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摘摘摘要要要

以量子閘為基礎的量子計算，計算過程包含量子態初始化、量子閘運算以及量

測運算結果三個階段。隨機標竿分析法提供一套檢驗流程僅評估量子閘運算階段

的誤差，排除掉量子態初始化及量測運算結果的影響。不過，隨機標竿分析法的

理論推導假設了不同量子閘的雜訊都相同且不會隨時間變化，若系統包含其他類

型雜訊，隨機標竿分析法是否仍然適用需要進一步的理論分析。目前已經有理論

考慮了不會隨時間變化但每個量子閘雜訊不同的隨機標竿分析法。本論文將建立

在這個新的理論基礎上，把隨機標竿分析法的適用範圍推廣到隨時間隨機變化的

雜訊，並將推廣後的隨機標竿分析法量測結果與閘平均保真度做比較。我們進行

了單量子位元與雙量子位元的模擬來驗證理論，所有模擬都使用帶有去相位雜訊

的哈密頓算符建構出帶有雜訊的量子閘，以此來進行隨機標竿分析法。

關關關鍵鍵鍵字字字：：：基基基於於於閘閘閘的的的量量量子子子電電電腦腦腦、、、隨隨隨機機機標標標竿竿竿分分分析析析法法法、、、隨隨隨機機機雜雜雜訊訊訊、、、量量量子子子閘閘閘運運運算算算、、、閘閘閘

平平平均均均保保保真真真度度度

II



doi:10.6342/NTU202201536

Abstract

Randomized benchmarking (RB) provides a procedure for estimating the average

gate fidelity excluding state-preparation and measurement (SPAM) errors. How-

ever, the rigorous analyses of the standard RB protocol assume that noise should

be gate-independent and time-independent. Later, the assumption was relaxed to

gate-dependent and time-independent noise, while the decay parameter given in the

RB fitting formula is no longer yielding the average gate fidelity. In this thesis,

we consider RB under different types of stochastic noise. We provide a formula

to fit the non-exponential decay fidelity obtained from RB with the explanation of

the fitting result. We perform numerical simulations to verify our theories. The

simulations consider the gate-dependent noise induced from the Hamiltonian with

dephasing interference, and is executed on a typical single-qubit Hamiltonian, and

a two-qubit Hamiltonian based on the experimental parameters from a real silicon-

based quantum-dot device.

Keywords: Gate-based quantum computer, Randomized benchmark-

ing, Stochastic noise, Quantum gate operations, Average gate fidelity
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Chapter 1

Introduction

Quantum computers promise speedup over classical algorithms in specific prob-

lems such as factoring large semi-primes with exponential speedup [3] and searching

an unstructured database with quadratic speedup [4]. Universal quantum operations

not only requires scalable qubit technology but also need quantum error correction

protocols that demand a sufficiently small error rate during the whole process in-

cluding qubit state initialization, gate operation, and readout. The randomized

benchmarking (RB) protocol provides a method to pick up errors resulting from

only gate operation stage regardless of state preparation and measurement (SPAM)

errors, which can help quantum computing experimentalists figure out the error

sources.

However, the rigorous analyses of the standard RB protocol make an assump-

tion that noise should be gate-independent and time-independent [5]. The simple

form of the fidelity decay under the assumption may introduce inaccuracies under

complex noise models. Currently, there has been much research about what stan-

dard RB measures under different noise models [6–11]. Besides, some RB variants

are developed to deal with specific types of noise [12–15]. Among all of these noise

models, non-Markovian or highly time-correlated noise is widely seen in silicon-

based quantum-dot quantum computing experiments with dominant low-frequency

intensities in the noise spectrum [16–20]. Much research has proposed modified RB

fitting formulae to fit the non-exponential fidelity decay resulting from this type of

1
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noise [21–24]. However, the physical interpretation of the fitting parameters is still

ambiguous.

In this thesis, we generalize the gate-dependent RB theories developed by Wall-

man in Ref. [11] to the stochastic noise channels. We propose probability density

function RB (PDF RB) formula to fit the non-exponential fidelity decay caused by

slow-changing noise. We provide a clear physical interpretation of the fitting param-

eters. We numerically simulate the randomized benchmarking under unitary noise

induced from the imperfect Hamiltonian with dephasing fluctuation, comparing sim-

ulations with theoretical predictions to verify our stochastic noise RB analyses.

The remainder of this thesis is organized as follows. Chapter 2 introduces the

notations and the background knowledge about the RB protocol. In Chapter 3,

we review the original RB analyses in Ref. [5] and gate-dependent RB analyses in

Ref. [11]. After that, we extend these analyses to stochastic noise RB. Chapter 4

introduces the single-qubit and two-qubit simulation models. Chapter 5 presents

our results, including the RB simulation results with different types of noise and the

discussions. We summarize in Chapter 6.

2
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Chapter 2

Preliminaries

2.1 Notation

We use the following notation throughout this thesis. Some of the notations are

• All operators (also known as gates) applying to the quantum states (expressed

in density operators) are denoted by Roman font (e.g., A). The n-qubit iden-

tity operator is In (n = 1 if there is no subscript).

• Ideal quantum channels are denoted by calligraphic font (e.g. E). The ideal

unitary channel U corresponding to a unitary operator U is U(ρ) = UρU †. The

identity channel is denoted I. We sometimes refer to a unitary channel as an

operator (or a gate) to emphasize the correspondence of a unitary channel to

a quantum operation.

• A noisy implementation of an ideal channel is denoted with an overset˜(e.g.,

Ẽ denotes the noisy implementation of E).

• Channel composition is denoted by ◦ (e.g., E2 ◦ E1(ρ) = E2[E1(ρ)]).

• The n-qubit depolarizing channel with depolarizing parameter p is defined as

Dp(ρ) = pρ+
1− p

2n
In.

3
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• Groups and sets will be denoted by boldface font (e.g., G). The unitary group

of degree d is denoted by U(d). The n-qubit Pauli group Pn is defined as

Pn = {±1,±i} × {I,X, Y, Z}⊗n,

where

I ≡ σ0 =

1 0

0 1

 , X ≡ σ1 =

0 1

1 0

 ,

Y ≡ σ2 =

0 −i

i 0

 , Z ≡ σ3 =

1 0

0 −1

 .

The n-qubit Clifford group is defined as

Cn = {C ∈ U(2n)|P ∈ Pn → CPC† ∈ Pn}/U(1).

• The set of the Pauli operators including the indentity is P∗1 = {I,X, Y, Z}.

This definition can be generalized to n-qubit Pauli basis P∗n = P∗1
⊗n.

• The cardinality of a set G is denoted by |G|.

• The uniform average of a function f over a set S is denoted by

Es∈S[f(s)] =
1

|S|
∑
s∈S

f(s).

• We use the Pauli transfer matrix (PTM) representation of quantum channels

[25] (also known as the Liouville representation) wherever a concrete represen-

tation is required. The PTM representation of an n-qubit quantum channel

E , denoted [E ]PTM, is a 4n × 4n matrix with the entry on the i-th row and the

j-th column given by

[E ]PTM(i, j) = Tr[PiE(Pj)],

4
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where P∗n = {P0, P1, ..., P4n−1}.

• We will assume the reader is familiar with the concepts of Hamiltonian and

Schrödinger equation in quantum mechanics. Sometimes we will use the tradi-

tional bra-ket notation (also known as the Dirac notation) for quantum states.

2.2 Unitary 2-Designs

First, consider spherical designs to gain more intuition for understanding unitary

2-designs.

A spherical design is a set of the points on the sphere that can approximate the

infinite points on it “to some degree”. For example, consider the average surface

temperature of the Earth. If the surface temperature is constant everywhere, we

can randomly choose one point to represent the average surface temperature of the

Earth. This trivial case implies that any single point is a spherical 0-design, where

the number “0” stands for real homogeneous polynomial functions of degree zero

(constant surface temperature in this case).

If we want to approximate homogeneous functions with higher degree on the

sphere, we need more uniformly distributed points to construct the design. In fact,

for a 3-dimensional unit sphere, a tetrahedron is a spherical 2-design, a cube is a

3-design, and a dodecahedron is a 5-design [26]. We can define spherical designs on

the d-dimensional unit sphere S(Rd) formally as follows [27, 28].

Definition 2.1 Let pt : S(Rd)→ R be a polynomial function of homogeneous degree

at most t defined on S(Rd). A set X = {x : x ∈ S(Rd)} is a spherical t-design if

Ex∈X[pt(x)] =

∫
S(Rd)

pt(u)dµ(u), (2.1)

where µ is the normalized spherical measure. Thus dµ can be intuitively understood

as a properly chosen infinitesimal volume that makes the integration uniform over

S(Rd). We will not go through the details about the measure theory in this thesis.

5
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Unitary designs are analogous to spherical designs. The polynomials we defined

for spherical designs are on the points in S(Rd). For unitary t-designs, the polyno-

mials are defined on the elements of matrices in U(d). Furthermore, we consider

the polynomials with homogeneous degree (t, t) for unitary t-designs, meaning that

they have homogeneous degree at most t for both matrix variable U ∈ U(d) and its

complex conjugate U∗. For example, f(U) = Tr(UU∗)/d is a homogeneous function

with degree (1, 1) since taking trace and division by a constant are linear functions.

The formal definition for unitary t-design is as follows [27, 28].

Definition 2.2 Let P(t,t) be a polynomial function of homogeneous degree at most t

both in the entries of U ∈ U(d) and in the entries of U∗. A set of unitary matrices

V = {U : U ∈ U(d)} is a unitary t-design if

EU∈V[P(t,t)(U)] =

∫
U(d)

P(t,t)(U)dη(U), (2.2)

where η is the normalized Haar measure in U(d). Once again, dη can be interpreted

as a properly chosen infinitesimal weighting function that makes the integration

uniform over U(d) [29].

