analytical methods, in predicting

the model parameters was quantified. For predicting competition type, the importance of

the explanatory variables was defined by the mean decrease Gini (Han et al., 2016), which

was derived from the component importance of the object randomForest in R. For pre-

dicting niche width and dispersal ability, the importance of the explanatory variables was

defined by the permutation variable importance measure (Janitza et al., 2016), which was

derived from the component varimp of the object ordfor in R.

Without interpolating, a complete data (with no missing values) is required for con-

structing and evaluating the RF. Only the samples without missing summary statistics at

all 20 periods were used to construct and evaluate the RFs. The missing statistics in some

samples at some periods may be caused by the strong stochasticity, which produced the

low occurrences, diversity and abundance metacommunities, and the sparseness of the

species composition, which resulted in the lack of DNCI.

2.6 Sensitivity analysis to sampling effort and choice of time steps

The robustness of the RFs with summary statistics derived from all three analytical meth-

ods at four snapshots to the sampling effort was evaluated. Four archetypes, species

sorting (SS), neutral dynamics (ND), mass effect (ME) and patch dynamics (PD), were

determined by a point in the parametric space defined by dispersal ability, niche width

and competition type after the simulation (see section 2.1 for details). For the sake of

reducing the calculation time, we only considered these four archetypes in the last six

replicates as the testing data. We calculated the summary statistics for the four snapshots

(t = 20, 16, 12, 8) of the simulated species composition generated by the parameters set-

ting of these four archetypes based on the three analytical methods. Then we subsampled
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the species composition data by randomly choosing 10, 20, ..., and 90 of the patches 15

times independently. For different sampling efforts, the summary statistics were recal-

culated based on the subsampled species composition and inserted in the trained RF to

calculate the accuracy in predicting the model parameters.

We evaluated the robustness of the same RF to the choice of the time steps to be the

training data. The explanatory variables of the RF were the summary statistics derived

by the three analytical methods from the snapshots at t = 20, 16, 12, 8. For each model

parameter (niche width, dispersal ability and competition type), we treated the summary

statistics at randomly chosen four time steps from t = 1, 2, . . . , 19, 20 as the inputs of the

trained RF. The correctness of the prediction based on the mismatched summary statistics

was calculated. We randomly chose the time steps 1000 times. The distribution of the

accuracy for predicting three model parameters was shown in the boxplot.

2.7 Application on Fushan Forest Dynamics Plot

The Fushan Forest Dynamics Plot (FDP) is a 25-ha forest dynamics plot established in

northern Taiwan in 2004. FDP is located in the subtropical zone at 24˚45’40”N, 121˚33’28”E

with elevation from 600 to 733 m.a.s.l. The 500 m x 500 m plot is devided into 625 20 m

x 20 m quadrates. The delineation of the plot was conducted in 2002-2003. Precise topog-

raphy was measured by the electronic total-station theodolites. FDP consists of multiple

topographic components, such as hills, ridges, slopes, valleys, flats and creeks. Mean ele-

vation, convexity, slope and aspect of each quadrat were considered as the environmental

data of FDP (Su et al., 2007).

The species composition of FDP was surveyed in 2003-2004, 2008-2009, 2013-2014

and 2018-2019, following the method developed by the Center for Tropical Forest Science
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(CTFS, now ForestGEO) (Condit, 1998). These four censuses were imagined as the four

snapshots of the Fushan forest. All the woody species and the tree ferns with a diameter at

breast height (DBH) of≥ 1 cmwere identified, measured, mapped and tagged. Within four

censuses of FDP, between 111,000 to 134,000 individuals of 111 species in 40 families and

68 genera were recorded. Three species of tree ferns, Cyathea lepifera, C. podophylla and

C. spinulosa were removed from the further analysis since they are not woody species.

The individuals which were missing (status = -1) or lost their stem without DBH of its

branches≥ 1 cm (status = -2) were removed from the quadrat in the species composition.

Details of the information about environmental conditions and the field survey can be

found in Su et al. (2007).

Leaf traits were measured on the randomly selected 6-12 individuals for each species

found in the FDP. Specific leaf area (SLA), leaf thickness and leaf dry matter content

(LDMC) for 103 specie were obtained based on the established protocols for measuring

leaf functional traits (Perez-Harguindeguy et al., 2013). Total organic nitrogen mass per

unit leaf mass (N mass) and total organic phosphorus mass per unit leaf mass (P mass)

were obtained for 99 of the 103 species based on two microplate methods. The maximum

tree height of the 99 species was measured according to the established protocols. The

wood density of 74 species was measured in Fushan, of 21 species were obtained from the

literature in Taiwan. The wood density of the remaining species was derived from Chave

et al. (2009).

