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摘要 

這篇論文主要處理的問題是反應擴散方程的傳動波 ( )t zzu u u f u    ，其中 1( , ) nx z  是空

間變數。假定 ( )f u 是一個雙穩定的非線性項，我們分別考慮平衡的狀態及非平衡的狀態。在

平衡的狀態下，我們將描述多種連接兩個平衡點的傳動波，這些傳動波各有各的形狀。在非

平衡的狀態下，我們將傳動波解限制為柱狀對稱的形式，接著證明這樣的解在 2n  時其形狀

會近似於拋物面，而在 1n  時會近似於超餘弦函數。除此之外，我們也將證明單穩傳動波的

存在性。本篇論文的主要參考文獻的作者有以下幾位：Y. Morita、H. Ninomiya、X.F. Chen、

J-S Guo、F. Hamel 及 J-M Roquejoffre。 

 

關鍵字：傳動波、反應擴散方程、雙穩定的非線性項、界面、雙穩、單穩 
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Abstract 
 

We are dealing with traveling wave solutions of a reaction-diffusion equation ( )t zzu u u f u    , 

where 1
1( , ) ( , , , ) n

nx z x x z     is the space variable and   is the Laplacian in n . Assume 

that ( )f u  is a bistable nonlinearity, then we consider the balanced case and unbalanced case 

respectively. In the preceding case, we describe some types of traveling waves connecting two 

stable equilibria. In the case of latter, we want to find out the bistable-type traveling waves with the 

interfaces other than plane. If the solution is restricted to be cylindrically symmetric, then we can 

show that the interface is asymptotically a paraboloid as 2n   and a hyperbolic cosine curve as 

1n  . Besides, we prove the existence of the monostable-type traveling waves. The main references 

of this thesis are Y. Morita, H. Ninomiya, X.F. Chen, J-S GUO, F. Hamel and J-M Roquejoffre. 

 

Keywords:  

traveling wave, reaction-diffusion equation, bistable nonlinearity, interface, bistable, monostable 
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Chapter 1

Introduction

The main list of references of this thesis is Monostable-type traveling waves of bistable

reaction-di�usion equations in the multi-dimensional space written by Y. Morita and

H. Ninomiya and Traveling waves with paraboloid like interfaces for balanced bistable

dynamics written by X.F. Chen, J-S GUO, F. Hamel, H. Ninomiya and J-M Roquejo�re.

In addition, [4], [5], [7], [8], and [9] o�er a lot of valuable materials. Because of these

articles, this thesis must be more intact and more abundant.

There are many phenomena are well studied by mathematical models. Reaction-

Di�usion System is one of these useful models. It is a important and extensive ap-

plication in the �elds such as chemistry, biology, physics, material, etc.. For example,

Hodgkin and Huxley won the Nobel Prize for medicine because of studying and deriv-

ing the Hodgkin-Huxley model which describing how action potentials in neurons are

initiated and propagated. This equation is a special case of reaction-di�usion Systems.

In this paper, we focus on the following scalar reaction-di�usion equation, for u =

u (x, z, t),

ut = ∆u+ uzz − f(u), (1.1)

where t is the time variable and (x, z) = (x1, · · · , xn, z) ∈ Rn+1 is the space variable and

∆ is the Laplacian in Rn. We assume that f (u) is C2 on an open interval containing
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[0, 1] and satis�es


f (0) = f (a) = f (1) = 0, f ′ (0) > 0, f ′ (a) < 0, f ′ (1) > 0,

f (u) 6= 0 for u ∈ (0, a) ∪ (a, 1) .

(1.2)

The condition (1.2) has the characteristic feature such that the dynamics generated by

the di�usion-free equation of (1.1) adimts two stable equilibria u = 0, 1 and unstable one

u = a separating the basins of the two equilibria. Thus the equation (1.1) satisfying

(1.2) is called a bistable reaction-di�usion equation or a reaction-di�usion equation

with bistable nonlinearity. If f is cubic, it is also called the Allen-Cahn equation or the

Nagumo equation. This equation is used as a simple model describing propagation of

species in population biology or propagation of nerve excitation. Back to the viewpoint

of mathematics, we consider two di�erent cases. One is unbalanced case, and another

one is balanced case.

In the unbalanced case, that is, with the assumption that

ˆ 1

0

f (u) du < 0,

we want to �nd some bistable-type traveling waves which connecting two stable equi-

libria u = 0 and u = 1. With the unbalanced condition, (1.1) with (1.2) allows many

types of bistable traveling waves. Some details will be described in the Chapter 2.

More speci�c, we are searching for solutions of the form u (x, z, t) = U (x, z − ct) which

satis�es the di�erential equation and the �boundary values�


cUz + Uzz + ∆U = f (U) ∀x ∈ Rn, z ∈ R,

limz→∞ U (x, z) = 1 ∀x ∈ Rn,

limz→−∞ U (x, z) = 0 ∀x ∈ Rn.

(1.3)
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Reaction-Di�usion Equations with Bistable Nonlinearities
ut = ∆u+ uzz − f(u)

Bistable-type Monostable-type
1. planar Ch2 nonplanar Ch4

f is unbalanced 2. conical connect1 with v
3. pyramidal and v with 0
n = 1: Ch3 v: standing wave

f is balanced hyperbolic cosine
n ≥ 2: paraboloid

Table 1.1: The classi�cation of the interfaces

The solution satisfying (1.3) is called a bistable-type traveling wave.

In the chapter 3, we consider the balanced bistable nonlinearity. The same question

as above, we want to know whether traveling waves connecting two stable equilibria

exist or not. The answer is YES. Furthermore, we can �nd nonplanar traveling wave

solutions.

Finally, we seek another type traveling wave solutions, that is, monostable-type

traveling wave solutions. In the Chapter 4, we prove the exsitence of monostable-type

traveling solutions which are also nonplaner. Monostable-type traveling wave solutions

conncet one of the equilibria with a standing wave solution of (1.1). The proof in

Chapter 3 and 4 are based on [6] and [3] respectively.

All of traveling waves we dealing with in this thesis are classi�ed in Table 1.1.
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Chapter 2

Bistable-Type Traveling Waves in the

Unbalanced Condition

Bistable-type traveling waves connect two equilibria u = 0 and u = 1. The existence

of traveling waves with di�erent shapes of interfaces was proved. For example, planar

solutions, conical solutions, and pyramidal solutions. Next, we will describe these types

of bistable traveling waves.

It is well-known that (1.1) with (1.2) has a planar traveling wave with a monotone

pro�le. That is, there is a solution u = Û (z − c0t) satisfying
Ûzz + c0Ûz − f

(
Û
)

= 0, Û (z) > 0 (z ∈ R) ,

limz→−∞ Û (z) = 0, limz→∞ Û (z) = 1.

(2.1)

Since Û ′ (z) > 0 holds for the solution Û (z), we may call it a monotone planar traveling

wave. Moreover the solution Û is unique (up to translation).
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2.1 Solutions with Conical Interfaces in Multi-Dimension

This subsection is based on [4, 5, 7, 8].

Let u (x, z, t) = U (x, z − ct) as in (1.3). We look for solutions of (1.3) satisfy-

ing a conical asymptotic condition of angle α with respect to the direction −en+1 :=

(0, · · · , 0,−1). A natural condition, as in Figure 2.1, is the following:


lim supA→+∞, z≥A−|x|cotα |U (x, z)− 1| = 0,

lim supA→−∞, z≤A−|x|cotα |U (x, z) | = 0.

(2.2)

Note that, the planar front Û (z) is the solution of (1.3) and (2.2) with α = π/2.

But the interesting case is 0 < α < π/2.

Since condition (2.2) is too strong for n ≥ 2, the following less restrictive condition

will be used: 
lim supA→+∞, z≥A+η(|x|) |U (x, z)− 1| = 0,

lim supA→−∞, z≤A+η(|x|) |U (x, z) | = 0

(2.3)

for some globally Lipschitz function η de�ned in [0,+∞). We will see that it automat-

ically implies a weak conical condiotion with some given angle α.

Next, we state the theorm of exsitence of conical bistable case.

Theorem 2.1. (Existence result in dimension n = 1)

In dimension n = 1, for each α ∈ (0, π/2], there exists a unique-up to shift in

the (x, z) variables - solutions of (c, U) of (1.3) and (2.2). Furthermore, 0 < U < 1

in R2, c is given by c = c0/sinα, and up to shift, U is even in x and increasing in

|x|. The fuction U is decreasing in any unit direction τ = (τx, τz) ∈ R2 such that

τz < − cosα. For each λ ∈ (0, 1), the level set {U = λ} is a globally Lipschitz graph

{y = ηλ (x)} whose Lipschitz norm is equal to cotα. Lastly, U (x+ xn, z − |xn| cotα)→

Û (±x cosα + z sinα) in C2
loc (R2), for any sequence xn → ±∞.
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Figure 2.1: Level sets of a solution U satisfying (2.2) captured from [4]

If the dimension n is higher than one, we use the weaker condition (2.3).

