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摘要 

首先，我們將介紹一種不同於混雜理論的等效場理論，特別用來處理金屬球殼

粒子。與混雜理論不同的是，這個等效場理論不把自由電子當成自由流體，再以

Lagrangian 的力學方式去解，而是採用一種等效介質的想法，加上電動力學中的邊

界問題的唯一性條件，有系統的求出金屬球殼粒子的極化率，再由此極化率，我們

可以得出這個金屬球殼粒子的表面電漿共振波長。 

 接下來，利用這個等效場理論研究電偶與電偶之間的交互作用，特別是當這一

對電偶在靠近金屬球殼時。我們可以觀察到其交互作用會隨著金屬球殼上的表面電

漿之鍵結與反鍵結膜態有巨大的加強效果。 

 最後，利用這樣的等效場理論，我們考慮奈米金屬球殼粒子的混合體，觀察不

同的溫度與不同幾合分佈對此混合體的影響。我們發現，有一個特別的共振膜態不

受混合體幾何分佈影響，且只出現在金屬球殼粒子中，在實心金屬球中不出現。 
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Abstract 

First of all, we present an approach alternative to the hybridization model for the 

treatment of the coupled interfacial plasmon modes in metallic nanoshells. Rather than 

formulating the problem form the Lagrangian dynamics of the free electronic fluid, we 

adopt an effective medium approach together with the uniqueness of the solutions to 

electromagnetic boundary value problem, from which the polarizability of the shells can 

then be systematically and efficiently derived; and the resonance frequencies for the 

coupled modes can be obtained from the poles in the polarizability. 

Secondly, by using this effective medium theory we study the modified dipole-dipole 

interaction between the molecules in the vicinity of a spheroidal metallic nanoshell. From 

which huge enhancement of the energy transfer rate is obtained due to the resonant 

excitation of the bounding and anti-bounding plasmonic modes of the nanoshell. 

 Finally, we study the optical properties of a metallic nanoshell composite with 

particular focus on the effects of variation in temperature and particle clustering on these 

properties. One unique result from our modeling is the persistent manifestation of the 

single-particle resonances of the individual nanoshells which cannot be found in a 

composite of solid particles. 
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Chapter 1 Introduction 

Plasmonics is a new branch of optical science focusing on the collective motion for 

the free electrons in metallic system [1-3]. Among the many plasmonic systems, metallic 

nanoparticles play a significant role [4-5]. Because of their high tunibility in the surface 

plasmon resonance, these resonances depend largely on the geometry and the material 

response of the nanoparticles. 

In the past few years, a very useful nanoparticle in the form of a spheroidal nanoshell 

was fabricated [6]. The plasmonic properties of this particle are largely dependent on the 

thickness of the shell, the aspect ratio of the inner and outer radii, and the material 

response of the core and shell. 

Recently, a theoretical model known as ―hybridization model‖ has been introduced to 

study such a system of spheroidal nanoshell [7-8]. In this hybridization model, the 

surface charges on both inner and outer interfaces are treated as a free fluid. The whole 

system is formulated by Lagrangian dynamics. The interaction of these surface charges is 

accounted for Coulomb potential, thus the results obtain from hybridization model are 

limited to the electrostatic description [9]. 

It is well-known as the particle is very small, usually smaller than 1% of the incident 

wavelength, the electrostatic model can be used as a good approximation[3, 10]. However, 
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for larger particles, the dynamic effects cannot be neglected [5]. This is because the 

retardation effects will become more and more important as the particle size increases 

[11-13]. Thus, it is needed to find a new approach which allows us to introduce some of 

the dynamic effects into these nanoparticle systems. This is one of the main purposes of 

this thesis. 

Our new approach is based on a generalization of the self-consistent effective 

medium model previously published by Li, Sun, and Chan (LSC) [14]. The main 

advantage of this new approach is that it allows us to describe a shell particle as an 

effective solid particle. Hence, one can simply apply the well known results established in 

the literature for the solid particle to the description of the case of the nanoshell. 

We introduce this LSC model in chapter 2, and then apply the so-called modified 

long-wavelength approximation (MLWA) in LSC model to obtain some of the dynamic 

effects for the larger nanoshell in chapter 3. In chapter 4, we use the LSC model to study 

some of the near-field effects focusing on the Förster resonance energy transfer (FRET) 

between two dipoles in the vicinity of a spheroidal nanoshell. In chapter 5, we study the 

optical properties of metallic nanoshell composites. Finally, we give a brief summary in 

the last chapter. 
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Chapter 2 Polarizability 

2.1 Polarizability for a spherical particle 

Let us briefly review the definition of polarizability. For a spherical particle with 

radius a  and dielectric function   embedded in a homogeneous, isotropic and 

non-absorbing medium with dielectric function h , the electrostatic potential inside and 

outside the particle can be expressed by 

 