2.3 Twirling Quantum Channels

Let E be a quantum channel. Suppose E is conjugated by a unitary channel.

This action modifies the channel E to

E 7→ U † ◦ E ◦ U , (2.3)

where

U(ρ) = UρU †

U †(ρ) = U †ρU

6
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with U ∈ U(d). Intuitively, twirling a quantum channel with respect to a set S

means taking the average of conjugations given in Eq. (2.3) with all the elements

in S [27, 28, 30]. The set S can either be finite or infinite.

Definition 2.3 Let η be the normalized Haar measure in U(2n). Haar twirling

maps an n-qubit quantum channel E to

WH(E)(ρ) =

∫
U(2n)

dη(U) U †E(UρU †)U. (2.4)

Definition 2.4 Clifford twirling maps an n-qubit quantum channel E to

WC(E)(ρ) = EC∈Cn C†E(CρC†)C. (2.5)

Haar twirling is equivalent to taking the average of conjugations with respect to all

unitary operators. Since U †E(UρU †)U is a homogeneous polynomial with degree

(2, 2) and the Clifford group Cn is a unitary 2-design [27, 28], we can replace the

integral in Eq. (2.4) with the discrete Clifford twirling. Thus for any channel E , we

have

WC(E)(ρ) =WH(E)(ρ). (2.6)

2.4 Average Gate Fidelity

In quantum information theory, fidelity is a measure of the distance of two quan-

tum states. The fidelity of two density operators ρ1 and ρ2 is defined to be [31]

F(ρ1, ρ2) ≡
(

Tr
√√

ρ1ρ2
√
ρ1

)2

. (2.7)

Consider a unitary channel U(ρ) = UρU †. Define its noisy implementation to be

Ũ = U ◦ Λ. Then restrict the input state to a pure state ρψ = |ψ〉 〈ψ|. We define

the state-dependent gate fidelity of the gate U as [5]

FŨ ,U(ψ) = FΛ,I(ψ) = F(ρψ,Λ(ρψ)) = Tr [ρψΛ(ρψ)] . (2.8)

7
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Equation (2.8) is not ideal for measuring the gate fidelity since it is state-dependent.

Thus we obtain the average gate fidelity by integrating FŨ ,U over all pure quantum

states.

Definition 2.5 Let U(ρ) = UρU † be a unitary channel and its noisy implementation

is defined to be Ũ = U ◦ Λ. The average gate fidelity of U is defined as

Fave(Ũ ,U) = Fave(Λ, I) =

∫
dψTr [ρψΛ(ρψ)] . (2.9)

Average gate fidelity of a depolarizing channel plays an important role in randomized

benchmarking theory. If the noise can be expressed as a depolarizing channel Dp,

Eq. (2.9) is reduced to

Fave(Dp, I) = p+
(1− p)

2n
. (2.10)

In this thesis, we calculate the theoretical average gate fidelity using the function

in IBM Qiskit package for Python [32]. The function in Qiskit uses a simpler formula

with the input being the vectorized representation of the target quantum channel

instead of carrying out the integral in Eq. (2.9). See [32–34].

The randomized benchmarking theories discussed in this thesis are related to

noise channels being completely postivie and trace-preserving maps (CPTP). A cen-

tral lemma used for the standard RB theory is as follows [5].

Lemma 1 Haar twirling of a CPTP channel Λ produces the unique depolarizing

channel Dp such that

Fave(Λ, I) = Fave(Dp, I). (2.11)

We provide a brief explanation of Lemma 1 in Appendix A. The rigorous proof of

Lemma 1 is given in Ref. [34].

8
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Chapter 3

Randomized Benchmarking

This chapter is based mainly on [5] and [11], however we expand upon many

of the results. We begin by introducing the randomized benchmarking protocol

proposed in [5]. We show that RB makes several assumptions that the noise is

Markovian and time- and gate-independent in order to properly estimate the av-

erage gate fidelity. We then discuss the analyses in [11] about what RB actually

measures with Markovian and gate-dependent noise. The types of noise discussed in

Ref. [5, 11] are constant in the sense that the noise strengths are fixed for the same

quantum gates during the RB procedure. Finally, we consider RB with stochastic

noise, which means that the noise strengths for the same quantum gates are ran-

domly sampled from a specific probability density function.

The RB protocol for Clifford groups Cn is as follows [5].

1. Pick a Clifford gate length m.

2. Generate k sequences consisting of (m + 1) quantum operations. The first

m operations are randomly chosen from Cn and the (m + 1)-th operation is

uniquely determined as the inverse of the composition of the first m gates.

3. Preparing the initial state ρψ. For the ideal state preparation, ρψ = |ψ〉 〈ψ|.

4. Operate each sequences from step 2 on the initial state ρψ to get the final

9
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states ρ′ψ.

5. Apply the POVM measurements Eψ on ρ′ψ (Eψ = |ψ〉 〈ψ| for the noise-free

measurements). Measure the projection state probability (also known as the

survival probability) P (m) = Tr
(
Eψρ

′
ψ

)
by averaging over the measurement

results from the k sequences.

6. Repeat steps 1-5 for different m to get the dataset [m,P (m)]. Then fit the

results with the following decay model

P (m) = Apm +B (3.1)

to estimate p.

A and B in Eq. (3.1) absorb the SPAM errors in the sense that they are in-

dependent of the gate length [5]. Thus the decay behavior of the projection state

probability with increasing gate length is characterized by p. This implies that RB

is robust to the SPAM errors.

Let C̃ be an experimental implementation of an ideal Clifford channel C(ρ) =

CρC†. Assume that the decomposition of the i-th noisy Clifford gate C̃i is C̃i =

Λi,δ ◦ Ci, where Λ is a CPTP map and δ is the noise strength parameter of the noise

channel Λ. We refer to the noise channels as being “gate-independent” if the noise

channels are independent of the Clifford gates thus the Clifford indices i for Λ are

omitted. Similarly, the “gate-dependent” noise means that the noise channels have

the Clifford indices i. Moreover, we refer to the noise as being “constant” in the

sense that the noise strength is constant during the RB procedure thus the noise

strength parameters δ are omitted. On the contrary, the “stochastic” noise means

that the noise channels have the stochastic noise strength δ randomly sampled from

a specific distribution. The types of the noise we consider in this chapter are as

follows:

Constant noise. Λi,δ ≡ Λ. Namely, noise channels are the same for every

Clifford gates.

10
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Gate-dependent constant noise. Λi,δ ≡ Λi. Noise channels are different for

each Clifford gates.

Gate-independent stochastic noise. Λi,δ ≡ Λδ with δ ∼ N(0, σ2), where

N(0, σ2) denotes the Gaussian distribution with zero mean and standard deviation

σ. δ’s are independent and identically distributed (i.i.d) Gaussian-distributed pa-

rameters and completely uncorrelated between Clifford gates.

Gate-dependent stochastic noise. Λi,δ with δ ∼ N(0, σ2). δ’s are i.i.d

Gaussian-distributed parameters and completely uncorrelated between Clifford gates.

Sequence-quasi-static stochastic noise. Λi,δ with δ ∼ N(0, σ2). δ’s are

quasi-static at the time-scale of a single RB sequence.

3.1 Randomized Benchmarking for Constant Noise

3.1.1 Constant Noise

Constant noise is the key assumption of the original RB protocol in [5]. In this

case, Λi,δ ≡ Λ for every Clifford gates. A single RB sequence with gate length m is

Sim = Λ ◦ Cim+1 ◦ Λ ◦ Cim ◦ · · ·Λ ◦ Ci2 ◦ Λ ◦ Ci1 , (3.2)

where im is the m-tuple (i1, i2, ..., im) representing the labels of the randomly chosen

Clifford gates and im+1 is uniquely determined by im. Define new Clifford gates as

follows:

Gij = Cij ◦ · · · ◦ Ci1 =©j
s=1Cis , (3.3)

where 1 ≤ j ≤ (m+ 1). With Eq. (3.3) we can rewrite Cij as

Cij = Gij ◦ G
†
ij−1

11
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Thus a single RB sequence becomes

Sim = Λ ◦ Gim+1 ◦ G
†
im
◦ Λ ◦ Gim ◦ · · · ◦ G

†
i2
◦ Λ ◦ Gi2 ◦ G

†
i1
◦ Λ ◦ Gi1

= Λ ◦©m
s=1(G†is ◦ Λ ◦ Gis),

(3.4)

where we have used the fact that Gim+1 =©m+1
s=1 Cis = I. Note that if j 6= k 6= (m+1),

Cij and Cik are independent. Since the Clifford gates form a group, Gij and Gik are

independent as well.

Equation (3.4) implies that the average of RB sequences is composed of the m-

times product of the independent Clifford twirling of the noise channel Λ with an

un-twirled Λ at the end. That is

Eim∈ImSim := Sm = Λ ◦©m
s=1(EG∈Cn(G† ◦ Λ ◦ G)), (3.5)

where Im is the set of all possible m-tuples im and G(ρ) = GρG†. Note that, Sm is

sampled by the k sequences in the RB protocol. As shown in Refs. [33, 34], Haar

twirling on a channel Λ produce a depolarizing channel Dp with the same average

gate fidelity as Λ (See Lemma 1 and Appendix A). Since the Clifford twirling is

equivalent to the Haar twirling [See Eq. (2.6)], we have

Sm = Λ ◦ (©m
s=1Dp). (3.6)

Thus

P (m) = Tr[Sm(ρψ)Eψ] = Tr[Λ ◦ (©m
s=1Dp)(ρψ)Eψ]

= Tr

[
Λ ◦ (©m−1

s=1 Dp)
(
pρψ +

1− p
2n

In

)
Eψ

]
= Tr

[
Λ ◦ (©m−2

s=1 Dp)
(
p2ρψ +

1− p2

2n
In

)
Eψ

]
= Tr

[
Λ

(
pmρψ +

1− pm

2n
In

)
Eψ

]
= Tr[Λ(ρψ)Eψ]pm + Tr

[
Λ

(
In
2n

)
Eψ

]
(1− pm)

= Apm +B,

(3.7)

12
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where

A := Tr

[
Λ

(
ρψ −

In
2n

)
Eψ

]
B := Tr

[
Λ

(
In
2n

)
Eψ

]
.

