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摘要

現今，由於擴增實境和虛擬實境技術的發展，使用者在三維立體場景中進行

編輯的需求迅速增加。然而，現有的三維立體場景補全任務（以及資料集）並無

法滿足使用者編輯的需求，因為其場景中的缺失區域是由傳感器偵測限制或物品

遮擋產生的。因此，我們提出了任意形狀三維立體場景修復的新任務。與之前的

三維立體場景補全任務的資料集中場景保留了缺失區域周圍大部分的主要結構和

細節的形狀提示不同，我們所提出的三維立體場景修復資料集（FF­Matterport）包

含了由我們提出的任意形狀三維立體遮罩生成演算法所產生大面積而多樣的缺失

區域；此演算法模仿了人類在三維立體空間中繪製遮罩的軌跡。此外，先前的三

維立體場景補全方法只需對缺失區域周圍的結構和顏色進行插值即可達到不錯的

效果，但這些方法無法很好地完成三維立體場景修復這項具有挑戰性但實用的任

務，因此我們針對此任務設計了雙流對抗式生成網路。首先，我們的雙流生成式

網路結合了三維立體場景中結構與顏色的資訊，以生成具有明確語義邊界的場景

並解決了先前方法中插值的問題。為了進一步加強場景中的細節，我們提出了輕

量級的雙流鑑別式網路將生成場景的結構與顏色邊緣規範化，使其更加逼真與清

晰。我們用提出的 FF­Matterport資料集進行了實驗。定性和定量的結果都驗證了

我們提出的方法優於現有三維立體場景補全方法且所有提出的架構皆有其效果。

關鍵字：深度學習、對抗式生成網路、任意形狀修復、三維立體場景、三維立體

場景修復
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Abstract

Nowadays, the need for user editing in a 3D scene has rapidly increased due to the

development of AR and VR technology. However, the existing 3D scene completion task

(and datasets) cannot suit the need because the missing regions in scenes are generated by

the sensor limitation or object occlusion. Thus, we present a novel task named free­form

3D scene inpainting. Unlike scenes in previous 3D completion datasets preserving most

of the main structures and hints of detailed shapes around missing regions, the proposed

inpainting dataset, FF­Matterport, contains large and diverse missing regions formed by

our free­form 3D mask generation algorithm that can mimic human drawing trajectories

in 3D space. Moreover, prior 3D completion methods cannot perform well on this chal­

lenging yet practical task, simply interpolating nearby geometry and color context. Thus,

a tailored dual­stream GAN method is proposed. First, our dual­stream generator, fusing

both geometry and color information, produces distinct semantic boundaries and solves

the interpolation issue. To further enhance the details, our lightweight dual­stream dis­
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criminator regularizes the geometry and color edges of the predicted scenes to be realistic

and sharp. We conducted experiments with the proposed FF­Matterport dataset. Qualita­

tive and quantitative results validate the superiority of our approach over existing scene

completion methods and the efficacy of all proposed components.

Keywords: Deep Learning, Generative Adversarial Network, Free­form 3D Scene In­

painting, 3D Scene, 3D Scene Inpainting
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Chapter 1 Introduction

In recent years, Augmented Reality (AR) and Virtual Reality (VR) have become pop­

ular in our daily life, such as VR gaming, virtual tours, and AR meeting software. To

form realistic 3D scenes in these applications, reconstructing scenes from multiple sensed

RGB­D images is a widely­used and cost­effective approach. However, users often want

to further edit the reconstructed 3D scenes to meet their needs. Take, as an example, re­

moving unwanted objects existing in the real world. Therefore, there is still a strong need

for 3D post­processing.

In this work, we introduce this application as the 3D scene inpainting task. Specifi­

cally, given a 3D scene with several manually specified 3D masks, a 3D inpainting model

should fill these regions with proper contents, including both geometry and color. Al­

though 3D completion methods [38, 8, 6, 10] also aim to complete missing regions in

3D space, they cannot meet the needs of the 3D inpainting application for the following

reasons:

Insufficient Evaluation: The existing 3D scene completion datasets [6, 10] are un­

suitable for the inpainting task because they (1) lack the masks that specify the missing

regions and (2) form the missing regions only by sensor limitation or object occlusion.

