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Abstract

While recent large-scale video-language pre-training made great progress in video
question answering, the design of spatial modeling is less fine-grained than that of image-
language models; existing practices of temporal modeling also suffer from weak and noisy
alignment between modalities. To learn fine-grained visual understanding, we decou-
ple spatial-temporal modeling and propose a hybrid pipeline integrating an image- and a
video-language encoder. The former encodes spatial semantics from larger but sparsely
sampled frames independently of time, while the latter models temporal dynamics at lower
spatial but higher temporal resolution. To help the video-language model learn temporal
relations for video QA, we propose a novel pre-training objective, Temporal Referring
Modeling, which requires the model to identify temporal positions of events in video se-
quences. Extensive and detailed experiments demonstrate that our model outperforms

previous work that pre-trained on orders of magnitude larger datasets.

Keywords: Machine Learning, Deep Learning, Video Understanding, Spatial-Temporal

Modeling, Video Question Answering
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Chapter 1 Introduction

Videos are the complex composition of human actions, objects, scenes, and their
interactions over time. To examine the capability of machines for video understanding,
video question answering (video QA), a task of answering questions about videos, is pro-
posed and requires machines to associate questions in natural languages with visual con-
tents, including scenes [ 76, 84], dialogues [, 37], temporal relationships [21, 27, 74, 85],
and higher-order cognition [38, 74, 82]. Recent breakthroughs were achieved by pre-
training a deep multi-modality encoder, mostly Transformer [70], with large-scale video-
language datasets [3, 50, 79]. Models first learned semantic connections between visual

and linguistic contents and then were fine-tuned on downstream video-language tasks

[ > > > > ]

Despite the advance of this framework in video QA, the spatial semantics encod-
ing of video-language (VL) models is not as fine-grained as the sophisticated design for
image-language (IL) models [2, 60, 88]. A preliminary analysis shows that on video QA
benchmarks entailing spatial and temporal knowledge, simply averaging frame-by-frame
predictions of an IL model can sometimes outperform state-of-the-art VL models. Though
the VL models exhibit a slight advantage in questions involving temporal information, the
IL model greatly excels in capturing spatial clues (improvement by 7% accuracy; see the

full results in Section 4.1.1). The positive performance of IL models could also be at-

1 doi:10.6342/NTU202202028


http://dx.doi.org/10.6342/NTU202202028

(a) Pre-train

Caption - Transcripts © Generated Video QA Dataset :

. < - “dancing with music...” . .
Billiards, concentrated young  * ¢, « , “standing up nice and tall ..” . What type of animal do we 3
woman playing in club. : <« “connect your hands to the earth ...” : el 3
Video-Language Encoder
i, v ........................... N W
Lack of Details Video-Transript Misalignment Limited to Spatlal Understaing

(b) Pre-train (¢) Fine-tune

What happens after @two blonde ¢ Whatwasthe person watching What was the person watching

girls are hugging each other? © 1 before holding a phone? before holding a phone?
Video-Language Encoder Image-Language Encoder
: @ Aguyisdancingon the road. m|rror 1
e eriereareeaes v ........................... N v ............................................ -

Event-Level Alignment ; Temporal Modeling Fine-grained Spatial and Temporal Semantics

Figure 1.1: Comparison between (a) previous and (b)(c) our approaches for video QA. (a)
Prior work solved video QA by video-language pre-training but might suffer from lack of
event details, video-transcript misalignment or limited diversity of pre-training questions.
(b) We pre-train a video-language encoder to learn event representations and temporal
relations between them by asking the model to identify specific events in synthesized video
sequences. (c) We integrate the video-language model with a pre-trained image-language
model to encode fine-grained spatial and temporal semantics at different spatial-temporal

resolutions.

tributed to the nature of video QA: the answers to the questions pertaining to only spatial
semantics, without specifying time, are usually consistent across all related frames. This
property suggests the potential of encoding fine-grained spatial semantics with only IL

models.

In addition to spatial modeling, prior work modeled only coarse-grained temporal
relations. A question involving temporal relations in video QA often refers to specific

2 doi:10.6342/NTU202202028
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events happening in periods of time and inquires about the sequence of events [2 1, 27, 74,

]. It is thus essential to model events in videos and associate the sequence with time
conjunctions in questions, such as before and after. However, as the examples. in Figure
1.1 (a), prior approaches [ 18, 59, 60, 71, 91] aligning a video with a sentence might lose
details of sequential events (what happens after the woman hit the ball), while matching
short clips with transcripts [4 1, 86] may suffer from noise as spoken words often contain
something not related to scenes [49]. Others [79, 80] pre-training on generated video QA
datasets were mostly limited to spatial understanding. In fact, another examination reveals
that the performance with shuffled frame inputs of some of these approaches is similar to
that with normal inputs on video QA benchmarks requiring temporal modeling (see more
details in Section 4.1.2). The result suggests developing a more effective strategy for

modeling temporal relations.

To obtain fine-grained encoding of spatial and temporal semantics for video QA, we
propose a novel pipeline decoupling spatial-temporal modeling into IL and VL encoders,
illustrated in Figure 1.1 (¢). With IL models adept at more fine-grained spatial modeling,
we incorporate a pre-trained IL model to encode static spatial information independent
of time from sparsely sampled frames at high spatial resolution. For questions requiring
temporal relations, we train a VL encoder to model temporal dynamics, operating at high
temporal but low spatial resolution. These two streams complement each other by paying

attention to disparate aspects of videos.

