
doi:10.6342/NTU202201573

國立臺灣大學醫學院暨工學院醫學工程學系 

碩士論文 

Department of Biomedical Engineering 

College of of Medicine and Engineering 

National Taiwan University 

Master Thesis 

  

白努力模型應用於分析眼內壓 

Application of Bernoulli model for analyzing 

eye intraocular pressure 

宋亞欣 

Ya-Hsing Sung 

   

指導教授 : 施博仁 博士 

Advisor: Po-Jen Shih, Ph.D. 

  

中華民國 111 年 7 月 

July, 2022



doi:10.6342/NTU202201573



doi:10.6342/NTU202201573

i 

謝誌 

    感謝指導教授施老師兩年的教導，實驗室施學長、戴學姊的教導，讀碩士的路興許無想

像中的順利，感謝老師能夠在每一次需要援手的時候予以相助。  



doi:10.6342/NTU202201573

ii 

中文摘要 

    吹氣量測所測得前房眼壓究竟等不等於玻璃體眼壓一直是眼科醫師的疑問。眼壓量測目

前為量測前房眼壓。對於玻璃體後之眼壓並無法直接量測，僅能透過假設相等的方式令前房

眼壓相等於後房眼壓。但正常人與青光眼患者之房水通道黏滯性並不相同，閉隅型青光眼

(ACG)患者的後房房水並不易流至前房。相對的，吹氣量測時，房水將不易往後房流通，而會

更多的堆積在前房。造成前房眼壓被高估。我們將使用白努力定律為核心建構我們的眼壓連

通管模型，以級數解之形式得到解析解，並評估前後房與玻璃體在吹氣量測時眼內壓的升降

幅度與升降速度。為考慮變型造成阻尼與級數解之適用性，最後使用彈簧阻尼系統模擬周圍

組織抵抗腔室變形之力，評估系統受吹氣壓力時，各腔室壓力上升的延時性。結果顯示，虹

膜通道的完全堵塞與完全暢通會影響後房腔室水頭高為正常人上升幅度 0.2 至 2 倍，在吹氣

量測實驗下，極短時間內量測到的前房眼壓會存在高估玻璃體眼壓的情形。 

關鍵詞 :眼睛、眼壓量測、流體力學、級數解、質量彈簧-阻尼系統。 
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ABSTRACT 

Whether the intraocular pressure(IOP) in the anterior chamber measured by insufflation 

equal to the vitreous is a question for ophthalmologists. The IOP measurement is currently 

measuring the IOP of the anterior chamber, since we cannot directly measure the IOP of the 

vitreous. However, the friction of the aqueous channel of normal participants and glaucoma 

patients is not the same, and the aqueous humor in the posterior chamber of patients with 

angle-close glaucoma (ACG) is not easy to flow to the anterior chamber. On the other hand, 

during the air blow measurement, the aqueous humor is not easily flow to the posterior 

chamber, but it accumulates more in the anterior chamber. That lets the IOP in the anterior 

chamber to be overestimated. In this paper, we used Bernoulli's principle to construct the 

IOP model, and obtained analytical solutions in the form of a series solution. These solutions 

evaluated the rise and fall of the IOP in the anterior and posterior chambers and the vitreous 

during insufflation measurement. Considering damping dued by deformation and the 

applicability of the series solution, the spring damping system was finally added to simulate 

the force of the surrounding tissue to resist the deformation of the chamber, and the delay 

of the pressure rise of each chamber at system startup. The results show that whether 

blockage complete or not the iris channel affects the posterior chamber rise by 0.2 to 2 times 

than normal people, and the measurement of the anterior chamber intraocular pressure 

overestimates the vitreous intraocular pressure. 

Keywords:  

Eye intraocular pressure, intraocular pressure measurement, fluid mechanics, series 

solution, spring-damping system  
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第一章   緒論 

隨著人口平均年齡逐漸增加，及電子科技的發展，人用眼時長逐漸提升，眼睛

自然老化提早而發生病變的比率亦逐年上升。根據 Seth R Flaxman 2017 年的研

究[1]：在 2015 年，全球約有 2 億 1660 萬人中，中度或重度視力障礙；其中未矯

正屈光不正(近視、遠視、散光)人口約 1 億 1600 萬、白內障人口約 5200 萬、青

光眼人口約 400 萬、年齡相關性黃斑變性(age-related macular degeneration)人口

約 840 萬、糖尿病視網膜病變(diabetic retinopathy)約 260 萬人口。2015 年全球

失明人口約 3600 萬；白內障人口約 1260 萬，未矯正屈光不正(近視、遠視、散光)

人口約 740 萬和青光眼人口約 290 萬。文獻並指出在 2020 年全球中度或重度視

力障礙者將有 2 億 3700 萬人，其中，白內障人口將達到 5700 萬人，青光眼人口

將達到 450 萬人；全球失明人口將上升至 3850 萬人，病徵為白內障人口約 1340

萬人，青光眼人口約 320 萬人[1]。  

青光眼的成因明顯與眼內壓(IOP)相關，當眼內壓上升，罹患青光眼的風險也

將顯著提高[2]。惟目前眼壓量測方式皆以量測前房眼壓作為依據，並假設前房眼

內壓與玻璃體眼內壓相等。然而，玻璃體眼內壓並無法透過量測直接取得數據，僅

能由推估取得。而眼壓計的量測，其時間是極為短暫的，吹氣過程的時間僅 0.034

秒。這段過程中，前房眼內壓會相等於玻璃體眼內壓的假設是否正確也未經證實。

這個前提均是基於 Imbert-Fick 的原理而設下的假設。依於此，我們重新架構了一

數學模型探討並分析在吹氣量測的極短期下，前房眼內壓與玻璃體眼內壓的壓力

變化。從生理學角度觀之，眼球內的腔室包含了前房、後房、水晶體與玻璃體。後

房會防止房水受壓力後直接擠壓到玻璃體，這可能是造成前房眼壓與玻璃體的眼

壓不相等的原因之一，我們會期望透過模型分析在吹氣量測時，這樣子的緩衝會不

會影響到讀值的準確性。  
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1.1   研究動機 

    高眼壓會造成視神經萎縮，擠壓視神經的腔室為玻璃體，我們關心更多的是量

測當下玻璃體眼壓為何，僅透過前房眼壓的量測具備一定的誤差，過去學者多針對

角膜厚度、角膜曲率或年齡的因素做為校正前房眼內壓的因素。尚未有學者討論量

測期間前房眼壓之讀值是否會相等於玻璃體眼壓之讀值。本文中，我們嘗試使用流

體力學建構一數學模型，模擬在吹氣量測時，房水受壓後往後房與玻璃體流動的情

形，探討前房眼壓與玻璃體眼壓的差異。 

1.2   眼睛結構與功能 

    眼睛對於人類來說是重要的感知器官之一，晶狀體接收來自於物體反射或自

體發光，折射後在視網膜成像，刺激視覺中樞後獲得看見外界的能力。眼內不同的

組織均環環相扣，任何一環出現問題在視野表現的態樣上均會有所差異，更甚者會

有視野缺損或視力喪失的表徵。瞭解眼內組織各功能及互相交互的作用，有助於眼

睛模型的建構與計算。 

1.2.1   晶狀體 

晶狀體位於人眼前方約四分之一處，依靠睫狀肌繫結(capsule bag)，組成成分

為可溶性蛋白纖維(soluble protein fibers)[3]。此纖維並無法再生，故晶狀體遭遇損

傷時，損害部位將存在永久後遺症。在醫學上，白內障病狀表徵為晶狀體由透明轉

為不透明，其過程並不可逆，病患視線會受到干擾，如：視力衰退、老花改善、眼

前有重影或畏光等表現。而隨著年紀增長，睫狀體因張力鬆弛及晶狀體失去彈性。

從而失去調節焦距的能力，導致圖像成像投影在視網膜後方，在醫學上稱為老花眼

(Presbyopia)。 
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1.2.2   房水液 

人類眼球充滿了房水液與玻璃體液，以囊袋前後作為分界。房水液由睫狀體生

成，流經後房，通過虹膜通道(晶狀體與虹膜間間隙)後，從前房排出到小樑網與鞏

膜外靜脈[4]。在力學分析上，瞭解房水容積及分佈對於房水研究有很大的幫助。

Touitou 將前房空間以等效直徑為 7.8mm 之半圓球體表示，透過攝影法(phtograbic)

測量 39 位個案(平均年齡 28 歲，年齡範圍介於 19–56 歲)測得房水液約 209μl (標

準差 37μl)(包含了前房與後房的房水液)[5]。 

 

 

 

 

 

 

 

 

圖(1.1) 眼內的解剖圖 (a) 房水從睫狀體產出並經由虹膜通道從後房流至前房，部

分滲透到鞏膜；部分沿小樑網排出[4]。(b) 眼球內部結構尺寸及容積示意圖[5]。 

 

 

    房水液來自於睫狀體的生成並維持眼內壓的平衡，而過多的房水液會造成眼

內壓的升高 ( 玻璃體液代謝較慢，來源以房水液為主 ) ，導致視神經                

亦需要為此承受更多壓力。長期高壓之下導致視神經受損，嚴重者將會導致失明。

眼內房水液不正常增多的原因大致可分為二種，以阻塞排水為主因。第一種為受年

紀影響，小樑網堵塞造成了房水液無法順利被排出，醫學上稱為開角型青光眼

(open-angle glaucoma,  OAG)；第二種為晶狀體過於靠近虹膜，導致房水自睫狀

體生成後流至前房的通道受阻，而在後房堆積。虹膜因此向角膜方向推擠，使得可

a b 
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被排出之夾角縮小，前房房水無法順利被排出後，眼內壓力將逐漸上升而感到不適。

此型態因角膜與虹膜之間夾角閉合，故稱為隅角閉鎖性青光眼(angle-closure 

glaucoma, ACG)。 

 

 

 

 

圖(1.2) 超聲波顯微鏡下閉鎖型青光眼與脈絡膜積液[6] 

1.2   眼壓計 

    現今用於臨床的眼壓計有許多款，量測方式可分為接觸式及非接觸式，

Goldman 壓平式眼壓計(Goldman applanation tonometry, GAT)是基於 Imbert-

Fick 定律的假設所設計，該假設理想球體其壁厚度極薄(角膜厚度約 550μl，半徑

約 1.1cm)，在施加外力的同時壁之物理特性不影響壓平球體時所需之力。壓平係

指球體受力變形後形成之平面，且壓平前後之總容積不變，相對於球體總容積而言，

其中壓平推擠到二側之容積變化忽略不計[7] (圖 1.4)。壓力平衡時，球體內部壓力

會等於外部單位面積所施加之力，表示式為：球內壓力=外力/壓平面積。這假設顯

然存在部分不精確之處，例如球壁的物理特性(厚度、彈性以及可壓縮程度)變化會

造成壓平同樣球體所需外力的不同。但在近 100 年的發展下，大多數眼壓計仍舊

遵從此原理做設計，部分受影響數值則以統計學方式做修正。 

 

 

 

 

圖(1.3) Imbert-fick 定律外力與球體內部壓力平衡[8]。球內壓力=外力/壓平面積。 
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西元 1957 年，Goldman 設計之壓平眼壓計依循了 Imbert-Fick 原理設計。過

