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Abstract

Nowadays, the need for user editing in a 3D scene has rapidly increased due to the
development of AR and VR technology. However, the existing 3D scene completion task
(and datasets) cannot suit the need because the missing regions in scenes are generated by
the sensor limitation or object occlusion. Thus, we present a novel task named free-form
3D scene inpainting. Unlike scenes in previous 3D completion datasets preserving most
of the main structures and hints of detailed shapes around missing regions, the proposed
inpainting dataset, FF-Matterport, contains large and diverse missing regions formed by
our free-form 3D mask generation algorithm that can mimic human drawing trajectories
in 3D space. Moreover, prior 3D completion methods cannot perform well on this chal-
lenging yet practical task, simply interpolating nearby geometry and color context. Thus,
a tailored dual-stream GAN method is proposed. First, our dual-stream generator, fusing
both geometry and color information, produces distinct semantic boundaries and solves

the interpolation issue. To further enhance the details, our lightweight dual-stream dis-
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criminator regularizes the geometry and color edges of the predicted scenes to be realistic

and sharp. We conducted experiments with the proposed FF-Matterport dataset. ‘Qualita-

tive and quantitative results validate the superiority of our approach over existing scene

completion methods and the efficacy of all proposed components.

Keywords: Deep Learning, Generative Adversarial Network, Free-form 3D Scene In-

painting, 3D Scene, 3D Scene Inpainting
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Left: We propose a novel 3D scene inpainting task with the first free-form
3D scene dataset, FF-Matterport, which imitates user drawing masks in
3D space. Our proposed model takes the incomplete scene as input and
recovers the missing parts with high-quality and realistic results. Right:
Compared with the prior scene completion dataset generated by incom-
plete observations and preserving main structures and hints of missing
parts, our dataset contains challenging yet practical missing regions for

the 3D scene inpainting task. . . . . . . ... ... L L.

Overview of the proposed network. (a) Geometry and color dual-stream
generator exchanges and fuses embedded features from each other to com-
plement respective decoders. (b) The dual-stream discriminator uses the
differentiable 2D rendering and the edge detector to project the predicted
scene to a 2D image and an edge map. Then, it optimizes them with the

target view and corresponding canny edge image. . . . . . . .. ... ..

Trajectories comparison between (b) previous algorithm and (c) our algo-
rithm when drawing in (a). Due to the sparseness of 3D space, algorithm
(b) [44] generates masks on empty space and remains weird object shapes.
In contrast, our free-form 3D algorithm (c) is able to produce practical
masks around the surface with better flexibility by utilizing the property

of TSDF representation. . . . . . . . . .. ... ... ... ........
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4.1 Qualitative results of all methods on the FF-Matterport (Best viewed in
zoomed digital). Compared to our dual-stream GAN, SPSG fails to pre-
serve details from input and SG-NN predicts distorted structures with
small holes in large missing areas in the 1% and 2™ rows. To further show
the fine details of our predicted mesh, the 4™ row zoom in on the missing
corner of the 3™ row. More analyses and discussions are reported in Sec. 4.2. 16
B.2 Additional qualitative results of the dual-stream discriminator on FF-Matterport.
By adding the edge stream to the conventional color stream discriminator,
the color boundary becomes less blurred (shown in red frames), and the
geometry shapes become more straight and sharper (shown in zoomed-in
pictures in the 2™ row with yellow frames). . . . . ... ... ... ... 28
B.3 A failure case of the frame on the right side in (a) losing most of the edges
and color. Even though our model fails to predict distinct structures and
edges in the missing parts, our results (d) still outperform the baselines SG-

NN [6] (b) and SPSG [10] (c) in both geometry and color visual performance. 29
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The comparison of 3D geometric and color inpainting performance on the
FF-Matterport. With mask information and proper color and geometry
interaction, our dual-stream GAN outperforms all the baselines in both
geometry and color metrics. Notably, models without masks all fail in the
CD metric due to generating redundant meshes outside the missing areas,
which verifies the importance of masks on the 3D scene inpainting task. . 15
The ablation studies of 3D geometric and color inpainting performance
on the FF-Matterport. Compared with the single-stream GAN, our dual-
stream GAN reaches higher performance in all metrics, especially the
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Conv and mask components on the 3D scene inpainting task. . . . . . . . 15
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Chapter 1 Introduction

Inrecent years, Augmented Reality (AR) and Virtual Reality (VR) have become pop-
ular in our daily life, such as VR gaming, virtual tours, and AR meeting software. To
form realistic 3D scenes in these applications, reconstructing scenes from multiple sensed
RGB-D images is a widely-used and cost-effective approach. However, users often want
to further edit the reconstructed 3D scenes to meet their needs. Take, as an example, re-
moving unwanted objects existing in the real world. Therefore, there is still a strong need

for 3D post-processing.