To effectively model temporal relations for video QA, the VL encoder has to rec-
ognize events in videos, build their temporal relations, and associate such relations with
languages containing temporal information. To this end, we introduce a novel pre-training

objective, Temporal Referring Modeling (TRM). Depicted in Figure 1.1 (b), TRM queries

3 doi:10.6342/NTU202202028


http://dx.doi.org/10.6342/NTU202202028

absolute and relative positions of events in videos synthesized by concatenating clips sam-
pled from video captioning datasets [43, 73]. The concatenation simulates transitions of
scenes and events in videos. Answering such queries requires a model to aggregate con-
tiguous frames into events and distinguish adjacent events from distant ones. These oper-

ations help a model to learn both short- and long-term temporal dynamics.

We validate our model on two video QA benchmarks, ActivityNet-QA [85] and
AGQA 2.0 [22]. The former contains diverse question types requiring spatial or tem-
poral semantics, and the latter weaves spatial and temporal information together in each
question to evaluate compositional reasoning. Our model outperforms the previous state-
of-the-art. Ablation studies also demonstrate the efficacy of the proposed pipeline and

pre-training objective.

In summary, we make the following key contributions. (1) With IL and VL models
demonstrating complementary advantages, we decouple spatial and temporal modeling
into a hybrid pipeline composed of both models to encode fine-grained visual semantics.
(i1) We present a novel pre-training objective, Temporal Referring Modeling, to learn tem-
poral relations between events by requesting models to identify specific events in video
sequences. (iii) We outperform previous VL state-of-the-art methods on two benchmarks

with orders of magnitudes less data for pre-training.
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Chapter 2 Related Work

2.1 Video Question Answering

To encode, accumulate and build relationships between visual contents and between
modalities for video QA, conventional approaches adopted Recurrent Neural Networks
with attention [27, 77, 87, 89, 90], Memory Networks [13, 19, 31, 51, 68], Graph Neural
Networks [23, 30, 44, 52, 54, 75], Modular Networks [34], and self-attention [29, 42,

]. By pre-training large-scale VL datasets, Transformers [70] have further improved the
interaction between modalities and made great progress in video QA [18, 41, 60, 71, 79,
, 86, 91]. Our approach is built on the benefit of modeling relationships with pre-trained
Transformers. In contrast to prior work, we carefully examine and take the individual

advantage of IL and VL pre-training to encode spatial and temporal semantics.

2.2 Pre-training for Temporal Relation Modeling

VL pre-training learns to model temporal relationships via different approaches.

5 doi:10.6342/NTU202202028
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2.2.1 Learning from Global Alignment.

[18, 48, 60, 66, 71, 91] pre-trained models on datasets where a sentence delineates
a single event of the entire corresponding video. With features of two modalities being
aligned globally, events happening sequentially in a video are compressed, and details of
events not mentioned in descriptions are likely lost. Such representations are not fine-

grained enough for questions referring to specific moments.

2.2.2 Learning from Local Alignment and Frame Ordering.

[41, 86] pre-trained models over datasets with dense annotations such as video tran-
scripts [50]. They matched segmented visual features with utterances and required models
to order shuffled or any two frames. With this approach, models learn event-level but weak
alignment between videos and languages as spoken words do not always correspond to vi-
sual contents [49]. Besides, ordering frames without grounding in languages make models
learn, instead of temporal relations, rational predictions of what is likely to happen before

and after an event, which is more related to visual common sense [ 1, 24, 53].

2.2.3 Learning from Large-Scale Video Question Answering Datasets.

[79, 80] pre-trained VL models over large-scale video QA datasets. The diversity of
pre-training questions thus determines the effectiveness and capacity of transferred knowl-
edge, but generated questions in [79] and [80] mainly pertain to scene and dialogue un-
derstanding, leaving temporal relationship modeling unsolved.

6 doi:10.6342/NTU202202028
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2.3 Encoding Motion and Appearance

Prior arts have explored two-stream networks to encode motion and appearance for
action recognition [ 11, 1517, 63, 72]. [10, 14] combined different spatial and temporal
resolution to separately encode slow- and fast-changing scenes, and [57, 58] searched
for multi-stream connectivity. Analogously, our two streams complement each other by
focusing on disparate aspects of videos, but while their two streams both encode short-
term actions, our IL stream aggregates scene information independent of time, and the VL
stream encodes entire videos and constructs the temporal relationships between all actions

and events.

Some recent work revealed that understanding of temporality is not always necessary
to solve VL tasks. [35, 36] taking sparsely sampled frames outperformed previous meth-
ods. [4] provided stronger baselines with single frame inputs. However, with new tasks
requiring temporal modeling proposed, such conclusions are likely to be circumscribed.
We thus take a further step by proposing an effective strategy to encode fine-grained tem-

poral semantics.

7 doi:10.6342/NTU202202028
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Chapter 3 Method

We introduce our video QA pipeline (Section 3.1) and the pre-training objective,
Temporal Referring Modeling (Section 3.2). Implementation details are described in the

supplement.

3.1 Decoupled Spatial-Temporal Encoders

The coarse-grained spatial modeling of prior approaches motivates us to develop
more effective architectures, and IL models have shown great potential. While most VL
models take scene or multi-frame features pre-extracted by image or action recognition
models [41, 48, 79, 86], region features [47, 64, 67, 88] and features processed by atten-
tion [2, 78] have been proved powerful for IL models. These features provide detailed
information of visual elements along with their spatial relations. As static scene informa-
tion, if asked by questions without specifying time, are usually consistent across related
frames, IL models should also be competent to encode fine-grained spatial relations for

video QA.