(3.8)

The explicit form of the fitting parameters A and B indeed absorb the SPAM errors

in addition to the un-twirled noise channel from the (m+1)-th operation. Note that

the decay parameter p we obtained from Eq. (3.7) corresponds to the depolarizing

parameter of Dp, which shares the same average gate fidelity as Λ, so we can obtain

the average gate fidelity using Eq. (2.10). Hence for the constant noise, RB is able

to measure the proper average gate fidelity of the Clifford gates.

3.1.2 Gate-dependent Constant Noise

For the gate-dependent constant noise, Λi,δ ≡ Λi. This type of noise has been

analyzed in [11]. A single RB sequence under this assumption of noise is

Sim = Λim+1 ◦©m
s=1(G†is ◦ Λis ◦ Gis). (3.9)

Since the noise channels Λis are dependent with Gis , Λis cannot be twirled into

depolarizing channels. Now consider another possible way to decompose the noisy

Clifford gates by transforming a portion of the gate-dependent noise into a gate-

independent right channel:

C̃i = Λi ◦ Ci = Li ◦ Ci ◦ R, (3.10)

where Li can be uniquely determined by Λi and R. Now the noise channel between

two ideal Clifford gates Ci+1 and Ci is R◦Li instead of Λi. Hereafter we abbreviate

R ◦ Li to RLi. A single RB sequence becomes

Sim = Lim+1 ◦©m
s=1(G†is ◦ RLis ◦ Gis). (3.11)

13
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Thus

Sm = (EGj∈CnLj) ◦©m
s=1(EGi∈Cn(G†i ◦ RLi ◦ Gi)), (3.12)

where the noise decomposition for a Clifford gate Gi(ρ) = GiρG
†
i is G̃i = Li ◦ Gi ◦ R

for simplicity. Note that, there are many possible R can be chosen in Eq. (3.10) to

decompose C̃i. As shown in Ref. [11], if the noise channel is a CPTP map, there

exists a suitable R such that

EGi∈Cn(G†i ◦ RLi ◦ Gi) (3.13)

produce a depolarizing channel Dp. In this case, RB fitting function becomes [11]

P (m) = Apm +B + εm, (3.14)

where εm is the perturbation term that exponentially decreases with m. Instead of

finding the suitable R to obtain the decay parameter p using Eq. (3.13), p can be

found by solving the largest eigenvalue of the following 16n×16n matrix for n-qubit

system:

EGi∈Cn([G ′i]PTM ⊗ [G̃i]PTM), (3.15)

where ⊗ is the matrix tensor product and G ′i is the unital component of Gi and is

defined to be

G ′i(ρ) = Gi(ρ−
Tr(ρ)

2n
). (3.16)

See Appendix B for the explanations of Wallman’s gate-dependent RB theory. Hence

for the gate-dependent constant noise, the decay parameter p obtained by RB no

longer corresponds to the average gate fidelity. Instead, p is related to the depo-

larizing channel produced by a special decomposition of the noise channel shown in

Eq. (3.13). Note that, for the gate-independent constant noise we have discussed in

Sec. 3.1.1, the proper decomposition for producing a depolarizing channel is exactly

R = I then L = Λ.

14
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3.2 Randomized Benchmarking for Stochastic Noise

3.2.1 Gate-independent Stochastic Noise

For the gate-independent stochastic noise, Λi,δ ≡ Λδ with δ ∼ N(0, σ2). Here,

the values of the noise parameter δ are completely uncorrelated between distinct

Clifford gates in a RB sequence. A single RB sequence in this case is

Sim,δm+1
= Λδm+1 ◦©m

s=1(G†is ◦ Λδs ◦ Gis), (3.17)

where δm+1 is the (m+ 1)-tuple (δ1, δ2, ..., δm+1) representing the noise parameters

randomly sampled from N(0, σ2) and δm+1 is the noise parameter for the inverse

gate at the end of the sequence. For the stochastic noise, the RB sequences not only

sample all Clifford gates combination labelled by im but also sample the distribution

of noise parameters labelled by δm+1. Hence we expect that, comparing to the cases

of constant noise, relatively more sampling sequences (higher k in the RB protocol)

is needed to properly sample Sm. So we can obtain a stable decay curve of the

projection state probability under stochastic noise. The average of the RB sequences

is

Sm = Eim∈Im

∫ ∞
−∞

f(δm+1, σm+1)Sim,δm+1
dδm+1 (3.18)

where f(δm+1, σm+1) is the probability density function for δm+1. Since δ ∼

N(0, σ2), f(δm+1, σm+1) corresponds to the probability density function for the

(m+1)-dimensional multivariate normal distribution with zero means and the same

variance σ in all directions. So σm+1 is the (m + 1)-tuple (σ1, σ2, ..., σm+1) with

σ = σ1 = · · · = σm+1. We can average each noise channel with respect to δ inde-

pendently,

Sm = Λ ◦©m
s=1[EGi∈Cn(G†i ◦ Λ ◦ Gi)], (3.19)

where

Λ =

∫ ∞
−∞

f(δ, σ)Λδ dδ. (3.20)
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Eq. (3.19) has the same form as Eq. (3.5). Thus RB can properly measure the

average gate fidelity of Λ. Hereafter, if a noisy operation Ũ has stochastic noise with

the distribution f , we automatically take the ensemble average of Ũ with respect to

f when considering the average gate fidelity of Ũ .

3.2.2 Gate-dependent Stochastic Noise

For gate-dependent stochastic noise, C̃i,δ = Λi,δ ◦ Ci with δ ∼ N(0, σ2). δ are

completely uncorrelated between Clifford gates. We use the same decomposition

technique as in Eq. (3.10) with an additional label δ for stochasticity. That is

C̃i,δ = Λi,δ ◦ Ci = Li,δ ◦ Ci ◦ Rδ. (3.21)

Then a single RB sequence becomes

Sim,δm+1
= Lim+1,δm+1

◦©m
s=1(G†is ◦ RδsLis,δs ◦ Gis). (3.22)

This gives the average of the RB sequences as

Sm = (EGj∈CnLj) ◦©m
s=1(EGi∈Cn(G†i ◦ RLi ◦ Gi)), (3.23)

where

Li =

∫ ∞
−∞

f(δ, σ)Li,δ dδ,

RLi =

∫ ∞
−∞

f(δ, σ)RδLi,δ dδ
(3.24)

and the noise decomposition for a Clifford gate Gi(ρ) = GiρG
†
i is G̃i,δ = Li,δ ◦Gi ◦Rδ.

This is similar to the notation we have used in Eq. (3.12).

Equation (3.23) implies that the gate-dependent RB description we have dis-

cussed in Sec. 3.1.2 is still applicable for the gate-dependent stochastic noise. The

only difference is that we now consider the ensemble average of the stochastic noise

channels instead of the constant noise channels. Inspired by this observation, we as-

sume that the theoretical decay parameter p obtained by RB for the gate-dependent

16
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stochastic noise is the largest eigenvalue of the following matrix:

EGi∈Cn([G ′i]PTM ⊗ [G̃i,ave]PTM), (3.25)

where

G̃i,ave =

∫ ∞
−∞

f(δ, σ)G̃i,δ dδ. (3.26)

3.2.3 Sequence-quasi-static Stochastic Noise

In this section, we consider the stochastic noise with maximum non-Markovianity

during the RB procedure, which means that δ ∼ N(0, σ2) are quasi-static at the

time-scale of a single RB measurement.

A single RB sequence in this case is similar to the case of gate-dependent constant

noise but with an additional noise parameter δ for all the noise channels in the

sequence,

Sim,δ = Lim+1,δ ◦©m
s=1(G†is ◦ RδLis,δ ◦ Gis). (3.27)

Thus RB sequences actually sample the average of the constant gate-dependent

average sequence given by Eq. (3.12) with respect to the distribution of δ. That is

Sm =

∫ ∞
−∞

f(δ, σ) (EGj∈CnLj,δ) ◦©m
s=1(EGi∈Cn(G†i ◦ RδLi,δ ◦ Gi)) dδ, (3.28)

which implies that the projection state probabilities obtained from the RB proce-

dure is composed of the projection state probabilities which correspond to different

noise parameters, denoted P (m, δ). P (m, δ)’s distribute the same as δ’s. Based on

this observation and Eq. (3.14), the probability density function (PDF) RB fitting

formula for sequence-quasi-static stochastic noise is

P (m) =

∫ ∞
−∞

f(δ, σ)P (m, δ) dδ = A

[∫ ∞
−∞

f(δ, σ)pmδ dδ

]
+B + εm, (3.29)

where pδ is the largest eigenvalue of the the following 16n × 16n matrix for n-qubit

17
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system:

EGi∈Cn([G ′i]PTM ⊗ [G̃i,δ]PTM). (3.30)

Here, G̃i,δ ≡ Λi,δ ◦Gi is the noisy Clifford gate Gi with the noise parameter δ. At first

glance, Eq. (3.29) looks intimidating to use for fitting the projection state probabili-

ties. However, once we determine the dominant non-Markovian noise model, we can

calculate pδ theoretically for any δ and then carry out the integral discretely. Note

that, we do not fit the decay parameters pδ in Eq. (3.29). Instead, we fit the best-

suited sequence-quasi-static stochastic noise to describe the non-Markovian noise

of the gate-based quantum computing device. Since δ ∼ N(0, σ2), the parameter

we try to fit here is the standard deviation σ. In this situation, the physical inter-

pretation of the RB fitting result is clear: σ corresponds to the best-suited normal

distribution to describe the non-Markovian noise affecting the tested qubits.