In this work, we introduce this application as the 3D scene inpainting task. Specifi-
cally, given a 3D scene with several manually specified 3D masks, a 3D inpainting model
should fill these regions with proper contents, including both geometry and color. Al-
though 3D completion methods [38, &, 6, 10] also aim to complete missing regions in
3D space, they cannot meet the needs of the 3D inpainting application for the following

reasons:

Insufficient Evaluation: The existing 3D scene completion datasets [6, 10] are un-
suitable for the inpainting task because they (1) lack the masks that specify the missing
regions and (2) form the missing regions only by sensor limitation or object occlusion.

About (1), regions with a 0-value could be either missing parts that need to be repaired

1 doi:10.6342/NTU202202063
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Input Our (a) Completlon (b) Our Inpainting (c¢) Ground Truth
Free-form 3D Scene Inpainted 3D Scene Dataset Dataset

Figure 1.1: Left: We propose a novel 3D scene inpainting task with the first free-form 3D
scene dataset, FF-Matterport, which imitates user drawing masks in 3D space. Our pro-
posed model takes the incomplete scene as input and recovers the missing parts with high-
quality and realistic results. Right: Compared with the prior scene completion dataset
generated by incomplete observations and preserving main structures and hints of miss-
ing parts, our dataset contains challenging yet practical missing regions for the 3D scene
inpainting task.

or an empty space without objects due to the sparseness property of 3D space. Without
the informative masks of missing regions, SOTA methods in 3D completion thus change
the shape of completed parts or leave the incomplete regions with small holes or artifacts
(Fig. 4.1). Regarding (2), the physical properties of missing regions in 3D inpainting
tasks and existing 3D scene completion datasets [6, | 0] differ. To be specific, incomplete
areas in the existing completion datasets are due to inherent sensor limitation or object
occlusion. They are usually regular and strongly correlated to object occlusion or spe-
cific camera view (Fig. 1.1). In contrast, the missing regions in 3D inpainting tasks are
irregularly shaped and could randomly occur anywhere in a scene. To effectively vali-
date the methods in the 3D inpainting task, we propose a novel Free-Form Matterport3D
(FF-Matterport) dataset tailored for this task. Free-form masks imitate the diverse human

drawing trajectories in real-case (Sec. 3.1).

Poor Geometry and Color Reconstruction: As aforementioned, previous methods

lack the ability to recover the missing regions well in 3D inpainting tasks. First, they can-

2 doi:10.6342/NTU202202063
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not attend to the missing parts due to the lacking of mask information. To tackle this, we
leverage the mask information via modifying the gated convolution module [44] to guide
our model to focus on the crucial area. Second, the SOTA method [10] recovers missing
areas with a single-stream two-stage generator, which generates geometry structure (first-
stage) and color (second-stage) sequentially. Since the unstable geometry results learned
in the first stage are without the help of semantic features from color, it may cause the
error propagation issue resulting in poor inpainting results. Observing this, we introduce
the first 3D dual-stream generator (Fig. 2.1 (a)) to collaboratively generate both geometry
and color in missing regions (Sec. 3.2). By considering the information of two modalities
simultaneously, our dual-stream generator produces more realistic object structures than

the single-stream generator.

