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摘要

振動座標選擇能夠大幅影響非簡諧振動分析的收斂情形。理想情況下，我們

會希望選擇的振動座標能夠對應到潛在的物理特徵，因而加速計算模擬的進行。

在這個研究中，我們探討了在非簡諧振動分析中，幾種不同最佳化座標的方法。

在簡諧振動分析之中，簡正振動模式 (Normal mode) 是最常見且自然的選

擇；然而若我們考慮非簡諧的位能面，各個簡正振動模式之間具有很強的耦合，

因而使得對應的非簡諧振動計算的收斂十分緩慢。針對這類問題，Head 提出

了「部分黑塞振動分析」(Partial Hessian Vibrational Analysis, PHVA) 對一部分

原子、或是特定官能機團進行簡諧振動分析，取得對應的振動座標。這個方法在

非簡諧振動分析中，能夠比傳統的簡正振動模式具有更好的收斂性。然而，這個

方法需要人去手動將分子系統劃分區域，而這在許多系統中可能很難有效達成。

參考軌域的局域化的方法，另一種更自動的座標選擇是「局部模式座標」(Local

Mode Coordinates)。局部模式座標往往只涉及特定片段中的少數幾個原子的運

動；這不僅符合人的直覺，同時使的我們能將對官能基的描述延伸到更大的系統

中。然而，過度局域化會使結果嚴重偏離簡諧振動分析，因而使座標遠離其物理

特徵。這意味著，最好的座標選擇，很可能介於簡正振動模式與完全局域化的局

部模式之間。基於這個想法，1982 年 Thompson 和 Truhlar 嘗試通過最小化基態

能量來獲得最佳化的振動座標；除此之外，Yagi 提出了一種泛用且穩定的最佳化

演算法。
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在這份研究中，我們以有限基底表徵 (Finite Basis Representation, FBR) 描

述振動波函數，基於雅可比掃描 (Jacobi Sweep) 與牛頓法進行最佳化的程序，透

過變分原理來選擇使基態能量最小的座標。我們透過振動構型相互作用（VCI）

和離散變量表示（DVR）的計算，對幾個氫鍵團塊進行了測試，以衡量該座標選

擇的優勢。

關鍵字： optimized coordinates、localized coordinates、anharmonic vibration、IR

spectra
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Abstract

The performance of reduced dimensional anharmonic vibrational calculations

depends on the choice of vibrational coordinates. Ideally, the coordinates should be

chosen to capture the underlying physics, interpret the vibrational features, and fa-

cilitate the computational simulations. In this study, we investigated different ideas

on optimizing coordinates for anharmonic vibrational analysis. Normal mode coor-

dinates are the most common choice for vibrational problems, however, for an an-

harmonic potential, the normal mode coordinates possess strong coupling constants

among the modes and give slow convergence in n-mode potential representation and

anharmonic calculations. One method of localizing the modes in specific functional

groups is Partial Hessian vibrational analysis (PHVA), proposed by Head, which

showed faster convergence compared with normal mode coordinates. However, this

method is based on one’s chemical intuition, and it may be straightforward only

for particular systems. Another more automatic approach which borrows ideas from
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orbital localization techniques is local mode coordinates. Localized modes tend to

involve only a few atom movements in identifiable fragments, which not only follows

our intuition but also means that the description of functional groups can be usefully

transferable to understand bigger systems. Though, over-localization could deviate

substantially from the harmonic picture and produce an unphysical representation.

It implies that the optimal coordinates should be somewhere between fully localized

and fully delocalized coordinates. The idea of optimizing coordinates by minimizing

ground state energy dates back to early work from Thompson and Truhlar in 1982;

furthermore, a robust and general optimization algorithm was proposed by Yagi.

Our approach used the wavefunction as the product of one-dimensional solutions

in the finite basis representation (FBR). The variational principle was applied to

choose the coordinates that minimize the ground state energy. The procedure to

optimize was based on a combination of the Jacobi sweep and Newton method.

Several hydrogen-bonded clusters were tested to benchmark the advantages of this

scheme in the vibrational configuration interaction (VCI) and discrete variable rep-

resentation (DVR) calculations.

Keywords: optimized coordinates, localized coordinates, anharmonic vibration, IR

spectra
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Chapter 1 Introduction

Molecular spectra provide an abundance of information about the molecular

structures, including the forces between the vibrating atoms, their electronic states,

and electron distribution.[1] Vibrations are the fundamental motions of atomic nuclei

in molecules, thus vibrational spectroscopy is one of the most powerful techniques

to investigate molecular structures in solid, liquid, and gaseous forms. Assigning the

spectra, however, is challenging due to the complexity of the inter-mode coupling of

the vibrational motions. Therefore, vibrational simulations are widely used to ana-

lyze the vibrational features obtained from infrared (IR) spectroscopy experiments.

To accurately model the vibrational spectra, several methods have been developed

to go beyond the harmonic approximation. When the size of the molecules increases,

full calculations of such large systems are computationally expensive due to the com-

plexity of many-mode interactions. On the other hand, the experimental IR spectra

frequently show the characteristics of a specific fragment or a functional group, in-

dicating that sometimes, only a subset of localizing modes on specific fragment/

functional group is needed to interpret the spectral features.

The performance of reduced dimensional anharmonic vibrational calculations

depends on the choice of vibrational coordinates. Ideally, the coordinates should

be chosen to capture the underlying physics, interpret the vibrational features, and

1
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facilitate the computational simulations.

Normal mode coordinates are the most common choice for vibrational problems

because they are mathematically convenient and provide a good zero-order picture

when the potential is harmonic or nearly harmonic. However, for an anharmonic

potential, the normal mode coordinates possess strong coupling constants among the

modes and give slow convergence in n-mode potential representation and anharmonic

calculations. [2] In addition, for the molecules with larger sizes, the normal mode

coordinates are often delocalized, which means that it involves the motions of many

nuclei in one normal mode. We believe that the couplings of modes are caused by the

covalent bonds, therefore, it is hard to imagine those atoms which are far from each

other should always move together as they are not connected by covalent bonds. In

other words, normal mode coordinates are difficult to visualize and unfamiliar to

our chemical intuition.

One method to localize the modes in specific functional groups is Partial Hes-

sian vibrational analysis (PHVA), proposed by Head, [3] namely local normal mode

coordinates. We have been using these local normal mode coordinates to investigate

the vibrational spectroscopic signatures of many hydrogen-bonded clusters.[4, 5, 6,

7, 8, 9, 10] The results show that local normal mode coordinates converge faster than

normal mode coordinates in the anharmonic calculations, and provide a more clear

picture of the vibrational modes. Although in this approach, the difficulty is how to

choose the fragments. Empirically, it is based on one’s chemical intuition, and it may

only be straightforward in particular systems. For example, it is counter-intuitive

for some aromatic molecules to be divided into different fragments. Therefore, a

more automatic way to define the localized coordinates should be developed.
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Another approach, namely local mode coordinates, which borrows ideas from or-

bital localization techniques. [11] Many works using localized coordinates [2, 12, 13]

have proved that they have advantages over the normal mode coordinates when the

potential is anharmonic. These studies showed that the localized coordinates have

better convergence in n-mode expansion and in VCI calculations. Localized modes

tend to involve only a few atom movements in identifiable fragments, which not only

follows our intuition but also means that the description of local chemical units can

be transferable in understanding bigger systems. However, over-localization could

deviate substantially from the harmonic picture and produce unphysical represen-

tations. [14, 12, 2] It implies that the optimal coordinates should be somewhere

between fully localized and fully delocalized coordinates.

This study aims to obtain the optimized set of coordinates by minimizing the

ground state energy, the main idea of which dates back to Thompson and Truhlar

[15] which was followed by the optimization algorithm proposed by Yagi.[16] Our

approach used the wavefunction as the product of one-dimensional solutions in the

finite basis representation (FBR) with the anharmonic potential included up to cu-

bic and a part of quartic terms. The variational principle was applied to choose

the coordinates that minimize the ground state energy. The procedure to optimize

was based on a combination of the Jacobi sweep and the Newton method. After

optimized coordinates are obtained, high-quality potential energy surface can be

obtained by the discrete variable representation (DVR) method, which is very ac-

curate but unfortunately computationally very expensive, therefore it should only

be performed with low or reduced-dimensional anharmonic vibrational calculations

and with a good set of coordinates. Several hydrogen-bonded clusters were tested

3
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to benchmark the advantages of localized and optimized coordinates in the vibra-

tional configuration interaction (VCI) and discrete variable representation (DVR)

calculations.

4
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Chapter 2 Theory

2.1 Quantum-Mechanical description of free molecules

Consider a molecule consisting of K nuclei (with masses Mk and charges Zke)

and N electrons (mass me and charge −e). One can solve the time independent

Schrödinger equation to describe the stationary states of the molecule:

ĤΨ = EΨ (2.1)

where the Hamiltonian is the sum of kinetic energy operator, denoted as T̂ , and

potential energy operator, denoted as: V̂ ,

Ĥ = T̂n + T̂e + V̂ (r,R) (2.2)

=
−h̄2

2

K∑
k=1

1

Mk

∇2
k −

h̄2

2me

N∑
i=1

∇2
i + V̂ (r,R)

in which, potential energy operator is described as:

V̂ (r,R) = V̂n,n + V̂n,e + V̂e,e (2.3)

(r,R) are the coordinates of electrons and nuclei respectively.
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For convenience, atomic units are commonly used in quantum chemistry cal-

culations. In atomic units, me = h̄ = e = 1. Substitute Hamiltonian operator into

Schrödinger equation, we have

(
−1

2

K∑
k=1

1

Mk

∇2
k −

1

2

N∑
i=1

∇2
i + V̂ (r,R)

)
Ψ(r,R) = EΨ(r,R). (2.4)

Note that the reference coordinates is chosen as laboratory frame.

2.2 Born-Oppenheimer approximation

The Schrödinger equation cannot be solved exactly even for the simplest molecule

H+
2 . We need to introduce some approximations to simplify the equations. Born-

Oppenheimer approximation is one of the most fundamental approximations in

quantum mechanics calculations. The idea is that because of the mass difference

(e.g. a proton is more than 1800 times as heavy as an electron), the nuclear motion

is much slower than electronic motion. Based on this condition, in 1927 Max Born

and J. Robert Oppenheimer proposed that the wavefunctions of atomic nuclei and

electrons in a molecule can be treated separately. For the detailed derivation, please

check this reference [1].

Under Born-Oppenheimer apprroximation, we have:

Ψn,i(r,R) = ϕe
n(r,R)× χn,i(R). (2.5)

The Schrödinger equation is rewritten as two decoupled (electronic and nuclear)

6
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equations:

Ĥ0ϕ
e
n(r) = E(0)

n ϕe
n(r) with Ĥ0 = T̂e + V̂ (r,R) (2.6)[

T̂n + E(0)
n (R)

]
χn,i(R) = En,iχn,i(R). (2.7)

2.3 Nuclear motion

In the previous section, we have separated the electronic and nuclear wavefunc-

tions. From now on, I will only discuss the nuclear motion. I will first consider the

classical Hamiltonian to demonstrate that the translational and rotational motions

can be separated from vibrational problems with some coordinate transformations

for the classical kinetic energy expression. The Hamiltonian, then, will be converted

to quantum mechanical Hamiltonian.

For polyatomic molecules, it is easier to describe using molecule-fixed reference

frame, that is the molecule’s center of mass and axes are fixed at equilibrium nuclear

frame. The coordinates of ith nuclei in molecule-fixed system are denoted by ri =

{xi, yi, zi}, where the center of mass of the molecule is chosen as rc.m = {0, 0, 0}. The

coordinates of ith nuclei in laboratory frame are denoted by Ri = {Xi, Yi, Zi} and

Rc.m = {Xc.m, Yc.m, Zc.m}. To transform from laboratory frame to molecule-fixed

frame, we have:

Ri = Rc.m + ri. (2.8)

Kinetic energy expression in molecule-fixed frame is:

T =
1

2

(
N∑
i=1

MiV
2
i

)
=

1

2

(
N∑
i=1

Mi

.

R
2

i

)
. (2.9)
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The molecule-fixed system rotates with an angular velocity ω around its center of

mass, so we have to take it into account dRi/dt:

.

Ri =
.

Rc.m +
.ri + (ω×ri) . (2.10)

Substitute into Eq. (2.9), then simplify we have:

T =
1

2
MR2

c.m +
1

2

∑
i

Mi (ω×ri)2 +
1

2

∑
i

Miv
2
i + ω.

∑
i

Mi (∆ri×vi) (2.11)

in which:

- The first term describes the translations of molecule’s center of mass.

- The second term describes the rotational energy of the molecule.

- The third term describes the vibrational energy of the molecule.

- The last term describes the Coriolis interaction between vibration and rotation.

This study only involves vibrations, therefore only the third term is included in

the vibrational Hamiltonian with rigid rotor approximation to neglect the Coriolis

coupling between vibration and rotation.

2.4 Vibrations of polyatomic molecules

Vibrational Hamiltonian for polyatomic molecules consist of N atoms is:

Ĥ = T̂ + V̂ =
−h̄2

2

3N∑
i=1

1

mi

∂2

∂x2
i

+ V (x1, x2, ..., x3N). (2.12)

where V (x1, x2, ..., x3N) is E
(0)
n (R) in the Eq. (2.7).

8
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The potential energy can be extended using Taylor expansion as:

V̂ (x1, x2, ..., x3N) = V0 +
3N∑
i=1

(
∂V

∂xi

)
0

xi +
1

2!

3N∑
ij

(
∂2V

∂xi∂xj

)
0

xixj + higher terms

(2.13)

V0 can be eliminated by choosing the zero of the energy at the equilibrium. At the

equilibrium position, the energy must be a minimum, therefore all first derivatives

vanish at this point
(

∂V
∂xi

)
0
= fi = 0 with i = 1, 2, ..., 3N.

2.4.1 Harmonic approximation

For sufficiently small amplitudes of vibrations, the potential can be described

quite well with the truncation at second derivatives, so that:

V̂ =
1

2

3N∑
ij

fijxixj (2.14)

with fij =
(

∂2V
∂xixj

)
0

are constants. V (xi, ..., x3N) is a continuous function, therefore

fij = fji.