去定義了球內壓力的計算方式，而 Goldman 定義壓平面積，為眼壓測量做出黃金

基準。Goldman 定義壓平角膜之圓柱平面的平面直徑為 3.06mm，總面積為

7.35mm2。在壓平時，淚液層從眼壓計尖端的壓平表面和角膜之間被推出。將其定

義在 3.06mm 處有 2 個原因：1.在 3.06mm 處淚液之表面張力與角膜反彈之力近

乎相等，球體外之力相互抵銷；2.為在 3.06mm 處以克為單位之彈簧力乘上 10 可

直接換算為毫米汞柱單位(臨床上量測眼壓所稱數值均使用毫米汞柱為單位)。由於

須配合安裝在裂隙燈下，使用圓柱為探針測試，但尖端圓柱並非一次性使用之消耗

品(曾有一次性使用吸頭，但準確性不如固定式)，故完整消毒圓柱頭存在疑慮。在

近 50 年，非接觸式眼壓計的發展也逐漸成熟，非接觸式眼壓計仍循 Goldman 眼

壓計的一種，即將原本會接觸到人眼之圓柱體替換成吹氣設施，設計之初用於無法

被麻醉之患者。在醫療器材的發展史上，由於非接觸式檢驗準確度與非接觸式檢驗

準確度在統計學上已無顯著差異，非接觸式的測量方式因受到被測量者的偏愛而

成為主流。氣吹式測量方式為一漸增氣流(力)對角膜吹氣，當角膜受壓至壓平點時

(直徑 3.06mm)處，感測器讀取數值後紀錄第一次壓平點；當氣流(力)減緩時，角

膜逐漸回彈回復，會再經過一次壓平(直徑 3.06mm)處，此時感測器紀錄第二次壓

平點。二次紀錄壓力不會完全相等，所以將二次所測得的數值做平均以降低感側誤

差。 

    Goldman 曾有考慮角膜機械特性對於壓平點位置判讀的影響，或許是

Goldman 的實驗僅收了瑞士人種的試驗者，該數據使 Goldman 認為角膜厚度與彈

性等物理性質並不影響在壓平點時眼壓的讀數[7]。而在近 30 年研究，許多學者均

證實了角膜厚薄度對於眼壓讀數影響均具有顯著性。如 Ehlers 等人指出，較薄的

角膜會導致數值被低估，而較厚的角膜導致數值被高估[9]。另外，在 Gunvant 的

研究，亦表明了中央角膜厚度會顯著影響眼壓被高估或低估 [10]。 
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第二章   文獻回顧 

2.1   眼壓計量測眼內壓 

高眼壓是造成視神經萎縮和受損的主要原因之一，且青光眼的診斷是依賴量

測眼壓的讀值做診斷依據，故關於眼內壓量測的準確性是非常重要的。及早對疑似

青光眼或青光眼做出對應的治療能有效防止失明。我國現有青光眼人數但從一般

診所轉介到青光眼專科診所的眼壓判讀值至今尚未有所定論，更多的是以經驗來

做判斷依據。  

2.1.1   接觸式眼壓計 

在英國，驗光師會為民眾做眼內壓(IOP)檢驗，而僅 50%會對眼內壓讀值超過

24mmHg 之民眾進行轉診；且 35%的驗光時在進行眼內壓檢驗時，測量 1~2 次即

作為判斷依據。Vernon 等學者認為[11]，過去資料作為參考[12]，研究量測次數、

轉診眼壓閥值與敏感度、特異度、陽性預測值的關係。並使用高敏感度與高陽性預

測值作為基準，給出了在量測同一人時，建議量測眼壓次數為 4 次，並且眼壓(IOP)

值大於 22mmHg 時建議轉診至青光眼專科[11]。 

 

 

 

 

 

 

 

 
圖(2.1)以眼壓量測值與次數做轉診之陽性預測比較圖 (a)同樣量測 4 次時不同眼壓值進行轉診時

敏感度、特異度、與陽性預測值。(b)22mmHg 做轉診閥值時，量測不同次數時敏感度、特異度、

與陽性預測值。[11] 

(a) (b) 
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    臨床上，Goldman 接觸式眼壓計(Goldmann contact applanation tonometer, 

GAT)依舊作為標準來被各式眼壓計比較，因為設計結構上的不同，GAT 的在重複

測量時數值變化會小於非接觸式眼壓計(non-contact tonometry , NCT)，但使用

GAT 量測時需要做局部麻醉。因此，部分病患會更願意使用 NCT 進行量測，Jorge

等學者在 2002 年使用 NCT 儀器與 GAT 對正常眼壓的受試者(n=35)進行比較，發

現受試者左右眼壓均無不對稱的情形，且 NCT 的測量值與 GAT 相近(平均差值為

0.12±2.17mmHg)[13]。而在 2003 年進行了 NCT 對於診斷為青光眼且在接受治療

的患者眼壓值與 GAT 眼壓值的比較，發現 NCT 所測值(19.08±3.02)略高於 GAT

讀值(18.98±2.77)，但並無顯著性差異[14]。NCT 因為不需要上麻醉以及使用方便

性，近 20 年量測精確性也趨於 GAT 讀值。對於發掘早期青光眼並給予治療有一

定的幫助。 

    GAT 在近 50 年的發展上陸續被學者發現會因受試族群的不同而影響讀值的

精確性(中央角膜厚度[15]、年齡[15]、角膜曲率[16])。Elsheikh 等學者在 2011 年

對中央角膜厚度(CCT)、角膜曲率(R)、年齡(age)及初始眼內壓(IOPG)變化對於校

正後之眼內壓(IOPT)讀值的影響， CCTA , RA , ageA , IOPGA 分別表示之，彼此相承後

為 Elsheikh 等學者所定義之校正因子(C)[16]。 

 

 20.68( 0.520) 1.12( 0.52) 1CCTA CCT CCT       (2.1) 

 1 0.06( 7.8)RA R     (2.2) 

 6 3 6 20.3 10 88 10 0.0085 0.815ageA age age age         (2.3) 

 0.1191.427( 3.373)IOPGA IOPG     (2.4) 

 
IOPG

C = =A
IOPT CCT R age IOPGA A A     (2.5) 
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    根據(2.1)~(2.5)式，我們可以發現校正因子與 CCT 及年齡正相關；與曲率半

徑(R)及 IOPG 負相關。年齡(age)與曲率半徑(R)的影響較小且並不具備統計意義

(曲率半徑通常介於 7.4~8.2)。 
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2.2   白努力定律 

    Daniel Bernoulli 在 1738 年出版了《Hydrodynamica》並發表了他的理論。而

白努利定律在流體力學上亦有其不可忽視的地位。在現今的流體力學分析中，大多

仍依循白努利定律作分析。隨著時間沿革，流體力學也不僅限於應用在工程領域，

我們嘗試將白努利定律應用在眼內壓的問題上，惟醫學領域部分材料及部分組織

的特性尚未釐清，尚需要對分析之組織做出假設才能適用白努利定律的模型。 

2.2.1   穩定流 

    在流體力學中，對於一穩定流(steady flows)上的每個粒子沿流動路徑移動，

速度方向與路徑相切，速度方向與整個流場相切的線稱為流線(stream line)。在大

多數情況下，流體力學多依於流線座標做運動表述。當我們希望將牛頓定二運動定

律應用在流線座標上時，需要重新描述在流線座標上的加速度。在流線座標中，定

義質點(particle)沿流線座標之位移符號定義為 s = s(t) (區別 Cartesian coordinate 

system 常用於表示位移的 x)；根據物理定義，加速度為質點速度的變化率。方程

式表述為 /a dv dt ，在二維平面上，加速度可被分為兩分量加速度之和，其一為

沿流線加速度 ( )sa ，另一為沿流線之法線加速度 ( )na ，流線加速度與法線加速度彼

此正交。 

   流線加速度會因為質點速度沿流線位置不同而產生變化 ( )v v s ，所以𝑎௦可被寫

成： 

 

 s

dv v ds v
a v

dt s dt s

 
   

 
 (2.6) 

 

從式(2.6)，我們可將流線加速度解釋為速度與速度隨流線距離變化率之乘積。 

    在一流線質點之尺寸我們已質點在流線座標之長度 ( )s 、沿流線座標之法線

高度 ( )n 及質點厚度 ( )y 之乘積表示其體積 ( )V ；質量 ( )m 為質量密度 ( ) 與體
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積之乘積，故對於穩定流(steady flow)，依據牛頓第二運動定律沿流線方向之合力

分量( sF )可被寫為：  

 

 s s

v
F ma Vv

s
   

 
  (2.7) 

 

一質點之合力可簡單區分為外力( F )與重力( W )之和，如圖(2.2)所示，重力為物

體重量密度( )與體積之乘積，故重力沿流線座標可寫為： 

 

 sin sinsW W V         (2.8) 

 

若我們在感興趣的點上流線是水平的，亦即 0  時，沿流線座標之重力為零

( 0sW   )，沿流線座標之加速度將僅受沿流線座標之外力影響。但因為流體重量

的存在，流體在各點的壓力並非定值，依據圖(2.2)，質點中心壓力為 p，則沿流線

兩端之壓力為 sp p 與 sp p ，根據 Taylor 展開式： 

 ( , , ) ( , , )
P

P s ds n y P s n y ds
s


  


  

 ( , , ) ( , , )
P

P s ds n y P s n y ds
s


  


  

 ( , , ) ( , , )s

P
dP P s ds n y P s n y ds

s


   


 (2.9) 

根據物理定義，力等於壓力與面積之乘積，且質點在流場中均只承受壓力，故會相

差一負號。 

 

 ps s

P P
F P n y s n y V

s s
        

    
 

 (2.10) 
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因此，沿流線方向之力可寫為:  

 ( sin )s s ps

p
F W F V

s
     

    
  (2.11) 

結合式(2.7)及式(2.11)，我們可寫出在流線座標上的運動方程式 

 ( sin ) s

p v
v a

s s
    
   

 
 (2.12) 

   

     

 

 

 

 

 

圖(2.2) 流體力學元素體分力拆解圖[17]。 

 

式(2.12)中方程式sin /dz ds  ， 2/ (1/ 2) ( ) /vdv ds d v ds ，而沿著流線座標之法線

向量會趨於常數 ( 0)dn  ，所以 ( / ) ( / ) ( / )dp p s ds p n dn p s ds         。最後我們

可以將式(2.12)改寫成： 

 
21 ( )

2

dz dp d V

ds ds ds
     (2.13) 

若沿著流線座標，可以將式子(2.13)簡化成 

 21
( ) 0

2
dp d V dz     (2.14) 
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若重力加速度為常數，則沿流線座標之運動方程式為： 

 21

2
p V gz C    (2.15) 

 

 

 

 

 

圖(2.3) 流線座標圖。穩定流下，質點在流線座標中速度變化僅與位置變化有關，

與時間間無關[17]。 
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2.2.2   不穩定流 

在前述式(2.15)中，我們限制了系統的流體已處在穩定狀態(steady flow)，也可已

定常流動表述之，此時速度的變化僅與其在流線上的位置有關 ( )v v s 。在許多時

候，我們感興趣的是系統尚未穩定的情形下流線上點之速度變化，或已非定常流動

表述之，速度將不再僅與流線位置相關，需再考慮時間對於速度的影響 ( ,t)v v s 。 

因此，我們需要把沿流線座標之加速度 ( )sa 改寫為 

 s

v v
a v

t s

 
 