The species composition, topographical data and coordinates of each quadrat and

traits data for each species were used to calculate the summary statistics of beta-diversity

variation partitioning, Stegen’s framework and DNCI. Since the incompleteness in trait

data, when calculating the dissimilarity of traits between two plots in Stegen’s framework
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(βMNTD), the species withmissing traits were ignored. We obtained four sets of summary

statistics based on the four snapshots of the species composition in FDP. These summary

statistics were inputted into the trained random forest incorporating the three analytical

methods and four snapshots with tested performance and robustness to the sampling effort

and choice of time steps. Then, the competition types, niche width and dispersal ability

of the species in the Fushan forest were estimated.
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3. Results

3.1 Summary of the simulated data

Overall, we had 17,500 samples from 18 replicates of metacommunity with 975 scenarios

(5 competition types, 15 dispersal ability types and 13 niche widths) generated by Thomp-

son et al.’s framework. Each sample contained 20 snapshots of the species composition

at different time steps. After filtering out the incomplete samples, which missed some

summary statistics, we retained 5983 samples and 399 scenarios and used them in further

analysis.

The parametric space for the retained samples was shown by heat map (Fig. 6). The

scenarios with weak dispersal ability a and narrow niche width λwere mostly filtered out.

Parametric space defined by dispersal ability a and niche width λ was wider in scenarios

of no competition, stable competition and equal competition (Fig. 6a, 6b, 6c), compared

to mixed competition and competition-colonization trade-off (Fig. 6d, 6e). We defined

four metacommunity archetypes based on the parametric space (Fig. 6f).

3.2 Summary statistics of the simulated metacommunity

Statistics of beta-diversity variation partitioning, DNCI and Stegen’s framework were cal-

culated for the remaining 5983 samples. All the statistics fluctuated across time and dif-

fered between replicates (Fig. 7). The summary statistics derived from Stegen’s frame

could successfully separate the four archetypes. The relative importance of selection could

separate SS and ND from each other; the relative importance of homogenizing dispersal

could separate ME and ND; the relative importance of drift could separate PD and SS. In

beta-diversity variation partitioning, only ND could be separated from the other archetypes
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Figure 6: Parametric space defined by niche width, dispersal ability and competition type. The
number on the two axes represents the level of the niche width and dispersal ability. On the x-axis,
the numbers from 1 to 15 are the dispersal ability from weak to strong. On the y-axis, the numbers
from 1 to 13 are the niche widths from narrow to wide. The values in the tile plots represent the
number of replicates that remain after excluding those with too low species abundance, diversity
and occurrence, or those too sparse to calculate DNCI. If the scenario has no replicates after fil-
tering, the values are shown as missing in the tile plots. The axes are truncated since no replicates
remained after data filtering for those scenarios. Panels (a)-(e) show the parameter space defined
by niche width and dispersal ability with different competition types. Panel (f) is the summation
of the five tile plots from (a) to (e). The labels in the tile plot show the subjective definition of the
four metacommunity archetypes in the parametric space: species sorting (SS), neutral dynamics
(ND),mass effect (ME) and patch dynamics (PD). The species in the Fushan Forest Dynamics Plot
(FDP) are predicted to interact with each other with competition-colonization trade-off, average
strong dispersal ability and wide niches.
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based on unexplained variation. DNCI could not identify any archetypes.

The ranges of the summary statistics of three analyticalmethodswere calculated (Tab.

2). The reason that the minimal value of the variation explained only by environment, only

by space, and by both environment and space derived from the variation partitioning was

negative was that the explained variation was calculated by the adjusted R2 which may

be negative when R2 is extremely close to zero (Legendre & Legendre, 2012, pp. 633).

The maximum value of residual derived from variation partitioning could be larger than

1 because the residual was calculated by 1 minus the sum of the explained variation by

either environment or space. The statistics derived from Stegen’s framework ranged from

0 to 1. DNCI and its standard deviation had no boundary limitation. The average and

standard deviation were also calculated for each summary statistic.

3.3 Performance in prediction model parameters

The accuracy in predicting the process parameters was quantified for all 12 random forests

(RFs) (Tab. 3). Among 12 RFs, the one that embedded all statistics of 20 snapshots had

the highest accuracy in predicting dispersal ability (71.92%) and niche width (72.02%).

