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中文摘要 

    近年來國際上的臨床指引廣泛採用網絡統合分析的結果去提供疾病治療的建

議。透過網絡統合分析，整合多個研究的直接證據與間接證據，去估算多種治療

方法或者介入措施之間的差異，藉此可以提供實證醫學一個有利的工具來填補當

前的知識缺口。然而，由於網絡統合分析中所包含的多為有效的治療方式，因此

它們之間的效果的差異往往很小或是沒有達到統計上顯著，故其結果並不容易解

讀。因此，就有研究者提出使用排名的方法來去簡化治療之間比較結果的解讀。 

 透過排名，可以讓網絡統合分析結果的資訊簡單化，也是將實證數據轉化為

臨床實務的一種方式。排名讓複雜的網絡統合分析結果容易解讀，然而，不論資

料多寡，只要可以進行網絡統合分析，就能取得其治療的排名。但是，在排名上

有差別的兩個治療，並不表示他們之間的差異就很顯著。因此，使用排名卻不報

告排名的可信度，往往會導致誇大解讀不同介入或治療之間的差異。 

    目前排名可信度的評估方法包括不確定性評估和穩健性評估。當前排名不確

定性的評估方法，會受到網絡所包含的治療數目所影響，因此被批評此指標是資

訊缺乏的。而穩健性評估與不確定性評估之間的關聯為何，目前並未有定論。因

此，本論文旨在建立評估網絡統合分析排名可信度的方法，以強化對網絡統合分

析的解讀和應用。本論文所探討的問題如下所述： 

1. 發展網絡統合分析中治療排名不確定性的替代指標。 

2. 探討排名的穩健性和不確定性關聯性。 

    針對以上研究問題，首先，本論文提出應用標準化熵這個度量，來將每種治

療的排名機率分佈轉換為一個數值指標，以促進對治療排名不確定性的精確解讀。
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標準化熵是一個介於 0 到 1 之間的指標，越大表示不確定性越高。與傳統的指標

相比，此指標不會受到包含在網絡當中的治療數目多寡影響，因此，它可用於比

較網絡統合分析中不同治療，或是和不同網絡統合分析之間治療排名的不確定性。

而本論文利用網絡統合分析資料庫，使用標準化熵評估 157 篇已發表的網絡統合

分析，其中排名不確定性高的網絡統合分析占約三分之二。此外，本論文利用已

發表的網絡統合分析，來探討排名不確定性和穩健性的關係。從結果看到，與預

期相符的是，排名不確定性很低時，相對的排名穩健性也很高。然而，排名穩健

性高並非總是對應於低不確定性，具有高穩健治療的排名也可能同時具有高不確

定性。因此，當穩健性高的時候，並不表示此排名未來不容易改變，只能說在此

網絡所包含的試驗中，沒有單一一個試驗是會對排名有很大影響的。 

 在報告排名時，利用標準化熵來呈現排名不確定性可以讓我們避免對排名的

過度解度。目前已發表的網絡統合分析，排名的不確定性極高，表示其排名可能

會在未來有新的試驗加入時改變。而透過一次排除一個試驗來看排名穩健性的方

法，只能審視目前包含的試驗是否對排名會有很大的影響，並非與排名不確定性

有絕對的相關性。 

 

關鍵詞：實證決策、網絡統合分析、排名、不確定性、標準化熵、穩健性 
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Abstract 

In recent years, network meta-analysis (NMA) has been widely used to formulate 

recommendations in the guidelines for managing diseases. NMA combines both direct 

and indirect evidence to compare multiple treatments and has been shown to be a useful 

tool for bridging the knowledge gap in evidence-based medicine. Since the differences 

among active treatments in the efficacy or harm are likely to be small, researchers 

develop methods to rank treatment for aiding the interpretation of treatment 

comparisons.  

Ranking makes information from NMA simpler and is also a way to translate evidence 

into clinical practice. However, although ranking facilitates the interpretation of 

complex results from NMAs, its reliability has caused much controversy. As ranking 

can always be obtained from NMA, the difference in ranking does not mean that 

difference between treatments is statistically significant. Therefore, using rankings 

without reporting the reliability of the rankings may either make interpretation difficult 

or exaggerate the small differences between treatments.  

Currently, ranking uncertainty and ranking robustness are two methods for evaluating 

the reliability of ranking. However, the current method used to evaluate the uncertainty 

of ranking would be affected by the number of treatments included within the network. 

Therefore, it is criticized as uninformative. The association between ranking uncertainty 

and ranking robustness has not been fully explored. Thus, the objective of this 

dissertation is to develop methods to facilitate the interpretation and application of 

NMA rankings. This dissertation aims to address the following objectives: 
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1. Develop an alternative method to measure the uncertainty of treatment ranking 

from NMA. 

2. Explore the association between the uncertainty of ranking and robustness of 

ranking 

For the first objective, I proposed Normalized Entropy, which transforms the 

distribution of ranking probabilities into a single quantitative measure to facilitate a 

refined interpretation of uncertainty of treatment ranking. I showed that as Normalized 

Entropy ranges from 0 to 1 and is independent of the number of treatments, it can be 

used to compare the uncertainty of treatment rankings within an NMA and between 

different NMAs. Normalized Entropy is an alternative tool for measuring the 

uncertainty of treatment ranking by improving the translation of results from NMAs to 

clinical practice and avoiding naïve interpretation of treatment ranking. I also evaluated 

the uncertainty of ranking for 157 published NMAs. Among them, two-thirds of NMAs 

have high or very high ranking uncertainty.  

In the results of the second objective of the dissertation, the association between 

uncertainty and robustness of ranking was explored. The results showed that low 

uncertainty corresponds to high robustness. When the uncertainty of ranking is very low, 

treatment ranking is unlikely to be altered by deleting a trial from the complete data. 

However, good robustness of ranking does not always correspond to low uncertainty. 

NMA with robust treatment ranking may have high uncertainty of treatment ranking. 

Therefore, if the network does not contain a trial that significantly impacts the ranking, 

even if the uncertainty is high, the ranking robustness can still be high. The high 

robustness of ranking does not mean that the ranking will not be easily changed when 
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new trials are added in the future, but it means that the network does not contain trials 

that have a significant impact on the treatment ranking. 

When reporting rankings, using Normalized Entropy to present ranking uncertainty 

prevents us from naïve interpretation of treatment ranking. Among the current published 

NMAs, most of them have high uncertainty of ranking, and their rankings may have a 

higher possibility to be changed when new trials are added into the network in the future. 

The robustness of ranking, which is evaluated by the leave-one-trial-out approach to 

identify trials included in the network that substantially influence the treatment ranking, 

is not entirely related to the uncertainty of ranking.  

Keywords: evidence-based decision-making; network meta-analysis; ranking; 

uncertainty; Normalized Entropy; robustness   
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CHAPTER 1: INTRODUCTION 

In recent years, evidence from network meta-analysis (NMA) has been widely used to 

support recommendations in guidelines for disease management
1-3

. This methodology 

incorporates both direct and indirect evidence to simultaneously estimate relative effects 

treatments within the network, even for treatment comparisons without head-to-head 

trials
4-6

. NMA provides evidence on the selection of the best treatment strategy, but the 

interpretation of its results may sometimes be challenging
7-9

, especially when the 

differences between active treatments are likely to be small and statistically 

non-significant.  

Therefore, ranking treatments are proposed to facilitate the interpretation of 

comparative effectiveness and to support clinical decision making
10

, which is often 

determined by the mean rank or the surface under the cumulative ranking curve 

(SUCRA), a summary index for ranking probabilities. As ranking can always be 

obtained from NMA, it is important to know how the uncertainty of the ranking is and 

how likely the ranking is to be altered by new evidence.  

However, the lack of reporting uncertainty of treatment ranking for NMA has been a 

great concern
11

. According to a review of 121 published NMA studies, 52 studies 

reported treatment ranking, but only 9 report the uncertainty of treatment ranking
12

. 

Therefore, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA)-NMA guideline and Grades of Recommendation, Assessment, Development, 

and Evaluation (GRADE) working group suggested that the uncertainty of ranking for 

each treatment should be reported, either by rankogram (i.e., the distribution of the 

ranking probabilities), the credible/confidence intervals (CIs) of the mean rank, or the 
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interquartile range (IQR) of the median rank
13,14

. Different approaches for quantifying 

the uncertainty of ranking have not yet been compared, and no consensus has been 

reached on how to quantify uncertainty. 

An empirical study, reviewing 58 published NMA studies, used the 95% CI of SUCRA 

and the mean rank to quantify the uncertainty of ranking and found a substantial degree 

of uncertainty in treatment ranking
15

, raising doubts about the level of evidence from 

NMA
16

. Their results showed that although the ranking of treatments is a useful 

presentation, it may give rise to naïve interpretation of NMA results, such as small 

differences between treatments being exaggerated without taking the uncertainty of the 

ranking into consideration
17

.  

In addition, the uncertainty of ranking
18,19

 and robustness of ranking
20

 are two concepts 

related to the reliability of ranking. The uncertainty of ranking can be visualized by the 

distribution of ranking probabilities of a treatment. The more concentrated the ranking 

probabilities, the lower the uncertainty of ranking is. On the other hand, the robustness 

of ranking measures how sensitive the ranking is to subtle alterations of a dataset. The 

approach proposed to evaluate the robustness of ranking empirically is to remove one 

trial and then determine how the ranking would change
20

. When the agreement between 

the two rankings derived from the complete dataset and the modified dataset with one 

trial removed is high, the treatment ranking of an NMA is considered robust.  

Both the uncertainty and robustness of ranking have been applied to evaluating the 

reliability of treatment ranking
18,20

, but whether these two approaches would yield 

similar conclusions on the reliability of ranking has not yet been fully explored. One 

study examined the association between uncertainty and robustness of ranking 
20

. 
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However, that study only analyzed two NMAs, which is too small to generalize.  

In this dissertation, I reviewed different approaches for measuring uncertainty of 

ranking and proposed an alternative method, Normalized Entropy, to measure the 

uncertainty of treatment ranking in NMA. The real examples and simulations were used 

to demonstrate the advantages of using Normalized Entropy over the current approach, 

including rankogram, the 95% CIs of SUCRA, and mean rank, and to provide general 

rules for evaluating the uncertainty of ranking.  

An empirical study was also conducted on the relationship between the uncertainty and 

the robustness of treatment ranking by using a database of NMAs. These two concepts 

are often presented in NMA results to show the reliability of ranking; however, they are 

rarely both reported and compared in an NMA. Therefore, in this dissertation, whether 

the high robustness of treatment ranking is associated with low uncertainty or whether 

they are two independent concepts were investigated. 

This dissertation is organized into six chapters. Chapter 1 is the introduction and 

overview. Chapter 2 is the literature review, including a brief description of the 

development of NMA, core models and assumptions of NMA, ranking algorithms used 

in NMA, and current approaches to quantifying the uncertainty and robustness of 

ranking. Literature about the information theory, which is applied to measure the 

uncertainty of treatment ranking in this dissertation, is also reviewed. Based on the 

review, the current challenges and the aim of this dissertation are described in Chapter 3. 

The proposed method, normalized entropy, and the methods used to compare the 

performance of different methods are presented in Chapter 4. In Chapter 5, results are 

shown and described. Finally, the discussion and conclusion are in Chapter 6. 
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CHAPTER 2: LITERATURE REVIEW 

In this chapter, I first reviewed the development of network meta-analysis and described 

the core models and assumptions for network meta-analysis. I then reviewed methods to 

rank treatments within a network meta-analysis and current approaches to quantifying 

the uncertainty and robustness of ranking. Finally, I explained the rationale of the 

information theory, which provides the basis of the proposed method for evaluating the 

uncertainty of ranking. 

2.1 Development of Network Meta-Analysis 

Karl Pearson is the first to come up with the idea of meta-analysis
21

. He summarized the 

association between inoculation and the incidence/mortality of typhoid fever. He used 

data from six studies, one from India and the others from Africa. He estimated the 

relative risk (RR) of each study and then pooled the results by using the unweighted 

average. The result is considered the first research with the concept of meta-analysis, 

albeit this approach is different from the current standard method. Later in 1976, Glass 

coined the term meta-analysis for the statistical combination of results from two or more 

separate studies
22

. At that time, the meta-analysis research was mostly in the field of 

education or psychology. 

In the 1980s, Archie Cochrane advocated the evidence-based medicine movement. He 

said that every patient should be cared for with the most effective intervention, which is 

based on the well-designed evidence, such as randomized controlled trials (RCTs)
23

. 

Since RCTs are experiments on humans, the sample sizes of trials are usually not too 

large. Using meta-analysis to pool results from different studies can therefore increase 

the statistical power and broaden the evidence. Since then, systematic review and 
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meta-analysis have become an important foundation in clinical practice. In 1993, The 

Cochrane Collaboration was established for the goal to make better evidence, and the 

organization was named after Archie Cochrane. 

Pairwise meta-analysis was proposed to integrate several studies for the same direct 

comparison of two treatments. However, most clinical trials compared new treatments 

with the placebo or standard care, and the head-to-head trials are limited or absent. 

Therefore, network meta-analysis (NMA), or called multiple treatment comparison 

(MTC), has been proposed to compare more than two treatments included within the 

network for the same condition. This method not only combines direct and indirect 

comparison to strengthen evidence but also can estimate the relative effects for those 

comparisons without direct evidence
4,24-30

.  

Computing the difference between two treatments by using indirect comparisons was 

first proposed by Bucher et al. in 1997
31

. His method preserved the power of 

randomization, but he didn’t pool the direct and indirect evidence together because he 

believed that summary estimates should still base on direct comparisons whenever it is 

available. On the contrary, Higgins and White proposed that using indirect comparisons, 

which they called external evidence of direct comparison, can lead to more precise 

estimations
32

. In 2002, Lumley presented a linear mixed model to combine direct and 

indirect evidence and coined the term network meta-analysis
24

. He mentioned that if the 

indirect evidence is consistent with direct evidence, then the results should be combined, 

and therefore, the uncertainty would become less. However, his method is not available 

for trials with three or more arms. Lu and Ades proposed a hierarchical Bayesian 

method that can include multi-arm trials in 2004
4
, and White et al. also proposed a 

corresponding frequentist method in 2012 and wrote a STATA package in 2015
33,34

. 
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These two approaches are most widely used for network meta-analysis today.  

2.2 Models and Assumptions for Network Meta-Analysis 

Both Bayesian and frequentist statistical models have been developed for network 

meta-analysis. The only difference between the two frameworks is that the Bayesian 

approach could set prior distribution for estimating parameters. In 2014, there was a 

systematic review for published network meta-analysis. They found that among the 121 

network meta-analyses published before 2012, 75% of them used a Bayesian approach
35

. 

The computer code for the Bayesian network meta-analysis by using the free software 

WinBUGS has been available on the website, so it has become popular at the beginning. 

However, WinBUGs is not a user-friendly tool for people who are not familiar with 

Bayesian analysis, and it often stuck without showing the reasons.  

After Ian White implemented the network package into Stata software for conducting 

NMA in 2015
6,36

, the frequentist method has gained greater popularity. Although 

Bayesian method has the strength to add the prior knowledge into the analysis, most 

people used non-informative prior when conducting Bayesian network meta-analysis, 

and this usually results in a negligible difference between the results from the Bayesian 

framework or frequentist framework.  

The netmeta package in R can also conduct the frequentist network meta-analysis
37

. The 

difference in their approaches to network meta-analysis between STATA and R is that 

the options for heterogeneity variance estimation under the random effect model are 

different. The method of moments estimator (MM) is used in R, while both the 

maximum likelihood estimator (ML) and the restricted maximum likelihood estimator 

(REML) are available in the Stata software.  
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In this section, I will introduce the model and the general assumptions for network 

meta-analysis, irrespective of whether the Bayesian or frequentist approach is being 

undertaken.   

2.2.1 Model for Network Meta-analysis 

The model described here uses the “contrast-based” model, which means that the effects 

are estimated by using treatment contrast. The model includes parameters for estimating 

the heterogeneity (variation of treatment effects between studies) and inconsistency 

(variation of treatment effects between different kinds of treatment combinations, which 

is usually called “design”). Consider that we have a network with T treatments, 

including A, B, C…, etc. Let d=1, 2, 3… D, which are the designs (the set of treatments 

compared within the study, such as AB, ABC, BCD…) within the network. The effect 

measure of a treatment contrast is 𝑦𝑑,𝑖
𝐴𝐽

, which may be a mean difference or log odds 

ratio of treatment contrast of treatment J to treatment A, for i
th

 study in the d
th

 design. 