About (1), regions with a 0­value could be either missing parts that need to be repaired

1
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Input
Free-form 3D Scene

Our 
Inpainted 3D Scene

(a) Completion 
Dataset

(b) Our Inpainting 
Dataset

(c) Ground Truth

Figure 1.1: Left: We propose a novel 3D scene inpainting task with the first free­form 3D
scene dataset, FF­Matterport, which imitates user drawing masks in 3D space. Our pro­
posed model takes the incomplete scene as input and recovers the missing parts with high­
quality and realistic results. Right: Compared with the prior scene completion dataset
generated by incomplete observations and preserving main structures and hints of miss­
ing parts, our dataset contains challenging yet practical missing regions for the 3D scene
inpainting task.

or an empty space without objects due to the sparseness property of 3D space. Without

the informative masks of missing regions, SOTA methods in 3D completion thus change

the shape of completed parts or leave the incomplete regions with small holes or artifacts

(Fig. 4.1). Regarding (2), the physical properties of missing regions in 3D inpainting

tasks and existing 3D scene completion datasets [6, 10] differ. To be specific, incomplete

areas in the existing completion datasets are due to inherent sensor limitation or object

occlusion. They are usually regular and strongly correlated to object occlusion or spe­

cific camera view (Fig. 1.1). In contrast, the missing regions in 3D inpainting tasks are

irregularly shaped and could randomly occur anywhere in a scene. To effectively vali­

date the methods in the 3D inpainting task, we propose a novel Free­Form Matterport3D

(FF­Matterport) dataset tailored for this task. Free­form masks imitate the diverse human

drawing trajectories in real­case (Sec. 3.1).

Poor Geometry and Color Reconstruction: As aforementioned, previous methods

lack the ability to recover the missing regions well in 3D inpainting tasks. First, they can­

2
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not attend to the missing parts due to the lacking of mask information. To tackle this, we

leverage the mask information via modifying the gated convolution module [44] to guide

our model to focus on the crucial area. Second, the SOTA method [10] recovers missing

areas with a single­stream two­stage generator, which generates geometry structure (first­

stage) and color (second­stage) sequentially. Since the unstable geometry results learned

in the first stage are without the help of semantic features from color, it may cause the

error propagation issue resulting in poor inpainting results. Observing this, we introduce

the first 3D dual­stream generator (Fig. 2.1 (a)) to collaboratively generate both geometry

and color in missing regions (Sec. 3.2). By considering the information of two modalities

simultaneously, our dual­stream generator produces more realistic object structures than

the single­stream generator.

Crude Details: As the 3D scene inpainting task is much more challenging, prior

approaches show the further shortcoming, i.e., producing crude details of restoration. In

brief, prior colored 3D completion work [10] leveraged a color discriminator to make the

rendered images of the generated scene similar to the real scene with adversarial loss.

However, this color adversarial discriminator still results in blurred and distorted bound­

aries when recovering large damaging regions with structural contents, such as picture

frames or furniture edges. To enhance the sharpness and structure of boundaries, we in­

troduce an extra edge stream discriminator apart from the color adversarial discriminator.

Particularly, we randomly project the inpainted 3D scene to multiple 2D images and then

simultaneously constrain its color texture along with the predicted edge maps using our

dual­stream discriminator (Fig. 2.1 (b) and Sec. 3.3). With additional regularizations on

the edges of global structures, we find that our geometry and color generators learn to

collaborate and generate less blurry and well­structured boundaries.

3
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We validate our dual­stream GAN and previous 3D scene completion methods on the

proposed FF­Matterport dataset. Our method demonstrates the superiority in six different

metrics. Besides, the impressive visualization results also illustrate the effectiveness of our

method. To sum up, this work presents the following main novelties and contributions:

• We propose a novel 3D scene inpainting task with the first free­form 3D scene

dataset, FF­Matterport, which contains diverse free­form masks generated with our

designed algorithm imitating human drawing trajectories.