18
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Chapter 4

Simulation Methods

This chapter introduces the simulation methods and models we use for the RB

procedure. All the simulations are done with Python. Several assumptions and

revisions are made in our RB simulations for simplicity and efficiency. We assume

that there are no SPAM errors to highlight the effect of the gate errors. We also

assume that the final inverse gate is perfect for convenience. These assumptions do

not affect the decay behavior of the projection state probabilities. Our steps for the

RB simulations are as follows.

1. Pick a set of Clifford gate lengths (m1,m2, ...,ml) with m1 < m2 < ... < ml,

where l is the number of the data points for the RB function fitting. So ml is

the maximum gate length of the RB sequences.

2. Generate k sequences consisting of ml quantum operations without the in-

verse operation. These ml operations are randomly chosen from Cn and are

generated with noise.

3. Preparing the initial state ρψ. We set the initial state as |ψ〉 = |0〉 and assume

the ideal state preparation. So ρ0 = |0〉 〈0|.

4. Operate the first m1 operations in the sequences from step 2 on ρ0 then operate

the perfect inverse gate of these m1 operations to get the final states ρ′0.

5. Apply the perfect POVM measurements E0 = |0〉 〈0|. Measure the projection
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state probability P (m1) = Tr(E0ρ
′
0) by averaging over the measurement results

from the k sequences.

6. Repeat steps 3-5 for m2, ...,ml to get the projection state probabilities P (mi),

where 1 ≤ i ≤ l. Here we use the same k sequences generated in step 2 for

different mi.

7. Fit the dataset [mi, P (mi)] with Eq. (3.1) for gate-independent noise and Eq.

(3.14) for gate-dependent noise to measure the dacay parameter p, then use

Eq. (2.10) to obtain the Clifford fidelity. Fit the dataset [mi, P (mi)] with Eq.

(3.29) for sequence-quasi-static noise. We neglect the purtubation terms εm in

Eq. (3.14) and (3.29). We also bound B = 0.5 for the single-qubit model and

B = 0.25 for the two-qubit model to ensure the fitting functions end up decay

to the projection state probability of the maximally mixed state.

4.1 Single-qubit Simulation Model

In our single-qubit RB simulations, we use the decomposition table of the single-

qubit Clifford group C1 in Ref. [2] (See Table 4.1). The generators of C1 are

{X±π/2, Z±π/2}. We assume that there is no noise on the Z±π/2 gates since rotations

around Z axis can be implemented perfectly by virtual-Z gates without applying

actual pulses for various quantum computing systems[35]. Hence Z±π/2 are executed

by perfect unitary operations. The X±π/2 gates are generated by the on-resonance

Hamiltonian with dephasing noise:

H̃ =
1

2
X +

1

2
δZ, (4.1)

where δ denotes the dephasing noise strength. The simulation calculates noisy gates

X̃±π/2 by taking the product of the time-sliced propagators during the conditional

π/2-pulse duration. Let Tπ/2 be the conditional π/2-pulse time and ∆ be the number
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Gate numbering X/Z generation
1 X,−X
2 X2

3 −Z,X2, Z
4 X,Z2, X
5 X,−Z,X,Z
6 X,Z,X,−Z
7 −X,−Z,X,Z
8 −X,Z,X,−Z
9 −Z,X,Z,X
10 −Z,X,Z,−X
11 Z,X,−Z,X
12 Z,X,−Z,−X
13 −Z,X,Z,X,−Z
14 Z,−X,−Z,−X,Z
15 X,Z,−X
16 X,−Z,−X
17 −X,Z2,−X,−Z
18 −X,−Z2,−X,Z
19 X,−Z,X
20 X,Z,X
21 −Z,X,Z,X,Z
22 −Z,X,Z,−X,−Z
23 X2, Z
24 −X2,−Z

Table 4.1: The decomposition table of the single-qubit Clifford group [2].
(−)K and (−)K2 denote K±π/2 and K±π gates (K = X, Y, Z) respectively.

of the time slices. Then dt = Tπ/2/∆. Thus we have

X̃±π/2 =

Tπ/2∏
t=0

e∓iH̃dt, (4.2)

where Tπ/2 = π/2. We set ∆ = 1000.

Note that, the single-qubit Clifford gates are composed of two X±π/2 gates and

different numbers of the Z±π/2 gates. Although every Clifford gate has the same

operation time 2Tπ/2, the noise is still gate-dependent because of the different inter-

leaved Z±π/2 gates. The theoretical noise channels for the Clifford gates are unitary

and can be obtained explicitly in matrix forms. Consider the decomposition of the
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X̃±π/2 gates:

X̃±π/2 = cos
(π

4
ζ
)
I ∓ i sin

(π
4
ζ
)(1

ζ
X +

δ

ζ
Z

)
, (4.3)

where ζ :=
√

1 + δ2. The Pauli matrices satisfy the identity

cos
φ

2
I ∓ i sin

φ

2
(cos γX + sin γZ) = Y∓γX±φY±γ. (4.4)

Applying Eq. (4.3) and Eq. (4.4) to the decomposition of the Clifford gates gives

the theoretical noise channels. For example, C̃1 can be decomspoed into

C̃1 = X̃π/2X̃−π/2 = (Y−γXπζ/2Yγ)(YγX−πζ/2Y−γ)

= Y−γXπζ/2Y2γX−πζ/2Y−γ(C
†
1C1),

(4.5)

where cos γ = 1/ζ and sin γ = δ/ζ. Hence C̃1 = Λ1,δ ◦ C1 with Λ1,δ(ρ) = U1,δρU
†
1,δ.

Here

U1,δ = Y−γXπζ/2Y2γX−πζ/2Y−γC
†
1. (4.6)

Note that, ζ and γ are determined from the dephasing noise strength δ. When δ = 0,

the noise channels of Ci reduce to Λi,δ=0 = I.

4.2 Two-qubit Simulation Model

4.2.1 Effective Hamiltonian and Microwave Pulses

Our two-qubit model simulates the real quantum computing experiment with

silicon-based quantum-dot spin qubits. We use the experimental parameters of the

silicon-metal-oxide-semiconductor (silicon-MOS) double-quantum-dot device in Ref.

[1]. The device is in the (n1, n2) = (1, 1) charge stability region. That is, a single

electron on each dot denoted by Q1 and Q2 respectively. The Hamiltonian in the
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two-spin basis (↑↑, ↑↓, ↓↑, ↓↓) can be approximated as

H =
1

2



2EZ γ2B1 γ1B1 0

γ2B
∗
1 δEZ − J J γ1B1

γ1B
∗
1 J −δEZ − J γ2B1

0 γ1B
∗
1 γ2B

∗
1 −2EZ


. (4.7)

Here, γ1 (or γ2) is the gyromagnetic ratio of Q1 (or Q2) that couples qubits to

the oscillating AC magnetic field B1 created by the electron spin resonance (ESR)

wire, J is the exchange coupling, EZ is the average Zeeman energy, and δEZ is the

difference in Zeeman energies between the two dots. Equation (4.7) can be written

in the new basis (↑↑, ↑̃↓, ↓̃↑, ↓↓) that diagonalizes the Hamiltonian when the AC

magnetic field is absence. That is

H =
1

2



2EZ γ2↑B1 γ1↑B1 0

γ2↑B
∗
1 δẼZ − J 0 γ1↓B1

γ1↑B
∗
1 0 −δẼZ − J γ2↓B1

0 γ1↓B
∗
1 γ2↓B

∗
1 −2EZ


, (4.8)

where γn↑ (or γn↓) is the effective gyromagnetic ratio that couples qubit n to the

oscillating magnetic field B1 when the other qubit is in the |↑〉 (or |↓〉) state, δẼZ =√
δE2

Z + J2, and ∣∣∣↓̃↑〉 = cos
θ

2
|↓↑〉+ sin

θ

2
|↑↓〉 ,∣∣∣↑̃↓〉 = − sin

θ

2
|↓↑〉+ cos

θ

2
|↑↓〉 .

(4.9)

Here

cos
θ

2
=

δEZ + δẼZ√
(δEZ + δẼZ)2 + J2

,

sin
θ

2
=

J√
(δEZ + δẼZ)2 + J2

.

(4.10)
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Thus the effective gyromagnetic ratios follow the rotation:

γ1↑ = γ1 cos
θ

2
− γ2 sin

θ

2
,

γ1↓ = γ1 cos
θ

2
+ γ2 sin

θ

2
,

γ2↑ = γ2 cos
θ

2
+ γ1 sin

θ

2
,

γ2↓ = γ2 cos
θ

2
− γ1 sin

θ

2
.

(4.11)

The system parameters are provided in Ref. [1]:

EZ/h = 39.33 GHz,

δEZ/h = 13.26 MHz,

J/h = 1.59 MHz,

where h is Planck’s constant. In our two-qubit simulations, we use the Hamiltonian

described by Eq. (4.8) in the basis (↑↑, ↑̃↓, ↓̃↑, ↓↓) and neglect the rapidly oscillation

terms which include EZ . Hence the Hamiltonian for our two-qubit simulations is

H =
1

2



0 γ2↑B1 γ1↑B1 0

γ2↑B
∗
1 δẼZ − J 0 γ1↓B1

γ1↑B
∗
1 0 −δẼZ − J γ2↓B1

0 γ1↓B
∗
1 γ2↓B

∗
1 0


. (4.12)

Note that, we have not considered the noise model for RB simulations so far.