Crude Details: As the 3D scene inpainting task is much more challenging, prior
approaches show the further shortcoming, i.e., producing crude details of restoration. In
brief, prior colored 3D completion work [10] leveraged a color discriminator to make the
rendered images of the generated scene similar to the real scene with adversarial loss.
However, this color adversarial discriminator still results in blurred and distorted bound-
aries when recovering large damaging regions with structural contents, such as picture
frames or furniture edges. To enhance the sharpness and structure of boundaries, we in-
troduce an extra edge stream discriminator apart from the color adversarial discriminator.
Particularly, we randomly project the inpainted 3D scene to multiple 2D images and then
simultaneously constrain its color texture along with the predicted edge maps using our
dual-stream discriminator (Fig. 2.1 (b) and Sec. 3.3). With additional regularizations on
the edges of global structures, we find that our geometry and color generators learn to

collaborate and generate less blurry and well-structured boundaries.
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We validate our dual-stream GAN and previous 3D scene completion methods on the
proposed FF-Matterport dataset. Our method demonstrates the superiority in six different
metrics. Besides, the impressive visualization results also illustrate the effectiveness of our

method. To sum up, this work presents the following main novelties and contributions:

* We propose a novel 3D scene inpainting task with the first free-form 3D scene
dataset, FF-Matterport, which contains diverse free-form masks generated with our

designed algorithm imitating human drawing trajectories.

* We introduce the first 3D gated dual-stream (geometry and color) generator to jointly
consider the geometry and color context of missing regions and generate high-

quality contents with semantic-constrained structures.

* We introduce an edge and color dual-stream discriminator guiding the generator to

produce clear and detailed geometry and color boundaries.
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Chapter 2 Related Work

2.1 3D Completion

In the field of 3D vision, object completion is a fundamental and long-standing prob-

lem. Some took single or multi images to reconstruct or complete 3D objects [5, 30, 35,
, 42, 16]. Others utilized depth or RGB-D frames collected by commodity depth sensors

to reconstruct 3D objects [41, 40]. Still, others aimed to complete a 3D object by vari-
ous 3D representations, such as 3D point cloud scan [ 18, 43, 46, 36, 23, 45], sign distance
fields (SDF) [9, 34], or mesh surface [25, 26]. Nonetheless, the above methods are limited

to 3D objects rather than a complex 3D scene with several items.

To complete a complicated 3D scene, some recent studies have been proposed. [32,

, 7,20, 21, 29] leveraged scanned multiple RGB-D images to reconstruct a 3D scene
and refine its color. SSCNet [3&] combined the scene completion task with the 3D seman-
tic segmentation task. ScanComplete [¢] extended the 3D completion task to large scenes
and designed the network to handle various scene scales during inferring. SG-NN [6] first
trained and evaluated the 3D scene completion model on a real-world scanned dataset,
and SPSG [10] first tackled color completion in 3D scenes apart from geometry comple-
tion. However, these prior 3D scene completion works only focus on completing missing
parts due to sensor limitations, which are strongly correlated to viewing angles and have

5 doi:10.6342/NTU202202063
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generally similar patterns.

To the best of our knowledge, we are the first to introduce the 3D scene inpainting
task and generate a free-form 3D scene dataset to train and evaluate the performance of
completing manual masks in 3D space. Furthermore, our dual-stream GAN, complement-
ing geometry and color information with each other, solves the problem of over-smoothed

geometry shapes and blurred color boundaries in prior single-stream two-stage work [ 10].

2.2 2D Image Inpainting

2D image inpainting takes a corrupted image as input and fills the missing parts in the
image with semantically correct, and boundary-consistent contents. It is an important task
for many downstream visual tasks, such as object removal, damaged photo restoration,
and 2D to 3D photo transformation [37]. Traditional approaches [, 13, 11, 22] reused the
patches from the image background or source images to repair the missing pixels with the

most similar one, but they only can handle repetitive patterns or small missing holes.

Recently, GAN [15] has made great progress in the image inpainting task, enabling
inpainting models to fill holes with realistic and semantically reasonable contents [12].
PConv [27] and GatedConv [44] extended regular rectangle masks to free-form masks
with irregular shapes and developed corresponding CNN modules to handle the more
challenging masks. More recently, some practices [31, 28, 17] utilized additional edge
constraints to conquer the blurry results on large missing areas where the main structure
ofthe object is missing. [3 | ] proposed an edge-color two-stage inpainting framework; [28]
and [1 7] developed new generator models to combine and exchange structure and texture

information.

