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Abstract iii

Abstract

First of all, we present an approach alternative to the hybridization model for the
treatment of the coupled interfacial plasmon modes in metallic nanoshells. Rather than
formulating the problem form the Lagrangian dynamics of the free electronic fluid, we
adopt an effective medium approach together with the uniqueness of the solutions to
electromagnetic boundary value problem; from:which the polarizability of the shells can
then be systematically and efficiently-derived;. and “the resonance frequencies for the

coupled modes can be obtained from theypoles in'the polarizability.

e
2

Secondly, by using this effective med-igfﬁ theory we study the modified dipole-dipole
interaction between the molecules.in the vicinity|of a spheroidal metallic nanoshell. From
which huge enhancement of ‘the energy transfer rate is obtained due to the resonant
excitation of the bounding and anti-bounding plasmonic modes of the nanoshell.

Finally, we study the optical properties of a metallic nanoshell composite with
particular focus on the effects of variation in temperature and particle clustering on these
properties. One unique result from our modeling is the persistent manifestation of the
single-particle resonances of the individual nanoshells which cannot be found in a

composite of solid particles.
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Introduction 1

Chapter 1 Introduction

Plasmonics is a new branch of optical science focusing on the collective motion for
the free electrons in metallic system [1-3]. Among the many plasmonic systems, metallic
nanoparticles play a significant role [4-5]. Because of their high tunibility in the surface
plasmon resonance, these resonances depend largely on the geometry and the material
response of the nanoparticles.

In the past few years, a very-useful nanopérticle in-the form of a spheroidal nanoshell

was fabricated [6]. The plasmonic properties of this particle are largely dependent on the

=
B

.

thickness of the shell, the aspect ratio "b?the innersand outer radii, and the material
response of the core and shell:

Recently, a theoretical model.known as “hybridization model” has been introduced to
study such a system of spheroidal nanoshell [7-8]. In this hybridization model, the
surface charges on both inner and outer interfaces are treated as a free fluid. The whole
system is formulated by Lagrangian dynamics. The interaction of these surface charges is
accounted for Coulomb potential, thus the results obtain from hybridization model are
limited to the electrostatic description [9].

It is well-known as the particle is very small, usually smaller than 1% of the incident

wavelength, the electrostatic model can be used as a good approximation[3, 10]. However,
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for larger particles, the dynamic effects cannot be neglected [5]. This is because the
retardation effects will become more and more important as the particle size increases
[11-13]. Thus, it is needed to find a new approach which allows us to introduce some of
the dynamic effects into these nanoparticle systems. This is one of the main purposes of
this thesis.

Our new approach is based on a generalization of the self-consistent effective
medium model previously published by Li,»Sun, and Chan (LSC) [14]. The main
advantage of this new approach-is_that it aIIrows us-to describe a shell particle as an
effective solid particle. Hence, one ¢an simply apply the well known results established in

=
the literature for the solid particle to the de§cription of.the case of the nanoshell.

We introduce this LSC.model in chap:[er 2, and then apply the so-called modified
long-wavelength approximation (MLWA) in LSC model to obtain some of the dynamic
effects for the larger nanoshell in chapter 3. In chapter 4, we use the LSC model to study
some of the near-field effects focusing on the Forster resonance energy transfer (FRET)
between two dipoles in the vicinity of a spheroidal nanoshell. In chapter 5, we study the

optical properties of metallic nanoshell composites. Finally, we give a brief summary in

the last chapter.
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Chapter 2 Polarizability

2.1 Polarizability for a spherical particle

Let us briefly review the definition of polarizability. For a spherical particle with
radius a and dielectric function & embedded in a homogeneous, isotropic and

non-absorbing medium with dielectric function ¢, , the electrostatic potential inside and

outside the particle can be expressed by

© 4

Vou (GO @)= D > [ALr ¥ B 116, 0)

(=0 m=x(

L 2.1)
W, (T 0i9) = D] S2CFY1(6.9)

£=0 m=—(%

Where the coefficient A, . indicates the—applied field- with multipole order (¢, m)
outside the particle, and B, indicates the ‘corresponding response field due to the
induced charge distribution inside the particle. According to the boundary conditions of
the electrostatic theory the tangential components of the electric field and the normal

components of the displacement field continued at r=a, which are

v, (a,0,0)=v,.(a,0,0)

_va(r.0,9) (22)

or

_ . Wu(r0.9)
o or

r=a

r=a

Applying the orthogonal condition of Y,",

[Y @01 0.0)] dQ, 2.3)
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the relation between A,, and B, can be obtained:

m — _M 2HlA[m (24)
le+({+))¢

This equation indicates the relation between the applied field and the response field. Thus,

define the polarizability of the solid sphere as

a, = Maﬂﬁ (2.5)
5o le+((+)e

2.2 Prolate spheroidal coordinates

Now let us consider a more.general case: the polarizability for a spheroidal particle.
Spheroid is a geometrical object made by:@_ating an ellipse with its major or minor axes.
7
If the rotating axis is major axis, it called prolate spheroid. If the rotating axis is minor
axis, it called oblate spheroid, see-Figure2.1."Since the mathematical treatments of these
two types of spheroid are quite similar,"we onlyfocus on the prolate case.

For a prolate with its two foci locate at (0,0,f) and (0,0,—f) in Cartesian

coordinates, see Figure 2.1, can be described by the formula

2 2 2
LA A (2.6)

o]
o]
(=3

where a is the semi-minor radius and b is the semi-major radius of the ellipse.
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(a) (b)

Figure 2.1 Two types of spheroid: (a) oblate and-(b) prolate spheroid. f isthe focal lengh.

In this prolate spheroid system, jit\is.more, convenient to use the prolate spheroidal
coordinates: &, n and ¢ [15-16_3.:F0r'lj, point! (X,¥,z)-.in Cartesian coordinates can

be transformed into a prolate 'sbherdidal coordinalte's,__ (&.0,9) via:

Pt P, 7 pl_pzr y
=472 =12y =arctan| = |. 2.7
g X n of @ (Xj (2.7)
Where
pl:\/x2+y2+(z+f)2, ,02:\/x2+y2+(z—f)2 (2.8)

are the distances measured between the point (X,y,z) and the two foci. The value

ranges of these three coordinates are 1<& <o, 1<p<-1,and 0<¢@<2x. The inverse

transformation is
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= f{(&* -1)L-n") cosg,
(& -D(A-7")sing, (2.9)
z="1¢&n.

The Laplace operator in a prolate coordinates is:

j 0 0
0X oxi

eHies
oxl | ox' o&"

S oLk os" o Y o’
ok ox 05"0¢" _yoxiont 0g"
_; (o i o 52 772 Pe
f2(&* - ){ §(§ )55 on % )577 (& -na- 77)5€0}

The Laplace equation, V=0, is Separable in this prolate spheroidal coordinate system.

| —

V2

(2.10)

e

We set the general solution of the Laplabg .qu]étion as:
a9 =RESMP@) (2.12)
where R(¢&) is called radius function and S(#) _is called angular function. Substitute

into Laplace equation, and then divide by w , we have

1 0 {(5 )GR(S)} 1 {a (1_772)65(77)} g-n' 1 F(p) _
R() 8¢ o& | S| on on | (& -D-n") P(p) 09’

(2.12)
Since ¢ and ¢+ 27 represent the same point in the space, it is naturally to require the
constraint:

D(p+27) = D(p) (2.13)

In general, we can set



2.2 Prolate spheroidal coordinates 7

D(p)=€™, m=0,21+2, (2.14)

Substitute Eq. (2.14) into Eq. (2.12), and rearrange the equation as

1 [a(,, . RE) m 1[0 2~ 3S(p))  m?
S B Y “la- -0
R(é)[af(@ aFr ]%Z—l}sm)[an(( ") J+1—n2}

(2.15)

The first part depends only on &, whereas the remainder depends only on 7 ;

accordingly, each must be a constant. Now let the separation constant in the form

(({+1), and then separate Eq.1 (2.15)+into the following two equations:

O g, fOREE) m’ _
85[(«: 1) o J+[f(€+l) 1_§2JR(§) 0 (2.16)
2 T it )
%((n _1)6—77_]+E_W+1) P ZJS(U)—O (2.17)

Note that Egs. (2.16) and (2.-1%) ar.e the associated Legendre differential equations. Thus,
the general solutions of R(&) and S(#) can be expressed by the linear combination of
the first and second kind associated Legendre functions, P™ and Q.

For the angular function, S(7), however, Q;(77) are not convergent solutions of
Eq. (2.17) since Q;"(17) > as n —1.Thus, P"(y) are the only possible solutions of
S(77), and it can be expressed as:

1
2'0

(1_772)m/2 (dij (772 _1)(
n

R"(m) =
(2.18)

m (L —=m)!
(+m)!

P"(1)=() P ()
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for m>0.

For the radial function, R(&), both P™(&) and Q'(&) are the possible solutions,

which are defined as:

P"(£) = (=)

W=D (AT,
01 (Ej & -1, (2.19)

oo m E=D™(d Y[ d £+1
ve-0 {(dfﬂ =]

(2.20)
o Sty
and Y
P PR TR (221)
SJCE Eﬁ m;,Q[ &) i (222)
for m>0.