Theorem 2.2. (Existence result in dimension n ≥ 2)

In dimension n ≥ 2, for each α ∈ (0, π/2], there exists a solution (c, U) of (1.3)

such that

• 0 < U < 1 in Rn+1.

• U (x, z) = Ũ (|x| , z) and the following monotonicity properties hold: ∂|x|Ũ ≥ 0,

∂zŨ ≥ 0.

• the fuction U satis�es (2.3) with η = ηλ, for all λ ∈ (0, 1), where {U (x, z) = λ} =

{z = ηλ (x) , x ∈ Rn}.

• there holds x̂ · ∇ηλ (x)→ − cotα as |x| → ∞ where x̂ = x
|x| .

Moreover the function U is decreasing in any unit direction τ = (τx, τz) ∈ Rn ×R such

that τz < − cosα. Lastly, for any unique direction e ∈ Rn, for any sequence rn → ∞

and for any λ ∈ (0, 1), U (x+ rne, z + ηλ (rne))→ Û
(

(x · e) cosα + z sinα + Û−1 (λ)
)

in C2
loc (Rn+1).
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2.2 Solutions with Pyramidal Interfaces in 3-Dimension

This subsection is based on [9] and [10]. Our aim is to construct three-dimensional

traveling wave solutions for which the contour line has a pyramidal shape. More pre-

cisely, we rewrite u = u (x, y, z, t), where t is the time variable and (x, y, z) ∈ R3 is the

space variable and ∆ is ∂xx + ∂yy. Let u |t=0 = u0 be an initial condition, where u0 is

bounded and C1. And for the nonlinear term f , we can consider a more general form

than (1.2). We give the assumptions for f as follows:

(A1) f is C1 [0, 1] with f (1) = f (0) = 0, f ′ (1) > 0, and f ′ (0) > 0.

(A2)
´ 1

0
f (u) du < 0.

(A3) There exists Û which satis�es (2.1) for some c0 ∈ R.

Similar to above, we want to �nd traveling waves which travel upwards in the vertical

z direction with a constant speed c. In this subsection, we assume c > c0. If v is a

traveling wave with speed c, then it satis�es

L (v) := −vxx − vyy − vzz − cvz + f (v) = 0 in R3. (2.4)

First, we construct a subsolution of (2.4).

Let m ≥ 3 be a given integer. Set

τ :=

√
c2 − c2

0

c0

> 0.

Assume (Aj,Bj) ∈ R2 satis�es

A2
j +B2

j = 1 ∀j = 1, · · · ,m

7



Figure 2.2: The decomposition of the x− y plane by Ωj for m = 5 captured from [9]

and

AjBj+1 − Aj+1Bj > 0, ∀j = 1, · · · ,m

AmB1 − A1Bm > 0.

We also assume (Ai, Bi) 6= (Aj, Bj) for all i 6= j. And consider

hj (x, y) := τ (Ajx+Bjy) , (2.5)

h (x, y) := max
1≤j≤m

hj (x, y) = τ max
1≤j≤m

(Ajx+Bjy) . (2.6)

Then z = h (x, y) represents a pyramid in R3. If we set Ωj := {(x, y)|h (x, y) = hj (x, y)},

then we can obtain R2 = ∪mj=1Ωj and Ω1, · · · ,Ωm locate counterwise as in Figure 2.2.

For the lateral surfaces, we de�ne

Sj := {(x, y, z)| z = hj (x, y) , (x, y) ∈ Ωj} for j = 1, · · · ,m.
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Γj :=


Sj ∩ Sj+1 if j = 1, · · · ,m− 1,

Sm ∩ S1 if j = m,

Γ := ∪mj=1Γj.

Then Γj represents an edge and Γ represents all edges of a pyramid.

For each (Aj, Bj) we de�ned above, there exists a planar wave Û ((c0/c) (z − hj (x, y))).

Furthermore,

Û
(c0

c
(z − h (x, y))

)
= max

1≤j≤m
Û
(c0

c
(z − hj (x, y))

)

becomes the subsolution of (2.4).

Next, we construct the supersolution of (2.4) carefully since a pyramidal wave is

everywhere apart from a pyramid near the edges. Let ρ̃ (r) ∈ C∞ [0,∞) be a function

with the following properties:



ρ̃ (r) > 0, ρ̃r (r) ≤ 0 if r > 0,

ρ̃ (r) ≡ 1 if 0 ≤ r ≤ 1
2
,

ρ̃ (r) = e−r if r > 0 is large enough,

´∞
0
ρ̃ (r) rdr = 1

2π
.

Now let ρ (x, y) := ρ̃
(√

x2 + y2
)
belong to C∞ (R2) and satis�es

´
R2 ρ = 1. Then

for a pyramid z = h (x, y), we de�ne a molli�ed pyramid z = χ (x, y) by χ (x, y) = ρ∗h.

Consider the graph of

z =
1

α
χ (αx, αy)

where α ∈ (0, 1) will be chosen to be small enough. And then we rescaled coordinate

9



Figure 2.3: A pyramidal traveling wave captured from [9]

(ξ, η, ς) as

ξ = αx, η = αy, ς = αz

and obtain ς = χ (ξ, η). Then we set

µ̂ : =
z − 1

α
χ (αx, αy)√

1 + χξ (αx, αy)2 + χη (αx, αy)2

=
1

α

ς − χ (ξ, η)√
1 + χξ (ξ, η)2 + χη (ξ, η)2

.

Finally, if we de�ne

Ū (x, y, z) := χ (µ̂) + σ (x, y)

where

σ (x, y) := ε

 c√
1 + χx (αx, αy)2 + χy (αx, αy)2

− c0


with α and ε small enough, then Ū (x, y, z) is a supersolution of (2.4).

10



We have constructed the supersolution and subsolution of (2.4), then we have the

traveling wave solutions of (2.4). That is, we have the following theorem:

Theorem 2.3. Suppose c > c0 and let h (x, y) be given in (2.6). Under the assumptions

(A1), (A2), and (A3), there exists U (x, y, z) to (2.4) with

Û
(c0

c
(z − h (x, y))

)
< U (x, y, z) < 1 in R3

and

lim
γ→∞

sup
(x,y,z)∈D(γ)

∣∣∣U (x, y, z)− Û
(c0

c
(z − h (x, y))

)∣∣∣ = 0,

Uz (x, y, z) > 0 for all (x, y, z) ∈ R3,

where D (γ) is de�ned by

D (γ) := {(x, y, z) |dist ((x, y, z) ,Γ) > γ } .

11



Chapter 3

Bistable-Type Traveling Waves in the

Balanced Condition

Before we begin to study the question that whether traveling waves connecting two

stable equilibria exist or not, we state the balanced bistable condition concretely. The

forcing term f is the derivative of a double-equal-well, also called balanced bistable,

potential. More precisely,


f = F ′ ∈ C2 (R) ,

F (0) = F (1) = 0 < F (s) ∀s ∈ (0, 1) ,

F ′′ (0) > 0, F ′′ (1) > 0.

(3.1)

A typical example is the cubic function f (u) = 2u (2u− 1) (u− 1) with potential F =

u2 (u− 1)2.

We are interested in solutions with interfaces that travel upwards in the vertical z

direction with a constant speed c. That is, we are searching for a solution for (1.3)

in the balanced condition. Furthermore, we restrict our solutions in the cylindrically

symmetric class. In other words, U depends only on z and r = |x|. Since we shall look

for cylindrically symmetric solutions which are monotone decreasing along the radial

12



direction, U must have the boundary value lim|x|→∞ U (x, z) = 0.

Theorem 3.1. Assume (3.1). For any c > 0, (1.3) admits a cylindrically symmetric

solution U with the monotonicity property:

Uz > 0 on Rn+1 and Ur < 0 on (Rn/ {0})× R. (3.2)

De Giorgi conjecture asserts that when c = 0 and f (U) = U3−U , all z−monotonic

solutions of (1.3) are planar at least in dimension n ≤ 8. In this conjecture, the

radial symmetric in x is not assumed. The De Giorgi conjecture is ture if f (U) =

2U (2U − 1) (U − 1). Thus, we want to ask whether planar solutions are the only

solutions to the corresponding parabolic equation

ut = ∆u+ uzz + 2u (2u− 1) (u− 1) , (x, z) ∈ Rn × R, (3.3)

subject to the monotonicity conditions


limz→∞ u (x, z, t) = 1,

limz→−∞ u (x, z, t) = 0, ∀ (x, z, t) ∈ Rn × R× R.

uz (x, z, t) > 0

(3.4)

The answer is NO since Theorem 3.1 provides an entire solution that satis�es (3.4) but

not planar. Thus, for the elliptic equation (1.3) with c 6= 0 or for the parabolic equation

(3.3), additional conditions are needed for an entire monotone solution to be planar.