 

 (2.16) 

根據式(2.16)， sa 將同時受到時間與座標的影響，在非定常流動下式(2.16)可寫為： 

 

( sin ) ( )

( ) 0

p v v
v

s t s
v v dz dp

v
t s ds ds

  

 

  
   

  
 

   
 

 

 21
( ) 0

2

v
ds dp d V dz

t
  

   


 (2.17) 

對於不可壓縮流，我們可以對式(2.17)積分，沿流線從 1s 至 2s 積分後式子為： 

 
2

1

2 2
1 1 1 2 2 2

1 1

2 2

s

s

v
p v z ds p v z

t
    

     
  (2.18) 

式(2.18)適用在不可壓縮流且非黏性流動下的非定常流動，當系統趨於穩定時，

/v t  將逐漸等於 0，系統也將回歸一般白努力穩定態的方程式。 
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2.3   冪級數法 

    在方程式求解中，級數解通常是求解的最後一種方法，其計算之步驟與過程較

其他方法複雜。而在本文中，由於方程式太過複雜，無法透過過往的經驗公式或電

腦運算一步求解，我們將以冪級數(power series)作為本次欲研究之函數的核心展

開方法。 

   冪級數(power series)為一種在數學上常使用的級數函數。冪級數為一無窮展開

級數，其式子為： 

      2

0 0 1 0 2 0
0

...
m

m
m

a x x a a x x a x x




        (2.19) 

在級數展開式中，我們假設所有的變量及常數均為實數，𝑥為變數(variable)、𝑎଴、

𝑎ଵ、𝑎ଶ …為各項次係數(coefficients)且為常數，𝑥଴為級數的展開點(center of the 

series)，亦可表述為𝑥在𝑥଴處做級數展開。當𝑥଴ = 0時，我可以得到𝑥在𝑥 = 0時的

級數展開式： 

 2
0 1 2

0

...m
m

m

a x a a x a x




    (2.20) 

在求解微分方程式的過程中，級數解是一種被廣泛應用的求解方式，我們可以

令變數y為： 

 2
0 1 2

0

... m
m

m

y a a x a x a x




     (2.21) 

其一階導數 'y 為 

 ' 2 ( 1)
1 2 3 1

1 0

2 3 ... ( 1)m m
m m

m m

y a a x a x ma x m a x
 




 

        (2.22) 
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其二階導數 "y 為 

 2 ( 2)
2 3 4 2

2 0

" 2 6 12 ... ( 1) ( 2)( 1)m m
m m

m m

y a a x a x m m a x m m a x
 




 

         (2.23) 

 

以yᇱ − y = 0作為例子[18]，我們可以透過式(2.21)將式子改寫成： 

  2 2
1 2 3 0 1 22 ... -( ...)=0a a x a x a a x a x       (2.24) 

再透過比較係數法(method of equal coefficients)的方式去比較各項係數 

       2
1 0 2 1 3 22 3 ... 0a a a a x a a x        (2.25) 

可以得到 

 1 0 0a a  , 2 12 0a a  , 3 23 0a a   (2.26) 

0 1 1 2 2 3, 2 , 3a a a a a a    

最後得出 y 方程式之解： 

20 0
0 0 0...

2! 3!
xa a

y a a x x a e                  (2.27)   
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第三章   材料與方法 

3.1   模型假設 

    在本論文中，為了方便模型計算，我們對眼球內部結構以及房水與玻璃體液性

質做出 3 個假設：1.房水密度為常數，且房水與玻璃體液在過程中無化學交互作用。

2.房水液與玻璃體液為不可壓縮流體。3.聯通管之各腔室為剛體，受外部壓力後腔

體形狀不變。4.忽略房水之黏滯力。 

 

3.2   一維力平衡模型的建立 

    眼球整體構造可分為三個主要腔室，分為前房、後房與玻璃體，長時間的情況

下三個腔室內的壓力會達到靜力平衡。房水在睫狀體後方生成並通過虹膜流經前

房，後再經由小梁網流出[4] ，如第一章圖(1.1)。過去學者認為後房與玻璃體液體

交換速率緩慢而忽略其影響，但根據 David W. Smith 研究，雖然不能斷定有大量

的房水液流經玻璃體，仍可確定房水液會流經玻璃體液後，被視網膜色素上皮

(retinal pigment epithelium, RPE)所吸收[19]。依於此，我們建立一維的連通管模

型(圖 3.1)模擬吹氣時各腔室內點之壓力變化。其中 h 表示初始眼內壓(IOP)的水頭

高， 𝑂଴、 𝑂ଵ、 𝑂ଷ表示三個腔體位置、𝐴௜(i=0~4)代表各腔體及管道(pipeline)的截面

積、𝑣௜代表各腔體及管道流速值、𝑃௜代表各腔體及管道壓力值，𝑙ଶ、𝑙ସ代表管道長

度。模擬吹氣量測時眼內主要腔室壓力水頭高的變化。  
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𝑂ଷ 

𝑂଴ 

𝑂ଵ 

 

 

 

 

 

 

 

圖(3.1) 連通管模型維持靜力平衡示意圖。h 表示初始眼內壓(IOP)， 𝑂଴、 𝑂ଵ、 𝑂ଷ

表示 3 個腔體位置，P 代表吹氣時壓力，𝑙ଶ、𝑙ସ代表管道長度。 

 

此次的模型建立，我們希望推估出在吹氣時前房、後房以及玻璃體眼壓的變化，

如圖(3.2)。因為房水的組成成分 97%為水，所以我們在計算上假設房水為不可壓

縮流體且為定常流動；忽略管道與房水所產生的摩擦力。量測時吹氣為極短過程，

系統的態樣並不穩定，為討論系統起始時加速度的特徵表現，採用不穩定態的白努

力定律公式做為模型的基礎公式。獲得式(3.1)與式(3.2)： 

 

 
1

0

O 2 2
1 1 1 0 0 0O

1 1
( ) ( ) 0

2 2
sv

ds P v gz P v gz
t

    
      

   (3.1) 

 

 
3

0

O 2 2
3 3 3 0 0 0O

1 1
( ) ( ) 0

2 2
sv

ds P v gz P v gz
t

    
      

   (3.2) 

 

式(3.1)為從前房 (𝑂଴)至後房 (𝑂ଵ)之不穩定態白努力方程式，式(3.2)為從前房

 (𝑂଴)至玻璃體 (𝑂ଷ)之不穩定態白努力方程式。𝜌表示模型內液體密度； 𝑧଴表示前房

房水受到量測壓力(外力) 𝑃଴時下降的幅度； 𝑧ଵ表示因前房房水經由虹膜通道回推

至後房時，後房房水增加的幅度； 𝑧ଷ為經由後房留至玻璃體時壓力上升的幅度。 

𝑃 

𝑃 
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z଴ 

zଵ zଷ 

 

 

 

 

 

 

 

 

圖(3.2) 模型受吹氣力後各腔室位移變化示意圖。綠色虛線為前房 (𝑂଴)至後房 (𝑂ଵ)

之流線座標，紅色虛線為前房 (𝑂଴)至玻璃體 (𝑂ଷ)之流線座標。 𝑧଴表示前房房水受

到量測壓力(外力) 𝑃଴時下降的幅度； 𝑧ଵ表示因前房房水經由虹膜通道回推至後房

時，後房房水增加的幅度； 𝑧ଷ表示經由後房留至玻璃體時壓力上升的幅度。 

 

 

 

(1) 處理式(3.1)，沿前房( 𝑂଴)至後房( 𝑂ଵ)沿流線座標積分，流線通過前房、虹膜通

道後抵達後房。由於時間短暫，質點之速度之變化率與時間仍有關聯(當時間拉長，

系統趨近穩定時，質點速度變化僅與流線座標位置有關，與時間無關)。在後續的

求解中，希望 𝑧଴值≥ 0，令 𝑧଴向下為正。將積分項展開後可以得到式(3.3)：  

 

 
1

0

O

0 0 2 2 1 1O
( ) ( ) ( )sv

ds v h z v l v h z
t

   
    

      (3.3) 

 

將式(3.3)代入式(3.1)並整理後得到式(3.4)： 

 

 2 2
0 0 2 2 1 1 1 0 1 0 1 0

1
( ) ( ) ( ) ( ) ( ) ( + ) 0

2
v h z v l v h z P P v v g z z                 (3.4) 

 

    根據流量守恆定律，單位時間內前房受壓力(𝑃଴)所減少的流通量相等於虹膜通
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道經過的流通量，所以𝐴଴𝑣଴ = 𝐴ଶ𝑣ଶ =常數，並假設後房(𝑃ଵ)的邊界條件無額外的外

壓力作抵抗，將𝑣ଶ改以𝑣଴表示， 2
2 0

0

A
v v

A
 並除以𝜌，式(3.4)可改寫為式(3.5)： 

 

 2 20
0 0 0 2 1 1 0 1 0 1 0

2

1 1
( ) ( ) ( ) ( ) ( + ) 0

2

A
v h z v l v h z P v v g z z

A 
             (3.5) 

 

將加速度與速度表示為位移的符號做代換( 0 0 0 0,v z v z     )。式(3.5)重新改寫為式

(3.6)使整列僅剩下𝑧଴及𝑧ଵ二未知數。 

 

 2 20
0 0 0 2 1 1 0 1 0 1 0

2

1 1
( ) ( ) ( ) ( ) ( + ) 0

2

A
z h z z l z h z P z z g z z

A 
               (3.6) 

 

 

(2)    第二條方程式式(3.2)前段之積分項，沿前房( 𝑂଴ )至玻璃體( 𝑂ଷ )沿流線座標

積分，流線通過前房、虹膜通道後，由後房至玻璃體通道流經至玻璃體。由於時間

短暫，質點之速度之變化率與時間仍有邊關聯。我們對其積分後可得式(3.7)： 

 

 
3

0

O

0 0 2 2 4 4 3 3O
( ) ( ) ( )sv

ds v h z v l v l v h z
t

   
     

       (3.7) 

 

將式(3.7)代入式(3.2)後整理後得到式(3.8)： 

 

 2 2
0 0 2 2 4 4 3 3 3 0 3 0 3 0

1
( ) ( ) ( ) ( ) ( ) ( + ) 0

2
v h z v l v l v h z P P v v g z z                   (3.8) 

 

    根據流量守恆定律，單位時間內前房受壓力(𝑃଴)所減少的流通量相等於流經後

房及流經玻璃體的流通量和，所以可寫成𝐴଴𝑣଴ = 𝐴ଵ𝑣ଵ + 𝐴ଷ𝑣ଷ =常數。假設後房經
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由玻璃體通道流至玻璃體過程中並無其他逸散情況，且玻璃體通道的流通量會相

等於玻璃體的流通量，所以可寫成𝐴ଷ𝑣ଷ = 𝐴ସ𝑣ସ =常數，此時並假設後房(𝑃ଵ)與玻璃

體(𝑃ଷ)的邊界條件均無額外的外壓力作抵抗。式(3.8)可整理成式(3.9)： 

 