The general network meta-analysis model 
6,34

 is 

𝑦𝑑,𝑖
𝐴𝐽 = 𝛿𝐴𝐽 + 𝛽𝑑,𝑖

𝐴𝐽 + 𝜔𝑑
𝐴𝐽 + 𝜀𝑑,𝑖

𝐴𝐽, J = B, C, … , T 

A is chosen as the reference treatment in this formula. The meaning of each dependent 

variable is described below. 𝛿𝐴𝐽 represents the summary effect of treatment contrasts 

between J and A; 𝛽𝑑,𝑖
𝐴𝐽

 represents the heterogeneity in the J-A contrast between studies 

within designs; 𝜔𝑑
𝐴𝐽

 represents the inconsistency in the J-A contrast between designs; 

𝜀𝑑,𝑖
𝐴𝐽

 is a within-study error term. 

The model will estimate the 𝑇 − 1 basic parameters first, such as the summary effect 

of each treatment contrast: 𝑦𝐴𝐵, 𝑦𝐴𝐶 , 𝑦𝐴𝐷 , … , 𝑦𝐴𝑇 etc. After the basic parameter is 
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estimated, they use these basic parameters to calculate the functional parameters under 

the consistency model. That is, 𝑦𝐵𝐶 = 𝑦𝐴𝐶 − 𝑦𝐴𝐵
 (B versus C is calculated via A). If 

there is direct evidence from 𝑦𝐴𝐵 and 𝑦𝐴𝐶
, then the indirect evidence (𝑦𝐵𝐶) is derived 

from 𝑦𝐴𝐵  and 𝑦𝐴𝐶  based on the transitivity assumption, which means that the 

common comparator A is transitive the effect to which it is linked (𝑦𝐴𝐵 and 𝑦𝐴𝐶). 

2.2.2 Assumptions of Network Meta-Analysis   

The key assumptions of NMA are homogeneity within each pairwise comparison in the 

network, transitivity among different comparisons, and consistency of direct and 

indirect evidence. So far, most tools have been developed to detect inconsistency of 

direct and indirect evidence. To examine whether the consistency assumptions are 

violated or not, several approaches, such as the design-by-treatment interaction 

models
38,39

, loop inconsistency models
40

, and node-splitting models
41,42

, have been 

proposed to evaluate the inconsistency between the direct and indirect evidence within a 

network meta-analysis. I reviewed the basic concept of these methods. 

If there is evidence from 𝑦𝐵𝐶 , 𝑦𝐴𝐶 and 𝑦𝐴𝐵, loop inconsistency means that the effect 

size from direct evidence (𝑦𝐵𝐶) is substantially different from the effect size estimated 

by indirect evidence (𝑦𝐴𝐶 − 𝑦𝐴𝐵) within the same loop formed in a network. It also 

means that loop inconsistency only exists in the loop within a network. There is no loop 

inconsistency when the loop is formed by a multi-arm trial because the multi-arm trial is 

internally consistent. However, while there are multi-arm trials within a network, 

inconsistency may exist between different designs.   

Therefore, the design-by-treatment interaction model is proposed by Higgins and White 

to measure not only loop inconsistency but also design inconsistency
33,34

. When there is 
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no multi-arm trial, the design-by-treatment interaction model is equivalent to the loop 

inconsistency model. Among the design-by-treatment interaction model, the “design” 

variable is added as a study-level effect modifier in the model. It measures the 

inconsistency between different designs within the network for specific comparison.  

Node-splitting model, proposed by Dias et al., on a treatment contrast splits direct 

evidence from all the remaining indirect evidence and compares the estimates of the 

treatment contrast given by the direct and indirect evidence
41

. White renamed this 

method as “side-splitting” because the comparison of two treatments within a network 

is a “side” of a network map. He also proposed a symmetrical parameterization method, 

which improves the accuracy and solve the problem of probable different estimates 

arising as data in different order
6
. Although this approach is different from the 

design-by-treatment interaction model, the side-splitting model has been proved as a 

special case of the design-by-treatment interaction model
42

.   

Currently, most network meta-analysis studies evaluate the inconsistency through the 

above three methods. If the consistency assumption is violated, researchers need to find 

out the possible causes of inconsistency within the NMA. It is important to evaluate 

whether the NMA produces valid results. However, a lack of significant inconsistency 

does not necessarily prove no inconsistency, as the statistical power may be low when 

the uncertainty in the estimates of treatment effects is large
43-45

. Therefore, except that 

these assumptions cannot be violated, the uncertainty of the overall NMA is required to 

be evaluated. In addition, while these approaches to the evaluation of inconsistency may 

identify the location of the inconsistency within a network, they may not, however, 

identify trials that give rise to the inconsistency.  
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2.3 Ranking  

While NMA can estimate relative effects of all pairs of treatments involved in the 

network, interpretation for decision-making is essential. Except for the placebo, 

treatments involved in the network are mostly active treatments. However, the 

differences among active treatments in the efficacy or harm are likely to be small, which 

made the difference of effect hard to achieve statistical significance though it is still 

meaningful to point out the difference. Researchers, therefore, develop methods to rank 

treatments based on the NMA results, which could provide the answer to the frequently 

asked question in clinics: “which treatment is the best, or the second, or the third, or so 

on, among all the options?”.  

Ranking is a useful tool for providing a priority list which adopted in several different 

domains, such as website searching page, recommendation system, world university 

ranking, health performance ranking, voting system, … etc. In these domains, the 

ranking could save searching time, create more profits for business, and strengthen 

resource management. Similarly, ranking treatments based on their efficacy and safety 

could provide a treatment hierarchy for doctors to choose treatments for patients when 

there are multiple options for the same condition.  

In this section, I am going to review the algorithms currently used to summarize and 

determine the ranking of treatments within an NMA. The current methods for 

evaluating the uncertainty of ranking will also be reviewed. Then, issues about using 

ranking for decision, and current challenges on interpreting and presenting the treatment 

ranking will both be discussed. Factors affecting treatment ranking will also be 

discussed. Some guidelines for presenting ranking and its uncertainty are then described. 
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Finally, an example is used to demonstrate how an NMA use ranking to report their 

results.  

2.3.1 Ranking Algorithms 

Generally, taking point estimates as constants to rank is the simplest ranking algorithm. 

However, the precision of point estimates would be neglected when the rank is simply 

according to the point estimates. Here, for NMA, researchers used ranking probabilities 

to take the precision of estimates into consideration. I am going to review the following 

methods for summarizing ranking, including ranking probabilities, mean rank, 

SUCRA
10

, and P-score
46

. 

2.3.1.1 Ranking probabilities 

In 1998, Marshall and Spiegelhalter proposed a simulation method for obtaining 

ranking probabilities and intervals for ranks
47

. This method randomly selects a draw 

from each estimate and then ranks within each draw. After carrying out a 10,000 times 

simulation, they identified the 5000
th

 as median rank and 250
th

 and 9750
th

 as 95% 

confidence interval for rank.   

While NMA could be conducted by Bayesian or frequentist approach, the simulation 

method for mean and confidence interval of ranking could proceed under both 

approaches. Within the Bayesian approach, the probabilities of being the best and other 

positions can be obtained from the posterior distributions derived from Markov Chain 

Monte Carlo simulations
47

. Within the frequentist framework, ranking probabilities can 

be obtained from simulations, using the variance-covariance matrix of the estimates of 

treatment differences as the parameters.  
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In addition to differences in effect sizes, ranking probabilities are also affected by the 

precision of the estimates of these differences. When the variances of the estimates get 

smaller, the ranking probabilities are more likely to have the greatest probability of 

being at just one position and small probabilities of being at the other positions and 

therefore become more informative. 

Some NMA studies use the probability of being the best (P(best)) to rank treatments. 

However, it has been warned that “ranking of treatments based solely on the 

probabilities for each treatment of being the best should be avoided”
36

, because the 

variation of the estimates would be neglected if the probability of being the best 

treatment is used to determine the ranking. In addition, a treatment may have a very 

high probability of being the second-best treatment while the probability of being the 

best is very low.  

The difference between using probabilities of being the best and taking the probabilities 

of other positions into consideration is similar to the difference between plurality voting 

and preference list voting. Plurality voting is that every voter can only be allowed to 

vote for one option. Preference list voting is that every voter can submit a preference list 

that lists the options in a ranked order
48

. To construct ranking probabilities, it requires a 

preference list of treatments in each simulation and summarizes the probabilities based 

on 1000 draws. In the voting system, both systems have their pros and cons, but in the 

NMA, taking the probabilities of other positions into consideration is obviously a more 

robust way to determine to rank.  

2.3.1.2 Mean rank 

Mean rank, as the name implies, is equal to the ranking probabilities of each rank order 
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to multiply the rank order itself for each treatment. The lower the mean rank means, the 

better the treatment. The formula for mean rank is written as: 

𝑚𝑒𝑎𝑛 𝑟𝑎𝑛𝑘(𝑖) = ∑ 𝑘 × 𝑝(𝑗 = 𝑘)𝑛
𝑘=1 , 

the ranking probabilities 𝑝 (𝑗 = 𝑘) for each treatment 𝑗 in the 𝑘 = 1, 2, … , 𝑛 position. 

2.3.1.3 SUCRA 

In order to summarize the ranking probabilities of each treatment, the cumulative 

ranking probabilities from the first rank for each treatment are used. The graph 

displayed the curve of cumulative ranking probabilities, and the surface under this curve 

is defined as SUCRA.  

To calculate SUCRA, the ranking probabilities 𝑃 (𝑗 = 𝑘) for each treatment 𝑗 in the 

𝑘 = 1, 2, … , 𝑛 position, which is summed to 1, within a network with 𝑛 treatments, are 

used. The cumulative ranking probabilities, 𝑐𝑢𝑚(𝑝(𝑗 = 𝑘)), for each treatment 𝑗 

ranked as the 𝑏𝑡ℎ best or better, is used to calculate SUCRA, which is a summary 

value for the surface under the cumulative ranking probabilities curve. The formula for 

SUCRA is written as: 

𝑆𝑈𝐶𝑅𝐴(𝑖) =
∑ 𝑐𝑢𝑚(𝑝(𝑖=𝑘))𝑛−1
𝑘=1

𝑛−1
. 

The treatment with a larger SUCRA value has a higher rank.  

Therefore, SUCRA would be 1 when a treatment is 100% certain to be the best, and 

SUCRA would be 0 when a treatment is 100% certain to be the worst. The treatment 

with a larger SUCRA value has a higher rank. 

Note that before calculating the ranking probabilities, whether a large effect size is 
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better or worse needs to be determined. Otherwise, the interpretation of SUCRA values 

would be contrary to the expatiations. 

The relationship between mean rank and SUCRA can be presented by the following 

formula: mean rank = 𝑛 − (𝑛 − 1) × SUCRA, where n is the total number of rank. 

Since mean rank and SUCRA have the equivalent formula, the ranking given by the 

mean rank or SUCRA would be totally the same.  

2.3.1.4 P-score 

In 2015, Rucker et al. proposed P-score, which is also equal to SUCRA, but it can 

retrieve from the frequentist framework without conducting the simulation (the 

resampling method)
46

. They calculated the one-side p-value of rejecting the null 

hypothesis for every pair of treatments, and then took the average of the p-value of each 

paired comparison for the specific treatment to get P-score. The formula for P-score is 

as below.  

𝑃̅𝑖 =
1

𝑛 − 1
∑ 𝑃𝑖𝑗

𝑛

𝑗,𝑗≠𝑖

 

𝑃𝑖𝑗 is the certainty that the effects of treatment i is greater than that of any other 

treatment j. 

Therefore, mean rank, SUCRA, and P-score are ranking treatments in the same way. 

Again, the ranking derived by the P-score would be the same as it is determined by 

mean rank or SUCRA. 

2.3.2 Uncertainty of Treatment Ranking  
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Although ranking treatments is a useful presentation, it may give rise to naïve 

interpretation of NMA results, such as small differences between treatments being 

exaggerated without taking the uncertainty of ranking into acount
17

. Mbuagbaw et al. 

pointed out five reasons that ranking may mislead if not interpreted correctly, and one of 

them is that while the ranking is based on the low certainty evidence, the ranking is 

untrustworthy. Actually, while Salanti et al. proposed SUCRA rank treatments, they 

suggested calculating the uncertainty of ranking
10

, but few NMAs followed their 

guidance.  

In this section, I will review current methods for presenting the uncertainty of ranking, 

including rankogram and 95% CI of SUCRA.  

2.3.2.1 Rankogram 

Ranking probabilities of each treatment have been used to rank treatments of a network 

meta-analysis. The ranking probabilities 𝑃 (𝑗 = 𝑘) for each treatment 𝑗 in the position 

𝑘 = 1, 2, … , 𝑛 are summed to 1 within a network with 𝑛 treatments. The graphical 

presentation of ranking probabilities of each treatment is known as rankogram. When 

the ranking probabilities are distributed more evenly, then the uncertainty is high; on the 

other hand, if the ranking probabilities are more concentrated in the specific rank, the 

uncertainty of ranking is low.  

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA)-NMA guideline
13

 suggested that the uncertainty of ranking for each 

treatment should be reported by using a rankogram. However, it is challenging to know 

the extent of uncertainty by looking at the ranking probabilities (or rankogram) when 

the number of treatments is large
49

. 
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2.3.2.2 95% CI of SUCRA 

The other approach used to evaluate the uncertainty of ranking is 95% credible interval 

(CrI) /confidence interval (CI) of mean rank or SUCRA
15,50

. Under the Bayesian 

approach, the 95% Crl of mean rank and SUCRA can be obtained; under the frequentist 

approach, the 2.5 and 97.5 quantile from 1000 times draws of SUCRA and mean rank is 

used to present the 95% CI. The wider the range of 95% CrI/CI of SUCRA and mean 

rank represents higher uncertainty. 

The 95% CI of SUCRA is obtained by simulation. For example, in a network with three 

treatments, labeled as A, B, and C, the estimates of their relative effects are obtained 

with the 95% CI for B versus A and C versus A from an NMA. Suppose that the 

absolute effect size of A is 0, and 1000 draws were randomly selected to compute the 

effect sizes of B and C from the distributions of the mean differences between them and 

A. In each draw, the ranking of A, B, and C can then be obtained, and SUCRA for each 

treatment can be computed as well. Based on 1000 draws, the 2.5 and 97.5 percentiles 

of SUCRA are considered the 95% CI of SUCRA. The width of 95% CI of SUCRA has 

been interpreted as an index for the uncertainty of treatment ranking; the greater the 

width, the greater the uncertainty is.  

Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) 

Working Group also recommends presenting 95% credible interval of mean rank to 

report in the Summary of Findings (SoF) tables in the latest version published in 

2019
9,51-55

 (Figure 1). The difficulty with using 95% CrI of mean rank to represent the 

uncertainty of treatment ranking is that there are no consistent criteria to define whether 

the uncertainty is high or low. The criteria vary with the number of treatments. For 
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example, when the total number of treatments is 3, the uncertainty in the 95% CrI of 

mean rank from 1 to 2 can be considered high. But if the total number of treatments is 

10, the range from 1 to 2 may be considered low uncertainty.  

An empirical study, reviewing 58 published NMA studies, used 95% CI of SUCRA and 

the mean rank to quantify the uncertainty of ranking and found a substantial degree of 

uncertainty in treatment ranking
56

, raising doubts on the level of evidence from NMA
16

. 

Recommendations based on the evidence with high uncertainty should be acted upon 

differently from those with low uncertainty
57

. The importance of reporting the 

uncertainty of ranking has been recognized
56

; however, no consensus has yet been 

reached on how to quantify the uncertainty.
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Figure 1. Summary of Findings (SoF) table 

 

*Source of this figure: Yepes-Nuñez, Juan José, et al. "Development of the summary of findings table for network meta-analysis." Journal of 

Clinical Epidemiology 115 (2019): 1-13. 
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In 2016, an empirical study explored the uncertainty of SUCRA and mean rank of the 

top three best treatments within 58 NMAs by presenting the 95% credible interval (CrI) 

of SUCRA and mean rank
15

. To summarize the extent of uncertainty for the best 

treatments, the overlapped of 95% CrI of SUCRA between best treatment and the other 

treatments is used; to evaluate the extent of the uncertainty of the whole NMA, they 

used the proportion of ranking probability of being the best exceed 50%, 75%, and 85%. 

They showed that more half the best-ranked interventions have no difference between 

the second, third, or fourth intervention. In addition, 27.6% of 58 NMAs do not have 

P(best) larger than 50%. Therefore, treatment ranking derived from NMA studies have a 

substantial degree of imprecision. Some researchers, therefore, questioned the 

appropriateness of taking NMA as the highest level of evidence. 