Therefore, we propose a video QA pipeline that decouples spatial and temporal mod-
eling by integrating an IL and a VL encoder. The IL encoder takes sparsely sampled
frames at high spatial resolution as input. These frames are unordered and build consen-

9 doi:10.6342/NTU202202028


http://dx.doi.org/10.6342/NTU202202028

mean +
Spatial ! Temporal

J0070 [

v

Image-Language Video-Language matching
Transformer w/ Transformer w/ scores
Cross-Attention Cross-Attention A

vdeo | 01000

Transformer

Answers

Image Question

*Vision ‘ *Video Swin
Transformer VRSO Transformer Transformer
llchair‘ll llbedll
s e (I 88355

Figure 3.1: Our video QA pipeline. Encoded questions are fused with frames and videos
to gather spatial and temporal information. Their representations are then compared with

answer candidates to obtain the final predictions. (* marks the frozen modules.)

sus on fine-grained spatial information of static scenes. The VL encoder with input action
features at low spatial but high temporal resolution recognizes and models the transitions
of actions and events. These two streams of information are fused at the final stage to

jointly form the prediction. We leave other ways of fusion for future exploration.

As illustrated in Figure 3.1, the pipeline consists of an image encoder, a video en-
coder, and a question encoder to process inputs, as well as an IL encoder and a VL encoder,
both with cross-attention [26, 35, 39, 40], to perform multi-modality interaction. Another
answer encoder encodes answer candidates, similar to [79]. To answer a question about
a video, the question, video, and frames that are sparsely sampled from the video are en-
coded by their respective encoders. The question features then perform cross-attention to
both frame and video features. The sum of two multi-modality representations is finally

compared with encoded answer candidates to obtain the prediction. Formally, Q denotes

10 doi:10.6342/NTU202202028
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the input question. {Z',...,Z7} are T frames sampled from the input video V, where
T < the length of V. The question Q is first encoded into a sequence of embeddings
W = {Weis, W1, ..., wr }, w € RP, where w4 is the embedding of the [CLS] token, and
L is the number of word tokens. Then w is fused with the frames and video as described

below.

3.1.1 Image-Language Encoding.

For each ¢ from 1 to 7', the image encoder transforms frame Z* into a sequence of

t

Loul, . uly}, uw € RP, where N is the number of patches.

patch embeddings u = {u

Then the question feature w and frame feature u are fused by the IL encoder with cross-

t
cls»

attention and transform into {z!,_, 2! ..., 2%}, x € RP. The multi-modality represen-

t
cls

tation of the IL stream r is the average of [CLS] token embeddings x¢,. of all frames

encoded by a final multi-layer perceptron (MLP):

T
1
r= > MLP(zl,,), r € R”. (3.1)
t=1

3.1.2 Video-Language Encoding.

The video feature extractor first encodes the input video ) into a sequence of features
e = {e1,...,en}, e € R¥ where M is the length of the feature sequence. To indicate
the beginning and the end of the video, we add two learnable tokens before and after the
feature sequence. Temporal position encoding is also added to each feature to indicate
the temporal order. Next, the feature sequence e are contextualized and transformed into

V = {Ubos, U1, -+, Uh1» Veos }> U € RY, where vnos and ve,s are the beginning and the end

11 doi:10.6342/NTU202202028
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token after contextualization. The question feature w then performs cross attention to the
video feature v through the VL encoder and transforms into {yc1s, y1,., yr}, ¥ € RP.
The multi-modality representation of the VL stream s € R” is the output of the first token

Ye1s transformed by a final MLP.

3.1.3 Answer Selection.

Following [79], another text encoder encodes the answer candidates (collected from
all answers in training data with frequency > 1 for open-ended QA). The prediction of
each candidate is the dot product between each encoded candidate and the sum of two
multi-modality representations. Formally, A denotes the answer set. For all a € A, we

take the [CLS] token 2%, € RP of a’s feature. Then the logit of @ is obtained via:

cls

Pa = (r+ S)ngls, p € R. (3.2)

3.2 Temporal Referring Modeling

To pre-train the multi-modality encoders with affordable computation resources, we
adopt an IL encoder pre-trained with image question answering (image QA), specifically
VQA [20], and train the VL encoder for fine-grained temporal modeling with a novel

objective.

Modeling fine-grained temporal relations for video QA requires the encoder to un-
derstand videos as event sequences and to associate the temporal relations of events with
descriptions containing time conjunctions. To this end, we develop Temporal Referring
Modeling (TRM), which, in the form of video QA, inquires about absolute and relative

12 doi:10.6342/NTU202202028
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Figure 3.2: Temporal Referring Modeling, which associates visual events and their tem-
poral relationships with languages by asking absolute and relative positions of events in
concatenated video features sampled from video captioning data.

temporal positions of events in videos. As depicted in Figure 3.2, given a video composed
of multiple events, TRM asks the model four questions: what happens at the beginning,
at the end, before an event, or after an event. The model then selects an event description
as the answer. To accomplish this task requires the model to identify events and manage

the sequence.

TRM needs VL data which offers (1) event-level annotations that delineate scenes
and events for segments of videos and (2) descriptions that explain the temporal dynamics
of these segments. Ideally, dense video captioning [32] would be appropriate materials,
but many of its time segments overlap, making the temporal relationships ambiguous.
Labeling cost also hinders scalability. Thus, to satisfy the two conditions, we develop

a simple yet effective way to generate data. As the example in Figure 3.2, we concate-
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nate videos sampled from video captioning datasets to create videos with scene and event
transitions. Then we generate questions by filling the question templates with captions
of these videos. Incorrect answers are the other captions in the same video sequences,

making the task more difficult.