The monotonicity condition (3.2) and the boundary values of U imply that the

interface can be represented as a graph z = H (|x|) or |x| = R (z), where R is the

inverse of H. We can describe the asymptotic shape of the interface as follows,

Theorem 3.2. Assume (3.1). Let (c, U) be as in Theorem 3.1 and Γ be the 1
2
-level set

of U .

13



• If n > 1, Γ is asymptotically a paraboloid, i.e.

lim
z→∞,U(x,z)= 1

2

|x|2

2z
=
n− 1

c
.

• If n = 1, Γ is asymptotically a hyperbolic cosine curve, i.e. for some A = A (f) >

0,

lim
z→∞,U(x,z)= 1

2

cosh (2µx)

µz
=
A

c
, µ :=

√
f ′ (1).

3.1 Preliminary

The condition (3.1) is assumed hereafter. It implies there exists α ∈ (1/2, 1) and

α̂ ∈ (0, 1/2) satisfying

f ′ = F ′′ > 0 on [0, α̂] ∪ [α, 1] , F (α) = F (α̂) < F (s) ∀s ∈ (α̂, α) . (3.5)

Then α and α̂ are �xed. The wave speed c is also �xed.

Observe that all wells other than 0 and 1 lie either in (α̂, α) or in (−∞, 0) ∪ (1,∞)

where the latter is not our concern at all. The depth of any well in (−1, 1) is higher

than F (α) > 0 = F (0) = F (1).

For convenience, we de�ne the following notations:

x ∈ Rn, z ∈ R, y = (x, z) ∈ Rn+1, r = |x|, ρ = |y| =
√
|x|2 + z2.

Stationary waves

Let Φ (x) be a one-dimensional stationary solution of (1.1), that is, Φ(x) is a standing

wave solution of

Φ′′ = f (Φ) on R, Φ (∞) = 1, Φ (−∞) = 0, Φ (0) = α.

14



Through simple calculation, we can obtain

Φ′ =
√

2F (Φ),

ˆ Φ(ξ)

α

ds√
2F (s)

= ξ ∀ξ ∈ R.

Traveling waves

De�ne

fε (u) := f (u) + ε
√

2F (u), Fε (u) :=

ˆ u

0

fε (s) ds.

For any ε > 0, fε is unbalanced, thus Fε attians its deepest well only at u = 0. And Φ

is also a pro�le of a one-dimensional traveling wave of speed ε to

εΦ′ + Φ′′ = fε (Φ) on R. (3.6)

In addition, we can assume that ε is small enough such that f ′ (1) > 0 and f ′(0) > 0,

and the pro�le of Φ is then a unique solution to (3.6) up to shift such that Φ (∞) = 1

and Φ (−∞) = 0. The family {fε}ε>0 is an approximation of f and will be used to

construct the approximating solution of (1.3).

Radially symmetric stationary waves

Let ζ ∈ C3 (R) be a �xed function satisfying

ζ = 0 on {0} ∪ [α̂, 1] , ζ > 0 on (0, α̂) ,

ˆ 1

0

{
ζ (s)−

√
2F (s)

}
ds > 0.

And for each ε > 0, de�ne

gε (s) = fε (s)− εζ (s)

= f (s) + ε
√

2F (s)− εζ (s) ∀s ∈ [0, 1] .
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Note that for su�ciently small positive ε,

• Both wells 0 and 1 of gε are stable. i.e. g
′
ε (1) > 0 = gε (1) and g′ε (0) > 0 = gε (0).

• All wells of gε in (0, 1) lies in (α̂, α).

• 1 is the only deepest well of gε in (0, 1). i.e.
´ s

1
gε (u) du > 0 ∀u ∈ [0, 1).

Lemma 3.3. For each su�ciently small positive ε, there exists a unique solution wε to

n

ρ
wερ + wερρ − gε

(
wερ
)

= 0, wερ < 0 in (0,∞) , wερ (0) = 0, wε (∞) = 0. (3.7)

The solution satis�es wε (0) < 1 = limε↘0w
ε (0).

Planar waves

For Ψ = Ψ (ξ, z), ξ ∈ R, z ∈ R:

cΨz + Ψzz + Ψξξ = f (Ψ) , 0 ≤ Ψ ≤ 1, Ψz ≥ 0 ≥ Ψξ on R2, Ψ (0, 0) = α. (3.8)

Lemma 3.4. Assume (3.1) and c > 0. Then Ψ (ξ, z) = Φ (−ξ), (ξ, z) ∈ R2, is the

unique solution of (3.8).

The result implies limz→∞ ||Uz (·, z) ||L∞(Rn) = 0. Thus, the interface is asmyptoti-

cally vertical.

Energy functionals

We know that (1.1) is a gradient �ow of an energy functional with the density function

u2
z + |∇u|2 + 2F (u). And for radial symmetric functions ψ, ψ1, ψ2 of r = |x| and a

cylindrically symmetric function W on Rn × (−∞, 0], we de�ne
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||ψ|| :=
√
〈ψ, ψ〉 where 〈ψ1, ψ2〉 =

ˆ ∞
0

rn−1ψ1 (r)ψ2 (r) ,

X (l) := {ψ ∈ C (0,∞) |ψ ≥ α on (0, l] , ψ (∞) = 0} ∀l > 0,

E (ψ) :=

ˆ ∞
0

rn−1

{
1

2
ψ2
r + F (ψ)

}
dr,

J (W ) :=

ˆ 0

−∞

{
1

2
||Wz||2 + E (W )

}
ceczdz.

The function spaces are those that make the norms or functionals �nite.

By the Euler-Lagrange equation for energy minimizers, we can obtain the following

lemma:

Lemma 3.5. Suppose for each z ∈ R, U (·, z + ·) on Rn× (−∞, 0] is a minimizer of J

subject to the boundary conditionW (·, 0) = U (·, z) on Rn×{0}. Then cUz+Uzz+4U =

f (U) in Rn+1.

Since the interface is asymptotically vertical, we can think for each large enough

z, there is enough time t for u (·, z + ct, t) to tend towards an almost ideal shape that

consumes energy as small as possible. That is, for z � 1, U (·, z) should be close to a

minimizer φ (·, l) of the energy E in the set X (l) where l = R (z). Thus, we want to

look for the minimizer. In other words, we have to consider the following minimization

problem:

φ ∈ X (l) , E (φ) = E (l) := min
ψ∈X(l)

E (ψ) . (3.9)

Next, we state a property of the minimizer.

Lemma 3.6. For each l > 0, (3.9) admits at least one solution. Any solution satis�es

φr < 0 in (0, l) ∪ (l,∞) and φ|r=l = α. In addition, for each ψ (∞) = 0,

E (min {φ, ψ}) ≤ E (ψ) . (3.10)

Furthermore, liml→∞ φ (·, l) = 1 uniformly in any compact subset of [0,∞).
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3.2 The Existence of Cylindrically Symmetric Travel-

ing Waves

We will prove the existence by two di�erent methods.

The �rst one use the fact that existence of a one dimensional traveling wave with

positive speed guarantee the existence of cylindrically symmetric traveling waves with

any speed. We will construct a sequence of such waves to approximate a solution to

(1.3).

The second one use the energy methods. The solution of (1.3) will be approximated

by the vertically lifted energy J minimizers with the boundary values being energy

minimizers of E in X (l) as l→∞.

3.2.1 Approximation by Traveling Waves of Unbalanced Poten-

tials

Existence

In the Section 3.1, we have known the existence of a one dimensional traveling wave Φ

with positive speed ε satis�es

εΦ′ + Φ′′ = fε (Φ) on R

where the nonlinear term fε is de�ned below

fε (u) := f (u) + ε
√

2F (u), Fε (u) :=

ˆ u

0

fε (s) ds.

Furthermore, Φ connects the two equilibrium 0 and 1 through proper translation.

Thus, according to [7] as n+ 1 = 2 and [4] as n+ 1 ≥ 3, there exists a cylindrically
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symmetric traveling wave U ε = U ε (x, z) with any given speed c > 0 satisfying


cU ε

z + U ε
zz +4U ε = fε (U ε) on Rn+1,

U ε (0, 0) = α, U ε (·,∞) ≡ 1, U ε (0,−∞) ≡ 0

U ε
z ≥ 0 ≥ U ε

r on Rn+1,

(3.11)

where r = |x|.

Since 0 ≤ U ε ≤ 1, {U ε}0<ε�1 is a bounded family in C3 (Rn+1), thus is a compact

family in C2
loc (Rn+1). If we take the limit ε ↘ 0, U ε will converge to a cylindrically

symmetric solution U to



cUz + Uzz +4U = f (U) on Rn+1,

0 ≤ U ≤ 1 on Rn+1,

Uz ≥ 0 ≥ Ur on Rn+1,

U (0, 0) = α.

(3.12)

The solution given by (3.12) is almost the solution to (1.3). All we have to do is check

the boundary values as |x| → ∞ and |z| → ∞.