Under harmonic approximation, the problem can be solved exactly. I will show

the solutions in two cases, one dimensional and multi-dimensional vibration.

2.4.1.1 1D harmonic oscillator

Hamiltonian operator in 1D for harmonic oscillator is:

Ĥ =
p̂2

2m
+

mω2x̂2

2
=

1

2m

(
h̄

i

d

dx

)2

+
mω2x2

2
(2.15)
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where ω is the angular frequency of the classical oscillator related to the spring

constant k in Hooke’s law via ω =
√

k
m

.

The Schrödinger equation is given by:

ĤΨ(x) = EΨ(x). (2.16)

To solve the Schrödinger equation, it is convenient to introduce the so-called

annihilation opertor (â) and its adjoint operator, called the creation operator (â†):

â =

√
mω

2h̄

(
x+

ip

mω

)
(2.17)

â† =

√
mω

2h̄

(
x− ip

mω

)
. (2.18)

The Hamiltonian operator can be rewritten as:

Ĥ = h̄ω

(
â†â+

1

2

)
= h̄ω

(
N̂ +

1

2

)
. (2.19)

where N̂ = â†â is number operator.

The energy eigenvalues are given by:

En =

(
n+

1

2

)
h̄ω with n = 0, 1, 2, ... (2.20)

The energy of a harmonic oscillator is quantized into discrete values. Because the

smallest possible value of n is zero, the ground state of the harmonic oscillator has:

E0 =
1

2
h̄ω. (2.21)

10

http://dx.doi.org/10.6342/NTU202201978


doi:10.6342/NTU202201978

The wavefunction for the eigenstate of harmonic oscillator is written as:

Ψn(x) =
1√

2nn!
√√

πx0

e−x2/2x2
0Hn

(
x

x0

)
(2.22)

where x0 =
√

h̄
mω

and Hn(x) = (−1)nex
2 dn

dxn e
−x2 is the Hermite polynomial.

2.4.1.2 Multi-dimensional harmonic oscillator

Under harmonic approximation, the Hamiltonian is written as:

Ĥ =
−h̄2

2

3N∑
i=1

1

mi

∂2

∂x2
i

+
1

2

3N∑
ij

fijxixj, (2.23)

in which, fij is the force constant matrix, or the so-called Hessian matrix, which is

the second order derivative of the potential at the minimum.

One can write down the Newton’s equation of motion along the direction of xi:

x
′′

i =
Fi

mi

= −
∑
j

fij
mi

xj. (2.24)

We can write fij
mi

into a Matrix, and the differential equations become a matrix

equation. However, we can see that fij
mi

is not a symmetric matrix. To simplify the

problem, we introduce the mass-weighted Cartesian coordinates yi =
√
mixi. The

equation of motion is rewritten as:

y
′′

i = −
∑
j

fij√
mi

√
mj

yj = −
∑
j

Fijyj. (2.25)

Now, Fij = Fji, hence F is a symmetric matrix, whose eigenvalues are all real,

and the eigenvectors form a unitary matrix. The diagonalization of F leads to the
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eigenvalues D and the unitary matrix P . Thus, we can define a new vector z⃗ = P †y⃗,

and rewrite the differential equations in z⃗:

z⃗′′ = P †y⃗′′ = −P †PDP †y⃗ = −Dz⃗. (2.26)

Since D is a diagonal matrix, we can write it as:

D =



ω2
1 0 · · · 0

0 ω2
2 · · · 0

... ... . . . ...

0 0 · · · ω2
3N


(2.27)

Hence, we get 3N independent differential equations z′′i = −ω2
i zi, which can

be viewed as 3N indenpendent 1D Harmonic oscillators. The osillating frequencies

should be ωi. The unitary matrix P maps the mass-weighted cartesian coordinate

y into a completely-independent coordinate z. We then call z as normal mode

coordinates, and the eigenvectors Q in the unitary matrix P are called as normal

modes.

From the vibrational energy of normal modes, the Hamiltonian can be written

as:

Ĥ =
−h̄2

2

M∑
i=1

∂2

∂Q2
i

+
1

2

M∑
i=1

ω2
iQ

2
i (2.28)

in which, M = 3N − 6 (or M = 3N − 5 for linear molecules) is the number of

vibrations after separating vibrational motions from translational and rotational

motions.

Due to the decoupling mediated by the normal modes, the Schrödinger equation
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ĤΨ = EΨ can be separated, using the product wavefunction:

Ψν(Q) =
M∏

νi=1

Ψνi(Qi) (2.29)

into M decoupled equations:

−h̄2

2

∂2Ψνi(Qi)

∂Q2
i

+
1

2
ω2
iQ

2
iΨνi(Qi) = EiΨνi(Qi). (2.30)

The total vibrational energy is then:

Ev =
M∑
i=1

Ei (2.31)

where Ei are the eigenvalues of the harmonic oscillator:

Ei = h̄ωi

(
νi +

1

2

)
with νi = 0, 1, 2, ... (2.32)

The eigenfunctions Ψνi(Qi) using Hermite polynomial expression are:

Ψνi(Qi) = NνiHνi(ζi)e
−ζ2i /2, (2.33)

where Nνi is a normalization factor, Hνi are the Hermite polynomials, and ζi =

Qi

√
ωi/h̄.

2.4.2 Anharmonic potential

For larger vibrational amplitudes, i.e., when vibrational quantum number n is

bigger, the observed vibrational frequenicies ωvib differ significantly from the con-

stant ω0 of the harmonic oscillator. It is because the molecular energy does not
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approach ∞ but converges to dissociation energy of the molecule when R → ∞,

resulting in the anharmonicity of the vibartions, which is described as the restoring

force is no longer proportional to the displacement.

The model can be improved by including anharmonic terms in the potential. All

of the higher terms in the potential energy surface beyond harmonic approximation

contribute to the anharmonicity of the vibrations.

Potential energy operator in normal mode coordinates can be extended using

Taylor series as:

V̂ =
1

2!

∑
i

fiiQ̂i

2
+

1

3!

∑
i,j,k

fijkQ̂iQ̂jQ̂k +
1

4!

∑
i,j,k,l

fi,j,k,lQ̂iQ̂jQ̂kQ̂l + ... (2.34)

where the coefficients are derivatives of the potential, shown as:

fii =
∂2V

∂Q2
i

, fijk =
∂3V

∂Qi∂Qj∂Qk

, fijkl =
∂4V

∂Qi∂Qj∂Qk∂Ql

.

With an anharmonic potential, the Schrödinger equation can only be solved

numerically.

2.4.2.1 1D anharmonic potential

Consider a diatomic molecule with only one vibrational mode, quartic potential

is represented as:

V̂ (Q) =
1

2
fiiQ̂

2 +
1

6
fiiiQ̂

3 +
1

24
fiiiiQ̂

4. (2.35)

The solution for the eigenvalues problem obtain from the first-order perturba-
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tion theory [1] is:

En = h̄ω

(
n+

1

2

)
+

3

24

1

2β2
fiiii

[(
n+

1

2

)2

+
1

4

]
. (2.36)

Within the first-order perturbation theory calculations, the first anharmonic term

that contributes to the energy correction is quartic. Therefore, when considering an

anharmonic effect, the potential should be included at least up to fourth-order.

Compare to the energy eigenvalues obtain from harmonic approximation, there

are some impacts that anharmonic effect adds on to the vibrational spectra:

1. The energy levels are no longer equally spaced. Usually, they decrease for

increasing quantum number n.

2. The transitions with ∆n = ±2,±3, ... (overtones) are weakly allowed, while

under harmonic approximation they are forbidden, which will be discussed in

the next section (2.6).

Because of (1), the scaling factor (usually < 1) [17] is commonly used in the harmonic

calculations in order to shift the bands to the right positions as in the experimental

spectra.

2.4.2.2 Multi-dimensional anharmonic potential

Quartic potential for a molecule is expressed as Eq. (2.34).

The wavefunctions ansatz are chosen as the linear combination of the harmonic

eigenfunctions:

Ψ =
∑
i

ciΨi. (2.37)
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Using a perturbation calculation, the energy eigenvalues for non-degenerate state

are:

Eanh
i = E

(0)
i + ⟨i(0)|H ′|i(0)⟩+

∑
k

H2
ik

E
(0)
i − E

(0)
k

, (2.38)

where E
(0)
i are the harmonic energies, and Hik is the coupling constant between

state i and k.

If two vibrational levels are very close in the energy (E(0)
i ≃ E

(0)
k ), which is

called degenerate states, the denominator will be diminished, resulting in a very

large energy correction. There are several additional bands in the vibrational spectra

that only can be explained by the anharmonic effect. I will show examples of Fermi

resonance and combination bands in the following section.

2.4.2.3 Fermi Resonance and combination bands

Fermi resonance is a common phenomenon in molecular vibrational spectra.

It happens when two states are close in energies and have the same symmetries

leading to two states repelling each other (shifting in energies), and the darker

state gains more intensity, while the brighter band decreases in intensity (shifting

in intensities). Fermi resonance usually occurs between stretching fundamental and

bending overtone. When two fundamental modes are excited simultaneously, it is

called combination bands.

Both phenomenon cannot be addressed with only simple scaling factors, we

must include the anharmonicity in the potential so that the overtones can be allowed

in the selection rules.
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2.5 Methods for solving anharmonic vibration

Because of its complexity, the vibrational problems with an anharmonic poten-

tial can only be solved numerically. In this section, I will briefly introduce some

commonly used methods to solve the nuclear Schrödinger equations, which are very

similar to the methods that have been developed in the electronic structure theories.

2.5.1 Vibrational perturbation theory

Perturbation theory is the method to find an approximate solution to a prob-

lem involving a small parameter (small perturbed term). The total Hamiltonian is

written as the sum of unperturbed and perturbed terms:

Ĥ = Ĥ0 + Ĥ
′ (2.39)

in which, Ĥ0 is the Hamiltonian under harmonic approximation, which can be solved

exactly, and Ĥ
′ includes all the higher terms in the potential. Applying vibrational

second-order perturbation theory (VPT2), we have the energy of the state i as:

Ei = E
(0)
i + ⟨Ψi| Ĥ

′ |Ψi⟩+
∑
k

| ⟨Ψi| Ĥ
′ |Ψk⟩ |2

E
(0)
i − E

(0)
k

. (2.40)

The advantage of VPT2 is that it is fast and gives good results near the equi-

librium, and is suitable for large molecular calculations with the ratio between the

coupling value and the energy difference between two states is small, which mean

the perturbed term only makes a small changes to the system. However, the con-

vergence is not guaranteed, and it is not a variational method, so the ground state
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energy is not a lower bound of exact ground state energy. In case of degenerate

or nearly degenerate, VPT2 gives a very large correction term, so it is not a good

method to deal with Fermi resonance and combination bands.

2.5.2 Vibrational self-consistent field

Vibrational self-consistent field (VSCF) is a mean field approach to solve vi-

brational Schrödinger equations.

A VSCF wavefunction is a product of one-dimensional functions:

Ψ
(n)
V SCF =

M∏
i=1

ϕ
(n)
i (Qi). (2.41)

The Schrödinger equation for one mode is:

(
−h̄2

2

∂2ϕ
(n)
i (Qi)

∂Q2
i

+ Ṽ
(n)
i (Qi)

)
ϕ
(n)
i (Qi) = ϵ

(n)
i ϕ

(n)
i (Qi) (2.42)

where Ṽ
(n)
i (Qi) is the effective potential for mode Qi:

Ṽ
(n)
i (Qi) = ⟨

M∏
j ̸=i

ϕ
(n)
j (Qj)| V̂ (Q) |

M∏
j ̸=i

ϕ
(n)
j (Qj)⟩ . (2.43)

The total energy is written as:

EV SCF
n = ⟨Ψ(n)

V SCF | Ĥ |Ψ(n)
V SCF ⟩ (2.44)

= − h̄2

2

M∑
i=1

⟨ϕ(n)
i (Qi)|

∂2ϕ
(n)
i (Qi)

∂Q2
i

|ϕ(n)
i (Qi)⟩+ ⟨Ψ(n)

V SCF | V̂ |Ψ(n)
V SCF ⟩ .

Applying variational method, we have to minimize the ground state energy
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with the constraint that the modals are normalized ⟨ϕ(n)
i |ϕ(n)

i ⟩ = 1. To do the

minimization problem with a constraint, we use Lagrange multiplier method to

obtain the VSCF equation:

[
− h̄2

2

∂2ϕ
(n)
i (Qi)

∂Q2
i

+ ⟨
M∏
j ̸=i

ϕ
(n)
j | V̂ |

M∏
j ̸=i

ϕ
(n)
j ⟩

]
ϕ
(n)
i (Qi) = ϵ

(n)
i ϕ

(n)
i (Qi) (2.45)

and solve it iteratively.

VSCF provides good approximation for the ground state energy and low-lying

states because it its wavefunction is anharmonic. However, for higher excited state,

VSCF is not good enough since it lacks of explicit inter-mode coupling between two

or more modes, as they only have mean field inter-mode coupling. It is also very

expensive in terms of computational cost.

2.5.3 Finite basis representation

In finite basis representation (FBR) method, the vibrational Hamiltonian is

written as the sum of one-mode Hamiltonian Ĥi(Qi) and the coupling of the modes

∆V (Q):

Ĥ(Q) =

f∑
i=1

Ĥi(Qi) + ∆V (Q) (2.46)

in which:

Ĥi(Qi) = −1

2

∂2

∂Q2
i

+ ciiQ
2
i + ciiiQ

3
i + ciiiiQ

4
i (2.47)

∆V (Q) =

f∑
i,j,k

cijkQiQjQk +

f∑
i,j,k,l

cijklQiQjQkQl (2.48)

where f is the number of selected modes.
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FBR wavefunction is the Hartree product of one-dimensional wavefunctions,

as:

Ψn(Q) =

f∏
i=1

ϕ(i)
ni
(Qi), (2.49)

where ϕ
(i)
ni (Qi) is the numerical solution for one-dimensional anharmonic potential.

Therefore, FBR wavefunction is closer to the exact answer compared to the harmonic

basis.

The ground state energy is obtained by diagonalizing Hamiltonian matrix. Us-

ing FBR, the ground state energy is calculated without an iterative process as in

VSCF, saving computational time. On the other hand, FBR and VSCF wavefunc-

tions are similar because they have the same Hilbert space.