This RF also had the second-highest accuracy in predicting competition type (87.49%),

which was only 0.31% less than the RF with the highest accuracy. The second best RF

was the one with all summary statistics at four snapshots as the explanatory variables,

which had 68.61%, 71.97% and 87.80% correction rates in predicting the dispersal ability,

niche width and competition type, respectively. For the RFs that only considered one

analytical method, Stegen’s framework had the highest accuracy in predicting all three

model parameters compared to beta-diversity variation partitioning and DNCI with the

same number of snapshots. However, the RFs which integrated statistics derived from
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Figure 7: Comparing the dynamics of the summary statistics derived by beta-diversity variation
partitioning, Stegen’s framework and DNCI under four metacommunity archetypes. Within each
panel, the curve shows the dynamics of the values of each summary statistic across time. The
first row shows the dynamics of the variation explained only by the environment [a], by both
environment and space [b], only by space [c], and unexplained variation [d] derived from beta
diversity variation partitioning. The second row shows the dynamics of the fraction of selection,
dispersal limitation, homogenizing dispersal, and drift derived from Stegen’s framework. The third
row shows the dynamics of DNCI and its standard deviation. Different colors represent different
metacommunity archetypes. A maximum of six replicates are shown for each archetype.
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Table 2: Overview of all statistics derived by beta-diversity variation partitioning, Stegen’s frame-
work and DNCI. For the description of the statistics please see the caption of Fig. 7.

Stegen VP

Selection DispLimit HomoDisp Drift Env Env and Spatial Spatial Resid DNCI sd.DNCI

Min 0.00 0.00 0.00 0.04 -0.01 -0.09 -0.16 0.14 -383.48 0.02

Max 0.78 0.94 0.66 0.99 0.64 0.51 0.43 1.16 298.89 146.72

Mean 0.15 0.27 0.05 0.53 0.07 0.05 0.06 0.82 -7.60 2.31

Sd 0.18 0.22 0.05 0.28 0.09 0.07 0.05 0.18 15.00 3.43

multiple analytical methods had better accuracy than thosewhich only considered statistics

derived from single analytical methods in predicting the model parameters.

The importance of the explanatory variables of the RF that incorporates the summary

statistics derived from three different analytical methods based on the four snapshots was

quantified (Tab. S1). The fraction of homogenizing dispersal and selection derived from

Stegen’s framework and the standard deviation of DNCI were the most three important

statistics for predicting the competition type. The fraction of selection, homogenizing

dispersal and dispersal limitation derived from Stegen’s framework and the variation ex-

plained by space derived from variation partitioning were the most important statistics for

predicting dispersal ability. Variation explained only by environment, the fraction of se-

lection and drift derived from Stegen’s framework were the most important statistics for

predicting niche width.

3.4 Robustness to the sampling effort and choice of time steps

For the trained RF with summary statistics derived by three analytical methods from four

snapshots, the accuracy for predicting the niche width, dispersal ability and competition

type decreased when the sampling effort decreased (Fig. 8a). However, the accuracy for

predicting the dispersal ability, niche width and competition type had no difference even
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Figure 8: Robustness of random forest (RF) to the sampling effort and choice of the time steps. (a)
Different curves represent the relationship between the accuracy for predicting competition type,
niche width and dispersal ability, and proportion of the subsampled patches from a whole simu-
lated metacommunity. (b) The distribution of the accuracy of the RF for predicting competition
type, niche width and dispersal ability when using the summary statistics at the randomly chosen
time steps. The variance of the accuracy is considerably small that is not visible in the boxplots
displayed.

though the summary statistics were derived from the species composition at four randomly

selected time steps (Fig. 8b).

3.5 Application to Fushan Forest Dynamics Plot

By inputting the summary statistics derived from four snapshots of the FDP by three ana-

lytical methods (Tab. S2), we estimated that the species in the FDP act with competition-

colonization trade-off and strong average dispersal ability and wide niche width (Fig. 6e).
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Table 3: Accuracy of 12 RFs with different explanatory variables in prediction model parameters.
The first four columns show the explanatory variables in the RFs. The symbol ”O” represents
the summary statistics derived from which analytical methods are considered in the RF. The sym-
bol ”X” represented they are not considered in the RF. The fourth column represented how many
snapshots of the species composition are used to calculate the summary statistics and considered as
the explanatory variables in the RF. The accuracy for predicting dispersal ability, niche width and
competition type is shown in the last 3 columns. VP: beta-diversity variation partitioning. Stegen:
Stegen’s framework. DNCI: DNCI and its standard deviation.