Take, as an example, generating a video and a question that asks which event happens
after an event. We first sample K pairs from a video captioning dataset, with each pair k
composed of a video V;, and a caption C;. The videos are encoded by the feature extractor
into feature sequences {e, ..., e’fwk} for all £ from 1 to K, where M}, is the length of fea-
tures of V. These sequences are then concatenated and forme = {e], ..., e}, €7, ..., el }.
To generate the question, we first sample a captions C; where 1 < i < K, ¢ € N. Then
the question Q is “What happens after C;?” with the choices A = {Cy, | 1 < k < K, k #
i, k € N} and the correct answer C; 1. Other questions are constructed similarly, where
the answers to the questions about the beginning and the end are Cy and Cy respectively.
With all input the same as general video QA, the encoded feature w of question Q and
the video feature e are input to the VL encoder, going through the encoding and contex-
tualizing process described in Section 3.1. The final objective is to minimize a standard

cross-entropy loss.
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Chapter 4 Experiments

We elaborate on the preliminary analysis of spatial and temporal reasoning capability
of prior work (Section 4.1). Then we demonstrate the improvement in two video QA
benchmarks with the proposed pipeline and Temporal Referring Modeling (Section 4.2).
Ablation study is lastly presented evaluating the efficacy of each component. (Section

43).

4.1 Preliminary Analysis

Baselines. We take ALBEF [40] as an example of IL models. For VL models, we study
VIOLET [18], HERO [41], and Just-Ask [79], which respectively instantiate three ap-
proaches discussed in Section 2.2. These are state-of-the-art of each approach with public

code bases.

4.1.1 Encoding Spatial Semantics

We first assess the ability of encoding spatial semantics of IL models and VL mod-
els!. ALBEF is run as image QA by sampling frames from a video and averaging frame

predictions.

!Just-Ask and VIOLET as HERO does not support open-ended QA
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Type Just-Ask VIOLET ALBEF  UB

Motion 28.00 18.25 32.50 70.63
Spatial Rel. 17.50 15.00 24.38 75.63
Temporal Rel. 4.88 2.12 3.75 32.88
Yes / No 66.28 71.87 79.75  100.00
Color 34.29 31.28 57.39 98.99
Object 26.73 22.33 31.45 70.13
Location 35.75 30.57 36.01 86.79
Number 50.17 50.33 55.61 99.83
Other 36.82 33.02 40.16 71.98
Overall 38.86 37.44 46.66 80.74

Table 4.1: Comparison between prior methods and our upper bound of ActivityNet-QA by
question type. ALBEF exhibits advantages on the questions involving spatial reasoning.

(Rel. is short for Relationships, and UB is the abbreviation for upper bound.)

Benchmark. We conduct the analysis on ActivietNet-QA [85], which contains 5.8K
videos of human activities in daily life and 58K question-answer pairs spanning diverse

categories across spatial and temporal semantics offering comprehensive evaluations.

Results. Table 4.1 contrasts the accuracy (acc) by question type of the IL model with
other VL models. ALBEF, though without temporal modeling, is highly adept at spatial
reasoning, such as Spatial Relationships and Color, while Just-Ask demonstrates a slight
advantage in Temporal Relationships. Due to the removal of rare answers following [79],
we report our performance upper bound of each type, which is the proportion of questions
in the test set whose answers appeared in the training set. The tiny number of Temporal
Relationships reveals the long-tail distribution of its answers, which partially explains the

poor performance.

4.1.2 Modeling Temporal Relationships

We evaluate the capability of modeling temporal relationships by shuffling input
frames and measuring the performance drop. Models are first trained with normal in-
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Method  Benchmark Accuracy
AGQA 49.15

VIOLET AGQA* 4922+
AGQA 5127

Just-Ask A GOA* 4773406
HEro  VIOLIN - 69.01

VIOLIN*  68.71+.08

Table 4.2: Results of prior work taking shuffled frames as input. The little performance
drop indicates that some methods are not sensitive to the order of frames. (* signifies that
input frames are shuffled. We report the average of three results for the shuffle experi-

ment.)

put and tested their performance with shuffled input. Intuitively, taking shuffled frames
as input should be detrimental to the performance of the questions requiring temporal

modeling, such as those inquiring about the sequence of actions or events in videos.

Benchmarks. For VIOLET and Just-Ask, we conduct the study on AGQA 2.0 [22],
a large-scale open-ended video QA benchmark where spatial and temporal information
is required in each question for evaluating compositional reasoning. It contains 2.27M
question-answer pairs and 9.6K videos. For HERO, we consider VIOLIN [45], a task of
judging hypotheses from visual premises, which has been officially tested in their exper-

iments.

Result. In Table 4.2, Just-Ask demonstrates the slight capability of temporal modeling,
while VIOLET and HERO are not sensitive to the order of input frames, and their perfor-
mances of taking normal and shuffled input frames are similar. The result suggests clear
insufficiency for temporal relationship modeling.
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Method Pre-training Data Acc
CoMVT [60] 100M 38.8
Just-Ask [79] 69M vid 38.9
MV-GPT [59] 100M 39.1
SiaSamRea [83] 5.6M img 39.8
MERLOT [86] 180M vid 41.4
VIOLET [18] 180M vid + 2.5M vid + 3M img 37.5
FrozenBiLM [81] 10M vid 43.2
Singularity [35] 14M img + 2.5M vid 44.1
Ours 14M img + 120K VQA + 14K vid  46.8

Table 4.3: Comparison with previous methods on ActivityNet-QA. We outperform all

methods with significantly less pre-training data. The dataset names are provided in the

supplement. (img: images. vid: videos.)