In this empirical study, 21 out of 58 NMAs had at least one top-three best intervention 

with 95% CrI of SUCRA ranging from 0% to 100%, and hence the approach they used 

to present uncertainty of ranking has been criticized as uninformative
49

. Therefore, it is 

hard to say whether the uncertainty of ranking among NMAs is really high or just 

because the method they used is easier to derive wide intervals.  

In addition, despite the emphasis on the importance of reporting uncertainty of 

treatment rankings, few studies conduct this evaluation. According to an NMA’s 

methodological systematic review
35

, they reviewed previous 121 published NMAs and 

found that among 52 articles reported ranking of treatments, only 9 studies (17%) 

reported the uncertainty of treatment ranking by the credible interval of mean rank or 

SUCRA or presenting all ranking probabilities for each treatment in each ranking 

position. While the NMA and its ranking continue to provide evidence for clinical 

practice, the worrisome may increase as not knowing the certainty of ranking from the 
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NMA. 

2.3.3 Robustness of Ranking 

In addition to the uncertainty of ranking, several studies used the robustness of ranking 

to measure how sensitive the treatment ranking is to subtle alterations in the dataset. 

The methods they used to measure the robustness of ranking are slightly different from 

each other. Mills et al. in 2013 measured the difference in estimated effects and 

probability of being the best by leaving one treatment out of the whole dataset at a time. 

Zhang et al. in 2016 measured the impact on the coefficients by leaving one trial out of 

the whole dataset at a time. Daly et al. in 2019 also used the leave-one-trial-out method, 

but they measured the agreement by Cohen’s kappa between rankings from the 

remaining dataset and the complete dataset.  

In 2013, Mills et al. used 18 network meta-analyses to explore the effects of excluding 

treatments from network meta-analyses. They used the Brier score, the average squared 

difference between the outcome measure with and without one or more treatments, to 

identify which treatment has the most impact on the results. They also calculated the 

change in treatment ranking and ranking probabilities. They found that the exclusions 

could make a large impact on the results.  

In 2015, Zhang et al. developed average relative distance (ARD)
58

, which is also 

analogous to cook’s distance, by calculating the difference of regression coefficients to 

detect outliers in an NMA. ARD method evaluates the average influence of a trial on an 

NMA by removing a trial from the analysis and then calculating the change in the 

coefficients relative to the coefficients estimated by the full data. The formula is given 

as 
58

: 
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𝐴𝑅𝐷𝑖 =
1

𝑛
∑ |

𝜂̂𝑘−𝜂̂𝑘(𝑖)

𝜂̂𝑘
|𝑛

𝑘=1 , 

where 𝜂̂𝑘 is coefficient estimate for treatment k from the full data, and 𝜂̂𝑘(𝑖) is the 

coefficient estimate for treatment k from the data without trial i.  

In 2019, Daly et al. used Cohen’s kappa to evaluate the agreement of SUCRA-based 

ranking between subset and complete dataset. They compared their method to the 95% 

CI width of rank but hardly have a conclusion since they only used five studies in the 

analysis.  

Although the above three studies used different outcome assessments, they all used the 

leave-one-trial/treatment-out (LOTO) approach. The limitation of this LOTO approach 

is that while they remove one trial/treatment out of the NMA, it may lead to a 

disconnected network. Therefore, the NMA cannot be conducted.  

While these studies explored which treatment or which trial may affect treatment 

ranking, threshold analysis
59,60

 use another point of view to identify how much evidence 

has to change before the recommendation changes and what recommendation would be. 

These kinds of sensitivity analysis would help the decision maker to know the reliability 

of these results.  

2.3.4 Factors Affecting Treatment Ranking 

Several studies emphasized the importance of exploring the factors that affect treatment 

ranking. They called for studies to explore possible factors
49,61,62

, such as network 

geometry, the number of treatments and studies included, size and risk-of-bias of 

included studies, baseline risk variability, between-study heterogeneity, inconsistency 

between treatment comparisons, small-study effects, frequency of events in 
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dichotomous outcome data, type of outcome data, and choice of the treatment effect 

measure. 

2.3.5 An Illustrative Example 

For showing how ranking translates the NMA results for decision-making, I used the 

published NMA that I analyzed as an example
63

. The NMA compared the short-term 

efficacy of minimally invasive treatments for adults with obstructive sleep apnea (OSA). 

Seventeen interventions for outcome apnea-hypopnea index (AHI) and fourteen 

interventions for outcome Epworth sleepiness scale (ESS) were included in the network. 

The network maps for these two outcomes are presented in Figure 2.   

I conducted both NMA and pairwise meta-analyses for these two outcomes. The point 

estimates and confidence intervals for 136 pairwise comparisons for AHI and 91 

pairwise comparisons for ESS from pairwise meta-analysis and NMA are presented in 

Table 1 and Table 2. The pairwise meta-analysis results are shown in the upper right 

triangle, while the results from NMA showed in the lower left triangle in Table 1 and 

Table 2. Those comparisons without direct evidence can only obtain the estimates of 

their comparative effects from the NMA.  

By observing the NMA results in Table 1 and Table 2, I find that some comparisons can 

conclude their relative effects using statistical significance, but some cannot. For the 

outcome AHI, only one-third (45/136) comparisons reached statistically significant 

results; for the outcome ESS, about one-third (31/91) comparisons reached statistically 

significant results. Nevertheless, the other two-third comparisons without statistically 

significant results may still have clinical implications. Therefore, instead of interpreting 

NMA results by whether the hypothesis is true or false, providing probabilities of being 
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the best, the second… etc., and summarized by SUCRA or mean rank (Table 3) would 

be helpful for decision making.  
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Figure 2. Network map of the illustrative example  

 

*Source of this figure: Gao, You-Ning, et al. "Short-term efficacy of minimally invasive treatments for adult obstructive sleep apnea: a systematic 

review and network meta-analysis of randomized controlled trials." Journal of the Formosan Medical Association 118.4 (2019): 750-765. 
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Table 1. Results of network meta-analysis and pairwise meta-analysis for the outcome AHI in the illustrative example 

 

*Source of this figure: Gao, You-Ning, et al. "Short-term efficacy of minimally invasive treatments for adult obstructive sleep apnea: a systematic 

review and network meta-analysis of randomized controlled trials." Journal of the Formosan Medical Association 118.4 (2019): 750-765. 
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Table 2. Results of network meta-analysis and pairwise meta-analysis for the outcome ESS in the illustrative example 

 

*Source of this figure: Gao, You-Ning, et al. "Short-term efficacy of minimally invasive treatments for adult obstructive sleep apnea: a systematic 

review and network meta-analysis of randomized controlled trials." Journal of the Formosan Medical Association 118.4 (2019): 750-765. 
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Table 3. Ranking probabilities for the outcome AHI 

 

*Source of this figure: Gao, You-Ning, et al. "Short-term efficacy of minimally invasive treatments for adult obstructive sleep apnea: a systematic 

review and network meta-analysis of randomized controlled trials." Journal of the Formosan Medical Association 118.4 (2019): 750-765. 
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In Table 3, the ranking probabilities of each treatment for the outcome AHI were 

presented, and both mean rank and SUCRA were calculated for each treatment. 

Although the relative effects of PAP compared to TSD or OPT do not reach statistical 

significance, PAP has 87.2% possibility to be the best intervention and about 99.3% to 

be either the best or the second-best intervention. Therefore, PAP would be the first 

treatment to recommend for improving AHI.  

Based on the mean rank and SUCRA, ranking of treatments for the outcome AHI is: 

PAP > MAD > OPT > PT > TSD > PAP+LM > CMSC > Exercise > MT > Surgery + 

MAD > Surgery > EPAP > MAD+LM > No treatment > Sham control > LM > Oxygen 

therapy. However, not every treatment has a high probability of being in each position. 

For example, the second-ranked treatment MAD has more even distributed probabilities. 

The reason for this is that MAD and third-ranked (OPT), fourth-ranked (PT), 

fifth-ranked (TSD) treatments actually have less than 1 in mean difference for AHI. 

Therefore, using ranking to say that MAD is better than OPD, PT, and TSD may 

exaggerate small differences
13

 between these interventions.  

Some guidelines suggested presenting ranking probabilities (Table 3) or the graph such 

as cumulative rankograms (Figure 3), which can display several treatments together in 

one graph to avoid misinterpretation. However, it is complicated to check for each 

treatment, especially when the number of treatments is large, just like this example. 

Therefore, if there is a simple index for showing the uncertainty of ranking, it would be 

easier to point out which ranking is reliable. Moreover, the uncertainty of ranking may 

provide the weight for multiple outcomes, like AHI and ESS in this example, instead of 

equal weight for both outcomes (Figure 4). 
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Figure 3. Cumulative rankograms and ranking for the illustrative example 

 

*Source of this figure: Gao, You-Ning, et al. "Short-term efficacy of minimally invasive 

treatments for adult obstructive sleep apnea: a systematic review and network 

meta-analysis of randomized controlled trials." Journal of the Formosan Medical 

Association 118.4 (2019): 750-765. 
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Figure 4. Clustered ranking plot for the illustrative example 

 

*Source of this figure: Gao, You-Ning, et al. "Short-term efficacy of minimally invasive 

treatments for adult obstructive sleep apnea: a systematic review and network 

meta-analysis of randomized controlled trials." Journal of the Formosan Medical 

Association 118.4 (2019): 750-765. 
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2.4 Decision Making under Uncertainty  

To quantify the uncertainty, probabilities and variance are two measures that are often 

used to describe this concept. While the probability is very low or very high, it means 

that it is very certain to be true or to be false. Therefore, the uncertainty is low. In the 

mid-20
th

 century, Claude Shannon proposed the concept of ‘entropy,’ which calculate 

uncertainty from probabilities, and established the foundation of information theory. In 

epidemiology and biostatistics, the uncertainty is usually expressed by the variance of 

the measurement. For example, Nikolakopoulou et al. proposed a method for measuring 

pairwise meta-analysis information to monitor the precision of pairwise comparisons 

within living network meta-analyses
64,65

. They defined precision as the inverse of 

variance from the pair comparison within network meta-analysis, and they called the 

precision as “amount of information”. In this definition, the smaller variance means 

smaller uncertainty and higher information. However, the uncertainty of ranking is not 

equal to the variance of estimates.  

The following sections will explain the calculation of entropy-based uncertainty from 

probabilities. Some applications of entropy in different domains will also be reviewed. 

Lastly, how entropy is appraised in different fields and the criteria currently used for 

this index will also be discussed.  

2.4.1 Entropy 

Entropy was initially used in the thermodynamic system to describe the disorder or 

randomness in a heat or energy system in the 19
th

 century. In 1948, Claude Shannon 

extended this concept to measure the impurity of the elements in a set in the 

communication field
66

. They named this as Shannon’s entropy, which measures the 
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uncertainty for a set of outcomes with different probabilities. Suppose there are l 

possible outcomes, and Shannon’s entropy formula is then given as:  

H(t) = −∑𝑃(𝑡 = 𝑖) × 𝑙𝑜𝑔𝑏(𝑃(𝑡 = 𝑖))

𝑙

𝑖=1

 

where 𝑃(𝑡 = 𝑖) is the probability of the outcome equal to i. b is the base of the 

logarithm, and the unit of entropy would depend on the choice of b. As the base-2 

logarithms is used, the entropy is measured in bits. The relationship between probability 

and entropy with base 2 logarithm for the binary outcome is presented in Figure 5. The 

greatest entropy is attained when the probability is evenly distributed. The larger 

entropy value means higher uncertainty and vice versa.  

Figure 5. Probabilities and the corresponding entropy with base 2 logarithm for binary 

outcome 
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The normalized entropy
67

 is used to give measures independent of the number of 

outcome 𝑙. The formula of normalized entropy is as follow,  

H(t)𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
H(t)

H(t)𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − H(t)𝑚𝑖𝑛𝑖𝑚𝑢𝑚
 

= −
1

𝑙𝑜𝑔𝑏 (𝑙)
∑ 𝑃(𝑡 = 𝑖) × 𝑙𝑜𝑔𝑏(𝑃(𝑡 = 𝑖))𝑙
𝑖=1 . 

Normalized entropy is that entropy divided by the range of maximum entropy and 

minimum entropy, which are 𝑙𝑜𝑔𝑏 (𝑙)  and 0, respectively. Therefore, normalized 

entropy is between 0 and 1. If the number of outcomes is binary, and the base is 2, then 

normalized entropy is equal to entropy.  

Several studies in different fields have ever used normalized entropy as a measure to 

compare the uncertainty of two systems
68,69

.  

2.4.2 Applications of Entropy  

Entropy has been used in many fields, including physics, economics, biology…etc. 

Here I took three examples, including decision tree analysis in machine learning, model 

selection in the latent growth curve, and classification in logistic regression to show 

how these fields used entropy as an index to measure uncertainty.  

In machine learning, decision tree analysis is a classification method to help the process 

of decision making. The decision tree analysis is to divide samples in a dataset into 

smaller subsets with higher homogeneity of attributes. The entropy is proposed to 

measure the homogeneity of attributes in a subset. A lower entropy means higher 

homogeneity in a subset. Therefore, they compare the entropy reduction, which is 

information gain, to decide which attribute is the best for classification. The greater the 
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reduction in entropy, the greater information is gained from conditioning on that 

attribute X. The formula is as follows:  

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑔𝑎𝑖𝑛 = 𝐼𝐺(𝑌, 𝑋) = 𝐻(𝑌) − 𝐻(𝑌|𝑋) 

The attribute with the most information gain would be the preferred method to category 

subsets.  

Similar to decision analysis in machine learning, the latent growth curve model in 

structural equation modeling is also used to categorize heterogeneous populations into 

subgroups. They group people with similar growth trajectory property together. For 

determining how many subgroups would be optimal to be classified in the latent growth 

curve model, entropy is used to show the precision of classification
70,71

. The formula is 

as below. 

𝐸𝑘 = 1 −
∑ ∑ (−𝑝̂𝑖𝑘 ln 𝑝̂𝑖𝑘)𝑘𝑖

𝑛 ln 𝑘
 

where 𝑝̂𝑖𝑘 is the probability that an individual 𝑖 would endorse that class 𝑘. They 

called the measure entropy but used 1 minus normalized entropy. Therefore, the higher 

the value indicates better classification precision
72

.  

For logistic regression, entropy is still used as a measure to evaluate how good 

classification is, which is still similar to the concept of using latent growth curve and 

decision tree analysis. However, I cannot know which correct group for each 

observation in those two fields, but I can know that in logistic regression. Therefore, it 

made it possible for comparison between classification rate and entropy.  

2.4.3 Criteria of Normalized Entropy 
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To determine how many clusters is necessary to be classified is always not an easy 

question. Currently, there is an existing criterion for latent growth curve analysis. 

Generally, they use 0.8 as a threshold for 1 minus normalized entropy
73

, which indicates 

that good separation of classes when normalized entropy is lower than 0.2.  

Since logistic regression can know the correct groups for each observation, entropy can 

be compared to classification rate or other evaluation approaches, such as the area under 

the ROC (receiver operating curve). Their results show that AUC is over 0.9 while 

normalized entropy is around and less than 0.55.  

The other study suggested to categorize the 1 minus Normalized Entropy into four 

groups: perfect (entropy = 1), high (entropy = 0.8), medium (entropy = 0.6), and low 

(entropy = 0.4)
72

.  

Therefore, in conclusion, from the literature review, normalized entropy below 0.4 is 

quite well, while it is not so well when the normalized entropy is over 0.6.  
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CHAPTER 3: AIMS AND OBJECTIVES 

Whether the treatment ranking for NMA is trustworthy has been raised a great concern
11

. 

However, the current approaches still have limitations in their use. Therefore, this 

dissertation aims to develop a methodology to evaluate the performance of treatment 

ranking from NMAs. Two objectives of this dissertation are briefly described as 

follows: 

1. Developing an alternative method to measure the uncertainty of treatment 

ranking from NMA  

Rankogram has been used to show ranking uncertainty. However, it is not always 

straightforward to compare the differences in the distribution of probabilities by 

inspecting rankograms. The 95% CI/CrI of the mean rank and SUCRA
12

, and the 

interquartile (IQR) of the median rank have also been used to show ranking uncertainty. 