Explanatory variables

Summary statistics Performance of prediction

VP Stegen DNCI Snapshots Dispersal ability Niche width Competition type

O X X 1 18.83% 42.59% 45.86%

O X X 4 21.95% 50.83% 56.40%

O X X 20 24.01% 52.13% 60.32%

X O X 1 45.10% 46.91% 69.46%

X O X 4 53.14% 53.74% 77.00%

X O X 20 57.36% 53.24% 78.96%

X X O 1 18.08% 23.96% 45.76%

X X O 4 26.27% 29.43% 55.80%

X X O 20 30.79% 32.95% 59.87%

O O O 1 61.07% 69.61% 84.43%

O O O 4 68.61% 71.97% 87.80%

O O O 20 71.92% 72.02% 87.49%
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4. Discussions

Multiple analytical methods were introduced to derive summary statistics from the obser-

vational data to quantify the ecological information of the observed metacommunity and

disentangle the underlying ecological processes. However, a single analytical method on

a snapshot of the metacommunity has unsatisfying performance in predicting the under-

lying processes was shown in Guzman et al. (2022) and confirmed in our study. Within

the three analytical methods considered in our study, we showed that only Stegen’s frame-

work could successfully separate the four metacommunity archetypes, which were arbi-

trarily defined to represent the extreme scenarios of the simulated metacommunity (Fig.

7). Even though Stegen’s framework could successfully separate the four archetypes, its

performance in predicting the precise underlying processes was still unsatisfying. By in-

tegrating more analytical methods applied on multiple snapshots of the metacommunity,

the prediction of the underlying processes may be improved.

RF was used to link the summary statistics derived from the analytical methods with

the model parameters in a process-based simulation model. We showed that this technique

successfully integrates multiple analytical methods to disentangle the ecological processes

underlying the observedmetacommunity in Guzman et al.’s framework. From the applica-

tion of this framework in the observational data, we showed that competition-colonization

trade-off was identified among the species in the Fushan Forest Dynamics Plot (FDP). This

trade-off suggests competition hierarchy and a trade-off between the ability of competi-

tion and colonization among the species. The competition hierarchy between species may

indicate that the FDP is composed of early-successional and late-successional species.

Late-successional species may be missing in some areas of this forest plot because of the
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frequent impact of typhoons during summer, which creates empty patches for the early-

successional species to establish. The frequent impacts of typhoons may be also the reason

for the strong stochasticity and weak deterministic effect of the environmental conditions

we found in the FDP, which are indicated by the predicted wide niches of the species.

Strong average dispersal ability may result in the high occurrence of the common species,

e.g. Blastus cochinchinensis (柏拉木) and Helicia formosana (山龍眼).

This practical demonstration is missing in Guzman et al. (2022). In our study, we

showed that Guzman et al.’s framework may be applied to disentangle the ecological pro-

cesses underlying the observed metacommunity by plotting it onto the parametric space.

However, several issues need to be considered.

First, the assumptions of the process-based simulation model should align with the

observed metacommunity. In our study, Thompson et al.’s metacommunity simulation

model considers species as annual plants that die in each iteration, which may not correctly

represent the long-living woody plant species in the FDP. The impact of this mismatch

on the results is unknown and requires further investigation. Additionally, we assumed

constant environmental conditions in our simulated metacommunity over time. This as-

sumption may not be satisfied for the marine and tidal ecosystems whose environmental

conditions in the local communities are intensively fluctuating. Furthermore, we assumed

all the species had the same niche width and dispersal ability. To release this assumption

for modeling a more complex system, we may assume that the niche width and the dis-

persal ability of the species are followed normal distributions with adjustable mean and

variance. Since the model assumptions and the parametric space are determined before the

simulation and construction of the RFs, any changes are expected to influence the param-

eter estimation and its accuracy. Hence, the accuracy of the RF in predicting the model
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parameters may not be compared across process-based simulation models with different

model assumptions and parametric spaces.