6 doi:10.6342/NTU202202063


http://dx.doi.org/10.6342/NTU202202063

(a) Dual-stream Generator (b) Dual-stream Discriminator
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Figure 2.1: Overview of the proposed network. (a) Geometry and color dual-stream gen-
erator exchanges and fuses embedded features from each other to complement respective
decoders. (b) The dual-stream discriminator uses the differentiable 2D rendering and the
edge detector to project the predicted scene to a 2D image and an edge map. Then, it
optimizes them with the target view and corresponding canny edge image.

Different from prior 2D inpainting studies, we first introduce the 3D inpainting task
and present a 3D-specific free-form mask generation algorithm due to the sparseness prop-
erty in 3D space. Moreover, inspired by [31, 28, 17], we propose the first dual-stream
GAN for the 3D inpainting task, not only cooperating 3D geometry and color informa-
tion in the generator but also regularizing color and edges from diverse viewpoints in the

discriminator.
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Chapter 3 Method

In this work, we propose a novel 3D scene inpainting task with the tailored FF-
Matterport dataset for the need in AR and VR applications. The 3D scenes in the dataset
contain irregular and diverse shapes of missing regions (masks) generated by our novel
free-form 3D mask generation algorithm (Sec. 3.1) that mimics humans drawing trajec-
tories in 3D scenes. To tackle this challenging yet practical task, we develop a dual-
stream GAN model (Fig. 2.1) that contains two main components, the dual-stream gen-
erator and the dual-stream discriminator. The dual-stream generator (Sec. 3.2) leverages
the mask information and the feature fusion of geometry and color to generate semantic-
constraint structures and shape-constraint textures. In addition, the dual-stream discrimi-
nator (Sec. 3.3) further enhances the details by regularizing color and corresponding edges

on randomly rendered images.

3.1 Free-form 3D Dataset Generation

As illustrated in Fig. 1.1, our free-form 3D dataset aims to alleviate the issues of too
regular patterns in missing areas and the lacking mask information in existing 3D com-
pletion datasets [0, 10]. To generate free-form 3D masks, it is intuitive to modify the

free-form 2D mask generation algorithm [44], which uses strokes with random lengths

8 doi:10.6342/NTU202202063
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and directions to line up a drawing track. As all pixels in 2D images contain information,
drawing straight lines back and forth can cover the unwanted objects. - However, since
objects in 3D space are sparse and have curved and complicated shapes, directly apply-
ing the previous algorithm in 3D space usually masks areas without objects or produces

meaningless shapes (Fig. 3.1).

To conquer the above challenges,

(a) Complete Mesh (b) Prior Algorithm (c) Our Algorithm
we design a novel 3D mask generation
EEEEEE
; T ]
‘mpty Space ]
algorithm. Initially, it converts the ‘ ‘ —
3

distance field (TSDF) representation. ﬁ =

Figure 3.1: Trajectories comparison between (b)
previous algorithm and (c) our algorithm when
drawing in (a). Due to the sparseness of 3D
space, algorithm (b) [44] generates masks on
surface by checking the TSDF val- empty space and remains weird object shapes. In
contrast, our free-form 3D algorithm (c) is able
to produce practical masks around the surface
with better flexibility by utilizing the property of
TSDF representation.

3D scene data to the truncated signed ﬁ
W o \s

The algorithm can thus ensure that

the painted stroke persists around the

ues. Afterward, we use an incremental
masking strategy rather than the orig-
inal 2-point line strategy in [44]. Our
strategy dynamically decides the direction and length of strokes, considering the distance
to the surface and the diameter of the stroke. Besides, we randomly sample points in 3D
scenes as the starting point for strokes to ensure diversity. With our algorithm, the curved
strokes can fit various object shapes and occur in diverse places in 3D scenes. More details

are reported in supplementary materials.

We apply our mask generation algorithm to the Matterport3D [4] dataset with the
official train-test split and produce the first free-form 3D scene inpainting dataset, named

FF-Matterport. It contains 30-40% missing regions randomly located in the whole indoor

9 doi:10.6342/NTU202202063
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scene and is voxelized to 2cm resolution same as [6, 1 0]. Notably, unlike in'the 2D image
inpainting task where a mask can be randomly paired with any images, each free-form 3D
mask in our dataset is generated according to the object distribution of its corresponding

scene.