Along the positive real axis, the“asymptotic properties of the associated Legendre

function are [15, 17-18]:

m (26_1)”—m (
GRS
(e for &£ > . (2.23)
m +M)>
Q> i

Thus, we can define the normalized function [15]:
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m _m (f_m)l
XA =1 (20-1)!

f'P" (&)
(2.24)

Z?@J):%Qﬁﬁffbma

Then the asymptotic properties of X" and Z[" are

XP(E 1) > (1) ~r'
2 D> (fy -

for £ > . (2.25)

where

rz\/x2+y2+22:f\/§2+n2—1—>f§, for & > 0. (2.26)

2.3 Polarizability of a prolate spheroidal particle

i

-
i

Consider a prolate spheroidal partiéle embedded “in .an uniform medium. The
dielectric functions of the particle and the host medium are denoted by ¢ and &,,
respectively. The electrostatic potential ‘both ‘inside and outside the spheroid can be

expressed as:

Vi (E.10,0) = Y X [(E, F)Y," (cos™ 7, 9)

Vou (§:11,0) = ;[a[mz?’ (&, F)+0,, X[ (&, IV (cos ' 17, 0) @20

Applying the boundary conditions at the interface &=¢&,,
Vin (&1, 0) =W o (&1, 90) (2.28)
g Wnleme)  _ Wulone) (2.29)

1 2
Gé: §=a 6§ $=6
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These two equations represent the continuity of the tangential component of the electric

fields and the normal component of the electric displacements. Follow these boundary

conditions, the relation between a,, and b,, can be obtained:

azre e zZEn|

a,, =—(&—-g)| ¢ 2.30
(m (2 1) Zaxén(é,f)/@é‘éﬁé 1X£n(§l’f) (m ( )

Therefore, the polarizability of the order (¢,m) in this case is defined as:
a,, =f2C, h-% (2.31)

glA(m (2.::1) —& B(m (51) ’

where
~ Q&) Q7 (O _an (L—m)I(L+m)!
A'm(g)_P["‘(é‘)’ B"’"‘("g)_[P;“(g)]" Cp ,' Qc-pnEe+nn’ (2:32)

i

2.4 The polarizability of a cqre-shéil particle

The polarizability of a solid. sphere “and-'spheroid are described in the previous
sections. Now let us consider another situation: a core-shell particle embedded in a
medium. In principle the electrostatic potential of the core-shell particle can also be
solved by using the similarly method as shown in the previous sections. However, the
problem now becomes more complicated since there are two interfaces in the core-shell
case. In order to avoid this complicity for solving the boundary value problem we
introduce an alternative approach which allows us to replace a single core-shell particle

by an equivalent homogeneous particle. This idea comes from Li, Sun, and Chan [14],
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hence we named this model by “LSC model.”

(b)

particle. Figure 2.2 (a) shows- a sﬁhﬁopal Qore—]-;t.ig{ Ilpartlcle embedded in a host medium
with a dielectric function &, . The dielectric function of the core and the shell are denoted
by ¢ and e,, respectively. Our goal is to construct, for each multipole order (¢,m), an
equivalent solid spheroidal particle with an “effective dielectric function &, ” and a

surface morphology identical to that of the outer surface of the original shell, Figure 2.2

(b), such that its polarizability «,, is identical to that of the shell. The key features of

the LSC model consist of the following three steps:
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1)

@)

Polarizability

Assuming such an “effective spheroidal particle” is found, then we consider the

situation when it is hypothetically placed in a medium with a dielectric function ¢,,
which is identical to that of the material of the shell, Figure 2.2 (c). For such a case,
one can obtain the following expression for the static polarizability of the spheroidal

particle form standard solution of the boundary value problem, see Eq. (2.31):

af = f2C b — % (2.33)

" " &5 An(E) — 6B (&)

where &, and f are the sphereidal coordinate indicates the outer surface of the

core-shell particle and the.foci.

Next, we go back to the original Sphergidal shell\and consider the case when it is

=
B

.

also placed in a medium of dielectrif;:?zjnction &4, Figure 2.2 (d), rather than in the
host medium ¢, . In:such-a.case, it is—obvious that:the system will simply respond
just like a “bare particle” with-boundary’ ¢ =& and dielectric function &,. In a
similar way as in (1), we then obtain the polarizability of the shell in this case as

follows:

& —&

™ & AR (&)~ ,B, (&)

a), = f2C (2.34)
Now if the “effective particle” really represents the original shell, then Egs. (2.33)
and (2.34) must give us identical results when each of them is placed in the same

medium of dielectric function &, . Here by setting o =a.,, we can solve for

and obtain the following result:
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& —¢ &AL (&) = B (8)] - £:[B,, (§) — B (S5)] ' (2.35)
" ’ gl[A(m (§1) - A(m (52 )] - gz[B(m (51) - A(m (C_:gz)]

Note that although Eq. (2.35) is only a necessary condition that the dielectric
function & of the effective particle must fulfill, the uniqueness in the boundary
value problem solutions also guarantees it to be a sufficient condition. Hence, Eq.
(2.35) implies that one the dielectric and geometric parameters of the original
spheroidal shell are given, the effective & can be uniquely determined.

(3) With the original spheroidal shell-now replaced by a solid particle with an effective
&,, in the same host medium (dielectricr bonstant &,), the multipole polarizability

of the original shell can'then be obtained/in the following form [cf. Eq. (2.33) or Eqg.

i

(2.34)] =
a. = faH £ G A
" " &rAn(S,) <8B4 (S)
— f 2(+1C (52 B gh)[&‘lA{m (‘fl) —& ch (51)] L (51 B gz)[gz B(m (52) —&h Afm (52)]

" [ AR(&) ~ B (AR (&) = 8,1 (6)]~ An(£)Bim (&) — £)(e, — &)

(2.36)

Drude resonance

If one adopts the ideal Drude model for the metallic shell: &,(w)=¢, — @}/ @,

then the resonance frequency of order (¢,m) can be obtained from the poles of Eq. (2.36)

in the following form:

wf =—2p (2.37)
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with
— “gi‘ ~“Panlin (2.38)
where
Pm = Acm (52)[Btm (‘);:1) - B(m (52)] ) (2-39)
Ui = EAR(E)[Bim (£2) = A (E)1+ €,B1 ()AL (S,) — B (8], (2.40)
and

N €163 Bian (&) [ A (&) = A (5] (2.41)

Figure 2.3 shows the coupled resonance frequency with two different modes, m=0 and

m=1. =
—
N
5 — 5
>
(&)
c
()
]
o
o
LL
Q
(&)
c
IS
c
o
(%]
]
04
0 1 1 O 1 1
0.00 0.22 0.44 0.66 0.00 0.22 0.44 0.66
Inner Aspect Ratio Inner Aspect Ratio

Figure 2.3 Coupled resonance modes, m=0 and m=1, of a confocal prolate metallic nanoshell as a

function of the aspect ratio of the core.
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2.5 Dipolar and spherical limits

The dipolar response can be obtained by set (=1 in the previous formula. For

prolate spheroidal shells, we have the following results,

a. = f_3 (& —&)ER" —&G") - (6 - &)(,6; —&F")
im — m m m m mem
3 (&R"-&,G")(&F" -¢,G)) — (g -¢,)(& —&)F'G,

(2.42)

where

oo L) L L(g)1

= - , = > : j=lor?2, m=0,+1. (2.43)
éj(gj _1) gj(éj _1)

Here (L,,L,L ;) or equivalently (Lt I7)7 are.the. static geometrical factors, which

1 yl

are defined as

i

Lo(f)=Lz(:)zei_—l)Eln(é—jj—l] 2.4
(&> LRy <50 (2.45)

Note that these factors can also be expressed in‘a simple form in terms of the eccentricity

of the spheroids [11]. Note that the Cartesian components can be obtained from the
following relations:

a, =4re.a,, a,=a,=4rea, . (2.46)

In the limit of a spherical shell, we consider the parameters & =r/a, & =r,/a

(with r, <r,) and then take the limit a—0 (hence & — ). Since for x — o0, we

have
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(1 +m)!

m @c-pn._ .-, m —1
P™(x) ~ 17X, X)x ———X 2.47
e (¢—m)! ) 21+ (247)
we obtain for both the oblate and prolate spheroidal case:
o0 (+1 201
An(@)*Cims ™" Bn(§)x=—=Cin (2.48)

Substitute Eq. (2.48) into Eq. (2.36) yields the following well-known result for a spherical

shell [19]:

_ g, —&)le, + (L +D e, ]2 + (g, — &)[(L+D)e, + Le I, ™

2.49
M e +(C+D)e ][ le, + (C+D)e IR + L0+ 1) (g, — £,) (8, — 5, )2 (249)

which is independent of m.