2.5.4 Vibrational configuration interaction

The idea of vibrational configuration interaction (VCI) is to describe the wave-

functions as the linear combination of basis functions at different states.

VCI wavefunction is written as:

|ΨV CI⟩ = c(0) |Ψ(0)⟩+
∑
i

c
(r)
i |Ψ(r)

i ⟩+
∑
ij

c
(rs)
ij |Ψ(rs)

ij ⟩+
∑
ijk

c
(rst)
ijk |Ψ(rst)

ijk ⟩+ ... (2.50)

where r, s, and t are the number of quanta excited at the i, j and k normal modes.

By including the full set of excited states, the full VCI wavefunction is obtained.

However, full VCI calculations scale up quickly even for small size molecules and

cannot be finished within a finite time. Therefore, in the calculations, we have to

set the values for the max quantum number of excitations (n), and the number of
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simultaneously excited modes (m).

r + s+ t+ ... ≤ n. (2.51)

The basis sets are expressed as

|Ψ(0)⟩ = |ϕ(0)
1 ϕ

(0)
2 ...ϕ

(0)
i ...ϕ

(0)
M ⟩ (2.52)

|Ψ(r)
i ⟩ = |ϕ(0)

1 ϕ
(0)
2 ...ϕ

(r)
i ...ϕ

(0)
M ⟩ (2.53)

|Ψ(rs)
ij ⟩ = |ϕ(0)

1 ϕ
(0)
2 ...ϕ

(r)
i ...ϕ

(s)
j ...ϕ

(0)
M ⟩ (2.54)

|Ψ(rst)
ijk ⟩ = |ϕ(0)

1 ϕ
(0)
2 ...ϕ

(r)
i ...ϕ

(s)
j ...ϕ

(t)
k ...ϕ

(0)
M ⟩ (2.55)

where ϕ
(r)
i is the harmonic oscillator eigenfunction or FBR 1D eigenfunction for

normal mode Qi.

Applying the variational method, we have the CI eigenvalue equation with the

CI matrix:

c
(n)
i =



⟨Ψ(0)| Ĥ |Ψ(0)⟩ ⟨Ψ(0)| Ĥ |Ψ(r)
i ⟩ · · · ⟨Ψ(0)| Ĥ |Ψ(rst...n)

ijk...m ⟩

⟨Ψ(r)
i | Ĥ |Ψ(0)⟩ ⟨Ψ(r)

i | Ĥ |Ψ(r)
i ⟩ · · · ⟨Ψ(r)

i | Ĥ |Ψ(rst...n)
ijk...m ⟩

... ... . . . ...

⟨Ψ(rst...n)
ijk...m | Ĥ |Ψ(0)⟩ ⟨Ψ(rst...n)

ijk...m | Ĥ |Ψ(r)
i ⟩ · · · ⟨Ψ(rst...n)

ijk...m | Ĥ |Ψ(rst...n)
ijk...m ⟩


.

(2.56)

The VCI wavefunction are better than VSCF wavefunction because it includes

the correlation energy. Full VCI calculations are highly accurate but very time

consuming.
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2.5.5 Discrete variable representation

Discrete variable representation (DVR) method is a numerical method to solve

partial differential equations. In DVR approach, the potential is scanned along the

selected modes, thus its operator is represented as a diagonal matrix on the grid

points. The grid points are chosen as Gauss-Hermite quadratures.

The Hamiltonian in DVR is expressed as

Ĥ = T̂ + V̂ = − h̄2

2

M∑
i=1

1

mi

∇2
i +



V (Q1) 0 0 · · ·

0 V (Q2) 0 · · ·

0 0 V (Q3) · · ·

... ... ... . . .


. (2.57)

The eigenvalues are obtained by diagonalizing the Hamiltonian with the Lanczos

algorithm for sparse matrix.

The expression of potential energy surface on Gaussian Hermite is highly ac-

curate, because with only N grid points, the polynomial is exact up to (2N − 1)th

order. However, the cost is scaled up exponentially with the number of nuclei. For

M dimensional calculation, the total number of grid points is NM . For such a huge

matrix, the diagonalization takes a long time.

To save the computational cost with accuracy, the potential is approximated

by the n-mode representation scheme:

V̂ (Qi, Qj, Qk, ..) = V (0)+
∑
i

∆V
(1)
i (Qi)+

∑
ij

∆V
(2)
ij (Qi, Qj)+

∑
ijk

∆V
(3)
ijk (Qi, Qj, Qk)+...

(2.58)
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where V (0) is the electronic energy at equilibrium point and ∆V
(n)
i is the n-mode

contribution for modes i to the change in electronic energy, which can be obtained

by subtracting all the contributions from its components:

∆V
(1)
i (Qi) = V

(1)
i (Qi)− V (0) (2.59)

∆V
(2)
ij (Qi, Qj) = V

(2)
ij (Qi, Qj)−

∑
i

∆V
(1)
i (Qi)− V (0) (2.60)

∆V
(3)
ijk (Qi, Qj, Qk) = V

(3)
ijk (Qi, Qj, Qk)−∆V

(2)
ij (Qi, Qj)−∆V

(1)
i (Qi)− V (0) (2.61)

where V
(1)
i (Qi) is the one-dimensional cut of PES for the i mode, and V

(2)
ij (Qi, Qj)

is the two-dimensional cut of PES for the i and j mode and so on. Further details

can be found in the original paper by Bowman and coworkers.[18]

2.6 Infrared spectra selection rules

Transitions are observed between different vibrational states depend on a num-

ber of selection rules, which determine the probability of the transition.

For a spontaneous transition from a higher state n
′ to a lower state n

′′ , the

frequency of the emission light is:

νn′n′′ =
Wn′ −Wn′′

h
(2.62)

where Wn′ and Wn′′ are the energies of the states n
′ and n

′′ , with the probability:

An′n′′ =
64π4ν3

n′n′′

3h2
|µn′n′′ |2. (2.63)

The probability of absorption from state n
′′ to state n

′ equals to the probability

23

http://dx.doi.org/10.6342/NTU202201978


doi:10.6342/NTU202201978

of the stimulation emission from state n
′ to state n

′′ :

Bn′′n′ = Bn′n′′ =
8π3

3h2
|µn′n′′ |2 (2.64)

in which, µn′n′′ is the electric dipole moment:

(µX)n′n′′ =

∫
Ψ∗

n′µXΨn′′dr (2.65)

|µn′n′′ |2 = |(µX)n′n′′ |2 + |(µY )n′n′′ |2 + |(µZ)n′n′′ |2. (2.66)

The electric dipole moment can be expanded as a power series in the coordinates

of the atoms:

µX = µ0
X +

M∑
i=1

µ
(i)
X Qi + higher terms. (2.67)

Assume that higher terms contribution is very small and is neglected. Consider pure

vibrational transition between state n′′ and state n′ , under harmonic approximation,

the integral becomes:

∫
Ψ∗

n′µXΨn′′dR = µ0
X

∫
Ψ∗

n′Ψn′′dR +
M∑
i=1

µ
(i)
X

∫
Ψ∗

n′QiΨn′′dR. (2.68)

The first term vanishes because of the orthonormality of the wavefunctions, unless

n
′′
= n

′ . The integral in the second term can be written more explicitly as:

∫
Ψ∗

n
′QiΨn′′dR =

∫
Ψ∗

n
′
1
(Q1)Ψn

′′
1
(Q1)dQ1 (2.69)

×
∫

Ψ∗
n
′
2
(Q2)Ψn

′′
2
(Q2)dQ2...×

∫
Ψ∗

n
′
i
(Qi)QiΨn

′′
i
(Qi)dQi...

Because of the orthonormality of the wavefuntions, the integral will vanish unless

n
′
1 = n

′′
1 , n′

2 = n
′′
2 , etc., with the exception of n′

i and n
′′
i .
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∫
Ψ∗

n
′
i

(Qi)QiΨn
′′
i
(Qi)dQi ̸= 0 only for n

′
i − n

′′
i = ∆n = ±1.

For anharmonic oscillators, the transitions with ∆n = ±2,±3, ... are allowed,

but with much smaller contributions than those for ∆n = ±1.
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Chapter 3 Vibrational

Coordinates in

Anharmonic

Vibrational Analysis

From the previous chapter, we know how to calculate the normal mode co-

ordinates. They are mathematically convenient choice, however, they give a slow

convergence in anharmonic vibrational calculations. In this chapter, other possible

choices of vibrational coordinates will be presented.

3.1 Local normal mode coordinates

One method to localize the modes in specific functional groups is Partial Hes-

sian vibrational analysis (PHVA) proposed by Head.[3] Assume that the coupling

between different fragments is negligible, the mass-weighted Hessian matrix is then

sorted and divided into blocks, each block corresponding to one fragment:

H =

 HAA HAB

HBA HBB

 . (3.1)
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We have to find a unitary transformation matrix U that diagonalizes the block

matrices in the mass-weighted Hessian:

H̃ = UTHU =

 ΛAA H̃AB

H̃BA ΛBB

 (3.2)

where ΛAA and ΛBB are diagonal eigenvalue matrices of HAA and HBB respectively;

meanwhile, using UAA and UBB- the eigenvector of HAA and HBB, the unitary matrix

U is therefore written as:

U =

UAA 0

0 UBB

 . (3.3)

The column vectors in U are localized in either fragment A or fragment B, so we call

them local normal mode coordinates; the frequencies of the vibrational local modes

of each fragment should correspond to the square roots of eigenvalue in ΛAA and

ΛBB.

We have been using this local normal mode coordinate to investigate the vibra-

tional spectroscopic signatures of many hydrogen-bonded clusters. [4, 5, 6, 7, 8, 9, 10]

The results show that local normal mode coordinates converge faster than normal

mode coordinates in the anharmonic calculations, and provide clearer pictures of the

vibrational modes. However, in this approach, the difficulty is on how to choose the

fragments. Usually, it is based on one’s chemical intuition, and it may be straight-

forward only for particular systems. For example, for some aromatic molecules, it is

counter-intuitive to cut the ring into different fragments. Therefore, we should find

a more automatic way to define the localized coordinates.
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3.2 Localized coordinates

Localized coordinates are unitary transformations of normal mode coordinates

that maximize a localization criterion:

Q̃i =

f∑
s=1

UsiQs, (3.4)

where f is the number of selected modes.

Borrowing the orbital localization techniques, Jacob and Reiher proposed two

ways to define the localization criteria ζ(Q̃).[11]

1. The first way, which resembles the Pipek and Mezey localization,[19] is to

maximize the sum of the squared of “atomic contributions”to the modes:

ζat(Q̃) =

f∑
i=1

N∑
p=1

( ∑
α=x,y,z

(Q̃iα,p)
2

)2

. (3.5)

2. The second definition, which is similar to Boys localization, [20, 21, 22] is to

maximize the distance between the ”centers” of the modes:

ζdist =

f∑
i=1

(
N∑
p=1

∑
α=x,y,x

(Q̃iα,p)
2Ri

)2

(3.6)

where Ri is the position vector of each nucleus with respect to the molecular

origin.

The frequencies of localized modes are obtained from the diagonal terms of
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transformed Hessian matrix, which is:

H̃ = Q̃THQ̃. (3.7)

H̃ is no longer a diagonal matrix.

In their work, Jacob and Reiher also made a comparison between two differ-

ent localization criteria and found that both approaches yield very similar localized

modes. Therefore, in this thesis, I will only consider the atomic contribution crite-

rion. The algorithm for maximizing the localization criterion using in this thesis is

Jacobi sweep, which will be discussed in the next session.

Many works using localized coordinates [2, 12, 13] have proved it has advantages

over the normal mode coordinates when the potential is anharmonic. Those works

showed that the localized coordinates have better convergence in n-mode expansion

and VCI calculations. Localized modes tend to involve only a few atoms’ movements

in identifiable fragments, which is not only followed our chemical intuition but also

means that the description of local chemical units can be usefully transferable to

understand the bigger systems. However, total localization does not benefit all vi-

brational modes. Over-localization could introduce a substantial harmonic coupling

constant in the mass-weighted Hessian matrix. [14, 12, 2] It implies that the opti-

mal coordinates should be somewhere between fully localized and fully delocalized

coordinates.
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3.3 Optimized coordinates

The idea of optimizing coordinates by minimizing ground state energy dates

back to quite early work from Thompson and Truhlar in 1982, [15] and a robust and

general optimization algorithm for VSCF energies is proposed by Yagi. [16]

Our approach is using the wavefunction as the product of one-dimensional so-

lutions in finite basis representation (FBR).

3.3.1 Optimized coordinates

A new set of coordinates are defined as the unitary transformation of normal

mode coordinates:

Q̃i =

f∑
s=1

UsiQs, (3.8)

with

U †U = UU † = 1 (3.9)

where 1 is a unit matrix. With the new set of coordinates, the Hamiltonian is

rewritten as:

Ĥ(Q̃) =

f∑
i=1

Ĥi(Q̃i) + ∆V (Q̃) (3.10)

where:

Ĥi(Q̃i) = −1

2

∂2

∂Q̃i2
+ c̃iiQ̃

2
i + c̃iiiQ̃

3
i (3.11)

∆V (Q̃) =

f∑
i,j

c̃ijQ̃iQ̃j +

f∑
i,j,k

c̃ijkQ̃iQ̃jQ̃k. (3.12)

Under the unitary transformation, the approximate Hamiltonian is invariant.
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The FBR wavefunction in the new set of coordinates is:

Ψn(Q̃) =

f∏
i=1

ϕf
ni
(Q̃i). (3.13)

The ground state energy in obtained by diagonalizing the Hamiltonian matrix.

Apply the variational principle, the optimized coordinate is defined as the one to

minimize the ground state energy.

3.3.2 Optimization algorithm

Our target is to apply the variational principle method to find the optimized

coordinates, which are unitary transformations of normal mode coordinates that

minimize the ground state energy. It is generally a difficult task, because there

are 3N − 6 vibrational modes making it becomes a many-variable optimization

problem. In this session, I will give an overview of the algorithm to obtain optimized

coordinates. The details will be discussed in the next few sub-sessions in this thesis.