3.2 Dual-stream Generator

As mentioned in Sec. 3.1, the scenes in the 3D inpainting task contain irregular and
various missing regions, which makes the task more challenging. Moreover, the additional
mask is also provided to indicate areas that are needed to focus. To better leverage the mask
information and reconstruct sophisticated and realistic object surfaces in missing regions,

we develop a dual-stream generator specifically for this task.

To utilize the masks, we can treat them as additional channel inputs. Nonetheless, we
further exploit the benefits of masks, attaching a 3D gated convolution module (3D Gated-
Conv) extended from [44] to the generator. Specifically, the 3D GatedConv module helps
the generator gradually fill the masked regions with proper geometry and color contents
by dynamically learning soft attention maps. This modification contributes significantly
to model performance, and we found that baselines without the mask information or 3D

GatedConv module only produce distorted restoration results (See Tab. 4.2).

Regarding the pipeline of the generator, SPSG [10] developed a two-stage pipeline,
which first completes the geometry of all missing areas and then generates color on the
surfaces specified in the first stage. We find that the geometry generator in this pipeline
completely ignores the semantic features of color. Also, the unstable geometry outcome

of the first stage causes error propagation to the second stage. To this end, we argue that

10 doi:10.6342/NTU202202063
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the geometry and color information should be considered simultaneously and can benefit
each other. Inspired by [17], we develop the first 3D dual-stream (geometry and color)

generator that can fuse and retrieve the knowledge from both streams during generation.

In Fig. 2.1 (a), our dual-generator consists of two generators, each with a U-Net vari-
ant. In the encoding phase, the geometry and color scenes are embedded independently
and projected to high-level feature space through corresponding generators. During the
decoding phase, the two generators fuse feature embedding from each other as an addi-
tional condition to refine the respective decoded results. Besides, we combine the encoder
and decoder features with skip connections to create more delicate content. This operation
allows us to fully exchange geometry and color information during generation, producing
both semantic-aware geometry structure and shape-constrained color texture in predicted
scenes. Compared with the previous pipeline using a one-way feature stream forward from
geometry to color, our dual-stream pipeline provides a mutual feature exchange between
the two generators. Consequently, we can observe that our pipeline alleviates the error
propagation problem, revealing consistent performance improvements in both geometry

and color results (Tab. 4.2).

3.3 Dual-stream Discriminator

To make the generator produce high-quality objects on missing regions, it is a com-
mon practice to directly regularize generated scenes by designing loss functions or uti-
lizing a discriminator. In the field of 3D completion, [6] used a naive /1 loss to regress
the geometry outputs and [10] applied a 2D discriminator to force the color outputs real-

istic under diverse rendering views. Nevertheless, the above practices are inadequate to
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meet the need of 3D scene inpainting as its missing areas, unlike small corrupted strips
due to sensor limitation in 3D completion, are generally large and lack structural contents.
Specifically, we found those methods are prone to produce over-smoothed structures and
blurred color edges by interpolating nearby color and geometry values or linking mesh
pieces (Fig. 4.1). Thus, we develop a novel dual-stream discriminator to avoid producing

such crude details.

As illustrated in Fig. 2.1 (b), our dual-stream discriminator is composed of two com-
ponents: a color discriminator and an edge discriminator. To begin with, our color dis-
criminator regularizes the quality of generated scenes on randomly rendered 2D images
following [10]. This 2D color stream makes the projected 2D frames of the generated
3D scene as realistic as possible and is more effective than applying a discriminator in
3D [10]. Moreover, to ensure fine-grained geometry shapes and sharp color boundaries
in the generated scene, we design an edge discriminator further regularizing the corre-
sponding edges of the rendered frames. To elaborate, our edge discriminator compares
the 2D edge maps extracted from real projected frames by the Canny edge detector [3]
and that extracted from generated frames by our NN-based edge detector. With the aid of
our lightweight edge discriminator, we can not only produce sharp color boundaries and
detailed geometry contents on qualitative results (Fig. 4.1) but also achieve huge improve-

ments in quantitative results (Tab. 4.2).