However, using these methods to compare the uncertainty of ranking between 

treatments within the same network or across networks may be inaccurate because the 

range of values given by these methods is related to the numbers of treatments within an 

NMA. If the uncertainty of treatment ranking can be accurately quantified, the research 

resource can be given priority to those treatments with highly uncertain efficacy. Thus, 

in the first objective of the dissertation, I proposed an alternative method, Normalized 

Entropy, to transform the distribution of ranking probabilities into a single quantitative 

measure for the uncertainty of treatment ranking in NMAs. I used simulation and 

empirical examples to demonstrate the strengths of Normalized Entropy as an 

alternative indicator for the uncertainty of ranking in NMAs.  
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2. Explore the association between the uncertainty of ranking and robustness of 

ranking 

The robustness of ranking measures how sensitive the ranking is to subtle alterations of 

a dataset. One approach proposed to empirically evaluate the robustness of ranking is to 

remove one trial and then to evaluate how the ranking would change.
20

 When the 

agreement between the two rankings derived from the complete dataset and the 

modified dataset with one trial removed is high, the treatment ranking of an NMA is 

considered robust. Using uncertainty and robustness of ranking to evaluate the 

reliability of treatment ranking have been applied to published NMAs,
18,20

 but whether 

these two approaches would yield similar conclusions on the reliability of ranking has 

not yet been fully explored. In the second objective of the dissertation, I aimed to 

empirically investigate the relationship between the uncertainty and the robustness of 

treatment ranking by using a database of NMA. I would like to examine whether the 

high robustness of treatment ranking is associated with low uncertainty or whether they 

are two independent concepts.  

These two research questions were written as two papers and submitted to journals for 

publication, which are: (1) Using Normalized Entropy to Measure Uncertainty of 

Rankings for NMAs, and (2) High Robustness Does Not Always Imply Low 

Uncertainty of Treatment Rankings: an empirical study of 60 Network Meta-analyses.  
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CHAPTER 4: MATERIALS AND METHODS 

Materials and methods are described in five sections: First, I described how to apply the 

current and proposed methods for estimating the uncertainty of treatment ranking in 

NMA. Second, the simulations used to show the differences of using Normalized 

Entropy and 95% CI of SUCRA or the probability of being best (P(Best)) to quantify 

ranking uncertainty are presented. Third, the published NMA database, and the four 

selected examples, used to compare the uncertainty of ranking using Normalize Entropy 

and current methods are described. The other two examples also illustrate the 

uncertainty of ranking using Normalized Entropy. Fourth, the robustness of the ranking 

is compared with the uncertainty of the ranking. Lastly, the software and R code for 

calculating Normalized Entropy from ranking probabilities are presented in the fifth 

section. 

4.1. Current and Proposed methods 

Instead of measuring the uncertainty of ranking through the resampling process, such as 

95% CI of SUCRA, I intend to estimate it directly from ranking probabilities. 

Normalized entropy and Euclidean distance are two indicators I have applied to evaluate 

the ranking uncertainty. Although I finally proposed to use Normalized Entropy as the 

uncertainty indicator of NMA ranking, I also described how to apply Euclidean distance 

to quantify uncertainty of ranking here for reference. Moreover, while variance and 

entropy have long been widely used in different fields to quantify the uncertainty, I 

discussed their differences in defining the uncertainty of ranking probabilities for 

NMAs.   

4.1.1. 95% CI of SUCRA 
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The current approach to evaluating the uncertainty of ranking is to compute the 95% CI 

of mean rank or SUCRA
15

. Since mean rank and SUCRA are mathematically equivalent: 

𝑚𝑒𝑎𝑛 𝑟𝑎𝑛𝑘 = 𝑛 − (𝑛 − 1) × 𝑆𝑈𝐶𝑅𝐴19
, in the remaining of this dissertation I only 

compared the 95% CI of SUCRA to the proposed method.  

To calculate SUCRA, I used the formula for SUCRA as mentioned in the Chapter 

2.3.1.3: 

𝑆𝑈𝐶𝑅𝐴(𝑖) =
∑ 𝑐𝑢𝑚(𝑝(𝑗=𝑘))𝑛−1
𝑘=1

𝑛−1
. 

To derive the 95% CI of the SUCRA value, a simulation approach to deriving 95% CI 

of rank was used
20

. I used the following example to explain the simulation process to 

obtain the 95% CI of SUCRA in an NMA.  

In a network with three treatments, labelled as A, B, and C, we obtained the estimates of 

their relative effects with 95% CI for B versus A, and C versus A from a NMA. Suppose 

that the absolute effect size of A is 0, and we randomly select 1000 draws to compute 

the effect sizes of B and C from the distributions of the mean differences between them 

and A. In each draw, the ranking of A, B, and C can then be obtained, and we can also 

compute SUCRA for each treatment. Based on 1000 draws, the 2.5 and 97.5 percentiles 

of SUCRA is 95% CI of SUCRA
74

. The width of 95% CI of SUCRA has been 

interpreted as an index for the uncertainty of treatment ranking; the greater the width, 

the greater the uncertainty is.  

4.1.2. Normalized Entropy 

Shannon’s entropy was first proposed in the communication field for measuring the 

impurity of the elements in a set
66

. Here, I propose to apply Shannon’s entropy to 

measure the uncertainty of treatment ranking by using the ranking probabilities for each 
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treatment. For evaluating the degree of uncertainty over the differences in the ranking 

probabilities derived from the NMA, I applied Shannon’s entropy formula: 

             H(x) = −∑ 𝑝(𝑥 = 𝑘)𝑙𝑜𝑔𝑏𝑝(𝑥 = 𝑘)𝑛
𝑘=1 ,                   (1) 

where 𝑝(𝑥 = 𝑘) is the probability of being ranked 𝑘 for a specific treatment 𝑥 in the 

network, b is the base of logarithm, and the unit of entropy would depend on the choice 

of b. When the base-2 logarithms is used, the entropy is measured in bit (short for 

binary digit), which is the smallest unit of data in a computer. For two treatments within 

an NMA, the relationship between probability and entropy is presented in Figure 5 

(Chapter 2.4.1).  

When the probability of being ranked first and second is either 100% or 0%, indicating 

that the ranking is absolutely certain, the corresponding entropy is 0, which represents 

the lowest level of uncertainty. When the probability is 50%, the corresponding entropy 

is 1 (the highest), indicating that the outcome is uncertain. While the minimum value of 

entropy is zero regardless of the number of treatments involved, the maximum value of 

entropy increases with the number of treatments. I presented the maximum and 

minimum value of entropy for different numbers of treatments included in the NMA in 

Figure 6. 

Since the maximum entropy of treatment varies with the total number of treatments 

included in the network, we used Normalized Entropy, which rescaled entropy by 

dividing the range of maximum and minimum entropy for 𝑛 treatments in a network 
67

. 

Therefore, Normalized Entropy ranges from 0 to 1, and is independent of the number of 

treatments. The formula of Normalized Entropy is given as follows:  
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H(x)𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 

=
H(x)

H(x)𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − H(x)𝑚𝑖𝑛𝑖𝑚𝑢𝑚
 

=
−∑ 𝑝(𝑥 = 𝑘)𝑙𝑜𝑔2𝑝(𝑥 = 𝑘)𝑛

𝑘=1

𝑛 × (−
1
𝑛 𝑙𝑜𝑔2

1
𝑛
) − 0

 

= −
1

𝑙𝑜𝑔2 (𝑛)
∑𝑝(𝑥 = 𝑘) × 𝑙𝑜𝑔2𝑝(𝑥 = 𝑘)

𝑛

𝑖=1

. 

For an NMA, the most precise scenario (i.e., absolute certainty in the ranking of 

treatments) is that each treatment has 100% probability of being in one ranking position 

and 0% probability for the other positions. Under this scenario, the entropy is zero bit, 

and Normalized Entropy is zero. In the least precise scenario, the probability of being at 

each position for each treatment is equal; for instance, the probability of each position is 

25% for a treatment in a NMA with four treatments. As a result, the total entropy value 

under this scenario is 2 bits. Then, it is divided by 2, which is the difference in the 

Entropy values between the most precise and least precise scenarios when there are 4 

treatments, resulting in 1 (2 divided by 2) being the Normalized Entropy for each 

treatment.  

To compare Normalized Entropy to the current approaches, we conducted two 

simulations to compare 95% CI of SUCRA to the Normalized Entropy and P(Best) to 

the Normalized Entropy. The process of two simulations were described in the 

following two sections.  
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Figure 6. Maximum and minimum of Entropy value in different number of treatments 
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4.1.3. Euclidean Distance 

Euclidean distance measures the straight line distance between two points. A short 

distance of two points means that they are close in location. Suppose there are two 

points, 𝑝1 = [𝑝1,1 𝑝1,2…𝑝1,𝑛−1 𝑝1,𝑛]  and 𝑝2 = [𝑝2,1 𝑝2,2…𝑝2,𝑛−1 𝑝2,𝑛] , in an 

n-dimensional Euclidean space, the distance between them is given by the formula:  

𝑑(𝑝1, 𝑝2) =∥ 𝑝1 − 𝑝2 ∥= √∑ (𝑝1,𝑖 − 𝑝2,𝑖)
2𝑛

𝑖=1 , 

where n is the dimension of the space.  

A short distance between the ranking probabilities of two treatments indicates a 

great similarity. In an NMA, the greater the distance between two treatments, the 

more divergent their ranking probabilities.  

The formula for the distance between the ranking probabilities of any two 

treatments j and k is as below,  

Distance𝑗,𝑘 = 𝑑(𝑝𝑗 , 𝑝𝑘) = √∑ (𝑝𝑗𝑖 − 𝑝𝑘𝑖)
2𝑛

𝑖=1 , 

where n is the total number of ranking positions, i.e. the number of treatments involved 

in a NMA. 

For any two treatments in an NMA, the best scenario is that each treatment has its own 

100% probability of being in one position of the ranking and 0% probability for the 

other positions. Under this scenario, the distance between any two treatments is √2. In 

the worst scenario, the probability of being at each position for each treatment is 

identical, and the distance between two treatments under the worst scenario is zero. I 
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defined the Relative Distance as the distance between any two treatments, j and k, 

divided by √2, i.e., the difference in distance between the best and the worst scenarios:  

Relative Distance𝑗,𝑘 =
𝑑(𝑝𝑗,𝑝𝑘)

√2
. 

Among an NMA with n treatments, each treatment has n – 1 relative distances to the 

other treatments (the relative distance of the treatment and itself would be zero). 

The average relative distance of a treatment j is given as:  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 =
∑ (Relative Distance𝑛
𝑘=1 )𝑗,𝑘 

𝑛−1
, 

where n is the total number of treatments.  

An NMA involving n treatments has n average relative distances, and the mean of n 

average relative distances can be used as a measure for the precision of a NMA: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑖𝑛 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
∑ (

∑ (Relative Distance𝑛−1
𝑘=1 )𝑗,𝑘 

𝑛−1
)𝑛

𝑗=1 𝑗

𝑛
, 

where j and k are any two treatments and n is the total number of treatments. 

4.1.4. Variance and Standard Deviation 

To quantify uncertainties, it might be straightforward to come up with the variance from 

the statistical perspective. While calculating the uncertainty of ranking probabilities, 

variance considers the central location of ranking probabilities, but entropy does not 

(See the formula listed in Table 4). Therefore, entropy does not distinguish the 

difference between different distributions, such as unimodal and bimodal, with the same 

probability set, i.e., entropy does not take the order of ranking positions. For example, 
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in a network with four treatments, if the ranking probabilities of a treatment being the 

best and the second-best are both 0.5, its entropy would be identical to that of another 

treatment with ranking probabilities of 0.5 for being either the best or the worst. 

However, their variances of ranking probabilities would be different. The variance 

would show that with the same probabilities set, the uncertainty of the probabilities with 

bimodal distribution (the second scenario in the example) is higher than unimodal 

distribution (the first scenario in the example). Also, as the standard deviation is the 

square root of the variance, the standard deviation is an index that is often used to 

represent a similar meaning with variance. Compared to variance, standard deviation 

could distinguish between different levels of uncertainty under the unimodal 

distribution, which is essential because the bimodal distribution of ranking probabilities 

is rarely seen in NMAs.  

Table 4. Formula and the value range for entropy and variance 

 Entropy Variance 

Formula H(𝑥) = −∑ 𝑝(𝑥 = 𝑘)l  2𝑝(𝑥 = 𝑘)𝑛
𝑘=1 , 

𝑝(𝑥 = 𝑘) is the probability of being ranked 

𝑘 for a specific treatment 𝑥 in the network 

 ar(𝑋) =  (𝑋 −  )2,  

X= 𝑃(𝑥 = 𝑖),   

 = ∑ 𝑃(𝑥 = 𝑖)  𝑖
𝑛

𝑖=1
 

Maximum  𝑙𝑜𝑔2𝑛 (𝑛 − 1)2  ⁄  

Minimum 0 0 

 

The minimum value of entropy or variance is zero when a treatment’s ranking 

probability is 100% at one position. The maximum value of Entropy occurs when the 

ranking probabilities are identical for each rank (Figure 7 (A)). For Variance, the 
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maximum value occurs when the probabilities of the first and the last ranks are both 0.5 

(Figure 7 (B)).   

I will use four NMA studies to demonstrate the differences between using Normalized 

Entropy, Normalized Variance, and Normalized Standard Deviation to quantify the 

ranking uncertainty of NMA.  

Figure 7. The probabilities distribution for the maximum value of (A) entropy and (B) 

variance and standard deviation 
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4.2. Simulations 

In the following two sections, I undertook simulations to compare Normalized Entropy 

to 95% CI of SUCRA and P(Best). 

4.2.1. Comparing Normalized Entropy and 95% CI of SUCRA 

The simulation aims to compare the performance of Normalized Entropy and 95% CI of 

SUCRA on measuring uncertainty of treatment ranking under scenarios with different 

numbers of treatments and different amounts of information within a network. I 

considered fully connected networks with 𝐾  treatments, which are labeled as 

1, 2, 3, … , 𝐾. I simulated the contrast estimates 𝜃𝐾1 for treatment 𝐾 against treatment 

1 by assuming the following multivariate normal (MVN) model:  
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(
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𝜃31
𝜃41
⋮
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⋮
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,
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𝑓
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0.5 0.5 1

⋯
0.5
0.5
0.5

⋮ ⋱ ⋮
0.5 0.5 0.5 ⋯ 1 )

 
 

)

  
 
, 

where 𝑓 is the fraction of maximum information. I defined the maximum information 

(𝑓 = 1) as the amount of information that attains 80% power to detect a difference 

between each adjacent pair of treatments under a two-sided significance level 𝛼 = 5%. 

For example, if only two treatments are included, when the contrast estimates 𝜃21 is 

drawn from N(Φ−1(0.975) + Φ−1(0.8) = 2.80, 1), there is a 80% chance that I can 

detect the difference between two treatments. When I tune 𝑓 to less than 1, it leads to 

a larger error variance, and, consequently, the data contains less information to detect 

the difference in treatment effects. This definition of maximum information and 

information fraction was also adopted in continuously updated NMA to monitor the 

trend in the results of NMA
23

. 

I simulated 1000 sets of contrast estimates for each combination of 𝐾 ∈ {3, ,5, … ,10} 

and 𝑓 ∈ {0.1%, 0.2%, 0.3%,…100%}  to compute the 95% CI of SUCRA and 

Normalized Entropy. Results for the top three treatments within each network were 

presented in scatter plots to show the relationship between Normalized Entropy and 

95% CI of SUCRA.  

I then investigate (1) how the total number of treatments within a network influence the 

performance of these two indices; (2) how the width of the 95% CIs of SUCRA, 
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ranging from 0% to 100%, is related to the values of Normalized Entropy; (3) how 

sensitive the 95% CI of SUCRA and Normalized Entropy are in measuring the 

uncertainty of treatment ranking.  

4.2.2. Comparing Normalized Entropy and P(Best) 

The simulation aims to investigate the relationship between the level of uncertainty 

measured by Normalized Entropy and the probability of being the best treatment. A 

previous study
15

 used arbitrary thresholds for the probability of being best (P(Best)), 

such as 0.50, 0.75, and 0.85, to define the levels of uncertainty for NMA. Despite being 

criticized for not considering ranking probabilities in other positions and thereby 

overlooking variations of the ranking probability distribution, P(Best) still serves as an 

intuitive index for ranking uncertainty. In this simulation, I would like to investigate the 

possible range of Normalized Entropy under P(Best) of 0.50, 0.70 and 0.90 to provide a 

relative scale of Normalized Entropy to the conventional P(Best). 

Given a fixed P(Best) =  𝑝, the highest Normalized Entropy is attained when the 

uncertainty of ranking is the highest, i.e. when the ranking probabilities are evenly 

distributed, each with a probability of 
1−𝑝

𝑛−1
. The Normalized Entropy under this scenario 

can be calculated as: 

𝑁𝐸ℎ𝑖𝑔ℎ𝑒𝑠𝑡 =
−𝑝×ln(𝑝)+[−(

1−𝑝

𝑛−1
)×ln(

1−𝑝

𝑛−1
)]×(𝑛−1)

−
1

𝑛
×ln(

1

𝑛
)

. 