• We introduce the first 3D gated dual­stream (geometry and color) generator to jointly

consider the geometry and color context of missing regions and generate high­

quality contents with semantic­constrained structures.

• We introduce an edge and color dual­stream discriminator guiding the generator to

produce clear and detailed geometry and color boundaries.

4
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Chapter 2 Related Work

2.1 3D Completion

In the field of 3D vision, object completion is a fundamental and long­standing prob­

lem. Some took single or multi images to reconstruct or complete 3D objects [5, 30, 35,

39, 42, 16]. Others utilized depth or RGB­D frames collected by commodity depth sensors

to reconstruct 3D objects [41, 40]. Still, others aimed to complete a 3D object by vari­

ous 3D representations, such as 3D point cloud scan [18, 43, 46, 36, 23, 45], sign distance

fields (SDF) [9, 34], or mesh surface [25, 26]. Nonetheless, the above methods are limited

to 3D objects rather than a complex 3D scene with several items.

To complete a complicated 3D scene, some recent studies have been proposed. [32,

24, 7, 20, 21, 29] leveraged scanned multiple RGB­D images to reconstruct a 3D scene

and refine its color. SSCNet [38] combined the scene completion task with the 3D seman­

tic segmentation task. ScanComplete [8] extended the 3D completion task to large scenes

and designed the network to handle various scene scales during inferring. SG­NN [6] first

trained and evaluated the 3D scene completion model on a real­world scanned dataset,

and SPSG [10] first tackled color completion in 3D scenes apart from geometry comple­

tion. However, these prior 3D scene completion works only focus on completing missing

parts due to sensor limitations, which are strongly correlated to viewing angles and have

5
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generally similar patterns.

To the best of our knowledge, we are the first to introduce the 3D scene inpainting

task and generate a free­form 3D scene dataset to train and evaluate the performance of

completing manual masks in 3D space. Furthermore, our dual­stream GAN, complement­

ing geometry and color information with each other, solves the problem of over­smoothed

geometry shapes and blurred color boundaries in prior single­stream two­stage work [10].

2.2 2D Image Inpainting

2D image inpainting takes a corrupted image as input and fills the missing parts in the

image with semantically correct, and boundary­consistent contents. It is an important task

for many downstream visual tasks, such as object removal, damaged photo restoration,

and 2D to 3D photo transformation [37]. Traditional approaches [1, 13, 11, 22] reused the

patches from the image background or source images to repair the missing pixels with the

most similar one, but they only can handle repetitive patterns or small missing holes.

Recently, GAN [15] has made great progress in the image inpainting task, enabling

inpainting models to fill holes with realistic and semantically reasonable contents [12].

PConv [27] and GatedConv [44] extended regular rectangle masks to free­form masks

with irregular shapes and developed corresponding CNN modules to handle the more

challenging masks. More recently, some practices [31, 28, 17] utilized additional edge

constraints to conquer the blurry results on large missing areas where the main structure

of the object is missing. [31] proposed an edge­color two­stage inpainting framework; [28]

and [17] developed new generator models to combine and exchange structure and texture

information.

6
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Figure 2.1: Overview of the proposed network. (a) Geometry and color dual­stream gen­
erator exchanges and fuses embedded features from each other to complement respective
decoders. (b) The dual­stream discriminator uses the differentiable 2D rendering and the
edge detector to project the predicted scene to a 2D image and an edge map. Then, it
optimizes them with the target view and corresponding canny edge image.

Different from prior 2D inpainting studies, we first introduce the 3D inpainting task

and present a 3D­specific free­formmask generation algorithm due to the sparseness prop­

erty in 3D space. Moreover, inspired by [31, 28, 17], we propose the first dual­stream

GAN for the 3D inpainting task, not only cooperating 3D geometry and color informa­

tion in the generator but also regularizing color and edges from diverse viewpoints in the

discriminator.