To summarize, our training objectives can be categorized into two groups. For the
naive full supervision loss, we supervise our geometry and color reconstruction from both
3D and 2D space. The L, following the log-transformed ¢1 TSDF loss in [6] is applied
to penalize the geometry in 3D space, and the L., as well as depth L, (both are /1

losses) are leveraged to ensure geometry and color reconstruction on the rendered images.
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Furthermore, to improve human visual perception and sharpen the geometry and color
boundaries, we applied the two adversarial losses, Lio., and L&j"., from our dual-stream

discriminator along with the conventional content loss L., [14]. The overall loss:is

formulated as below:

L= >\ng60 + >\2Lcolor + Ldepth + >\3Lcont + )\4(Ladv + Ladv )7 (31)

color edge

where \i, Ao, A3, \4 are the scaling coefficients.
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Chapter 4 Experiments

4.1 Experimental Settings

Training Settings: Our network is trained on a single NVIDIA GeForce RTX 2080
Ti with a batch size of 2, and it takes about 6 epochs ~ 48 hours to train until convergence.
It is optimized via an Adam optimizer with a learning rate of 0.0001. The patch size of the
discriminator is 94 x 94 cropped from 320 x 256 images. The Ay, Ay, A3, A4 in Eq. 3.1 are
setas 0.3, 0.6, 0.01 and 0.005 via grid search. In the training stage, we crop the 3D scene
into 64 x 64 x 128 chunk voxels to speed up the process. In the testing stage, we directly

input the room-sized scene to our model as 3D CNN is invariant to the scene scale.

Evaluation Metrics: For a fair comparison, we follow the evaluation metric in [10]. The
geometry performance is evaluated by IoU, Recall, and Chamfer Distance. Note that only
the observed regions in the target scene are evaluated, and we ignore the unobserved areas
as the same in [10]. Besides, the color performance is evaluated by SSIM (structural
similarity image metric) [2], Feature-/1 [33], and FID (Fréchet Inception Distance) [19]
to capture the differences at both local and global scales between the rendered and target

images.

Baselines: To verify the proposed dual-stream GAN in our novel task, we compare it
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with several SOTA 3D completion approaches, including PIFu™ [35], SG-NN [6], and
SPSG [10]. Also, we develop another baseline, SPSG equipped with-mask inputs, to
validate the importance of mask information. We follow [10] to implement all baselines
and exclude SG-NN from the evaluation of color performance as it is designed to complete

geometry only.

Methods Geometry Color
IoU() Recall(t) CD(}) | SSIM(1) Feature-¢1(}) FID(})
PIFu* [35] 0241 0525 19.537| 0.744 0.253 108.87
SG-NN [6] 0.636  0.857 20.988 | - - -
SPSG [10] 0466  0.683  17.457 | 0.829 0.220 75.10
SPSG (+mask) [10] | 0.491  0.659 3336 | 0.843 0214 69.60
Ours | 0781 0.896  2.110 | 0.853 0.209 65.28

Table 4.1: The comparison of 3D geometric and color inpainting performance on the FF-
Matterport. With mask information and proper color and geometry interaction, our dual-
stream GAN outperforms all the baselines in both geometry and color metrics. Notably,
models without masks all fail in the CD metric due to generating redundant meshes outside
the missing areas, which verifies the importance of masks on the 3D scene inpainting task.

Methods Geometry Color
IoU(t) Recall(t) CD(}) | SSIM(1) Feature-¢1(}) FID(})
Dual-stream GAN (Full) | 0.781  0.896  2.110 | 0.8536 0.209 65.28
- Edge Discriminator | 0.774  0.892  2.137 | 0.8534 0.209 65.62
- 3D GatedConv 0.747  0.875 2250 | 0.8491 0.211 68.28
- Mask Info. 0.592  0.827 24356 | 0.8471 0.213 69.75
Single-stream GAN | 0.744  0.878  2.523 | 0.8511 0.210 66.68

Table 4.2: The ablation studies of 3D geometric and color inpainting performance on the
FF-Matterport. Compared with the single-stream GAN, our dual-stream GAN reaches
higher performance in all metrics, especially the three geometry metrics. Also, we show
the effectiveness of 3D GatedConv and mask components on the 3D scene inpainting task.