2.6 Multi-layered spheroidal “nanomatryushka”

.o
|

¥

1 | I
For a multi-layered system of confocal-spheroidal naneshells, the LSC model can be
applied to two of the shell surfaces at atime startingwith the innermost two surfaces. For
a system of n-layered shell, the following recurrence relation can be established by

generalizing the result in Eq. (2.36):

(20 =) (&t A =&, S Bt )= (6077 =20 S ) (Bl — 60 A

Q" = §249C
(m (m n n n-1 pAn-1 n-1 pn-1 n pn n-1 n-1
(‘gnAtm _ghB(m)(gh im m —€n é,(m B(m )_Ame(m (gh Nim —&n é,(m )(gn _gh)

(2.50)

where we define

A;m = Afm (5n)1 B[nm = B[m (gn)

20+1 n _ pn n
a ) gtm_Btmalm_C

(2.51)

n _ AN n 2041
Nim = A(m o7 _Clm ma
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and the result in Eq. (2.36) is now the value for o . Here &, is the n-th boundary of this

multi-layered system.
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Chapter 3 Dynamic Effects

3.1 Mie theory

In 1908 G. Mie presented a theory describing the scattering and absorption spectra of
the spherical particle. It is known as the only exact solution to Maxwell’s equations in the
problem relative to the particle. Here we briefly review G. Mie’s solution which is
consider the spherical particle embedded in a uniform medium [10, 20-21]. For a
time-harmonic electromagnetic field:

E=Ep[ ragatiqHe ™) (3.1)

¥

propagating in a linear, isotropic, hamogeneous medium-have to satisfy the Maxwell’s

equations:

V-E=0, VxE=1wuH

(3.2)
V-H=0, VxH=-weE
These four equations may be reduced to the two wave equations:
V’E+Kk’E=0
(3.3)
V’H+k’H=0

where k*=w’su.
Now consider a vector function M=V x(cy), where ¢ is a constant vector and

w is a scalar function. By this definition of M it is easy to obtain the following
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relations:
V-M=0 (3.4)
VM +k*M =V><[C(V21//+k21//)] (3.5)
Therefore, M satisfies the wave equation if y is also a solution of the wave function:
Vi +k’w =0 (3.6)
Now define another vector N:
N=k™"VxM (3.7)

Thus, we have

V-M=0, V¥xM=kN
| g (3.8)
VN =0;_VixN=kM
VM +k3M =0, VEN +K2N=0 (3.9)
This means the properties of (IM;N)~are similarly. to the electric and magnetic fields
(E,H), compare Egs. (3.2) and (3.8). Thus, the problem is reduced to solve (M,N),

which only need to find the solution of the scalar wave equation Eq. (3.6). The scalar
function y is called a generating function for the vector field M and N; and ¢ is
called the guiding or pilot vector.
In this problem, we take
M =Vx(ry) (3.10)

Thus, M is everywhere tangential to any sphere, i.e., r-M=0.
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The scalar wave equation in spherical coordinates is

2
%E(rza—l//}r 1 9 (smﬁaWJ 1 oy +k2y
reor or r’siné 00 06 ) r?sin 9840

The solutions are

Womn = COSM@P," (C0s )z, (Kr)

Wom = SINM@P" (cos )z, (kr)

21

=0 (3.11)

(3.12)

where the subscript e and o indicates the even or odd solution, respectively. z, is

any one of the four spherical Bessel functions j,, y,, h®, or h®. The vector fields

M and N are
Memn :Vx(rl//emn)’ Momn :Vx(rl/lomn)
2 (3.13)
N mn = k_lvx Memn'_ N mn T k_lvx Momn
The explicit form may be written: P_.;
" 60sd
emn=Wsm My PP (c050)z, ()0 - cosmw% 2,(p)p (3.14)
o = = COSTIO P (0080)2, ()0 ssinip 220 () (315
Naw =2 n(n+ Dosm B (cos ) +cosmp T EEO " [ ()16
(3.16)
. P"(cosd) 1 d .
—msin mqoM——[pZn (P)lo
sind  pdp
N, = (’O)n(n+1)smm(pP (cos)F +sinmep Wl d —[pz,(p)10
(3.17)
P"(cosd) 1 d
+mcosm¢¥ [pZ (P
siné pd

Orthogonal relations
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The orthogonal relations of vector fields are given here, one can refer C. F. Bohren’s
book for more detail [10].
[Mo M, d2=0, vm, m,n, n (3.18)

Similarly, for the pairs (N,,,,Nowy)s (Mg N , (M,,,.N,,,) are all orthogonal

om'n’ ) em'’n

setsforall m, m', n,and n'. Another kind of the orthogonal pairs is for the same type

but different order vector fields: (M,,,,Mewn) s (Momn:Mona) s (Ngpns New) . @nd

emn?

(NgmsNome) forall m=m’ or nz=n':

omn?

Spherical harmonic expansion of plane wave

- N
B

.

—
Suppose there is'a plane wave| incident to a spherical particle with x polarization.

The incident wave can be writtenas

E~ — Eoeikrcose)z

. (3.19)
z (BemnMemn + BomnMomn + AemnNemn + A)mnNomn)

0n=m

Il
NgE

3
I

Apply the orthogonal relations of the vector fields, the incident field can then be written
as
E =Y E,(MY -iN2) (3.20)
P
where E, =i"E,(2n+1)/n(n+1) and the superscript (1) indicates that z,=j,. The

corresponding incident magnetic field can be obtained by
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H=—"VxE
oy

- S E ME v ing)
CO/J n=1

Similarly, the field inside the particle can be set as:

n' “eln

E, =2En(cn|\/|gll>n —id N9)
n=1

@ 4 ()]
etn 11 CnNoln)

_k 0
H,= "9y E (d M
' wﬂlnzl“

And also for the scattering field:

Es T Z En(l anMSZ] _bnNS)n)
=1

0

E (iIN® +a N@)

0 oln n'\"eln

=
Wtn=1

g

where the superscript (3) indicates 'zr; = h,@.

Apply the boundary conditions:

E, + Es =iEg: E +E,=E

Hip+Hg =Hy, H, +H,=H

One can find the coefficients:

a = m Y (mx)l//n, (X) —Va (X)l//n' (mX)
my, (mx)‘fn, (X) - egn (X)l//n’ (mX)

b = Va(mQy, () —my, (y, (MX)
Vn (mx)gn, (X) —m é:n (X)l//n’ (mX)

Where

v, (P)=pi.(p), & (p)=ph? (o)

23

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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Scattering cross sections

The scattered electromagnetic energy crossing an imaginary sphere A outside the

particle can be obtained via consider the integration

w, = s-dA

=%Re [(B,H;, ~E, H)do (3.28)

where S is the poynting.vector-of the scattered field. The energy of the incident plane

wave is

r\JII-—‘
“JU
@D
gLy
T
X
I

T (3.29)
K )
B 2_| E |
W
Therefore, the scattering cross section-is [10]:
Coa =12 =27 3 (204103, F +10,P) 3.30
i n=1
Similarly, the extinction cross section is:
WEX'[
C.. == k2 Z(Zn +1)Re(a, +b,) (3.31)

3.2 Modify long wavelength approximation

Although Mie theory is an exact solution of the Maxwell’s equations, however, it is
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very complicated for the consideration of some other geometrical particle shapes. Thus,
there are many other approaches providing a relative simpler method for improving the
electrostatic results. Though these methods are not the exact solution of the Maxwell’s
equations, they give quite precise results for the situation of the particle size small than
10% of the wavelength. Here we give a brief introduction of a model proposed by M.
Meier and A. Wokaun in 1983 [11-12].

Consider a sphere embedded in.a uniform-medium. According to the results of the
weak Eshelby conjecture: for.any uniform abplied field the field inside the particle is

uniform if and only if the /parti¢le is of /elliptic or‘ellipsoidal in shape [22], the

=
B

.

polarization P inside the partiele is unif'i)_grﬁfénd withithe relation,
47B = (¢ -)(E; t+ Ey,) (3.32)
where E; is the external applied=field- andi Eg s the depolarization field. The

depolarization field due to the retarded dipole can be determined by the relation:

E, = 20039([%]+mj

2

cr
. ) (3.33)
E, =Sin0(@+@+@)
r’ cr° c°r
The retarded dipole here is
[p]=pe", [p]=—iwlp], [8]=-o’[p] (3.34)

Expand " up to the order k*, and using
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E, =E, cos@-E,sind
(3.35)
E, =E,sind+E,cosé

one can find the depolarization field inside the particle generated by the dipole moment

dp=PdV,
1 2 k2 2 -2 3
dE, , = F(Bcos 9—1)+E(cos 9+1)+|§k Pdv (3.36)

3sin@cosd . k?sin&cos®
ri 2r

dE, , { }Pdv (3.37)

For sphere, it is simply to see that dE; ~ part vanished after integrate over the whole

sphere. The result after integrate.over the sphere'is

i1 N
Edep:?ﬂ(—l::iﬂ!(a)zﬂg(ka)sjP (3.38)

¥

Substitute this result into Eq. (3.32) one have

P—i: ' c 3B
A (e+2) - (e—1)(ka) - i(2/3)(c -1)(ka)®

(3.39)

The term —i(2/3)(¢ —1)(ka)® in the denominator is the radiation-damping correction to
the electrostatic solution [23]. The term —(¢—1)(ka)* is the dynamic depolarization

which comes from the dynamic effects.

3.3 MLWA for spheroidal nanoshells

Now let us consider this modify long wavelength approximation (MLWA) for the

case of nanoshells. Note that the MLWA is the lowest order correction which applies only
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to the modification of the dipolar response [Egs. (2.42)-(2.46)] and is consistent with the
lowest order result from the exact Mie theory [11-12]. In spite of its limitations, the
MLWA has been found to be quite accurate for the description of a large range of
experiments on these nano particles [5, 24-27].