On the other hand, the lowest Normalized Entropy is attained when there is the most 

precise ranking probability distribution, i.e. when the ranking probability for the 

adjacent treatment is 1 − 𝑝, and the rest are 0. The Normalized Entropy under this 

scenario can be written as, 
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𝑁𝐸𝑙𝑜𝑤𝑒𝑠𝑡 =
−𝑝×ln(𝑝)+[−(1−𝑝)×ln(1−𝑝)]

−
1

𝑛
×ln(

1

𝑛
)

. 

I simulated datasets for number of treatments 𝑛 ∈ {3, ,5, … ,25}  included in the 

network for the range of Normalized Entropy, conditioned on P(best) = 0.50, 0.70, or 

0.90. For example, for a NMA with five treatments and P(best) = 0.50, the highest 

normalized entropy is attained for the ranking probabilities: 0.5, 0.125, 0.125, 0.125, 

0.125; the lowest normalized entropy is attained for the ranking probabilities: 0.5, 0.5, 0, 

0, 0.  

4.3. Reanalysis of NMAs  

I used datasets of previously published NMAs before 2015, from a database maintained 

by Petropoulou et al. at the Institute of Social and Preventive Medicine (ISPM), 

University of Bern
75

. The database can be downloaded by using the R package nmadb.
76

 

I used network package
6
 written for the statistical software STATA (version 14, Stata 

Corp, 4905 Lakeway Drive, College Station, Texas, USA) from R to undertake the 

frequentist NMA and to obtain ranking probabilities for all treatments. I then used R to 

quantify the uncertainty of ranking. The figure generation was also undertaken using 

statistical software R.  

4.3.1. NMA Database 

I used NMAs flagged as verified and those with odds ratio and mean difference as 

outcome measures in the arm-based data format. I firstly divided studies by their 

outcome measures (odds ratio or mean difference) and whether the outcome is 

beneficial or harmful.  

To compare the robustness and uncertainty of ranking, NMAs with ten or fewer 
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treatments and more than two trials in each comparison were selected. It would be 

excluded if a network became disconnected when using the leave-one-trial-out (LOTO) 

approach.    

4.3.2. Four Examples for Comparing Current and Purposed Methods 

I selected four examples from the R package nmadb, which included a database of raw 

data for previously published NMA studies
76

. I also used rankograms for example 1 and 

example 2 to show that it is easier to evaluate the uncertainty of treatment ranking by 

using a single quantitative measure than by inspecting the distribution of ranking. 

The first example I selected is a NMA with low uncertainty in ranking. This example is 

an NMA of agents to prevent of postoperative recurrence in Crohn’s disease, which 

included a total of four interventions and 1,507 participants
77

. The second example I 

selected is an NMA with high uncertainty in ranking for most treatments within the 

network. This example is an NMA of erythropoiesis-stimulating agents for CKD 

patients with anemia, which included seven interventions and 12,103 participants
78

. The 

third and fourth examples are selected to show the possible wrong evaluation that the 

uninformative nature of 95% CI of SUCRA can cause. The third example is an NMA of 

selective digestive or oropharyngeal decontamination and topical oropharyngeal 

chlorhexidine to prevent death in general intensive care, including 29 trials and 12,800 

participants
79

. The fourth example is an NMA of efficacy and safety of low molecular 

weight heparins for venous thromboembolism prophylaxis in medically ill patients, 

including 14 trials and 35,325 participants
80

. Using these examples, I demonstrated the 

similarity and discrepancy between Normalized Entropy and the width of 95% CI of 

SUCRA in evaluating ranking uncertainty, and sought explanations by examining the 
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distribution of ranking probabilities. 

4.3.3. Two Examples for Graph Illustration  

I illustrated normalized entropy calculation and presentation in the two examples. In 

Example 5 (Treatment of Latent Tuberculosis Infection), the study-level data is not 

provided, but the ranking probabilities are reported. Normalized entropy calculation 

only requires ranking probabilities of each treatment. Therefore, I used the web-based 

tool called WebPlotDigitizer (the website: https://automeris.io/WebPlotDigitizer/) to 

extract ranking probabilities from the rankogram. I then quantified the uncertainty of 

ranking within an NMA using normalized entropy. In Example 6 (Fluid resuscitation in 

Sepsis), I used an example from the nmadb package and used the netmeta package in R 

to perform NMA and obtain the probability of ranking for each treatment through 

rankogram function in the netmeta package. The R function for calculating Normalized 

Entropy is as below. The input for this function is ranking probabilities (a), and the 

number of treatments (k). The rows of ranking probabilities matrix a are rankings (1
st
, 

2
nd

, 3
rd

,…), and each column is one treatment included in the NMA. 

entropy_arm_function <- function(a, k) { 

  e = -a * log(a, 2) 

  e[!is.finite(e)] <- 0 

  e_colsum = colSums(e) 

  e_max = k * (-1/k) * log2(1/k) 

  e_prop = e_colsum/e_max 

  return(e_prop) 

} 

https://automeris.io/WebPlotDigitizer/


doi:10.6342/NTU202201921

53 
 

4.4. Robustness of Ranking  

To evaluate the robustness of treatment ranking
20

, each trial within a NMA was deleted 

from the network in turn during each re-analysis and a new ranking of treatment was 

computed. To assess the robustness of ranking for a specific treatment, the percentage of 

included trials was calculated, the alternate deletion of which did not change that 

treatment’s ranking position (treatment-level assessment). For NMA-level assessment, 

the agreement of the rankings between the complete dataset and the dataset with one 

trial being deleted was assessed by using quadratic weighted Cohen’s kappa coefficients. 

I computed Cohen’s kappa coefficients for assessing the agreement of ranking for each 

dataset with one trial removed, and I took the average of those kappa coefficients to 

represent the robustness of treatment ranking for the whole NMA.  

4.4.1. Cohen’s kappa coefficients 

The observed agreement of two rankings can be intuitively measured by calculating the 

probability of being the same rank in the complete and the modified datasets with one 

trial removed, which is called the observed probability of agreement between two 

rankings, 𝑝𝑜. However, there is always probability of being the same rank by chance, so 

Cohen’s kappa takes the chanced agreement out of calculations by subtracting the 

probability of being the same rank by chance, namely the expected probability of 

agreement between two rankings, 𝑝𝑒, from the observed probability. The difference 

between 𝑝0 and 𝑝𝑒 is then divided by the perfect agreement of two rankings. The 

formula of Cohen’s kappa coefficient (ĸ) is shown as below,  

𝜅 =
𝑝𝑜 − 𝑝𝑒
1 − 𝑝𝑒
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I used the weighted Cohen’s kappa to take the magnitude of alterations in the ranking 

positions of a treatment between two lists of treatment rankings into consideration by 

incorporating weights into calculations of the observed and expected probabilities. The 

formula is given as below, 

𝑝𝑜 =∑∑𝑤𝑖𝑗𝑝𝑖𝑗
𝑗𝑖

 

𝑝𝑒 = ∑∑𝑤𝑖𝑗𝑝𝑖+𝑝𝑗+
𝑗𝑖

 

𝑖 and 𝑗 are the ranking positions of the original dataset and the modified dataset with 

one trial removed, respectively.  𝑝𝑖𝑗 is the joint probability when the ranking is 𝑖 in the 

original dataset and is 𝑗  in the modified dataset, and  𝑝𝑖+  or 𝑝𝑗+  indicate the 

marginal probability when the ranking is 𝑖 in the original dataset or 𝑗 in the modified 

dataset. 𝑤𝑖𝑗  is the quadratic weight, which is calculated by 1 − (
𝑖−𝑗

𝑘−1
)
2

, and 𝑘 is 

number of treatments included. I used the quadratic weighted Cohen’s kappa coefficient 

(ĸ), which gave more weight for the smaller difference in rank. Quadratic weighted 

kappa coefficient (ĸ) ranged from -1 to 1. 

Take an NMA with three treatments as an example. If the rankings of the complete 

dataset and modified dataset with one trial removed are 1, 2, 3 and 1, 3, 2, respectively. 

Only the rank of the first treatment is unaffected, so the observed probability of 

agreement between two rankings is 1/3. The expected probability is calculated by two 

marginal probabilities of being the same rank multiplied by each other, which is 

1/9  f r each treatment.  I then sum up over the three treatments, so the expected 

probability is 1/3. As both observed and expected probabilities of agreement are 1/3, 

the unweighted kappa coefficient is, therefore, 0. When we use the quadratic weighting 
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scheme, the weights assigned to total agreement is 1 for the difference of one ranking 

position is 3/ , and is 0 for the difference of two ranking positions. The observed 

probability is 1 × 1
3⁄ + 3

 ⁄ × 1
3⁄ × 2 = 5

6⁄  , and the expected probability is 

1 × 1
9⁄ × 3 + 3

 ⁄ × 1
9⁄ ×  =  

6⁄ . The quadratic weighted kappa coefficient is 

5
6⁄ −4 6⁄

1−4 6⁄
= 0.5. 

In addition to using the average of quadratic weighted Cohen’s kappa to measure the 

robustness of treatment ranking of the whole network, I also used the minimum and 

maximum values of quadratic weighted Cohen’s kappa within each network to represent 

the worst and the best scenarios when one trial was deleted from the original dataset. 

Compared to the average value, the minimum and maximum values of quadratic 

weighted Cohen’s kappa are expected to be less related to the number of treatments in 

the network. I classified the robustness of treatment ranking into five levels: slight 

(<0.2), fair (0.2-0.4), moderate (0.4-0.6), substantial (0.6-0.8), almost perfect (>0.8) 

agreement. 

4.4.2. Treatment-level and NMA-level assessment 

For treatment-level assessment, I used normalized entropy; for NMA-level assessment, 

the average of normalized entropies of all treatments within an NMA was taken as the 

uncertainty of treatment ranking for the whole network. The range of normalized 

entropy is from 0 to 1, and I classified the uncertainty of treatment ranking into five 

levels, including very high (>0.8), high (0.6-0.8), median (0.4-0.6), low (0.2-0.4), very 

low (<0.2).  

4.4.3. Association between the Uncertainty and Robustness of Ranking 
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To evaluate the association between the uncertainty of ranking and the robustness of 

ranking, the scatterplot and Pearson's correlation coefficients to inspect and measure 

their relationships was used. For the NMA-level assessment, the average normalized 

entropy was compared to the average, minimum, and maximum value of quadratic 

weighted Cohen’s kappa of each NMA. Five levels of the average normalized entropy 

and five levels of the average, minimum, and maximum value of quadratic weighted 

Cohen’s kappa also tabulated for comparisons. For the treatment-level assessment, the 

scatterplot and Pearson's correlation coefficients of normalized entropy for each 

treatment against the percentage of trials the alternate deletion of which did not change 

the rank of treatment was used.  

The linear model for NMA-level assessment and linear mixed model for treatment-level 

assessment was used to further investigate the strength of association between 

uncertainty and robustness of ranking. Several potential factors were considered, 

including the number of included trials, total participants, number of treatments, and 

interventions assessed (Table 5). For the NMA-level analysis, the average quadratic 

weighted Cohen’s kappa as the dependent variable was used, and the average 

normalized entropy and the other four NMA-level variables (number of included trials, 

the number of total participants, the number of treatments, and the type of interventions 

assessed) as explanatory variables. For the treatment-level analysis, the random 

intercept model with NMA as random effect was used; the percentage of studies, the 

deletion of which did not change the rank of a specific treatment, was the dependent 

variable, and the normalized entropy of that treatment and the other four NMA-level 

variables were explanatory variables. 
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Table 5. Variables used for regression analysis of 60 NMAs and 348 treatments 

Outcome / 

Explained 

variable 

Variables Level of 

variables 

Definitions 

Outcome 

variable 

Agreement of ranking 

(average quadratic 

weighted cohen’s 

kappa) 

NMA-level the agreement of ranking 

derived between the 

complete dataset and the 

dataset with one trial 

removed  

Outcome 

variable 

Percentage of studies 

that did not change 

rank 

Treatment-level For each treatment, the 

percentage of trials within 

a NMA that did not 

change ranking by 

removing one trial out 

Explanatory 

variable 

Average Normalized 

Entropy 

NMA-level average normalized 

entropy of each treatment 

in the study 

Explanatory 

variable 

Normalized Entropy Treatment-level normalized entropy of 

each treatment in the 

study 

Explanatory 

variable 

Number of included 

trials  

NMA-level the total number of trials 

included in the study 

Explanatory 

variable 

Number of total 

participants 

NMA-level the total number of 

participants included in 

the study 

Explanatory 

variable 

Number of treatments NMA-level The total number of 

treatments included in the 

study 

Explanatory 

variable 

Type of interventions 

assessed 

NMA-level non-pharmacological vs 

any; pharmacological vs 

pharmacological; 

pharmacological vs 

placebo 
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CHAPTER 5: Results 

This chapter presents the differences between current and proposed methods in real 

examples and simulations in the first two sections. The distribution of ranking uncertainty 

of published NMA and the graphs that were used to present rank with ranking uncertainty 

were shown in the third section. The associations between robustness and uncertainty of 

ranking were presented in the fourth section.  

5.1 Proposed Methods 

The results of comparing Normalized Entropy to other indices using four examples were 

described in the first section, and the results of comparing Normalized Entropy to 

Variance were described in the second section. 

5.1.1 Comparing Normalized Entropy, Rankogram, and the Width of 95% CI of 

SUCRA 

The ranking probabilities, the width of 95% CI of SUCRA, and Normalized Entropy for 

each treatment in four examples were presented in Table 6.  

Example 1: 5-aminosalicylates, immunomodulators, and biologics for the prevention 

of postoperative recurrence in Crohn’s disease 
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In Example 1, the relative effectiveness of the four treatments can easily be distinguished 

by the ranking probabilities (Biologics ranked first with 100%, Immunomodulators 

ranked second with 98.3%, 5-ASA ranked third with 93.3%, and Placebo ranked fourth 

with 94.9%). All the four treatments also achieved a short width of 95% CI of SUCRA 

and low Normalized Entropy (Biologics: 0.33 vs 0.15; Immunomodulators: 0.33 vs 0.20; 

5-ASA: 0.00 vs 0.00; Placebo: 0.00 vs 0.06). The rankogram for this example is shown in 

Figure 8 (A).  

Example 2: erythropoiesis-stimulating agents for CKD patients with anemia 

In Example 2, the distribution of ranking probabilities was relatively flat for most 

interventions except for placebo/no treatment. The magnitude of uncertainty for each 

treatment was high except placebo/no treatment with a relatively short width of 95% CI 

of SUCRA (0.20) and low Normalized Entropy (0.22) among all treatments. The 

rankogram for this example is shown in Figure 8 (B). 

Example 3: selective digestive decontamination (SDD), selective oropharyngeal 

decontamination (SOD), and topical oropharyngeal chlorhexidine for prevention of 

death in general intensive care 

In Example 3, I observed that ranking probabilities distribution for Control is more 

peaked than that for SDD, but the width of 95% CI of SUCRA for SDD (0.33) is smaller 
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than that for Control (0.67), indicating higher uncertainty of ranking for Control, and this 

is inconsistent with the distribution of ranking probabilities. In contrast, Normalized 

Entropy for Control was 0.21, smaller than 0.42, Normalized Entropy of SDD.  

Example 4: low molecular weight heparins for venous thromboembolism 

prophylaxis in medically ill patients 

In Example 4, I observed that the width of 95% CI of SUCRA for the three interventions, 

namely placebo, fondaparinux, and unfractionated heparin (UFH), was identical. 