 2 20 3
0 0 0 2 3 4 3 3 3 0 3 0 3 0

2 4

1 1
( ) ( ) ( ) ( ) ( ) ( + ) 0

2

A A
v h z v l v l v h z P P v v g z z

A A



                (3.9) 

 

為使方程式變數間關係較具易讀性，我們將𝑣௜ , 𝑣̇௜改 𝑧̇௜, 𝑧̈௜( 0,  3i  )的形式重新表述。

整理後得式(3.10)： 

 

 
2 20 3 0 0 01 1 1

0 0 0 2 0 1 4 0 1 0 1
2 4 3 3 3 3 3 3

2 20 01 1
0 1 0 0 1 0 0

3 3 3 3

( ) ( ( ) ) ( )( ( ))

1 1
(( ) ) (( ) ) 0

2

A A A A AA A A
v h z z l z z l z z h z z

A A A A A A A A

A AA A
z z z g z z z P

A A A A 

       

       

     

  

  (3.10) 

對式(3.6)和(3.10) 求二階非線性聯立微分方程式之級數解，形式可以冪級數展開

𝑧௜,  𝑧̇௜, 𝑧̈௜( 0,  1i  )： 

 

0
0

n
n

n

z a t




 (3.11.a), 0 1
0

( 1) n
n

n

z n a t





  (3.11.b), 0 2
0

( 1)( 2) n
n

n

z n n a t





   (3.11.c) 

 

1
0

m
m

m

z b t




 (3.11.d), 1 1
0

( 1) m
m

m

z m b t





  (3.11.e), 
1 2

0

( 1)( 2) m
m

m

z m m b t





   (3.11.f) 

 

由於式(3.6)和式(3.11)均存在非線性項次，為使式子簡潔，將非線性項之冪級數相

乘項的基本下列形式： 

 
0 0 0 =0

( )
n

n m n
n m n

n m n

a t b t a b t 


  


  

      (3.12) 

 

 (
2 2
0 1

0 0 0
1 1)   ( ( 1) ) ( 1)( 1)( )n

n
n n

n
n n

z n a tat n a 


 
 

 


 
 

        
    (3.12.a) 



doi:10.6342/NTU202201573

21 

 

 (
2 2
1 1

0 0 0
1 1)   ( ( 1) ) ( 1)( 1)( )n

n
n n

n
n n

z n b tbt n b 


 
 

 


 
 

        
    (3.12.b) 

 

 
0 0 2

0 0

0
( 2

0
)

( 1)( 2)

      ( 2)( 1)( )

n n
n n

n n

n
n

n
na

z z a t n n a t

n n ta 


 

 


 


 





   

       

 

 



 (3.12.c) 

 

 
1 1 2

0 0

0
( 2

0
)

( 1)( 2)

      ( 2)( 1)( )

n n
n n

n n

n
n

n
n

z z b t n n b t

n n b tb 


 

 


 


 





   

       

 

 



 (3.12.d) 

 

 
0 1 2

0 0

0
( 2

0
)

( 1)( 2)

      ( 2)( 1)( )

n n
n n

n n

n
n

n
n

z z a t n n b t

n n a tb 


 

 


 


 





   

       

 

 



 (3.12.e) 

   

 
1 0 2

0 0

0
( 2

0
)

( 1)( 2)

      ( 2)( 1)( )

n n
n n

n n

n
n

n
n

z z b t n n a t

n n b ta 


 

 


 


 





   

       

 

 



 (3.12.f) 

  

承式(3.6)和(3.10)，將線性項與非線性項分開排列，整理後如式(3.13), (3.14):  



¥
0

n+2 2 n+2 n n 0
n=0 2

n

(a+1) (n-a+1) (a+1) (n-a+1)
a=0

n
a (n-a+2) a (n-a+2)

A
{ (n + 1)(n + 2)[a (h + l )+ b h] + g(a + b ) - P

A

1
       + (a + 1)(n - a + 1)(b b - a a )

2

               + (n - a + 2)(n - a + 1)(b b - a a ) t = 0



  (3.13) 
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     

0 0 3 3 01 1
2 2 4 2 4 0

0 2 3 4 3 4 3 3

2
n

0 1
α (n-α+2) αn-α+2 n

α=0 3 3

( 1)( 2) ( ) ( ) 1

A A
       + n-α+1 n-α+2 a a -1 -b +b -a

A A

n n n n
n

A A A A AA A
n n a h l h l b h l g a b P

A A A A A A A



 


                                
                  



  

         

2

01 1
(n-α+2)-α+2

3 3 3

2 2

0 01 1
(n-α+1) (n-α+1)α+1 n-α+1 α+1 α+1

3 3 3 3

AA A
+b

A A A

A AA A1
                          + α+1 -1 a a -2 a b + b b t =0

2 A A A A
n

        

                    

  (3.14) 

 

我們假設前房受吹氣壓力(𝑃଴)為 sine 函數，我們假定吹氣力僅有 0.015 秒，冪級

數展開成： 

 
     3 5

0

1 1
sin ,  0 0.015

3! 5!
                      0                               ,  0.015

wt wt wt wt t
P

t

       
 

  

在時間零秒時，前房和後房的位移、速度和加速度都為零 ( , 0, 0,1, 2)i ia b i  。在

n=0 時，最高次項為 2，可直接表述為 0。因此當 0 < t < 0.015 時，我們可以對

式(3.13)和式(3.14)的係數比較係數法方式求聯立方程式解： 

(1) 當 n=1 階時可得： 

 0
3 2 3

2

1
6 6

A
a h l b h w

A 
  

    
  

 (3.15a) 

 0 0 3 31
3 2 4 3 2

2 3 4 3 4

1
6 + -

A A A AA
a h l l h b l h w

A A A A A 

     
        

      
 (3.15b) 

 

(2) 當 n=2 階時可得： 

 0
4 2 4

2

12 12 0
A

a h l b h
A

  
    

  
 (3.16a) 

 0 0 3 31
4 2 4 4 2

2 3 4 3 4

12 + - 0
A A A AA

a h l l h b l h
A A A A A

     
        

      
 (3.16b) 
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(3) 當 n=3 階時可得： 

   30
5 2 5 3 3

2

1
20 20

6

A
a h l b h g a b w

A 
  

       
  

 (3.17a) 

 30 0 3 3 01 1
5 2 4 5 4 3 3

2 3 4 3 4 3 3

1
20 + - + 1

6

A A A A AA A
a h l l h b l h g a b w

A A A A A A A 

         
               

          
(3.17b) 

 

(4) 當 n=4 階時可得： 

 

   2 20
6 1 6 4 4 3 3

2

21
30 + 0

2

A
a h l b h g a b b a

A

  
       

  
     (3.18a) 

 

 

0 0 3 3 01 1
6 2 4 6 4 3 3

2 3 4 3 4 3 3

2

2 20 0 1 1
3 3 3 3

3 3 3 3

2

0 0 1
3 3 3

3 3 3

30 + - + 1

9
1 2

2

     6 1

A A A A AA A
a h l l h b l h g a b

A A A A A A A

A A A A
a a b b

A A A A

A A A
a a b

A A A

         
             

          
           
     

        
   

1 1
3 3 3

3 3

0
A A

b a b
A A

           

(3.18b) 

 

在 3.1 節，模型初步建立可以觀察出，整體各項係數之解會與我們所設定初始於前

房吹氣力  0P 大小、頻率有所關聯，在下一節討論角膜變形對於模型影響時，將對

各項係數求出代數解，可進一步觀察初始條件  0P 對於整體幾何解之影響。 
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zଵ zଷ zହ 

z଴ 

3.3   考慮角膜變形之模型建立 

    前節的模型中，我們忽略了吹氣量測對於角膜邊緣容積變化量，本節中我們將

考慮模型變化量來做討論。依據 3.1 節的模型，角膜吹氣後房水會流進至後房，但

在真實的眼球中，房水受壓後並不會只流進至後房，部份會被擠壓至前房二側。故

我們將前房後側再切割一區域作為角膜變型之壓力變化，用以考慮角膜側的形變，

如圖(3.3)所示，我們將聯通管模型之前房多切割一區域，其中 h 表示初始眼內壓

(IOP)的水頭高， 𝑂଴表示前房受壓力側， 𝑂ଵ表示前房角膜之變形側，用已緩衝前房

受壓側受到壓力時房水不會全數留至後房， 𝑂ଷ表示後房及 𝑂ହ表示玻璃體。𝐴௜(i=0~5)

代表各腔體及管道(pipeline)的截面積、𝑣௜ (i=0~5)代表各腔體及管道流速值、

𝑃௜(i=0~5)代表各腔體及管道壓力值，𝑙ଶ、𝑙ସ代表管道長度。模擬吹氣量測時眼內主

要腔室壓力水頭高的變化。  

 

 

 

 

 

 

 

 

 

圖(3.3) 連通管模型維持靜力平衡示意圖。h 表示初始眼內壓(IOP)的水頭高， 𝑂଴

表示前房受壓力側， 𝑂ଵ表示前房角膜之變形側，用已緩衝前房受壓側受到壓力時

房水不會全數留至後房， 𝑂ଷ表示後房及 𝑂ହ表示玻璃體。𝑙ଶ、𝑙ସ代表管道長度。 

 

 

 

𝑃 
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    在模型的建立上，因 𝑂ଵ為原 𝑂଴腔體虛擬出去之部份，故𝑙ଵ在腔體中極短予以

忽略，由於吹氣量測時間極短，比照 3.1 節採用不穩定態白努力方程寫出下列方

程，依序對方程式做整理及代換，方便觀察未知數對於方程式的影響程度。 

 

 
1

0

O 2 2
1 1 1 0 0 0O

1 1
( ) ( ) 0

2 2
sv

ds P v gz P v gz
t

    
      

   (3.19) 

 

 
3

0

O 2 2
3 3 3 0 0 0O

1 1
( ) ( ) 0 

2 2
sv

ds P v gz P v gz
t

    
      

  (3.20) 

 

 
5

0

O 2 2
5 5 5 0 0 0O

1 1
( ) ( ) 0 

2 2
sv

ds P v gz P v gz
t

    
      

  (3.21) 

 

(1)   優先處理式(3.19)，沿前房吹氣( 𝑂଴ )至角膜變形位置( 𝑂ଵ )沿流線座標積分。

其中 𝑧଴ ≥ 0，以向下為正。在實際的眼球內，吹氣至前房與角膜變形是在同一腔室

內完成，故將二者間通道長度 𝑙ଵ之值視為 0。將積分項展開後可以得到式(3.22)： 

 

 
1

0

O

0 0 1 1O
( ) ( )sv

ds v h z v h z
t

  
   

     (3.22) 

 

代入(3.19)後得式(3.23) 

 

 2 2
0 0 1 1 1 0 1 0 1 0

1
( ) ( ) ( ) ( ) ( + ) 0

2
v h z v h z P P v v g z z               (3.23) 
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假設角膜(𝑃ଵ )的邊界條件無額外的外壓力作抵抗(𝑃ଵ = 0 )，並將式(3.23)乘上
ଵ

ఘ
得到

式(3.24): 