Note that in the original formalism [11], the MLWA was derived only for the case of a
solid spherical particle. But since in the LSC model, a spherical shell is now replaced by
“an effective solid particle”, the MLWA ¢an'thus be applied to shell structure as well, as
has already been demonstrated.in-the eriginal LSC paper [14].

Hence, in order to formulate the MLWA for 'spheroidal shells, we first follow Moroz

- N
B

i

[11] to express the static dipolar (Rayleig'ﬁ_} bblarizability of a spheroidal particle in a host

(of dielectric constants & and" &, respectively) as follows:

R SV fa5~ &,
. Ar £+ LAERte )

(3.40)
where V is the volume of the particle, and the static geometrical factors L, are as defined
in Egs. (2.44) and (2.45). Next, as shown by Moroz [11], the MLWA corrections of Meier
and Wokaun [12] can be obtained for a spheroid by generalizing Eq. (3.40) to the following

form:

R
MW A

G 1D, () KPaf —i (213) Koar

\ E—¢,

, (3.41)

_Egh +qm(‘9_‘9h)

where (. is the half-length of the spheroidal axis along which the electric field is applied,
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and the generalized depolarizing factor g, which incorporates both geometric and

dynamic effects can be expressed as follows:

3
kY D -iZKV (3.42)
Arl 3 4rn

G = L -
where D,, is the dynamic geometrical factor as given by Moroz [11], and k=27z/A is
the wave vector in free space. Note that while the first term in Eq. (3.42) corresponds to
the familiar static polarization term, the second and third terms give rise to the so-called
dynamic polarization and radiationy reaction:-which are originated from the exact
electrodynamic fields of an oscitlating.dipole: r Hence by using the appropriate quantities

L, (&) andq, (&) with<j=1,2/ corresponding to':the inner and outer shells,

- N
B

.

e
respectively, into the results expressed in Egs. (2.42).# (2.46), we can obtain the MLWA
results for the polarizability..af a spheroidal nanosheHl.:WWe give more details for both
spheroidal and spherical geometries as-follows:

For prolate spheroidal shells:

The dynamic geometrical factors are given by [11]:

D,(£)=D,(¢) - g(g—j L(©) +1j
: (3.43)
D.(5=D,O)=¥5 = Lsgarctanh@ -D, (5)}

Hence the MLWA corrections can be obtained by simply replacing F" and G' in Egs.

(2.42) and (2.43) by the following expressions:
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FM™ qm(fl) ’ Gm_)qm(éjjz)_l,
bOOGET-) T gET-D

j=lor2, m=0,=%1 (3.44)
with g, given in Eq. (3.42).

Although the above formalism is derived only for a single-layered nanoshell, it is
rather straightforward to generalize it to a multi-layered stratified system of spheroidal

shells (a “nanomatryushka”) in a systematic way (see Appendix II).

Spherical limit:

By setting & =r;/a andlet a0, wethave

i
L=, D >1 a8 > (3.45)

v e 107 .2
qm(éj)ﬁqgéfngz—lnga (3.46)

where Xx; =kr; =271 /A /and I, and r, are the radius of the inner and outer surfaces,

respectively. In this limit, we have:
a’ a® .
ij»qu, G?‘—)F(qj—l), j=lor2, m=0,+1 (3.47)
J J

With the results in Egs. (3.45)—(3.47), we finally obtain the following MLWA result

for a spherical nanoshell:

o :1F3 (gz—gh)[glql_gz(ql_l)] r23_(51_82)[82(q2 _1)_gh qz]l’13 (3.48)

"3 [81Q1_82(q1_1)][52 QZ_8h(Q2_1)]r23_(51_82)(52_8h)q2(Q2_1)r13.

To our knowledge, the result in Eg. (3.48), being independent of m, has not been obtained

before and is as significant as the corresponding one for spherical particles available in the
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literature [5, 24-27].

3.4 Improvements on MLWA

While the MLWA provides a simple recipe to include the lowest order dynamic
corrections to the static polarizability for spheroidal nanoshells as illustrated above, the
assumption of uniform polarization inside the particle renders the approach inaccurate for
larger size particles. Following Stevenson [28-29] and-Moroz [11], we further introduce
a semi-empirical “improved MEWA” (IMLWA) which allows the particle polarization
along the spheroidal axis of symmetf.‘g_‘_tq vary in. magnitude with the angle of

1 -
inclination (@) from this axis in the following, form:
P .—>(1+ Bkerésin®@)P (3.49)
where S is a dimensionless fitting parameter.  As a consequence, following Moroz

[11], we obtain below a modified dynamic geometrical factor in place of the D, in Eq.

(3.43):

D, = 8
47ra

-[(1-28)1,+(1+88)1,-651, ] (3.50)

where the integrals over the particle volume are defined as:

I :Icosz" 0

dv 3.51
=7 (351)

For a general spheroidal particle, the integrals in Eq. (3.51) are given in Ref. [11]. For the
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2
78 and D, =D=1-24.
2n+1 5

simple case of a spherical particle, we have 1, =
In the following numerical studies, we shall also use this modified dynamic
polarization as given in (3.50) and (3.51) to illustrate how good the original MLWA can be

improved to, in comparison with the exact electrodynamic results.

3.5 Numerical results

In order to demonstrate the dynamical effects from our MLWA and IMLWA models
formulated above for the optical response of a spheroidal. nanoshell, we have carried out
some numerical studies on the coupléd‘;fgl_asmon frequencies and the extinction cross

7
sections of the silver nanoshell systemssstudied in Ref.+[8] within the context of the
hybridization model. The dielectric“function” for:silver as given in Ref. [8] has the
following form: &(w)=¢&; — @} | w(w+i6) With &, =5.0, @, =9.5¢V, and 5=0.15eV.
To access the accuracy of our various long wavelength approximations, we first compared

them with the exact electrodynamic results (Mie theory) for a spherical shell system which

are easily available [10].
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Figure 3.1 Comparison of the extinction crgss'seetions obtained from the static limit, from MLWA, and

L

from IMLWA against the exact Mie theony resultq' The results'are shown for a spherical nanoshell with
inner radius r, and outer radius ryz, Whichjare shown on the plots.-The silver nanoshell is hollow inside

and placed in vacuum.

Figure 3.1 shows the calculation of the spectrum of the extinction cross section
(0. =klIme,) forahollow silver spherical shell according to all the three approximations
(static, MLWA, and IMLWA with g =1) in comparison with the exact electrodynamic result
from the Mie theory [10]. As is clear from the figure, while the exact result shows both the
split-dipole and the quadrupole modes, all the three approximations can only show the

split-dipole modes as expected. Furthermore, while all of them give quite close results for
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the frequency @, of the antibonding mode, significant errors occur in @_ with the static
model yielding blue-shifted resonances, and the long-wavelength approximations leading to
red-shifted resonances for the bonding modes.

Note that it is a rather general result that for a hollow shell, the high frequency w, is
relatively insensitive to the change in the interaction between the two individual plasmons,
and thus retardation effects are quite insignificant for this mode. This is analogous to the
in-phase oscillation of two coupled mechanical oscillators with characteristic frequencies
quite insensitive to the strength-ef-the couplingr. Notealso that the blue-shifted peaks from
static calculation also occur/in a very general way, since retardation effect will lead to an

=

overall weaker interaction between the cav_islty and the surface plasmons. Most importantly,
one sees the significant failure ‘of the static approximation for such a size of the shell
rr=60nm and r,=70 nm (predicting in thisicase a blue shift of ~ 20% for »_ and a
peak ~ 5 times larger in value), and how the MLWA (and especially the IMLWA) can yield
rather accurate results in comparison with the exact Mie theory. This thus confirms the
usefulness of the MLWA’s in the calculation of dipole extinction for nanoshells of these
dimensions which are often encountered in experimental studies, and are not too small
compared to the optical wavelengths used in the experiments.

Having established the accuracy of the MLWA'’s for spherical nanoshells, we next

apply them to the study of speroidal shells. Figure 3.2 shows the calculation of the
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extinction cross section for the prolate silver spheroidal shell studied in [8] with a dielectric
core (£=9.5) and foci a=40 nm according to the three models: static, MLWA, and
IMLWA. The complete geometry of the nanoshell is specified in the figure caption and the
incident plane wave is polarized along the axis of rotational symmetry (note that our above
formalism for the IMLWA only applies to this type of polarization). We notice that in this
case the high frequency modes are still relatively insensitive to the different models.
While the “static results” compare closely to these given by the hybridization model (see
Fig. 7 in Ref. [8] ), the significance.of the cbrrections from both the long wavelength

models is clearly revealed and is qualitatively similar to that found in the case for spherical

=
B

.

-
shells. Again, we expect the result from IMLWA to be closer to the exact one from

electrodynamics.
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Figure 3.2 Comparison of the extinction/cross sections obtained"in the static limit, from MLWA, and from

IMLWA.. The results are shown for ja confocal prolate metallic shell ‘with 40 nm foci and aspect ratios 1/2

(core) and 2/3 (outer surface). The nanoshell has'a heffatité core (& =9.5) with the silver shell embedded
[ |

in vacuum. The electric field is dlong'the rotationall§ymmetry axis of the spheroidal nanoshell.