The optimization algorithm suggested by Yagi and co-workers [16] is quite ro-

bust as it expresses the unitary transformation matrix as a product of Jacobi ma-

trices, and does only one-dimensional optimization at a time. The one-variable

minimization problem could be done in various ways. One efficient method is New-

ton’s minimization with a good initial starting point obtained as the minimum value

in Fourier series. The procedure is repeated for all coordinate pairs, thus we obtain

the n one-dimensional solutions for the n-variable optimization problem. The whole

process is then called Jacobi sweep. However, one Jacobi sweep is not guaranteed

to provide the best answer for the optimization problem. Because the modes are
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coupled, the rotation of one pair affects all other coordinates. Therefore, we have

to repeat the Jacobi sweep a few times to make sure that the energy is converged.

Given the overall idea, let’s discuss the detailed implementation of the one-

dimensional optimization process and the Jacobi sweep with the example of the

water molecule to demonstrate the algorithm.

3.3.2.1 1D optimization

Now, we consider a two-mode system: there is only a single θij value to de-

termine, so the problem becomes one-dimensional optimization. Discrete cosine

transform and Newton’s minimization method are performed to obtain the optimal

θij for minimizing energy function in one dimension, denoted as E1D(θij).

The rotational matrix for one pair coordinates (i, j) is written as:

U =

cos(θij) − sin(θij)

sin(θij) cos(θij)

 . (3.14)

The new coordinates (Q̃i, Q̃j) transformed from normal mode coordinates (Qi, Qj)

are:

Q̃i = Qi cos(θij)−Qj sin(θij) (3.15)

Q̃j = Qi sin(θij) +Qj cos(θij). (3.16)
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The transformed force constants are:

c̃ij =

f∑
s=1

UsiUsjcss (3.17)

c̃ijk =

f∑
s,t,u=1

UsiUtjUukcstu. (3.18)

With the new set of coordinates and force constants, the FBR 1D eigenvalue

equation is rewritten and diagonalized to get the ground state energy. For each θij

value, we can find the corresponding ground state energy E1D(θij).

The E1D(θij) is scanned along θij axis with evenly spaced grids, which are

chosen as:

−π

4
≤ θ[n] =

nπ

2(2p+ 1)
≤ π

4
, where n = −p,−p+ 1, ..., p. (3.19)

Since θ has its periodicity, the E1D(θij) is the periodic function with the period of π
2
.

For n scanning grid points, we have n exact values of the ground state energies, and

the function can be interpolated by fitting the discrete energies to a discrete cosine

transform (DCT) with zero-padding in the inverse fast Fourier transform (FFT).

The approximate discrete function by fitting is written as:

E1D(θij) ≈ Ẽ1D(θij) = x0 +

p∑
m=1

xm cos( π

p+ 1
mθij) (3.20)

where the expansion coefficient is:

xm =
1

2p+ 1

p∑
n=−p

E1D(θ
[n]
ij ) cos( π

p+ 1
mθ

[n]
ij ). (3.21)

By fitting, the number of data points increases, and it provides us a good guess for
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the minimum energy in one dimension, denoted as Ẽmin
1D (θ̃ij) at the θ̃ij value.

To refine the result, Newton’s minimization method is applied. Newton’s

method attempts to solve this problem by constructing a sequence θkij from the

initial guess θ̃ij that converges to a minimizer θ1D
ij of the energy function E1D(θij) by

using a sequence of second-order Taylor expansion of E1D(θij) around the iterates.

The second-order Taylor expansion of E1D(θij) around θkij is:

E1D(θ
k
ij +∆θij) = E1D(θ

k
ij) + E

′

1D(θ
k
ij)∆θij + E

′′

1D(θ
k
ij)(∆θij)

2. (3.22)

To find the minimum of the function, the first derivation of the function over ∆θij

must be 0:

d

d∆θij
(E1D(θ

k
ij) + E

′

1D(θ
k
ij)∆θij + E

′′

1D(θ
k
ij)(∆θij)

2) = 0. (3.23)

Therefore, the minimum is achieved for:

∆θij = −
E

′
1D(θ

k
ij)

E
′′
1D(θ

k
ij)

. (3.24)

We obtain the refine value for θif by performing Newton’s iteration:

θk+1
ij = θkij −

E
′
1D(θ

k
ij)

E
′′
1D(θ

k
ij)

, (3.25)

in which, the derivatives are calculated by finite difference method:

E
′

1D(θ
k
ij) =

E1D(θ
k
ij + h)− E1D(θ

k
ij − h)

2h
(3.26)

E
′′

1D(θ
k
ij) =

E1D(θ
k
ij − h)− 2E1D(θ

k
ij) + E1D(θ

k
ij + h)

h2
, (3.27)
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where h is the step size in the finite difference method.

Take water molecule as an example:

There are three normal modes for a water monomer molecule, which are bend-

ing, symmetric stretching and asymmetric stretching modes. Consider the rotation

of only two of the normal modes, while the third coordinate is fixed. In this example,

the anharmonic potential included up to cubic terms only. The energy functions

were scanned with seven grid points. Those grid points were then fitted to the

discrete cosine transforms.

(a) Ẽ1D(θ̃12)

(b) Ẽ1D(θ̃13)

(c) Ẽ1D(θ̃23)

Figure 3.1: The energy is one-dimensional function of theta. The red points were
the scanning points of the one-dimensional energy function and the green points
were the fitting points to the discrete cosine transforms.
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As shown in the Figure 3.1 above, we know roughly the shape of one-dimensional

potential and the minimum points could be located and shown in the table as the

initial guess to do Newton’s minimization method.

(i,j) Ẽ1D(θ̃ij)(cm−1) θ̃ij(degree)
(1,2) 4573.6026 0.7714
(1,3) 4573.7158 0.0642
(2,3) 4543.7852 -45.0000

Table 3.1: Initial guess obtained from discrete cosine transform

From the initial guess in table 3.1, Newton’s minimization method was performed

to refine the result.

3.3.2.2 Jacobi Sweep

From the previous sub-section, we know how to obtain the optimal value for

one coordinate pair. For a molecule with a set, or subset, of f modes, there are

F = f(f−1)
2

coordinate pairs. To do the F variable optimization problem, Yagi

proposed to solve it iteratively by doing only one-dimensional problem at a time

and fixed the other pairs by doing Jacobi rotations.

The size of the Jacobi matrix for the rotation of coordinate pair (i, j) should

be f × f , with the matrix elements:

Uii = Ujj = cos(θij) (3.28)

Uij = −Uji = sin(θij) (3.29)

and, otherwise,

Ukl = δkl. (3.30)
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The unitary transformation matrix for one sweep is constructed as the product of

Jacobi matrices:

u =
F∏
i=1

Ui. (3.31)

Thus, for M Jacobi sweeps, the unitary transformation matrix is:

U =
M∏

m=1

u(m). (3.32)

Since the unitary matrices do not commute, the product is arranged in such a way

that the smaller index m comes to the left. With the expression of U , one Jacobi

sweep loops for all over the coordinate pairs and do one-dimensional minization at

one time. The process is repeated a few times to make sure that the ground state

energy is converged.

Continue the previous example of water molecule:

For one Jacobi sweep, the unitary transformation matrix was written as:

u =


cos(θ12) − sin(θ12) 0

sin(θ12) cos(θ12) 0

0 0 1

×


cos(θ13) 0 − sin(θ13)

0 1 0

sin(θ13) 0 cos(θ13)

×

1 0 0

0 cos(θ23) − sin(θ23)

0 sin(θ23) cos(θ23)

 .

(3.33)

For n Jacobi sweeps, the unitary transformation matrix was written as in Eq. (3.32).

Applied Jacobi sweeps on water molecules, we obtained:

sweep EGS ∆EGS θ12 θ13 θ23
0 4573.7156 0 0 0 0
1 4543.9017 29.8138 0.6936 -0.0002 -45.0143
2 4543.7881 0.1136 -0.4786 -0.0079 0.0023
3 4543.7881 0.0000 -0.0209 -0.0220 -0.0043

Table 3.2: Jacobi sweeps for water molecule. The energies are in cm−1, and the
theta are in degree.
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As seen on the table 3.2, the ground state energy converged after three Jacobi

sweeps with the convergence ≤ 10−3 cm−1.

One can also use the Jacobi sweep and Newton’s method to obtain the localized

coordinates with just one modified step: instead of maximizing localization criterion,

we can minimize its negative function (ζat(Q̃)).

3.4 Other ideas

Besides, there are also other approaches to improve from the localized coordi-

nates by limiting the harmonic coupling.[23, 24] Another idea, [25] from the same

authors of localized metric with constrained optimization, [24] is to minimize the off-

diagonal anharmonic coupling and maximize the diagonal anharmonicity of M + 1

Hessian, where M is the number of the selected modes. From the spirit of optimizing

coordinates based on ground state energies, in 2004, Yagi and coworkers [26] pro-

posed the idea of stage-average optimal coordinates by including the fundamental

transition states of the targeted motions with an equal weight in the optimization

procedure. There have been a several following works [27, 28, 29, 30] from the same

group moving toward to the bigger size molecules.
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Chapter 4 Computational Details

Quantum chemical calculations were performed using Gaussian16 [31] program

to determine the electronic structures and normal mode coordinates. The geometric

structures were optimized at the MP2/aug-cc-pvdz level. The harmonic frequencies

were obtained by diagonalizing the mass-weighted Hessian matrix, which is the

second-order derivative of the total energy.

In coordinate optimization process, the anharmonic potential was obtained by

Taylor’s expansion truncated at the forth order.The anharmonic vibrational Hamil-

tonian included all the cubic terms and part of the quartic terms, which were only

up to three different modes, in the potential energy operator, where the third and

fourth-order force constants were calculated using finite difference methods from the

analytical second-order derivatives. The step size to do finite difference method was

chosen as 0.01 Å.

The optimization algorithm was a combination of Jacobi’s sweep and Newton’s

minimization method, and the whole many-variable optimization problem could

be treated as many one-dimensional minimization problems. The one-dimensional

energy function was scanned along θ direction with seven evenly spaced grid points.

The function can be interpolated by fitting the seven scanning points to a discrete
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cosine transform to get one hundred times data points. The approximated theta

value as the point corresponding to the lowest energy of the fitted function was

chosen to be the initial guess of the Newton’s minimization step. In Newton’s

method, the step size to do finite difference method was chosen as 0.0005 Å. The

convergences were 10−6 and 10−3 cm−1 for the derivatives in Newton’s method and

the ground state energies in Jacobi’s sweep, respectively.

In order to compared the results with the experiments, the vibrational spectra

were simulated with DVR and VCI methods, which were implemented by Dr. Qian-

Rui Huang, the detailed description can be found in the early work. [10, 32, 33]

The anharmonic potential for VCI calculations were the same quartic potentials as

reported above. The basis were chosen as six for the maximum number of excitations

(n) and four for the number of simultaneously excited modes (m). In DVR method,

the anharmonic potentials were scanned along the selected modes, which were five

points for bending, seven points for stretching modes. In both methods, the matrices

are very sparse and can be diagonalized using ARPACK[34] in the SciPy package to

obtain the ground state and low-lying excited states with the eigenvalues up to 5000

cm−1. The Fermi golden rule was applied to evaluate the absorption intensities of

vibrational transitions.
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Chapter 5 Results and

Discussion

In this chapter, our results are presented as follows: First, the differences be-

tween HO and FBR basis will be shown and discussed to understand our choice

of the wavefunction in optimizing coordinates. After that, I will show the illus-

tration of the optimization process and the performance of optimized coordinates

and localized coordinates in VCI and DVR calculations with the example of water

monomer and water dimer molecules. Then, four sets of coordinates, which are

normal mode coordinates, local normal mode coordinates, localized coordinates and

optimized coordinates will be examine in the study of Fermi resonance patterns in

some hydrogen-bonded cluster, i.e. ammonia and methylamine clusters to demon-

strate how the choice of coordinates can help to reduce the degree of freedom in VCI

or DVR calculations with qualitative description of the main features of the spectra.

Since our study mainly focused on Fermi resonance, which is due to the coupling

between the stretching fundamental and bending overtone, only those high-frequency

motions were considered in our examples. Besides, the low-frequency modes are

normally floppy, therefore they are believed to be better described with curvilinear

coordinates than with rectilinear coordinates. The unitary transformation from
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normal mode coordinates cannot help to solve this problem. Thus, this study only

focused on the high-frequency vibrational modes.

Each test system will be discussed in turn.

5.1 Differences between HO and FBR basis

The Hamiltonian can be written as the sum of one-dimensional Hamiltonian

and the coupling of the modes, and wavefunction can be expressed as the product

of one-dimensional harmonic oscillator (HO) wavefunctions or one-dimensional fi-

nite basis representation (FBR) wavefunctions. Under the harmonic approximation,

both choices should give us the same results. However, the results will be different

if the anharmonic effects are considered.

Table 5.1 shows the ground state energy in normal mode coordinates in different

basis representation before and after diagonalizing the CI matrix, which includes

only up to one-quanta basis kets for the purpose of optimizing coordinates. In

Table 5.1, ⟨0|Ĥ|0⟩ is the zero-quanta basis ket and EGS is the ground state energy

calculated by diagonalizing the CI matrix in either HO or FBR representation. The

difference between ⟨0|Ĥ|0⟩ and EGS is caused by the coupling between the zero and

one quanta basis kets that push the ground state energy lower. With harmonic

potential (k2 only), FBR and HO basis gave us the same results. Since there is no

cross term in normal mode coordinates under harmonic approximation, the matrices

are already in diagonal form, the ground state energies are simply half of the sum of

the normal mode frequencies. When the cubic terms of the potential were included,

HO and FBR gave us different results. In HO basis, the ⟨0|Ĥ|0⟩ value did not
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change compared to the value of harmonic potential, however, the EGS went down.

In FBR basis, both ⟨0|Ĥ|0⟩ and EGS values decreased since with FBR, the one-

dimensional wavefunctions already take into account the anharmonic effects. When

the cubic terms of the potential were excluded and the quartic terms included, the

energies increased, however, there was no change in the values before and after

diagonalizing the matrix in both representations. Because the zero and one quanta

basis kets couple through the odd operators, therefore, only the cubic terms have

the contribution of the couplings between those basis kets. The last column shows

the results of the quartic potentials which were actually used in our calculations. It

is clearly seen that FBR gave lower ground state energy. Furthermore, in the FBR,

the values before and after diagonalizing the CI matrix are closer, indicating that

the couplings are smaller on FBR basis than on harmonic basis. Hence, FBR gave

us a better zeroth-order picture and faster convergence than the harmonic basis did.