However, their distributions of ranking probabilities were quite different, especially that 

for fondaparinux, which showed a very high probability of being the best (0.888). In 

contrast, the Normalized Entropy of fondaparinux was 0.28, which was much smaller 

than those of the other two interventions (placebo: 0.78, UFH: 0.85).  
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Table 6. Ranking probabilities, the width of 95% CI of SUCRA, and Normalized Entropy of the four network meta-analysis studies  

Treatments Ranking probabilities  The width 

of 95% CI 

of SUCRA 

Normalized 

Entropy 

 1
st
  2

nd
  3

rd
  4

th
  5

th
  6

th
  7

th
    

Example 1: agents for the prevention of postoperative recurrence in Crohn’s disease 

Placebo 0.0% 0.0% 5.1% 94.9%    0.33 0.15 

5-ASA 0.0% 1.7% 93.3% 5.0%    0.33 0.20 

Biologics 100.0% 0.0% 0.0% 0.0%    0.00 0.00 

Immunomodulators 0.0% 98.3% 1.6% 0.1%    0.00 0.06 

Example 2: erythropoiesis-stimulating agents for CKD patients with anemia 

Placebo/no treatment 0.0% 0.0% 0.1% 0.7% 10.7% 88.5%  0.20 0.22 

Epoetin alfa  12.4% 21.6% 25.5% 31.7% 8.6% 0.2%  0.80 0.85 

Epoetin beta 44.0% 18.6% 16.1% 11.6% 9.2% 0.5%  0.80 0.82 

Darbepoetin alfa 13.7% 27.1% 27.7% 21.8% 9.6% 0.1%  0.80 0.86 

Biosimilar ESA 11.0% 9.9% 10.1% 17.2% 42.9% 8.9%  1.00 0.88 

methoxy polyethylene glycol-epoetin 

beta 
18.9% 22.8% 20.5% 17.0% 19.0% 1.8%  

0.80 0.93 

Example 3: selective digestive decontamination (SDD), selective oropharyngeal decontamination (SOD), and topical oropharyngeal chlorhexidine for prevention 

of death in general intensive care 

Control 0.0% 5.1% 92.4% 2.5%    0.67 0.23 

SDD 76.3% 23.7% 0.0% 0.0%    0.33 0.40 

SOD 23.7% 70.8% 4.9% 0.6%    0.67 0.55 

Chlorhexidine 0.0% 0.4% 2.7% 96.9%    0.33 0.11 

Example 4: low molecular weight heparins for venous thromboembolism prophylaxis in medically ill patients 

Placebo 0.1% 2.4% 8.2% 26.0% 35.8% 22.2% 5.3% 0.67 0.78 

Enoxaparin 1.2% 20.8% 28.9% 21.8% 16.7% 7.1% 3.5% 0.83 0.86 

Certoparin 7.7% 33.0% 6.0% 6.1% 6.7% 11.1% 29.4% 1.00 0.87 

Fondaparinux 88.8% 6.1% 1.6% 1.0% 0.7% 0.9% 0.9% 0.67 0.26 

Nadroparin 0.5% 6.5% 10.1% 9.0% 12.7% 27.6% 33.6% 0.83 0.84 

Dalteparin 1.0% 13.7% 15.2% 11.4% 11.5% 21.9% 25.3% 0.83 0.92 

Unfractionated heparin (UFH) 0.7% 17.5% 30.0% 24.7% 15.9% 9.2% 2.0% 0.67 0.84 
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Figure 8. Rankograms for the (A) Example 1 and (B) Example 2 
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5.1.2 Comparing Normalized Entropy, Normalized Variance, and Normalized 

Standard Deviation 

Table 7 presented the results of comparing using Normalized Entropy, Normalized 

Variance, and Normalized Standard Deviation to quantify the uncertainty of ranking 

for four NMA studies.  

In Example 1, Normalized Entropy and Normalized Variance showed similar 

patterns, but the value of Normalized Variance is around half that of the Normalized 

Entropy. Normalized Entropy and Normalized Standard Deviation are very similar 

in pattern and value.  

In Example 2, MPGEB treatment has the highest Normalized Entropy but not the 

Normalized Variance. The treatment with the highest normalized variance (0.36) 

and normalized standard deviation in example 2 is Biosimilar ESA because its 

distribution of ranking probabilities is more skewed, with a probability of 42.9% 

being the 5th. The ranking probabilities of MPGEB are quite evenly distributed 

among ranks of 1 to 5, thereby showing greater uncertainty measured by its large 

Normalized Entropy. In addition, the ranking probabilities distribution for 

Biosimilar ESA is slightly bimodal and cannot be detected by Normalized Entropy 

but can be detected by normalized standard deviation.  
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In Example 3, results of the two indices are very similar, but the range of 

Normalized Entropy (0.11 to 0.55) is much wider than the range of Normalized 

Entropy (0.02 to 0.12). The pattern and value of Normalized Standard Deviation is 

very similar to Normalized Entropy.  

In Example 4, the Normalized Entropy of Enoxaparin (0.86) and Certoparin (0.87) is 

very close; however, because Certoparin has a bimodal distribution, its Normalized 

Variance (0.58) is almost third times that of Enoxaparin (0.21) and Normalized 

Standard Deviation of Certoparin (0.76) is also much larger than Enoxaparin (0.46). 

The Normalized Entropy of Placebo (0.78) is about three times that of Fondaparinux 

(0.26) because Fondaparinux has a large probability of being the best treatment 

(88.8%); however, the Normalized Variances of Placebo and Fondaparinux are 

similar (0.14 and 0.09, respectively), and Normalized Standard Deviation of Placebo 

and Fondaparinux are also similar (0.37 and 0.30, respectively), which are not 

consistent with their distributions of ranking probabilities.  
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Table 7. Ranking probabilities, Entropy/Normalized Entropy, and Variance/Normalized Entropy of the four network meta-analysis studies 

Treatments Ranking probabilities  Entropy Normalized 

Entropy 

Variance Normalized 

Variance 

Normalized 

Standard 

Deviation 

 1
st
  2

nd
  3

rd
  4

th
  5

th
  6

th
  7

th
       

Example 1: agents for the prevention of postoperative recurrence in Crohn’s disease  

Placebo 0.0% 0.0% 5.1% 94.9%    0.30 0.15 0.05 0.02 0.15 

5-ASA 0.0% 1.7% 93.3% 5.0%    0.40 0.20 0.07 0.03 0.21 

Biologics 100.0% 0.0% 0.0% 0.0%    0.00 0.00 0.00 0.00 0.00 

Immunomodulators 0.0% 98.3% 1.6% 0.1%    0.12 0.06 0.02 0.01 0.11 

Example 2: erythropoiesis-stimulating agents for CKD patients with anemia  

Placebo/no treatment 0.0% 0.0% 0.1% 0.7% 10.7% 88.5%  0.57 0.22 0.13 0.02 0.23 

Epoetin alfa  12.4% 21.6% 25.5% 31.7% 8.6% 0.2%  2.20 0.85 1.39 0.22 0.75 

Epoetin beta 44.0% 18.6% 16.1% 11.6% 9.2% 0.5%  2.12 0.82 1.91 0.31 0.87 

Darbepoetin alfa 13.7% 27.1% 27.7% 21.8% 9.6% 0.1%  2.22 0.86 1.41 0.23 0.75 

Biosimilar ESA 11.0% 9.9% 10.1% 17.2% 42.9% 8.9%  2.28 0.88 2.27 0.36 0.95 

Methoxy polyethylene 

glycol-epoetin beta (MPGEB) 

18.9% 22.8% 20.5% 17.0% 19.0% 1.8%  2.40 0.93 2.08 0.33 0.91 

Example 3: selective digestive decontamination (SDD), selective oropharyngeal decontamination (SOD), and topical oropharyngeal chlorhexidine for 

prevention of death in general intensive care 

 

Control 0.0% 5.1% 92.4% 2.5%    0.46 0.23 0.08 0.03 0.22 

SDD 76.3% 23.7% 0.0% 0.0%    0.80 0.40 0.18 0.08 0.35 

SOD 23.7% 70.8% 4.9% 0.6%    1.10 0.55 0.28 0.12 0.43 

Chlorhexidine 0.0% 0.4% 2.7% 96.9%    0.22 0.11 0.04 0.02 0.17 

Example 4: low molecular weight heparins for venous thromboembolism prophylaxis in medically ill patients  

Placebo 0.1% 2.4% 8.2% 26.0% 35.8% 22.2% 5.3% 2.19 0.78 1.22 0.14 0.37 

Enoxaparin 1.2% 20.8% 28.9% 21.8% 16.7% 7.1% 3.5% 2.41 0.86 3.67 0.21 0.46 

Certoparin 7.7% 33.0% 6.0% 6.1% 6.7% 11.1% 29.4% 2.44 0.87 5.18 0.58 0.76 

Fondaparinux 88.8% 6.1% 1.6% 1.0% 0.7% 0.9% 0.9% 0.73 0.26 0.81 0.09 0.30 

Nadroparin 0.5% 6.5% 10.1% 9.0% 12.7% 27.6% 33.6% 2.36 0.84 2.59 0.29 0.54 

Dalteparin 1.0% 13.7% 15.2% 11.4% 11.5% 21.9% 25.3% 2.58 0.92 4.86 0.37 0.61 

Unfractionated heparin (UFH) 0.7% 17.5% 30.0% 24.7% 15.9% 9.2% 2.0% 2.36 0.84 3.61 0.17 0.41 
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5.2 Simulations 

Results of two simulations that compared Normalized Entropy to 95% CI of SUCRA 

and P(Best), respectively, were presented in the following two sections.  

5.2.1 Comparing Normalized Entropy and 95% CI of SUCRA 

The relationship between Normalized Entropy and the width of 95% CI of SUCRA for 

top 3 ranked treatments within networks with 3 to 10 treatments were presented in 

Figure 9(A) to Figure 9(H). Overall, Normalized Entropy is positively correlated with 

the width of 95% CI of SUCRA under different information fractions. However, I 

observed that the possible values for the width of 95% CI of SUCRA equal the number 

of treatments included in the network. For instance, in a network with three treatments, 

the possible values for the width are 1, 0.5 and 0. Suppose in one simulation, 

treatments A, B, and C are the best, second best and worst treatment, respectively. 

Their SUCRA values will therefore be 1, 0.5 and 0, respectively. If treatment A is 

always the best, its width of 95% CI of SUCRA will be zero. If it is sometimes the 

second best, the width is likely to 1 – 0.5 = 0.5. If it falls to the third place in some 

simulations, the width will be 1 – 0 = 1. This applies to treatments B and C as well. For 

a network with k treatments, the possible widths are 1, 
𝑘−2

𝑘−1
, 
𝑘−3

𝑘−1
,…, 

1

𝑘−1
, 0.  
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While the widths of 95% CI of SUCRA are discrete values, Normalized Entropy is 

continuous. For instance, Normalized Entropy increased from 0 to 0.1, while the width 

of 95% CI of SUCRA stayed at 0; when Normalized Entropy increased from 0.1 to 

0.55, the width of 95% CI of SUCRA jumped to and stayed at 0.5; when Normalized 

Entropy increased from 0.5 to 1, the width of 95% CI of SUCRA jumped to 1. Due to 

its discrete nature, the width of 95% CI of SUCRA is less informative than Normalized 

Entropy in assessing the uncertainty of treatment ranking, particularly for networks 

with only a few treatments and for those treatments in the middle positions. On the 

other hand, for a small range of Normalized Entropy, the corresponding width of 95% 

CI of SUCRA may jump from one level of uncertainty to a much higher level. For 

example, the width of 95% CI of SUCRA for the second-best treatment in Figure 9(A) 

could jump from 0 to 1, when Normalized Entropy increased from 0.20 to 0.25. 
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Figure 9. Simulation results for relationship between Normalized Entropy and the width of 95% CI of SUCRA for top 3 ranked treatments 

within network with 3 to 10 treatments 

 

A: 3 treatments, B: 4 treatments, C: 5 treatments, D: 6 treatments, E: 7 treatments, F: 8 treatments, G: 9 treatments, H: 10 treatments;  

r presented in each figure is the correlation coefficient between Normalized Entropy and the width of 95 CI of SUCRA
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5.2.2 Comparing Normalized Entropy and P(Best) 

Figure 10 showed the possible range of Normalized Entropy corresponding to the P(Best) 

equal to 0.50, 0.70, or 0.90. The results were presented for networks with 3 to 25 

treatments.   

Generally, the range of Normalized Entropy is smaller for P(Best), equal to 0.90 (Figure 

10 (C)) than that for P(Best), equal to 0.50 (Figure 10 (A)). For the probability of being 

the best equal to 0.90, the highest Normalized Entropy is around 0.20, and the lowest is 

around 0.1. For the probability of being the best equal to 0.7, the highest Normalized 

Entropy is around 0.60 and the lowest is around 0.20. For the probability of being the 

best equal to 0.50, the highest Normalized Entropy is around 0.80, and the lowest is 

around 0.20. This indicates that if the Normalized Entropy of treatment is smaller than 

0.20, its level of ranking uncertainty may be interpreted as that of treatment with P(Best) 

equal to 0.90 or higher. If Normalized Entropy for treatment is around 0.40, its level of 

ranking uncertainty may be interpreted as that of treatment with P(Best) equal to 0.70. If 

Normalized Entropy for treatment is around 0.80 or above, its level of ranking 

uncertainty may be interpreted as that of a treatment with P(Best) equal to or less than 0.5. 

When the number of treatments increases, the same P(Best) indicates a more precise 
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treatment ranking and tends to attain a lower Normalized Entropy value. This 

demonstrates that Normalized Entropy accurately measures the uncertainty of treatment 

ranking, and its values are comparable across different networks. 
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Figure 10. Range of Normalized Entropy corresponding to the probability of being the best equal to (A) 0.5, (B) 0.7 or (C) 0.9 for 

network with 3 to 25 treatments included  
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5.3 Ranking Uncertainty of Published NMA 

The results of the ranking uncertainty for published NMAs are described in this 

section.  

5.3.1 The Distribution of Ranking Uncertainty for Published NMAs 

There are 453 NMAs in the catalog of the database, and 278 NMAs flagged as 

verified datasets. After excluding NMAs data with the outcome measures that are 

not odds ratio or mean difference, and the data format is not arm-based (Figure 11), 

157 NMAs were included. There are 118 studies using odds ratios and 39 studies 

using mean difference as outcome measures.  

The features of 157 NMAs were summarized in Table 8. The medium number of 

interventions included within the network was 7 (Q1-Q3: 5-9), and over 40% of 

studies compared four to six interventions within the network. The median number 

of trials included within the network was 21 (Q1-Q3: 12-36). Near half (44.6%) 

NMAs included fewer than 20 trials in the network, 32.5% NMAs included 20-40 

trials, 13.4% NMAs included 40-60 trials, 4.5% NMAs included 60-80 trials and 

5.1% NMAs included more than 80 trials. Regarding the type of interventions 

assessed in the network, 63.7% NMAs were pharmacological vs. placebo, 19.1% 

NMAs were non-pharmacological vs. any, and 17.2% NMAs were pharmacological 
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vs pharmacological. The distribution of ranking uncertainty levels for 157 published 

NMAs is shown in Figure 12. More than two-thirds of NMAs have a high (50.6%) 

or very high (18.6%) level of ranking uncertainty.  

 

Figure 11. Flowchart of empirical dataset selection 

  

Catalog: 453 

Binary: 194 Continuous: 62 

Odds ratio: 122 Mean difference: 47 

Verified datasets: 278 

Unverified datasets: 175  

Outcome measures is rate: 6 

Outcome measures is survival: 16 

Exclude 15 studies with effect 

measures including 

(1) Risk difference 

(2) Standardized mean difference 

Exclude 72 studies with 

effect measures including, 

(1) Risk difference 

(2) Risk ratio 

Contrast 

based data: 8 

 

Arm based 

data: 39 

 

Contrast 

based data: 4 

Arm based 

data: 118 

 

Total studies: 157 studies 
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Table 8. Summary of the 157 NMAs 

Characteristics  Value 

Interventions, n 7 (5-9)* 

Four 23 (14.6%) 

Five  33 (21.0%) 

Six  17 (10.8%) 

Seven  15 (9.6%) 

Eight  18 (11.5%) 

Nine  17 (10.8%) 

Ten 6 (3.8%) 

More than Ten 28 (17.9%) 

Trials, n 21 (12-36)* 

<20 70 (44.6%) 

20-40 51 (32.5%) 

40-60 21 (13.4%) 

60-80 7 (4.5%) 

>80 8 (5.1%) 

Type of interventions assessed, n  

non-pharmacological vs any 30 (19.1%) 

pharmacological vs pharmacological 27 (17.2%) 

pharmacological vs placebo 100 (63.7%) 

*median (1
st
 and 3

rd
 quantile) 
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Figure 12. The distribution of ranking uncertainty levels for 157 published NMAs 
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Among 157 NMAs, the 95% CI range of SUCRA for one NMA cannot be estimated. 

Therefore, 156 NMAs were included for exploring the association between 

robustness and uncertainty of ranking. The association of ranking uncertainty in 

Normalized Entropy and 95% CI range of SUCRA for each treatment of 156 

published NMAs by the number of treatments included in the NMA was presented 

in Figure 13. When the number of treatments is less than 10, there is an apparent 

trend that 95% CI of SUCRA would be affected by the number of treatments 

included within the NMA. On the other hand, for those NMAs with more than ten 

treatments, there is a trend that while Normalized Entropy is very high, the range of 

95% CI of SUCRA could be low.  
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Figure 13. The association of ranking uncertainty in Normalized and the range of 95% CI of SUCRA for each treatment of156 published NMAs 

by number of treatments included in the NMA 
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5.3.2 Two Illustrative Examples 

Example 5: Treatment of Latent Tuberculosis Infection 

When we compare treatments, we often do not just evaluate one outcome. We 

usually look for treatments that are more effective and have lower side effects. An 

NMA compared the efficacy of 16 treatments for preventing latent tuberculosis 

infection (LTBI) and 10 treatments for hepatotoxicity
81

. The study included 61 

studies.  