Having demonstrated the significance of the MLWA’s, we next apply it to study the
effect of different aspect ratios on the extinction of the nanoshell. Figure 3.3 shows the
MLWA results for the spheroidal nanoshell in Figure 3.2 except that now the inner aspect
ratio is varied. The polarization of the incident field is along [m=0, Figure 3.3 (a)] and
perpendicular [m=1, Figure 3.3 (b)] to the rotational axis, respectively. For the m=0
case, one sees similar qualitative features for the resonance frequencies as observed in the

static HM calculation [8] such as the red-shifted bonding mode, and the almost-unchanged
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antibonding mode with the increase of the inner aspect ratio with fixed outer ratio.
However, the values for the cross section obtained in our MLWA are quite different from
those obtained in the HM as expected. For the m=1 case, Figure 3.3 (b) shows a
stronger extinction for the antibonding mode, and the greater dependence of this resonance
frequency on the inner aspect ratio, with a blue-shifted peak as the ratio increases. For
clarity, we have not shown the IMLWA results in Figure 3.3 (a) but we expect these results
will give less red-shifted resonances, and slightly lower peak cross sections compared with
those obtained from the MLWAvas-shown.

e
Y

i
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Figure 3.3 The extinction cross section of the confocal prolate metallic nanoshells (foci is fixed at 40 nm)

with a fixed aspect ratio (2/3) for the outer surface and four different aspect ratios (0.2, 0.5, 0.55, and 0.6)

for the core. The nanoshell has a hematite core (& =9.5) with the silver shell embedded in the vacuum. The

electric fields are oriented parallel (a) and perpendicular (b) to the rotational symmetry axis of the

spheroidal nanoshell. The calculation is based on the MLWA model.
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Finally, we also study the split eigen-frequencies using our model. Figure 3.4 shows
the resonance frequencies of the coupled bonding and antibonding modes according to the
three different models for the same spheroidal shell studied in Fig. 5 of Ref. [8]. We show
both the resonance wavelengths [Figure 3.4 (a)] and frequencies in eV [Figure 3.4 (b)] as a
function of the inner aspect ratio of the shell. First we point out that our results according
to the static model reproduce identical results as obtained from the HM (compare the solid
curves in Figure 3.4 (b) to those_ in Fig. 5 (e).in Ref. [8]). Those obtained from the
MLWA’s, however, will give red-shifted resdnance frequencies in general. These red

shifts are particular significant for the bending modes in'the present m=0 case; and we
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have also found (not shown) that the'i{,l a&tually become more pronounced for the
antibonding modes in the m=1 ‘ease for this filled shell (core with £ =9.5). In addition,
we note that the dynamic modifications are'more significant for lower inner aspect ratio of
the shell as expected, since the effective scattering volume is greater in this case, which
leads to a manifestation of the corrections from the finiteness of the wavelengths within the

MLWA approach.
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Resonance Wavelength (nm)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

(b)

Resonance Frequency (eV)

0 L 1 L 1 L 1 L 1 L 1 L 1

0.0 0.1 0.2 0.3 04 0.5 0.6
Inner Aspect Ratio

Figure 3.4 coupled resonance modes of a confocal prolate metallic nanoshell as a function of the aspect
ratio of the core obtained from the static, MLWA, and IMLWA models, respectively. The aspect ratio of the
outer surface and foci are fixed at 2/3 and 40 nm, respectively. The nanoshell has a hematite core (¢ =9.5)
with the silver shell embedded in the vacuum. The electric field is along the rotational symmetry axis of the
spheroidal nanoshell. Note that (a) is in nanometers and (b) is eV for direct comparison with the results in

Ref. [8].
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3.6 Discussion and Conclusion

In this chapter, we have presented a systematic formulation, alternative to the
hybridization model, for the calculation of the polarizability and coupled resonance
frequencies of a spheroidal metallic nanoshell (i.e. nanorice). Our effective medium
approach generalizes the previous work (LSC, Ref. [14]) to the spheroidal geometry;
which allows for a very efficient computation of the polarizability of the nanoshells, as
well as the incorporation of the lowest order dynamic effects in the framework of the
MLWA (or IMLWA) for the description of the opticalproperties of these nanoparticles.

On the other hand, while the hybridiié@_iqn approach is powerful in many aspects in

1 -

the account of the plasmonicicoupling within these nanoshells including the physical
origin of the split bonding and antib.onding modes; the:treatment of very general geometry
of interacting surfaces such as two external spherical surfaces, two non-concentric
surfaces;...etc.; it will be rather nontrivial for it to go beyond the strictly static formulation
based on the Coulomb interaction between the uncoupled plasmons, and to account for
effects due to the finiteness of the optical wavelengths used in various spectroscopy
experiments.

In a wide range of optical experiments involving these metallic nanoshells, it is likely

that there is no need for a complicated full electrodynamic analysis of the observations due
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to the small sizes of these particles in comparison with the wavelengths. Moreover,
recent studies have reaffirmed that, the introduction of the lowest order dynamic effects in
the form of the MLWA does provide a very good account for many of these experiments —
in both far field [5, 24, 26-27] and near field [25] studies. Thus our present work of
extending this MLWA (and IMLWA) to spheroidal metallic nanoshells should be of value
for future understanding of various optical experiments with these systems of particles of
not-too-small sizes (say, for 10 nm <.r.< 100 nm); especially that our formulation not only
yields the coupled resonance frequeneies, but élso the“modified polarizability in a rather

straightforward and systematic'way. /" Thus it will'be of interest and value to pursue further
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our present approach, to see ifiit can alsorhandle other more irregular geometries (e.g.
non-concentric shells) so that-it'canireally be established as a viable alternative to the
hybridization model for the description of the optical response of these irregular metallic

nanoparticles.
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Chapter 4 Forster resonance energy transfer

4.1 Introduction

The radiationless energy transfer between a donor molecule (D) and an acceptor
molecule (A) at resonance — known as Forster resonance energy transfer (FRET) — is a
fundamental process which is significant at close D-A separations (R ~ 2 — 6 nm), and is
important for many photophysical and. photochemical processes such as photosynthesis
[30-31]. It is also a very useful teolas an efficient prebe for studying biological systems;
and as a rule for various spectroscopic h’iééyrements [32]. Moreover, it is a rather weak

1 -
interaction process based“on' the 'electrestatic| dipale-dipole interaction between the
molecules which falls off in:the or.der of R Hence it will be of great significance if
mechanisms can be available through which this weak FRET process can be enhanced to
become effective over a greater range with D and A separated over farther distances apart.

Since the first observation of the surface enhanced Raman scattering (SERS) effect in
the 1970’s and the subsequent recognition of the key role played by the resonant excitation
of the collective plasmonic motion of the free electrons in the metallic structure (e.g. on a

rough surface) [33], huge amount of effort has been devoted by researchers from different

fields to the study of the possibility of plasmonic enhancement for other important
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optical/spectroscopic processes such as photochemical reactions, spontaneous
emission,...etc [34-35]. Not surprisingly, plasmonic enhancement of FRET has also
been studied by many people focusing on the interaction between the D and A in the
vicinity of certain metallic structure such as a metallic cavity [36], a spherical/spheroidal
particle [37-38], a dielectric/metallic cylinder [39], and most recently also metallic
nanoshells [40-41]. Experiments have also been successfully carried out in the last few
years with single- [42-43] as well as.ensemble of molecules*? confirming the possibility of
dramatic plasmonic enhancement-of ERET using.metaHic nanoparticles.

Our present work in this chapter ‘is to explore the'possibility of enhancing FRET

e
-

using one of the most interesting nanopart'i-c__le fabricated in the last few years — the metallic
nanorice [6]. While the latest theoretical— study [39}:of RET (both Forster and the
far-distance radiative transfer) onan infinite (2D) cylinder has revealed the significance of
plasmonic excitations via a comparative study of a dielectric (real constant dielectric
function ¢) and a metallic cylinder (dispersive and dissipative as described by the
Drude-Lorentz model), such phenomenon has also been noted in the literature for some
time from the study of FRET at metallic nanoparticles [37-38, 40-41]. In particular,
recent studies of FRET at spherical nanoshells have observed greater enhancements for the
shell compared to those for a solid particle [41], as well as the importance of higher

multipole excitations [40-41]. Furthermore, the significance of the bonding and
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antibonding modes from the coupling (“hybridization™) of the surface and cavity modes,
as well as the nonlocal optical response of the metallic shell have also been established
[40]. However, while the spherical nanoshells admit high tunability in their bonding and
antibonding modes via the adjustment of the size and thickness of the shell, the
recently-fabricated (spheroidal) nanorice will be in addition capable of providing much
greater enhanced local fields for the FRET process. Furthermore, it may have even
higher tunability due to the greater number of geometric parameters (e.g. the aspect ratio)
available for adjustment. .Hence-it will‘be of ihterest to calculate the FRET rate at such a

nanorice to provide guidance for possible future experimental observations.
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4.2 Theoretical model. *

In our present formulation, we shall'model the D and A as harmonic point dipoles
interacting directly with each other, as well as via the electromagnetic interaction mediated

by a spheroidal metallic nanorice (Figure 4.1).
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Figure 4.1 The geometry for the donor (D) and acceptor (A) near the nanorice, with A at various positions

oriented normal to the spheroidal surface.

