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Abstract

The performance of reduced dimensional anharmonic vibrational calculations
depends on the choice of vibrational coordinates. Ideally, the coordinates should be
chosen to capture the underlying physics, interpret the vibrational features, and fa-
cilitate the computational simulations. In this study, we investigated different ideas
on optimizing coordinates for anharmonic vibrational analysis. Normal mode coor-
dinates are the most common choice for vibrational problems, however, for an an-
harmonic potential, the normal mode coordinates possess strong coupling constants
among the modes and give slow convergence in n-mode potential representation and
anharmonic calculations. One method of localizing the modes in specific functional
groups is Partial Hessian vibrational analysis (PHVA), proposed by Head, which
showed faster convergence compared with normal mode coordinates. However, this
method is based on one’ s chemical intuition, and it may be straightforward only

for particular systems. Another more automatic approach which borrows ideas from

vii doi:10.6342/NTU202201978
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orbital localization techniques is local mode coordinates. Localized modes tend to

involve only a few atom movements in identifiable fragments, which not only follows

our intuition but also means that the description of functional groups can be usefully

transferable to understand bigger systems. Though, over-localization could deviate

substantially from the harmonic picture and produce an unphysical representation.

It implies that the optimal coordinates should be somewhere between fully localized

and fully delocalized coordinates. The idea of optimizing coordinates by minimizing

ground state energy dates back to early work from Thompson and Truhlar in 1982;

furthermore, a robust and general optimization algorithm was proposed by Yagi.

Our approach used the wavefunction as the product of one-dimensional solutions

in the finite basis representation (FBR). The variational principle was applied to

choose the coordinates that minimize the ground state energy. The procedure to

optimize was based on a combination of the Jacobi sweep and Newton method.

Several hydrogen-bonded clusters were tested to benchmark the advantages of this

scheme in the vibrational configuration interaction (VCI) and discrete variable rep-

resentation (DVR) calculations.

Keywords: optimized coordinates, localized coordinates, anharmonic vibration, IR

spectra
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Chapter 1 Introduction

Molecular spectra provide an abundance of information about the molecular
structures, including the forces between the vibrating atoms, their electronic states,
and electron distribution.[!] Vibrations are the fundamental motions of atomic nuclei
in molecules, thus vibrational spectroscopy is one of the most powerful techniques
to investigate molecular structures in solid, liquid, and gaseous forms. Assigning the
spectra, however, is challenging due to the complexity of the inter-mode coupling of
the vibrational motions. Therefore, vibrational simulations are widely used to ana-
lyze the vibrational features obtained from infrared (IR) spectroscopy experiments.
To accurately model the vibrational spectra, several methods have been developed
to go beyond the harmonic approximation. When the size of the molecules increases,
full calculations of such large systems are computationally expensive due to the com-
plexity of many-mode interactions. On the other hand, the experimental IR spectra
frequently show the characteristics of a specific fragment or a functional group, in-
dicating that sometimes, only a subset of localizing modes on specific fragment/

functional group is needed to interpret the spectral features.

The performance of reduced dimensional anharmonic vibrational calculations
depends on the choice of vibrational coordinates. Ideally, the coordinates should

be chosen to capture the underlying physics, interpret the vibrational features, and
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facilitate the computational simulations.

Normal mode coordinates are the most common choice for vibrational problems
because they are mathematically convenient and provide a good zero-order.picture
when the potential is harmonic or nearly harmonic. However, for an anharmonic
potential, the normal mode coordinates possess strong coupling constants among the
modes and give slow convergence in n-mode potential representation and anharmonic
calculations. [2] In addition, for the molecules with larger sizes, the normal mode
coordinates are often delocalized, which means that it involves the motions of many
nuclei in one normal mode. We believe that the couplings of modes are caused by the
covalent bonds, therefore, it is hard to imagine those atoms which are far from each
other should always move together as they are not connected by covalent bonds. In
other words, normal mode coordinates are difficult to visualize and unfamiliar to

our chemical intuition.

One method to localize the modes in specific functional groups is Partial Hes-
sian vibrational analysis (PHVA), proposed by Head, [3] namely local normal mode
coordinates. We have been using these local normal mode coordinates to investigate
the vibrational spectroscopic signatures of many hydrogen-bonded clusters.|!, 5, 6,

, 8,9, 10] The results show that local normal mode coordinates converge faster than
normal mode coordinates in the anharmonic calculations, and provide a more clear
picture of the vibrational modes. Although in this approach, the difficulty is how to
choose the fragments. Empirically, it is based on one’s chemical intuition, and it may
only be straightforward in particular systems. For example, it is counter-intuitive
for some aromatic molecules to be divided into different fragments. Therefore, a

more automatic way to define the localized coordinates should be developed.

2 doi:10.6342/NTU202201978
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Another approach, namely local mode coordinates, which borrows ideas from or-
bital localization techniques. [11] Many works using localized coordinates [, 12, 1]
have proved that they have advantages over the normal mode coordinates when the
potential is anharmonic. These studies showed that the localized coordinates have
better convergence in n-mode expansion and in VCI calculations. Localized modes
tend to involve only a few atom movements in identifiable fragments, which not only
follows our intuition but also means that the description of local chemical units can
be transferable in understanding bigger systems. However, over-localization could
deviate substantially from the harmonic picture and produce unphysical represen-
tations. [14, 12, 2] It implies that the optimal coordinates should be somewhere

between fully localized and fully delocalized coordinates.

This study aims to obtain the optimized set of coordinates by minimizing the
ground state energy, the main idea of which dates back to Thompson and Truhlar
[15] which was followed by the optimization algorithm proposed by Yagi.[16] Our
approach used the wavefunction as the product of one-dimensional solutions in the
finite basis representation (FBR) with the anharmonic potential included up to cu-
bic and a part of quartic terms. The variational principle was applied to choose
the coordinates that minimize the ground state energy. The procedure to optimize
was based on a combination of the Jacobi sweep and the Newton method. After
optimized coordinates are obtained, high-quality potential energy surface can be
obtained by the discrete variable representation (DVR) method, which is very ac-
curate but unfortunately computationally very expensive, therefore it should only
be performed with low or reduced-dimensional anharmonic vibrational calculations

and with a good set of coordinates. Several hydrogen-bonded clusters were tested
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to benchmark the advantages of localized and optimized coordinates in the vibra-
tional configuration interaction (VCI) and discrete variable representation (DVR)

calculations.
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Chapter 2 Theory

2.1 Quantum-Mechanical description of free molecules

Consider a molecule consisting of K nuclei (with masses M and charges Zye)
and N electrons (mass m, and charge —e). One can solve the time independent

Schrodinger equation to describe the stationary states of the molecule:
HU = BV (2.1)

where the Hamiltonian is the sum of kinetic energy operator, denoted as T, and

potential energy operator, denoted as: V,

H=T,+T.+V(,R) (2.2)
P& - .

V(I‘, R) = Vn,n + Vn,e + Vee (23)

(r,R) are the coordinates of electrons and nuclei respectively.

5 doi:10.6342/NTU202201978
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For convenience, atomic units are commonly used in quantum chemistry cal-
culations. In atomic units, m, = h = e = 1. Substitute Hamiltonian operator into

Schrodinger equation, we have

Note that the reference coordinates is chosen as laboratory frame.

2.2 Born-Oppenheimer approximation

The Schrédinger equation cannot be solved exactly even for the simplest molecule
H3. We need to introduce some approximations to simplify the equations. Born-
Oppenheimer approximation is one of the most fundamental approximations in
quantum mechanics calculations. The idea is that because of the mass difference
(e.g. a proton is more than 1800 times as heavy as an electron), the nuclear motion
is much slower than electronic motion. Based on this condition, in 1927 Max Born
and J. Robert Oppenheimer proposed that the wavefunctions of atomic nuclei and
electrons in a molecule can be treated separately. For the detailed derivation, please

check this reference [1].

Under Born-Oppenheimer apprroximation, we have:

\I/n,i(n R) = QfL(r’ R) X Xn,i(R>- (25)

The Schrodinger equation is rewritten as two decoupled (electronic and nuclear)

6 doi:10.6342/NTU202201978
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equations:

Hy¢ (v) = EWge (r) with Hy = T, + V(r,R) (2.6)
T+ EP(R)| xni(R) = Epixni(R). (2.7)

2.3 Nuclear motion

In the previous section, we have separated the electronic and nuclear wavefunc-
tions. From now on, I will only discuss the nuclear motion. I will first consider the
classical Hamiltonian to demonstrate that the translational and rotational motions
can be separated from vibrational problems with some coordinate transformations
for the classical kinetic energy expression. The Hamiltonian, then, will be converted

to quantum mechanical Hamiltonian.

For polyatomic molecules, it is easier to describe using molecule-fixed reference
frame, that is the molecule’s center of mass and axes are fixed at equilibrium nuclear
frame. The coordinates of i nuclei in molecule-fixed system are denoted by r; =
{4, yi, z: }, where the center of mass of the molecule is chosen as r.,, = {0,0,0}. The
coordinates of i*" nuclei in laboratory frame are denoted by R; = {X;,Y;, Z;} and
Rem = {Xem, Yem, Zem}. To transform from laboratory frame to molecule-fixed
frame, we have:

Kinetic energy expression in molecule-fixed frame is:

DN | —

T = % (; Mﬂ/?) — <; Min) . (2.9)
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The molecule-fixed system rotates with an angular velocity w around’its center of

mass, so we have to take it into account dR;/dt:

R; = R, + i + (wxry) . (2.10)

Substitute into Eq. (2.9), then simplify we have:
T:1]\4R2 +12M~(wxr-)2+12M-v2+w ZM~(AI“~><V-) (2.11)
2 c.m 2 i 7 7 2 i 1Y . i 7 1 7 .

in which:

- The first term describes the translations of molecule’s center of mass.
- The second term describes the rotational energy of the molecule.

- The third term describes the vibrational energy of the molecule.

- The last term describes the Coriolis interaction between vibration and rotation.

This study only involves vibrations, therefore only the third term is included in
the vibrational Hamiltonian with rigid rotor approximation to neglect the Coriolis

coupling between vibration and rotation.

2.4 Vibrations of polyatomic molecules

Vibrational Hamiltonian for polyatomic molecules consist of N atoms is:

C e RPN P
H = T+ V= T EW + V(Qll,xz, ...,%3]\[). (212)
—1 i i

where V' (21, 2, ..., x3n) is Er(LO)(R) in the Eq. (2.7).
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The potential energy can be extended using Taylor expansion as:

3N

- oV

V(xy,x,...,x3n) = Vo + E <3_x) o] g <(9x Er ) x;x; +higher terms
i=1 t J

(2.13)
Vo can be eliminated by choosing the zero of the energy at the equilibrium. At the
equilibrium position, the energy must be a minimum, therefore all first derivatives

vanish at this point (8_\/) =f,=0withi=1,2,...,3N.