 2 2
0 0 1 1 1 0 1 0 0

1 1
( ) ( ) ( ) ( + ) 0

2
v h z v h z v v g z z P


           (3.24) 

 

(2)  由第二條方程式式(3.20)之積分項，流線通過前房受壓側後經過前房變形區抵

達後房。沿前房(𝑂଴)至後房(𝑂ଷ)沿流線座標積分得式(3.25): 

 

  3

0

O

0 0 2 2 3 3O
( ) ( )sv

ds v h z v l v h z
t

   
    

      (3.25) 

 

展開代入(3.15)，得式(3.26): 

 

 
0 0 2 2 3 3 3 0

2 2
3 0 3 0

( ) ( ) ( ) ( )

1
( ) ( ) 0

2

v h z v l v h z P P

v v g z z

  

 

     

    

  

 (3.26) 

 

    根據流量守恆定律，單位時間內前房受壓力(𝑃଴)所減少的流通量相等於虹膜通

道經過的流通量，我們可以寫成𝐴଴𝑣଴ = 𝐴ଵ𝑣ଵ + 𝐴ଶ𝑣ଶ =常數。在計算式中，我們希望

計算式僅保留𝑣଴, 𝑣ଵ, 𝑣ଷ之以減少代數的使用，故我們將𝑣ଶ改以式(3.27)表示:  

 

 0 1
0 0 1 1 2 2 2 0 1

2 2

,
A A

A v A v A v v v v
A A

      (3.27) 

 

代入式(3.26)得式(3.28):  

 

0 1
0 0 0 1 2 3 3 3 0

2 2

2 2
3 0 3 0

( ) ( ) ( )

1
( ) ( ) 0

2

A A
v h z v v l v h z P P

A A

v v g z z

  

 

 
       

 

    

   

  (3.28) 



doi:10.6342/NTU202201573

27 

(3)  由第三條方程式式(3.21)，流線通過前房受壓側後經過前房變形區抵達後房，

再經由後房至玻璃體通道至玻璃體。前段之積分項為沿前房(𝑂଴)至玻璃體(𝑂ହ)沿流

線座標積分(3.29): 

 

  5

0

O

0 0 2 2 4 4 5 5O
( ) + ( )sv

ds v h z v l v l v h z
t

   
    

      (3.29) 

 

代入(3.21)，得式(3.30):  

 

 
 0 0 2 2 4 4 5 5 5 0

2 2
5 0 5 0

( ) + ( ) ( )

1
( ) ( ) 0

2

v h z v l v l v h z P P

v v g z z

  

 

     

    

   

  (3.30) 

 

因式(3.30)存在非𝑣଴, 𝑣ଵ, 𝑣ଷ下標之代數，為簡化參數，我們嘗試使用流量守恆定律

化簡𝑣ସ, 𝑣ହ，模型中後房( 𝑂ଷ)流經至玻璃體( 𝑂ହ)之通道流量( 4 4A v )會相等於進入後房

之流量( 5 5A v )，如式(3.31): 

 

 5
4 4 5 5 4 5

4

,  
A

A v A v v v
A

   (3.31) 

 

且前房受壓力下降之總流量( 0 0A v )會等於流經角膜變形流量( 0 0A v )加上進入前房流

量再加上進入後房流量和。如式(3.32)： 

 

 
0 0 1 1 3 3 5 5

0 31
5 0 1 3

5 5 5

+A v Av A v A v

A AA
v v v v

A A A

 

  
  (3.32) 

 

將式(3.31)和式(3.32)代入式(3.30)，可以得到式(3.33)： 
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0 5 0 31 1
0 0 0 1 2 0 1 3 4

2 2 4 5 5 5

0 3 0 31 1
0 1 3 0 1 3

5 5 5 5 5 5

2

20 3 01 1
0 1 3 0 0 1

5 5 5 5 5

( ) +

1

2

A A A AA A
v h z v v l v v v l

A A A A A A

A A A AA A
v v v h z z z

A A A A A A

A A AA A
v v v v g z z

A A A A A

   
            

    
              

  
          

     

  

3
3 0 0

5

1
0

A
z z P

A 
 

    
 

 (3.33) 

 

總結式(3.24), 式(3.28)及式(3.33)為此模型欲求解之聯立微分方程組。我們僅存在三個

未知數，可以此去嘗試求得各項未知數之唯一解。 

在求解方法與 3.1 節雷同，部分項為非線性項，且須要多處裡一條方程式，故

處理上複雜性較 3.1 節高。本節仍使用級數解去嘗試求解，由冪級數展開

𝑧௜,  𝑧̇௜, 𝑧̈௜(i=0,1,3)得： 

 

0
0

n
n

n

z a t




 (3.34.a), 0 1
0

( 1) n
n

n

z n a t





  (3.34.b), 0 2
0

( 1)( 2) n
n

n

z n n a t





   (3.34.c) 

 

1
0

n
n

n

z b t




 (3.34.d), 1 1
0

( 1) n
n

n

z n b t





  (3.34.e), 1 2
0

( 1)( 2) n
n

n

z n n b t





   (3.34.f) 

 

3
0

n
n

n

z c t




 (3.34.g), 3 1
0

( 1) n
n

n

z n c t





  (3.34.h), 3 2
0

( 1)( 2) n
n

n

z n n c t





   (3.34.i) 
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沿用式(3.12)之結果，對各耦和項作處理(展開如前頁)，再依照線性項與非線性項

分開排列，式(3.24)改寫為式(3.35):  

 

 

        
      

          

2 2
n=0

2 2
0

01 1 1 1

1 ( 2)

      1 ( 2)

1 1
                1 ( 1) 0

2

n nn n

n

n n

n
n n

n n a b h g a b

n n b b c c

n n b b a a t P

  


   

 






 

   


     

    

     

      




  (3.35) 

式(3.28)改寫為式(3.36)： 

 

 

         

      
          

0 1
22 2 2

0 2 2

2 2
0

01 1 1 1

1 ( 2)

      1 ( 2)

1 1
               1 ( 1) 0

2

n nn n n
n

n

n n

n
n n

A A
n n a h b l c h h g a c

A A

n n c c a a

n n c c a a t P

  


   

 






  


   


     

                 

     

      




   (3.36) 

 

式(3.33)改寫為式(3.37)： 

 

 

   

 

 

0 0 5 0
2 42

0 5 2 4 5

51 1 1
2 42

5 2 4 5

3 5 3 0 1
2 42

2 4 5 5 5

1 ( 2)

                              

                          1

n
n

n

nn

A A A A
n n a h h l l

A A A A

AA A A
b h l l

A A A A

A A A A A
c l l g a

A A A A A










             
 

   
 

   
          



         

             

3

5

0 3 0 31 1
2 2 2 2

0 5 5 5 5 5 5

0 3 0 31 1
1 1 1 1 1 1

5 5 5 5 5 5

 1 ( 2)

1
    1 ( 1)

2

n n

n

n n n n

n n n

A
b c

A

A A A AA A
n n a b c a b c a a

A A A A A A

A A A AA A
n n a b c a b c

A A A A A A

      


     

 



       


        

 
  

 
   

                

 
        

 



    01 1

1
0n

na a t P    

         

 (3.37) 
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前房受吹氣壓力(𝑃଴)假定為 sine 函數，且吹氣力僅存 0.015 秒，冪級數展開成： 

 

 
     3 5

0

1 1
sin ,  0 0.015

3! 5!
                     0                                ,  0.015

wt wt wt wt t
P

t

       
 

 (3.38) 

 

    在時間在零秒時，前房和後房的位移、速度和加速度都為零 ( , 0, 0,1, 2)i ia b i  。

在 n=0 時，最高次項為 2，可直接表述為 0，因此當 0 < t < 0.015 時，我們可對

式(3.35), 式(3.36)和(3.37)的係數比較係數法方式求聯立方程式解： 

 

(1) 當 n=1 階時可得： 

  3 36
w

h a b


   (3.39a) 

 1 1
3 2 3 2 3

2 2

6
A A w

a h l b l c h
A A 

    
            

 (3.39b) 

 0 0 0 3 31 1 1
3 2 4 3 2 4 3 4

5 3 4 5 2 4 5 4

6 1
A A A A AA A A w

a h l l b h l l c h l
A A A A A A A A 

       
                        

(3.39c) 

 

(2) 當 n=2 階時可得： 

  4 412 0h a b   (3.40a) 

 1 1
4 2 4 2 4

2 2

12 0
A A

a h l b l c h
A A

    
            

 (3.40b) 

 0 0 0 3 31 1 1
4 2 4 4 2 4 4 4

5 3 4 5 2 4 5 4

12 1 0
A A A A AA A A

a h l l b h l l c h l
A A A A A A A A

       
                        

(3.40c) 
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(3) 當 n=3 階時可得： 

    
3

3 3 3 320
w

h a b g a b


      (3.41a) 

  
3

1 1
5 2 5 2 5 3 3

2 2

20
6

A A w
a h l b l c h g a c

A A 
    

               
 (3.41b) 

 

0 0 0 3 31 1 1
5 2 4 5 2 4 5 4

5 3 4 5 2 4 5 4

3
0 31

3 3 3
5 5 5

20 1

1
6

A A A A AA A A
a h l l b h l l c h l

A A A A A A A A

A AA w
g a b c

A A A 

       
                       

  
          

(3.41c) 

 

(4) 當 n=4 階時可得： 

      2 2
6 6 3 3 4 4

21
30 0

2
h a b b a g a b       (3.42a) 

    2 21 1
6 2 6 2 6 4 4 3 3

2 2

21
30 0

2

A A
a h l b l c h g a c c a

A A

    
                

 (3.42b) 

 

0 0 0 3 31 1 1
6 2 4 6 2 4 6 4

5 3 4 5 2 4 5 4

2

20 3 0 31 1
4 4 4 3 3 3 3

5 5 5 5 5 5

30 1

21
     1 0

2

A A A A AA A A
a h l l b h l l c h l

A A A A A A A A

A A A AA A
g a b c a b c a

A A A A A A

       
                       

     
                      

(3.42c) 

 

依照比較係數法求出各冪級數之係數代數解： 

3 5
0 3 5

0

0 ...n
n

n

z a t a t a t




      

3 5
1 3 5

0

0 ...n
n

n

z b t b t b t




      

3 5
3 3 5

0

0 ...n
n

n

z c t c t c t




      

(係數於下頁) 
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根據在 3.2 節的初步結果，我們能發現𝑧଴, 𝑧ଵ, 𝑧ଷ之係數解與角頻率  w 存在極大關係，

由於本次模型建立所假設吹氣力時間極短，根據角頻率公式：角頻率= 2 頻率，故角頻

率平方之值  21600 會大於重力值  9.81 許多，可以簡單看出本次實驗的討論與結果會

與 sine 函數組成因子有所相關。 
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     
        

2
2 3 5 4 1 2 3 5 4 4 3 5 2 4 1 3 5

3 2
1 3 2 4 4 5 2 5 4 0 1 3 4 5 2 0 1 2 4 0 1 3 56 2

w A A A hl A l A A l A h A A A A h A A A
a

h A A l l A A A A hl A A A A A hl A A A A h A A A A

     


         
               (3.43a) 

 

    
         

    
 