7
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Chapter 3 Method

In this work, we propose a novel 3D scene inpainting task with the tailored FF­

Matterport dataset for the need in AR and VR applications. The 3D scenes in the dataset

contain irregular and diverse shapes of missing regions (masks) generated by our novel

free­form 3D mask generation algorithm (Sec. 3.1) that mimics humans drawing trajec­

tories in 3D scenes. To tackle this challenging yet practical task, we develop a dual­

stream GAN model (Fig. 2.1) that contains two main components, the dual­stream gen­

erator and the dual­stream discriminator. The dual­stream generator (Sec. 3.2) leverages

the mask information and the feature fusion of geometry and color to generate semantic­

constraint structures and shape­constraint textures. In addition, the dual­stream discrimi­

nator (Sec. 3.3) further enhances the details by regularizing color and corresponding edges

on randomly rendered images.

3.1 Free­form 3D Dataset Generation

As illustrated in Fig. 1.1, our free­form 3D dataset aims to alleviate the issues of too

regular patterns in missing areas and the lacking mask information in existing 3D com­

pletion datasets [6, 10]. To generate free­form 3D masks, it is intuitive to modify the

free­form 2D mask generation algorithm [44], which uses strokes with random lengths

8
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and directions to line up a drawing track. As all pixels in 2D images contain information,

drawing straight lines back and forth can cover the unwanted objects. However, since

objects in 3D space are sparse and have curved and complicated shapes, directly apply­

ing the previous algorithm in 3D space usually masks areas without objects or produces

meaningless shapes (Fig. 3.1).

(a) Complete Mesh (b) Prior Algorithm (c) Our Algorithm

0
1
2
3
x

Empty Space

Figure 3.1: Trajectories comparison between (b)
previous algorithm and (c) our algorithm when
drawing in (a). Due to the sparseness of 3D
space, algorithm (b) [44] generates masks on
empty space and remains weird object shapes. In
contrast, our free­form 3D algorithm (c) is able
to produce practical masks around the surface
with better flexibility by utilizing the property of
TSDF representation.

To conquer the above challenges,

we design a novel 3Dmask generation

algorithm. Initially, it converts the

3D scene data to the truncated signed

distance field (TSDF) representation.

The algorithm can thus ensure that

the painted stroke persists around the

surface by checking the TSDF val­

ues. Afterward, we use an incremental

masking strategy rather than the orig­

inal 2­point line strategy in [44]. Our

strategy dynamically decides the direction and length of strokes, considering the distance

to the surface and the diameter of the stroke. Besides, we randomly sample points in 3D

scenes as the starting point for strokes to ensure diversity. With our algorithm, the curved

strokes can fit various object shapes and occur in diverse places in 3D scenes. More details

are reported in supplementary materials.

We apply our mask generation algorithm to the Matterport3D [4] dataset with the

official train­test split and produce the first free­form 3D scene inpainting dataset, named

FF­Matterport. It contains 30­40% missing regions randomly located in the whole indoor

9
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scene and is voxelized to 2cm resolution same as [6, 10]. Notably, unlike in the 2D image

inpainting task where a mask can be randomly paired with any images, each free­form 3D

mask in our dataset is generated according to the object distribution of its corresponding

scene.

3.2 Dual­stream Generator

As mentioned in Sec. 3.1, the scenes in the 3D inpainting task contain irregular and

variousmissing regions, whichmakes the taskmore challenging. Moreover, the additional

mask is also provided to indicate areas that are needed to focus. To better leverage themask

information and reconstruct sophisticated and realistic object surfaces in missing regions,

we develop a dual­stream generator specifically for this task.

To utilize the masks, we can treat them as additional channel inputs. Nonetheless, we

further exploit the benefits of masks, attaching a 3D gated convolution module (3DGated­

Conv) extended from [44] to the generator. Specifically, the 3D GatedConv module helps

the generator gradually fill the masked regions with proper geometry and color contents

by dynamically learning soft attention maps. This modification contributes significantly

to model performance, and we found that baselines without the mask information or 3D

GatedConv module only produce distorted restoration results (See Tab. 4.2).