The �boundary values�

To show the (3.12) has the right boundary values, we have to separate n = 1 from

n > 1. As n = 1, we don't need to add any extra condition. However, as n > 1, we

have to assume that either U is the limit of U ε or the nonlinear term f = 0 has only one

root in (0, 1). We only prove for the former case. Under the later assumption, please

refer to [4] for more details.

19



Lemma 3.7.

1. Suppose n = 1. Then any symmetric (about x) solution U to (3.12) satis�es


limz→∞ U (x, z) = 1, limz→−∞ U (x, z) = 0 ∀x ∈ Rn.

lim|x|→∞ U (x, z) = 0 ∀z ∈ R.
(3.13)

2. Suppose n > 1. Let U be a limit, along a sequence ε ↘ 0, of the cylindrically

symmetric family {Uε} of solutions to (3.11). Then U has the boundary value

(3.13) .

Proof. We prove this lemma by �ve steps.

Step1. The limit equations.

Since we have the monotonicity Uz ≥ 0 ≥ Ur and the bound 0 ≤ U ≤ 1, there exists

ϕ± (x) := lim
z→±∞

U (x, z) ∀x ∈ Rn, ϕ (z) := lim
|x|→∞

U (x, z) ∀z ∈ R.

And we have limz→±∞ (|Uz|+ |Uzz|) = 0 and lim|x|→∞4U = 0. Thus,

4ϕ± − f
(
ϕ±
)

= 0 ≥ ϕr on Rn, ϕ+ (0) ≥ α ≥ ϕ− (0) ,

4ϕ− f (ϕ) = 0 ≤ ϕz on R, ϕ (0) ≤ α.

To complete the proof, we have to show ϕ+ ≡ 1, ϕ− ≡ 0, and ϕ ≡ 0. Indeed, the proof

for the case n = 1 and n ≥ 2 di�er only at ϕ+ ≡ 1.

Step2. The limit as z →∞ with n = 1.

We have already known ϕ+
xx−f (ϕ+) = 0. Multiply both sides by ϕ+

x and then integrate
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over [0,∞). Then we have

[
1

2

(
ϕ+
x

)2 − F
(
ϕ+
)]
|∞0 = 0

⇒F
(
ϕ+ (∞)

)
= F

(
ϕ+ (0)

)
since ϕ+

x (0) = 0.

Furthermore, ϕ+ (0) ≥ α implies ϕ+ (∞) ∈ [0, α̂] ∪ [α, 1]. Note that the forcing

term will be zero as |x| + |z| = ∞, we have f (ϕ+ (∞)) = 0. Thus, ϕ+ (∞) = 1 or

ϕ+ (∞) = 0.

But since F is a balanced potential with its deepest wells at 1 and 0, if we consider

the following equation:

ψxx − f (ψ) = 0 ≥ ψx on [0,∞) , ψx (0) = 0, ψ (∞) = 0,

then there is an unique solution ψ ≡ 0. However, this is not what we want. Thus,

ϕ+ (∞) = 1. And because of ϕx ≤ 0, we obtain that ϕ+ ≡ 1 as n = 1.

Step3. The limit as z →∞ with n ≥ 2.

We denote ϕ+ (x) as ϕ+ (r) where r = |x|.

Assume ϕ+ is not equivalent to 1. Since ϕ+
r (0) ≤ 0, we have α ≤ ϕ+ (0) < 1. Let

β := ϕ+ (∞), then f (β) = f (ϕ+ (∞)) = 0.

ϕ+
rr +

n− 1

r
ϕ+
r − f

(
ϕ+
)

= 0

⇒
ˆ ∞

0

{
ϕ+
r ϕ

+
rr +

n− 1

r

(
ϕ+
r

)2 − f
(
ϕ+
)
ϕ+
r

}
dr = 0

⇒
[

1

2

(
ϕ+
r

)2 − F
(
ϕ+
)]
|0∞=

ˆ ∞
0

n− 1

r

(
ϕ+
r

)2
dr

⇒F
(
ϕ+ (∞)

)
− F

(
ϕ+ (0)

)
=

ˆ ∞
0

n− 1

r

(
ϕ+
r

)2
dr > 0

⇒F (β) > F
(
ϕ+ (0)

)
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Furthermore, ϕ+ (0) ≥ α implies β ∈ (α̂, α).

Next, we consider wε in Lemma 3.7. Since limε↘0w
ε (0) = 1, there exists ε0 > 0

such that wε0 (0) > ϕ+ (0) . Also, since wε0 (∞) = 0, there exists R0 > 0 such that

wε0 (R0) = α̂. Then, let

δ :=
1

3
min

{
wε0 (0)− ϕ+ (0) , β − α̂

}
.

Since limz→∞ U (·, z) = ϕ+ (| · |) locally uniform, for the δ de�ned above, there exists

z0 ∈ R such that

|U (x, z)− ϕ+ (|x|) | < δ if |x| ≤ R0 and z ≥ z0.

By the assumption, Uε uniformly converges to U on any compact subset in Rn+1 as

ε↘ 0. Thus, for the same δ, there exists ε ∈ (0, ε0) such that

|U ε (x, z)− U (x, z) | ≤ δ if |x|+ |z − z0| ≤ 2R0.

Finally, we obtain

|U ε (x, z)− ϕ+ (|x|) | ≤ 2δ if |x| ≤ R0 and z0 ≤ z ≤ z0 +R0.

Now we compare U ε ((0, z) + ·) with wε0 (| · |) on B (R0) := {y ∈ Rn+1||y| < R0}.

Since limz→∞ U
ε (·, z) = 1 and limz→−∞ U

ε (·, z) = 0 locally uniform, we can de�ne

z∗ := min
{
z ∈ R|U ε ((0, z) + y) ≥ wε0 (|y|) , ∀y ∈ B (R0)

}
.

Note that U ε (0, z) ≤ U ε (0, z0) ≤ ϕ+ (0) + 2δ < wε0 (0) for all z ≤ z0, thus z
∗ > z0. Let
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y0 ∈ B (R0) be the point such that

0 = U ε ((0, z∗) + y0)− wε0 (|y0|) = min
y∈B(R0)

{U ε ((0, z∗) + y)− wε0 (|y|)}

and y0 = (y1, y2) where y1 ∈ Rn and y2 ∈ R. Then

wε0 (|y0|) = U ε ((0, z∗) + y0) ≥ U ε ((0, z0) + y0) ≥ ϕ+ (|y1|)−2δ ≥ β−2δ > α̂ = wε0 (R0) .

Thus, y0 is an interior point of B (R0). Consequently, (∂zz +4)U ε ((0, z∗) + y0) ≥

(∂zz +4)wε0 (|y0|). And since wε0 (|y0|) > α̂, ζ (wε0 (|y0|)) = 0. Hence

gε0 (wε0 (|y0|)) = fε0 (wε0 (|y0|)) =
(
f + ε0

√
2F
)
|wε0 (|y0|)

>
(
f + ε

√
2F
)
|wε0 (|y0|)= fε (wε0 (|y0|))

= fε (U ε ((0, z∗) + y0))

Finally, we obtain

0 = cU ε
z + (∂zz +4)U ε − fε (U ε) |(0,z∗)+y0

> 0 + (∂zz +4)wε0 − fε0 (wε0) |y0

= (∂zz +4)wε0 − gε0 (wε0) |y0= 0,

which is a contradiction. Thus, ϕ+ ≡ 1.

Step4. The z → −∞ behavior.

We denote ϕ− (x) as ϕ− (r) where r = |x|.

Let β := ϕ− (∞), we prove β = 0 �rst.

Suppose β 6= 0, then ϕ− (∞) ≤ ϕ− (0) ≤ U (0, 0) = α and f (β) = 0 imply β ∈

23



(α̂, α). Furthermore,

U (x, z) ≥ U (x,−∞) = ϕ− (|x|) ≥ ϕ− (∞) = β ∀ (x, z) ∈ Rn+1.

Let ε0 and R0 be de�ned as Step3 such that wε0 (0) > α and wε0 (R0) = α̂. Since

limz→∞ U (·, z) = ϕ+ (| · |) ≡ 1 locally uniform, we can de�ne

z∗ := min
{
z ∈ R|U ((0, z) + y) ≥ wε0 (|y|) , ∀y ∈ B (R0)

}
.

Note that U (0, z) ≤ U (0, 0) = α < wε0 (0) for all z ≤ 0, thus z∗ > 0. Let y0 ∈ B (R0)

be the point such that

0 = U ((0, z∗) + y0)− wε0 (|y0|) = min
y∈B(R0)

{U ((0, z∗) + y)− wε0 (|y|)} .

Then

wε0 (|y0|) = U ((0, z∗) + y0) ≥ β > α̂ = wε0 (R0) .