The four resonance frequencies of the Hamiltonian described in Eq. (4.12) are

defined as

f1↑ =
δẼZ + J

2h
,

f1↓ =
δẼZ − J

2h
,

f2↑ =
−δẼZ + J

2h
,

f2↓ =
−δẼZ − J

2h
.

(4.13)
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To perform Rabi rotations, It is more convenient to describe the system Hamiltonian

in a time-dependent rotating frame (See Appendix C). That is defined as

H ′ = RHR† + i
∂R

∂t
R†, (4.14)

with a rotating diagonal matrix R = diag{1, eiω1↓t, e−iω1↑t, 1}. We define ω∗∗ = 2πf∗∗

as the resonance angular frequencies, where ∗∗ = 1 ↑, 1 ↓, 2 ↑, or 2 ↓. Applying Eq.

(4.14) to the Hamiltonian in Eq. (4.12), we get

H ′ =
1

2



0 γ2↑B1e
iω2↑t γ1↑B1e

iω1↑t 0

γ2↑B
∗
1e
−iω2↑t 0 0 γ1↓B1e

iω1↓t

γ1↑B
∗
1e
−iω1↑t 0 0 γ2↓B1e

iω2↓t

0 γ1↓B
∗
1e
−iω1↓t γ2↓B

∗
1e
−iω2↓t 0


. (4.15)

Hence in the rotating frame, the Hamiltonian with excitation frequency fn↑ (or fn↓)

applied by B1 produces conditional Rabi rotation on qubit n when the other qubit is

in the |↑〉 (or |↓〉) state. Take B1(t) = (Ω/γ1↑)e
−iω1↑t as an example. After neglecting

the far off-resonance terms and approximating γ1↓ ≈ γ1↑, the Hamiltonian in the

rotating frame can be written as

H1↑
RWA =

1

2



0 0 Ω 0

0 0 0 0

Ω 0 0 0

0 0 0 0


+

1

2



0 0 0 0

0 0 0 Ωe−i(J/~)t

0 0 0 0

0 Ωei(J/~)t 0 0


. (4.16)

Here, the “RWA” subscript implies that we have already done the rotating-wave

approximation. The time evolution of the first term gives the microwave pulse that

rotates Q1 when Q2 is in the |↑〉 state. The second term is the crosstalk error,

which results in finite rotations and phase shifts in the off-resonance states. To

cancel out the crosstalk error, the lengths and amplitudes of all conditional π/2-

pulses are chosen such that the off-diagonal component of the second term is 0 after
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a conditional π/2-pulse time (See Supplementary Information of Ref. [1]),

Tπ/2 =
h

4Ω
=
h
√

16n2 − γ1↑
γ1↓

4J
≈ h
√

16n2 − 1

4J
, (4.17)

where we set n = 1 in our simulations. So only the phase error on the diagonal com-

ponents is left. Then the phase error can be almost perfectly canceled by applying

the virtual-phase gates to future pulses. See Appendix D.

As mentioned before, our two-qubit simulations are executed in the basis (↑↑

, ↑̃↓, ↓̃↑, ↓↓) with the Hamiltonian described in Eq. (4.12). We set the evolution

time at Tπ/2 = h/4Ω ≈ 610 ns for all the conditional Rabi rotations to get the

conditional π/2-pulses. Then we assume the dephasing noise with equal strength δ

on Q1 and Q2. Thus the noisy Hamiltonian is

H̃ =
1

2



0 γ2↑B1 γ1↑B1 0

γ2↑B
∗
1 δẼZ − J 0 γ1↓B1

γ1↑B
∗
1 0 −δẼZ − J γ2↓B1

0 γ1↓B
∗
1 γ2↓B

∗
1 0


+ δ (Z1 ⊗ Z2), (4.18)

where Z1 (or Z2) is the Pauli Z operator on Q1 (or Q2). The explicit form of the

conditional π/2-pulses in our simulations are

U±π/2∗∗ =

ti+Tπ/2∏
t=ti

e−iH̃(t)dt/~, (4.19)

where we set the time resolution dt = 5 ns, and the oscillating magnetic fields B1

corresponding to different resonance frequencies are written as

B1(t) =
Ω

γ∗∗
e−i(ω∗∗t+φ). (4.20)

Here, Ω/h = 410kHz is the Rabi frequency, φ is the phase offset of the AC magnetic

field. The phase offset of the oscillating magnetic field B1 is set to φ = 0 (or φ = π)

for π/2 (or −π/2) conditional pulses.
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Number of Generators Number of Clifford gates
0 16
1 384
2 4176
3 6912
4 32

Total 11520

Table 4.2: Number of Clifford gates built from different number of gener-
ators [1]. We do not include virtual-Zπ/2 gates in the generators in this table since
they require no pulse time to operate. The 16 Clifford gates with 0 generators are
all combined by virtual-Zπ/2 gates only.

4.2.2 Clifford Gate Decomposition and Noise Channel Ex-

traction

The generators of the two-qubit Clifford group C2 are combined by two condi-

tional π/2-pulses each and are defined as follows:

[Xπ/2]n = U
π/2
n↑ U

π/2
n↓

[Xπ/2 + CROT ]n = U
π/2
n↑ U

−π/2
n↓

[Z − CROT ]n = U
π/2
n↑ U

π/2
n↑

[CROT ]n = U
−π/2
n↓ U

−π/2
n↓

, (4.21)

where n = 1, 2 labels the target qubit of the conditional π/2-pulses. These 8 gener-

ators along with the virtual-Zπ/2 gates acting on Q1 and Q2 generate all the 11520

elements in C2. See Table 4.2.

We calculate gate-dependent unitary noise channels C̃i = Λi,δ ◦ Ci resulted from

the Hamiltonian dephasing noise δ (Z1⊗Z2) by decomposing conditional π/2-pulses

into blocks of effective one-qubit operators. Take U
π/2
1↑ as an example. Here we

do not consider the crosstalk error since it can be compensated by virtual-phase

rotations (See Appendix D). The noisy Hamiltonian for U
π/2
1↑ without the crosstalk
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terms in the rotating frame is

H̃1↑
RWA =

1

2



2δ 0 Ω 0

0 −2δ 0 0

Ω 0 −2δ 0

0 0 0 2δ


. (4.22)

The subblock in the basis (↑↑, ↓̃↑) is equivalent to Xπ/2 rotation with dephasing

noise. Using Eq. (4.4) we get

X̃π/2 = Y−γXπζ/2Yγ. (4.23)

Define δ′ = 2δ/Ω. Here, ζ :=
√

1 + δ′2, cos γ = 1/ζ, and sin γ = δ′/ζ. The subblock

in the basis (↑̃↓, ↓↓) simply gives Z−πδ′/2. We decompose every conditional π/2-pulse

in order to obtain its noise operators in the form of 4 × 4 matrices. After that, we

can construct the unitary noise channel Λi,δ for every two-qubit Clifford gate using

the same method as described in Eq. (4.6).
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Chapter 5

Results and Discussions

In this chapter, we discussed the RB simulation results with different types

of noises. The single-qubit simulations are executed with time resolution dt =

Tπ/2/1000 and the number of RB sequences k = 500. For the two-qubit simulations,

dt = 5 ns and k = 1000.

5.1 RB Simulations with Constant Noise

5.1.1 Hamiltonian Noise and Channel Noise

In this section, we compare the Clifford fidelity obtained from RB under differ-

ent sources of constant dephasing noise in the one-qubit model. The Hamiltonian

dephasing noise with noise strength δ is already defined in Eq. (4.1):

H̃ =
1

2
X +

1

2
δZ. (5.1)

For every Clifford gate Ci, the channel dephasing noise is defined as a perfect Clifford

gate followed by a unitary Z-rotation,

C̃i = ZθCi. (5.2)
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Figure 5.1: Clifford fidelity of channel noise and Hamiltonian noise in the
single-qubit model. Channel noise and Hamiltonian noise with strength δ are
defined in Eq. (5.1) and Eq. (5.2) respectively. The Clifford fidelity for different δ
is obtained from RB procedure implemented with the single-qubit model.

Since each Clifford gate is combined by two noisy X±π/2 gates and different numbers

of perfect Z±π/2 gates (See Table 4.1), we set θ = 2Tπ/2δ = πδ to make the strength

of the channel noise similar to the Hamiltonian noise.

The RB simulation result shows that the Clifford fidelities under the channel

noise are smaller than those under the Hamiltonian noise (See Fig. 5.1). This is

because the channel noise is in the same Z direction while Hamiltonian noise is

mixed by the time evolution of the Hamiltonian. Thus channel noise leads to more

noise accumulations. This implies that the simple channel noise models often used in

the RB theories cannot simulate the behavior of the Hamiltonian noise. Moreover,

the channel noise cannot describe the gate-independency of noise naturally induced

from the Clifford decomposition of the generators. These are our intuitions for using

Hamiltonian noise models to analyze RB.

5.1.2 Hamiltonian Constant Dephasing Noise

In this section, we compare the Clifford fidelity obtained from RB with the

theoretical average gate fidelity under gate-dependent constant noise. The noise

gate-dependency is caused by the different decompositions for different Clifford gates
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(a) (b)

(c) (d)

Figure 5.2: Hamiltonian constant dephasing noise simulations. The his-
togram of the average gate fidelities for (a) single-qubit model (δ = 0.143) and (b)
two-qubit model (δ = 18 kHz). RB simulation results using (c) single-qubit model
and (d) two-qubit model. Hamiltonian dephasing noise is constant with strength δ
during the RB procedure. The blue dashed line is calculated using Eq. (3.15). And
the black dashed line is defined in Eq. (5.3).
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[See Fig. 5.2 (a) and 5.2 (b)]. The theoretical average gate fidelity under the gate-

dependent constant noise is defined as

Fthr = EC∈CnFave(C̃, C). (5.3)

Fthr includes the average gate fidelities Fave(C̃, C) of the Clifford gates thus is a

reasonable number to evaluate the average performance of the unitary operations.