Regarding the pipeline of the generator, SPSG [10] developed a two­stage pipeline,

which first completes the geometry of all missing areas and then generates color on the

surfaces specified in the first stage. We find that the geometry generator in this pipeline

completely ignores the semantic features of color. Also, the unstable geometry outcome

of the first stage causes error propagation to the second stage. To this end, we argue that

10
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the geometry and color information should be considered simultaneously and can benefit

each other. Inspired by [17], we develop the first 3D dual­stream (geometry and color)

generator that can fuse and retrieve the knowledge from both streams during generation.

In Fig. 2.1 (a), our dual­generator consists of two generators, each with a U­Net vari­

ant. In the encoding phase, the geometry and color scenes are embedded independently

and projected to high­level feature space through corresponding generators. During the

decoding phase, the two generators fuse feature embedding from each other as an addi­

tional condition to refine the respective decoded results. Besides, we combine the encoder

and decoder features with skip connections to create more delicate content. This operation

allows us to fully exchange geometry and color information during generation, producing

both semantic­aware geometry structure and shape­constrained color texture in predicted

scenes. Comparedwith the previous pipeline using a one­way feature stream forward from

geometry to color, our dual­stream pipeline provides a mutual feature exchange between

the two generators. Consequently, we can observe that our pipeline alleviates the error

propagation problem, revealing consistent performance improvements in both geometry

and color results (Tab. 4.2).

3.3 Dual­stream Discriminator

To make the generator produce high­quality objects on missing regions, it is a com­

mon practice to directly regularize generated scenes by designing loss functions or uti­

lizing a discriminator. In the field of 3D completion, [6] used a naive !1 loss to regress

the geometry outputs and [10] applied a 2D discriminator to force the color outputs real­

istic under diverse rendering views. Nevertheless, the above practices are inadequate to
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meet the need of 3D scene inpainting as its missing areas, unlike small corrupted strips

due to sensor limitation in 3D completion, are generally large and lack structural contents.

Specifically, we found those methods are prone to produce over­smoothed structures and

blurred color edges by interpolating nearby color and geometry values or linking mesh

pieces (Fig. 4.1). Thus, we develop a novel dual­stream discriminator to avoid producing

such crude details.

As illustrated in Fig. 2.1 (b), our dual­stream discriminator is composed of two com­

ponents: a color discriminator and an edge discriminator. To begin with, our color dis­

criminator regularizes the quality of generated scenes on randomly rendered 2D images

following [10]. This 2D color stream makes the projected 2D frames of the generated

3D scene as realistic as possible and is more effective than applying a discriminator in

3D [10]. Moreover, to ensure fine­grained geometry shapes and sharp color boundaries

in the generated scene, we design an edge discriminator further regularizing the corre­

sponding edges of the rendered frames. To elaborate, our edge discriminator compares

the 2D edge maps extracted from real projected frames by the Canny edge detector [3]

and that extracted from generated frames by our NN­based edge detector. With the aid of

our lightweight edge discriminator, we can not only produce sharp color boundaries and

detailed geometry contents on qualitative results (Fig. 4.1) but also achieve huge improve­

ments in quantitative results (Tab. 4.2).

To summarize, our training objectives can be categorized into two groups. For the

naive full supervision loss, we supervise our geometry and color reconstruction from both

3D and 2D space. The Lgeo following the log­transformed !1 TSDF loss in [6] is applied

to penalize the geometry in 3D space, and the Lcolor as well as depth Ldepth (both are !1

losses) are leveraged to ensure geometry and color reconstruction on the rendered images.
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Furthermore, to improve human visual perception and sharpen the geometry and color

boundaries, we applied the two adversarial losses, Ladv
color and Ladv

edge, from our dual­stream

discriminator along with the conventional content loss Lcont [14]. The overall loss is

formulated as below:

L = λ1Lgeo + λ2Lcolor + Ldepth + λ3Lcont + λ4(L
adv
color + Ladv

edge), (3.1)

where λ1, λ2, λ3, λ4 are the scaling coefficients.
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Chapter 4 Experiments

4.1 Experimental Settings

Training Settings: Our network is trained on a single NVIDIA GeForce RTX 2080

Ti with a batch size of 2, and it takes about 6 epochs≈ 48 hours to train until convergence.