4.2 Video Question Answering

Table 4.3 compares our method with prior work on ActivityNet-QA. We outperform

all previous methods with orders of magnitudes less pre-training data. The performance

of each question type is listed in Table 4.4, where “Best” shows the highest scores among

the three methods in Table 4.1, and “Diff” lists the difference between Best and our perfor-

mance in proportion to Best. Our hybrid model performs comparably with the IL model

in spatial modeling and boosts Temporal Relationships, verifying the efficacy of TRM.

Type Best Ours Diff (%)
Motion 32.50 35.75 10.00
Spatial Rel. 24.38 23.88 -2.05
Temporal Rel.  4.88  5.25 7.58
Yes / No 79.75 78.61 -1.43
Color 57.39 59.11 3.00
Object 31.45 30.50 -3.02
Location 36.01 36.27 0.72
Number 55.61 55.28 -0.59
Other 40.16  39.63 -1.32
Overall 46.66 46.79 0.28

Table 4.4: Comparison with prior methods on AcivityNet-QA by question type. We per-

form comparably in question types of spatial information and improve temporal modeling.
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Type Best w/o PT  Best w/ PT  Ours

Object-Rel. 40.33 4891 59.66
Rel.-Action 49.95 66.55 72.98
@ Object-Action 50.00 68.78 75.20
€ Superlative 33.55 39.83 48.94
§ Sequencing 49.78 67.01 73.53
Exists 50.01 59.35 63.21
Duration Compar. 47.03 50.49 60.39
Activity Recog. 5.52 21.53 27.78
£ Object 40.40 4931 61.27
£ Rel 49.99 59.60 63.93
% Action 47.58 5803  65.96
Query 36.34 47.98 61.22
£ Compare 49.71 65.11 72.04
S Choose 46.56 46.90  53.01
% Logic 50.02 56.20 59.18
Verify 50.01 58.13 63.02
=  Binary 48.91 55.35 62.61
5‘2 Open 36.34 47.98 61.22
All 42.11 51.27 61.91

Table 4.5: Comparison with prior work on AGQA 2.0. We list the best performance
among methods without (Best w/o PT) and with pre-training (Best w/ PT) for each question
type. Ours exceeds all methods in all question types. (Rel.: Relationships. Compar.:
Comparison. Recog.: Recognition.)

Table 4.5 presents the performance on AGQA 2.0, which offers extensive annotation
of multiple abilities necessary to answer each question. We list the highest accuracy among
the methods without pre-training reported by [22] (“Best w/o PT”) and the higher scores
between Just-Ask and VIOLET (“Best w/ PT”). Our method surpasses all prior work in

all question types. The full table and detailed analysis are provided in the supplement.

4.3 Ablation Studies

We present the influence of input modalities and pre-training over AGQA 2.0 to study
the effect of modeling decisions. As listed in Table 4.6, question-only input reveals the
language bias, which serves as a baseline. The boost in performance with frames and
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Question Frames Video  Acc
v 41.32
v v 50.07
v VQA 51.00
v v 51.08
v TRM  55.62
v VQA v 56.61
v VQA TRM* 56.97
v VQA TRM 6191

Table 4.6: Ablation study of input modalities and pre-training strategies on AGQA 2.0.

The results favor our hybrid pipeline and TRM. (v' means the modality is presented. VQA:

pretrained on VQA. TRM: pre-trained with TRM. *: shuftled input.)

videos suggests successful encoding. Pretraining the IL encoder with VQA and the VL

encoder with TRM both enhance the modeling capacity further. The performance drop

due to shuffling videos verifies the efficacy of TRM. The full results are included in the

supplement.

Stream Acc

Image-Language 49.91
Video-Language 16.56
Both 61.91

Table 4.7: Ablation study of two encoding streams on AGQA 2.0.

In Table 4.7, we ablate the IL or VL stream. A model is trained with both streams

and tested on AGQA 2.0 with a single stream. The performance drastically drops in both

settings, proving that our hybrid model is not a trivial ensemble.
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Chapter S Conclusion

In this work, we propose decoupling spatial-temporal modeling by integrating IL and
VL models to encode fine-grained visual semantics. Besides, by developing an objective
that pre-trains the VL model to capture event-level temporal relations, we advance the

visual understanding for video QA with much less pre-training data.
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Appendix A — Implementation Details

A.1 Model Architectures

We introduce the details of modules in our video QA pipeline. Following [40] and
[1&], the image encoder is a 12-layer Vision Transformer [ 2], and the video encoder con-
tains a Video Swin Transformer [46] (Swin-B) pre-trained on Kinetics-600 [5] for feature
extraction and a 6-layer Transformer for contextualization. The question and answer en-
coder are both 6-layer Transformers [70] with each layer composed of a self-attention
operation and a feed-forward network (FFN). The image- and video-language encoder are
two 6-layer Transformers where each layer contains an additional cross-attention oper-
ation [25, 26, 35, 39, 40], in which text features serve as queries and perform attention
to visual features. The question, image and image-language encoder are the same as the
modules of ALBEF [40] pre-trained on VQA [20]. The video contextualization module
and video-language encoder are initialized from the question and image-language encoder
respectively. The image and video encoder are fixed during the whole training process.

Detailed parameters are listed in Table A.1.

As the optimization of video encoding is not included in video-language training, we
extract and save video features to save memory. We operate the Video Swin Transformer
with the same configuration of Swin-B, which samples every two frames and transforms
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Hyperparameter Value

Embedding Size (D) 768
Number of Patches (V) 576
Video Feature Size (H) 1024
FFN Inner Hidden Size 3072
Number of Attention Heads 12
Attention Dropout 0.1
Dropout 0.1

Table A.1: Hyperparameters for the architecture.

a window of 32 frames into one feature. For long videos, for example ActivityNet [85]
with an average of 180 seconds, we shift the window by 32 frames. For others, such as
the datasets used in pre-training or AGQA 2.0 [22], we shift the window by 16 frames,
and thus every window overlaps with the half of its previous and next window. Features

of extremely long videos are sampled such that all videos are within a limited length.