Note that, Fthr reduces to the average gate fidelity of a single noise channel when

the noise is gate-independent.

The simulation results shows that [See Fig. 5.2 (c) and 5.2 (d)] the fidelity

obtained from RB meets the gate dependent fidelity defined with Eq. (3.13) and

(3.15), thus verifying the analysis of RB with gate-dependent constant noise in

Ref. [11]. RB cannot measure Fthr properly. In fact, RB underestimates Fthr in

both single-qubit and two-qubit simulations, which means that the depolarizing

parameter of the depolarizing channel produced in Eq. (3.13) is greater than the

average of the depolarizing parameters corresponding to the distinct Clifford-twirled

noise channels. Namely,

p
[
EGi∈Cn(G†i ◦ RLi ◦ Gi)

]
> ECi∈Cn

{
p
[
EGj∈Cn(G†j ◦ Λi ◦ Gj)

]}
. (5.4)

Here, C̃i = Λi ◦ Ci = Li ◦ Ci ◦ R.

5.2 RB Simulations with Stochastic Noise

In this section, we discuss the Hamiltonian dephasing noise with time-varying δ.

The noise strength δ is sampled from a Gaussian distribution with zero-mean and

standard deviation σ. We define the noise changing time Tσ as the period with the

same δ in the system. In other words, δ changes after every Tσ. The minimum can

be set to Tσ = Tπ/2 (change per π/2-pulse time), and the maximum can be set to

Tσ = Tseq (change per RB sequence, which is the sequence-quasi-static noise).
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5.2.1 Hamiltonian Stochastic Dephasing Noise

The theoretical average gate fidelity with gate-dependent stochastic noise is de-

fined as the ensemble average of Eq. (5.3) with respect to the distribution of δ,

Fthr =

∫ ∞
−∞

f(δ, σ)EC∈CnFave(C̃(δ), C) dδ. (5.5)

We choose Tσ = 2Tπ/2 for the single-qubit simulation because every Clifford gate

has the same operation time 2Tπ/2. Thus the noise with Tσ = 2Tπ/2 meets the gate-

dependent stochastic RB analysis in Sec. 3.2.2. While for the two-qubit simulation,

the operation times of the Clifford gates are different. Since the decomposition table

results an average of 5.14 π/2-pulses per Clifford gate (See Table 4.2), we choose

Tσ = 5.14Tπ/2 to approximate the stochastic noise changing per Clifford gate.

Both single-qubit and two-qubit simulations show that, unlike the cases of con-

stant noise, what RB measures is almost identical to the theoretical average gate

fidelity with stochastic noise [See the blue and the black dashed curves in Fig. 5.3

(c) and Fig. 5.3 (d)]. The distributions of the noise average gate fidelities resulting

from the distributions of δ are similar between distinct Clifford gates. When σ is

small, such gate-dependent distribution of average gate fidelities is almost indistin-

guishable (See Fig. 5.4). The stochasticity of noise decreases the effect of gate-

dependency. According to the simulation results, if the stochastic gate-dependent

noise is Gaussian distributed, RB can still properly measure the average gate fidelity

in a reasonable range of noise strength. We believe that this inference is also appli-

cable for other noise distributions with not-too-large probability density variations

for different Clifford gates.

It turns out that Eq. (3.25) still works well to predict the simulation result

[See the blue dots and the blue dashed curves in Fig. 5.3 (c) and Fig. 5.3 (d)].

Besides, we also do the simulation with the fastest changing noise we consider here

by setting Tσ = Tπ/2. The result implies that the fidelities with faster Tσ are higher

than those with slower Tσ. We believe that rapidly changing noise is more random

during a single RB sequence. Thus it is harder for the fast noise to accumulate large
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(a) (b)

(c) (d)

Figure 5.3: Hamiltonian stochastic dephasing noise simulations. The his-
togram of the average gate fidelities for (a) single-qubit model (σ = 0.143) and (b)
two-qubit model (σ = 18 kHz). RB simulation results using (c) single-qubit model
and (d) two-qubit model. The blue dashed line is calculated using Eq. (3.25). And
the black dashed line is defined in Eq. (5.5). All the integrals with respect to the
distribution of δ are calculated discretely.
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Figure 5.4: Average gate fidelity distribution of single Clifford gate with
stochastic noise in single-qubit model. Here, we choose C0, C1, C4 in Table 4.1
with σ = 0.080 and σ = 0.159 for demonstration. Each of the Clifford gates in this
figure has distinct average gate fidelities corresponding to the bars in Fig. 5.3 (a).

unwanted rotating angles to the quantum states in a RB sequence than the slower

noise.

5.2.2 Sequence-quasi-static Dephasing Noise

In this section we discussed the RB simulation results with sequence-quasi-static

stochastic noise, Tσ = Tseq. The standard fitting formula with single exponential

decay cannot fit this kind of slow-changing noise (See Fig. 5.5). Instead, we use the

discrete version of Eq. (3.29) and neglect the perturbation term,

P (m) = A

n∑
j=0

f(δj, σ)pmδj ·∆ +B. (5.6)

Here, n = 100, σmax is the largest σ we used in the simulations and

n∆ = 6σmax,

δj = −3σmax +
6σmaxj

n
.
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(a) (b)

Figure 5.5: R2 of different types of noises fitting with P (m) = Apm+B. Here,
we use R2 as the statistical measure to indicate how well the fitting formula fits the
data. B is fixed to 1/2n since there is no SPAM errors in our simulations. For
clarity, the blue dots in (a) single-qubit results is shifted −0.1, and the blue dots
and yellow dots in (b) two-qubit results are shifted −0.1 and −0.2 respectively.

(a) (b)

Figure 5.6: R2 of sequence-quasi-static noise RB fitting with different for-
mulae. Here, the green dots are R2 for P (m) = Apm + 1/2n fitting and the purple
dots are for PDF RB fitting described in Eq. (5.6) with (a) single-qubit results and
(b) two-qubit results.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.7: PDF RB fitting with sequence-quasi-static stochastic noise.
Single-qubit simulations with (a) σ = 0.064, (b) σ = 0.127 and (c) σ = 0.159.
Two-qubit simulations with (d) σ = 15 kHz, (e) σ = 20 kHz and (f) σ = 25 kHz.
Red curves are the fitting results using Eq. (5.6) and yellow dashed curves are the
fitting results using P (m) = Apm + 1/2n.
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Hence δj is ranged from −3σmax to 3σmax. We take σmax = 0.159 for single-qubit

model and σmax = 20 kHz for two-qubit model. The range of δj ensures the sum-

mation in Eq. (5.6) includes at least 99.7% of the probability density described by

f(δj, σ). It turns out that, due to the imperfect crosstalk error compensation and

the limitation of our simulation method, Eq. (5.6) fits the non-exponential decay

behaviour of sequence-quasi-static stochastic noise very well (See Fig. 5.6 and 5.7)

except for two-qubit simulations under small noise. We calculate conditional π/2-

pulses with time resolution dt = 5 ns, which gives a reasonable and controllable

simulation time. While dt is not small enough to get perfect conditional π/2-pulses

after crosstalk error compensation as shown in Appendix D. The imperfect crosstalk

errors compensation and the time resolution errors dominant for small dephasing

noise. Thus the fidelities obtained from two-qubit simulations are a bit lower than

theoretical predictions calculated from small dephasing noise. This can be clearly

seen in all of our two-qubit simulation results [See the blue dots in Fig. 5.2 (d) and

5.3 (d)].

5.3 Connection with Real Experiment

In this section, we show the connection between our two-qubit simulations and

the results described in Ref. [1]. Consider a more general Hamiltonian energy

fluctuation noise on all four levels (See Supplementary Information of Ref. [1]),

H̃ =
1

2



0 γ2↑B1 γ1↑B1 0

γ2↑B
∗
1 δẼZ − J 0 γ1↓B1

γ1↑B
∗
1 0 −δẼZ − J γ2↓B1

0 γ1↓B
∗
1 γ2↓B

∗
1 0


+



δ↑↑ 0 0 0

0 δ↑̃↓ 0 0

0 0 δ↓̃↑ 0

0 0 0 δ↓↓


. (5.7)

Here, we set the noise being sequence-quasi-static with the same standard deviation

for the fluctuations of all four levels, σ = σ↑↑ = σ↑̃↓ = σ↓̃↑ = σ↓↓. The simulation

shows that the single decay formula cannot fit the RB results properly for the energy
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Figure 5.8: R2 of energy fluctuation noise fitting with P (m) = Apm + 0.25.
Hamiltonian fluctuation noise with deviation σ is defined in Eq. (5.7). Here we plot
the fitting result for Hamiltonian dephasing noise for comparison.

fluctuation noise, which implies that the non-exponential decay behavior also occurs

with more general slow-changing noise (See the black dots in Fig. 5.8). This type

of sequence-quasi-static noise simulates the performance of the noise with dominant

low-frequency intensities in the noise spectrum, which can be widely seen in silicon-

based quantum-dot quantum computing experiments [16–20]. Besides, we can

tune the deviation σ of sequence-quasi-static dephasing noise to approximate the

real RB experiment in Ref. [1]. We find that σ = 25 kHz can best simulate the RB

experiment (See Fig. 5.9). And we get Clifford fidelity FClifford = 94.69 % from the

fitting function P (m) = Apm+B, which is almost the same as FClifford = 94.7±0.8%

given from the real experiment. Note that, both of these Clifford fidelities are

obtained from the single decay formula P (m) = Apm + B without fixing A and B.