We presented the ranking and uncertainty levels for two outcomes of Example 5 in 

Figure 14. When there are two outcomes in a study, some studies may use clustered 

ranking plot to present two rankings simultaneously. However, treatments that do 

not rank both outcomes will be neglected. In addition, the clustered ranking plot 

cannot present rankings for three or more outcomes. They also cannot present the 

uncertainty of ranking.  

In Figure 14, we presented ranking for each outcome and used colors to distinguish 

the five levels of ranking uncertainty. We found that although INH-EMB 12 months, 

RFB-INH, and RFB-INH (high) ranked best, third, and fourth, respectively, there is 

no information for prevention of active TB hepatotoxicity. RMP-INH-PZA ranked 
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second (uncertainty level is high), but the hepatotoxicity ranked seven (uncertainty 

level is very high); RMP ranked fifth (uncertainty level is very high) and have the 

least hepatotoxicity (uncertainty level is very low). Readers can decide the priority 

of treatments based on which outcome they value more, and they also can 

incorporate other possible considerations, such as cost, route of medicine, etc., into 

the figure for the overall judgement.  

Example 6: Fluid resuscitation in Sepsis 

Uncertainty of ranking can also be applied to determine treatment nodes while 

maintaining their interpretability. When performing NMAs, treatments can be 

lumped into the same treatment node or separated into different nodes. Treatments 

may be split into different groups based on dose, duration, procedures etc. However, 

it may not be optimal to separate all treatments because each treatment may not have 

sufficient power to generate robust estimates. However, if all treatments are lumped 

into the same nodes, the results may be useless in clinical practice
82

.  

An NMA study compared mortality among different fluids for resuscitation in sepsis 

presented their results by using three ways (6-node, 4-node, and 2-node) to classify 

treatments
83

. The study divided fluids into crystalloid and colloids for 2-node 

comparison, and divided colloids into albumin, gelatin, and hydroxyethyl starch 
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(HES) for 4-node comparison. For 6-node comparison, HES is further divided into 

low-molecular-weight HES (L-HES) and high-molecular-weight HES (H-HES), and 

crystalloids is divided into balanced and unbalanced (saline) solutions. The study 

includes 14 studies (18,916 patients). The three classification methods have different 

numbers of studies included in the analysis (2-node comparison: 12 studies; 4-node 

comparison: 13 studies; 6-node comparison: 13 studies).  

I presented the ranking and its uncertainty for outcome with 6-node, 4-node, and 

2-node, using scatter plots in Figure 15 (A)-(C). I can found that the uncertainty of 

treatments are lower in the 4-node analysis, and higher for only 2 nodes included in 

the analysis.  Therefore, it showed that lumping more treatments together does not 

mean the uncertainty of ranking would be lower. In this Example 6, when I group 

treatments into 2 nodes, the uncertainty of both treatments are close to 1, which 

means that the ranking of these two categories are not meaningful.  
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Figure 14. Rankings for two outcomes with uncertainty in 5 levels 
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Figure 15 (A) SUCRA-based rank with uncertainty of 6 treatments (B) 4 treatments 

(C) 2 treatments for example  

(A) 
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(B) 

 

(C) 
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5.4 Association between Uncertainty and Robustness of Treatment Ranking  

The selection process of NMAs from nmadb database for exploring the association 

between uncertainty and robustness of treatment ranking were shown in Figure 16. A 

total of 60 NMAs were included. 43 NMAs reported odds ratios and 17 NMAs the 

mean difference among them. The basic information of the 60 NMAs was 

summarized in Table 9. The medium number of interventions included within the 

network was 5 (Q1-Q3: 4-7), and over 70% of NMAs compared fewer than six 

interventions. The median number of trials included within the network was 26 

(Q1-Q3: 17-36). More than one quarter (28.3%) of NMAs included fewer than 20 

trials in the network, 50.0% NMAs included 20-40 trials, 15.0% NMAs included 

40-60 trials and 6.7% NMAs included more than 60 trials. Regarding the type of 

interventions assessed in the network, 66.7% NMAs were pharmacological vs. 

placebo, 20.0% NMAs were non-pharmacological vs. any, and 13.3% NMAs were 

pharmacological vs. pharmacological. When one of their included trials was deleted, 

50 NMAs (80.0%) treatment ranking was altered. Further information, such as 

condition/disease, outcome measure, and the number of trials and treatments 

included of each NMA, can be found in Table 10 and Table 11. 
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Figure 16. Flowchart of the study selection process 

 

 

  



doi:10.6342/NTU202201921

87 
 

Table 9. Summary of the 60 NMAs 

Characteristics  N (%)  

Interventions, n 5 (4-7)* 

Four  19 (31.7%) 

Five   15 (25.0%) 

Six   10 (16.7%) 

Seven    3 (5.0%) 

Eight    4 (6.7%) 

Nine    6 (1.0%) 

Ten   3 (5.0%) 

Trials, n 26 (17-36)* 

  <20  17 (28.3%) 

  20-40  30 (50.0%) 

  40-60   9 (15.0%) 

  >60   4 (6.7%) 

Type of interventions assessed, n  

  non-pharmacological vs any  12 (20.0%) 

  pharmacological vs pharmacological   8 (13.3%) 

  pharmacological vs placebo  40 (66.7%) 

Ranking of treatments after leave-one-trial out 

approach 

 

  All remained unchanged  12 (20.0%) 

  Have some change 48 (80.0%) 

*median (1
st
 and 3

rd
 quantile)
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Table 10. Basic characteristics of 60 NMAs 

ID First Author Year Condition/Disease Outcome No. of 

treatments 

No. of 

trials 

473552 Valentin 2011 rheumatoid arthritis ACR70 improvement 9 32 

479585 Singh 2013 any disease condition except 

human immunodeficiency 

disease (HIV/AIDS) 

total adverse events 10 49 

479600 Donahue 2012 rheumatoid arthritis response to treatment (defined as achieving ACR50 

response) 

9 30 

479622 Thakkinstian 2012 chronic prostatitis/chronic 

pelvic pain syndrome 

Total symptom scores 5 13 

479629 Reinecke 2015 chronic pain pain intensity 4 22 

479650 Coleman 2008 cancer incidence of cancer 6 27 

479661 Owen 2010 stroke all strokes 4 14 

479770 Greco 2015 adult cardiac surgery patients mortality 5 46 

479808 Singh 2009 rheumatoid arthritis 50% improvement in patient- and 

physician-reported criteria of the American College 

of Rheumatology (ACR 50) 

7 31 

479971 Loke 2014 acute coronary syndrome adverse coronary events 4 27 

480029 Xiong 2014 localized prostate cancer all-cause mortality 8 17 

480060 Tadrous 2014 primary osteoporosis any gastrointestinal related to adverse events 5 46 
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480074 Phan 2014 atrial fibrillation incidence of sinus rhythm 5 16 

480612 Kunitomi 2015 mild-to-moderate asthma change from baseline in forced expiratory volume in 

1 s (FEV1(L)) 

5 23 

480804 Palmer 2014 chronic kidney disease preventing blood transfusion 6 19 

480851 Stowe 2010 parkinson's disease patients 

suffering from motor 

complications 

off-time reduction 4 29 

481107 Wang 2015 patients with cancer receiving 

myelosuppressive 

chemotherapy 

Febrile neutropenia risk for all chemotherapy cycles 

without adjustment for relative dose intensity 

5 30 

481140 Kunitomi 2013 schizophrenia symptoms of schizophrenia 4 21 

481236 Zagmutt 2012 early parkinson's disease Total Adverse Events 4 6 

481384 Schoenberg 2013 laparoscopic heller myotomy  Success Rates at 12 months 4 16 

481583 Sun 2014 moderate-to-severe restless 

legs syndrome 

Change in IRLS score at the end of maintenance 5 14 

481589 Desai 2012 rheumatoid arthritis overall withdrawal 10 41 

481695 Liang 2014 advanced non-small-cell lung 

cancer  

objective response rate 6 11 

481733 Yang 2014 crohn's disease recurrence endoscopic recurrence 4 12 

481734 Zhang 2013 patients treated with 

antihypertensive drugs 

new-onset diabetes 6 28 

481836 Roskell 2014 chronic obstructive pulmonary trough forced expiratory volume in 1 second 9 16 
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disease (FEV1) 

481941 Dong 2014 rocuronium onset time of rocuronium 4 20 

482004 Shamliyan 2013 episodic migraine prevention of epidsodic migraine 8 25 

482006 Lin 2014 primary molar pulpotomy clinical success of primary molar pulpotomy 5 21 

482258 Price 2014 patients in general intensive 

care 

mortality 4 29 

482382 Shams 2013 hot flashes daily frequency of hot flashes 5 9 

482734 FurUnited 

Kingdomawa 

2014 control conditions currently 

used in psychotherapy trials 

response to treatment 4 48 

501201 Baker 2009 chronic obstructive pulmonary 

disease 

exacerbation episodes in Chronic Obstructive 

Pulmonary Disease (COPD>=1) 

8 39 

501226 Chang 2012 plantar fasciitis effectiveness of focused shock wave (FSW) therapy 

of different intensity levels and a new alternative, 

radial shock wave (RSW) for managing plantar 

fasciitis 

5 12 

501235 Cooper 2011 smoke alarms possession of a functioning alarm 7 20 

501251 Dong YH 2013 chronic obstructive pulmonary 

disease 

Risk of mortality for inhaled medications in patients 

with chronic obstructive pulmonary disease (COPD) 

6 41 

501256 Eisenberg 2008 smoking cessation most rigorous criterion of abstinence in smoking 

cessation 

5 61 

501257 Elliott 2007 diabetes effect of antihypertensives on incidence diabetes 

mellitus 

6 22 



doi:10.6342/NTU202201921

91 
 

501261 Filippini G 2013 multiple sclerosis the relative effectiveness of immunomodulators and 

immunosuppressants in patients with MS 

10 21 

501277 Goudswaard 2009 type 2 diabetes insulin therapies in patients with type 2 diabetes 4 13 

501281 A.K. Gupta 2013 actinic keratosis The relative efficacy of eight treatments in 

nonimmunosuppressed participants for actinic 

keratosis 

9 35 

501297 Hutton 2012 cardiac surgery relative risks of death between antifibrinolytics and 

no treatment 

4 77 

501300 Jansen 2006 type 2 diabetes relative efficacy 4 12 

501305 Nasreen Khan 2013 refractory partial onset seizure Efficacy of anti-epileptic drugs 5 12 

501317 Lin 2012 dentin hypersensitivity effectiveness in resolving dentin hypersensitivity 

among different in-office desensitizing treatments 

6 41 

501321 Liu 2012 type 2 diabetes effectiveness 9 39 

501325 Mak 2012 oral antithrombotic agents Acute coronary events comprising either MI or ACS 5 26 

501332 Maund 2011 morphine-related side-effects 

after major surgery 

morphine-related outcomes 4 58 

501337 Meader 2010 opioid detoxification Completion of treatment 4 20 

501340 Middleton 2010 heavy menstrual bleeding efficacy as second line treatment for heavy 

menstrual bleeding 

4 20 

501348 Mills 2010 short-term smoking abstinance Smoking Abstinence 4 89 

501351 Huseyin Naci 2013 statins Harms of individual statins 8 101 

501374 Puhan 2009 chronic obstructive pulmonary exacerbation in patients with chronic obstructive 5 34 
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disease pulmonary disease 

501393 Singh 2009 rheumatoid arthritis efficacy of biologics for rheumatoid arthritis 7 27 

501399 Stowe 2010 parkinson's disease patients 

with motor complications 

efficacy 4 29 

501404 Thijs 2008 transient ischaemic attack or 

stroke 

efficacy of antiplatelet 5 24 

501408 Tropeano 2010 carotid intima-media thickness decrease of carotid intima-media thickness (CIMT) 6 28 

501414 Van de Bruel 2010 cataract surgery protective effect of ophthalmic viscoelastic devices 6 21 

501424 Wang 2010 catheter-related infections effectiveness of venous catheters for catheter-related 

infections 

9 43 

501434 Yu 2006 coronary artery bypass graft 

surgery 

effectiveness of inhaled anesthetics in reducing 

post-operative myocardial infractions after cardiac 

surgery 

6 14 
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Table 11. Uncertainty of ranking evaluated by average normalized entropy and 

robustness of ranking evaluated by LOTO and Cohen’s kappa for 60 NMAs  

ID Average 

Normalized 

Entropy 

Uncertainty level 

(defined by average 

Normalized Entropy) 

Robustness level 

(defined by Squared 

weighted Cohen’s 

kappa) 

473552 0.77 High 0.98 

479585 0.89 Very High 0.98 

479600 0.62 High 0.99 

479622 0.62 High 0.95 

479629 0.47 Median 1.00 

479650 0.84 Very High 0.97 

479661 0.43 Median 0.99 

479770 0.76 High 0.96 

479808 0.65 High 0.99 

479971 0.25 Low 1.00 

480029 0.87 Very High 0.95 

480060 0.71 High 0.99 

480074 0.50 Median 0.90 

480612 0.59 Median 0.98 

480804 0.76 High 0.89 

480851 0.34 Low 0.99 

481107 0.69 High 0.92 

481140 0.11 Very Low 1.00 

481236 0.44 Median 0.97 

481384 0.26 Low 0.99 

481583 0.44 Median 0.96 

481589 0.62 High 0.99 

481695 0.47 Median 0.99 

481733 0.11 Very Low 1.00 

481734 0.32 Low 1.00 

481836 0.60 High 0.97 

481941 0.50 Median 0.97 

482004 0.78 High 0.95 

482006 0.71 High 0.98 
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482258 0.32 Low 1.00 

482382 0.76 High 0.96 

482734 0.29 Low 1.00 

501201 0.63 High 0.98 

501226 0.72 High 0.96 

501235 0.68 High 0.98 

501251 0.58 Median 0.98 

501256 0.27 Low 1.00 

501257 0.37 Low 1.00 

501261 0.78 High 0.97 

501277 0.74 High 0.98 

501281 0.70 High 0.97 

501297 0.67 High 0.99 

501300 0.34 Low 0.97 

501305 0.71 High 0.93 

501317 0.83 Very High 0.95 

501321 0.60 Median 0.98 

501325 0.62 High 0.98 

501332 0.33 Low 1.00 

501337 0.53 Median 1.00 

501340 0.58 Median 0.97 

501348 0.14 Very Low 1.00 

501351 0.75 High 0.99 

501374 0.56 Median 0.96 

501393 0.66 High 0.99 

501399 0.35 Low 0.99 

501404 0.22 Low 1.00 

501408 0.79 High 0.95 

501414 0.76 High 0.96 

501424 0.67 High 0.99 

501434 0.83 Very High 0.99 
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5.4.1 NMA-level Association between Uncertainty and Robustness 

For the 60 NMAs, the associations between the average normalized entropy and the 

average, minimum, maximum value of quadratic weighted Cohen’s kappa were 

presented in Figure 17. Their Pearson's correlation coefficients were -0.59, -0.50, 

and 0, respectively. While the average normalized entropy was less than 0.4, the 

average values of quadratic weighted Cohen’s kappa were close to 1. When the 

normalized entropy increased, the variation of average quadratic weighted Cohen’s 

kappas increased, but they remained almost greater than 0.9. The minimum value of 

quadratic weighted Cohen’s kappa showed greater variations when the average 

normalized entropy was high. When the average normalized entropy was less than 

0.25, the minimum values of quadratic weighted Cohen’s kappa became 1, i.e., a 

perfect agreement. When the average normalized entropy was greater than 0.75, the 

minimum value of quadratic weighted Cohen’s kappa ranged between 0.2 and 0.8. 