A.2 Video-Language Pre-training

A.2.1 Details of Question and Video Synthesis for Temporal Refer-

ring Modeling

Temporal Referring Modeling (TRM) generates questions to inquire about absolute
and relative temporal positions of specific events in videos. A question is formed by
choosing from five templates and filling video descriptions into the template. The choice
of templates includes “What happens?”, “What happens at the beginning?”, “What hap-
pens at the end?”, “What happens before [event x]?”, and “What happens after [event
x]?”, where the first question is irrelevant to temporal relations but incorporated to facil-
itate video-language matching. The other four questions are designed for resemblance to

video QA requiring temporal modeling, such as Temporal Relationships in ActivityNet-
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QA [85] or State Transition in TGIF-QA [27].

Except for the first question paired with a single video, the corresponding videos of
other questions are synthesized by concatenating videos sampled from video:captioning
datasets. This operation simulates a sequence of events that happen one after another and

provides us the exact position of each event.

One may be concerned that the transitions of events in real videos are rather smooth
and ambiguous, instead of clear difference between videos in a random concatenated video
sequence where people, objects and almost the entire scenes drastically change. For exam-
ple, in a video where people clean up the table after finishing dinner in the dinning room,
most of the visual elements, such as the people and scene, remain the same, but we humans
can easily recognize these two events by comparing the actions and interaction of the peo-
ple in the video. While TRM cannot generate such videos, our model has learned similar
capability with TRM to compare human actions and interactions between moments. Dur-
ing fine-tuning, it can focus on adapting to smooth transitions, and thus learn faster than

models with neither the capability of temporal reasoning nor event recognition.

A.2.2 Auxiliary Objective with Contrastive Learning

In addition to TRM, we apply an auxiliary objective during pre-training, which aligns
video features with corresponding captions by contrastive learning, widely used in image-
and video-language pre-training [28, 40, 48, 65, 71, 86]. Specifically, with the concate-
nated video feature sequence e = {e1, ..., e}, , €1, ..., e}, we add the beginning and the
end token before and after the sequence, as well as the temporal position encoding to each

1,2 K 1.

feature. Then after contextualization, we have v = {vp,s, v1, ...,V My UTs -+ Uppye s Veos
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To align each video to its caption, the objective learns a similarity function sim(v,¢) =
9o(fo(©))Tge(fo(c)), such that parallel video-caption pairs have higher similarity scores.
f» produces the representation of V,, which averages the features of a video, e.g. fu (Vg ) =
ijg L v¥, and f, delivers the representation of a caption, which is the [CLS] embeddings

of the caption feature encoded by the question encoder. g, and g, are two linear transfor-

mations that map the two representations into a normalized lower-dimensional space.

Following [40], we calculate the softmax-normalized video-to-caption and caption-

to-video similarity as:

exp(sim(Vy, Cy.)/7)
Zfil exp(sim(Vy, C;)/T) 7

exp(sim(Cg, Vi) /7)
i exp(sim(Cr, Vi) /)

(Vi) = Py (Cr) = (A.1)

where 7 is a learnable temperature parameter. To increase the difficulty, we collect video-
caption pairs from all video sequences in the same mini-batch B, and thus K is K times
the size of a mini-batch in practice. Then, similar to [40, 55], let y¥**(v) and y°*¥(c) denote
the ground-truth one-hot similarity, where the probability of positive and negative pair are
1 and 0. The video-caption contrastive loss is defined as the cross-entropy CE between p
and y:

1

L=3Evepn [CE(y***(V), p**(V)) + CE(y***(C), p*(C))] (A.2)

A.2.3 Pre-training Datasets

TRM samples video-caption pairs from video captioning datasets. We want the
datasets as diverse as possible, not limited to cooking [9], movies [56], or indoor actions
[62]. To maintain the computation within an affordable size, videos cannot be too long

[32], or a video sequence would consist of few videos, which prohibit the model from
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learning long-term temporal dependency.

We pre-train the video-language encoder over VATEX [73] and TGIF [43]. 'VATEX
contains 41k videos from Kinetics-600 [5] and 826k sentences, where each video is paired
with multiple descriptions. The length of the videos are all 10 seconds, cropped for precise
action recognition in Kinetics. TGIF is an open-domain dataset containing 100K animated
GIFs from Tumblr and 120K sentence descriptions. The duration of each GIF is around

3.1 seconds. We leave pre-training with longer videos and larger datasets for future work.

A.3 Optimization

Hyperparameter Pre-Train ActQA AGQA
Learning Rate (Base) le-5 2e-5 2e-5
Learning Rate (Video) 5e-5 2¢e-4 5e-5
Learning Rate (MLP) 2.5e-4 le-3 2e-4
Learning Rate (Ans) 2e-5 2e-5 2e-5
Weight Decay le-2 le-2 le-2
AdamW e le-8 le-8 le-8
AdamW [ 0.9 0.9 0.9
AdamW /s 0.98 0.98 0.98
Training Steps 60K - -
Training Epochs - 5 4
Warmup 0.03 0.1 0.1
Batch Size 128 64 64
Max Video Length 100 100 100
Max Question Length 50 - -
Number of Videos (K) 8 - -
Number of Frames (77) - 16 8

Table A.2: Hyperparameters for pre-training (Pre-Train), ActivityNet-QA (ActQA), and
AGQA 2.0 (AGQA). Base: the question, image, and image-language encoder. Video: the
video and video-language encoder. Ans: the answer encoder.