2.4.1 Harmonic approximation

For sufficiently small amplitudes of vibrations, the potential can be described

quite well with the truncation at second derivatives, so that:
L3N

. 2 . . .
with fi; = (88—‘/> are constants. V(z;,...,z3y) is a continuous function, therefore
XTil 5 0

fig = -

Under harmonic approximation, the problem can be solved exactly. I will show

the solutions in two cases, one dimensional and multi-dimensional vibration.

2.4.1.1 1D harmonic oscillator

Hamiltonian operator in 1D for harmonic oscillator is:

R A2 242 1 h d 2,2
H:p_+mwx:_( )+mwx
v dx

2.15
2m 2 ( )
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where w is the angular frequency of the classical oscillator related to the spring

constant k£ in Hooke’s law via w = %

The Schrodinger equation is given by:

HU(z) = BEV(x). (2.16)

To solve the Schrodinger equation, it is convenient to introduce the so-called

annihilation opertor (@) and its adjoint operator, called the creation operator (a'):

L mw p

a=\/ 5 (x + _mw) (2.17)
gt — T — 2 21
a 5, (x mw>' (2.18)

The Hamiltonian operator can be rewritten as:
2 A.l.A 1 g 1
H = hw aa+§ = hw N+§ . (2.19)

where N = a'a is number operator.

The energy eigenvalues are given by:
1 .
E, = (n + 5) hw with n =10,1,2, ... (2.20)

The energy of a harmonic oscillator is quantized into discrete values. Because the

smallest possible value of n is zero, the ground state of the harmonic oscillator has:
Ey = —hw. (2.21)
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The wavefunction for the eigenstate of harmonic oscillator is written as:

1 2 /9.2
U, (z) = e~ 2 (3) (2.22)

2”7’1,!\/ ﬁ$0 To

where zo = /-~ and H,(z) = (—1)”6’”2%6_‘62 is the Hermite polynomial.

2.4.1.2 Multi-dimensional harmonic oscillator

Under harmonic approximation, the Hamiltonian is written as:

P 2 1 X
H = T;EG—I%+§;JCUL%, (2.23)

in which, f;; is the force constant matrix, or the so-called Hessian matrix, which is

the second order derivative of the potential at the minimum.

One can write down the Newton’s equation of motion along the direction of z;:

" Fz fij
r, = —=— g —x;. 2.24
Lomy — m; / (2:24)
We can write f# into a Matrix, and the differential equations become a matrix

equation. However, we can see that iTJ is not a symmetric matrix. To simplify the
problem, we introduce the mass-weighted Cartesian coordinates y; = /m;x;. The
equation of motion is rewritten as:

" fl]
Y, = — E — = — g Fiy;. (2.25)
; A/ T A /mj J - I

J

Now, F;; = Fj;, hence F' is a symmetric matrix, whose eigenvalues are all real,
and the eigenvectors form a unitary matrix. The diagonalization of F' leads to the
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eigenvalues D and the unitary matrix P. Thus, we can define a new vector z = Py,

and rewrite the differential equations in 2z-

7" = Py’ = —P'PDPVjj= —DZ. (2.26)

Since D is a diagonal matrix, we can write it as:

wi O 0
0 w% o0
D = (2.27)
0 0 w2y
Hence, we get 3N independent differential equations z! = —w?z;, which can

be viewed as 3N indenpendent 1D Harmonic oscillators. The osillating frequencies
should be w;. The unitary matrix P maps the mass-weighted cartesian coordinate
y into a completely-independent coordinate z. We then call z as normal mode
coordinates, and the eigenvectors () in the unitary matrix P are called as normal

modes.

From the vibrational energy of normal modes, the Hamiltonian can be written

as:
i _52 2.2
Z aQQ —Zw Q’ (2.28)
in which, M = 3N — 6 (or M = 3N — 5 for linear molecules) is the number of

vibrations after separating vibrational motions from translational and rotational

motions.

Due to the decoupling mediated by the normal modes, the Schrédinger equation
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HV = EV can be separated, using the product wavefunction:

M
U, (Q) =[] v..(Q:) (2.29)
v;=1
into M decoupled equations:
—R*O*, (Q) 1 4 B
B 002 + QWi QiV,,(Qi) = BV, (Q;). (2.30)

The total vibrational energy is then:
E,=) E (2.31)
where F; are the eigenvalues of the harmonic oscillator:

1

The eigenfunctions U, (Q;) using Hermite polynomial expression are:
qjm(@z) = NI/Z'Hyi (Ci)eicg/Q, (233)

where N,, is a normalization factor, H,, are the Hermite polynomials, and (; =

Qi\/ Wi/h-

2.4.2 Anharmonic potential

For larger vibrational amplitudes, i.e., when vibrational quantum number n is
bigger, the observed vibrational frequenicies w,;, differ significantly from the con-
stant wy of the harmonic oscillator. It is because the molecular energy does not
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approach oo but converges to dissociation energy of the molecule when R — oo,
resulting in the anharmonicity of the vibartions, which is described as the restoring

force is no longer proportional to the displacement.

The model can be improved by including anharmonic terms in the potential. All
of the higher terms in the potential energy surface beyond harmonic approximation

contribute to the anharmonicity of the vibrations.

Potential energy operator in normal mode coordinates can be extended using

Taylor series as:
~ 1 ~2 1 IR 1 o
V= o Z JuQi + 31 Z JijrQiQ;Qr + 1 Z Jijk1QiQ;QrQr + ... (2.34)
‘ irjik ikl

where the coefficients are derivatives of the potential, shown as:

OV PV o'V

fii = O_Q?’ Jijk = ma Jijki = 90:00,00:00,"

With an anharmonic potential, the Schrodinger equation can only be solved

numerically.

2.4.2.1 1D anharmonic potential

Consider a diatomic molecule with only one vibrational mode, quartic potential

N ( ) I ~ 9 I ~ 3 I N ( )
[/ (;2 — ’ i1 (;2 + ’ 111 (;2 + z 1111 . 2 .:;ti

The solution for the eigenvalues problem obtain from the first-order perturba-
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tion theory [1] is:

1 1
E, =hw (n + —) + i— iidi (2.36)

2) " 242p2

i 2+1
n f— f—
2 4

Within the first-order perturbation theory calculations, the first anharmonic term

that contributes to the energy correction is quartic. Therefore, when considering an

anharmonic effect, the potential should be included at least up to fourth-order.

Compare to the energy eigenvalues obtain from harmonic approximation, there

are some impacts that anharmonic effect adds on to the vibrational spectra:

1. The energy levels are no longer equally spaced. Usually, they decrease for

increasing quantum number n.

2. The transitions with An = £2 /43, ... (overtones) are weakly allowed, while
under harmonic approximation they are forbidden, which will be discussed in

the next section (2.6).

Because of (1), the scaling factor (usually < 1) [17] is commonly used in the harmonic
calculations in order to shift the bands to the right positions as in the experimental

spectra.

2.4.2.2 Multi-dimensional anharmonic potential

Quartic potential for a molecule is expressed as Eq. (2.34).
The wavefunctions ansatz are chosen as the linear combination of the harmonic

eigenfunctions:
U=> "¢l (2.37)
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Using a perturbation calculation, the energy eigenvalues for non-degénerate state
are:

Et = B 4 (O 7)) +Z (2.38)

(0) ’

where EZ-(O) are the harmonic energies, and H;; is the coupling constant between

state 7 and k.

If two vibrational levels are very close in the energy (E(O) ~ E( )), which is
called degenerate states, the denominator will be diminished, resulting in a very
large energy correction. There are several additional bands in the vibrational spectra
that only can be explained by the anharmonic effect. I will show examples of Fermi

resonance and combination bands in the following section.

2.4.2.3 Fermi Resonance and combination bands

Fermi resonance is a common phenomenon in molecular vibrational spectra.
It happens when two states are close in energies and have the same symmetries
leading to two states repelling each other (shifting in energies), and the darker
state gains more intensity, while the brighter band decreases in intensity (shifting
in intensities). Fermi resonance usually occurs between stretching fundamental and
bending overtone. When two fundamental modes are excited simultaneously, it is

called combination bands.

Both phenomenon cannot be addressed with only simple scaling factors, we
must include the anharmonicity in the potential so that the overtones can be allowed
in the selection rules.
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2.5 Methods for solving anharmonic vibration

Because of its complexity, the vibrational problems with an anharmonic poten-
tial can only be solved numerically. In this section, I will briefly introduce some
commonly used methods to solve the nuclear Schrodinger equations, which are very

similar to the methods that have been developed in the electronic structure theories.

2.5.1 Vibrational perturbation theory

Perturbation theory is the method to find an approximate solution to a prob-
lem involving a small parameter (small perturbed term). The total Hamiltonian is

written as the sum of unperturbed and perturbed terms:

H=Hy+H (2.39)

in which, ﬁo is the Hamiltonian under harmonic approximation, which can be solved
exactly, and H' includes all the higher terms in the potential. Applying vibrational

second-order perturbation theory (VPT2), we have the energy of the state i as:

| A | 2
EQ —EY

(2

B =E" + (U H [9;) + > i (2.40)
k

The advantage of VPT2 is that it is fast and gives good results near the equi-

librium, and is suitable for large molecular calculations with the ratio between the

coupling value and the energy difference between two states is small, which mean

the perturbed term only makes a small changes to the system. However, the con-

vergence is not guaranteed, and it is not a variational method, so the ground state
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energy is not a lower bound of exact ground state energy. In case of degenerate
or nearly degenerate, VPT2 gives a very large correction term, so it is not a good

method to deal with Fermi resonance and combination bands.

2.5.2 Vibrational self-consistent field

Vibrational self-consistent field (VSCF) is a mean field approach to solve vi-

brational Schrodinger equations.

A VSCF wavefunction is a product of one-dimensional functions:

M
Vher = [ 6 (Q0). (2.41)

=1

The Schrodinger equation for one mode is:

12 92,0
(na@ (@) |

90 V“”(Qi)) 0" (@Q) = "9 (Q) (2.42)

where f/i(n)(Qi) is the effective potential for mode Q);:

=H¢> @HIV(@Q !H¢ (2.43)

J# JF

The total energy is written as:

EXSCF < SCF‘ H |\IIVSCF> (244>

B R i

5 —agr 19 Q)+ (Wserl V I9V5er)
i=1

Applying variational method, we have to minimize the ground state energy
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with the constraint that the modals are normalized (¢\|¢\™) = 1 To do the
minimization problem with a constraint, we use Lagrange multiplier method to
obtain the VSCF equation:

hz a%;a <n (n) (n) ,(n)
P aQ2 1;“’ |V|1;[¢ Qi) = o (Q)) (2.45)
J7T VE=

and solve it iteratively.

VSCF provides good approximation for the ground state energy and low-lying
states because it its wavefunction is anharmonic. However, for higher excited state,
VSCF is not good enough since it lacks of explicit inter-mode coupling between two
or more modes, as they only have mean field inter-mode coupling. It is also very

expensive in terms of computational cost.