It is optimized via an Adam optimizer with a learning rate of 0.0001. The patch size of the

discriminator is 94 x 94 cropped from 320 x 256 images. The λ1,λ2,λ3,λ4 in Eq. 3.1 are

set as 0.3, 0.6, 0.01 and 0.005 via grid search. In the training stage, we crop the 3D scene

into 64 x 64 x 128 chunk voxels to speed up the process. In the testing stage, we directly

input the room­sized scene to our model as 3D CNN is invariant to the scene scale.

Evaluation Metrics: For a fair comparison, we follow the evaluation metric in [10]. The

geometry performance is evaluated by IoU, Recall, and Chamfer Distance. Note that only

the observed regions in the target scene are evaluated, and we ignore the unobserved areas

as the same in [10]. Besides, the color performance is evaluated by SSIM (structural

similarity image metric) [2], Feature­!1 [33], and FID (Fréchet Inception Distance) [19]

to capture the differences at both local and global scales between the rendered and target

images.

Baselines: To verify the proposed dual­stream GAN in our novel task, we compare it
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with several SOTA 3D completion approaches, including PIFu+ [35], SG­NN [6], and

SPSG [10]. Also, we develop another baseline, SPSG equipped with mask inputs, to

validate the importance of mask information. We follow [10] to implement all baselines

and exclude SG­NN from the evaluation of color performance as it is designed to complete

geometry only.

Methods Geometry Color
IoU(↑) Recall(↑) CD(↓) SSIM(↑) Feature­!1(↓) FID(↓)

PIFu+ [35] 0.241 0.525 19.537 0.744 0.253 108.87
SG­NN [6] 0.636 0.857 20.988 ­ ­ ­
SPSG [10] 0.466 0.683 17.457 0.829 0.220 75.10

SPSG (+mask) [10] 0.491 0.659 3.336 0.843 0.214 69.60

Ours 0.781 0.896 2.110 0.853 0.209 65.28

Table 4.1: The comparison of 3D geometric and color inpainting performance on the FF­
Matterport. With mask information and proper color and geometry interaction, our dual­
stream GAN outperforms all the baselines in both geometry and color metrics. Notably,
models without masks all fail in the CDmetric due to generating redundant meshes outside
the missing areas, which verifies the importance of masks on the 3D scene inpainting task.

Methods Geometry Color
IoU(↑) Recall(↑) CD(↓) SSIM(↑) Feature­!1(↓) FID(↓)

Dual­stream GAN (Full) 0.781 0.896 2.110 0.8536 0.209 65.28
­ Edge Discriminator 0.774 0.892 2.137 0.8534 0.209 65.62
­ 3D GatedConv 0.747 0.875 2.250 0.8491 0.211 68.28
­ Mask Info. 0.592 0.827 24.356 0.8471 0.213 69.75

Single­stream GAN 0.744 0.878 2.523 0.8511 0.210 66.68

Table 4.2: The ablation studies of 3D geometric and color inpainting performance on the
FF­Matterport. Compared with the single­stream GAN, our dual­stream GAN reaches
higher performance in all metrics, especially the three geometry metrics. Also, we show
the effectiveness of 3D GatedConv and mask components on the 3D scene inpainting task.

4.2 Main Results

We verify all methods on the FF­Matterport dataset and illustrate the quantitative and

qualitative results in Tab. 4.1 and Fig. 4.1, respectively. From Tab. 4.1, PIFu+ obtains the

worst performance in most metrics, indicating that it cannot adapt to tackle this novel task.
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(a) Input (b) SG-NN (c) SPSG (d) Ours (e) Ground Truth

Figure 4.1: Qualitative results of all methods on the FF­Matterport (Best viewed in
zoomed digital). Compared to our dual­stream GAN, SPSG fails to preserve details from
input and SG­NN predicts distorted structures with small holes in large missing areas in
the 1st and 2nd rows. To further show the fine details of our predicted mesh, the 4th row
zoom in on the missing corner of the 3rd row. More analyses and discussions are reported
in Sec. 4.2.