1

0

0

( , ) [ ] ( )

( , ) ( )

, ,

, ,
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out m m
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. (2.1) 

Where the coefficient mA  indicates the applied field with multipole order ( , )m  

outside the particle, and mB  indicates the corresponding response field due to the 

induced charge distribution inside the particle. According to the boundary conditions of 

the electrostatic theory the tangential components of the electric field and the normal 

components of the displacement field continued at r a , which are 
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Applying the orthogonal condition of mY , 

 ( )[ ( )], ,m mY Y d   
 

  , (2.3) 
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the relation between mA  and mB  can be obtained: 

 2 1( )

( 1)

h
m mB a A

 

 


 

 
 (2.4) 

This equation indicates the relation between the applied field and the response field. Thus, 

define the polarizability of the solid sphere as 

 
2 1( )

( 1)

h
m a

 


 



 
 (2.5) 

 

2.2 Prolate spheroidal coordinates 

Now let us consider a more general case: the polarizability for a spheroidal particle.   

Spheroid is a geometrical object made by rotating an ellipse with its major or minor axes.  

If the rotating axis is major axis, it called prolate spheroid. If the rotating axis is minor 

axis, it called oblate spheroid, see Figure 2.1. Since the mathematical treatments of these 

two types of spheroid are quite similar, we only focus on the prolate case.  

For a prolate with its two foci locate at (0,0, )f  and (0,0, )f  in Cartesian 

coordinates, see Figure 2.1, can be described by the formula 

 
2 2 2

2 2 2
1

x y z

a a b
   , (2.6) 

where a  is the semi-minor radius and b  is the semi-major radius of the ellipse. 
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Figure 2.1 Two types of spheroid: (a) oblate and (b) prolate spheroid. f  is the focal lengh. 

 

 In this prolate spheroid system, it is more convenient to use the prolate spheroidal 

coordinates:  ,   and   [15-16]. For a point ( , , )x y z  in Cartesian coordinates can 

be transformed into a prolate spheroidal coordinates ( , , )    via: 

 1 2 1 2, ,
2 2

arctan .
f f

y

x

   
  

   
    

 
 (2.7) 

Where 

 2 2 2 2 2

1

2

2( ) , ( )x y z f x y z f         (2.8) 

are the distances measured between the point ( , , )x y z  and the two foci. The value 

ranges of these three coordinates are 1    , 1 1   , and 0 2   . The inverse 

transformation is 
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The Laplace operator in a prolate coordinates is: 
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The Laplace equation, 
2 0  , is separable in this prolate spheroidal coordinate system. 

We set the general solution of the Laplace equation as: 

 ( ) ( ), , ( ) ( )R S        (2.11) 

where ( )R   is called radius function and ( )S   is called angular function. Substitute 

into Laplace equation, and then divide by  , we have 
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  (2.12) 

Since   and 2   represent the same point in the space, it is naturally to require the 

constraint: 

 ( ) ( )2     (2.13) 

In general, we can set  
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 1, 2) , 0, ,( i me m     (2.14) 

Substitute Eq. (2.14) into Eq. (2.12), and rearrange the equation as 
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  (2.15) 

The first part depends only on  , whereas the remainder depends only on  ; 

accordingly, each must be a constant. Now let the separation constant in the form 

( 1) , and then separate Eq. (2.15) into the following two equations: 
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Note that Eqs. (2.16) and (2.17) are the associated Legendre differential equations. Thus, 

the general solutions of ( )R   and ( )S   can be expressed by the linear combination of 

the first and second kind associated Legendre functions, mP  and mQ . 

For the angular function, ( )S  , however, ( )mQ   are not convergent solutions of 

Eq. (2.17) since ( )mQ    as 1  . Thus, ( )mP   are the only possible solutions of 

( )S  , and it can be expressed as: 

 

2 2/21
( ) (1 ) ( )

2 !

( )!
( ) ( ) ( )

( )!

1

m

m m

m m m

d
P

d

m
P P

m

  


 






 

   
 


 



     (2.18) 
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for 0m  .  

For the radial function, ( )R  , both ( )mP   and ( )mQ   are the possible solutions, 

which are defined as: 

 
/22

2( )
( ) ( ) ( )

2

1

!
1

mm
m m d

P i
d


 





 
   







, (2.19) 

 

2
2

2

/2( )
( ) ( ) ln ( 1)

2 !

1
ln ( )

1 1

1

1
1

12

mm
m m d d

Q
d d

d

d

 
 

  




 

       
         

      

   
   

 






   

, (2.20) 

and 

 
( )!

( ) ( ) ( )
( )!

m m mm
P P

m
  

 


 (2.21) 

 
( )!