2.5.3 Finite basis representation

In finite basis representation (FBR) method, the vibrational Hamiltonian is

written as the sum of one-mode Hamiltonian H;(Q;) and the coupling of the modes

AV(Q):
!
= Hi(Q:) + AV(Q) (2.46)
=1
in which:
~ 1 82 2 4
Hl(QZ> - 2 aQQ + szQ + CZZZQ + szmQ (247>
f
V(Q) = ZciijinQk + Z Cij@QiQ Q1 (2.48)
i,5,k 2,7,k,l

where f is the number of selected modes.
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FBR wavefunction is the Hartree product of one-dimensional wavefunctions,

as:

U, (Q) = [[ 6% (@), (2.49)

i=1
where qbq(qi)(Ql) is the numerical solution for one-dimensional anharmonic potential.
Therefore, FBR wavefunction is closer to the exact answer compared to the harmonic

basis.

The ground state energy is obtained by diagonalizing Hamiltonian matrix. Us-
ing FBR, the ground state energy is calculated without an iterative process as in
VSCF, saving computational time. On the other hand, FBR and VSCF wavefunc-

tions are similar because they have the same Hilbert space.

2.5.4 Vibrational configuration interaction

The idea of vibrational configuration interaction (VCI) is to describe the wave-

functions as the linear combination of basis functions at different states.

VCI wavefunction is written as:
[Tyer) = [0O) 37 e 00) + 37l W)+ 3B e 4L (2.50)
g ¢ %) %) ijk ijk .
i ij ijk
where r, s, and t are the number of quanta excited at the ¢, j and £ normal modes.
By including the full set of excited states, the full VCI wavefunction is obtained.
However, full VCI calculations scale up quickly even for small size molecules and

cannot be finished within a finite time. Therefore, in the calculations, we have to

set the values for the max quantum number of excitations (n), and the number of
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simultaneously excited modes (m).

r+s+t+..<n. (2.51)

The basis sets are expressed as

90) = 161" 65"..6{"..007) (2.52)
7) = 161765" .0 ..000) (2.53)
A T S ey (2.54)
W) = (6170806800 (2.55)

where ¢§r) is the harmonic oscillator eigenfunction or FBR 1D eigenfunction for

normal mode Q);.

Applying the variational method, we have the CI eigenvalue equation with the

CI matrix:
(WO 7 |wO) (COLHT)y o (W(0)] H Wy
w | @IHEO) @A) (P H )
c =
(U [(0)) (U Oy (| ey
(2.56)

The VCI wavefunction are better than VSCF wavefunction because it includes
the correlation energy. Full VCI calculations are highly accurate but very time

consuming.
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2.5.5 Discrete variable representation

Discrete variable representation (DVR) method is a numerical method to_solve
partial differential equations. In DVR approach, the potential is scanned along the
selected modes, thus its operator is represented as a diagonal matrix on the grid

points. The grid points are chosen as Gauss-Hermite quadratures.

The Hamiltonian in DVR is expressed as

V(Qi) 0 0
2 M 0 vV 0 ce
g S L > iv? + (@) : (2.57)
2 - m;
=1 0 0 V(Qs)

The eigenvalues are obtained by diagonalizing the Hamiltonian with the Lanczos

algorithm for sparse matrix.

The expression of potential energy surface on Gaussian Hermite is highly ac-
curate, because with only N grid points, the polynomial is exact up to (2N — 1)
order. However, the cost is scaled up exponentially with the number of nuclei. For
M dimensional calculation, the total number of grid points is N*. For such a huge

matrix, the diagonalization takes a long time.

To save the computational cost with accuracy, the potential is approximated

by the n-mode representation scheme:

V(Qi. Q) Qu. ) =V +ZAV“> +ZAV” (Qi: @)+ AV(Qi1, Q. Qi)+

ijk

(2.58)
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where V© is the electronic energy at equilibrium point and AVi(”) is the n-mode
contribution for modes i to the change in electronic energy, which can be obtained

by subtracting all the contributions from its components:
AavPQ) =v(@) - v© (2:59)
AVI(Qi. Q) = Vi (Qi Q) Z Ay (2.60)

Vi(Qi, Q5. Qr) = V(Qi Q). Qi) — AVP(Q1, Q)) — AVV(Q) = V@ (2.61)

where Vi(l)(Qi) is the one-dimensional cut of PES for the ¢ mode, and 1/;5-2)(@, Q,)
is the two-dimensional cut of PES for the ¢ and j mode and so on. Further details

can be found in the original paper by Bowman and coworkers.[15]

2.6 Infrared spectra selection rules

Transitions are observed between different vibrational states depend on a num-

ber of selection rules, which determine the probability of the transition.

For a spontaneous transition from a higher state n' to a lower state n", the

frequency of the emission light is:
W ’ — W "
V. n = —_n_n (262)

where W, and W, » are the energies of the states n' and n", with the probability:

4,,3
A= |y, |2, (2.63)

The probability of absorption from state n” to state n’ equals to the probability
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of the stimulation emission from state n’ to state n":

g3
B///:B///:— ///2 264
in which, g, is the electric dipole moment:
(N’X)n’n” = /\If:l/p,X‘I/n//dT (265)
[ 12 = 10 12 1 D 4 112 (2.66)

The electric dipole moment can be expanded as a power series in the coordinates

of the atoms:

M
px = pu% + Z ,ug?Qi + higher terms. (2.67)

i=1
Assume that higher terms contribution is very small and is neglected. Consider pure

. . oy " / . . .
vibrational transition between state n= and state n , under harmonic approximation,

the integral becomes:

M
/ U ux W0 dR = % / U dR+ Y py / Q0 dR. (2.68)
=1

The first term vanishes because of the orthonormality of the wavefunctions, unless

n” =n'. The integral in the second term can be written more explicitly as:

[ v ar= [ v @, Qe (2.69)

< [ @0 (@i % [0,(@)Q, ()G

Because of the orthonormality of the wavefuntions, the integral will vanish unless

/ Vi / " . . / "
Ny = Ny, Ny = Ny, etc., with the exception of n, and n, .
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/ \IJZ/(Q@)QZ\P?IN (Q:)dQ; # 0 only for n; —n; = An = £1.

For anharmonic oscillators, the transitions with An = +2, £3;... are allowed;

but with much smaller contributions than those for An = 1.
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Chapter 3 Vibrational
Coordinates in
Anharmonic

Vibrational Analysis

From the previous chapter, we know how to calculate the normal mode co-
ordinates. They are mathematically convenient choice, however, they give a slow
convergence in anharmonic vibrational calculations. In this chapter, other possible

choices of vibrational coordinates will be presented.

3.1 Local normal mode coordinates

One method to localize the modes in specific functional groups is Partial Hes-
sian vibrational analysis (PHVA) proposed by Head.[3] Assume that the coupling
between different fragments is negligible, the mass-weighted Hessian matrix is then

sorted and divided into blocks, each block corresponding to one fragment:

Haa | Hap
H= | (3.1)

Hpa | Hpp
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We have to find a unitary transformation matrix U that diagonalizes the block

matrices in the mass-weighted Hessian:

(3.2)

where A 44 and Agp are diagonal eigenvalue matrices of Hx4 and Hpgp respectively;
meanwhile, using Uy 4 and Upgpg- the eigenvector of H44 and Hpgpg, the unitary matrix

U is therefore written as:

U= . (3.3)
0 Ugs

The column vectors in U are localized in either fragment A or fragment B, so we call
them local normal mode coordinates; the frequencies of the vibrational local modes

of each fragment should correspond to the square roots of eigenvalue in A4 and

ABB-

We have been using this local normal mode coordinate to investigate the vibra-
tional spectroscopic signatures of many hydrogen-bonded clusters. [1, 5, 6,7, 8,9, 10]
The results show that local normal mode coordinates converge faster than normal
mode coordinates in the anharmonic calculations, and provide clearer pictures of the
vibrational modes. However, in this approach, the difficulty is on how to choose the
fragments. Usually, it is based on one’s chemical intuition, and it may be straight-
forward only for particular systems. For example, for some aromatic molecules, it is
counter-intuitive to cut the ring into different fragments. Therefore, we should find

a more automatic way to define the localized coordinates.
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3.2 Localized coordinates

Localized coordinates are unitary transformations of normal mode coordinates

that maximize a localization criterion:

f
Qi =Y UaQs, (3.4)
s=1

where f is the number of selected modes.

Borrowing the orbital localization techniques, Jacob and Reiher proposed two

ways to define the localization criteria ((Q).[11]

1. The first way, which resembles the Pipek and Mezey localization,[19] is to

maximize the sum of the squared of “atomic contributions” to the modes:

f N 2
SEE S M B R 55
i=1 p=1 \a=x,y,z
2. The second definition, which is similar to Boys localization, [20, 21, 22] is to

maximize the distance between the ”centers” of the modes:
f N 2
=3 (z 3 <@m,p>2&> 56)
=1 p=1 a=zx,y,x

where R; is the position vector of each nucleus with respect to the molecular

origin.

The frequencies of localized modes are obtained from the diagonal terms of
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transformed Hessian matrix, which is:

H=Q"HQ. (3.7)

H is no longer a diagonal matrix.

In their work, Jacob and Reiher also made a comparison between two differ-
ent localization criteria and found that both approaches yield very similar localized
modes. Therefore, in this thesis, I will only consider the atomic contribution crite-
rion. The algorithm for maximizing the localization criterion using in this thesis is

Jacobi sweep, which will be discussed in the next session.

Many works using localized coordinates [2, 12, 13] have proved it has advantages
over the normal mode coordinates when the potential is anharmonic. Those works
showed that the localized coordinates have better convergence in n-mode expansion
and VCI calculations. Localized modes tend to involve only a few atoms’ movements
in identifiable fragments, which is not only followed our chemical intuition but also
means that the description of local chemical units can be usefully transferable to
understand the bigger systems. However, total localization does not benefit all vi-
brational modes. Over-localization could introduce a substantial harmonic coupling
constant in the mass-weighted Hessian matrix. [I4, 12, 2] It implies that the opti-

mal coordinates should be somewhere between fully localized and fully delocalized

coordinates.
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3.3 Optimized coordinates

The idea of optimizing coordinates by minimizing ground state energy dates
back to quite early work from Thompson and Truhlar in 1982, [15] and a robust and

general optimization algorithm for VSCF energies is proposed by Yagi. [10]

Our approach is using the wavefunction as the product of one-dimensional so-

lutions in finite basis representation (FBR).

3.3.1 Optimized coordinates

A new set of coordinates are defined as the unitary transformation of normal

mode coordinates:

f
Qz‘ == Z UsiQéH (38>
s=1
with
U'v=vU"=1 (3.9)

where 1 is a unit matrix. With the new set of coordinates, the Hamiltonian is

rewritten as:

(0 - iﬁx@» +AV(O) 3.10)
where:
A =~ i+ 0u0h + e (311)
AV(Q) = Xf: G @iQ; + Zf; Gijk@iQ; Qr. (3.12)
,J %],

Under the unitary transformation, the approximate Hamiltonian is invariant.
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The FBR wavefunction in the new set of coordinates is:

/
v.(@ =40 (315

The ground state energy in obtained by diagonalizing the Hamiltonian matrix.
Apply the variational principle, the optimized coordinate is defined as the one to

minimize the ground state energy.