Thus, y0 is an interior point of B (R0). Consequently, (∂zz +4)U ((0, z∗) + y0) ≥

(∂zz +4)wε0 (|y0|). And since wε0 (|y0|) > α̂, thus ζ (wε0 (|y0|)) = 0. Hence

gε0 (wε0 (|y0|)) = fε0 (wε0 (|y0|)) =
(
f + ε0

√
2F
)
|wε0 (|y0|)

> f (wε0 (|y0|)) = f (U ((0, z∗) + y0))

Finally, we obtain

0 = cUz + (∂zz +4)U − f (U) |(0,z∗)+y0

> 0 + (∂zz +4)wε0 − fε0 (wε0) |y0

= (∂zz +4)wε0 − gε0 (wε0) |y0= 0,
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which is a contradiction. Thus, ϕ− (∞) = 0.

Next, we prove ϕ− ≡ 0.

ϕ−rr +
n− 1

r
ϕ−r − f

(
ϕ−
)

= 0

⇒ϕ−r
[
ϕ−rr +

n− 1

r
ϕ−r − f

(
ϕ−
)]

= 0

⇒
ˆ ∞

0

{
ϕ−r ϕ

−
rr +

n− 1

r

(
ϕ−r
)2 − f

(
ϕ−
)
ϕ−r

}
dr = 0

⇒
ˆ ∞

0

n− 1

r

(
ϕ−r
)2
dr =

[
1

2

(
ϕ−r
)2 − F

(
ϕ−
)]∣∣∣∣ 0

∞

⇒
ˆ ∞

0

n− 1

r

(
ϕ−r
)2
dr = F

(
ϕ− (∞)

)
− F

(
ϕ− (0)

)
⇒
ˆ ∞

0

n− 1

r

(
ϕ−r
)2
dr = F (0)− F

(
ϕ− (0)

)
≤ 0

⇒ϕ−r = 0

Thus, ϕ− ≡ 0.

Step5. The limit as |x| → ∞.

As ϕ (z) ≤ U (x, z), ϕ (−∞) ≤ U (x,−∞) = ϕ− (x) ≡ 0, hence ϕ (−∞) = 0. Also

ϕz ≥ 0, we only have to show ϕ (∞) = 0.

Suppose not. Let β := ϕ (∞) > 0. We have already known that F is a balanced

potential and ϕ satis�es cϕz + ϕzz = f (ϕ) with c > 0, we multiply both sides by ϕz

and integrate it over z ∈ (−∞,∞). Then we can get

[
1

2
(ϕz)

2 + F (ϕ)

]∣∣∣∣−∞
∞

=

ˆ ∞
−∞

(ϕz)
2 dz

⇒F (ϕ (−∞))− F (ϕ (∞)) > 0

⇒ϕ (∞) 6= 1.

thus β < 1. Furthermore, since f (β) must be zero, β ∈ (α̂, α), i.e. ϕ (∞) ∈ (α̂, α).
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Then there exist z0 such that ϕ (z0) > α̂. We obtain that

U (x, z) ≥ ϕ (z) > α̂ if (x, z) ∈ Rn × [z0,∞) .

Let ε0 and R0 be de�ned as before such that wε0 (0) > α and wε0 (R0) = α̂.

Also, limz→∞ U (x, z) = 1 locally uniformly, there exists z∗ > z0 + R0 such that

U ((0, z∗) + y) > wε0 (|y|) for all |y| ≥ R0. Then we de�ne

R∗ := sup
{
|x| |U ((0, z∗) + y) > wε0 (|y|) , ∀y ∈ B (R0)

}
.

Since β = ϕ (∞) > ϕ (z∗) = lim
|x|→∞

U (x, z∗) and wε0 (0) > α > β, R∗ must be �nite.

Let x0 ∈ Rn and y0 ∈ B (R0) be the points such that

0 = U ((x0, z
∗) + y0)− wε0 (|y0|) = min

y∈B(R0)
{U ((x0, z

∗) + y)− wε0 (|y|)} .

Then wε0 (|y0|) = U ((0, z∗) + y0) > U (0, z0) > α̂ = wε0 (R0) implies y0 is an interior

point of B (R0). A similar argument as before gives a contradiction. Thus, ϕ (∞) = 0.

And the monotonicity of ϕ guarantee ϕ ≡ 0.

We already have shown the existence of U which the boundary conditions are sat-

is�ed. The monotonicity of U can be proved by strong maximum principle. And then

we complete the proof of Theorem 3.1.

3.2.2 Approximation by Energy Minimizers

In this subsection, we use the energy method to prove the existence of a traveling wave

claimed in Theorem 3.1.

Theorem 3.8. Assume (3.1). There exists a cylindrically symmetric solution U to (1.3)

which satis�es the monotonicity (3.2) and the boundary condition (3.13). Furthermore,
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U satis�es the minimum energy principle

J (U (·, z + ·)) = min
W (·,0)=U(·,z)

J (W ) . (3.14)

Proof. We only show the existence, unigueness, monotonicities.

Step1. Construction of a minimizer.

By Lemma 3.6, for each l > 0, there exists a minimizer of the energy E in X (l) which

we denote it by φ (·, l). Now consider another minimization problem

min
W (·,0)=φ(·,l)

J (W ) .

It is easy to show that there exists a minimizer of this problem, and we denote the

minimizer by U l. For each W and negative constant h,

J (W ) =

ˆ 0

−∞

{
1

2
‖Wz‖2 + E (W )

}
ceczdz

=

ˆ h{1

2
‖Wz‖2 + E (W )

}
ceczdz +

ˆ 0

h

{
1

2
‖Wz‖2 + E (W )

}
ceczdz

=

ˆ 0

−∞

{
1

2
‖Wz‖2 + E (W (·, ·+ h))

}
cec(z+h)dz +

ˆ 0

h

{
1

2
‖Wz‖2 + E (W )

}
ceczdz

= echJ (W (·, ·+ h)) +

ˆ 0

h

{
1

2
‖Wz‖2 + E (W )

}
ceczdz,

and J
(
U l (·, ·+ h)

)
= min

W (·,0)=U l(·,h)
J (W ) .

In addition, the Euler-Lagrange equation shows that U l is a solution to the following

boundary condition problem

cU l
z + U l

zz +4U l = f
(
U l
)
on Rn × (−∞, 0) , U l (·, 0) = φ (·, l) .
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Thus, we can do some calaulation

cU l
zU

l
z + U l

zzU
l
z +4U lU l

z = f
(
U l
)
U l
z

⇒
ˆ ∞

0

rn−1
{
cU l

zU
l
z + U l

zzU
l
z +4U lU l

z

}
dr =

ˆ ∞
0

rn−1
{
f
(
U l
)
U l
z

}
dr

⇒c
∥∥U l

z

∥∥2
+

1

2

d

dz

∥∥U l
z

∥∥2
+

ˆ ∞
0

d

dz

−1

2

(
|∇U |2

)
rn−1dr =

ˆ ∞
0

d

dz
F
(
U l
)
rn−1dr

⇒ d

dz
E
(
U l
)

= c
∥∥U l

z

∥∥2
+

1

2

d

dz

∥∥U l
z

∥∥2
,

and

d

dz

(
E
(
U l
)
ecz
)

=
d

dz
E
(
U l
)
ecz + cE

(
U l
)
ecz

= c
∥∥U l

z

∥∥2
ecz +

1

2

d

dz

∥∥U l
z

∥∥2
ecz + cE

(
U l
)
ecz

=
1

2

d

dz

(∥∥U l
z

∥∥2
ecz
)

+
c

2

∥∥U l
z

∥∥2
ecz + cE

(
U l
)
ecz

=
1

2

d

dz

(∥∥U l
z

∥∥2
ecz
)

+ cecz
(

1

2

∥∥U l
z

∥∥2
+ E

(
U l
))

.

Hence, if we integrate over z ∈ (−∞, 0], we obtain

E
(
U l
)
ecz
∣∣0
−∞ =

1

2

(∥∥U l
z

∥∥2
ecz
)∣∣∣∣0
−∞

+ J
(
U l
)

⇒J
(
U l
)

= E
(
U l (·, 0)

)
− 1

2

∥∥U l
z (·, 0)

∥∥2
.

Step2. The Uniquness and the monotonicity of U l.

If we rearrange in the r = |x| direction, we can obtain U l
r ≤ 0.

If we want to show that U l
z ≥ 0, the rearrangement technique does nothing since the

energy functional has ecz. To show the monotonicity in z, we use another method. By

Lemma 3.6, J
(
min

(
φ, U l

))
≤ J

(
U l
)
and the equality holds if and only if min

(
φ, U l

)
=

U l. In addition, U l is an energy minimizer, thus U l ≤ φ for all z ≤ 0. For each ε > 0,
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de�ne

U l,ε := U l (·, · − ε) ,

w1 := min
{
U l, U l,ε

}
,

w2 := max
{
U l, U l,ε

}
.