2 2 2 2 2
1 2 5 2 4 1 3 5 2 4 2 5 4 3 1 0 4 2 1 5 1 3 0 5

2 2 2
2 5 4 0 1 3 1 3 2 4 5 2 4 1 3 0 1 3 1 5 0 1 3 5 0 12

2 2 2
1 4 2 5 0 1 3 1 5 1 3 0 5

0 1 3 5 2

5

2 2 2

4 2 3

3 2

2

A A A l l A A A hl l A A l A A A A l A A A A A A

A A l A A A A A A A A l l A A A A A A A A A A A A A
h

A A l A A A A A A A A A Ag

A A A A A

w

a

      

          
 
      

   





    
      

    
  

3
4 2 5 4 1 3 1 4 2 3 5

22 2 4
2 4 3 5 1 1 3 5 0 1 3 5

2 2 2 2 2 2
1 3 5 2 4 1 3 5 2 4 2 5 4 3 1 0 4 2 1 5 1 3 0 5

2 2 2
2 5 4 0 1 3 1 3 2 4 5 2 4 1 3 13

2

2 2

2 3 3 3 4

6

A h A A l A A A A l A A

A A h A A A A A A A A A A

A A A hl l A A A h l l A A l A A A A l A A A A A A

A A l A A A A A A A A l l A A A
h

w

 
 
 
 
 
 
   
 
        
 

     

    




      
    
     

    
 

3 5 1 5 0 1 0 3 1 5

2 2 2
1 4 2 5 0 1 3 1 5 1 3 0 5

2
2 4 5 4 1 3 1 3 5 0 1 3 5

4

2 2
2 4 2 1 5 0 1 5 3 1 3 1 3 0 1 3 3 5 5

22 2 5
2 4 3 5 1 1

6 5 2 2

3 2

2 2 2

(2 2 2 5 ) 3

2

A A A A A A A A A A

A A l A A A A A A A A A A

A A A l A A A A A A A A A
h

A A l A A A A A A A A A A A A A A A A

A A h A A A A A

     
 
      
      
  
          

       
       

3 5 0 1 3 5

2 2
0 1 3 5 2 4 0 1 3 2 5 4 0 1 5 1 3 4 2 1 3 5 2 4

2

120 2 2

A A A A A

h A A A A A A h A A A A A hl A A A A A A hl A A A l l

 
 
 
 
 
 
 
 
 
 
                           

  
         

  (3.43b) 
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   
      

2
1 3 5 2 4 0 2 5 4 4 2 1 3 0 5 0 2 4

3 2
1 3 5 2 4 2 5 4 0 1 3 1 4 5 2 0 1 2 4 0 1 3 56 2

w A A A l l h A A A l A l A A A A A A A h
b

h A A A l l A A hl A A A A A A hl A A A A h A A A A

   


        
                (3.44a) 

 

    
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g A l A A A A A A A A A A A

A A A A A

w

b

     

         
  
     

   





  
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 
 
 
 
 
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  
 
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 
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   

 
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         
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
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







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         
     (3.44b) 
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zଷ zଵ zହ 
z଴ 

3.4   角膜變形考慮阻尼力 

    3.2 節的模型我們考慮了角膜變化量對於吹氣量測實驗的影響，但仍舊忽略了

鞏膜及角膜對抵抗變形之抗形變之力。而在眼球內，房水液並不會無限制的堆積在

某一腔室內，鞏膜或角膜有維持整顆眼球形狀之功效。本節中，我們將延續 3.2 節

之模型，多新增阻尼力去減緩水頭升高速度及減少其升高量，用以模擬鞏膜或角膜

抵抗變形之力。 

    圖(3.4) 表示模型受到吹氣力 P 後增加阻尼力之位置，受壓力側受吹氣力向內

凹陷，角膜無給予額外抗力，故不放置阻尼。前房變形側、後房、玻璃體腔室皆存

在膨脹現象，故新增阻尼與彈簧系統做抵抗。h 表示初始眼內壓(IOP)的水頭高，

 𝑂଴表示前房受壓力側， 𝑂ଵ表示前房角膜之變形側，用已緩衝前房受壓側受到壓力

時房水不會全數留至後房， 𝑂ଷ表示後房及 𝑂ହ表示玻璃體。𝐴௜(i=0~5)代表各腔體及

管道(pipeline)的截面積、𝑣௜(i=0~5)代表各腔體及管道流速值、𝑃௜(i=0~5)代表各腔體

及管道壓力值，𝑙ଶ、𝑙ସ代表管道長度、k 為系統之彈簧常數、c 為阻尼係數。模擬吹

氣量測時眼內主要腔室壓力水頭高的變化，及阻尼對於系統的影響。  

 

 

 

 

 

  

 

圖(3.4) 連通管模型受壓後彈簧阻尼放置位置示意圖。前房受壓側收壓力後，前房

變形側、後房、玻璃體腔室皆存在膨脹現象，故新增阻尼與彈簧系統做抵抗。h 表

示初始眼內壓(IOP)，其中 h 表示初始眼內壓(IOP)的水頭高， 𝑂଴表示前房受壓力

側， 𝑂ଵ表示前房角膜之變形側，用已緩衝前房受壓側受到壓力時房水不會全數留

至後房， 𝑂ଷ表示後房及 𝑂ହ表示玻璃體。𝑙ଶ、𝑙ସ代表管道長度、k 為系統之彈簧常數、

c 為阻尼係數。 
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圖(3.5)表示吹氣力結束後，系統準備回復初始狀態，此時前房變形側、後房與玻璃

體壓力高於前房受壓側(此時受壓側無壓力，P=0)，故房水升高部分會重新回到前

房，為了阻止受壓力側之房水高於靜力平衡時之高度，於前房受壓側增加阻尼系統

阻礙其變形，而其餘位置則無額外之組織干擾其復原，故無添加阻尼。 

 

 

  

 

 

 

 

 

 

 

 

 

圖(3.5) 連通管模型復原時彈簧阻尼放置位置示意圖。當壓力卸載後，系統開始

復歸，防止前房受壓側( 𝑂଴)高於原基線，增加彈簧阻尼系統於前房受壓側( 𝑂଴)。 

 

 

 

方程式推導與 3.2 節之推導大同小異，我們假定吹氣力僅有 0.015 秒，所以系統前

0.015 秒的方程式中𝑃ଵ, 𝑃ଷ, 𝑃ହ之抵抗壓力不為 0，存在阻力抵抗水頭高升高，而彈

簧力與阻尼力單位皆為牛頓，我們將其除以對應的截面積將單位轉換成壓力，使單

位一致。因此，在存在吹氣力的情況下，我們可以將式(3.23)重新改寫成式(3.43):  

 

  2 2
0 0 1 1 1 0 1 0 0 1 1

1

1 1 1
( ) ( ) ( ) ( + ) 0

2
v h z v h z v v g z z P kz cv

A
 

          
 

   (3.43) 
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透過級數解式(3.34)，我們可將式(3.43)展開成式(3.44) 

 

           

      
          
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2 2
0
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1 1
1 ( 2) 1

      1 ( 2)

1
                1 ( 1) 0

2

n n n nn n

n

n n

n
n n

n n a b h g a b kb n cb
A

n n b b c c

n n b b a a t P

  


   



 





 

   


     

       

     

      




 (3.44) 

式(3.26)改寫成式(3.45): 

 

  2 2
0 0 2 2 3 3 3 0 3 0 0 3 3

3

1 1 1
( ) ( ) ( ) ( ) ( ) 0

2
v h z v l v h z v v g z z P kz cv

A
 

            
 

   (3.45) 

 

透過級數解式(3.34)，我們可將式(3.45)展開成式(3.46): 

 

       

    

      
          

0 1
22 2 2

0 2 2

1
3

2 2
0

01 1 1 1

1 ( 2) 1

1 1
       + 1

      1 ( 2)

1 1
               1 ( 1) 0

2

n n n
n

n n n n

n

n n

n
n n

A A
n n a h b l c h

A A

g a c kc n cc
A

n n c c a a

n n c c a a t P

  


   



 






  




   


     

               

   

     

      




 (3.46) 

式(3.30)改寫成式(3.47) 

    2 2
0 0 2 2 4 4 5 5 5 0 5 0 0 5 5

5

1 1
( ) + ( ) ( ) ( ) 0

2
v h z v l v l v h z v v g z z P kz cv

A
 

 
            

 
    (3.47) 
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透過級數解式(3.34)，我們可將式(3.47)展開成式(3.48): 

 

 

     

 

0 0 5 0 51 1 1
2 4 2 42 2

0 5 2 4 5 5 2 4 5

3 5 3 0 31
2 42

2 4 5 5 5 5

0

5

1 ( 2)

                           1

1 1
  

n n
n

n n nn

A A A A AA A A
n n a h h l l b h l l

A A A A A A A A

A A A A AA
c l l g a b c

A A A A A A

A
k

A A



 




                      
     

                 





       

         

   

3 0 31 1
1 1 1

5 5 5 5 5 5

0 3 0 31 1
2 2 2 2

0 5 5 5 5 5 5

0 1
1

5 5

1

 1 ( 2)

1
    1 ( 1)

2

n n n n n n

n

n n n n

A A AA A
a b c n c a b c

A A A A A

A A A AA A
n n a b c a b c a a

A A A A A A

A A
n n a b

A A

      


 

 



  

       




    
              

   
                

    



             
3 0 31

01 1 1 1 1 1 1
5 5 5 5

1
0n

n n n n

A A AA
c a b c a a t P

A A A A                

                 

(3.48) 

 

    增加彈簧與阻尼系統並不會更改其初始條件，故前房和後房的位移、速度和加

速度與 3.2 節之條件皆相同，會相等於零 ( , 0, 0,1, 2)i ia b i  (在 n=0 時，最高次項

為 2，可直接表述為 0)，而我們對於外力項之設定維持式(3.38)之設定，因此當 0 

< t < 0.015 時，我們可以對式(3.44) (3.46) (3.48)的係數比較係數法方式求聯立方

程式解： 

(1) 當 n=1 階時可得： 

  3 36
w

h a b


   (3.49a) 

 1 1
3 2 3 2 3

2 2

6
A A w

a h l b l c h
A A 

    
            

 (3.49b) 

 0 0 0 3 31 1 1
3 2 4 3 2 4 3 4

5 3 4 5 2 4 5 4

6 1
A A A A AA A A w

a h l l b h l l c h l
A A A A A A A A 

       
                        

(3.49c) 
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(2) 當 n=2 階時可得： 

  4 4 3
1

1 1
12 3 0h a b cb

A
    (3.50a) 

 

 1 1
4 2 4 2 4 3

2 2 3

1 1
12 3 0

A A
a h l b l c h cc

A A A
    

             
 (3.50b) 

 

 

 0 0 0 3 31 1 1
4 2 4 4 2 4 4 4 3

5 3 4 5 2 4 5 4 3

0 31
3 3 3

5 5 5 5

1 1
12 1 3

1 1
       3 0

A A A A AA A A
a h l l b h l l c h l cb

A A A A A A A A A

A AA
c a b c

A A A A





       
                        

 
    

 
(3.50c) 

 

(3) 當 n=3 階時可得： 

      
3

5 5 3 3 3 4
1

1 1
20 4

w
h a b g a b kb cb

A 
        (3.51a) 