3.3.2 Optimization algorithm

Our target is to apply the variational principle method to find the optimized
coordinates, which are unitary transformations of normal mode coordinates that
minimize the ground state energy. It is generally a difficult task, because there
are 3N — 6 vibrational modes making it becomes a many-variable optimization
problem. In this session, I will give an overview of the algorithm to obtain optimized

coordinates. The details will be discussed in the next few sub-sessions in this thesis.

The optimization algorithm suggested by Yagi and co-workers [16] is quite ro-
bust as it expresses the unitary transformation matrix as a product of Jacobi ma-
trices, and does only one-dimensional optimization at a time. The one-variable
minimization problem could be done in various ways. One efficient method is New-
ton’s minimization with a good initial starting point obtained as the minimum value
in Fourier series. The procedure is repeated for all coordinate pairs, thus we obtain
the n one-dimensional solutions for the n-variable optimization problem. The whole
process is then called Jacobi sweep. However, one Jacobi sweep is not guaranteed

to provide the best answer for the optimization problem. Because the modes are
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coupled, the rotation of one pair affects all other coordinates. Therefore, we have

to repeat the Jacobi sweep a few times to make sure that the energy is converged.

Given the overall idea, let’s discuss the detailed implementation of the one-
dimensional optimization process and the Jacobi sweep with the example of the

water molecule to demonstrate the algorithm.

3.3.2.1 1D optimization

Now, we consider a two-mode system: there is only a single 8;; value to de-
termine, so the problem becomes one-dimensional optimization. Discrete cosine
transform and Newton’s minimization method are performed to obtain the optimal

6;; for minimizing energy function in one dimension, denoted as E1p(6;;).

The rotational matrix for one pair coordinates (i, j) is written as:

cos(6;;) —sin(6;))
o | (3.14)
sin(@ij) COS<0U)

The new coordinates (Q;, Q;) transformed from normal mode coordinates (Q;, Q;)

are:

Qi = Qz COS(@Z‘j) — Qj sin(Gij) (315)

Qj = Qz sin(@ij) —|— Qj COS(@Z‘J‘). (316)
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The transformed force constants are:

f
Gij = UUsjss (3.17)
s=1
f
Eijk - Z UsiUtqusztu- (318)
s,t,u=1

With the new set of coordinates and force constants, the FBR 1D eigenvalue
equation is rewritten and diagonalized to get the ground state energy. For each 0;;

value, we can find the corresponding ground state energy Eyp(6;;).

The Eyp(6;;) is scanned along 6;; axis with evenly spaced grids, which are
chosen as:

T — "
4~ 2(2p+1)

< Z, where n = —p,—p+1,...,p. (3.19)

Since 6 has its periodicity, the £1p(6;;) is the periodic function with the period of 7.
For n scanning grid points, we have n exact values of the ground state energies, and
the function can be interpolated by fitting the discrete energies to a discrete cosine
transform (DCT) with zero-padding in the inverse fast Fourier transform (FF'T).
The approximate discrete function by fitting is written as:

p
~ ™
Eip(0i;) = Erp(0i;) = o + E Tm cos(mmé’lj) (3.20)

m=1

where the expansion coefficient is:

1
2p+1

p
> Eip(01) cos(——mbl). (3.21)

p+1

Ty =

n=-—p

By fitting, the number of data points increases, and it provides us a good guess for
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the minimum energy in one dimension, denoted as EM(4;;) at the 6;; value.

To refine the result, Newton’s minimization method is applied. = Newton’s
method attempts to solve this problem by constructing a sequence ij from the
initial guess 517 that converges to a minimizer 9}}3 of the energy function Ep(6;;) by
using a sequence of second-order Taylor expansion of Ejp(6;;) around the iterates.

The second-order Taylor expansion of E;p(6;;) around ij is:

Erp(0F; + Abij) = Eip(6]) + E;D(efj)mij + E;’D(efj)(mijﬁ (3.22)

To find the minimum of the function, the first derivation of the function over A#f;;

must be 0:

d

g (Eip(0) + Eyp(05)A0;; + B (0) (A0;;)*) = 0. (3.23)
1]

Therefore, the minimum is achieved for:

Eyp(05)
ANy (3.24)
T Ep(0))
We obtain the refine value for 6;; by performing Newton’s iteration:
g+l = gk _ Brp(05) (3.25)
YooY B (0h)
in which, the derivatives are calculated by finite difference method:
, Eip(0F + h) — Eyp(0F. — h)
k 2 g
Eyp(05;) = : 5 ’ (3.26)
) Eip(05 — h) —2E1p(0%) + Eip(0F + h)
Eyp(0%) = 2 2 g (3.27)

h? ’
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where h is the step size in the finite difference method.

Take water molecule as an example:

There are three normal modes for a water monomer molecule, which are bend-
ing, symmetric stretching and asymmetric stretching modes. Consider the rotation
of only two of the normal modes, while the third coordinate is fixed. In this example,
the anharmonic potential included up to cubic terms only. The energy functions
were scanned with seven grid points. Those grid points were then fitted to the

discrete cosine transforms.
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Figure 3.1: The energy is one-dimensional function of theta. The red points were
the scanning points of the one-dimensional energy function and the green points
were the fitting points to the discrete cosine transforms.
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As shown in the Figure 3.1 above, we know roughly the shape of one-dimensional
potential and the minimum points could be located and shown in the table as the

initial guess to do Newton’s minimization method.

(i.) | Eip(0ij)(cm™") | 0;(degree)
(12) | 4573.6026 0.7714
(1,3) | 4573.7158 0.0642
(2,3) | 45437852 | -45.0000

Table 3.1: Initial guess obtained from discrete cosine transform

From the initial guess in table 3.1, Newton’s minimization method was performed

to refine the result.

3.3.2.2 Jacobi Sweep

From the previous sub-section, we know how to obtain the optimal value for

one coordinate pair. For a molecule with a set, or subset, of f modes, there are

_ fU=1
= =5

coordinate pairs. To do the F' variable optimization problem, Yagi
proposed to solve it iteratively by doing only one-dimensional problem at a time

and fixed the other pairs by doing Jacobi rotations.

The size of the Jacobi matrix for the rotation of coordinate pair (i,7) should

be f x f, with the matrix elements:

Uii = Ujj = COS(QZ']‘) (328)
Uij = _Uji = sin(@ij) (329)
and, otherwise,
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The unitary transformation matrix for one sweep is constructed as the product of

Jacobi matrices:
F
uw=[]U. (3.31)

Thus, for M Jacobi sweeps, the unitary transformation matrix is:

M
U=]Ju". (3.32)

m=1

Since the unitary matrices do not commute, the product is arranged in such a way
that the smaller index m comes to the left. With the expression of U, one Jacobi
sweep loops for all over the coordinate pairs and do one-dimensional minization at
one time. The process is repeated a few times to make sure that the ground state

energy is converged.

Continue the previous example of water molecule:

For one Jacobi sweep, the unitary transformation matrix was written as:

cos(bh2) —sin(f2) 0O cos(f13) 0 —sin(b3) 1 0 0
U= Sil’l(‘glg) COS(612> 0] X 0 1 0 X 10 COS(923> - Sin(923)
0 0 1 sin(f13) 0 cos(bh3) 0 sin(fa3)  cos(fa3)
i S S (3.33)

For n Jacobi sweeps, the unitary transformation matrix was written as in Eq. (3.32).

Applied Jacobi sweeps on water molecules, we obtained:

sweep Fqs | AFEgs 012 13 023
0 4573.7156 0 0 0 0
1 4543.9017 | 29.8138 | 0.6936 | -0.0002 | -45.0143
2 4543.7881 | 0.1136 | -0.4786 | -0.0079 0.0023
3 4543.7881 | 0.0000 | -0.0209 | -0.0220 | -0.0043
Table 3.2: Jacobi sweeps for water molecule. The energies are in cm™!, and the
theta are in degree.
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As seen on the table 3.2, the ground state energy converged after three Jacobi

sweeps with the convergence < 1072 ecm™!.

One can also use the Jacobi sweep and Newton’s method to obtain the localized
coordinates with just one modified step: instead of maximizing localization criterion,

we can minimize its negative function ((u(Q)).

3.4 Other ideas

Besides, there are also other approaches to improve from the localized coordi-
nates by limiting the harmonic coupling.[23, 24] Another idea, [25] from the same
authors of localized metric with constrained optimization, [24] is to minimize the off-
diagonal anharmonic coupling and maximize the diagonal anharmonicity of M + 1
Hessian, where M is the number of the selected modes. From the spirit of optimizing
coordinates based on ground state energies, in 2004, Yagi and coworkers [20] pro-
posed the idea of stage-average optimal coordinates by including the fundamental
transition states of the targeted motions with an equal weight in the optimization
procedure. There have been a several following works [27, 28, 29, 30] from the same

group moving toward to the bigger size molecules.
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Chapter 4 Computational Detalils

Quantum chemical calculations were performed using Gaussianl6 [31] program
to determine the electronic structures and normal mode coordinates. The geometric
structures were optimized at the MP2/aug-cc-pvdz level. The harmonic frequencies
were obtained by diagonalizing the mass-weighted Hessian matrix, which is the

second-order derivative of the total energy.

In coordinate optimization process, the anharmonic potential was obtained by
Taylor’s expansion truncated at the forth order.The anharmonic vibrational Hamil-
tonian included all the cubic terms and part of the quartic terms, which were only
up to three different modes, in the potential energy operator, where the third and
fourth-order force constants were calculated using finite difference methods from the
analytical second-order derivatives. The step size to do finite difference method was

chosen as 0.01 A.

The optimization algorithm was a combination of Jacobi’s sweep and Newton’s
minimization method, and the whole many-variable optimization problem could
be treated as many one-dimensional minimization problems. The one-dimensional
energy function was scanned along # direction with seven evenly spaced grid points.

The function can be interpolated by fitting the seven scanning points to a discrete
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cosine transform to get one hundred times data points. The approximated theta
value as the point corresponding to the lowest energy of the fitted function was
chosen to be the initial guess of the Newton’s minimization step. An Newton’s
method, the step size to do finite difference method was chosen as 0.0005 A. The
convergences were 1075 and 1072 em™! for the derivatives in Newton’s method and

the ground state energies in Jacobi’s sweep, respectively.