To calculate the FRET.fate’(K) between the D and the A, we follow the original
theory [30-31, 38] which applied the Fermi® golden rule and obtain the following

expression:

_9¢' o,() (@)

Klo) =4 =

| U(@) [, (4.1)
where o, () is the absorption cross section of the acceptor, I', (@) the emission rate
per unit frequency of the donor, and U (a)) is the interaction energy between D and A in
the presence of the nanorice. In principle, both the absorption and emission of the

molecules will be modified by the presence of the nanorice. However, as discussed

previously [40], these modifications are of higher order effects. Hence, to first order
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perturbation, the presence of the nanorice will only modify U(w) which we shall study in

the following adopting the long wavelength (electrostatic) approximation.

FRET on a spheroidal solid particle

Before we consider the nanorice case, let us first review briefly the problem of energy
transfer between the D and A near a solid spheroidal particle [38]. Working in spheroidal

coordinates(&,7,¢), the electrostatic potential both inside and outside the particle can be

obtained by solving the Laplade-equation V2@ =.0[38]. For a position outside the

particle (& > &), the potential Can be expressgd as

1 —
-.i-‘

D(r) =@, (r)+ (r)+CD (r)+CDAmd( r), 4.2)
where
cp,(r):M, J=D, A (4.3)
p ‘I'—I'J |3

is the dipolar potential associated with the isolated donor (D) or acceptor (A), and

@, ) =—p,- ZZ G &)Q (&P (1,)F" () cosm(p, —@)l, J=D, A
n=0 m=0
(4.4)
is the potential due to the induced charge (on the particle) caused by the donor or acceptor,

where P and Q' are the associated Legendre functions, and f is the foci of the prolate

spheroid. Here we shall use the symbol tilde (~) for quantities in the case of solid particle to
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distinguish from those for the nanorice. The quantity &  in Eq. (4.4) can be obtained as
[38]

dnm = F;LWL - gh ! (45)
gAnm (52 ) - gthm (52 )

which is a dimensionless factor determined by the geometry and the dielectric property of

the particle (&) and that of the host medium (¢, ). The various coefficients in Eq. (4.5) are

defined as follows:

@, (&)
&)

4 n+m)!

4,.)=>—=" B, (&)= , P :(—1)m(2—5m’0)(2n+1){(”—m)!} |

(4.6)
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where () denotes the derivative with respect tojthe argument as indicated.

FRET on a spheroidal nanoshell

Next we consider the energy transfer process between the D and A in the vicinity of a
nanorice modeled as a confocal prolate spheroidal nanoshell (Figure 4.1), where the two
interfaces are specified by £ =& and & =¢ in prolate spheroidal coordinates, with the
same foci for these interfaces [8]. It is clear that a direct approach to solving the boundary
value problem for this case will be very involved. However, in chapter 2 or Ref. [9], we
have discovered that an application of a previously-formulated effective medium model

[14] can greatly simplify the mathematical description of the dielectric response of a
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spheroidal nanoshell, and it is this approach we shall apply in our following study of the
FRET process at a nanorice.

The main idea of this effective medium model is to replace the multilayer shell
structure of different media by a homogeneous solid particle (i.e. a solid spheroid) with an
effective dielectric function accounting for both the geometric and dielectric characteristics
of the given shell. By requiring this “effective particle” with the shape of the external
surface (dimension &,) to produce thersame:multipolar polarizability of the original
spheroidal shell, in an environment when the onside medium is filled with the material of

the shell (dielectric function,) [9, 14], the effective dielectric function can be obtained as:

g = gl[Am(‘fl) Bnm(qé':Z)] gz[Bnm B 52)] @.7)
el[am(él) AnkSs) |15 | By (& Am(ﬁz)]

Using this result, the potential of the D-A'system outside the spheroidal shell (Figure 4.1)
can simply be obtained from the results in"Eqs. (4.2)-(4.6) by replacing the dielectric
function ¢ by &’ for each multipole order (n,m). Thus we have (all quantities
without tilde):

Or) =P, (r)+ @, () + D (1) + @, (r), (4.8)

where

o0 n

q)r],ind(r) = _u,] ' Z Z a;;LV][Q:(é:])Q:(é)P;n (771)an(77) COS m(¢] - (0)]7 J = D7 A

(4.9
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and [9]

_ (5, —&)l6A4,(5)-4B, (5]~ (5 ~¢,)6,B,,(5) — £4,.(5)]

a F
" " [81Anm(§1> - 8QBnm (é:l)] [gQAnm (52) - gthm (é: )] A (é:Q )Bnm(§2)(81 - 82)(82 - gh)
(4.10)
where we have made explicit use of the result in Eq. (4.7).

The electric field E, at the acceptor position can then be obtained from the

expression

E, :—V[CDD(r)—kCDDJ_ ( )+CI)Amd( r)] (4.11)

r=r,

Hence the interaction energy for'the acceptor in the.presence of both the donor and the

nanorice is obtained as: X
-
04 B f
1= | , 4.12)
= U +U +U

AD md AAsind

where
. 3u,-(r,—r )p, -(r, —r)
BH,-u K p
Upp= . ol 0 D5 -, (4.13)
|rA_rD| ’rA_rD’
and
IJ jind ZZ o ’ MJ 'VJ)[Q:L(Q)QW(f )P"](UI)P"](UJ)COS m(q) Q;)]
n=0 m=0
I.J=Dor A
(4.14)

To study the energy transfer between the donor and acceptor we only have to consider the

first two terms in Eq. (4.12),i.e. U, +U, with the latter given as in Eq. (4.14). The

Dyind
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last term in (4.12), U, is associated with the energy transfer between the acceptor and

dind ?
the nanorice which leads to modifications on the decay rates of the acceptor molecule [38].
From this and the result in Eq. (4.1), we can now introduce the enhancement factor for the
FRET process at a nanorice defined as:

v, +U,, [

AD,ind
U

AD

“ADnd | (4.15)

which measures the efficiency of the energy transfer between the D and A in the vicinity of

the nanorice.

4.3 Numerical results o

[ |
For all computations in this:section, the nanorice is made by a dielectric core (hermatite,

g, = 9.5) covered by a silver shell and-€mbedded in.the vacuum [8]. The semi-major and

semi-minor axes of the outer surface are fixed at 26.8 nm and 17.9 nm, respectively, and
the dielectric function of silver is described by the following Drude model [8]:
®,*

e(w)=¢, — m (4.16)

with & = 5, w = 9.5eV, and 6 =0.15eV. We divide our numerical studies of the

enhancement spectrum into the following three aspects:
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a. Effects from the nanoshell geometry

Here we fix the outer shell geometry along with the positions and orientations of the two
molecules D and A (see caption of Figure 4.2), but with the inner aspect ratio varied. As
this ratio increases, the thickness of the silver shell decreases and one would expect
cross-coupling of the plasmons at the two interfaces will become more significant. Indeed,
from the results of Figure 4.2, one can clearly draw the following conclusions: (i) as in the
spherical case [40], all the shell structures (inscontrast to the solid spheroid case) yield
resonances split into the low frequeney bonding.and high frequency antibonding modes,

with the splitting more pronounced/as the shell gets thinner; (ii) enhancements from the

e
-

bonding modes are in general greater (up fq_ an order of magnitude) than the corresponding
ones from the antibonding .models, due to the relative ‘dominance of the outer surface
modes over the cavity modes; and. (iif}multipolar resonances emerge and can be resolved
mostly for the bonding modes except for the thinnest case (aspect ratio 0.6) where they can
also be seen among the antibonding modes. All these results are in qualitative consistence

with those observed previously for a spherical nanoshell [40].
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Enhancement R(®)

Frequency (eV)

Figure 4.2 Comparison of the enhancement factor R(w).for different geometries of the nanorice. The foci
and the outer (surface) aspect ratio are fixed:at 20 nm and'2/3, respectively. The inner aspect ratios are set for
three different values, which are.0.2, 0.4, and“0:6. The nanorice has ashematite core (g =9.5) with the silver
shell embedded in the vacuum. The donor and th}é%jgggtor are located atthe two “poles™ at (0, 0, 30nm) and

¥
(0,0,—30nm) in Cartesian coordinates and aligned along the 2 direction.

b. Effects from the orientations of the molecules

In this case, we have the donor fixed at the north pole as in Figure 4.2, but the acceptor
moved to the equatorial position at which two orthogonal orientations (i.e., the normal i
and tangential Z orientations) of it are considered. From the enhancement spectrum in
Figure 4.3, we observe that while the multipolar feature in the solid particle case differs
appreciably for the two molecular orientations; that for the two split resonances in the

A o

nanorice case is less pronounce with both the A and Z oriented acceptor yielding rather
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similar resonance structure. Since here we consider a rather thin shell (with aspect ratio

fixed at 0.6), we observe the multipolar resonance for both the bonding and antibonding

modes as revealed in Figure 4.2. The most interesting observation from Figure 4.3 is the

general greater enhancement obtained in the case with the D and A in a relatively

perpendicular orientation (i.e. Aalong fi in this case). This is generally valid for both the

solid and shell particles, except for frequencies close to the plasmon resonances, and can be

understood from the electrostatic interaction between two arbitrarily oriented dipoles.