Then J (w1) + J (w2) = J
(
U l
)

+ J
(
U l,ε
)
. Since w1 (·, 0) = U l,ε (·, 0) and w2 (·, 0) =

U l (·, 0), we have J
(
U l,ε
)
≤ J (w1) and J

(
U l
)
≤ J (w2). Thus, U l,ε = w1 and U l = w2.

It implies that U l (·, 0) ≥ U l,ε (·, 0) = U l (·,−ε). That is, U l
z ≥ 0.

Next, we let ϕ− := lim
z→−∞

U l (·, z). Then

ϕ− (∞) = lim
z→−∞

U l (∞, z) ≤ U l (∞, 0) = ϕ (∞, l) = 0

implies that ϕ− (∞) = 0. Furthermore,

ϕ−rr +
n− 1

r
ϕ−r − f

(
ϕ−
)

= 0

⇒ϕ−r
[
ϕ−rr +

n− 1

r
ϕ−r − f

(
ϕ−
)]

= 0

⇒
ˆ ∞

0

{
ϕ−r ϕ

−
rr +

n− 1

r

(
ϕ−r
)2 − f

(
ϕ−
)
ϕ−r

}
dr = 0

⇒
ˆ ∞

0

n− 1

r

(
ϕ−r
)2
dr =

[
1

2

(
ϕ−r
)2 − F

(
ϕ−
)]∣∣∣∣0
∞

⇒
ˆ ∞

0

n− 1

r

(
ϕ−r
)2
dr = F

(
ϕ− (∞)

)
− F

(
ϕ− (0)

)
⇒
ˆ ∞

0

n− 1

r

(
ϕ−r
)2
dr = F (0)− F

(
ϕ− (0)

)
≤ 0

⇒ϕ−r = 0

Thus, ϕ− ≡ 0. Then the strong maximum principle implies that U l
z > 0.

To show the minimizer U l is unique. Suppose there exists a di�erent minimizer

Ũ l, then both w1 = min
{
U l, Ũ l

}
and w2 := max

{
U l, Ũ l

}
are minimizers. By Hopf
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Lemma, we know that w2z (·, 0) ≥ w1z (·, 0) > 0. Thus

J (w1) = E (l)− 1

2
‖w1z (·, 0)‖2 > E (l)− 1

2
‖w2z (·, 0)‖2 = J (w2)

contradicts with both w1 and w2 are minimizers.

Step3. Construct the approximating sequences of the solution.

For any 0 < l1 < l2, we have φ (·, l1) < φ (·, l2). If we set w1 = min
{
U l1 , U l2

}
and

w2 = max
{
U l1 , U l2

}
, then J (w1) + J (w2) = J

(
U l1
)

+ J
(
U l2
)
.

Note that

w1 (·, 0) = min
{
U l1 (·, 0) , U l2 (·, 0)

}
= min {φ (·, l1) , φ (·, l2)}

= φ (·, l1) = U l1 (·, 0) ,

w2 (·, 0) = U l2 (·, 0) ,

we have

J
(
U l1
)

= min
W (·,0)=φ(·,l1)

J (W ) ≤ J (w1) ,

J
(
U l2
)

= min
W (·,0)=φ(·,l2)

J (W ) ≤ J (w2) .

This implies w1 = U l1 and w2 = U l2 . That is, U l1 < U l2 .

Observe that U l (·, 0) = φ (·, 0), thus U l (0, 0) = φ (0, 0) > α. Also, U l
z > 0 implies

that there exist a unique constant H (l) > 0 such that U l (0,−H (l)) = α. Since we

have U l1 < U l2 for any 0 < l1 < l2, we obtain that H (l) is monotonic increasing in

l > 0. Next, we claim lim
l→∞

H (l) =∞. To prove this, we de�ne

Ec (h) = min
ψ(−h)≤α≤ψ(0)

ˆ 0

−∞

{
1

2
ψ2
z + F (ψ)

}
ceczdz ∀h > 0.
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Note that Ec (·) is continuous and positive on [0,∞). In addition,

E (l) > J
(
U l
)
≥
ˆ l

0

rn−1Ec (H (l)) dr =
rn

n
Ec (H (l)) .

Since E (l) = O (1) rn−1, lim
l→∞

H (l) =∞.

Finally, we set U l,H(l) (x, z) = U l (x, z −H (l)) and consider the family
{
U l,H(l)

}
l>0

.

This family is bounded in C3, so there exists a subsequence of
{
U l,H(l)

}
l>0

converges

to a limit U which is a solution of (1.3). It is cylindrically symmetric and has the

monotonicity Uz ≥ o ≥ Ur. To prove the limit U has the right boundary conditions,

we only to modify the proof in Section 3.2.1 by replacing U ε in Step3 by U l,H(l) and

using the fact that

lim
l→∞

U l,H(l) (·, H (l)) = lim
l→∞

φ (|·| , l) = 1

uniformly in any compact subset of Rn.

3.3 The Behavior of the Interfaces

In this section, we give a rough understanding of the pro�le of the level sets

{U (x, z) = α} = {|x| = R (z)} .

It is well-known that the interface of solutions of (1.1) evolves according the motion

by mean curvature �ow. That is, the velocity of a point in the interface is given by the

mean curvature of the interface. For a traveling wave solution of (1.3), we can shrink the

space by R (ẑ) such that the interface near Rn×{ẑ} is asymptotically a circular cylinder

S (1)×R as ẑ →∞, where S (1) is a sphere in Rn with radius 1 and center origin. Note

that the mean curvature of the interface S (1)×R equals to n−1. Thus, when n > 1, the

interface moves with a normal velocity equals to n− 1. By an appropriate translation
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of coordinates, the motion promoted by mean curvature represents a constant vertical

velocity c motion. It implies the approximation cR′ ∼ n−1
R
, hence the behavior of the

interface asymptotic to cR2

2
≈ (n− 1) z.

However, as n = 1, the e�ect of mean curvature is insigni�cant since the shrinked

interface is asymptotically two lines {±1} × R. In this case, the dynamics have been

discovered and researched thoroughly. Please see [1] for more detals. If initially there

are two interfaces of distance d, the speed that two interfaces approach each other is

Ae−2µd/ε+o(1) where ε = 1/R (ẑ) after an initiation that processes an arbitrary initial

data into a special wave pro�le. Since the time which initiation needed is pretty short

compared with the exponentially slow motion of the interface. If a vertical velocity

c is produced by Ae−2µd/ε+o(1), the behavior of the interface should be asymptotically

determined by cR′ ∼ Ae−2µR which implies the interface asymptotic to a hyperbolic

cosine curve stated in Theorem 3.2.

There is another view point in the two dimension case. We have

cR′′ = −2µAe−2µRR′ = o (1)R′

as z large. Thus we can dismiss the Uzz term in (1.3) since it does negligible e�ect.

Now (1.3) becomes cUz + Uxx = f (U) . If we change the variable by s = z
c
, then we

can obtain Us + Uxx = f (U) for (x, s) ∈ R2. Then from [2], we know there is a unique

entire solution (up to translation) having two interfaces located asymptotically on the

hyperbolice cosine curve stated in Theorem 3.2.

In conclusion, when n > 1, the curvature contributes to the vertical velocity c

motion of the interface; when n = 1, the interaction of the two branches of the interface

drives the principal e�ection of the vertical velocity c motion of the interface.
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Chapter 4

Monostable-Type Traveling Waves

Let v (x) be a stationary solution of (1.1), that is, v(x) is a standing wave solution of

∆v − f (v) = 0 (x ∈ Rn) , v (x) > 0, lim
|x|→∞

v(x) = 0.

It is well-known that there is a one hump solution v (x) for n = 1 or a radially symmetric

solution v (x) = Φ (r) (r = |x|)


Φrr + n−1

r
Φr − f (Φ) = 0, Φ (r) > 0 (0 < r <∞)

Φr (0) = 0, limr→∞Φ(r) = 0

(4.1)

for n ≥ 2. Furthermore, this standing wave is unique up to translation and unstable.

In fact, the linearized eigenvalue problem

∆φ− f ′ (v (x))φ = µφ (x ∈ Rn) (4.2)

has a positive eigenvalue µ and a corresponding eigenfunction φ (x) satisfying

lim
|x|→∞

φ(x) = 0, φ(x) > 0, (x ∈ Rn) .
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We have already known that there are traveling wave solutions of (1.1) for the

monostabe nonlinearity. If we restrict f (u) in [0, a] or [a, 1], then we obtain a monos-

table nonlinearity. Thus, we can assume that there exists traveling wave solutions

connecting u = 1 (at z = −∞) to u = v (x) (at z = ∞) or connecting u = v (x) (at

z = −∞) to u = 0 (at z = ∞). That is, we want to �nd traveling wave solutions

u (x, z, t) = V (x, z − ct) and u (x, z, t) = W (x, z − ct) which satisfying


∆V + Vzz + cVz − f (V ) = 0 (x, z) ∈ Rn+1

limz→−∞ V (x, z) = 1, limz→∞ V (x, z) = v (x) ,

(4.3)

and 
∆W +Wzz + cWz − f (W ) = 0 (x, y) ∈ Rn+1

limz→−∞W (x, z) = v (x) , limz→∞W (x, z) = 0

(4.4)

respectively. Hence we have to show the following theorem.