In order to compared the results with the experiments, the vibrational spectra
were simulated with DVR and VCI methods, which were implemented by Dr. Qian-
Rui Huang, the detailed description can be found in the early work. [10, 32, 33]
The anharmonic potential for VCI calculations were the same quartic potentials as
reported above. The basis were chosen as six for the maximum number of excitations
(n) and four for the number of simultaneously excited modes (m). In DVR method,
the anharmonic potentials were scanned along the selected modes, which were five
points for bending, seven points for stretching modes. In both methods, the matrices
are very sparse and can be diagonalized using ARPACK][31] in the SciPy package to
obtain the ground state and low-lying excited states with the eigenvalues up to 5000
cm ™. The Fermi golden rule was applied to evaluate the absorption intensities of

vibrational transitions.
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Chapter 5 Results and

Discussion

In this chapter, our results are presented as follows: First, the differences be-
tween HO and FBR basis will be shown and discussed to understand our choice
of the wavefunction in optimizing coordinates. After that, I will show the illus-
tration of the optimization process and the performance of optimized coordinates
and localized coordinates in VCI and DVR calculations with the example of water
monomer and water dimer molecules. Then, four sets of coordinates, which are
normal mode coordinates, local normal mode coordinates, localized coordinates and
optimized coordinates will be examine in the study of Fermi resonance patterns in
some hydrogen-bonded cluster, i.e. ammonia and methylamine clusters to demon-
strate how the choice of coordinates can help to reduce the degree of freedom in VCI

or DVR calculations with qualitative description of the main features of the spectra.

Since our study mainly focused on Fermi resonance, which is due to the coupling
between the stretching fundamental and bending overtone, only those high-frequency
motions were considered in our examples. Besides, the low-frequency modes are
normally floppy, therefore they are believed to be better described with curvilinear

coordinates than with rectilinear coordinates. The unitary transformation from
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normal mode coordinates cannot help to solve this problem. Thus, this study only

focused on the high-frequency vibrational modes.

Each test system will be discussed in turn.

5.1 Differences between HO and FBR basis

The Hamiltonian can be written as the sum of one-dimensional Hamiltonian
and the coupling of the modes, and wavefunction can be expressed as the product
of one-dimensional harmonic oscillator (HO) wavefunctions or one-dimensional fi-
nite basis representation (FBR) wavefunctions. Under the harmonic approximation,
both choices should give us the same results. However, the results will be different

if the anharmonic effects are considered.

Table 5.1 shows the ground state energy in normal mode coordinates in different
basis representation before and after diagonalizing the CI matrix, which includes
only up to one-quanta basis kets for the purpose of optimizing coordinates. In
Table 5.1, <O\I:[ |0) is the zero-quanta basis ket and Fgg is the ground state energy
calculated by diagonalizing the CI matrix in either HO or FBR representation. The
difference between (0| H|0) and Egg is caused by the coupling between the zero and
one quanta basis kets that push the ground state energy lower. With harmonic
potential (k2 only), FBR and HO basis gave us the same results. Since there is no
cross term in normal mode coordinates under harmonic approximation, the matrices
are already in diagonal form, the ground state energies are simply half of the sum of
the normal mode frequencies. When the cubic terms of the potential were included,
HO and FBR gave us different results. In HO basis, the (0|H|0) value did not
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change compared to the value of harmonic potential, however, the Egg went down.
In FBR basis, both (0|H|0) and Eqg values decreased since with-FBR, the one-
dimensional wavefunctions already take into account the anharmonic effects. When
the cubic terms of the potential were excluded and the quartic terms included, the
energies increased, however, there was no change in the values before and after
diagonalizing the matrix in both representations. Because the zero and one quanta
basis kets couple through the odd operators, therefore, only the cubic terms have
the contribution of the couplings between those basis kets. The last column shows
the results of the quartic potentials which were actually used in our calculations. It
is clearly seen that FBR gave lower ground state energy. Furthermore, in the FBR,
the values before and after diagonalizing the CI matrix are closer, indicating that
the couplings are smaller on FBR basis than on harmonic basis. Hence, FBR gave

us a better zeroth-order picture and faster convergence than the harmonic basis did.

5.2 Optimization process and the performance of
optimized coordinates and localized coordinates

in VCI and DVR calculations

As one of the most studied clusters with an abundance of available data for
comparison, the water clusters, i.e. water monomer and water dimer molecule, were
our first test cases to illustrate the optimization process and its advantages in the
performances of VCI and DVR calculations.
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5.2.1 Water monomer

The optimization procedure was repeated as in chapter 3.3.3 with an anhar-
monic potential including cubic and part of quartic terms up to three-mode dif-
ferent. The one-dimensional energy functions were scanned and fitted to discrete
cosine transforms as shown in the Figure 5.1 and the results of Jacobi’s sweep for
water monomer molecule are shown in Table 5.2. The energy convergence crite-
rion was reached within three Jacobi sweeps. Comparing cubic (see Figure 3.1) and
quartic (see Figure 5.1) potentials, they shared the same shape of the potential,
only differed in the magnitude of the energy. The ground-state energy decreased
when modes 2 and 3, i.e. two stretching modes, were mixed. The similar results
were obtained in Yagi’s work [106]. The resulting coordinates were two degenerate
stretching modes localized on the hydrogen bond and the bending mode remaining
the same as normal mode coordinates. The visualization of the vibrational modes

are shown in Figure A.1.

The new set of force constants in optimized coordinates were obtained using
the unitary transformation matrix and compared to those in normal mode coordi-
nates. Since only two stretching mode were rotated after the optimization process,
the Table 5.3 only shows the force constants of those two modes in quartic potential.
In normal mode coordinates, there was no cross-term in the second order force con-
stants, while the rotational matrix introduced a harmonic coupling of —134 cm™!
in the optimized coordinates. However, some anharmonic coupling constants found

in normal mode coordinates were minimized in the optimized coordinates and con-

centrated in the diagonal terms. The total coupling constants in normal mode
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coordinates was bigger than the total coupling constants in optimized coordinates,

indicating the wavefunctions with the optimized coordinates are bhetter.

The VCI calculations with truncated basis sets were performed and compared
between two sets of coordinates. The results are presented in Table 5.4. In the full
calculations, VCI[3]-(8) and oc-VCI[3]-(8), both sets of coordinates gave the same
results. However, in the truncated-basis set calculations, the optimized coordinates

converged faster than the normal mode coordinates did.

After determining the set of optimized coordinates, a better quality of the PES
can be obtained by the DVR method. The (small size) Hamiltonian matrix be-
fore diagonalization are shown in Table 5.5. The water monomer molecules possess
a Cy, symmetry, with the bending and symmetric stretching modes belong to A;
representation and the asymmetric stretching mode belongs to By representation.
Due to the symmetry, in normal mode coordinates, the bending fundamental and
overtone basis kets (|1,0,0) and |2,0,0)) only couple with the symmetric stretching
fundamental (|0, 1,0)). Therefore, in the DVR calculation with normal mode coor-
dinates, there are some zero values in the off-diagonal matrix elements since there is
no coupling between bending fundamental and overtone basis kets and asymmetric
stretching basis ket (|0, 0,1)). However, in the optimized coordinates, two stretching
modes are localized and degenerate, hence, the symmetry of those two modes are
broken. The bending basis kets couples with both stretching fundamental basis kets
with the same magnitude of the coupling constants. In normal mode coordinates,
only the symmetric stretching fundamental basis ket couple strongly with the zero
quanta basis ket, while in optimized coordinates, both stretching fundamental basis

kets couple with the zero quanta basis ket with the same coupling constants at about
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20 cm ™!, and they are much smaller in magnitude than the coupling constant in the
normal mode case, at —250 cm™!. Some big coupling constants in the normal mode
coordinates, i.e. between stretching fundamental and stretching overtone basis kets;,
for both symmetric and asymmetric stretching, also become smaller in the optimized

coordinates.

After diagonalizing the Hamiltonian matrix to get the peak positions, the in-
tensities were calculated using Fermi golden rule. The contribution of the basis
kets to the eigenstates are computed by the inner product between the eigenstates
and the basis kets. The results of peak positions, intensities and projection are
shown in the Table 5.6. The notation |n;,n;,ng) is the basis ket in DVR calcula-
tion; where n;, n;, n are the FBR 1D eigenfunctions, three number inside the ket are
corresponding to the quantum number of bending and two stretching modes, respec-
tively. From Table 5.6, for the simulated spectra using DVR method, both normal
mode coordinates and optimized coordinates gave similar results of the peak posi-
tions and intensities. However, the contributions of the basis kets to the eigenstates
in two sets of coordinates were different. In the optimized coordinates case, the two
stretching fundamental basis kets were degenerate, therefore, their contributions to

the eigenstates were similar.

5.2.2 Water dimer

Our second test case was the water dimer molecule. There are 12 vibrational
motions for a water dimer molecule. The first six degrees of freedom are inter-
molecular motions with low frequencies. Therefore, in this test case, only the six
high-frequency vibrational modes, which are two bending and four stretching modes,
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were included in the optimization process.

Adapting the idea of tuning localization frequency window, [375] the six de-
grees of freedom were divided into two sub-groups (two bending and four stretehing
modes), in order to reduce the number of theta variables in the optimization pro-
cess and to prevent the mixing of bending and stretching modes leading to some

unphysical local modes.

The optimizations with both cubic and quartic potentials were tested. Similar
to the results of the water monomer molecule, the one-dimensional energy functions
with both potentials had the same shape, only differed in the magnitudes of energies.
The normal mode coordinates and optimized coordinates of the water dimer are
shown in Figure A.4. In the normal mode coordinates, all the vibrational motions
are delocalized. In the optimized coordinates, the bending frequencies did not change
much compared with the bending frequencies in normal mode coordinates but they
were localized on each monomer. All four stretching modes were localized on the

hydrogen bonds, with two stretchings of the proton-acceptor were degenerate.

Table 5.7 presents the force constants of four stretching modes before and after
rotating the coordinates.The cubic potential extended by Taylor series converged
much faster in optimized coordinates than in normal mode coordinates. Although in
optimized coordinates, some harmonic couplings arose from rotating the coordinates,
the anharmonic couplings were much smaller than those anharmonic couplings in
normal mode coordinates, suggesting that the set of optimized coordinates is a better

choice.

In addition, the localized coordinates were also tested for the water dimer
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molecule. The results were comparable to the optimized coordinates, but maximiz-
ing the localization criterion does not require an anharmonic potential, therefore, the
localization process was much faster than optimization process. The visualizations

of the localized coordinates are shown in the Figure A.4.

5.3 Fermi resonance study assisted by the choices

of coordinates

Fermi resonance is one of the quantum mechanical mechanisms, which leads
to the complexity of the vibrational spectroscopic in the X-H (X = O, N, and C)
stretching frequency region. [5, 36, 37, 38, 39] The difficulty in studying Fermi

resonance is mainly due to:

- The sensitivity of the intensity borrowing depends on the position of stretching
fundamental transition, which carries the main intensity of the bands. This problem
can be improved by getting a better quality potential energy surface using DVR with

a high-level of theory method.

- In normal mode coordinates, the coupling constants between stretching fun-
damental and bending like overtones are delocalized due to the delocalization of the

vibrational modes among the whole molecule.

This thesis mainly focused on solving the second problem with the use of opti-

mized and localized coordinates.