4.2 Main Results

We verify all methods on the FF-Matterport dataset and illustrate the quantitative and
qualitative results in Tab. 4.1 and Fig. 4.1, respectively. From Tab. 4.1, PIFu™ obtains the

worst performance in most metrics, indicating that it cannot adapt to tackle this novel task.
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| |

(a) Input (b) SG-NN (c) SPSG (d) Ours (e) Ground Truth

Figure 4.1: Qualitative results of all methods on the FF-Matterport (Best viewed in
zoomed digital). Compared to our dual-stream GAN, SPSG fails to preserve details from
input and SG-NN predicts distorted structures with small holes in large missing areas in
the 1% and 2" rows. To further show the fine details of our predicted mesh, the 4" row
zoom in on the missing corner of the 3™ row. More analyses and discussions are reported
in Sec. 4.2.

About SG-NN, it captures more local features, resulting in higher IoU and Recall scores
than other baselines. But it fails to capture the global features and generates distorted
structure with small holes in large missing areas, such as the corner of the bed (1% row)
and the sofa chair on the left (2" row) of Fig. 4.1 (b). Thus, it leads to bad performance

on the CD metrics.

Regarding SPSG, the 1° row in Fig. 4.1 (¢) shows that it fails to preserve the details
of complete parts from input scenes, such as the lamp beside the sofa, and results in lower
IoU and Recall scores. Besides, SPSG suffers from initial color bias pointed in [44] and
performs poorly on the color scores. On the contrary, our dual-stream GAN better utilizes
the mask information as well as both structure and semantic feature from dual-stream to
generate well-structured and semantic reasonable 3D scenes; accordingly, we achieve the
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highest performance in all metrics.

To show the further restoration details, the 4™ row of Fig. 4.1 zooms in on the missing
corner of the frame in the 3™ row. Unlike SG-NN and SPSG flattening and ignoring the
frame structure, our model easily distinguishes the frame from the wall using color features
and recovers the corner with straight and delicate edges guided by our edge adversarial

loss.

4.3 Ablation Studies

We summarize the ablation study in Tab. 4.2. First, we analyze the influence of
our edge discriminator. Comparing the 1t and 2™ rows, the edge discriminator causes
minor improvements in numerical evaluations but significantly contributes to the visual-
ization (in supplementary). This phenomenon echoes our hypothesis that 2D edge loss
can guide 3D geometry and color to better collaborate on generating delicate 2D edges.
Then, we verify the design of our pipeline. We build a single-stream sequential generator
with mask inputs and 3D GatedConv, named single-stream GAN in Tab. 4.2. The single-
stream GAN generates geometry features without knowing color features and then passes
them to the color stream. As a result, its geometry performance declined larger than color

performance.

Lastly, we examine the efficacy of 3D GatedConv and mask information. As shown
in the 3™ and 4"rows of Tab. 4.2, they substantially improve the performance, both in ge-
ometry and color scores, which reveals the mask information is indispensable in the novel
3D inpainting task. This observation is consistent with the advancement of SPSG with

mask inputs in the main experiment (Tab. 4.1). Especially the CD metric is evaluated on
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the fixed-number points uniformly sampled from predicted meshes, models without mask
information tend to generate redundant meshes outside the missing areas; resulting in bad
performance. Through these analyses, we demonstrate the importance of mask informa-
tion on the challenging 3D scene inpainting task, which means the proposed dataset and

approach are requisite.
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Appendix A — Appendix for Free-form
3D Mask Generation Algorithm

As stated in Sec. 3.1 of the main paper, our designed free-form 3D mask generation
algorithm aims to mimic human drawing trajectories in 3D space and randomly gener-
ate diverse free-form masks for efficient training and evaluation. To avoid covering the
empty space in the scene into the masked areas and to flexibly draw arbitrary shapes of
3D objects, we utilize the characteristic of TSDF and dynamically decide the length and

direction of strokes based on the TSDF values. We show our algorithm in Algorithm 1.

The input of the algorithm is an original scene S, from a real-world scanned scene
containing 7, TSDF and C, color voxelized values, and three hyper-parameters diameter,
maxStrokeStep, and totalStep to control the mask distribution. The output is a masked
scene S, for training and inferring consisting of masked 7},, TSDF and C,, color voxelized
values with corresponding binary mask map M,,. This algorithm is for the 64x64x128
chunk size in the training dataset. For the test dataset which contains whole indoor rooms,

We run this algorithm several times in equal proportions to the size of the indoor rooms.
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Algorithm 1 Free-form 3D Mask Generation Algorithm

1:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

2
3
4
5:
6
7
8

Input: Original scene: S, = {T,,C,}, and diameter, maxStrokeStep, total Step.