Theorem 4.1. Let µ+ be a positive eigenvalue of (4.2). Then for each c ≥ κ, there

exists solutions V (x, z − ct) and W (x, z − ct) to (4.3) and (4.4) respectively, satisfying

Vz (x, z) ≤ 0, Wz (x, z) ≤ 0, (x, z) ∈ Rn+1

where

κ := max

{
min

0≤u≤1
f ′ (u) , µ+

}
.

We can treat a more general reaction-di�usion equation than (1.1) and then prove

the existence theorem for this case. Finally, we apply the result to (1.1).
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4.1 The Existence of Nonplanar Traveling Waves

Consider the following equation:

ut = 4u+ uzz + g (x, u) , (4.5)

where g and its derivatives in u up to the second order are continuous and bounded

in {(x, u) : x ∈ Rn, |u| ≤ K} for a large constant K. Asume (4.5) has two stationary

solutions v− and v+, that is,

4v− + g (x, v−(x)) = 0, 4v+ + g (x, v+(x)) = 0. (4.6)

We want to �nd the traveling wave solutions of (4.5) connecting v− (x) at z = −∞ and

v+ (x) at z = +∞. Thus, let u (x, z, t) = U (x, z − ct) and plug it to (4.5):


4U + Uzz + cUz + g (x, U) = 0 (x, z) ∈ Rn+1,

limz→−∞ U (x, z) = v− (x) , limz→+∞ U (x, z) = v+ (x) .

(4.7)

Consider the eigenvalue problems of (4.6), let µ = µ± be the �rst eigenvalues and

φ = φ± be the corresponding eigenfunctions. Namely,


4φ+ gu (x, v±(x))φ = µφ x ∈ Rn,

lim|x|→∞ φ (x) = 0, φ (x) > 0 x ∈ Rn.

(4.8)

And then we divide into the following four situations:
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1. µ+ > 0 and v− (x) ≥ v+ (x) for x ∈ Rn,

2. µ+ > 0 and v− (x) ≤ v+ (x) for x ∈ Rn,

3. µ− > 0 and v− (x) ≥ v+ (x) for x ∈ Rn,

4. µ− > 0 and v− (x) ≤ v+ (x) for x ∈ Rn.

Note that we only consider the case 1 and 2 since case 3 and 4 can be identi�ed with

case 2 and 1 by the change of variables (z, c)→ (−z,−c) in the equation (4.7).

Theorem 4.2. Let v± (x) be stationary solutions of (4.5) with the eigenvalues µ± and

the corresponding eigenfunctions φ± of (4.8).

(i) Suppose that there are no other stationary solutions v (x) sandwiched by v± (x)

as v+ (x) ≤ v (x) ≤ v− (x). In addition, assume v+ (x) + εφ+ (x) ≤ v− (x) for a small

positive constant ε. Then for each c ≥ 2
√
κg , there exists a solution U of (4.7)

satisfying

Uz ≤ 0,

where

κg := max

{
− min

x∈Rn, v+(x)≤u≤v−(x)
gu (x, u) , µ+

}
.

(ii) Suppose that there are no other stationary solutions v (x) sandwiched by v± (x)

as v− (x) ≤ v (x) ≤ v+ (x). In addition, assume v− (x) + εφ− (x) ≤ v+ (x) for a small

positive constant ε. Then for each c ≥ 2
√
κg , there exists a solution V of (4.7)

satisfying

Vz ≥ 0,

where

κg := max

{
− min

x∈Rn, v−(x)≤u≤v+(x)
gu (x, u) , µ+

}
.

We will prove the theorem above by the comparison principle with an appropriate

supersolution and a subsolution. We consider the case 1. at �rst.
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4.1.1 A Subsolution and a Supersolution

Let w (z) be a solution of


wzz + cwz + µ+w − w2 = 0, w (z) > 0, wz (z) < 0 z ∈ R

limz→−∞w (z) = µ+, limz→+∞w (z) = 0

(4.9)

where c ≥ 2
√
µ+. It is known that for each c ≥ 2

√
µ+ , w (z) is unique up to translation.

Let

W (z) := σw (z) .

And then we normalize φ± of (4.8) such that

max
x∈Rn

φ± (x) = 1.

De�ne

F (U) := −4U − Uzz − cUz − g (x, U)

and

U (x, z) := v+ (x) + φ+ (x)W (z) .

And then we compute

F [U ] = −4 (v+ + φ+W )− (v+ + φ+W )zz − c (v+ + φ+W )z − g (x, v+ + φ+W )

= −4v+ −4φ+W − φ+Wzz − cφ+Wz − g (x, v+ + φ+W )

= g (x, v+)− (µ+φ+ − gu (x, v+)φ+)W − φ+Wzz − cφ+Wz − g (x, v+ + φ+W )

= −φ+ (Wzz + cWz + µ+W ) + g (x, v+)− g (x, v+ + φ+W ) + gu (x, v+)φ+W

≤ −φ+ (Wzz + cWz + µ+W ) +Mgφ
2
+W

2
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where

Mg := min
x∈Rn, v+(x)≤u≤v−(x)

guu (x, u) .

Furthermore, since W = σw, we have

F [U ] ≤ −φ+σ
{
wzz + cwz + µ+w − σMgw

2
}
.

= −φ+σw
2 {1− σMg}

Thus , if we let σ ≤ 1/Mg, then F [U ] ≤ 0. That is, U (x, z) = v+ (x) + φ+ (x)W (z) is

a subsolution of (4.7).

Next, we want to look for an appropriate supersolution.

De�ne

g̃δ (x, u) := g (x, u) + δ

for a small positive constant δ and consider

4v + g̃δ (x, v) = 0. (4.10)

This equation is an approximate equation of (4.6). With the assumption that µ+ 6= 0,

we know that there exists a solution v = ṽδ+ (x) to (4.10) such that

lim
δ→0

ṽδ+ (x) = v+ (x) .

Note that

−4
(
v+ +

δ

κg

)
− g̃δ

(
v+ +

δ

κg

)
=g (x, v+)− g

(
v+ +

δ

κg

)
− δ

≤−
(

min
x∈Rn, v+(x)≤u≤v+(x)+δ/κg

gu (x, u) + κg

)
δ

κg
.
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Thus, if we let κg + min gu (x, u) ≥ 0, then v+ (x) + δ/κg is a subsolution of (4.10).

Hence, we can obtain that

0 < v+ (x) +
δ

κg
≤ ṽδ+ (x) x ∈ Rn.

Let Q (z) is a solution of Qzz + cQz + κgQ (z) = 0. So

Q (z) = α exp (λz) , λ := −
c−

√
c2 − 4κg

2
, α > 0.

De�ne

U+ (x, z) := ṽδ+ (x) +Q (z) .

Then we can compute

F
[
U+
]

= −4
(
ṽδ+ +Q

)
−
(
ṽδ+ +Q

)
zz
− c

(
ṽδ+ +Q

)
z
− g

(
x, ṽδ+ +Q

)
= −4ṽδ+ −Qzz − cQz − g

(
x, ṽδ+ +Q

)
= g̃δ

(
x, ṽδ+

)
+ κgQ− g

(
x, ṽδ+ +Q

)
= κgQ+ g

(
x, ṽδ+

)
− g

(
x, ṽδ+ +Q

)
+ δ

=
[
κg − gu

(
x, ṽδ+ + θQ

)]
Q+ δ

≥ δ > 0

where θ ∈ (0, 1). Hence

U (x, z) := min
(x,z)∈Rn×R

{
ṽδ+ (x) +Q (z) , v− (x)

}
is a supersolution of (4.7).
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4.1.2 Proof of Theorem 4.2. (i)

We compare U and U .

Consider U = ṽδ+ (x) +Q (z). Then

U (x, z)− U (x, z) =
{
ṽδ+ (x) +Q (z)

}
− {v+ (x) + φ+ (x)W (z)}

≥ ṽδ+ (x)− v+ (x)− φ+ (x)W (z)

≥ ṽδ+ (x)− v+ (x)−W (z)

= ṽδ+ (x)− v+ (x)− σw (z)

≥ δ

κg
− σµ+.

Thus, given any δ > 0, if we let σ ≤ δ/ (κgµ+), then

U (x, z) ≤ U (x, z) . (4.11)

On the other hand, when U = v− (x) , we can compute

U (x, z)− U (x, z) = v− (x)− {v+ (x) + φ+ (x)W (z)}

≥ v+ (x) + εφ+ − v+ (x)− φ+W (z)

= φ+ (ε−W (z))

= φ+ (ε− σw)

≥ φ+ (ε− σµ+) .