About SG­NN, it captures more local features, resulting in higher IoU and Recall scores

than other baselines. But it fails to capture the global features and generates distorted

structure with small holes in large missing areas, such as the corner of the bed (1st row)

and the sofa chair on the left (2nd row) of Fig. 4.1 (b). Thus, it leads to bad performance

on the CD metrics.

Regarding SPSG, the 1st row in Fig. 4.1 (c) shows that it fails to preserve the details

of complete parts from input scenes, such as the lamp beside the sofa, and results in lower

IoU and Recall scores. Besides, SPSG suffers from initial color bias pointed in [44] and

performs poorly on the color scores. On the contrary, our dual­stream GAN better utilizes

the mask information as well as both structure and semantic feature from dual­stream to

generate well­structured and semantic reasonable 3D scenes; accordingly, we achieve the
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highest performance in all metrics.

To show the further restoration details, the 4th row of Fig. 4.1 zooms in on the missing

corner of the frame in the 3rd row. Unlike SG­NN and SPSG flattening and ignoring the

frame structure, ourmodel easily distinguishes the frame from thewall using color features

and recovers the corner with straight and delicate edges guided by our edge adversarial

loss.

4.3 Ablation Studies

We summarize the ablation study in Tab. 4.2. First, we analyze the influence of

our edge discriminator. Comparing the 1st and 2nd rows, the edge discriminator causes

minor improvements in numerical evaluations but significantly contributes to the visual­

ization (in supplementary). This phenomenon echoes our hypothesis that 2D edge loss

can guide 3D geometry and color to better collaborate on generating delicate 2D edges.

Then, we verify the design of our pipeline. We build a single­stream sequential generator

with mask inputs and 3D GatedConv, named single­stream GAN in Tab. 4.2. The single­

stream GAN generates geometry features without knowing color features and then passes

them to the color stream. As a result, its geometry performance declined larger than color

performance.

Lastly, we examine the efficacy of 3D GatedConv and mask information. As shown

in the 3rd and 4throws of Tab. 4.2, they substantially improve the performance, both in ge­

ometry and color scores, which reveals the mask information is indispensable in the novel

3D inpainting task. This observation is consistent with the advancement of SPSG with

mask inputs in the main experiment (Tab. 4.1). Especially the CD metric is evaluated on
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the fixed­number points uniformly sampled from predicted meshes, models without mask

information tend to generate redundant meshes outside the missing areas, resulting in bad

performance. Through these analyses, we demonstrate the importance of mask informa­

tion on the challenging 3D scene inpainting task, which means the proposed dataset and

approach are requisite.
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Appendix A — Appendix for Free­form

3D Mask Generation Algorithm

As stated in Sec. 3.1 of the main paper, our designed free­form 3D mask generation

algorithm aims to mimic human drawing trajectories in 3D space and randomly gener­

ate diverse free­form masks for efficient training and evaluation. To avoid covering the

empty space in the scene into the masked areas and to flexibly draw arbitrary shapes of

3D objects, we utilize the characteristic of TSDF and dynamically decide the length and

direction of strokes based on the TSDF values. We show our algorithm in Algorithm 1.

The input of the algorithm is an original scene So from a real­world scanned scene

containing To TSDF andCo color voxelized values, and three hyper­parameters diameter,

maxStrokeStep, and totalStep to control the mask distribution. The output is a masked

sceneSm for training and inferring consisting ofmasked Tm TSDF andCm color voxelized

values with corresponding binary mask map Mm. This algorithm is for the 64x64x128

chunk size in the training dataset. For the test dataset which contains whole indoor rooms,

We run this algorithm several times in equal proportions to the size of the indoor rooms.
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Algorithm 1 Free­form 3D Mask Generation Algorithm
1: Input: Original scene: So = {To, Co}, and diameter,maxStrokeStep, totalStep.
2: Output: Masked scene: Sm = {Tm, Cm,Mm}.
3: Init: Copy from original scene Tm ← To, Cm ← Co, (#step, #strokeStep)← (0, 0).
4: function RANDOMMAXSTROKE(s)
5: return random.randint(s, s+10)
6: end function
7: function FINDVALIDBALL(c, d, t) # c is center, d is diameter, and t is threshold
8: return X ← {x|x ∈ Bc,d ∩ |Tm(x)| ≤ t} # Bc,d is a ball centered at c with

diameter d
9: end function
10: center Oc ← random.choice(|Tm| ≤ 1)# Random a starting point on occupied voxels
11: max stroke step L← RANDOMMAXSTROKE(maxStrokeStep)