We find out that fitting with unfixed A and B will make the fitting significantly

better. It seems that the original single decay fitting formula can fit the RB results

with slow-changing noise. While for our two-qubit simulations with sequence-quasi-

static noise, the fidelity obtained with unfixed A and B is unreliable. Because B

is fitted to be 0.41, which is far from 0.25. The fact that P (m) will not decay to

the maximally mixed state probability conflicts with the assumption that there is
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(a) (b)

Figure 5.9: RB simulation compared with the real experiment. (a) Two-
qubit RB simulation with sequence-quasi-static stochastic noise σ = 25 kHz. Here,
the data is fitted by P (m) = Apm + B (grey dashed curve), P (m) = Apm + 0.25
(yellow dashed curve), and PDF RB fitting formula (red dashed curve). (b) RB
experiment results with real two-qubit silicon-dot device given in Ref. [1].

no SPAM error in the system. In conclusion, the parameters A and B in the single

decay formula are supposed to characterize the effect of SPAM errors. If the error

is dominated by slow-changing noise, A and B can be misused to fit the effects of

slow-changing noise. Then we will obtain the incorrect Clifford fidelity from the RB

procedure. We believe that this misfitting problem can be improved by adjusting

the RB protocol to eliminate the parameter B [21, 22].

The PDF RB fitting function is significantly better for the non-exponential decay

behavior resulted from the slow-changing noise [See the red dashed curve in Fig. 5.9

(a)]. Besides, PDF RB provides clear physical interpretation for the fitting result.
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Chapter 6

Conclusions

In this thesis, we have reviewed the RB analysis for constant noise and gate-

dependent constant noise. Based on these existing researches, we generalize the

analysis to the cases of stochastic noise. After that, we use a naive simple one-qubit

model and a two-qubit model regarding the real experiment to verify the RB theories

for different types of noise.

For gate-dependent constant noise, our simulation results show that the analyses

in Ref. [11] predict the RB outcomes correctly. Besides, gate-dependent constant

RB cannot properly measure the average of the Clifford gates’ average gate fideli-

ties. Both our single-qubit and two-qubit models underestimate the proper Clifford

fidelity. While further theoretical validation is needed to confirm whether the un-

derestimation is a coincidence or gate-dependent constant RB always underrates the

proper Clifford fidelity.

The generalization of Wallman’s RB analyses for gate-dependent stochastic noise

predicts the RB simulation results well. We find that gate-dependent stochastic

noise RB can measure the proper Clifford fidelity. Generally speaking, constant

noise is usually identified as systematic noise and is easier to remove. While the

randomness of the stochastic noise makes it harder to be perfectly eliminated. Hence

our findings about the gate-dependent stochastic noise RB may be good news for

real RB experiments.

We proposed a probability density function RB fitting formula to deal with
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the noise dominated by slow-changing or low-frequency terms. The fitting formula

can appropriately describe the non-exponential decay behavior of Sequence-quasi-

static stochastic noise. Further simulations and experiments are needed to test

out that whether PDF RB can fit the noise in real devices such as 1/fα noise

spectrum. Compared to other non-exponential decay formulae [22–24], PDF RB

is more complicated to execute. While we have shown that it is doable for two-

qubit devices. The main challenges for carrying out PDF RB are constructing

16n×16n matrices and solving the eigenvalue problems of these matrices. We believe

that these are not big problems for several-qubit devices with the help of classical

parallel computing. For larger systems such as the leading processors in the noisy

intermediate-scale quantum (NISQ) era, which contain fifty to a few hundred qubits,

RB protocol is originally not suitable thus these systems are out of our consideration.

The main advantages of PDF RB are that it provides clear physical interpretations

for the fitting results and is adjustable for different noise distributions.
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Appendix A

Explanation of Lemma 1

This appendix gives a brief explanation of Lemma 1 and is based mainly on [33]

and [34], but with some of the additional details filled in.

First we introduce the superoperator representation of channels. Consider an

m×m n-qubit density matrix with m = 2n,

ρ =



ρ11 ρ12 . . . ρ1m

ρ21 ρ22 . . . ρ2m

...
. . .

...

ρm1 ρm2 . . . ρmm


. (A.1)

Define the vectorization of ρ be column stacking,

|ρ〉〉 := vec(ρ) = (ρ11, ρ21, . . . , ρm1, ρ12, . . . , ρmm)T . (A.2)

For matrices A,B and C, the vectorization map satisfies the identity

vec(ABC) = (CT ⊗ A)vec(B). (A.3)

Consider a CPTP noise channel Λ being expressed in the form

Λ(ρ) =
∑
i

AiρA
†
i . (A.4)
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The superoperator representation of Λ is defined as

Λ̂ =
∑
i

(A∗i ⊗ Ai). (A.5)

By Eq. (A.3) we get

|Λ(ρ)〉〉 = Λ̂|ρ〉〉. (A.6)

Thus the superoperator representation transforms channel operations acting on ρ

into matrix multiplications acting on |ρ〉〉. For example, the superoperator repre-

sentation of a unitary channel U(ρ) = UρU † is Û = U∗ ⊗ U .

The average gate fidelity of Λ is in the form [33]

Fave(Λ, I) =

∑
i |Tr(Ai)|2 + 2n

2n(2n + 1)
. (A.7)

Now consider the superoperator of the Haar-twirling on Λ,

ŴH(Λ) =

∫
U(2n)

dη(U) Û †Λ̂Û . (A.8)

Haar-twirling is unitarily invariant in the sense that

ŴH(Λ) = V̂†ŴH(Λ)V̂ (A.9)

for any V ∈ U(2n). Schur’s lemma implies that a unitarily invariant trace-preserving

map can only possibly be the form as

WH(Λ)(ρ) = pρ+ (1− p) Tr(ρ)
In
2n
. (A.10)

To determine the value of p, note that for any orthonormal basis |0〉 , |1〉 , . . . , |2n − 1〉,
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Tr(ρ) =
∑

i 〈i| ρ |i〉 and In =
∑

i |i〉 〈i|. So

WH(Λ)(ρ) = pρ+ (1− p) Tr(ρ)
In
2n

= pInρIn +
(1− p)

2n

∑
i

〈i| ρ |i〉
∑
j

|j〉 〈j|

= pInρIn +
(1− p)

2n

∑
i,j

|j〉 〈i| ρ |i〉 〈j| .

(A.11)

Hence the superoperator of WH(Λ)(ρ) is

ŴH(Λ) = p(In ⊗ In) +
(1− p)

2n

∑
i,j

|jj〉 〈ii| . (A.12)

Take the trace on the both sides of Eq. (A.12) gives the value of p,

p =
Tr
(
ŴH(Λ)

)
− 1

22n − 1
=

Tr Λ̂− 1

22n − 1
=

∑
i |Tr(Ai)|2 − 1

22n − 1
, (A.13)

where we have used the fact that Tr Λ̂ = Tr
(
ŴH(Λ)

)
=
∑

i |Tr(Ai)|2. Substitute

Eq. (A.13) into Eq. (A.7) leads to Lemma 1. That is

Fave(Λ, I) = Fave(WH , I) = p+
1− p

2n
. (A.14)
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Appendix B

Wallman’s Gate-dependent RB

Theory

This appendix gives a brief explanation of the randomized benchmarking theory

we mentioned in Sec. 3.1.2, which is proved by Wallman and is based mainly on

[11]. Note that the quantum channels we discussed in this thesis are all CPTP

maps. While in Wallman’s theory, he considers the quantum maps being CP but

not necessarily TP. Since the goal of this appendix is to explain the theory in Sec.

3.1.2, here we still focus on the CPTP maps.

B.1 Find the Decay Parameter p

In this section, we discussed how to find the decay parameter for the gate-

dependent noise RB. By Theorem 2 in Ref. [11], there exists linear maps L and R

such that

EGi∈Cn(G̃i ◦ L ◦ G†i ) = LDp (B.1a)

EGi∈Cn(G†i ◦ R ◦ G̃i) = DpR. (B.1b)

EGi∈Cn(Gi ◦ RL ◦ G†i ) = Dp. (B.1c)
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Equation (3.13) is the special case of Eq. (B.1b) with G̃i = Li ◦Gi ◦R and invertible

R. Note that R is always invertible for Hamiltonian induced unitary noise. Take

the unital components of the pauli transfer matrix representations on both sides of

Eq. (B.1a) and Eq. (B.1b), that is

EGi∈Cn([G̃i ◦ L′ ◦ G†
′

i ]PTM) = p[L′]PTM

EGi∈Cn([G†
′

i ◦ R′ ◦ G̃i]PTM) = p[R′]PTM.

(B.2)

The definition of the unital component of a channel is defined in Eq. (3.16). See

the proof of Theorem 2 in Ref. [11] for the calculation details. Equation (B.2) are

essentially a pair of eigenvalue equations. Now use the vectorization map described

in Eq. (A.3) on the both sides of Eq. (B.2) to obtain the eigenvalue problems that

can be solved for p. That is

EGi∈Cn([G ′i]PTM ⊗ [G̃i]PTM)vec(L′) = p vec(L′)

EGi∈Cn([G̃i]PTM ⊗ [G ′i]PTM)Tvec(R′) = p vec(R′),
(B.3)

where we have used the fact that [G]TPTM = [G†]PTM since the matrix basis is Hermi-

tian.

B.2 Gate-dependent Fitting Formula Derivation

This section gives the derivation of Eq. (3.14). In this section we omit the

product symbol ◦ of channel composition for simplicity.