 

    
3

1 1
5 2 5 2 5 3 3 3 4

2 2 3

1 1
20 4

6

A A w
a h l b l c h g a c kc cc

A A A 
    

                 
(3.51b) 

 

 

0 0 0 3 31 1 1
5 2 4 5 2 4 5 4

5 3 4 5 2 4 5 4

0 31
3 3 3

5 5 5

0 3 0 31 1
3 3 3 4 4 4

5 5 5 5 5 5 5

20 1

      1

1 1
4

A A A A AA A A
a h l l b h l l c h l

A A A A A A A A

A AA
g a b c

A A A

A A A AA A
k a b c c a b c

A A A A A A A

       
                       

  
        

   
       

  

3

6

w


 

    

(3.51c) 
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(4) 當 n=4 階時可得： 

        2 2
6 6 3 3 4 4 4 5

1

21 1 1
30 5 0

2
h a b b a g a b kb cb

A
         (3.52a) 

 

     2 21 1
6 2 6 2 6 4 4 3 3 4 5

2 2 3

21 1 1
30 5 0

2

A A
a h l b l c h g a c c a kc cc

A A A
    

                  
 (3.52b) 

 

 

0 0 0 3 31 1 1
6 2 4 6 2 4 6 4

5 3 4 5 2 4 5 4

2

20 3 0 31 1
4 4 4 3 3 3 3

5 5 5 5 5 5

0 31
4 4

5 5 5

30 1

21
1

2

1 1

A A A A AA A A
a h l l b h l l c h l

A A A A A A A A

A A A AA A
g a b c a b c a

A A A A A A

A AA
k a b

A A A

       
                       

     
                     

   0 31
4 5 5 5

5 5 5 5

4 0
A AA

c c a b c
A A A A

    
            

(3.52c) 

 

    由於彈簧阻尼系統的存在，使第二階聯立方程組(式(3.50))摻入了 3 3 3,  ,  a b c 之

係數，亦使得 3.2 節中 4 4 4,  ,  a b c 原求得為 0 之解不再等於 0。波形會受到速度快慢

而產生變化，亦即將不會在同一時間抵達波峰，各波形之波峰時間將有所差異。 

    吹氣力僅有 0.015 秒，當施力結束後，系統將會復歸，阻尼之設置主要是為了

抵抗水頭高之上升，並不阻礙水頭高下降，故在復歸時，前房變形側、後房、玻璃

體之腔室將不存在阻尼力。 
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    阻尼力之存在位置為前房受壓側，在眼球構造中，則為受吹氣力之角膜位置，

從生理學來看，角膜並不會無限向外拉伸，會存在阻力抵抗其變形以維持眼球形狀

之穩定。故設置彈簧阻尼系統給予阻力，已減緩水頭上升速度並控制系統之震盪現

象不過於劇烈。彈簧阻尼位置擺設如前頁圖(3.4)所示。 

當外力等於 0 時，式(3.43)將被改寫為式(3.53)： 

 

 2 2
0 0 1 1 1 0 1 0 0 0 0

0

1 1 1
( ) ( ) ( ) ( + ) + 0

2
v h z v h z v v g z z P kz cv

A
 

         
 

         (3.53) 

 

透過級數解式(3.34)，我們可將式(3.53)展開成式(3.54) 

 

           

      
          

12 2
n=0 0

2 2
0

01 1 1 1

1 1
1 ( 2) 1

      1 ( 2)

1
                1 ( 1) 0

2

n n n nn n

n

n n

n
n n

n n a b h g a b ka n ca
A

n n b b c c

n n b b a a t P

  


   



 





 

   


     

       

     

      




        (3.54) 

 

式(3.45)改寫成式(3.55): 

 

  2 2
0 0 2 2 3 3 3 0 3 0 0 0 0

0

1 1 1
( ) ( ) ( ) ( ) ( ) 0

2
v h z v l v h z v v g z z P kz cv

A
 

            
 

   (3.55) 
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透過級數解式(3.34)，我們可將式(3.55)展開成式(3.56): 

 

 

       

    

      
          

0 1
22 2 2

0 2 2

1
0

2 2
0

01 1 1 1

1 ( 2) 1

1 1
       + 1

      1 ( 2)

1 1
               1 ( 1) 0

2

n n n
n

n n n n

n

n n

n
n n

A A
n n a h b l c h

A A

g a c ka n ca
A

n n c c a a

n n c c a a t P

  


   



 






  




   


     

               

   

     

      




 (3.56) 

式(3.30)改寫成式(3.57) 

 

    2 2
0 0 2 2 4 4 5 5 5 0 5 0 0 0 0

0

1 1
( ) + ( ) ( ) ( ) 0

2
v h z v l v l v h z v v g z z P kz cv

A
 

 
            

 
    (3.57) 

 

透過級數解式(3.34)，我們可將式(3.57)展開成式(3.58): 

 

 

     

 

0 0 5 0 51 1 1
2 4 2 42 2

0 5 2 4 5 5 2 4 5

3 5 3 0 31
2 42

2 4 5 5 5 5 0

1 ( 2)

1 1
                           1

n n
n

n n n nn

A A A A AA A A
n n a h h l l b h l l

A A A A A A A A

A A A A AA
c l l g a b c ka n

A A A A A A A



 




                      
     

                    



  

         

               

1

0 3 0 31 1
2 2 2 2

0 5 5 5 5 5 5

0 3 0 31 1
1 1 1 1 1 1 1

5 5 5 5 5 5

1

 1 ( 2)

1
    1 ( 1)

2

n

n

n n n n

n n n n

ca

A A A AA A
n n a b c a b c a a

A A A A A A

A A A AA A
n n a b c a b c a

A A A A A A

      


      

 





       


          

   
                

  
          

  



  01

1
0na t P 

      

(3.58) 
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  當 t>0.015 秒，外力項 P 等於 0，我們對式(3.54) (3.56) (3.58)的係數已比較係

數法方式求聯立方程式解： 

 

(5) 當 n=1 階時可得： 

  3 36 0h a b   (3.59a) 

 

 1 1
3 2 3 2 3

2 2

6 0
A A

a h l b l c h
A A

    
            

 (3.59b) 

 

0 0 0 3 31 1 1
3 2 4 3 2 4 3 4

5 3 4 5 2 4 5 4

6 1 0
A A A A AA A A

a h l l b h l l c h l
A A A A A A A A

       
                        

 (3.59c) 

 

(6) 當 n=2 階時可得： 

  4 4 3
0

1 1
12 3 0h a b ca

A
    (3.60a) 

 

 1 1
4 2 4 2 4 3

2 2 0

1 1
12 3 0

A A
a h l b l c h ca

A A A
    

             
 (3.60b) 

 

 
0 0 0 3 31 1 1

4 2 4 4 2 4 4 4
5 3 4 5 2 4 5 4

3
0

12 1

1 1
3 0

A A A A AA A A
a h l l b h l l c h l

A A A A A A A A

ca
A

       
                       

 

 (3.60c) 
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(7) 當 n=3 階時可得： 

      5 5 3 3 3 4
0

1 1
20 4 0h a b g a b ka ca

A
       (3.61a) 

 

    1 1
5 2 5 2 5 3 3 3 4

2 2 0

1 1
20 4 0

A A
a h l b l c h g a c ka ca

A A A
    

                
(3.61b) 

 

 

 

0 0 0 3 31 1 1
5 2 4 5 2 4 5 4

5 3 4 5 2 4 5 4

0 31
3 3 3 3 4

5 5 5 0

20 1

1 1
1 4 0

A A A A AA A A
a h l l b h l l c h l

A A A A A A A A

A AA
g a b c ka ca

A A A A

       
                       

  
           

(3.61c) 

 

(8) 當 n=4 階時可得： 

       2 2
6 6 3 3 4 4 4 5

0

21 1 1
30 5 0

2
h a b b a g a b ka ca

A
                   (3.62a) 

     2 21 1
6 2 6 2 6 4 4 3 3 4 5

2 2 0

21 1 1
30 5 0

2

A A
a h l b l c h g a c c a ka ca

A A A
    

                  
(3.62b) 

 

 

0 0 0 3 31 1 1
6 2 4 6 2 4 6 4

5 3 4 5 2 4 5 4

2

20 3 0 31 1
4 4 4 3 3 3 3 4 5

5 5 5 5 5 5 0

30 1

21 1 1
1 5 0

2

A A A A AA A A
a h l l b h l l c h l

A A A A A A A A

A A A AA A
g a b c a b c a ka ca

A A A A A A A

       
                       

     
                        

(3.62c) 
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第四章   模型結果驗證與討論 

4.1   參數設定 

    本次模型建立之腔室容積大小主要參考了 Touitou, E 文獻所量測到之數值[5]，

並將前房容積假定為 1 做為基準，其中，受壓力側占 0.5、變形區域側為 0.5，其

餘腔室則參考與前房容積之差異比例做換算。後房容積約為前房之 0.3 倍，玻璃體

為前房容積之 4 倍。根據式(3.44)之結果，虹膜通道與後房至連通玻璃體之管道截

面積對於方程式之影響最大，做為此次變數討論，我們假定虹膜通道之截面積(𝐴ଶ)

參數比例範圍為 0.01~0.3，而後房至玻璃體通道截面積(𝐴ସ)參數比例假定為 0.01，

比例關係如式(4.1)所示。兩通道長度(𝑙ଶ,𝑙ସ)皆假設為 0.02 公尺，水柱高假設為 0.22

公尺。 

 

 0 1 2 3 4 5: : : : : 0.5 : 0.5 : 0.01~0.3 : 0.3 : 0.01: 4A A A A A A   (4.1) 

 

4.2   級數展開之階數選用 

    本次模型的方程式解法是級數解法求得方程式之解析解，在程式運算中，過高

的階數對於方程式求解並沒有太多的幫助，反而會造成電腦計算的負擔。但太低階

數會使數值解之答案精確度達不到預期，所以我們需要找到一個閥值讓我們採用

的展開階數能達到預期值，但不造成電腦運算上過多的負擔。 

   由 3.2 節推導我們能發現主要影響函數的為外力項 sine 函數。而 sine 函數為

奇函數，故在尋找探討階數之收斂性時已每兩階相減之差除以前階項作為依據，如

式(4.2)所示： 

 

 2 100%n n

n

x x

x


  (4.2) 
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%

 

(a) 
(b) 

誤
差
 

根據式(4.2)所計算結果，我們可以得到圖(4.1)之結果，在第 19 階展開時，雖與第

21 階展開誤差僅不到 0.01%，但仍未達到我們所預期之精度，根據牛頓第二運動

定律，質點處在力平衡的狀態下，其加速度為 0。在無阻尼系統下，外力項僅有 P0，

故當 P0 施力結束時，加速度將會等於 0。而如圖(4.2.a)所示，其線圖最後並未歸

於 0 點，尚有一段落差，而如圖(4.2.b)所示，在第 21 階展開時，線圖最後收斂於

接近 0 點處。 

 

 

 

 

 

 

 

 

 

 

 

圖(4.1) 各項階數與前項階數數值差距比例圖。(a) 展開至 19 階時值與第 21 階

相比差距 0.17%，(b) 展開至第 21 階與第 23 階想比差距 0.01%。 

 