Motivated by our recent publications on understanding Fermi resonance in the
complex vibrational spectra of amino and methyl groups in hydrogen-bonded sys-
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tems, [10, 6, 8, 7] ammonia and methylamine clusters were chosen as our tested
cases to demonstrate the performance of four sets of coordinates: normal mode co-
ordinates (NC), local normal mode coordinates (LNM), localized coordinates (LC);
and optimized coordinates (OC) in studying Fermi resonance patterns. The results

are presented in the next sub-sections of this chapter.

5.3.1 Ammonia cluster

5.3.1.1 Ammonia dimer

For ammonia dimer molecule, ten vibrational motions including four bending

modes and six stretching modes were considered and divided into two sub-groups.

The normal mode coordinates (NC), local normal mode coordinates (LNM),
localized coordinates (LC), and optimized coordinates (OC) for ammonia dimer
molecule are shown in the Figure A.5, A.6, A.7 and A.8 respectively. In NC, all the
vibrational motions were delocalized for the whole molecule. In LNM, the vibrational
motions were localized on each monomer. The OC and LC gave quite similar results,
in which, two bending modes were localized on the proton-donor monomer, other two
were localized on the proton-acceptor monomer, and six stretching were localized

on the six hydrogen bonds.

Table 5.8, 5.9, 5.10 presents the ten-dimensional VCI calculations with normal
mode coordinates, optimized coordinates and localized coordinates for ammonia
dimer molecule. In this case, it was shown that in the reduced-dimensional VCI
calculations, at the size of basis set [6] — (6), the optimized coordinates and local-
ized coordinates gave similar results as the normal mode coordinates did. Slight
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improvements of the MAD were obtained when using optimized coordinates or lo-
calized coordinates. Both sets of coordinates suggested the size of the basis set for
VCI calculation at [3]-(5) with the convergence less than 3 cm™! with the size of the
Hamiltonian matrix were just 5% compared to the size of the Hamiltonian matrix

with the basis set [6]-(6).

The simulated spectra of the ammonia dimer molecule by VCI methods with
four different sets of coordinates are shown in the Figure 5.2. From Figure 5.2,
the peak positions were consistent in all spectra simulated with different sets of
coordinates using ten degrees of freedom. The intensity ratio of the two main peaks

were flipped in OC and LC pictures compared to NC and LNM spectra.

As learned from previous work, [7] the spectra features are mainly contributed
by proton-donor ammonia. Therefore, five-dimensional calculations on proton-donor
and five-dimensional calculations on proton-acceptor in LNM, LC and OC were
performed to investigate the contribution of proton-donor and proton-acceptor to
the spectra and were compared with ten-dimensional calculation in NC. The results
are presented in the Figure 5.3. The VCI calculation with only five vibrational
modes on the proton-donor monomer using LNM, LC and OC captured the Fermi
resonance patterns of ammonia dimer molecule. The small peaks at around 3350
em ™! and 3490 cm ™! obtained in NC with ten modes are the stretching fundamental
transitions in proton-acceptor. Therefore, we can conclude that the contributions

of proton-acceptor ammonia on the spectra are very minor.

In order to have a qualitative comparison with the experimental result, the

DVR reduced dimensional calculations were performed with four different sets of
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coordinates with five degrees of freedom for LNM, LC and OC and ten degrees of
freedom for NC. The results are presented in the Figure 5.4. The DVR calculations
with LNM, LC and OC gave similar spectra as normal mode coordinates did with
a smaller degree of freedom. A small peak at about 3467 cm™! in NC was still
there in the LNM, LC, and OC spectra but with a very weak intensity because the
transition dipole moment were cancelled out (see Table 5.11). Better agreement
with the experimental result can be achieved by using higher levels of theory with

bigger size basis sets. [7]

5.3.1.2 Ammonia trimer

For ammonia trimer molecule, the hydrogen bond is stronger than the ammonia
dimer molecule, each monomer is both proton-donor and prton-acceptor. Fifteen
vibrational motions including six bending and nine stretching modes were considered
in the optimization and localization processes and they were divided into two sub-

groups.

The visualization of vibrational motions in four sets of coordinates are shown
in the Figure A.9, A.10, A.11 and A.12 corresponding to NC, LNM, LC and OC,
respectively. Similar to the results obtained in ammonia dimer, all the vibrational
motions were delocalized for the whole molecule in NC and were localized on each
monomer in LNM. The stretching modes were localized on the hydrogen bonds with
the frequencies were degenerated for six free NH modes and triply degenerated for
three bonded NH modes, and two bending modes localized in each monomer with
two sets of triply degenerated frequencies in both LC and OC.
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The VCI calculations with fifteen degrees of freedom in NC, LNM, LC and
OC were performed. Besides, similar to the analysis had been done for ammonia
dimer, the VCI calculations with five degrees of freedom on an ammonia monomer
in LNM, LC and OC were also performed and compared to the higher dimensional
calculations. The results are shown in the Figure 5.5. As we can see from the spectra
in orange, the VCI calculation with fifteen modes in NC gave a very bad result,
while the results of the VCI calculations with LNM, OC and LC were quite similar
and more comparable with the experimental spectra. The spectra in blue, which are
smaller calculations with only five modes on an ammonia monomer still captured the
main features of the spectra calculated by fifteen modes but with weaker intensities.
LNM, LC and OC gave the three sets of triply degenerate frequencies for each
ammonia monomer, therefore, each monomer had the equally contribution to the

spectra features obtained in fifteen dimensional calculations.

In addition, the DVR calculation with OC using five degrees of freedom was
performed and compared with the VCI calculations with OC using five and fifteen
modes and the experimental spectra as shown in the Figure 5.6. With a higher
quality potential energy surface, the DVR calculation with optimized coordinates

using five modes gave us a more comparable picture to the experimental result. [7]

5.3.2 Methylamine cluster

As found in the previous work, [10] the couplings between amino and methyl
functional groups in methylamine cluster are negligible, therefore they can be treated

separately in the vibrational spectrum problems.

54 doi:10.6342/NTU202201978


http://dx.doi.org/10.6342/NTU202201978

5.3.2.1 Methylamine dimer

For methylamine dimer molecule, six and twelve vibrational motions were con-
sidered for the amino and methyl groups, respectively. The visualization of six
stretching, four bending and two umbrella modes in the methyl group; and four
stretching modes and two bending modes in the amino group in four sets of coordi-
nates NC, LNM, LC and OC are shown in the Figure A.13, A.14, A.15 and A.16 in
the order. In this case, the vibrational motions of amino and methyl groups are well
separated in all sets of coordinates. Notedly, the vibrational motions were localized
on each methylamine monomer in both NC and LNM for amino group, while in LC
and OC, all the stretching modes were localized on the hydrogen bonds and bending

like motions localized on the functional groups.

The spectra simulated by VCI method with four sets of coordinates in N-H
stretching region are shown in Figure 5.7 and the spectra in C-H stretching region
are shown in Figure 5.8. In the N-H stretching region, NC, LNM, LC and OC gave
similar results. The spectra simulated by VCI method with only three degrees of
freedom of amino group of proton-donor methylamine gave very good agreement
with the spectra simulated by six degrees of freedom. The small peaks at 3386
cm ™! and 3466 cm™! in the six dimensional calculations comes from the stretching
fundamental transitions of the amino group of proton-acceptor methylamine. In
the C-H stretching region, the twelve dimensional spectra simulated by four sets of
coordinates were very similar. However, the spectra features are more complicated
and were not very well described by only six dimensional calculations on the methyl
group of the proton-donor methylamine. The other bands can be recovered by
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including the other six degrees of freedom of the methyl group of the proton-acceptor
methylamine. It is because two methyl groups are not identical but- have negligible

couplings.

5.3.2.2 Methylamine trimer

For methylamine trimer molecule, nine and eighteen vibrational motions were

considered for the amino and methyl groups, respectively.

The visualization of nine stretching, six bending and three umbrella modes in
the methyl group in four sets of coordinates are shown in the Figure A.17, A.19, A.21
and A.23 ; and six stretching modes and four bending modes in the amino group are
shown in the Figure A.18, A.20, A.22 and A.24. The vibrational motions of amino
and methyl groups were still well separated in all sets of coordinates. However, unlike
the methylamine dimer molecule, in methylamine trimer, the vibrational motions
of each functional group were delocalized for the whole molecule in NC, while they
were localized on each monomer in LNM, and even more localized on each hydrogen

bond for the stretching motions in LC and OC.

Figure 5.9 and Figure 5.10 show the VCI calculated spectra in four different
sets of coordinates in the N-H and C-H stretching region. In Figure 5.9, the spectra
simulated by VCI method with three modes on the amino group of a methylamine
monomer were capable to describe the main features of the spectra simulated with
nine degrees of freedom. It is worthwhile to notice that the three dimensional
calculations in two monomers gave very similar results, indicating that those two
monomers had similar inter and intra molecular interactions. The spectra simulated
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by VCI method using six degrees of freedom on the methyl group of a methylamine

monomer were also comparable with those results using eighteen degrees of freedom.

5.3.3 Lower-frequency motions

In addition, the rocking motions of methylamine dimer and trimer were also
examine in four sets of coordinates. The frequencies and vibrational motions of the
rocking modes in four sets of coordinates are shown in the Figure A.25 for dimer
and in the Figure A.26 for trimer. In the methylamine dimer case, LNM and OC
gave similar results for the rocking modes, with the motions were localized on each
monomer and the frequencies did not change compared to NC. In LC, the mode
vectors were also localized on each methylamine monomer, however, the frequencies
of the proton-donor methylamine vibrations were different from NC by 27 cm™!,
indicating an over-localization happened. In the case of methylamine trimer, the
mode vectors of the rocking motions were localized on each methylamine monomer
in both LNM and LC, however, the LC frequencies deviated quite substantially from
NC while LNM frequencies did not change much compared to NC’s. OC tried to
localize the motions of rocking modes with the frequencies changed within 1 cm™!