5.2 Optimization process and the performance of

optimized coordinates and localized coordinates

in VCI and DVR calculations

As one of the most studied clusters with an abundance of available data for

comparison, the water clusters, i.e. water monomer and water dimer molecule, were

our first test cases to illustrate the optimization process and its advantages in the

performances of VCI and DVR calculations.
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5.2.1 Water monomer

The optimization procedure was repeated as in chapter 3.3.3 with an anhar-

monic potential including cubic and part of quartic terms up to three-mode dif-

ferent. The one-dimensional energy functions were scanned and fitted to discrete

cosine transforms as shown in the Figure 5.1 and the results of Jacobi’s sweep for

water monomer molecule are shown in Table 5.2. The energy convergence crite-

rion was reached within three Jacobi sweeps. Comparing cubic (see Figure 3.1) and

quartic (see Figure 5.1) potentials, they shared the same shape of the potential,

only differed in the magnitude of the energy. The ground-state energy decreased

when modes 2 and 3, i.e. two stretching modes, were mixed. The similar results

were obtained in Yagi’s work [16]. The resulting coordinates were two degenerate

stretching modes localized on the hydrogen bond and the bending mode remaining

the same as normal mode coordinates. The visualization of the vibrational modes

are shown in Figure A.1.

The new set of force constants in optimized coordinates were obtained using

the unitary transformation matrix and compared to those in normal mode coordi-

nates. Since only two stretching mode were rotated after the optimization process,

the Table 5.3 only shows the force constants of those two modes in quartic potential.

In normal mode coordinates, there was no cross-term in the second order force con-

stants, while the rotational matrix introduced a harmonic coupling of −134 cm−1

in the optimized coordinates. However, some anharmonic coupling constants found

in normal mode coordinates were minimized in the optimized coordinates and con-

centrated in the diagonal terms. The total coupling constants in normal mode
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coordinates was bigger than the total coupling constants in optimized coordinates,

indicating the wavefunctions with the optimized coordinates are better.

The VCI calculations with truncated basis sets were performed and compared

between two sets of coordinates. The results are presented in Table 5.4. In the full

calculations, VCI[3]-(8) and oc-VCI[3]-(8), both sets of coordinates gave the same

results. However, in the truncated-basis set calculations, the optimized coordinates

converged faster than the normal mode coordinates did.

After determining the set of optimized coordinates, a better quality of the PES

can be obtained by the DVR method. The (small size) Hamiltonian matrix be-

fore diagonalization are shown in Table 5.5. The water monomer molecules possess

a C2v symmetry, with the bending and symmetric stretching modes belong to A1

representation and the asymmetric stretching mode belongs to B2 representation.

Due to the symmetry, in normal mode coordinates, the bending fundamental and

overtone basis kets (|1, 0, 0⟩ and |2, 0, 0⟩) only couple with the symmetric stretching

fundamental (|0, 1, 0⟩). Therefore, in the DVR calculation with normal mode coor-

dinates, there are some zero values in the off-diagonal matrix elements since there is

no coupling between bending fundamental and overtone basis kets and asymmetric

stretching basis ket (|0, 0, 1⟩). However, in the optimized coordinates, two stretching

modes are localized and degenerate, hence, the symmetry of those two modes are

broken. The bending basis kets couples with both stretching fundamental basis kets

with the same magnitude of the coupling constants. In normal mode coordinates,

only the symmetric stretching fundamental basis ket couple strongly with the zero

quanta basis ket, while in optimized coordinates, both stretching fundamental basis

kets couple with the zero quanta basis ket with the same coupling constants at about

47

http://dx.doi.org/10.6342/NTU202201978


doi:10.6342/NTU202201978

20 cm−1, and they are much smaller in magnitude than the coupling constant in the

normal mode case, at −250 cm−1. Some big coupling constants in the normal mode

coordinates, i.e. between stretching fundamental and stretching overtone basis kets,

for both symmetric and asymmetric stretching, also become smaller in the optimized

coordinates.

After diagonalizing the Hamiltonian matrix to get the peak positions, the in-

tensities were calculated using Fermi golden rule. The contribution of the basis

kets to the eigenstates are computed by the inner product between the eigenstates

and the basis kets. The results of peak positions, intensities and projection are

shown in the Table 5.6. The notation |ni, nj, nk⟩ is the basis ket in DVR calcula-

tion; where ni, nj, nk are the FBR 1D eigenfunctions, three number inside the ket are

corresponding to the quantum number of bending and two stretching modes, respec-

tively. From Table 5.6, for the simulated spectra using DVR method, both normal

mode coordinates and optimized coordinates gave similar results of the peak posi-

tions and intensities. However, the contributions of the basis kets to the eigenstates

in two sets of coordinates were different. In the optimized coordinates case, the two

stretching fundamental basis kets were degenerate, therefore, their contributions to

the eigenstates were similar.

5.2.2 Water dimer

Our second test case was the water dimer molecule. There are 12 vibrational

motions for a water dimer molecule. The first six degrees of freedom are inter-

molecular motions with low frequencies. Therefore, in this test case, only the six

high-frequency vibrational modes, which are two bending and four stretching modes,
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were included in the optimization process.

Adapting the idea of tuning localization frequency window, [35] the six de-

grees of freedom were divided into two sub-groups (two bending and four stretching

modes), in order to reduce the number of theta variables in the optimization pro-

cess and to prevent the mixing of bending and stretching modes leading to some

unphysical local modes.

The optimizations with both cubic and quartic potentials were tested. Similar

to the results of the water monomer molecule, the one-dimensional energy functions

with both potentials had the same shape, only differed in the magnitudes of energies.

The normal mode coordinates and optimized coordinates of the water dimer are

shown in Figure A.4. In the normal mode coordinates, all the vibrational motions

are delocalized. In the optimized coordinates, the bending frequencies did not change

much compared with the bending frequencies in normal mode coordinates but they

were localized on each monomer. All four stretching modes were localized on the

hydrogen bonds, with two stretchings of the proton-acceptor were degenerate.

Table 5.7 presents the force constants of four stretching modes before and after

rotating the coordinates.The cubic potential extended by Taylor series converged

much faster in optimized coordinates than in normal mode coordinates. Although in

optimized coordinates, some harmonic couplings arose from rotating the coordinates,

the anharmonic couplings were much smaller than those anharmonic couplings in

normal mode coordinates, suggesting that the set of optimized coordinates is a better

choice.

In addition, the localized coordinates were also tested for the water dimer
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molecule. The results were comparable to the optimized coordinates, but maximiz-

ing the localization criterion does not require an anharmonic potential, therefore, the

localization process was much faster than optimization process. The visualizations

of the localized coordinates are shown in the Figure A.4.

5.3 Fermi resonance study assisted by the choices

of coordinates

Fermi resonance is one of the quantum mechanical mechanisms, which leads

to the complexity of the vibrational spectroscopic in the X-H (X = O, N, and C)

stretching frequency region. [5, 36, 37, 38, 39] The difficulty in studying Fermi

resonance is mainly due to:

- The sensitivity of the intensity borrowing depends on the position of stretching

fundamental transition, which carries the main intensity of the bands. This problem

can be improved by getting a better quality potential energy surface using DVR with

a high-level of theory method.

- In normal mode coordinates, the coupling constants between stretching fun-

damental and bending like overtones are delocalized due to the delocalization of the

vibrational modes among the whole molecule.

This thesis mainly focused on solving the second problem with the use of opti-

mized and localized coordinates.

Motivated by our recent publications on understanding Fermi resonance in the

complex vibrational spectra of amino and methyl groups in hydrogen-bonded sys-
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tems, [40, 6, 8, 7] ammonia and methylamine clusters were chosen as our tested

cases to demonstrate the performance of four sets of coordinates: normal mode co-

ordinates (NC), local normal mode coordinates (LNM), localized coordinates (LC),

and optimized coordinates (OC) in studying Fermi resonance patterns. The results

are presented in the next sub-sections of this chapter.

5.3.1 Ammonia cluster

5.3.1.1 Ammonia dimer

For ammonia dimer molecule, ten vibrational motions including four bending

modes and six stretching modes were considered and divided into two sub-groups.

The normal mode coordinates (NC), local normal mode coordinates (LNM),

localized coordinates (LC), and optimized coordinates (OC) for ammonia dimer

molecule are shown in the Figure A.5, A.6, A.7 and A.8 respectively. In NC, all the

vibrational motions were delocalized for the whole molecule. In LNM, the vibrational

motions were localized on each monomer. The OC and LC gave quite similar results,

in which, two bending modes were localized on the proton-donor monomer, other two

were localized on the proton-acceptor monomer, and six stretching were localized

on the six hydrogen bonds.

Table 5.8, 5.9, 5.10 presents the ten-dimensional VCI calculations with normal

mode coordinates, optimized coordinates and localized coordinates for ammonia

dimer molecule. In this case, it was shown that in the reduced-dimensional VCI

calculations, at the size of basis set [6] − (6), the optimized coordinates and local-

ized coordinates gave similar results as the normal mode coordinates did. Slight
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improvements of the MAD were obtained when using optimized coordinates or lo-

calized coordinates. Both sets of coordinates suggested the size of the basis set for

VCI calculation at [3]-(5) with the convergence less than 3 cm−1 with the size of the

Hamiltonian matrix were just 5% compared to the size of the Hamiltonian matrix

with the basis set [6]-(6).

The simulated spectra of the ammonia dimer molecule by VCI methods with

four different sets of coordinates are shown in the Figure 5.2. From Figure 5.2,

the peak positions were consistent in all spectra simulated with different sets of

coordinates using ten degrees of freedom. The intensity ratio of the two main peaks

were flipped in OC and LC pictures compared to NC and LNM spectra.

As learned from previous work, [7] the spectra features are mainly contributed

by proton-donor ammonia. Therefore, five-dimensional calculations on proton-donor

and five-dimensional calculations on proton-acceptor in LNM, LC and OC were

performed to investigate the contribution of proton-donor and proton-acceptor to

the spectra and were compared with ten-dimensional calculation in NC. The results

are presented in the Figure 5.3. The VCI calculation with only five vibrational

modes on the proton-donor monomer using LNM, LC and OC captured the Fermi

resonance patterns of ammonia dimer molecule. The small peaks at around 3350

cm−1 and 3490 cm−1 obtained in NC with ten modes are the stretching fundamental

transitions in proton-acceptor. Therefore, we can conclude that the contributions

of proton-acceptor ammonia on the spectra are very minor.

In order to have a qualitative comparison with the experimental result, the

DVR reduced dimensional calculations were performed with four different sets of

52

http://dx.doi.org/10.6342/NTU202201978


doi:10.6342/NTU202201978

coordinates with five degrees of freedom for LNM, LC and OC and ten degrees of

freedom for NC. The results are presented in the Figure 5.4. The DVR calculations

with LNM, LC and OC gave similar spectra as normal mode coordinates did with

a smaller degree of freedom. A small peak at about 3467 cm−1 in NC was still

there in the LNM, LC, and OC spectra but with a very weak intensity because the

transition dipole moment were cancelled out (see Table 5.11). Better agreement

with the experimental result can be achieved by using higher levels of theory with

bigger size basis sets. [7]

5.3.1.2 Ammonia trimer

For ammonia trimer molecule, the hydrogen bond is stronger than the ammonia

dimer molecule, each monomer is both proton-donor and prton-acceptor. Fifteen

vibrational motions including six bending and nine stretching modes were considered

in the optimization and localization processes and they were divided into two sub-

groups.

The visualization of vibrational motions in four sets of coordinates are shown

in the Figure A.9, A.10, A.11 and A.12 corresponding to NC, LNM, LC and OC,

respectively. Similar to the results obtained in ammonia dimer, all the vibrational

motions were delocalized for the whole molecule in NC and were localized on each

monomer in LNM. The stretching modes were localized on the hydrogen bonds with

the frequencies were degenerated for six free NH modes and triply degenerated for

three bonded NH modes, and two bending modes localized in each monomer with

two sets of triply degenerated frequencies in both LC and OC.
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The VCI calculations with fifteen degrees of freedom in NC, LNM, LC and

OC were performed. Besides, similar to the analysis had been done for ammonia

dimer, the VCI calculations with five degrees of freedom on an ammonia monomer

in LNM, LC and OC were also performed and compared to the higher dimensional

calculations. The results are shown in the Figure 5.5. As we can see from the spectra

in orange, the VCI calculation with fifteen modes in NC gave a very bad result,

while the results of the VCI calculations with LNM, OC and LC were quite similar

and more comparable with the experimental spectra. The spectra in blue, which are

smaller calculations with only five modes on an ammonia monomer still captured the

main features of the spectra calculated by fifteen modes but with weaker intensities.

LNM, LC and OC gave the three sets of triply degenerate frequencies for each

ammonia monomer, therefore, each monomer had the equally contribution to the

spectra features obtained in fifteen dimensional calculations.

In addition, the DVR calculation with OC using five degrees of freedom was

performed and compared with the VCI calculations with OC using five and fifteen

modes and the experimental spectra as shown in the Figure 5.6. With a higher

quality potential energy surface, the DVR calculation with optimized coordinates

using five modes gave us a more comparable picture to the experimental result. [7]

5.3.2 Methylamine cluster

As found in the previous work, [40] the couplings between amino and methyl

functional groups in methylamine cluster are negligible, therefore they can be treated

separately in the vibrational spectrum problems.
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5.3.2.1 Methylamine dimer

For methylamine dimer molecule, six and twelve vibrational motions were con-

sidered for the amino and methyl groups, respectively. The visualization of six

stretching, four bending and two umbrella modes in the methyl group; and four

stretching modes and two bending modes in the amino group in four sets of coordi-

nates NC, LNM, LC and OC are shown in the Figure A.13, A.14, A.15 and A.16 in

the order. In this case, the vibrational motions of amino and methyl groups are well

separated in all sets of coordinates. Notedly, the vibrational motions were localized

on each methylamine monomer in both NC and LNM for amino group, while in LC

and OC, all the stretching modes were localized on the hydrogen bonds and bending

like motions localized on the functional groups.