12: while #step ≤ TotalStep do
13: Mask out BOc,diameter in {Tm, Cm,Mm}
14: #step← #step+ 1

15: #strokeStep← #strokeStep+ 1

16: if #strokeStep ≥ L then # Restart a new stroke
17: center Oc ← random.choice(|Tm| ≤ 1)

18: max stroke step L← RANDOMMAXSTROKE(maxStrokeStep)

19: #strokeStep← 0

20: else if X ← FINDVALIDBALL(Oc, diameter//2, 1) )= ∅ then#Move a small step
21: Oc ← random.choice(X)

22: else if X ← FINDVALIDBALL(Oc, diameter, 5) )= ∅ then #Move a big step
23: Oc ← random.choice(X)

24: else # Dead end, Restart a new stroke
25: center Oc ← random.choice(|Tm| ≤ 1)

26: max stroke step L← RANDOMMAXSTROKE(maxStrokeStep)

27: #strokeStep← 0

28: end if
29: end while
30: return {Tm, Cm,Mm}.
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Appendix B — Appendix for Additional

Results

B.1 Edge Discriminator Qualitative Result

(a) Input (b) w/o Edge Disc. (c) w/ Edge Disc. (d) Ground Truth

Colored
Image

Geometry
Only
Image

Figure B.2: Additional qualitative results of the dual­stream discriminator on FF­
Matterport. By adding the edge stream to the conventional color stream discriminator,
the color boundary becomes less blurred (shown in red frames), and the geometry shapes
becomemore straight and sharper (shown in zoomed­in pictures in the 2nd rowwith yellow
frames).

In the main paper, we state that our additional discriminator aims to enhance the

sharpness and details of the results for better human perception. As shown in Fig. B.2, we

provide additional qualitative results on FF­Matterport to demonstrate the efficacy of our

dual­stream discriminator. Compared with (b) the model without our edge discriminator,

the full model (c) performs better on both geometry and color. In (c), the bottom left corner

28

http://dx.doi.org/10.6342/NTU202202063


doi:10.6342/NTU202202063

(a) Input (c) SPSG (d) Ours (e) Ground Truth(b) SG-NN

Figure B.3: A failure case of the frame on the right side in (a) losing most of the edges and
color. Even though our model fails to predict distinct structures and edges in the missing
parts, our results (d) still outperform the baselines SG­NN [6] (b) and SPSG [10] (c) in
both geometry and color visual performance.

(red frame) of the color image becomes less blurred after adding the edge stream, and the

top right corner (yellow frame) of the color image zoomed in as the geometry only image

shows that the geometry shapes become sharper after adding our edge discriminator. This

phenomenon echoes our motivation that 2D edge loss can simultaneously guide the 3D

geometry and color streams to generate delicate edges.

B.2 Limitation

Although our proposed method can generate realistic geometry and color results for

the real­world 3D scene inpainting task, we still find its limitations and unsolved chal­

lenges as shown in Fig. B.3. For example, in the 1st row (a), the right side of an incom­

plete picture frame loses most of the edges and color; also, the 2nd row (a) shows that the

structure of the frame is very close to the wall and hard to be distinguished. Therefore,

even with the help of our dual­stream GAN design, the model fails to predict the correct

edges of the top right and bottom left corners, resulting in blurred color boundaries in the

comparison of (d) and (e). Still, our predicted results contain more details than SG­NN [6]
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(b) and SPSG [10] (c).

Moreover, due to the natural limit of CNN models and voxel representation, the out­

put resolution is restricted. Even though some new 3D data representations are proposed

recently and claimed to support the unlimited resolution, such as implicit function, it is

still challenging to properly handle the mask information in the 3D scene inpainting task.
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