Thus, if we take σ ≤ ε/µ+, then we also can obtain (4.11). Finally, we only restrict

0 < σ ≤ min {δ/ (κgµ+) , ε/µ+}.

De�ne an operator

L [u] := −4u− uzz − cuz + γu
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where γ is a positive constant satisfying

γ > max

{
c2

4
,− min

x∈Rn, v−(x)≤u≤v+(x)
gu (x, u)

}

and a sequence {un (x)}n=0,1,2,··· is given by

L [un] = g (x, un−1) + γun−1

u0 = U.

This sequence has the following property:

Lemma 4.3. The sequence {un} satis�es

u0 < u1 < · · · < un < un+1 < · · · < U,

∂un
∂z

< 0 (n = 0, 1, 2, · · · ) .

Proof. We prove the former part of lemma �rst.

L [u1 − u0] = L [u1]− L [u0]

= g (x, u0) + γu0 − {−4u0 − u0zz − cu0z + γu0}

= 4U + U zz + cU z + g (x, U) ≥ 0,

L [un+1 − un] = L [un+1]− L [un]

= {g (x, un) + γun} − {g (x, un−1) + γun−1}

= {gu (x, θun + (1− θ)un−1) + γ} (un+1 − un)

for some θ ∈ (0, 1). Apply the strong maximum principle, we obtain the former part.
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To prove the latter part, since

(u0)z = (v+ (x) + φ+ (x)W (z))z

= φ+ (x)W ′ (z) < 0

L [(un+1)z] = L [un+1]z

= (gu (x, un) + γ) (un)z ,

we can use the inductive argument to the above equation with the inequality as n =

0.

With (4.11) and Lemma 4.3, we can deduce that un converges as n → ∞. We

denote that

U (x, z) := lim
n→∞

un (x, z)

which satifying

un (x, z) ≤ U (x, z) ≤ U (x, z) .

By the Schauder estimate we can deduce that U (x, z) is smooth and satis�es

4U + Uzz + cUz + g (x, U) = 0. (4.12)

Hence U (x, z) is a solution and the monotonicity of U (x, z) in z follows from Lemma

4.3.

Finally, we want to check the boundary condition of (4.7).

For any δ > 0, we take σ small enough that satis�es 0 < σ ≤ min {δ/ (κgµ+) , ε/µ+},

such that

U (x, z) ≤ U (x, z) ≤ U (x, z) .
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Then we can obtain that

φ+ (x)W (z) ≤ U (x, z)− v+ (x) ≤ ṽδ+ (x) +Q (z)− v+ (x)

for any z. Hence

0 ≤ lim sup
z→∞

{U (x, z)− v+ (x)} = O (δ) .

Since U is independent of δ, we can take δ arbitrarily small. Hence

lim sup
z→∞, x∈Rn

{U (x, z)− v+ (x)} = 0,

i.e.

lim
z→+∞

U (x, z) = v+ (x) .

Next we prove the behavior of U as z → −∞. Since U has the monotonicity in z,

there exists a function ϕ (x) such that

ϕ (x) := lim
z→−∞

U (x, z) .

Because v+ (x) < U (x, z) ≤ U (x, z) ≤ U (x, z) ≤ v− (z) and Uz ≤ 0, we have

lim
z→−∞

Uz (x, z) = 0.

Note that U is bounded in C3 (Rn+1). It follows from the above facts and the Schauder

estimate that

lim
z→−∞

Uzz (x, z) = 0.

Hence if we take z → −∞ in (4.12),we have

4ϕ+ g (x, ϕ) = 0.
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Observe that

v+ (x) < U (x, 0) ≤ ϕ (x) ≤ v− (x) .

Thus ϕ must be v− (x), otherwise ϕ will be a stationary solution sandwiched by v± (x)

which contradicts the assumption of Theorem 4.2. Hence, we obtain

lim
z→−∞

U (x, z) = v− (x) .

4.1.3 Proof of Theorem 4.2. (ii)

De�ne

V (x, z) := v+ (x)− φ+ (x)W (z) .

And then we compute

F
[
V
]

= −4 (v+ − φ+W )− (v+ − φ+W )zz − c (v+ − φ+W )z − g (x, v+ − φ+W )

= −4v+ +4φ+W −+φWzz + cφ+Wz − g (x, v+ − φ+W )

= g (x, v+) + (µ+φ+ − gu (x, v+)φ+)W + φ+Wzz + cφ+Wz − g (x, v+ − φ+W )

= φ+ (Wzz + cWz + µ+W ) + g (x, v+)− g (x, v+ − φ+W )− gu (x, v+)φ+W

≥ φ+ (Wzz + cWz + µ+W )−Ngφ
2
+W

2

≥ φ+σ
{
wzz + cwz + µ+w − σNgw

2
}

= φ+σw
2 {1− σNg}

where

Ng := min
x∈Rn, v−(x)≤u≤v+(x)

guu (x, u) .

Thus , if we let σ ≤ 1/Ng, then V (x, z) := v+ (x) − φ+ (x)W (z) is a supersolution.

De�ne

ĝδ (x, u) := g (x, u)− δ
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for a small positive constant δ and consider

4v + ĝδ (x, v) = 0.

We know there exists a solution v = v̂δ+ (x) and

lim
δ→0

v̂δ+ (x) = v+ (x) .

Note that

−4
(
v+ −

δ

κg

)
− ĝδ

(
v+ −

δ

κg

)
=g (x, v+)− g

(
v+ −

δ

κg

)
+ δ

=

(
gu

(
x, v+ − ϑ

δ

κg

)
+ κg

)
δ

κg
≥ 0

Hence, we can obtain that

v̂δ+ (x) < v+ (x)− δ

κg
x ∈ Rn.

De�ne

V + (x, z) := v̂δ+ (x)−Q (z) .

Then we can compute

F
[
V +
]

= −4
(
v̂δ+ −Q

)
−
(
v̂δ+ −Q

)
zz
− c

(
v̂δ+ −Q

)
z
− g

(
x, v̂δ+ −Q

)
= −4v̂δ+ +Qzz + cQz − g

(
x, v̂δ+ −Q

)
= ĝδ

(
x, v̂δ+

)
− κgQ− g

(
x, v̂δ+ −Q

)
= −κgQ+ g

(
x, v̂δ+

)
− g

(
x, v̂δ+ −Q

)
− δ

= −
[
κg − gu

(
x, v̂δ+ − θQ

)]
Q− δ ≤ −δ < 0.
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Thus we de�ne the subsolution

V (x, z) := max
{
v̂δ+ (x)−Q (z) , v− (x)

}
.

Let {vn (x)}n=0,1,2,··· be a sequence given by

L [vn] = g (x, vn−1) + γvn−1

v0 = U

and let

V (x, z) := lim
n→∞

vn (x, z) .

Then V (x, z) is the solution of (4.7). The proof of boundary conditions is similar as

before, thus we omit it.

4.2 Proof of Theorem 4.1

Recall that there exists a radially symmetric standing wave solution v (x) = ψ (|x|)

and it is unique up to translation. Consider the linearized eigenvalue problem of (4.2).

Since ψ is a smooth function, thus

(
∂ψ

∂xj

)
rr

+
r − 1

n

(
∂ψ

∂xj

)
r

− f ′ (ψ)
∂ψ

∂xj
=
∂
(
ψrr + r−1

n
ψr − f (ψ)

)
∂xj

= 0.

It implies (4.2) has zero eigenvalue and corresponding eigenvectors ∂ψ/∂xj (j = 1, · · · , n).

On the other hand, we know that (4.2) has a positive eigenvalue µ and a corresponding

eigenfunction φ (x) = φ̃ (|x|).
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Furthermore, since v (x)→ 0 as |x| → ∞,

ψrr +
n− 1

r
ψr − f ′ (0)ψ = 0

φ̃rr +
n− 1

r
φ̃r − (f ′ (0) + µ) φ̃ = 0

as r →∞, we notice that

lim
r→∞

φ̃ (r)

ψ (r)
= 0.

Thus, φ̃ is identical to v (|x|) by translation.

Finally, we use Theorem 4.2 to complete the proof.

For (4.3), let

µ− = 0, v− (x) = 1,

µ+ = µ, v+ (x) = v (x) .

Then it conferm to the case 1.

And for (4.4), let

µ− = µ, v− (x) = v (x) ,

µ+ = 0, v+ (x) = 0.

Then it conferm to the case 3. If we take g (x, u) in Theorem 4.2 as −f (x) in Theorem

4.1, then all the condition in Theorem 4.1 will be met in Theorem 4.2. Hence, we

accomplish the proof.
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Future work

First, we don't know the uniqueness of the traveling wave of (1.3) with condition (3.1)

and (3.2) in Theorem 3.1. and (4.3), (4.4) for each c ≥ 2
√
κ in Theorem 4.1, which

would be a future work. Second, the condition c ≥ 2
√
κ in Theorem 4.1 is a technical

condition in our argument. It is an interesting problem to determine the minimum

speed of the traveling waves.
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