3 _ P ~ = -solid (n)
10°¢ ' S solid (2)

. ——06(M ]
10 ——06(2) 3

Enhancement R(@)

1 I 2 I 3 4 I 5 I 6 I 7
Frequency (eV)
Figure 4.3 Comparison of the enhancement factor R(w) for different molecular orientations. The
configurations of the nanorice (at a fixed inner aspect ratio of 0.6) and the donor are as in Figure 4.2, but the
acceptor is moved to the equatorial position at (22.36nm, 0,0) in Cartesian coordinates. Two different
orientations are considered with each along the symmetry axis (Z) and perpendicular to the surface (i.e.
along ), respectively. The solid lines indicate the results for the nanorice, where we also show the

corresponding results (dashed lines) for a solid spheroid for comparison.
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c. Effects from the relative positions of the molecules

Finally we study the enhancement as a function of the relative position between the D and
A. Here we have D fixed at the north pole and the position of A varied along a spheroidal
surface with £=1.5. The orientations of both molecules are all the time in the normal
direction. Positions of A at various angles from the positive z axis are studied as
indicated in Figure 4.4, from which one observed that the values of the two resonance
frequencies remain roughly unchanged-for allr the -angular positions of A since they are

determined largely by the geometry/and'materials, of the nanoshell which remain constant

=
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e
throughout. However, it is worthwhile to.note that the enhancement ratio increases as A
and D get farther from each.other.due to the decrease in the strength in the direct transfer

between them.
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Figure 4.4 Comparison of the enhancement sfactor =R(w) for different relative positions between the
molecules. The configurations of the ‘hanorice (inner aspectiatio-0.4) and the donor are as in Figure 4.2, but

the acceptor is varied in position-along a spheroidal surfacesoutsideithe-hanarice. The orientations of both the

=

donor and the acceptor are always perpendicular,tcx'gaéﬂsurface and the trajectory of the acceptor is fixed on a

spheoridal surface with &£=1.5- 1

4.4 Conclusion

In this chapter we have presented some model studies of the FRET process between
two molecules in the vicinity of a metal nanorice, generalizing the previous works on
metallic spheroidal particles [38] and spherical nanoshells [41-43]. Numerical results
show that while FRET enhancements at spheroidal shells are comparable to the
corresponding ones for solid spheroids, the plasmonic tunability into the bonding and

antibonding resonance modes is much higher in the shell case. In addition, interesting
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dependence of the enhanced FRET on the relative orientation and position of the two
molecules is observed.

Our approach is based on a effective medium theory [9, 14] which highly simplified
the multi-boundary value problem of the spheroidal shell structure. Though we have so
far only studied cases with both the molecules lying outside the nanoshell, it is possible to
employ the present formalism to study also cases with one or both the molecules lying
within the structure, as was done in ourprevious:study [40]. In addition, we also have not
studied the possible nonlocal optical response from the nanorice as we have done for the

spherical shells [40]. . Note'also that even within the context of our previous effective
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medium model [9], here ‘we cannof‘_.{iﬁéorporate the modified long-wavelength
approximation (MLWA) formulated there to improveour purely-electrostatic calculations,
since this was formulated only for dipelar response whereas here we need to account for
many higher-order multipoles in our study of near-field interactions for the FRET process.
Thus it is clear that while our present modeling results should be of interest for future
experiments to compare with; there are also rooms for future improvements in the
theoretical modeling of the phenomenon --- one which is highly significant in many

photophysical processes in Nature.
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Chapter 5 Metallic Nanoshell Composites

5.1 Introduction

Since its first fabrication in 1998 [44], the spherical metallic nanoshell has evolved to
become one of the most versatile plasmonic systems with significant potential applications
from spectroscopic enhancements to cancer therapy [45-46]. Due to its high flexibility in
the variations of the core and shell materials as well as in.the aspect ratio, it possesses high
tunability in its plasmonic resonances covering the whole visible range and beyond. This
has hence motivated a large number ofi.'éft!q_dries in the past decade on the fundamental

1 -
optical properties of this system, both in experiment and in‘theory [45-46]. Moreover, in
applications, both individuai nano.shells and composites made of these shells are of
significance; and it seems that the study of the optical properties of the latter has started to
receive attentions from researchers only in the last few years [14, 47-49].

It is the purpose of our present study in this chapter to report new observations from
theoretical modeling on the optical behaviors of some of these composites which contain a
collection of these nanoshells, dispersed randomly in the form of either isolated particles or

in clustered state throughout an insulating solid host. This mimics a kind of “nanoshell

cermets” and is different from the recently-studied photonic crystals composed of such
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shells [14, 47]. The ellipsoidal shell composite studied in [48-49] is similar to ours, and
the focus there has been on the effects from the particle shape distribution in the
composite. Our focus here, however, will be on the effects from particle-clustering of
these shells, as well as from temperature variations on the optical properties of these
composites which the previous works have not studied [48-49]. One motivation for the
study of the temperature effects is from the recent proposition of drug-delivery applications
via manipulations of these effects. [50]. ‘Insaddition, temperature dependent optical
bistability has been reported for-composites of nanoshells made of metallic core coated
with nonlinear dielectric [51].” Previously, we have studied these temperature effects on
=
the optical properties of individual isolat'eg nanoshells in their function as spectroscopic
enhancers [52-53]. We shall.emplay the same temperature model for our present study of
the composite; and as for “the. particle-clustering ‘phenomenon, we shall assume
fractal-clusters are formed in the composite and employ the previously-available effective

medium models in the literature. For simplicity, we shall only consider spherical

nanoshells in the present study.

5.2 Theoretical model

For a system of metallic nanoshells in a solid dielectric host with the shells distributed
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randomly either in isolated or in clustered form throughout the host as illustrated with
various parameters specified in Figure 5.1, let us first recapitulate the essence of several
models from previous literature which will be useful for our numerical studies in the

present work.
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Figure 5.1 Two different distributions of the nanaoshell composites. (a) The geometry of the nanoshell with
inner and outer radius a and b, respectively. The material of core/shell is SiO,/Ag with dielectric

function ¢ /¢,.

a. EMT for randomly-distributed nanoshells

According to the results of chapter 2, an individual nanoshell can be replaced by an

effective spherical particle of the same size, see Eq. (2.35). For the spherical limitation Eq.
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(2.35) reduce to

. & (b° +2a%) + 25, (b* - a%) 5.1)
P g (0°—a%)+¢,(20° +a°%)

Now we can apply the well-established effective medium theory (EMT) to obtain the

dielectric response of the composite. For the case when the particles disperse randomly

throughout the host (of dielectric constant ¢,), we have here the effective dielectric

function & given simply by the Maxwell-Garnett (MG) model in the form [54-55]:

& +2¢,

:f€+2Q
= B,

(5.2)

where f is the volume fraction‘of thesparticles:

e
Y

b. EMT for clustered nanoshells F

For the case when the particlesicoalesce to form/fractal-clusters (FC) in the host, we
apply the differential-effective medium-model available'in the literature [56] and obtain the

average dielectric function &(R) for a spherical FC of radius R, in the limit of low

particle concentration given implicitly by the following cubic equation:

3
_f

S(R) Eh — &5 (b) = f (5 3)
&) & —¢(R) .

3(3-dy)
where f’:[g} is the volume fraction of the particles in the cluster with d, the

fractal dimension of the cluster. Note that we have explicitly stated the size of the

effective particle (radius b) in Eq. (5.3). The dielectric function of the composite in this
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case will be obtained by applying the MG theory once more to a system with the same host
but containing a randomly distributed collection of these “clustered particles” of radius R
and dielectric constant &(R) obtained from solving Eg. (5.3). In addition, the
concentration of these “clustered particles” will be given by a volume fraction
f.=1f-(f)”, where f is the original given volume fraction of nanoshells in the
composite. Hence using Eq. (5.2) with & > ¢(R) and f — f., we can finally obtain
the effective dielectric function for. the 'whole composite with the nanoshells forming
fractal clusters in the host dielectric.

e
Y

c. Model for temperature effects F

To account for the temperature effects on the optical properties of these nanoshell
composites, we assume such effects are only significant for the metallic part of the shell
and describe its dielectric response using the Drude model:

2
Wp

c=1- (5.4)

o(o+ie,)
where @.(T) is the collision frequency and ,(T) the plasma frequency, whose
temperature dependence can be found from our previous work [52]. The collision
frequency will have contributions from both phonon-electron and electron-electron

scattering, as well as a surface scattering term from the two shell boundaries [52]:
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@, = Wy + W, + O (5.5)
where the surface scattering term is given by

o= NVe (5.6)

" [b(T)-a(T)]
with v. being the Fermi velocity of the metal, A is ageometrical factor of unity order of
magnitude, and the shell radii as functions of temperature given by
b(T)=h, [1+§(T -T, )] , ...etc., in terms of the volume expansion of the metal. Thus Egs.
(5.4) — (5.6) provide a model for the temperature dependence of &, which when used as

g, for the nanoshell together with thesmodels.in b /ahd ¢ will describe the temperature

variation of the optical properties for the\nanoshell composite.

radE
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5.3 Numerical results

To illustrate the above models, we have studied numerically both the temperature and
clustering effects on a composite of silver—glass core shells in a dielectric host of
magnesium fluoride: (core/shell/medium) = (SiO,/ Ag / MgF, ). The reference temperature
T, is set at 293 K, at which the dimensions and concentration of the shells are set with
a=30nm, b=50nm, and f ., =0.01. The dielectric constants for the core and the
host medium are taken as 2.25 and 1.93, respectively, and are assumed constants

throughout; and that for the Drude metal can be found from our previous work [52] and
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references therein. Figure 5.2 shows both the real and imaginary parts of the nanoshell
composite at three different temperatures as described by the MG theory. While the
dipolar resonances of the composite plasmon modes (A ~ 400 nm) are clearly seen, they
are slightly red-shifted and the corresponding peak dielectric constant values lowered with
rise of temperature. This can easily be understood by referring to the lowering of the
metallic plasmon frequency due to the decrease in electronic density and increase in

electronic damping at high temperatures.