The higher the average normalized entropy was, the lower the minimum quadratic 

weighted Cohen’s kappa was. However, some NMAs with a high average 

normalized entropy showed high minimum quadratic weighted Cohen’s kappa. The 

maximum value of quadratic weighted Cohen’s kappa were all 1 for 60 NMAs, 

showing that there was at least one trial the deletion of which did not change their 

treatment ranking.  



doi:10.6342/NTU202201921

96 
 

Figure 17. Scatter plots of average normalized entropy and (A) average/ (B) minimum/ (C) maximum quadratic weighted Cohen’s kappa for 60 

networks 
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In Table 12, I compared five levels of the average normalized entropy and five levels 

of the average, minimum, and maximum value of quadratic Cohen’s kappa within 

the network. The uncertainty of about half of NMAs was classified as very high 

(8.3%) and high (45.0%), and that of the other half was medium (21.7%), low 

(20.0%), and very low (5.0%). As for the robustness of ranking, both the average 

and maximum values of quadratic Cohen’s kappa for all 60 NMAs fell into the 

highest level of agreement irrespective of their levels of normalized entropy. 

Consequently, 32 NMAs of high or very high uncertainty of ranking appeared to 

show good robustness of treatment ranking. In contrast, the minimum values of 

quadratic weighted Cohen’s kappa were classified as substantial (36.7%) or almost 

perfect (51.7%) agreement on ranking, while a few NMAs with medium to the very 

high level of uncertainty fall into the groups of slight (1.7%), fair (5.0%), moderate 

(5.0%) agreement for the robustness of ranking.  
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Table 12. Comparison of five levels between uncertainty of treatment ranking quantified by the average normalized entropy and robustness of 

treatment ranking quantified by the (A) Average (B) Minimum (C) Maximum value of quadratic Cohen’s kappa within the network 

(A) Uncertainty of treatment ranking (Average Normalized Entropy) 

Very low Low Median High Very high Total 

Robustness of 

treatment 

ranking 

(Average 

quadratic 

Cohen’s kappa) 

Slight agreement 0 0 0 0 0 0 (0%) 

Fair agreement 0 0 0 0 0 0 (0%) 

Moderate agreement 0 0 0 0 0 0 (0%) 

Substantial agreement 0 0 0 0 0 0 (0%) 

Almost perfect agreement 3 12 13 27 5 60 (100%) 

Total 3 (5.0%) 12 (20.0%) 13 (21.7%) 27 (45.0%)  5 (8.3%) 60 

(B) Uncertainty of treatment ranking (Average Normalized Entropy) 

Very low Low Median High Very high Total 

Robustness of 

treatment 

ranking 

(Minimum value 

of quadratic 

Cohen’s kappa) 

Slight agreement 0 0 0 1 0 1 (1.7%) 

Fair agreement 0 0 1 1 1 3 (5.0%) 

Moderate agreement 0 0 0 2 1 3 (5.0%) 

Substantial agreement 0 4 6 11 1 22 (36.7%) 

Almost perfect agreement 3 8 6 12 2 31 (51.7%) 

Total 3 (5.0%) 12 (20.0%) 13 (21.7%) 27 (45.0%)  5 (8.3%) 60 

(C) Uncertainty of treatment ranking (Average Normalized Entropy) 
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Very low Low Median High Very high Total 

Robustness of 

treatment 

ranking 

(Maximum value 

of quadratic 

Cohen’s kappa) 

Slight agreement 0 0 0 0 0 0 (0%) 

Fair agreement 0 0 0 0 0 0 (0%) 

Moderate agreement 0 0 0 0 0 0 (0%) 

Substantial agreement 0 0 0 0 0 0 (0%) 

Almost perfect agreement 3 12 13 27 5 60 (100%) 

Total 3 (5.0%) 12 (20.0%) 13 (21.7%) 27 (45.0%)  5 (8.3%) 60 
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5.4.2 Treatment-level Association between Uncertainty and Robustness 

The 60 NMAs included 348 treatments, and Figure 18 shows the scatterplot for the 

association between the normalized entropy and the percentage of treatments that did 

not change rank. Their Pearson's correlation coefficient was -0.59. Each point 

represented a treatment. Among 348 treatments, the percentage of trials, the deletion 

of which did not change rank of the treatment, ranged from 37% to 100%. For those 

treatments whose ranks were changed by the deletion of a trial, over 25% of them are 

in the high and very high levels of ranking uncertainty.  

Figure 18. Scatter plot of normalized entropy and percentage of treatments that did 

not change rank for 348 treatments within 60 NMAs 
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5.4.3 Regression Analysis 

For the 60 NMAs, Table 13 shows that the average normalized entropy was inversely 

associated with the average quadratic weighted Cohen’s kappa in both the univariate 

and the multivariable models with the adjustment of the number of included trials, the 

number of total participants, the number of treatments, and the type of interventions 

assessed (Table 5). The inverse association was greater (-0.45 in the univariate model 

and -0.59 in the multivariate model) when I used the minimum value of quadratic 

weighted Cohen’s kappa. For the 348 treatments, the normalized entropy was also 

inversely associated with the percentage of trials, the deletion of which did not change 

rank, in both univariate and multivariable models. 

Table 13. Results of each model to explore the association between the robustness of 

treatment ranking and uncertainty of treatment ranking for 60 NMAs and 348 

treatments 

 Univariate 

model  

Multivariate 

model 

NMA-level assessment (average quadratic 

weighted Cohen’s kappa) 

  

  Average Normalized Entropy for 60 NMAs -0.06* -0.07*† 

NMA-level assessment (minimum value of 

quadratic weighted Cohen’s kappa) 

  

  Average Normalized Entropy for 60 NMAs -0.45* -0.58*† 

Treatment-level assessment   

  Normalized Entropy -0.27* -0.25*† 

*p-value<0.05 †model adjusted for number of included trials, number of total 

participants, number of treatments, and type of interventions assessed 
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CHAPTER 6: Discussion and Conclusions 

This chapter described the main findings, discussed the strengths and limitations of 

the analyses, and made the conclusion of the dissertation.  

6.1 Using Normalized Entropy to Measure Uncertainty of Rankings 

This study demonstrates that Normalized Entropy summarized ranking probabilities 

into a single measure to compare the uncertainty of treatment ranking, either within 

the same network or across different networks. I also observed that Normalized 

Entropy is a more accurate index for the uncertainty of treatment ranking and is more 

likely to distinguish subtle differences in the levels of ranking uncertainty compared 

to the width of 95% CI of SUCRA. A more accurate assessment of ranking 

uncertainty is crucial for interpreting treatment ranking, especially when we are 

making recommendations for treatments.  

Rankograms, cumulative rankograms, the confidence/credible intervals of the mean 

rank or SUCRA, or IQR of median rank have been used to display the uncertainty of 

treatment ranking. However, these approaches either did not produce a single index 

value, or their values may be related to the total number of treatments within the 

network. Therefore, they cannot distinguish differences in the levels of ranking 

uncertainty for treatments within the same network meta-analysis, nor can they 

compare the uncertainties of treatment ranking across different network meta-analyses. 

Learning the uncertainty of treatment ranking across several network meta-analyses is 

useful for comparing the level of evidence produced by these network meta-analyses. 

For treatments with low uncertainty of ranking in a network, sufficient evidence on 

their efficacy may have been accrued, so we have reasonable confidence in making a 
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recommendation on the priority of their use. For treatments or networks with high 

uncertainty of ranking, they may be given greater priority to access research resources 

to obtain more evidence on their efficacy. Normalized Entropy provides a simple 

index to compare the uncertainties between treatments within a network or across 

different networks. Moreover, the calculation of Normalized Entropy required only 

the ranking probabilities of each treatment, which are usually provided in published 

network meta-analyses.  

6.2 Strengths and Limitation of Normalized Entropy 

To quantify the uncertainty of ranking, Normalized Entropy has several advantages 

over the width of 95% CI of SUCRA. First, the 95% CI of SUCRA requires the 

study-level data input and can only be estimated through the simulation approach. In 

contrast, Normalized Entropy can be computed by using the reported ranking 

probabilities matrix. Second, previous empirical studies showed that the 95% CI of 

SUCRA is not very informative. In more than one-third NMAs, its width for the top 3 

treatments ranged from 0 to 1
15

. Example 4 showed that treatments with quite 

different distributions of ranking probabilities could have the same width of the 95% 

CI of SUCRA. Due to the widths of 95% CI of SUCRA’s discrete nature, the width of 

95% CI of SUCRA is less informative than Normalized Entropy in assessing the 

uncertainty of treatment ranking, particularly for networks with only a few treatments 

and for treatments in the middle positions. Thirdly, the range of the Normalized 

Entropy is always from 0 to 1, not affected by the number of treatments. Therefore, its 

values can be compared across networks with different treatments, while the width of 

the 95% CI of SUCRA is discrete and affected by the numbers of treatments within 

networks.  
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The limitation of Normalized Entropy is that like ranking measures such as SUCRA, 

it is hard to define how much difference in normalized entropy is large enough to 

suggest an important difference in ranking uncertainty. The Normalized Entropy is 

also used as a statistical index in other fields
69,71,84

, such as decision tree in machine 

learning, model selection in latent class analysis, and classification for logistic 

regression. Generally, they use 0.8 as the threshold for 1 minus normalized entropy
73

, 

which indicates a good separation of classes when Normalized Entropy is lower than 

0.2. The other study suggested to divide the 1 minus Normalized Entropy into four 

groups: perfect (between 0.8 and 1), high (between 0.6 and 0.8), medium (between 

0.4 and 0.6), and low (less than 0.4)
72

.  

6.3 Is Providing Uncertainty Intervals in Treatment Ranking Helpful? 

Since SUCRA is equal to P-score, defined as one-sided P-values, a recent study 

questioned the usefulness of measuring the uncertainty of ranking statistics
49

. 

However, we are quantifying the uncertainty of treatment ranking, not for the 

uncertainty of SUCRA or P-score per se. While SUCRA is derived from ranking 

probabilities and used as an index for determining the ranking of a treatment, 

Normalized Entropy transforms the distribution of the ranking probabilities into a 

single index for the uncertainty of the ranking of a treatment. Note that while the 

uncertainty of the estimates of relative effects is high, the ranking uncertainty can still 

be low. Suppose that the confidence intervals of differences between the reference 

treatment A and three other treatments B, C and D are very wide (i.e., the uncertainty 

of estimates is high), but they do not greatly overlap with each other (Figure 19 (A)); 

consequently, the uncertainty of treatments ranking is low, and it is therefore 

straightforward to determine which treatments should be recommended and which 



doi:10.6342/NTU202201921

105 
 

should be avoided. In contrast, when the confidence intervals are narrow (i.e., the 

uncertainty of estimates is low) but greatly overlapped (Figure 19 (B)), i.e., the 

differences in point estimates are small, the uncertainty of treatment ranking might 

still be high.  

Figure 19. A hypothetical example for the relationship between the precision of 

estimates and uncertainty of the ranking 

 

6.4 How is Normalized Entropy Related to Variance? 

I proposed to use Normalized Entropy in this study, but Variance is another simple 

index for quantifying uncertainty. The main difference between these two indices is 

that Variance considers the bimodal distribution of ranking probabilities the most 
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uncertain scenario, while Entropy considers uniform distribution the most uncertain 

one. The bimodal distribution of ranking probabilities is uncommon; yet, it may be 

seen when two treatments have similar effect sizes, but one has a much wider 

confidence interval, thereby yielding greater distribution of ranking probabilities
46

. As 

the bimodal distribution is considered the most uncertain scenario, the range of the 

Normalized Variance is quite limited for unimodal distribution of ranking 

probabilities, thereby being less able to distinguish different levels of uncertainty than 

Normalized Entropy under most scenarios. Instead, Normalized Standard Deviation 

can detect the bimodal distribution and have a similar pattern with Normalized 

Entropy when the uncertainty is high. However, when the uncertainty is low, which 

means that the ranking probability is concentrated in a specific rank, it is still hard to 

distinguish its uncertainty levels by using Normalized Standard Deviation.  

6.5 High Robustness Does Not Always Imply Low Uncertainty of Treatment 

Rankings 

In the empirical study analyzing 60 NMAs, as I expected, the treatment ranking of an 

NMA with low uncertainty of ranking is unlikely to be altered by subtle changes of 

the database; however, when the uncertainty of ranking is high, the robustness of 

ranking showed a wide range. Therefore, the high robustness of ranking does not 

always correspond to the low uncertainty of ranking, indicating that robustness and 

uncertainty are two correlated but distinctive concepts.  

With the rapid growth in the number of publications of NMAs, a careful evaluation of 

the reliability of the treatment rankings is crucial for applying results from an NMA to 

making clinical decision
85,86

. However, most NMAs neither evaluated the uncertainty 

nor the robustness of the ranking
87

, or only use one of them to evaluate the reliability 
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of ranking
88-90

. Furthermore, the good robustness of treatment ranking has often been 

interpreted as high reliability of ranking. In contrast, the results showed that 

robustness and uncertainty of ranking are not perfectly correlated. When there is no 

outlying trial within the network, the robustness of ranking may be high, but the 

ranking can still be of great uncertainty. Therefore, the evaluation of the reliability of 

ranking could be conducted in two steps. First, evaluate the uncertainty of ranking. If 

the uncertainty is low, we could expect the ranking to be reliable. If the uncertainty of 

ranking is high, then the robustness of ranking can help see whether a single outlying 

trial influenced the overall ranking. 

6.6 Evaluation at NMA-level, Treatment-level, and Trial-Level 

The squared weighted Cohen’s kappa was recommended to quantify the agreement 

between treatment rankings 
20

. It measures the changes in ranking by assigning a 

greater penalty to a greater difference in ranking position. However, Cohen’s kappa is 

an NMA-level statistic and cannot be used for the evaluation of ranking robustness at 

the treatment level. We, therefore, used the percentage of trials, the deletion of which 

does not change the rank of treatment, to assess the robustness of ranking for 

individual treatments. At the NMA-level, we computed the minimum, average, and 

maximum values of the quadratic weighted Cohen’s kappa to represent the robustness 

of ranking for an NMA. The maximum and average value of quadratic weighted 

Cohen’s kappa are less useful since we want to know the maximum impact caused by 

deletion a trial within the NMA. Therefore, we recommend using the minimum value 

of weighted Cohen’s kappa to represent the overall robustness of ranking at the NMA 

level.  

The Normalized Entropy we used to quantify ranking uncertainty can provide 
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treatment or NMA-level information while ranking robustness can additionally 

provide trial-level information. Different levels of information are all needed when we 

evaluate the ranking of NMAs. We may want to find out which NMA or treatment 

may need to gather more evidence and which trial may affect ranking the most and is 

needed to flag out for further investigation.  

6.7 Limitations of the Study of Robustness and Uncertainty of Ranking 

There are some limitations to this analysis. Firstly, NMAs included in this study are 

those with two or more trials in each arm, i.e., the selected NMAs contained more 

data. Since evaluating the robustness of ranking needs to remove each trial in turn, 

NMAs were excluded if removing a trial would break the network. Therefore, 

alternative approaches are required to assess the robustness of ranking for NMAs 

excluded from our evaluation. Secondly, I only included those NMAs using odds ratio 

and mean difference as outcome measures. Further analysis can be conducted to 

compare these two metrics for other outcome measures.  

6.8 Presentation of Uncertainty with Ranking 

By visually displaying the rankings and their uncertainties in a colored table or scatter 

plot, the information can be simplified, but its interpretability can still be maintained. 

The advantage of using normalized entropy as an index for uncertainty of ranking is 

that the calculation does not require study-level data and is easy to incorporate into 

the current coding process. Normalized Entropy, therefore, provides an objective 

assessment of the ranking uncertainty and whether the evidence is now sufficient to 

make recommendations on the relative efficacy of treatments or more evidence is still 

required.  
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6.9 Conclusions 

In this dissertation, I demonstrate that Normalized Entropy is an alternative tool for 

measuring the uncertainty of ranking, improving the translation of results from NMAs 

to clinical practice and avoid naïve interpretation of the ranking. It also serves as a 

tool for identifying which treatments require more evidence to reduce the uncertainty, 

and it can also be used to compare the uncertainty of treatment ranking across the 

different networks. I, therefore, recommend Normalized Entropy to be included in the 

presentation and interpretation of results, such as GRADE’s summary of finding 

table
85

, for future NMAs. 

Moreover, this dissertation also showed that good robustness of ranking does not 

always correspond to low uncertainty. Therefore, although the robustness of the 

ranking can find the trial that has the greatest impact on the ranking, the high 

robustness does not mean that the ranking would not easily change when new trials 

are added in the future.  

6.10 Future work 

Although Normalized Entropy is proposed to quantify the uncertainty of ranking, it 

can be explored whether this indicator has other possible uses. For example, could it 

be used to classify treatment nodes?
91,92

. According to the NMA methodology review, 

the node-making process currently is still lacking clear guidance, and only 10% of 

116 NMAs discussed the concept of node making process
93

. When there are questions 

about whether similar but not identical interventions should be lumped together or 

split into different nodes, Normalized Entropy might be a useful indicator to facilitate 

decision making. 
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