The pre-training and fine-tuning are all optimized with AdamW optimizer and linear
decay scheduling after warmup. All experiments are run with two NVIDIA RTX 3090s,
with which the pre-training takes about 18 hours. Detailed hyperparameters are provided
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in Table A.2.
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Appendix B — Experiment Details

B.1 Details of Temporal Modeling Analysis

Some may question our preliminary analysis of temporal modeling, in which we
first train a model with normal inputs and test it with normal and shuffled inputs. The
performance drops imply the sensitivity to the order of frames, and thus little difference
may indicate the incompetence of temporal modeling. Training and testing a model with
shuffled input can also completely eliminates the temporal information, but this approach
only reveals how well a model solves a task with spatial information (or dataset bias if the
task is designed for evaluating temporal modeling), and thus it is not suitable for assessing

a model’s capability of temporal modeling.

We conduct the analysis on AGQA and VIOLIN as some other video QA benchmarks
are less appropriate. For example, some questions in ActivietNet-QA need only spatial
knowledge. In NeXT-QA [74], while 29% questions are about temporal relations, others
aim at spatial information or more advanced cognition, e.g. causal reasoning. The split
of State Transition in TGIF-QA [27], though expected to fit this analysis well, could be
solved by VIOLET without understanding the order of frames in our experiment (Table
B.3).
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Method Benchmark Accuracy

TGIF-QA  95.34
TGIF-QA*  95.36+.08

VIOLET

Table B.3: Results of VIOLET taking shuffled frames as input on the questions of State
Transition of TGIF-QA. (* signifies that input frames are shuffled. We report the average
of three results for the shuffle experiment.)

B.2 Pre-training Data Used by Prior Approaches

Compared with state-of-the-art approaches, our video QA pipeline achieves better
performance on ActivityNet-QA with orders of magnitude less pre-training data. We
list some widely-used pre-training datasets that are abbreviated in Table 3 of the main
paper: 100M: HowTol00M [50]; 69M: HowToVQAG69M [79]; 180M: YT-Temporal-
180M [86]; 2.5M: WebVid [3]; 14M/3M: Conceptual Caption [6, 61]; 5.6M: COCO

[7]+VisualGenome [33].

B.3 Full Results and Analysis on AGQA 2.0

AGQA 2.0 provides extensive annotations that each question is associated with rea-
soning abilities necessary to answer the question. The annotations cover four aspects:
reasoning types, semantics class, structures, and answer types. Reasoning types define
the design of question templates for evaluating certain reasoning abilities. We list some
examples of question templates created by [2 1] in Table B.4 for the following analysis of
our model’s behavior. The semantics class of a question describes its main subject: an
object, relationship or action. Question structures include open questions (query), com-
paring attributes of two options (compare), choosing between two options (choose), yes/
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no questions (verify), and understanding of logical operator, such as “and” or “or”. Ques-
tions have binary answer type restrict answer choices, such as Yes/No, before/After or two

specified options, while many answers are possible to open questions.

Reasoning Type Example of Template

Object-Relationship ~ What/Who/When/Where/How did they <rel> <object>?
Relationship-Action  Did they <relation> something before or after <action>?

Object-Action Did they interact with <object> before or after <action>?
Superlative What were they <action> first/last?

Sequencing What did the person do after <action>?

Exists Did/Does/Do <concept> occur?

Duration Comparison Did they <action1> or <action2> for longer?
Activity Recognition =~ What does the person do before/after/while <action>?

Table B.4: Reasoning types and examples of their templates of AGQA 2.0.

B.3.1 Full Results of Temporal Modeling Analysis

The full results of Table 2 in the main paper are presented in Table B.5, where we
gauge the efficacy of temporal modeling of prior approaches by inputting shuffled videos
and measuring performance drop. While Just-Ask [79] demonstrates improvement in
Relationship-Action, Object-Action and Sequencing, VIOLET [1&] performs similar in
most types. The poor performance of VIOLET may be attributed to sparsely sampling, by
which they enabled end-to-end training, but few frames seem not able to summarize the

temporal dynamics of whole videos.

B.3.2 Full Results and Analysis of Our Method

We show the full results of our method on AGQA 2.0 with ablation of components

and pre-training strategies in Table B.6.

We first examine the performance of inputting only questions (T), which reveals the
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Type Just-Ask*  Just-Ask  VIOLET*  VIOLET

Object-Relationship 46.30 47.83 49.01 48.91
Relationship-Action 50.78 66.55 50.04 50.02
= Object-Action 50.77 68.78 50.13 50.24
‘€ Superlative 37.96 39.83 39.47 39.49
§ Sequencing 50.66 67.01 49.86 4991
Exists 57.15 59.35 54.58 54.70
Duration Comparison 50.66 50.49 30.70 30.64
Activity Recognition 19.87 21.53 3.13 3.13
£ Object 46.34 49.31 49.18 49.08
£  Relationship 54.63 59.60 52.32 52.41
% Action 49.78 58.03 41.47 41.45
Query 45.53 47.25 48.15 47.98
£ Compare 50.84 65.11 47.65 47.69
g Choose 39.78 41.00 46.97 46.90
% Logic 54.87 56.20 50.99 51.24
Verify 56.22 58.13 55.42 55.46
= Binary 49.95 55.35 50.30 50.33
g Open 45.53 47.25 48.15 47.98
All 47.72 51.27 49.22 49.15

Table B.5: Full results of the preliminary analysis of temporal modeling on AGQA 2.0.
(* means shuftled input. We report the result of one experiment.)

bias of the datasets as these questions can be solved without grounding to videos. With
rigorous balancing procedure, this model cannot achieve more than 50% accuracy on any
question type, but some questions, for example, those belonging to Relationship-Action,

Object-Action, and Exists appear easier than others.