Second, the process-based simulation model should generate a relatively complete

range of summary statistics. Any statistics which can be derived from both simulated

data and observed data could be the explanatory variables in the RF. However, if the

statistics calculated by the observed data are not encompassed within the extent that the

simulation model can generate, the prediction may be unreasonable. In our study, the de-

termined parametric space in the simulation model generated a relatively complete range

of summary statistics derived from the three analytical methods. Moreover, the summary

statistics calculated by the observational data from the FDP were encompassed within the

range of summary statistics. In Guzman et al. (2022), the descriptive statistics were in-

cluded as the explanatory variables of the RF. However, some of the descriptive statistics

are intensively varied across systems andmay not be easily controlled in the process-based

simulation model. For example, gamma diversity is one of the descriptive statistics of the

metacommunity. It may not only be regulated by the strength of ecological processes, but

also by the size of the species pool and the number of patches of the simulated metacom-

munity. Without modifying these two parameters in our study, the range of the gamma

diversity derived from the simulated data would be limited and may not encompass the

gamma diversity derived from the observed metacommunity.

Third, the incompleteness of the observed data may influence the accuracy of param-

eter estimation. We showed that the incompleteness of the species composition reduced

the performance of the trained RF in predicting the model parameters. In practice, because

of the variety of functional responses and resource types, we can never measure all types of

traits and environmental variables. This incompleteness of the community data may cause
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deviation in summary statistics. For example, the unmeasured environmental variables are

shown to considerably influence the summary statistics of the beta-diversity variation par-

titioning (Chang et al., 2013). We expect this deviation may lead to the performance of

the trained RF being overestimated. The magnitude of the deviation is determined by the

robustness of the analytical methods themselves. Thus, the robustness of the analytical

methods should be compared systematically, and the summary statistics that are too sen-

sitive to the incompleteness of the data should be excluded from the set of explanatory

variables.

Fourth, the choice of the time steps to calculate the summary statistics as the explana-

tory variables of the RF may influence the parameter estimation. The simulation models

are likely to generate more snapshots of the species composition than is usually available

for observed data. The training data of the RF is determined by the summary statistics cal-

culated by the simulated data at the arbitrarily chosen time steps. Moreover, the number

of the chosen time steps should be identical to the census times of the observed metacom-

munity. However, in practice, we usually do not know which time steps in the simulation

model represent which census of the observed metacommunity. We showed that even

though the time steps to calculate the statistics as the inputs of the RF were randomly cho-

sen, the performance of the RF was maintained. If the summary statistics have no stable

trends across time, we expect that the choice of the time steps may influence the parameter

estimation, and such statistics should be excluded from the explanatory variables of the

RF.
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5. Future Directions

We demonstrated Guzman et al.’s framework in disentangling the ecological processes un-

derlying the observed metacommunity. In practice, the process-based simulation model

can be modified or replaced based on different focuses on the ecological processes and

different types of ecosystems. Thompson et al.’s model is principally based on high-level

ecological processes and is sufficiently general to be applied to different community sys-

tems. By modeling more detailed ecological processes, e.g. how seed germination and

variation in the mortality rate in seedling and juvenile stage would influence the colo-

nization of the species or releasing the assumption of identical niche width and dispersal

ability of the species, we may understand more about under what processes allow different

species assemble to become a community and metacommunity. However, the trade-off

between generality, realism, and precision cannot be ignored (Levins, 1966). Constructing

a comprehensive and complex process-based model may result in losing its generality to

apply to different ecosystems and reduce the precision in estimating the model parameters.

In this case, we should generate more training data or apply a more powerful technique for

parameter estimation. Besides, the sets of analytical methods for predicting the strength

of ecological processes may be considered based on the availability of the data. For in-

stance, if the functional traits data of the species are not available, the trait-based analytical

methods, i.e. modified Stegen’s framework, cannot be applied.

Except for RF, there are also other approaches to estimate the parameters in a process-

based stochastic model (Hartig et al., 2011). For example, approximation Bayesian com-

putation (ABC) is a rejection algorithm for estimating the parameters in the process-based

simulation model based on summary statistics (Csilléry et al., 2010). van der Plas et al.
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(2015) applied ABC to quantify the strength of limiting similarity, dispersal assembly

and filtering underlying the observed metacommunities based on the functional diversity

metrics. Ruffley et al. (2019) compared and incorporated RF and ABC to quantify the

strength of competition and environmental filtering based on the information about phy-

logeny, functional traits and phylogenetic signals within the traits of the local community.

Different statistical classifiers may be compared and incorporated to improve the perfor-

mance in estimating the model parameters. Alternatively, cross-validation may be further

applied to find the subset of the explanatory variables that maximize the performance.