: Output: Masked scene: S, = {T},,, Cy, M, }.
: Init: Copy from original scene T,,, < T,, C,, +— C,, (#step, #strokeStep) < (0, 0).

: function RANDOMMAXSTROKE(S)

return random.randint(s, s+10)

: end function

: function FINDVALIDBALL(c, d, 1) > ¢ is center, d is diameter, and t is threshold
return X < {z|z € B.4N |1, (z)| <t} > B, 4 is a ball centered at ¢ with
diameter d

end function
center O, < random.choice(|7},| < 1)> Random a starting point on occupied voxels
max stroke step L <— RANDOMMAXSTROKE(maxStrokeStep)
while #step < TotalStep do
Mask out Bo, giameter i {Trn, Ciny My }
#step < #step + 1
#strokeStep <« #strokeStep + 1
if #strokeStep > L then > Restart a new stroke
center O, < random.choice(|7,| < 1)
max stroke step L <— RANDOMMAXSTROKE(maxStrokeStep)
#strokeStep < 0
else if X < FINDVALIDBALL(O,, diameter//2,1) # () then> Move a small step
O, < random.choice(X)
else if X < FINDVALIDBALL(O,, diameter,5) # () then > Move a big step
O, < random.choice(X)
else > Dead end, Restart a new stroke
center O, <— random.choice(|7,| < 1)
max stroke step L <— RANDOMMAXSTROKE(maxStrokeStep)
#strokeStep < 0
end if
end while
return {T,,,C,,, M,,}.
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Appendix B — Appendix for Additional

Results

B.1 Edge Discriminator Qualitative Result

|t I iy o
SCECEEE

—_———

2 |
Geometry ‘
Only ‘ *
Image ‘
(a) Input (b) w/o Edge Disc. (c) w/ Edge Disc. (d) Ground Truth

Figure B.2: Additional qualitative results of the dual-stream discriminator on FF-
Matterport. By adding the edge stream to the conventional color stream discriminator,
the color boundary becomes less blurred (shown in red frames), and the geometry shapes
become more straight and sharper (shown in zoomed-in pictures in the 2" row with yellow
frames).

In the main paper, we state that our additional discriminator aims to enhance the
sharpness and details of the results for better human perception. As shown in Fig. B.2, we
provide additional qualitative results on FF-Matterport to demonstrate the efficacy of our
dual-stream discriminator. Compared with (b) the model without our edge discriminator,

the full model (c) performs better on both geometry and color. In (c), the bottom left corner
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(a) Input ' B - (e

Figure B.3: A failure case of the frame on the right side in (a) losing most of the edges and
color. Even though our model fails to predict distinct structures and edges in the missing
parts, our results (d) still outperform the baselines SG-NN [6] (b) and SPSG [10] (¢) in
both geometry and color visual performance.

(red frame) of the color image becomes less blurred after adding the edge stream, and the
top right corner (yellow frame) of the color image zoomed in as the geometry only image
shows that the geometry shapes become sharper after adding our edge discriminator. This
phenomenon echoes our motivation that 2D edge loss can simultaneously guide the 3D

geometry and color streams to generate delicate edges.

B.2 Limitation

Although our proposed method can generate realistic geometry and color results for
the real-world 3D scene inpainting task, we still find its limitations and unsolved chal-
lenges as shown in Fig. B.3. For example, in the 1% row (a), the right side of an incom-
plete picture frame loses most of the edges and color; also, the 2" row (a) shows that the
structure of the frame is very close to the wall and hard to be distinguished. Therefore,
even with the help of our dual-stream GAN design, the model fails to predict the correct
edges of the top right and bottom left corners, resulting in blurred color boundaries in the

comparison of (d) and (e). Still, our predicted results contain more details than SG-NN [6]
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(b) and SPSG [10] (c).

Moreover, due to the natural limit of CNN models and voxel representation, the out-
put resolution is restricted. Even though some new 3D data representations are proposed
recently and claimed to support the unlimited resolution, such as implicit function, it is

still challenging to properly handle the mask information in the 3D scene inpainting task.
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