The spectra simulated by VCI method with four sets of coordinates in N-H

stretching region are shown in Figure 5.7 and the spectra in C-H stretching region

are shown in Figure 5.8. In the N-H stretching region, NC, LNM, LC and OC gave

similar results. The spectra simulated by VCI method with only three degrees of

freedom of amino group of proton-donor methylamine gave very good agreement

with the spectra simulated by six degrees of freedom. The small peaks at 3386

cm−1 and 3466 cm−1 in the six dimensional calculations comes from the stretching

fundamental transitions of the amino group of proton-acceptor methylamine. In

the C-H stretching region, the twelve dimensional spectra simulated by four sets of

coordinates were very similar. However, the spectra features are more complicated

and were not very well described by only six dimensional calculations on the methyl

group of the proton-donor methylamine. The other bands can be recovered by
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including the other six degrees of freedom of the methyl group of the proton-acceptor

methylamine. It is because two methyl groups are not identical but have negligible

couplings.

5.3.2.2 Methylamine trimer

For methylamine trimer molecule, nine and eighteen vibrational motions were

considered for the amino and methyl groups, respectively.

The visualization of nine stretching, six bending and three umbrella modes in

the methyl group in four sets of coordinates are shown in the Figure A.17, A.19, A.21

and A.23 ; and six stretching modes and four bending modes in the amino group are

shown in the Figure A.18, A.20, A.22 and A.24. The vibrational motions of amino

and methyl groups were still well separated in all sets of coordinates. However, unlike

the methylamine dimer molecule, in methylamine trimer, the vibrational motions

of each functional group were delocalized for the whole molecule in NC, while they

were localized on each monomer in LNM, and even more localized on each hydrogen

bond for the stretching motions in LC and OC.

Figure 5.9 and Figure 5.10 show the VCI calculated spectra in four different

sets of coordinates in the N-H and C-H stretching region. In Figure 5.9, the spectra

simulated by VCI method with three modes on the amino group of a methylamine

monomer were capable to describe the main features of the spectra simulated with

nine degrees of freedom. It is worthwhile to notice that the three dimensional

calculations in two monomers gave very similar results, indicating that those two

monomers had similar inter and intra molecular interactions. The spectra simulated

56

http://dx.doi.org/10.6342/NTU202201978


doi:10.6342/NTU202201978

by VCI method using six degrees of freedom on the methyl group of a methylamine

monomer were also comparable with those results using eighteen degrees of freedom.

5.3.3 Lower-frequency motions

In addition, the rocking motions of methylamine dimer and trimer were also

examine in four sets of coordinates. The frequencies and vibrational motions of the

rocking modes in four sets of coordinates are shown in the Figure A.25 for dimer

and in the Figure A.26 for trimer. In the methylamine dimer case, LNM and OC

gave similar results for the rocking modes, with the motions were localized on each

monomer and the frequencies did not change compared to NC. In LC, the mode

vectors were also localized on each methylamine monomer, however, the frequencies

of the proton-donor methylamine vibrations were different from NC by 27 cm−1,

indicating an over-localization happened. In the case of methylamine trimer, the

mode vectors of the rocking motions were localized on each methylamine monomer

in both LNM and LC, however, the LC frequencies deviated quite substantially from

NC while LNM frequencies did not change much compared to NC’s. OC tried to

localize the motions of rocking modes with the frequencies changed within 1 cm−1

from the NC only. Noted that the mode vectors in OC were not fully localized

compared to LNM and LC, but also not fully delocalized as in NC.
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(a) Ẽ1D(θ̃12)

(b) Ẽ1D(θ̃13)

(c) Ẽ1D(θ̃23)

Figure 5.1: The energy is one-dimensional function of theta.. The red points were
the scanning points of the one-dimensional energy function and the green points
were the fitting points to the discrete cosine transforms.
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Figure 5.2: Spectra of ammonia dimer simulated by VCI method with NC, LNM,
LC and OC using ten degrees of freedom.
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Figure 5.3: Spectra of ammonia dimer simulated by VCI method with NC using
ten degrees of freedom, and with LNM, LC and OC using five degrees of freedom.
The spectra in orange are the results of five-dimensional calculations on proton-
donor. The spectra in blue are the results of five-dimensional calculations on proton-
acceptor.
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Figure 5.4: Spectra of ammonia dimer simulated by DVR method with NC using
ten degrees of freedom, and with LNM, LC and OC using five degrees of freedom.
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Figure 5.5: Spectra of ammonia trimer simulated by VCI method with NC, LNM,
LC and OC. The spectra in orange are the results of fifteen dimensional calculations.
The spectra in blue are the results of five dimensional calculations on an ammonia
monomer.
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Figure 5.6: Spectra of ammonia trimer simulated by VCI and DVR with five degrees
of freedom on an ammonia monomer in OC and compared to the experimental
spectrum.
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Figure 5.7: Spectra of methylamine dimer in NH stretching region simulated by VCI
method with NC, LNM, LC and OC and compared to the harmonic calculation.
The spectra in orange are the results of six dimensional calculations on the amino
group of both monomers. The spectra in blue are the results of three dimensional
calculations on the amino group of the proton-donor monomer.
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Figure 5.8: Spectra of methylamine dimer in CH stretching region simulated by VCI
method with NC, LNM, LC and OC and compared to the harmonic calculation.
The spectra in orange are the results of twelve dimensional calculations on the
methyl group of both monomers. The spectra in blue and in green are the results of
six dimensional calculations on the methyl group of the proton-donor and proton-
acceptor methylamine, respectively.
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Figure 5.9: Spectra of methylamine trimer in NH stretching region simulated by VCI
method with NC, LNM, LC and OC and compared to the harmonic calculation. The
spectra in orange are the results of nine dimensional calculations. The spectra in
blue, green and purple are the results of three dimensional calculations on the amino
group of each methylamine monomer.
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Figure 5.10: Spectra of methylamine trimer in CH stretching region simulated by
VCI method with NC, LNM, LC and OC and compared to the harmonic calculation.
The spectra in orange are the results of eighteen dimensional calculations. The
spectra in blue, green and purple are the results of six dimensional calculations on
the methyl group of each methylamine monomer.
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k2 k2 + k3 k2 + k4 k2 + k3 + k4
H2O monomer
HO ⟨0|Ĥ|0⟩ 4681.57 4681.57 4734.22 4734.22

EGS 4681.57 4591.31 4734.22 4647.31
FBR ⟨0|Ĥ|0⟩ 4681.57 4597.41 4731.62 4659.65

E_GS 4681.57 4573.72 4731.62 4641.69
H2O dimer
HO ⟨0|Ĥ|0⟩ 9297.82 9297.82 9405.76 9405.76

EGS 9297.82 9115.21 9405.76 9229.82
FBR ⟨0|Ĥ|0⟩ 9297.82 9085.55 9399.88 9227.88

E_GS 9297.82 9055.56 9399.88 9204.64
NH3 dimer
HO ⟨0|Ĥ|0⟩ 14015.17 14015.17 14126.08 14126.08

EGS 14015.17 13788.49 14126.08 13906.31
FBR ⟨0|Ĥ|0⟩ 14015.17 13861.76 14121.29 13984.12

EGS 14015.17 13750.77 14121.29 13889.79
NH3 trimer
HO ⟨0|Ĥ|0⟩ 14015.17 14015.17 14126.08 14126.08

EGS 14015.17 13788.49 14126.08 13906.31
FBR ⟨0|Ĥ|0⟩ 14015.17 13861.76 14121.29 13984.12

EGS 14015.17 13750.77 14121.29 13889.79
MMA dimer
HO ⟨0|Ĥ|0⟩ 25040.93 25040.93 25068.31 25068.31

EGS 25040.93 24782.52 25068.31 24815.15
FBR ⟨0|Ĥ|0⟩ 25040.93 24756.92 25064.27 24817.12

EGS 25040.93 24708.81 25064.27 24773.82
Table 5.1: The ground state energy in normal mode coordinates in HO and FBR
basis before and after diagonalizing the CI matrix, which are denoted as ⟨0|Ĥ|0⟩
and EGS respectively. All the energies are shown in cm−1. k2, k3, and k4 are the
harmonic, cubic and quartic terms of the potential energy surfaces.

sweep EGS ∆EGS θ12 θ13 θ23
0 4641.6896 0 0 0 0
1 4626.4698 15.2198 -0.4377 0.0000 -45.0000
2 4626.4248 0.0450 0.2512 0.2512 0.0000
3 4626.4247 5.94x10−05 0.0091 0.0091 -0.0005

Table 5.2: Jacobi sweeps for water molecule. The energies are in cm−1, and the
theta are in degree.
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Normal mode coordinates Optimized coordinates
Diagonal matrix elements

f22 3803.31 3871.00
f222 1830.39 2569.67
f2222 325.67 453.19
f33 3937.53 3871.00
f333 0 2569.67
f3333 0 453.19

Off-diagonal matrix elements
f23 0 -134.21
f233 1813.8 -16.31
f223 0 -16.31
f2333 317.17 -2.88
f2233 0 -2.88
f2223 0 -2.88

Table 5.3: The second-order, third-order and forth-order force constants of two
stretching modes of the water monomer molecule in normal mode coordinates and
optimized coordinates. All the values are shown in cm−1.
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nc-DVR |0, 0, 0⟩ |1, 0, 0⟩ |0, 1, 0⟩ |0, 0, 1⟩ |2, 0, 0⟩ |0, 2, 0⟩ |0, 0, 2⟩
|0, 0, 0⟩ 0.00 48.86 -252.64 0 45.91 58.25 -39.26
|1, 0, 0⟩ 48.86 1552.08 15.14 0 -58.45 9.13 54.97
|0, 1, 0⟩ -252.64 15.14 3686.81 0 -78.93 -346.33 -433.64
|0, 0, 1⟩ 0 0 0 3976.02 0 0 0
|2, 0, 0⟩ 45.91 -58.45 -78.93 0 3100.71 42.63 47.22
|0, 2, 0⟩ 58.25 9.13 -346.33 0 42.63 7308.03 123.08
|0, 0, 2⟩ -39.26 54.97 -433.64 0 47.22 123.08 8042.24
oc-DVR |0, 0, 0⟩ |1, 0, 0⟩ |0, 1, 0⟩ |0, 0, 1⟩ |2, 0, 0⟩ |0, 2, 0⟩ |0, 0, 2⟩
|0, 0, 0⟩ 0.00 52.51 20.52 20.33 33.81 -24.68 -24.60
|1, 0, 0⟩ 52.51 1569.80 17.67 17.67 -69.55 25.17 25.15
|0, 1, 0⟩ 20.52 17.67 3687.77 -63.46 -45.21 25.85 10.73
|0, 0, 1⟩ 20.33 17.67 -63.46 3687.71 -45.25 10.44 25.60
|2, 0, 0⟩ 33.81 -69.55 -45.21 -45.25 3134.77 40.17 40.18
|0, 2, 0⟩ -24.68 25.17 25.85 10.44 40.17 7267.85 -1.43
|0, 0, 2⟩ -24.60 25.15 10.73 25.60 40.18 -1.43 7267.71

Table 5.5: Hamiltonian matrix elements in DVR calculations for water monomer
molecule. The energies are shown in cm−1. The ground state energies were 4617.07
and 4617.26 cm−1 for the calculations with normal mode coordinates and optimized
coordinates respectively. All the diagonal elements were subtracted by the ground
state energies. The off-diagonal matrix elements are the coupling between the basis
kets.

nc-DVR Peak position Intensity Assignment Projection2

0 0 ⟨0|0.0.0⟩ 99.18%
1559.48 90.14 ⟨1|1.0.0⟩ 99.20%
3094.46 0.47 ⟨2|2.0.0⟩ 97.33%
3627.51 10.90 ⟨3|0.1.0⟩ 94.75%
3736.23 70.79 ⟨4|0.0.1⟩ 92.84%

oc-DVR Peak position Intensity Assignment Projection2

0 0 ⟨0|0.0.0⟩ 99.83%
1559.48 90.15 ⟨1|1.0.0⟩ 99.40%
3094.48 0.47 ⟨2|2.0.0⟩ 97.04%
3628.58 10.90 ⟨3|0.0.1⟩ 48.98%

⟨3|0.1.0⟩ 48.93%
3738.16 70.86 ⟨4|0.1.0⟩ 49.55%

⟨4|0.0.1⟩ 49.50%
Table 5.6: DVR calculations with normal mode coordinates and optimized coor-
dinates for water monomer molecule. The peak positions are in cm−1. The peak
intensities are in KM/Mole unit. The projection2 were obtained by the inner product
between the eigenstates and the basis kets.
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Normal mode coordinates Optimized coordinates
Diagonal matrix elements

f99 3704.26 3725.14
f1010 3795.73 3860.44
f1111 3904.28 3884.91
f1212 3924.67 3860.48
f999 2293.04 2646.21
f101010 -1803.27 -2569.91
f111111 -2049.66 -2573.66
f121212 -4.28 -2570.10

Off-diagonal matrix elements
f910 0 11.43
f911 0 119.12
f912 0 11.31
f1011 0 0.38
f1012 0 -129.49
f1112 0 0.36
f91010 174.06 6.68
f9910 166.47 2.09
f91111 1041.46 39.83
f9911 512.00 73.96
f91212 162.02 7.81
f9912 -0.26 3.24
f101111 138.92 1.39
f101011 -46.18 -1.60
f101212 -1807.11 18.74
f101012 1.37 15.40
f111212 0.67 0.24
f111112 -42.92 -0.43
f91011 20.63 0.00
f91012 -0.21 -1.50
f91112 -0.35 0.06
f101112 -0.68 -0.16

Table 5.7: The second and third order force constants of four stretching modes of
the water dimer molecule in normal mode coordinates and optimized coordinates.
All values are shown in cm−1.
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Wavenumber Intensity Assignment Projection2 µx µy µz

3467.182 0.016 <8|0.0.0.0.1> 48.58% 0 0.001 -0.008
<8|0.0.0.1.0> 48.54% 0 0.001 0.008
<8|1.1.0.0.0> 2.53% 0 -0.001 0

Table 5.11: The projection of the intensity of the band at 3467 cm−1. The five
number on the kets are corresponding to the quantum number of five modes on the
proton-donor ammonia. µx, µy and µz are the transition dipole moment projected
on the basis kets.
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Chapter 6 Conclusion

We have implemented several algorithms to find the optimal set of coordinates:

the localized coordinates based on the localization criterion of maximizing the sum

of the squared of atomic contributions to the modes, proposed by Jacob and Rei-

her in 2009 [11]; and the optimized coordinates based on Thompson and Truhlar’s

idea in 1982 [15] of minimizing the ground state energy, and Yagi”s optimization

algorithm proposed in 2012 [16]. However, in this thesis, a modification was made

to calculate the ground state energy by finite basis representation method instead

of VSCF. The Hamiltonian in FBR was written as the sum of one-mode Hamil-

tonian and the coupling of the modes, the ground state energy was obtained by

diagonalizing the Hamiltonian matrix. This method was an improvement of VSCF

because we can obtain the ground state energy without iterative processes. The

optimization algorithm is based on the Jacobi sweep and the Newton’s minimiza-

tion. The many-variable optimization problem is simplified by defining the unitary

transformation matrix as the product of Jacobi rotational matrices of one pair. The

localization algorithm is also similar to the optimization algorithm, however, instead

of maximizing localization criterion, we minimize its negative function.