Inputting frames (T+F) improves the overall performance by about 10% accuracy,
which mostly comes from Object-Relationship and Exists. It is reasonable as these ques-
tions involve less temporal information according to the templates, and they are more
likely to be solved with a few static frames with spatial information about humans, ob-
jects, and scenes. Pre-training the image-language encoder with VQA [20] (T+F) shows

further improvement in Exists, which seems more similar to the question design of image

QA.

Accessing to videos (T+V) is helpful for different question types such as Superla-
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Type T T+F T+F T+V T+V  T+F+V  T+F+V* T+E+V

Object-Relationship 39.15 49.21 50.33 51.67 53.40 56.39 57.16 59.66
Relationship-Action 50.05 50.61 50.00 49.83 71.57 53.25 51.64 72.98

Object-Action 49.99 50.11 50.00 50.03 74.74 56.27 54.42 75.20
Superlative 34.00 37.96 38.87 41.82 43.80 44.54 45.70 48.94
Sequencing 49.89 50.26 49.86 49.86 72.60 54.92 53.14 73.53
Exists 50.09 57.77 59.06 50.86 53.68 59.95 59.04 63.21

Duration Comparison  48.71 51.43 55.04 44.96 37.34 62.58 60.26 60.39
Activity Recognition 14.63 14.81 16.84 13.16 19.60 21.25 21.44 27.78

Object 39.25 49.24 50.16 51.44 55.28 56.50 57.31 61.27
Relationship 50.08 54.73 55.76 50.58 57.14 57.33 56.07 63.93
Action 48.49 49.98 50.86 47.09 56.52 56.35 54.39 65.96
Query 33.28 48.18 49.33 51.99 56.48 57.46 58.90 61.22
Compare 49.99 50.62 50.73 49.42 68.28 56.11 54.23 72.04
Choose 48.10 46.24 46.76 49.50 42.38 50.34 50.40 53.01
Logic 50.03 54.28 56.36 50.68 51.91 57.52 55.78 59.18
Verity 49.98 57.48 58.45 51.28 53.44 59.49 59.45 63.02
Binary 49.47 52.00 52.70 50.17 54.74 55.76 55.01 62.61
Open 33.28 48.18 49.33 51.99 56.48 57.46 58.90 61.22
All 41.32 50.07 51.00 51.08 55.62 56.61 56.97 61.91

Table B.6: Full results of our method on AGQA 2.0 with ablation of components and pre-
training strategies. (T: questions; F: frames; F: frames with the image-language encoder
pre-trained on VQA; V: videos; V: videos with the video-language encoder pre-trained
with TRM; *: shuffled video inputs.)

tive, of which the questions ask about something happening first or last, but some other
questions that also require temporal modeling, including Relationship-Action or Sequenc-
ing, are not improved. Besides, video inputs do not enhance the performance of questions
improved by frame inputs. Such complementary advantages of frames and videos are con-
sistent with our findings in the preliminary analysis, and inputting both frames and videos

(T+F+V) does surpass inputting only one of them in all reasoning types.

Pre-training the video-language encoder with TRM (T+F+V) boosts the performance
of most reasoning types, especially Relationship-Action, Object-Action, and Sequencing.
These questions all need temporal modeling of event sequences in videos and have ques-
tion formats more similar to TRM. The huge performance gap (20% accuracy) between
normal (T+F+V) and shuffled video inputs (T+F+V*), as well as the little gap between no
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pre-training (T+F+V) and shuffled inputs (T+F+V*), suggests successful temporal mod-

eling and verifies the efficacy of TRM.

Despite the enhancement in most questions, TRM still struggles with some. reason-
ing types, for example, Duration Comparison, which asks a machine which action lasts
longer. These questions require a machine to memorize multiple events and identify their
starting and ending point to obtain their duration. Such abilities are beyond the intention

of developing TRM, and we leave it for future exploration.

B.3.3 Full Results of Ablation Study of Encoding Streams

Type IL VL

Object-Relationship 49.04 20091
Relationship-Action ~ 50.00  0.60

Object-Action 50.00  0.99
Superlative 36.00 15.86
Sequencing 4985 0.80
Exists 57.09  0.07

Duration Comparison 58.99  0.00
Activity Recognition  13.06  0.92

Object 48.92  20.60
Relationship 54.58  0.20
Action 52.19 038
Query 47.35 26.68
Compare 51.24  0.69
Choose 48.29 22.11
Logic 55.09 0.04
Verify 56.51  0.08
Binary 5252 6.30
Open 47.35 26.68
All 4991 16.56

Table B.7: Full results of the ablation study on two encoding streams. (IL: image-language

encoder; VL: video-language encoder.)

The full results of Table 7 in the main paper are reported in Table B.7, where we
first train a model with both image- and video-language encoders, and test each stream

with the test set. The image-language model demonstrates overwhelming advantages over
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its video-language counterpart. However, this result cannot conclude the utility of any
stream, for each stream can be trained to perform better than the question-only baseline.
We hypothesize that temporal information can be seen as the complex evolution of spa-
tial information, and thus when both streams cooperate in spatial-temporal modeling, the
image-language stream offers overall understanding of visual elements and scenes, while

the video-language stream assists it and models the detailed changes.
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