 

 

 

 

 

 

 

 

圖(4.2) 級數解展開至 19 階與 21 階加速度差異圖。圖示a଴為前房受壓測加速度。

級數解展開至 19 階之加速度圖未回歸於 0 點。精度上仍未滿足需求。而展開 21

階於 0.015 秒處則回歸至 0 點。 

 

19th order 
21th order 

12.59 

-1.58 
0.17 -0.01 -1x10-3 
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(a) (b) 

(c) 

4.3   無阻尼模型建立 

    本節主要接續 3.2 節之推導結果。在控制其他變數後，討論兩通道(𝐴ଶ與𝐴ସ)對

於模型個腔室之水頭高升降變化。給定外力項  100 sin 133P = t 牛頓後，前房受

壓側之加速度、速度與位移如圖(4.3)所示，根據牛頓第二運動定律，施力等於物體

質量乘以加速度，給定外力後，加速度之線圖趨近於 sine 函數，這符合了我們 3.2

節的驗證，加速度之圖會受外力項函數形式的不同而有所更動，且從加速度圖我們

能發現加速度與初步驗證模型推導結果可行並具備物理意義。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

圖(4.3) 前房受壓側受外力後水頭高下降(a)水頭高度、(b)速度、(c)加速度圖。 
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(b) (a) 

(b) (a) 

    我們令𝐴ଶ=0.01 時，使虹膜通道接近關閉，如圖(4.4)所示，外力造成前房受壓

側下降之水節面積幾乎全數堆積在前房變形區。因此𝐴ସ截面積大小在此時對於系

統流量的影響極小。在生理學上，意謂當虹膜通道極小時，我們所量測之前房眼壓

大多是高於玻璃體眼壓的。 

    當我們令𝐴ଶ=0.3 時，如圖(4.4), (4.5)所示，當𝐴ଶ截面積增加後，可以發現前房

受壓側減少之容積更多的往後房流動。堆積在前房變形區域之容積有下降趨勢，且

後房壓力上升速度亦明顯上升。 

 

 

 

 

 

 

 

 

 

 

 

圖(4.4) 虹膜通道(𝐴ଶ)截面積為 0.01 及 0.3 時各腔室水頭高上升位移圖。(a)為

𝐴ଶ=0.01。(b)為𝐴ଶ=0.3 

 

 

 

 

 

 

 

 

 

 

 

圖(4.5) 虹膜通道(𝐴ଶ)截面積為 0.01 及 0.3 時各腔室水頭高上升速度圖。(a)為

𝐴ଶ=0.01。(b)為𝐴ଶ=0.3 
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(a) (b) 

(a) (b) 

    單獨取出後房水頭高上升幅度來看，以虹膜通道之截面積(𝐴ଶ )=0.1 當作正常

人後房截面積寬度，虹膜通道之截面積(𝐴ଶ)影響上升幅度約在 0.1~2.2 倍。而𝐴ଶ截

面積寬度的影響對於前房受壓時水頭高下降倍率並不高。 

 

 

 

 

 

 

 

 

 

 

 

圖(4.6) 前房受壓側(𝑧଴ )與後房(𝑧ଷ )改變虹膜通道截面積後位移比較圖。(a) 𝐴ଶ截面

積為 0.01, 0.1, 0.2, 0.33 後房水頭高上升差異比較。(b)以𝐴ଶ =0.1 當作正常人後房

截面積寬度，後房房水上升幅度約在 0.1~2.2 倍。 

 

 

 

    我們嘗試更改前房與玻璃體之截面積比例，若前房與玻璃體之比例關係從

0.5:4 改為 0.5:20，各腔式水頭高之位移變化。由圖(4.7)所示，各腔式水頭高位移

並無差距，故腔室之截面積比例對於本論文模型無影響。 
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(c) (c)  

 

 

 

 

 

 

 

圖(4.7) 玻璃體截面積比例為 4 與 20 時，各腔室水頭高上升圖。圖形在 0.3 秒處

回復至 0 點，並有震盪現象。級數解為收斂函數。(a)前房受壓側(𝐴଴) (b)前房變形

側(𝐴ଵ) (c)後房(𝐴ଷ) (d)玻璃體(𝐴ହ) 

 

 

 

    壓力施放結束後，模型尚未處在壓力平衡點，此時外力項為 0，前房受壓側之

壓力小於前房角膜變形側、後房及玻璃體。因此模型水頭高度會開始下降，並有振

盪現象。此模型為收斂函數。 

 

 

 

 

 

 

 

 

 

圖(4.8) 無阻尼系統模型回復過程震盪圖。圖形在 0.3 秒處回復至 0 點，並有震

盪現象。級數解為收斂函數。 
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(a) (b) 

(c) 

秒 

 

4.4   有阻尼模型建立 

    在 4.3 節，我們證明了無阻尼模型確實具備其物理意義，因沒有阻尼的限制，

導致模型在施力結束後的回彈效果不好，如圖(4.6)。我們希望將回彈的時間縮短至

0.03 秒，並且在 0 點時收斂，不產生振盪。考慮阻尼的來源為在生理學上，眼球

會由鞏膜、角膜以及周邊的組織維持其形狀穩定。我們嘗試使用彈簧阻尼系統來模

擬此情形。由於阻尼的給定具有量測上的困難。並透過試誤法的方式去調整阻尼參

數。 

    在 3.3 節中，由於吹氣時間與復原時間為二種不同的受力情況，抵抗變形之位

置將會有所不同。第一部分為吹氣時，前房、後房與玻璃體會膨脹，故為了阻止其

變形，我們在此三處分別增設一組彈簧阻尼系統阻礙其變形，如前章節圖(3.3)所

示，但加入阻尼後，施放外力時，位移速度與加速度之線圖會因力的縮小而提前回

落，如圖(4.9)所示:  

 

 

 

 

 

 

 

 

 

 

 

圖(4.9) 有彈簧-阻尼系統下前房受壓側、前房變形側、後房、玻璃體、受外力後

水頭高下降圖。(a)水頭高度、(b)速度、(c)加速度圖。 
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    比較單獨後房水頭高上升幅度，以虹膜通道之截面積(𝐴ଶ)=0.1 當作正常人後

房截面積寬度，虹膜通道之截面積(𝐴ଶ)影響上升幅度約在 0.1~1.9 倍。略小於無

阻尼模型系統。此結果證實阻尼系統可以有效的維持系統上升幅度，維持系統的

穩定。 

 

 

 

 

 

 

 

 

圖(4.10) 前房受壓側(𝑧଴)與後房(𝑧ଷ)改變虹膜通道截面積後位移比較圖。以𝐴ଶ =0.1

當作正常人後房截面積寬度，後房房水上升幅度約在 0.13~1.9 倍。 

 

    當力施放結束後，模型尚未處在壓力平衡點，此時外力項為 0，前房受壓側之

壓力小於前房角膜變形側、後房及玻璃體。因此模型水頭高度會開始下降，並產生

振盪現象。此時前房變形側、後房與玻璃體逐漸回復原狀，鞏膜並不會對復原過程

產生阻礙。因此，三處腔室之阻尼在復原時間上皆可以被移除。而前房受壓側之水

頭高將會受到推升(前章節圖 3.5)。角膜為維持系統穩定而給予阻力防止其快速上

升，因此在模型中於前房受壓側(𝐴଴)中增設一彈簧-阻尼系統維持模型之穩定。 
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    此一過程存在 2 階段，第一階段為角膜回到基準線，此一階段為𝑧଴點逐漸回歸

0 值，我們希望眼壓在 0.03 秒處會回歸至 0 點，故我們使用試誤法嘗試彈簧阻尼

之係數值，我們將前房受壓側回到 0 點前的阻尼之阻尼係數設在 650 kg/s，使其

能在 0.03秒處靠近起始 0位置。而第二階段則為角膜超過基準點時要阻止其變形，

會需要更大的抗力來支撐，我們我將阻尼係數設為 5000 kg/s 來抵抗其變形，使前

房受壓側位移變形能夠停在 0 點。如圖(4.11)所示： 

 

 

 

 

 

 

 

 

圖(4.11) 有彈簧-阻尼系統之模型回復過程震盪圖。前房受壓側可於 0.05 秒時回

歸 0 點。 
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第五章   結論與未來展望 

5.1   結論 

    在第三章的推導中，從式(3.43)與式(3.44)可以看出，模型各腔式之加速度會受

到施放力影響，圖(4.3)亦應證了第 3 章推導的部分。惟在階數選用上，因方程式的

複雜度較高，我們需做出高階數的級數展開，但越高階的級數展開對於電腦運算的

負擔越大，越有可能造成運算上的誤差，所以使用級數展開時，最高次項能達到分

析的需求即可，在往上的表現不一定較佳。 

    結果顯示，虹膜通道的完全堵塞與完全暢通會影響後房腔室水頭高為正常人

上升幅度 0.2 至 2 倍(圖 4.6)，在吹氣量測實驗下，極短時間內量測到的前房眼壓會

存在高估玻璃體眼壓的情形。 

    本次模型屬於一個新的嘗試評估前房與玻璃體眼壓的模型，所有的方程式都

建立在流體力學上，由於其公式的複雜性，我們選用了傳統級數解的形式展開方程

式並對其做運算。對比現今已統計擬合方式取得其函數線圖之方式，推導較為繁複

並需要花費大量的時間做數字的整理。方程式的推導，使得在第三章節的推導過程

中，我們已預先知道了第四章討論的圖形大致上會以何種方式呈現。調整參數時其

軌跡變化亦是有跡可循。比如：(1)加速度圖形會與 sine 函數的特徵有高度的重疊

性。(2)各參數數對模型的影響幅度。(3)虹膜通道之截面積越大，流量變化會以曲

線方式上升，而非直線。  
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    結合第三章推導與第四討論，發現劃出角膜變形空間與使用彈簧阻尼模擬組

織抵抗變形，都有助於完善一維力平衡模型的建立。劃分角膜變型區模擬吹氣量測

時房水堆積到前房二惻。代入彈簧阻尼系統模擬組織維持眼球安定性的特性，成功

製作出不同部分腔室會在不通時間抵達峰值，存在一定的滯延性。結果發現，鞏膜

具備承受內部壓力及外部壓力之特性，但我們對於其材料特性知之甚少。透過方程

式的更動及試誤法，使我們有機會一觀眼球周遭組織維持眼球形狀安定性之參數

區間。 

5.2   未來展望 

    在調整參數上，此次模型屬於初步建立之模型，參數多為參考過去平均容積、

眼壓值並已等效值方式作呈現，我們僅能得出倍數差距或得到相對於基準線時的

差距，在這部分存在再進一步討論可能性。 

    此文更多著墨在方程式的推導與模擬上，確立模型具備物理上可討論的意義，

並已代數解型式詮釋方程式的參考解答，本文假設管道長度固定，已截面積改變作

討論，惟管道長度之值雖有已實驗值作參考，但轉為等效數值的過程仍有改進之地

方。若能解決已上之問題，相信將能更有效的去評估眼壓量測時，關於虹膜通道堵

塞與否，判別前房眼壓之於玻璃體眼壓的高估情形在臨床上是否有絕對性的影響。 
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