Water monomer and dimer were choosen as the benchmark of the optimization

process and the performance of optimized coordinates in VCI calculations. The total
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coupling constants in the cubic and quartic potentials of water monomer and dimer

were smaller in optimized coordinates than in normal mode coordinates. The VCI

calculations with truncated basis sets showed that optimized coordinates had faster

convergence than normal mode coordinates did. From this result, VCI calculations

with optimized coordinates could be used with smaller basis sets, which could help

to save the computational time. The size of the basis sets could be chosen as five for

the maximum quantum number and four for the number of simultaneously excited

modes.

In this study, Fermi resonance patterns of ammonia and methylamine clusters

spectra were study with four choices of coordinates, which are normal mode coordi-

nates (NC), local normal mode coordinates (LNM), localized coordinates (LC) and

optimized coordinates (OC). In both tested clusters, the vibrational motions were

delocalized in NC but localized in LNM, LC and OC. In LNM, the vibrational modes

were localized on each monomer due to the way we chose the fragments. The LC and

OC gave similar results for bending and stretching motions, in which the stretching

modes were localized on the hydrogen bonds and the bending modes localized on

the functional groups. It would help to simplify the pictures of vibrational motions

and reduce the number of degrees of freedom needed in VCI and DVR calculations

when studying the properties of a chemical unit.

The examples of two hydrogen bonded clusters haven’t reached to the bound-

aries of those localized/optimized techniques, therefore they gave us roughly similar

results in the vibrational frequencies, coordinates and the simulated spectra. Only

when we went to lower-frequency region of the rocking modes, the over-localization

were found in LC, while the modes obtained by LNM and OC agreed reasonably
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well with the harmonic frequencies, making the results more reliable.

From our study and experience, LNM would be recommended for the molecules

or clusters with the functional groups are weakly binded, i.e. the inter-molecular

interactions are negligible so the systems can be easily divided into fragments. Only

block-diagonalizations of the Hessian matrix is needed to obtain the frequencies and

mode vectors, so LNM is very quick. The disadvantages of this method is it relies on

our chemical intuition and cannot be applied on the strongly binded systems. LC

also only needs the information of the Hessian matrix, and it is a more automatic way

to localize the motions, therefore LC should be a good choice for the high frequency

modes but not on the low frequency modes due to the over-localization. OC is

an expensive method because it requires an anharmonic potential, but it also an

”optimal choice” because it carries out the information of the anharmonic potential.

OC would give similar results to LC when the inter-mode anharmonic coupling in

NC is significant while the harmonic coupling introduced by OC is not too big. In

the reverse way, OC would give similar results to NC when the potential is harmonic

or nearly harmonic. Therefore, when studying a new system, the total anharmonic

coupling constants and the harmonic coupling introduced by a rotational matrix

should be considered to choose an ”optimal” set of coordinates. For the future

work, more research on the low-frequency region and aromatic molecules should

be done to investigate the advantages of optimized coordinates over the localized

coordinates and local normal mode coordinates, since in the aromatic molecules,

there is no clear way to cut the rings into smaller fragments.

79

http://dx.doi.org/10.6342/NTU202201978


doi:10.6342/NTU20220197880

http://dx.doi.org/10.6342/NTU202201978


doi:10.6342/NTU202201978

References

[1] W. Demtröder, Molecular Physics: Theoretical Principles and Experimental

Methods, Physics textbook (Wiley, 2008).

[2] P. T. Panek and C. R. Jacob, The Journal of Chemical Physics 144, 164111

(2016).

[3] J. D. Head, V. Kairys, and Y. Shi, Journal of Molecular Structure:

THEOCHEM 464, 153 (1999).

[4] Q.-R. Huang, Y. Matsuda, R. Eguchi, A. Fujii, and J. Kuo, Journal of the

Chinese Chemical Society 69, 42 (2022).

[5] Q.-R. Huang, R. Shishido, C.-K. Lin, C.-W. Tsai, J. A. Tan, A. Fujii, and J.-L.

Kuo, Angewandte Chemie International Edition 60, 1936 (2021).

[6] Q.-R. Huang, T. Endo, S. Mishra, B. Zhang, L.-W. Chen, A. Fujii, L. Jiang,

G. N. Patwari, Y. Matsuda, and J.-L. Kuo, Physical Chemistry Chemical

Physics 23, 3739 (2021).

[7] B. Zhang, S. Yang, Q.-R. Huang, S. Jiang, R. Chen, X. Yang, D. H. Zhang,

Z. Zhang, J.-L. Kuo, and L. Jiang, CCS Chemistry 3, 829 (2021).

81

http://dx.doi.org/10.6342/NTU202201978
https://books.google.com.tw/books?id=BIeS8LIq6EQC
https://books.google.com.tw/books?id=BIeS8LIq6EQC
https://doi.org/10.1063/1.4947213
https://doi.org/10.1063/1.4947213
https://doi.org/10.1016/S0166-1280(98)00547-8
https://doi.org/10.1016/S0166-1280(98)00547-8
https://doi.org/10.1002/jccs.202100281
https://doi.org/10.1002/jccs.202100281
https://onlinelibrary.wiley.com/doi/10.1002/anie.202012665
https://doi.org/10.1039/D0CP05745B
https://doi.org/10.1039/D0CP05745B
https://doi.org/10.31635/ccschem.020.202000230


doi:10.6342/NTU202201978

[8] S. Mishra, H.-Q. Nguyen, Q.-R. Huang, C.-K. Lin, J.-L. Kuo, and G. N. Pat-

wari, The Journal of Chemical Physics 153, 194301 (2020).

[9] C.-K. Lin, Q.-R. Huang, and J.-L. Kuo, Physical Chemistry Chemical Physics

22, 24059 (2020).

[10] C.-K. Lin, R. Shishido, Q.-R. Huang, A. Fujii, and J.-L. Kuo, Physical Chem-

istry Chemical Physics 22, 22035 (2020).

[11] C. R. Jacob and M. Reiher, The Journal of Chemical Physics 130, 084106

(2009).

[12] X. Cheng and R. P. Steele, The Journal of Chemical Physics 141, 104105 (2014).

[13] C. R. Jacob, S. Luber, and M. Reiher, The Journal of Physical Chemistry B

113, 6558 (2009).

[14] M. W. D. Hanson-Heine, The Journal of Chemical Physics 143, 164104 (2015).

[15] T. C. Thompson and D. G. Truhlar, The Journal of Chemical Physics 77, 3031

(1982).

[16] K. Yagi, M. Keçeli, and S. Hirata, The Journal of Chemical Physics 137, 204118

(2012).

[17] R. Johnson, Nist 101. computational chemistry comparison and benchmark

database (1999).

[18] S. Carter, J. M. Bowman, and N. C. Handy, Theoretical Chemistry Accounts:

Theory, Computation, and Modeling (Theoretica Chimica Acta) 100, 191

(1998).

82

http://dx.doi.org/10.6342/NTU202201978
https://doi.org/10.1063/5.0025778
https://doi.org/10.1039/D0CP03519J
https://doi.org/10.1039/D0CP03519J
https://doi.org/10.1039/D0CP03229H
https://doi.org/10.1039/D0CP03229H
https://doi.org/10.1063/1.3077690
https://doi.org/10.1063/1.3077690
https://doi.org/10.1063/1.4894507
https://doi.org/10.1021/jp900354g
https://doi.org/10.1021/jp900354g
https://doi.org/10.1063/1.4934234
https://doi.org/10.1063/1.444226
https://doi.org/10.1063/1.444226
https://doi.org/10.1063/1.47 67776
https://doi.org/10.1063/1.47 67776
https://doi.org/10.1007/s002140050379
https://doi.org/10.1007/s002140050379
https://doi.org/10.1007/s002140050379


doi:10.6342/NTU202201978

[19] J. Pipek and P. G. Mezey, The Journal of Chemical Physics 90, 4916 (1989).

[20] J. M. Foster and S. F. Boys, Reviews of Modern Physics 32, 300 (1960).

[21] S. F. Boys, Reviews of Modern Physics 32, 296 (1960).

[22] C. Edmiston and K. Ruedenberg, Reviews of Modern Physics 35, 457 (1963).

[23] M. W. D. Hanson-Heine, The Journal of Chemical Physics 144, 204116 (2016).

[24] A. Molina, P. Smereka, and P. M. Zimmerman, The Journal of Chemical Physics

144, 124111 (2016).

[25] P. M. Zimmerman and P. Smereka, Journal of Chemical Theory and Compu-

tation 12, 1883 (2016).

[26] B. Thomsen, K. Yagi, and O. Christiansen, Chemical Physics Letters 610-611,

288 (2014).

[27] K. Yagi, P.-C. Li, K. Shirota, T. Kobayashi, and Y. Sugita, Physical Chemistry

Chemical Physics 17, 29113 (2015).

[28] K. Yagi, H. Otaki, P. Li, B. Thomsen, and Y. Sugita, Weight averaged anhar-

monic vibrational calculations: Applications to polypeptide, lipid bilayers, and

polymer materials (2019).

[29] K. Yagi, S. Re, T. Mori, and Y. Sugita, Current Opinion in Structural Biology

72, 88 (2022).

[30] K. Yagi and Y. Sugita, Journal of Chemical Theory and Computation 17, 5007

(2021).

83

http://dx.doi.org/10.6342/NTU202201978
https://doi.org/10.1063/1.456588
https://doi.org/10.1103/RevModPhys.32.300
https://doi.org/10.1103/RevModPhys.32.296
https://doi.org/10.1103/RevModPhys.35.457
https://doi.org/10.1063/1.4951011
https://doi.org/10.1063/1.4944743
https://doi.org/10.1063/1.4944743
https://doi.org/10.1021/acs.jctc.5b01168
https://doi.org/10.1021/acs.jctc.5b01168
https://doi.org/10.1016/j.cplett.2014.07.043
https://doi.org/10.1016/j.cplett.2014.07.043
https://doi.org/10.1039/C5CP04131G
https://doi.org/10.1039/C5CP04131G
https://doi.org/10.1002/9783527814596.ch5
https://doi.org/10.1002/9783527814596.ch5
https://doi.org/10.1002/9783527814596.ch5
https://doi.org/10.1016/j.sbi.2021.08.008
https://doi.org/10.1016/j.sbi.2021.08.008
https://doi.org/10.1021/acs.jctc.1c00060
https://doi.org/10.1021/acs.jctc.1c00060


doi:10.6342/NTU202201978

[31] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,

J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji,

X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts,

B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnen-

berg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng,

A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega,

G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,

M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell,

J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd,

E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi,

J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar,

J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W.

Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J.

Fox, Gaussian˜16 Revision B.01 (2016), gaussian Inc. Wallingford CT.

[32] Q.-R. Huang, T. Nishigori, M. Katada, A. Fujii, and J.-L. Kuo, Physical Chem-

istry Chemical Physics 20, 13836 (2018).

[33] K.-L. Ho, L.-Y. Lee, M. Katada, A. Fujii, and J.-L. Kuo, Physical Chemistry

Chemical Physics 18, 30498 (2016).

[34] R. B. Lehoucq, D. C. Sorensen, and C. Yang, in Software, environments, tools

(1998).

[35] X. Cheng, J. J. Talbot, and R. P. Steele, The Journal of Chemical Physics 145,

124112 (2016).

84

http://dx.doi.org/10.6342/NTU202201978
https://doi.org/10.1039/C8CP02151A
https://doi.org/10.1039/C8CP02151A
https://doi.org/10.1039/C6CP05537K
https://doi.org/10.1039/C6CP05537K
https://doi.org/10.1063/1.4963109
https://doi.org/10.1063/1.4963109


doi:10.6342/NTU202201978

[36] E. G. Buchanan, J. C. Dean, T. S. Zwier, and E. L. Sibert, The Journal of

Chemical Physics 138, 064308 (2013).

[37] E. L. Sibert, D. P. Tabor, N. M. Kidwell, J. C. Dean, and T. S. Zwier, The

Journal of Physical Chemistry A 118, 11272 (2014).

[38] E. L. Sibert, N. M. Kidwell, and T. S. Zwier, The Journal of Physical Chemistry

B 118, 8236 (2014).

[39] C. T. Wolke, J. A. Fournier, L. C. Dzugan, M. R. Fagiani, T. T. Odbadrakh,

H. Knorke, K. D. Jordan, A. B. McCoy, K. R. Asmis, and M. A. Johnson,

Science 354, 1131 (2016).

[40] Q.-R. Huang, Y.-C. Li, K.-L. Ho, and J.-L. Kuo, Physical Chemistry Chemical

Physics 20, 7653 (2018).

[41] R. Dennington, T. A. Keith, and J. M. Millam, Gaussview Version 6 (2019),

semichem Inc. Shawnee Mission KS.