Improving the framework for better disentangling the underlying ecological pro-

cesses is essential for understanding and predicting how anthropogenic activity and cli-

mate change affect the species composition, diversity and ecosystem services. By estimat-

ing the model parameters based on the metacommunities across changes in environmental

conditions, we may study how the strength of the ecological processes is altered by an-

thropogenic activity and climate change. We may further predict the dynamics of the

metacommunity based on the process-based model with estimated model parameters to

reach better principles for conservation.
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Conclusions

Guzman et al. (2022) provided a framework that may integrate multiple analytical meth-

ods and multiple snapshots of the observational metacommunity to disentangle the eco-

logical processes underlying the observed metacommunity. Our study demonstrates this

framework in practice by the observational data from the Fushan forest and shows the

competition-colonization trade-off among species and the strong stochasticity and dis-

persal ability of the species in the Fushan forest. The performance of this framework in

quantifying the strength of the ecological processes may be evaluated. However, this per-

formance may be overestimated because of the incompleteness of the observational data

and the inference of this framework may be influenced by the assumptions of the process-

based simulation model.

Data availability

All the codes may be found in: https://github.com/ChingLinHuang/Code-for-M

aster-Thesis.
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Appendix A — Supplementary results

Table S1: Importance of explanatory variables of the random forest to predicting the model pa-
rameters. For predicting competition type, the importance of the summary statistics is defined by
the mean decrease Gini. For predicting dispersal ability and niche width, the importance of the
summary statistics iss defined by the permutation variable importance measure. For both methods
to define the importance of the statistics in predicting the model parameters, the large the value is,
the more important the statistic is. For the description of the statistics please see Fig. 7. The num-
ber in the name of the explanatory variables (e.g. 20 in Selection 20) represents which snapshots
of the simulated metacommunity the statistics were calculated.

Competition Dispersal Niche

Selection20 105.77 0.0224 0.0184

Selection16 113.11 0.0234 0.0166

Selection12 121.79 0.0222 0.0201

Selection8 108.00 0.0217 0.0191

DispLimit20 50.91 0.0131 0.0032

DispLimit16 53.49 0.0125 0.0027

DispLimit12 52.70 0.0114 0.0024

DispLimit8 53.89 0.0103 0.0022

HomoDisp20 127.57 0.0188 0.0097

HomoDisp16 132.78 0.0200 0.0093

HomoDisp12 130.35 0.0213 0.0088

HomoDisp8 141.27 0.0225 0.0089

Drift20 104.08 0.0095 0.0148

Drift16 90.67 0.0092 0.0133

Drift12 92.48 0.0086 0.0135

Drift8 96.32 0.0085 0.0123
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Env20 34.73 0.0050 0.0212

Env16 35.27 0.0052 0.0203

Env12 33.51 0.0056 0.0223

Env8 33.58 0.0053 0.0231

Env and Spatial20 22.72 0.0023 0.0070

Env and Spatial16 22.27 0.0022 0.0072

Env and Spatial12 23.44 0.0018 0.0079

Env and Spatial8 24.03 0.0021 0.0084

Spatial20 51.30 0.0111 0.0017

Spatial16 60.28 0.0125 0.0015

Spatial12 64.62 0.0132 0.0015

Spatial8 67.21 0.0131 0.0016

Resid20 36.72 0.0085 0.0088

Resid16 38.45 0.0099 0.0091

Resid12 38.19 0.0123 0.0080

Resid8 41.39 0.0120 0.0081

DNCI20 69.44 0.0086 0.0060

DNCI16 66.09 0.0101 0.0058

DNCI12 65.42 0.0076 0.0071

DNCI8 66.78 0.0095 0.0079

sd.DNCI20 125.87 0.0084 0.0071

sd.DNCI16 97.65 0.0082 0.0065

sd.DNCI12 119.45 0.0085 0.0058

sd.DNCI8 116.55 0.0085 0.0075
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Table S2: Summary statistics derived from the Fushan Forest Dynamics Plots (FDP) by three
analytical methods. Each row represents different summary statistics. Each column represents
different census of the species composition in FDP. For the description of the statistics please see
the caption of Fig. 7.

Year 1 Year 2 Year 3 Year 4

Selection 0.100 0.040 0.060 0.070

DispLimit 0.000 0.000 0.000 0.000

HomoDisp 0.410 0.440 0.420 0.390

Drift 0.490 0.520 0.530 0.540

Env 0.010 0.020 0.010 0.010

EnvSpatial 0.080 0.080 0.090 0.080

Spatial 0.220 0.210 0.200 0.200

Resid 0.690 0.690 0.700 0.700

DNCI -14.980 -32.640 -15.940 -14.980

sd.DNCI 1.555 2.905 0.595 0.855
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