from the NC only. Noted that the mode vectors in OC were not fully localized

compared to LNM and LC, but also not fully delocalized as in NC.
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Figure 5.1: The energy is one-dimensional function of theta.. The red points were
the scanning points of the one-dimensional energy function and the green points
were the fitting points to the discrete cosine transforms.
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Figure 5.2: Spectra of ammonia dimer simulated by VCI method with NC, LNM,
LC and OC using ten degrees of freedom.
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Figure 5.3: Spectra of ammonia dimer simulated by VCI method with NC using
ten degrees of freedom, and with LNM, LC and OC using five degrees of freedom.
The spectra in orange are the results of five-dimensional calculations on proton-
donor. The spectra in blue are the results of five-dimensional calculations on proton-
acceptor.
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Figure 5.4: Spectra of ammonia dimer simulated by DVR method with NC using
ten degrees of freedom, and with LNM, LC and OC using five degrees of freedom.
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Figure 5.5: Spectra of ammonia trimer simulated by VCI method with NC, LNM,
LC and OC. The spectra in orange are the results of fifteen dimensional calculations.
The spectra in blue are the results of five dimensional calculations on an ammonia
monomer.
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Figure 5.6: Spectra of ammonia trimer simulated by VCI and DVR with five degrees

of freedom on an ammonia monomer in OC and compared to the experimental
spectrum.
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Figure 5.7: Spectra of methylamine dimer in NH stretching region simulated by VCI
method with NC, LNM, LC and OC and compared to the harmonic calculation.
The spectra in orange are the results of six dimensional calculations on the amino
group of both monomers. The spectra in blue are the results of three dimensional
calculations on the amino group of the proton-donor monomer.
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Figure 5.8: Spectra of methylamine dimer in CH stretching region simulated by VCI
method with NC, LNM, LC and OC and compared to the harmonic calculation.
The spectra in orange are the results of twelve dimensional calculations on the
methyl group of both monomers. The spectra in blue and in green are the results of
six dimensional calculations on the methyl group of the proton-donor and proton-
acceptor methylamine, respectively.
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Figure 5.9: Spectra of methylamine trimer in NH stretching region simulated by VCI
method with NC, LNM, LC and OC and compared to the harmonic calculation. The
spectra in orange are the results of nine dimensional calculations. The spectra in
blue, green and purple are the results of three dimensional calculations on the amino
group of each methylamine monomer.
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Figure 5.10: Spectra of methylamine trimer in CH stretching region simulated by
VCI method with NC, LNM, LC and OC and compared to the harmonic calculation.
The spectra in orange are the results of eighteen dimensional calculations. The
spectra in blue, green and purple are the results of six dimensional calculations on
the methyl group of each methylamine monomer.
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ko ko + ks ko + ky | ko + k3 +ky
H20 monomer
HO (O|H|0) | 4681.57 | 4681.57 | 4734.22 4734.22
Eqg | 4681.57 | 4591.31 | 4734.22 4647.31
FBR (O|H|0) | 4681.57 | 4597.41 | 4731.62 4659.65
E_GS | 4681.57 | 4573.72 | 4731.62 4641.69
H20 dimer
HO <0|I§T|O) 9297.82 | 9297.82 | 9405.76 9405.76
Eqs | 9297.82 | 9115.21 | 9405.76 9229.82
FBR (O|H|0) | 9297.82 | 9085.55 | 9399.88 9227.88
E GS | 9297.82 | 9055.56 | 9399.88 9204.64
NH3 dimer
HO (0|H10) | 14015.17 | 14015.17 | 14126.08 14126.08
Eqgs | 14015.17 | 13788.49 | 14126.08 13906.31
FBR <0|I§T|O) 14015.17 | 13861.76 | 14121.29 13984.12
Eqgs | 14015.17 | 13750.77 | 14121.29 13889.79
NH3 trimer
HO (O|H|0) | 14015.17 | 14015.17 | 14126.08 14126.08
Eqg | 14015.17 | 13788.49 | 14126.08 13906.31
FBR (O|H|0) | 14015.17 | 13861.76 | 14121.29 13984.12
Eqgs | 14015.17 | 13750.77 | 14121.29 13889.79
MMA dimer
HO (0|H|0) | 25040.93 | 25040.93 | 25068.31 25068.31
Eqs | 25040.93 | 24782.52 | 25068.31 24815.15
FBR (0|H|0) | 25040.93 | 24756.92 | 25064.27 24817.12
Eqs | 25040.93 | 24708.81 | 25064.27 24773.82

Table 5.1: The ground state energy in normal mode coordinates in HO and FBR
basis before and after diagonalizing the CI matrix, which are denoted as (0| H|0)

and Egg respectively. All the energies are shown in cm™?.

ko, k3, and k4 are the

harmonic, cubic and quartic terms of the potential energy surfaces.

Sweep FEgs AFEgs 012 013 023
0 4641.6896 0 0 0 0
1 4626.4698 15.2198 | -0.4377 | 0.0000 | -45.0000
2 4626.4248 0.0450 | 0.2512 | 0.2512 0.0000
3 4626.4247 | 5.94x107% | 0.0091 | 0.0091 | -0.0005

Table 5.2: Jacobi sweeps for

theta are in degree.
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Normal mode coordinates | Optimized coordinates
Diagonal matrix elements
S22 3803.31 3871.00
J222 1830.39 2569.67
J2222 325.67 453.19
33 3937.53 3871.00
[333 0 2569.67
f3333 0 453.19
Off-diagonal matrix elements
J2s 0 -134.21
J233 1813.8 -16.31
Jo23 0 -16.31
f2333 317.17 -2.88
f2233 0 -2.88
J2203 0 -2.88

Table 5.3: The second-order, third-order and forth-order force constants of two
stretching modes of the water monomer molecule in normal mode coordinates and

optimized coordinates. All the values are shown in cm™!.
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nc-VCI[3]-(2) nc-VCI[1]-(8) nc-VCI[2]-(8) nc-VCI[3]-(8)
Ecs 4645.94 21.80 4639.88 | 15.74 4624.21 0.07 4624.14
121 1561.33 10.73 1621.6 71 1567.52 | 16.92 1550.60
vy 3715.62 52.58 3683.35 | 20.31 3664.22 1.18 3663.04
V3 3827.38 50.27 4169.19 | 392.08 3779.21 2.1 377711
21, 3148.77 78.18 3126.71 | 56.12 3089.56 | 18.97 3070.59
12V% 5567.66 | 403.87 5201.86 | 38.07 5163.79
2V 5617.63 | 366.82 5607.76 | 356.95 5250.81
2vy 8667.70 | 1370.43 7338.79 | 41.52 7299.65 2.38 7297.27
VU3 8660.34 | 1261.38 7426.42 | 27.46 7398.96
2v3 8209.02 | 684.82 8409.67 | 885.47 7534.79 | 10.59 7524.20
MAD 430.09 148.22 47.47
oc-VCI[3]-(2) oc-VCI[1]-(8) oc-VCI|[2]-(8) oc-VCI[3]-(8)
Eqs 4646.02 21.96 4628.47 4.41 4624.25 0.19 4624.06
121 1560.34 10.67 1632.14 | 82.47 1552.90 3.23 1549.67
vy 3764.68 | 101.64 3737.94 | 74.90 3663.20 0.16 3663.04
V3 3786.76 9.65 3829.95 | 52.84 3778.00 0.89 3777.11
21, 3146.52 75.93 3138.79 68.2 3072.60 2.01 3070.59
V1o 59549.15 | 385.36 5243.20 | 79.41 5163.79
VU3 5628.77 | 377.96 5264.8 | 13.99 5250.81
2v4 8707.38 | 1410.11 7475.40 | 178.13 7303.20 5.93 7297.27
VU3 8152.29 | 753.33 7399.30 0.34 7398.96
2v3 8653.65 | 1129.45 7476.25 | -47.95 7545.50 | 21.30 7524.20
MAD 427.61 41.30 12.74

Table 5.4: The ground-state energy and the first few eigenvalues in the VCI calculations with normal mode coordinates and optimized
coordinates for water monomer molecule. The energies are shown in cm™'. The notation VCI[m]-(n) with m is the number of modes that
are simultaneously excited, and n is the maximum sum of quantum numbers. Considering VCI|[3]-(8) as the full calculation, the deviations
of those truncated-basis set calculations and the mean absolute deviations from the full calculation are shown in the parentheses.

doi:10.6342/NTU202201978

70


http://dx.doi.org/10.6342/NTU202201978

ne-DVR | [0,0,0) | [1,0,0) | ]0,1,0) | [0,0,1) | |2,0,0) | |0,2,0) | [0,0,2)
10,0,0) 0.00 | 48.86 | -252.64 0| 45.91| 5825 | -39.26
1,0,0) | 48.86 | 1552.08 | 15.14 0| -5845 0.13 || 54.97
0,1,0) | -252.64 | 15.14 | 3686.81 0| -78.93| -346.337| -433.64
10,0,1) 0 0 0 | 3976.02 0 0 0
2,0,0) | 45.91| -58.45| -78.93 0] 3100.71 | 42.63| 47.22
0,2,0) | 58.25 0.13 | -346.33 0| 42.63]7308.03 | 123.08
0,0,2) | -39.26 | 54.97 | -433.64 0| 4722 123.08|8042.24

oc-DVR | [0,0,0) | [1,0,0) | ]0,1,0) | [0,0,1) | |2,0,0) | ]0,2,0) | |0,0,2)

|0,0,0) 0.00 52.51 20.52 20.33 33.81 | -24.68 | -24.60
11,0,0) 52.51 | 1569.80 17.67 17.67 | -69.55 25.17 25.15
|0, 1,0) 20.52 17.67 | 3687.77 | -63.46 | -45.21 25.85 10.73
10,0, 1) 20.33 17.67 | -63.46 | 3687.71 | -45.25 10.44 25.60
12,0,0) 33.81 | -69.55 | -45.21 | -45.25 | 3134.77 40.17 40.18
|0,2,0) -24.68 25.17 25.85 10.44 40.17 | 7267.85 -1.43
10,0, 2) -24.60 25.15 10.73 25.60 40.18 -1.43 | 7267.71

Table 5.5: Hamiltonian matrix elements in DVR calculations for water monomer
molecule. The energies are shown in cm~!. The ground state energies were 4617.07
and 4617.26 cm~! for the calculations with normal mode coordinates and optimized
coordinates respectively. All the diagonal elements were subtracted by the ground
state energies. The off-diagonal matrix elements are the coupling between the basis
kets.

nc-DVR | Peak position | Intensity | Assignment | Projection?

0 0 (0]0.0.0) 99.18%
1559.48 00.14 (1]1.0.0) 99.20%
3094.46 0.47 (2]2.0.0) 97.33%
362751 10.90 (3]0.1.0) 94.75%
3736.23 70.79 (4]0.0.1) 92.81%

oc-DVR | Peak position | Intensity | Assignment | Projection?

0 0 (0]0.0.0) 99.83%
1559.48 00.15 (1]1.0.0) 99.40%
3094.48 0.47 (2]2.0.0) 97.04%
3628.58 10.90 (3]0.0.1) 48.93%

(3]0.1.0) 48.93%
3738.16 70.86 (4]0.1.0) 49.55%
(4]0.0.1) 49.50%

Table 5.6: DVR calculations with normal mode coordinates and optimized coor-
dinates for water monomer molecule. The peak positions are in cm~!. The peak
intensities are in KM /Mole unit. The projection® were obtained by the inner product
between the eigenstates and the basis kets.
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Normal mode coordinates | Optimized coordinates

Diagonal matrix elements
Jfoo 3704.26 3725.14
J1010 3795.73 3860.44
Jun 3904.28 3884.91
J1212 3924.67 3860.48
fo99 2293.04 2646.21
fio1010 -1803.27 -2569.91
S -2049.66 -2573.66
fi21212 -4.28 -2570.10

Off-diagonal matrix elements

fo10 0 11.43
Jou1 0 119.12
Jo12 0 11.31
Jio11 0 0.38
J1o12 0 -129.49
fii12 0 0.36
Jo1010 174.06 6.68
Joo10 166.47 2.09
Jor111 1041.46 39.83
Joor1 512.00 73.96
Jor212 162.02 7.81
foo12 -0.26 3.24
fro1111 138.92 1.39
J1o1011 -46.18 -1.60
J1o01212 -1807.11 18.74
J1o1012 1.37 15.40
fii1212 0.67 0.24
fuitiie -42.92 -0.43
foro011 20.63 0.00
Jor012 -0.21 -1.50
Jo1112 -0.35 0.06
Jio1112 -0.68 -0.16

Table 5.7: The second and third order force constants of four stretching modes of
the water dimer molecule in normal mode coordinates and optimized coordinates.