85

http://dx.doi.org/10.6342/NTU202201978
https://doi.org/10.1063/1.4790163
https://doi.org/10.1063/1.4790163
https://doi.org/10.1021/jp510142g
https://doi.org/10.1021/jp510142g
https://doi.org/10.1021/jp5014048
https://doi.org/10.1021/jp5014048
https://doi.org/10.1126/science.aaf8425
https://doi.org/10.1039/C8CP00533H
https://doi.org/10.1039/C8CP00533H


doi:10.6342/NTU20220197886

http://dx.doi.org/10.6342/NTU202201978


doi:10.6342/NTU202201978

Appendix A — Visualization of

the vibrational modes

In this appendix, the visualization of the modes using GaussView 6 [41] are

shown.

(a) NC 1: 1622 (b) NC 2: 3803 (c) NC 3: 3937

(d) OC 1: 1622 (e) OC 2: 3870 (f) OC 3: 3870

Figure A.1: The frequencies and vibrational vectors of water monomer in NC and
OC. The frequencies are shown in cm−1.
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(a) NC 7: 1624 (b) NC 8: 1642

(c) NC 9: 3704 (d) NC 10: 3795 (e) NC 11: 3904 (f) NC 12: 3924

Figure A.2: The frequencies and vibrational vectors of water dimer in NC. The
frequencies are shown in cm−1.

(a) OC 7: 1625 (b) OC 8: 1641

(c) OC 9: 3725 (d) OC 10: 3860 (e) OC 11: 3884 (f) OC 12: 3860

Figure A.3: The frequencies and vibrational vectors of water dimer in OC. The
frequencies are shown in cm−1.

(a) LC 7: 1625 (b) LC 8: 1641

(c) LC 9: 3727 (d) LC 10: 3860 (e) LC 11: 3882 (f) LC 12: 3860

Figure A.4: The frequencies and vibrational vectors of water dimer in LC. The
frequencies are shown in cm−1.
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(a) NC 9: 1641 (b) NC 10: 1649 (c) NC 11: 1654 (d) NC 12: 1673

(e) NC 13: 3446 (f) NC 14: 3476 (g) NC 15: 3596

(h) NC 16: 3628 (i) NC 17: 3632 (j) NC 18: 3632

Figure A.5: The frequencies and vibrational vectors of ammonia dimer in NC. The
frequencies are shown in cm−1.

(a) LNM 9: 1647 (b) LNM 10: 1677 (c) LNM 11: 1647 (d) LNM 12: 1677

(e) LNM 13: 3415 (f) LNM 14: 3577 (g) LNM 15: 3629

(h) LNM 16: 3415 (i) LNM 17: 3577 (j) LNM 18: 3629

Figure A.6: The frequencies and vibrational vectors of ammonia dimer in LNM. The
frequencies are shown in cm−1.
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(a) LC 9: 1647 (b) LC 10: 1673 (c) LC 11: 1648 (d) LC 12: 1650

(e) LC 13: 3514 (f) LC 14: 3582 (g) LC 15: 3582

(h) LC 16: 3575 (i) LC 14: 3582 (j) LC 16: 3582

Figure A.7: The frequencies and vibrational vectors of ammonia dimer in LC. The
frequencies are shown in cm−1.

(a) OC 9: 1648 (b) OC 10: 1673 (c) OC 11: 1648 (d) OC 12: 1650

(e) OC 13: 3513 (f) OC 14: 3582 (g) OC 15: 3582

(h) OC 16: 3575 (i) OC 17: 3582 (j) OC 18: 3582

Figure A.8: The frequencies and vibrational vectors of ammonia dimer in OC. The
frequencies are shown in cm−1.
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(a) NC 16: 1639 (b) NC 17: 1639 (c) NC 18: 1664

(d) NC 19: 1677 (e) NC 20: 1677 (f) NC 21: 1680

(g) NC 22: 3404 (h) NC 23: 3420 (i) NC 24: 3420

(j) NC 25: 3574 (k) NC 26: 3578 (l) NC 27: 3578

(m) NC 28: 3628 (n) NC 29: 3628 (o) NC 30: 3629

Figure A.9: The frequencies and vibrational vectors of ammonia trimer in NC. The
frequencies are shown in cm−1.
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(a) LNM 16: 1647 (b) LNM 17: 1647 (c) LNM 18: 1647

(d) LNM 19: 1677 (e) LNM 20: 1677 (f) LNM 21: 1677

(g) LNM 22: 3415 (h) LNM 23: 3415 (i) LNM 24: 3415

(j) LNM 25: 3577 (k) LNM 26: 3577 (l) LNM 27: 3577

(m) LNM 28: 3628 (n) LNM 29: 3628 (o) LNM 30: 3628

Figure A.10: The frequencies and vibrational vectors of ammonia trimer in LNM.
The frequencies are shown in cm−1.
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(a) LC 16: 1647 (b) LC 17: 1647 (c) LC 18: 1647

(d) LC 19: 1677 (e) LC 20: 1677 (f) LC 21: 1677

(g) LC 22: 3462 (h) LC 23: 3462 (i) LC 24: 3462

(j) LC 25: 3579 (k) LC 26: 3579 (l) LC 27: 3579

(m) LC 28: 3579 (n) LC 39: 3579 (o) LC 30: 3579

Figure A.11: The frequencies and vibrational vectors of ammonia trimer in LC. The
frequencies are shown in cm−1.
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(a) OC 16: 1647 (b) OC 17: 1647 (c) OC 18: 1647

(d) OC 19: 1677 (e) OC 20: 1677 (f) OC 21: 1677

(g) OC 22: 3462 (h) OC 23: 3462 (i) OC 24: 3462

(j) OC 25: 3579 (k) OC 26: 3579 (l) OC 27: 3579

(m) OC 28: 3579 (n) OC 29: 3579 (o) OC 30: 3579

Figure A.12: The frequencies and vibrational vectors of ammonia trimer in OC. The
frequencies are shown in cm−1.
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(a) NC 19: 1438 (b) NC 20: 1444

(c) NC 21: 1492 (d) NC 22: 1500 (e) NC 23: 1512 (f) NC 24: 1518

(g) NC 27: 3025 (h) NC 28: 3046 (i) NC 29: 3116

(j) NC 30: 3133 (k) NC 31: 3157 (l) NC 32: 3171

(m) NC 25: 1641 (n) NC 26: 1669

(o) NC 33: 3456 (p) NC 34: 3507 (q) NC 35: 3582 (r) NC 36: 3605

Figure A.13: The frequencies and vibrational vectors of methylamine dimer in NC.
The frequencies are shown in cm−1.
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(a) LNM 19: 1439 (b) LNM 20: 1444

(c) LNM 21: 1493 (d) LNM 22: 1513 (e) LNM 23: 1499 (f) LNM 24: 1516

(g) LNM 27: 3025 (h) LNM 28: 3116 (i) LNM 29: 3156

(j) LNM 30: 3045 (k) LNM 31: 3133 (l) LNM 32: 3170

(m) LNM 25: 1669 (n) LNM 26: 1642

(o) LNM 33: 3456 (p) LNM 34: 3582 (q) LNM 35: 3507 (r) LNM 36: 3604

Figure A.14: The frequencies and vibrational vectors of methylamine dimer in LNM.
The frequencies are shown in cm−1.
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(a) LC 19: 1438 (b) LC 20: 1444

(c) LC 21: 1501 (d) LC 22: 1504 (e) LC 23: 1506 (f) LC 24: 1510

(g) LC 27: 3044 (h) LC 28: 3128 (i) LC 29: 3127

(j) LC 30: 3136 (k) LC 31: 3072 (l) LC 32: 3142

(m) LC 25: 1669 (n) LC 26: 1642

(o) LC 33: 3481 (p) LC 34: 3558 (q) LC 35: 3560 (r) LC 36: 3553

Figure A.15: The frequencies and vibrational vectors of methylamine dimer in LC.
The frequencies are shown in cm−1.
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(a) OC 19: 1438 (b) OC 20: 1444

(c) OC 21: 1502 (d) OC 22: 1504 (e) OC 23: 1506 (f) OC 24: 1510

(g) OC 27: 3044 (h) OC 28: 3128 (i) OC 29: 3127

(j) OC 30: 3136 (k) OC 31: 3072 (l) OC 32: 3142

(m) OC 25: 1669 (n) OC 26: 1642

(o) OC 33: 3481 (p) OC 34: 3558 (q) OC 35: 3554 (r) OC 36: 3559

Figure A.16: The frequencies and vibrational vectors of methylamine dimer in OC.
The frequencies are shown in cm−1.
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(a) NC 31: 1436 (b) NC 32: 1438 (c) NC 33: 1442

(d) NC 34: 1491 (e) NC 35: 1492 (f) NC 36: 1497

(g) NC 37: 1512 (h) NC 38: 1516 (i) NC 39: 1518

(j) NC 43: 3031 (k) NC 44: 3035 (l) NC 45: 3037

(m) NC 46: 3115 (n) NC 47: 3119 (o) NC 48: 3121

(p) NC 49: 3153 (q) NC 50: 3155 (r) NC 51: 3160

Figure A.17: The frequencies and vibrational vectors of the methyl groups of methy-
lamine trimer in NC. The frequencies are shown in cm−1.
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(a) NC 40: 1649 (b) NC 41: 1657 (c) NC 42: 1673

(d) NC 52: 3405 (e) NC 53: 3426 (f) NC 54: 3433

(g) NC 55: 3570 (h) NC 56: 3578 (i) NC 27: 3580

Figure A.18: The frequencies and vibrational vectors of the amino groups of methy-
lamine trimer in NC. The frequencies are shown in cm−1.
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(a) LNM 31: 1438 (b) LNM 32: 1439 (c) LNM 33: 1438

(d) LNM 34: 1493 (e) LNM 35: 1493 (f) LNM 36: 1493

(g) LNM 37: 1516 (h) LNM 38: 1514 (i) LNM 39: 1516

(j) LNM 43: 3037 (k) LNM 44: 3035 (l) LNM 45: 3031

(m) LNM 46: 3119 (n) LNM 47: 3121 (o) LNM 48: 3115

(p) LNM 49: 3155 (q) LNM 50: 3160 (r) LNM 51: 3153

Figure A.19: The frequencies and vibrational vectors of the methyl groups of methy-
lamine trimer in LNM. The frequencies are shown in cm−1.
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(a) LNM 40: 1651 (b) LNM 41: 1669 (c) LNM 42: 1656

(d) LNM 52: 3428 (e) LNM 54: 3580 (f) LNM 56: 3410

(g) LNM 53: 3580 (h) LNM 55: 3426 (i) LNM 57: 3578

Figure A.20: The frequencies and vibrational vectors of the amino groups of methy-
lamine trimer in LNM. The frequencies are shown in cm−1.
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(a) LC 31: 1439 (b) LC 32: 1438 (c) LC 33: 1438

(d) LC 34: 1504 (e) LC 35: 1503 (f) LC 36: 1503

(g) LC 37: 1506 (h) LC 38: 1504 (i) LC 39: 1509

(j) LC 43: 3062 (k) LC 44: 3057 (l) LC 45: 3055

(m) LC 46: 3125 (n) LC 47: 3127 (o) LC 48: 3117

(p) LC 49: 3125 (q) LC 50: 3132 (r) LC 51: 3128

Figure A.21: The frequencies and vibrational vectors of the methyl groups of methy-
lamine trimer in LC. The frequencies are shown in cm−1.
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(a) LC 40: 1653 (b) LC 41: 1670 (c) LC 42: 1657

(d) LC 52: 3449 (e) LC 53: 3429 (f) LC 54: 3447

(g) LC 55: 3558 (h) LC 56: 3552 (i) LC 57: 3558

Figure A.22: The frequencies and vibrational vectors of the amino groups of methy-
lamine trimer in LC. The frequencies are shown in cm−1.
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(a) OC 31: 1438 (b) OC 32: 1439 (c) OC 33: 1439

(d) OC 34: 1505 (e) OC 35: 1504 (f) OC 36: 1504

(g) OC 37: 1504 (h) OC 38: 1503 (i) OC 39: 1508

(j) OC 43: 3062 (k) OC 44: 3099 (l) OC 45: 3071

(m) OC 46: 3124 (n) OC 47: 3090 (o) OC 48: 3112

(p) OC 49: 3124 (q) OC 50: 3127 (r) OC 51: 3116

Figure A.23: The frequencies and vibrational vectors of the methyl groups of methy-
lamine trimer in OC. The frequencies are shown in cm−1.
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(a) OC 40: 1651 (b) OC 41: 1669 (c) OC 42: 1656

(d) OC 52: 3449 (e) OC 53: 3428 (f) OC 54: 3446

(g) OC 55: 3558 (h) OC 56: 3551 (i) OC 57: 3558

Figure A.24: The frequencies and vibrational vectors of the amino groups of methy-
lamine trimer in OC. The frequencies are shown in cm−1.

(a) NC 15: 1180 (b) NC 16: 1180 (c) NC 17: 1342 (d) NC 18: 1367

(e) LNM 15: 1180 (f) LNM 16: 1180 (g) LNM 17: 1342 (h) LNM 18: 1367

(i) OC 15: 1180 (j) OC 16: 1180 (k) OC 17: 1342 (l) OC 18: 1367

(m) LC 15: 1184 (n) LC 16: 1207 (o) LC 17: 1343 (p) LC 18: 1339

Figure A.25: The frequencies and vibrational vectors of the rocking motions of
methylamine dimer in NC, LNM, OC and LC. The frequencies are shown in cm−1.
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(a) NC 25: 1185 (b) NC 26: 1187 (c) NC 27: 1189

(d) NC 28: 1362 (e) NC 29: 1367 (f) NC 30: 1372

(g) OC 25: 1186 (h) OC 26: 1187 (i) OC 27: 1188

(j) OC 28: 1362 (k) OC 29: 1367 (l) OC 30: 1371

(m) LNM 25: 1187 (n) LNM 26: 1187 (o) LNM 27: 1185

(p) LNM 28: 1369 (q) LNM 29: 1369 (r) LNM 30: 1365

(s) LC 25: 1232 (t) LC 26: 1232 (u) LC 27: 1244

(v) LC 28: 1328 (w) LC 29: 1328 (x) LC 30: 1313

Figure A.26: The frequencies and vibrational vectors of the rocking motions of
methylamine trimer in NC, OC, LNM and LC. The frequencies are shown in cm−1.
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