First rewrite the expectation average of the RB sequences with length m given

in Eq. (3.12) as

Sm = E−→
Gi∈(Cn)m

(G̃im+1:i1) = E−→
Gi∈(Cn)m

(G̃im+1:i2Li1Gi1R)

= E−→
Gi∈(Cn)m

(G̃im+1:i2LGi1R) + E−→
Gi∈(Cn)m

(G̃im+1:i2∆i1)

= E−→
Gi∈(Cn)m

(G̃im+1:i2LGi1R) + E−→
Gi∈(Cn)m

(G̃im+1:i3LGi2R∆i1)

+ E−→
Gi∈(Cn)m

(G̃im+1:i3∆i2:i1)

(B.4)
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where

G̃ib:ia =©b
s=aG̃is ,

∆ib:ia =©b
s=a∆is ,

∆is = LisGisR−LGisR

(B.5)

and L is defined in Eq. (B.1a). The first term on the right hand side of Eq. (B.4)

gives

E−→
Gi∈(Cn)m

(G̃im+1:i2LGi1R) = E−→
Gi∈(Cn)m

[G̃im+1:i2L(G†im+1:i2
)R]

= LDmp R,
(B.6)

where we have used Eq. (B.1a) m times and the fact that Gim+1:i1 = I. Now consider

E−→
Gi∈(Cn)m

(G̃im+1:ij+1
LGijR∆ij−1:i1)

= E−→
Gi∈(Cn)m

[G̃im+1:ij+1
L(G†im+1:ij+1

)(G†ij−1:i1
)R∆ij−1:i1 ]

= E−→
Gi∈(Cn)m

[G̃im+1:ij+1
L(G†im+1:ij+1

)(G†ij−2:i1
)G†ij−1

R∆ij−1
∆ij−2:i1 ]

= E−→
Gi∈(Cn)m

[G̃im+1:ij+1
L(G†im+1:ij+1

)(G†ij−2:i1
)(G†ij−1

RG̃ij−1
)∆ij−2:i1 ]

− E−→
Gi∈(Cn)m

[G̃im+1:ij+1
L(G†im+1:ij+1

)(G†ij−2:i1
)(G†ij−1

RLGij−1
)R∆ij−2:i1 ]

= 0.

(B.7)

The last equality is from Eq. (B.1b) and Eq.(B.1c),

G†ij−1
RG̃ij−1

= DpR

G†ij−1
RLGij−1

= Dp.
(B.8)

Thus the second term on the right hand side of Eq. (B.4) vanishes. Besides, we can

recursively decompose the third term into

E−→
Gi∈(Cn)m

(G̃im+1:ij∆ij−1:i1) = E−→
Gi∈(Cn)m

(G̃im+1:ij+1
LGijR∆ij−1:i1)

+ E−→
Gi∈(Cn)m

(G̃im+1:ij+1
∆ij :i1),

(B.9)

where the first terms always vanish. Finally Eq. (B.4) becomes

Sm = LDmp R+ E−→
Gi∈(Cn)m

(∆im+1:i1). (B.10)
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The projection state probability of Sm is

P (m) = Tr[Sm(ρψ)Eψ]

= Tr
[
LDmp R(ρψ)Eψ

]
+ Tr

[
E−→
Gi∈(Cn)m

(∆im+1:i1)(ρψ)Eψ

]
= Tr

[
L
(
pmR(ρψ) +

1− pm

2n
In

)
Eψ

]
+ Tr

[
E−→
Gi∈(Cn)m

(∆im+1:i1)(ρψ)Eψ

]
= Tr[LR(ρψ)Eψ]pm + Tr

[
L
(
In
2n

)
Eψ

]
(1− pm) + Tr

[
E−→
Gi∈(Cn)m

(∆im+1:i1)(ρψ)Eψ

]
= Apm +B + εm,

(B.11)

where

A := Tr

[
L
(
R(ρψ)− In

2n

)
Eψ

]
B := Tr

[
L
(
In
2n

)
Eψ

]
εm := Tr

[
E−→
Gi∈(Cn)m

(∆im+1:i1)(ρψ)Eψ

]
.

(B.12)

Hence Eq. (3.14) is proved.
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Appendix C

Rotating Frame Transformation

In Sec. 4.2.1 we use a time-dependent rotating frame to observe the action

of the Hamiltonian with oscillating magnetic field B1 operating on the resonance

frequency. Begin with the Schrödinger equation for the time-evolution operator

U(t) |ψ(0)〉 = |ψ(t)〉,

U̇(t) = −iH
~
U(t). (C.1)

Insert a unitary transformation R(t) on both sides and use the fact that R†R = I,

we get

RU̇ = − i
~

(RHR†)RU. (C.2)

The product rule of derivative gives

RU̇ =
d

dt
(RU)− ṘU =

d

dt
(RU)− ṘR†RU. (C.3)

Substitute Eq. (C.3) into Eq. (C.2) to obtain the Schrödinger equation after trans-

formation:

d

dt
(RU) = − i

~
(RHR† + iṘR†)RU. (C.4)

Define the time-evolution operator after the transformation as U ′(t) = R(t)U(t).

The effective Hamiltonian for U ′(t) is H ′ = RHR† + iṘR†.

As shown in Eq. (4.14), R(t) for the two-qubit rotating frame transformation is

diagonal. Thus the measurement result of the final state |ψ(t)〉 is identical to the
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result of the transformed state R(t) |ψ(t)〉. This is the reason why we can calculate

gate-dependent noise channels with the rotating frame Hamiltonian in Sec. 4.2.2

even though the measurements are taken in the original frame.
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Appendix D

Virtual-phase Gate

Implementation

This appendix demonstrates how to generate zero-gate-time arbitrary virtual-

phase rotations with the phase offset of ESR drives. The implementing method is

based mainly on [35].

First consider virtual-Z implementation in single-qubit devices. Assume the

Hamiltonian in the rotating frame is

H =
1

2

 0 Beiωt

Be−iωt 0

 . (D.1)

Here, ω is the resonance frequency and B is the ESR pulse. For the on resonance

drive, B(t) = Ωe−i(ωt+φ) with Rabi frequency Ω and phase offset φ. Then

H =
1

2

 0 Ωe−iφ

Ωeiφ 0

 =
1

2
Ω[cos(φ)X + sin(φ)Y ] (D.2)

the time evolution of the Hamiltonian gives the unitary gates written as

e−i
θ
2

[cos(φ)X+sin(φ)Y ] = cos

(
θ

2

)
I − i sin

(
θ

2

)
[cos(φ)X + sin(φ)Y ]

= ZφXθZ−φ.

(D.3)
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Thus X rotations are conjugated by virtual-Z rotations after adding phase offset in

ESR pulses. We can generate arbitrary zero-gate-time Z rotations with Eq. (D.3).

For example, a sequence of operations Xθ3Zθ2Xθ1 can be implemented by two X

pulses:

e−i
θ3
2

[cos(−θ2)X+sin(−θ2)Y ]e−i
θ1
2

[cos(0)X+sin(0)Y ] = (Z−θ2Xθ3Zθ2)(Xθ1). (D.4)

Note that the last gate Z−θ2 does not affect the measurement results, which are

measured along Z.

As shown in Eq. (4.15) and Eq. (4.16), the rotating frame Hamiltonian for

generating π/2-pulses in our two-qubit model are essentially one-qubit Hamiltonian

Eq.(D.2) in different axes. Thus we can implement arbitrary two-qubit phase gates

using the similar method for one-qubit system. An arbitrary two-qubit phase gate

in the rotating frame can be written as

P =



eiφ↑↑ 0 0 0

0 eiφ↑̃↓ 0 0

0 0 eiφ↓̃↑ 0

0 0 0 eiφ↓↓


. (D.5)

P can be implemented virtually by adding the phase offset corresponding to the

relative phase of the resonance states on the future pulses. For example, since

U
±π/2
1↑ operates on the states (↑↑, ↓̃↑), the future U

±π/2
1↑ pulses after the operation

P should be implemented with an additional phase offset φ1↑ = (φ↑↑ − φ↓̃↑) added

on the oscillating magnetic field B1. From Eq. (D.3), this is equivalent to apply a

virtual-Z rotation on the states (↑↑, ↓̃↑) before U
±π/2
1↑ pulses:

Z−φ1↑ =

eiφ1↑2 0

0 e−i
φ1↑
2

 = e−i
(φ↑↑+φ↓̃↑)

2

eiφ↑↑ 0

0 eiφ↓̃↑

 , (D.6)

which is exactly the same action as P on the states (↑↑, ↓̃↑). In our two-qubit
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π/2-pulse Funcorrected (%) Fcorrected (%)

U
π/2
1↑ 99.481 99.977

U
π/2
1↓ 99.465 99.965

U
π/2
2↑ 99.465 99.965

U
π/2
2↓ 99.481 99.977

Table D.1: Trace fidelity of π/2-pulses corrected by virtual-phase imple-

mentation. Here, the two-qubit trace fidelity is defined as F = |Tr(ŨU †)|2/16. The
time resolution of every conditional π/2-pulse is dt = 5 ns. The imperfect crosstalk
error compensation and the time resolution limit the fidelity after correction.

simulations, we use virtual-phase gates to compensate phase errors from the crosstalk

terms (See Table D.1) and generate virtual-Zπ/2 gates on Q1 and Q2:

[Zπ/2]1 := Zπ/2 ⊗ I =



e−i
π
4 0 0 0

0 e−i
π
4 0 0

0 0 ei
π
4 0

0 0 0 ei
π
4


,

[Zπ/2]2 := I ⊗ Zπ/2 =



e−i
π
4 0 0 0

0 ei
π
4 0 0

0 0 e−i
π
4 0

0 0 0 ei
π
4


.

(D.7)
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