All values are shown in cm™ .
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oc-VCI[3]-(4) oc-VCI[3]-(5) oc-VCI[4]-(5) oc-VCI[3]-(6) oc-VCI[6]-(6)
H size 7912 17012 27512 31362 80082
(H size)/(H[6]-(6) size) 0.08 151 11.80 15.34
ZPE 13835.80 1.42 13835.01 0.63 13834.92 0.53 13834.50 0.12 13834.38
9 1589.65 8.03 1583.58 1.96 1582.11 0.49 1583.36 1.74 1581.62
10 1598.57 8.02 1592.50 1.96 1591.02 0.47 1592.30 1.75 1590.55
11 1602.89 7.96 1596.84 1.91 1595.39 0.46 1596.64 1.71 1594.93
12 1623.12 8.03 1617.03 1.94 1615.57 0.48 1616.82 1.72 1615.09
13 3346.49 33.27 3318.12 4.91 3317.01 3.80 3314.60 1.39 3313.21
14 3375.53 26.88 3353.44 4.79 3351.49 2.85 3350.99 2.34 3348.65
15 3471.05 21.07 3453.23 3.26 3452.21 2.23 3451.12 1.15 3449.97
16 3505.64 19.78 3489.18 3.32 3487.92 2.06 3487.32 1.46 3485.86
17 3510.17 20.27 3493.56 3.66 3492.00 2.09 3491.69 1.78 3489.90
18 3510.37 20.33 3493.76 3.73 3492.13 2.09 3491.97 1.93 3490.04
MAD (15.91) (2.91) (1.60) (1.55)

Table 5.9: The ground-state energy and the first few eigenvalues in the VCI calculations with optimized coordinates for ammonia dimer
molecule. The energies are shown in cm™*. The notation VCI[m]-(n) with m is the number of modes that are simultaneously excited, and
n is the maximum sum of quantum numbers. The mean absolute deviations from the larger basis set calculation VCI[6] — (6) are shown

in the parentheses.
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Wavenumber | Intensity | Assignment Projection? | ji, fy T
3467.182 0.016 <8/0.0.0.0.1> 48.58% | 0| 0.001 | -0.008
<8/0.0.0.1.0> 48.54% | 0| 0.001 | 0.008
<8[1.1.0.0.0> 2.53% | 0 ]-0.001 0

Table 5.11: The projection of the intensity of the band at 3467 cm™!. The five
number on the kets are corresponding to the quantum number of five modes on the

proton-donor ammonia. i, g, and p, are the transition dipole moment projected
on the basis kets.
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Chapter 6 Conclusion

We have implemented several algorithms to find the optimal set of coordinates:
the localized coordinates based on the localization criterion of maximizing the sum

of the squared of atomic contributions to the modes, proposed by Jacob and Rei-

her in 2009 [11]; and the optimized coordinates based on Thompson and Truhlar’s
idea in 1982 [15] of minimizing the ground state energy, and Yagi”s optimization
algorithm proposed in 2012 [16]. However, in this thesis, a modification was made

to calculate the ground state energy by finite basis representation method instead
of VSCF. The Hamiltonian in FBR was written as the sum of one-mode Hamil-
tonian and the coupling of the modes, the ground state energy was obtained by
diagonalizing the Hamiltonian matrix. This method was an improvement of VSCF
because we can obtain the ground state energy without iterative processes. The
optimization algorithm is based on the Jacobi sweep and the Newton’s minimiza-
tion. The many-variable optimization problem is simplified by defining the unitary
transformation matrix as the product of Jacobi rotational matrices of one pair. The
localization algorithm is also similar to the optimization algorithm, however, instead

of maximizing localization criterion, we minimize its negative function.

Water monomer and dimer were choosen as the benchmark of the optimization

process and the performance of optimized coordinates in VCI calculations. The total
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coupling constants in the cubic and quartic potentials of water monomer and dimer
were smaller in optimized coordinates than in normal mode coordinates. The VCI
calculations with truncated basis sets showed that optimized coordinates had faster
convergence than normal mode coordinates did. From this result, VCI calculations
with optimized coordinates could be used with smaller basis sets, which could help
to save the computational time. The size of the basis sets could be chosen as five for
the maximum quantum number and four for the number of simultaneously excited

modes.

In this study, Fermi resonance patterns of ammonia and methylamine clusters
spectra were study with four choices of coordinates, which are normal mode coordi-
nates (NC), local normal mode coordinates (LNM), localized coordinates (LC) and
optimized coordinates (OC). In both tested clusters, the vibrational motions were
delocalized in NC but localized in LNM, L.C and OC. In LNM, the vibrational modes
were localized on each monomer due to the way we chose the fragments. The LC and
OC gave similar results for bending and stretching motions, in which the stretching
modes were localized on the hydrogen bonds and the bending modes localized on
the functional groups. It would help to simplify the pictures of vibrational motions
and reduce the number of degrees of freedom needed in VCI and DVR calculations

when studying the properties of a chemical unit.

The examples of two hydrogen bonded clusters haven’t reached to the bound-
aries of those localized /optimized techniques, therefore they gave us roughly similar
results in the vibrational frequencies, coordinates and the simulated spectra. Only
when we went to lower-frequency region of the rocking modes, the over-localization

were found in LC, while the modes obtained by LNM and OC agreed reasonably
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well with the harmonic frequencies, making the results more reliable.

From our study and experience, LNM would be recommended for the molecules
or clusters with the functional groups are weakly binded, i.e. the inter-molecular
interactions are negligible so the systems can be easily divided into fragments. Only
block-diagonalizations of the Hessian matrix is needed to obtain the frequencies and
mode vectors, so LNM is very quick. The disadvantages of this method is it relies on
our chemical intuition and cannot be applied on the strongly binded systems. LC
also only needs the information of the Hessian matrix, and it is a more automatic way
to localize the motions, therefore LC should be a good choice for the high frequency
modes but not on the low frequency modes due to the over-localization. OC is
an expensive method because it requires an anharmonic potential, but it also an
“optimal choice” because it carries out the information of the anharmonic potential.
OC would give similar results to LC when the inter-mode anharmonic coupling in
NC is significant while the harmonic coupling introduced by OC is not too big. In
the reverse way, OC would give similar results to NC when the potential is harmonic
or nearly harmonic. Therefore, when studying a new system, the total anharmonic
coupling constants and the harmonic coupling introduced by a rotational matrix
should be considered to choose an "optimal” set of coordinates. For the future
work, more research on the low-frequency region and aromatic molecules should
be done to investigate the advantages of optimized coordinates over the localized
coordinates and local normal mode coordinates, since in the aromatic molecules,

there is no clear way to cut the rings into smaller fragments.
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Appendix A — Visualization of

the vibrational modes

In this appendix, the visualization of the modes using GaussView 6 [11] are
shown.
) NC 1: 1622 (b) NC 2: 3803 (c) NC 3: 3937
(d) OC 1: 1622 ) OC 2: 3870 (f) OC 3: 3870

Figure A.1: The frequencies and vibrational vectors of water monomer in NC and
OC. The frequencies are shown in cm™!.
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Figure A.2: The frequencies and vibrational vectors of water dimer in NC. The
frequencies are shown in cm™
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Figure A.3: The frequencies and vibrational vectors of water dimer in OC. The
frequencies are shown in cm™
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Figure A.4: The frequencies and vibrational vectors of water dimer in LC. The
frequencies are shown in cm™*.
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Figure A.5: The frequencies and vibrational vectors of ammonia dimer in NC. The
frequencies are shown in cm™".
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Figure A.6: The frequencies and vibrational vectors of ammonia dimer in LNM. The
frequencies are shown in cm™1.

89 doi:10.6342/NTU202201978


http://dx.doi.org/10.6342/NTU202201978

o fle b b
(a) LC 9: 1647  (b) LC 10: 1673  (c

)
Nt T

9 9

LC 11: 1648  (d) LC 12: 1650

(e) LC 13: 3514 (f) LC 14: 3582  (g) LC 15: 3582
3 & o & o &
9 9 \ 9 9

(h) LC 16: 3575 (i) LC 14: 3582 (j) LC 16: 3582

Figure A.7: The frequencies and vibrational vectors of ammonia dimer in LC. The

frequencies are shown in cm™".
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Figure A.8: The frequencies and vibrational vectors of ammonia dimer in OC. The

frequencies are shown in cm™1.
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Figure A.9: The frequencies and vibrational vectors of ammonia trimer in NC. The

frequencies are shown in cm™1.
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Figure A.10: The frequencies and vibrational vectors of ammonia trimer in LNM.
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Figure A.11: The frequencies and vibrational vectors of ammonia trimer in LC. The

frequencies are shown in cm™1.
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Figure A.13: The frequencies and vibrational vectors of methylamine dimer in NC.
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Figure A.14: The frequencies and vibrational vectors of methylamine dimer in LNM.
The frequencies are shown in cm™*.
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Figure A.15: The frequencies and vibrational vectors of methylamine dimer in LC.

The frequencies are shown in cm™*.
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Figure A.16: The frequencies and vibrational vectors of methylamine dimer in OC.
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Figure A.17: The frequencies and vibrational vectors of the methyl groups of methy-

lamine trimer in NC. The frequencies are shown in cm™?.
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Figure A.18: The frequencies and vibrational vectors of the amino groups of methy-
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Figure A.19: The frequencies and vibrational vectors of the methyl groups of methy-
lamine trimer in LNM. The frequencies are shown in cm™".
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Figure A.20: The frequencies and vibrational vectors of the amino groups of methy-
lamine trimer in LNM. The frequencies are shown in cm™?.
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Figure A.21: The frequencies and vibrational vectors of the methyl groups of methy-
lamine trimer in LC. The frequencies are shown in cm™".
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Figure A.22: The frequencies and vibrational vectors of the amino groups of methy-

lamine trimer in LC. The frequencies are shown in cm™!.
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Figure A.23: The frequencies and vibrational vectors of the methyl groups of methy-

lamine trimer in OC. The frequencies are shown in cm™!.
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Figure A.24: The frequencies and vibrational vectors of the amino groups of methy-
lamine trimer in OC. The frequencies are shown in cm™!.
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Figure A.25: The frequencies and vibrational vectors of the rocking motions of
methylamine dimer in NC, LNM, OC and LC. The frequencies are shown in cm™!.
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Figure A.26: The frequencies and vibrational vectors of the rocking motions of

methylamine trimer in NC, OC, LNM and LC. The frequencies are shown in cm™!.
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