Re(€)
(3w

100 200 300 400 500
Wavelength (nm)

Figure 5.2 Temperature dependence of dielectric function of nanoshell composites in MG distribution. The

volume fraction is setat f =0.01, and the aspect ratio issetat a=30nm and b=50nm.

The most unique feature of the spectra in Figure 5.2 is the weak resonance appeared at

A ~180 nm, which are manifestations of the “single-particle” nanoshell resonance. This
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has never been seen in a composite of solid particle and is unique for the nanoshell

composite as can be seen also in the following figures. In the solid particle case, only

resonances for the whole composite (i.e. the strong peaks) remain.

To confirm this, we plot in Figure 5.3 (or Figure 5.4 in logarithmic scale) comparison

between a composite of solid spheres and shells, and this manifestation of the

“single-particle resonances” can be seen only in the shell case with a very minor

dependence on the volume fraction of the particles.
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Figure 5.3 The imaginary part of the dielectric functions of (a) solid sphere composites and (b) nanoshell
composites in MG distribution with different volume fraction f . The temperatures is fixed at 300 K for all

plats.
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Figure 5.4 Identical to.thesFigure:5:3 but with logarithmic scale.

Figure 5.5 and Figure 5.6 show how these properties vary when the nanoshells coalesce to

.

form fractal clusters. - The temperature -i'é_fixed at"300 K. 'Consistent with what was
reported previously in the Iitératuré [56],.we observe.here that particle-clustering among
the nanoshells in the composite ‘will lead to.appreciable red-shifts in the SP resonance
peak — with these shifts more dramatic for lower fractal dimensions (i.e. greater deviation

from 3, see Figure 5.5) and larger cluster sizes (see Figure 5.6).
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Figure 5.5 Fraction dimension dependence-of dieleetric functions for nanoshell composites in FC
distribution with the same parametérs assin Figure 5.2uThe-cluster radius is fixed at R=10b. The

temperature is fixed at 300 K.
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Figure 5.6 Cluster radius dimension dependence of dielectric functions for nanoshell composites in FC

distribution with the same parameters as in Figure 5.2. The fractal dimension fixed at d, =2.5. The

temperature is fixed at 300 K.
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To possibly observer these changes in the optical properties of the nanoshell
composite, we have plotted in Figure 5.7 the transmission spectrum at normal incidence
through a thin film made of such composite materials — for both non-clustering (Figure 5.7
(@) and clustering (Figure 5.7 (b)) cases at three different temperatures. The oscillating
patterns shown in Figure 5.7 represent the Fabry-Perot interference of the composite
films. Note that in our modeling_of sthe later:case, we have assumed both the fractal
dimension and cluster size stayjunchanged with the rise of temperature, an assumption

should be reasonable for the present ase with a solid-host background. While the

.

transmission dips correspond well to fﬁ;plasmon resonant absorption peaks in the
dielectric functions (both single-particle and composite-resonances) for both cases, it is
observed that the rise in temperature generally decreases the transmission slightly for both
materials; and particle-clustering will yield an additional dip in the transmission spectrum

near the single-particle resonance frequency.
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Figure 5.7 The temperature dependence of the tran'smission spectrum:for nanoshell composite films in (a)
the MG case and (b) the FC case With thel same parametersias’ in Figure 5.2. (c) The transmission of solid

sphere composite films in MG and FC cases.-Fhe temperature in (¢) is fixed at 300 K and the thicknesses of

all films are setat d =1um.

It is also shown (Figure 5.7 (c)) how such spectrum for a solid particle composite
differs from those for the nanoshell composite in the absence of the “single-particle dips”.
Note that the additional dip mentioned in Figure 5.7 (b) also appears in Figure 5.7 (c),
confirming its origin really from clustering of the particles [56]. From comparison

between the results in Figure 5.7 (a) and (b), one observes the effect of particle-clustering
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according to the FC model is to red-shift the composite resonance (at ~ 400 nm in Figure
5.7 (a)) to a value of ~ 1000 nm in Figure 5.7 (b), and to “create a new resonance” (at ~ 130
nm) near the single-particle resonance wavelength, while leaving this latter resonance
almost intact. This can further be confirmed by analyzing the results in Figure 5.7 (c) for
a composite of solid particles where no single-resonance exists. As is clear from Figure
5.7 (c), one can observe again that the composite resonance (at ~ 300 nm) is “split” into one
at long wavelength (~ 850 nm) and one at'short.wavelength (~ 130 nm) due to fractal
clustering. We have further confirmed-that thé short/wavelength resonances (~ 130 nm in
both Figure 5.7 (b) and (€)) ‘are due te the/resonance ‘of a single cluster (radius R);
=
whereas the long wavelength ‘ones (~ 1OOO_,Inm in Figure 5.7 (b) and 850 nm in Figure 5.7
(c)) arise from the characteristic absarptions of the average of all these clusters. All the
above observations are in consistency-with the results reported previously in Ref. [56]. We

believe all these new signatures for particle-clustering and shell particles in the composite

could be checked against experiments without too much difficulty.

5.4 Conclusion

In this chapter, we have provided a simple model for the description of the optical

properties of metallic nanoshell composites. In particular, our model can account for
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both the temperature and particle-clustering effects on these properties. Among the
several interesting results we obtain from our modeling such as red-shifts in plasmon
resonances due to either temperature rise or fractal clustering of particles, we regard the
most interesting feature revealed from our work is the persistent manifestation of
single-particle resonances of the individual nanoshells in the spectra of the dielectric
functions. These resonances, while not reported in the previous study of the optical
properties of similar core-shell particle composites [48-49], can provide a new signature
for the optical probing of this kind-of materialsr.

e
Y

i



Summary and outlook 73

Chapter 6 Summary and outlook

In this thesis we have focused on the properties of surface plasmon resonance for
core-shell particles by using an effective medium model (LSC model). According to
this effective medium model we can treat the core-shell particle as an effective solid
particle, thus, allowing us to generalize many theories form the solid particle version to
the core-shell version.

This effective medium model has*been werified to give the exact polarizability in

electrostatic situation as demonstrated in chapter,2. Thisis a consequence of uniqueness

e
-

property of the boundary value problerﬁ-gh electrostatic theary, which is based on the
solution of Laplace equation,

When the particle is very small, typically smaller than 1% of the incident wavelength,
we have used LSC model to obtain the exact electrostatic polarizability for spherical and
spheroidal core-shell particles. Based on the Drude model for the metallic shell, the split
surface plasmon resonance modes are obtained. These split resonance modes are
determined by the materials, thickness and geometrical shapes of the core-shell particle.
The results obtained from the LSC model are identical to those results from the
hybridization model.

After verified the static case, we have extended this model to the electrodynamic
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case which is required for bigger particles. The wavelength dependence can be introduced
by using long-wavelength approximation models such as MLWA and IMLWA.
Combining these long-wavelength approximation models with LSC model we have been
able to generate the wavelength dependence for the polarizability of the core-shell
particle. In comparison with Mie theory, we have verified that this core-shell result
generated from LSC model is much better than the static model (i.e. closer to the results
from Mie theory).

In the study of the near fields from the blasmonic excitation of the nanoshells, we

have studied the FRET process between the two dipoles near a spheroidal nanoshell.

=
B

.

Large enhancements for thelenergy trah‘_s;rdue to.surface plasmon resonance of the
nanoshell have been observed. “Ini agreement with'the hybridization model, we have
obtained the multipole resonance peaks which-split.into two groups corresponding to the
two coupled bounding and anti-bounding interfacial plasmon modes. As the results have
shown, the dominating modes depend on the positions and orientations of the two
dipoles.

Finally, we have also considered the optical properties of metallic nanoshell
composites. We have studied the fractal cluster systems with different fractal dimensions
and cluster sizes. The results have shown three types of resonances: those from the whole

system, those from the individual cluster, and those from the single shells. Among the
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interesting results from our modeling, a large red-shift was observed with the decrease of
the fractal dimension or increase of the cluster size.

Base on the results of this thesis one can propose some further studies. For nanoshell
composites we discussed in chapter 5, it will be interest to generalize from spherical to
spheroidal nanoshells. It has been thought in the literature that the anisotropic nature of
the solid spheroidal particles can be used to enhance the nonlinear response of a
composite of these shells [57-62]. It will ‘besinterest to study several effects from a
composite of these nanoshells.

Another direction is to‘study the nonlocal effects. Since the local dielectric functions

- N
B

.

are usually based on the classical osci'f];;)r models, they only provide the classical
responses. However, for the ultrasmall particles, /typically smaller than 10 nm, the
quantum effects will become more important and sheuld not be neglected [63-67]. It will
be easier to introduce the quantum effects via the nonlocal dielectric function than from
solving the quantum mechanical many body Problem. According to the results we
presented in this thesis, the LSC model may provide a simple approach to study the

nonlocal effects for a system of multi-shell particle.
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