( ) ( )
( )!

m mm
Q Q

m
  




 (2.22) 

for 0m  . 

Along the positive real axis, the asymptotic properties of the associated Legendre 

function are [15, 17-18]: 

 

1

(2 1)!!
( )

( )!

( )!
( )

(2 1)!

for  

m m

m

P i
m

m
Q

 



  
















. (2.23) 

Thus, we can define the normalized function [15]: 
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1

( )!
( ) ( )

(2 1)!!

(2 1)!!
( ) ( )

( )!

,

,

m m m

m m

m
X i f P

Z f Q
m

f

f

 

  











. (2.24) 

Then the asymptotic properties of mX  and mZ  are 

 
1 1

( )
for  

( )

, ( )

, ( )

m

m

X f r

Z ff r

f 


     





. (2.25) 

where 

 2 2 2 2 2 1 , for f fr x y z           . (2.26) 

 

2.3 Polarizability of a prolate spheroidal particle 

Consider a prolate spheroidal particle embedded in an uniform medium. The 

dielectric functions of the particle and the host medium are denoted by 1  and 2 , 

respectively. The electrostatic potential both inside and outside the spheroid can be 

expressed as: 

 

1

,

1

,

( ) ( ) (cos ),

( ) [ ( ) ( )]

, , ,

, , , , (cos ),

m m

in m

m

m m m

out m m

m

c X Y

a Z b Xf Y

f

f

     

      

 





 




. (2.27) 

Applying the boundary conditions at the interface 1  ,  

 1 1( , , ) ( , , )in out        , (2.28) 

 

1 2

1 2

( , , ) ( , , )in out

   

 
       

 
 

 


 
, (2.29) 
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These two equations represent the continuity of the tangential component of the electric 

fields and the normal component of the electric displacements. Follow these boundary 

conditions, the relation between ma  and mb  can be obtained: 

 

1

1 1
1

1

2

1

2

,( ) / ( )
( )

( ) / ( ,

,

),

m m

m mm m

Z Z
a b

X f f

f f

X
 

  

  
   





  
    

   

 (2.30) 

Therefore, the polarizability of the order ( , )m  in this case is defined as: 

 
2 1 1 2

1 1 2 1( ) ( )
m m

m m

f C
A B

 


   

 



, (2.31) 

where 

 
( ) [ ( )] ( )!( )!

( ) , ( ) ,
( ) [ ( )] (2 1)!!(2 1)!!

m m
m

m m mm m

Q Q m m
A B C i

P P

 
 

 

  
  

  
. (2.32) 

 

2.4 The polarizability of a core-shell particle 

The polarizability of a solid sphere and spheroid are described in the previous 

sections. Now let us consider another situation: a core-shell particle embedded in a 

medium. In principle the electrostatic potential of the core-shell particle can also be 

solved by using the similarly method as shown in the previous sections. However, the 

problem now becomes more complicated since there are two interfaces in the core-shell 

case. In order to avoid this complicity for solving the boundary value problem we 

introduce an alternative approach which allows us to replace a single core-shell particle 

by an equivalent homogeneous particle. This idea comes from Li, Sun, and Chan [14], 
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hence we named this model by ―LSC model.‖ 

 

 

Figure 2.2 Illustration of the approach of the LSC model. 

 

The problem is to drive the multipolar polarizability m  of a single-layer core-shell 

particle. Figure 2.2 (a) shows a spheroidal core-shell particle embedded in a host medium 

with a dielectric function h . The dielectric function of the core and the shell are denoted 

by 1  and 2 , respectively. Our goal is to construct, for each multipole order ( , )m , an 

equivalent solid spheroidal particle with an ―effective dielectric function s

m ‖ and a 

surface morphology identical to that of the outer surface of the original shell, Figure 2.2 

(b), such that its polarizability m  is identical to that of the shell. The key features of 

the LSC model consist of the following three steps: 
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(1) Assuming such an ―effective spheroidal particle‖ is found, then we consider the 

situation when it is hypothetically placed in a medium with a dielectric function 2 , 

which is identical to that of the material of the shell, Figure 2.2 (c). For such a case, 

one can obtain the following expression for the static polarizability of the spheroidal 

particle form standard solution of the boundary value problem, see Eq. (2.31): 

  2 1 2

22 2( ) ( )

s
s m
m m s

m m m

f C
A B

 


  

 



, (2.33) 

where 2  and f  are the spheroidal coordinate indicates the outer surface of the 

core-shell particle and the foci. 

(2) Next, we go back to the original spheroidal shell and consider the case when it is 

also placed in a medium of dielectric function 2 , Figure 2.2 (d), rather than in the 

host medium h . In such a case, it is obvious that the system will simply respond 

just like a ―bare particle‖ with boundary 1   and dielectric function 1 . In a 

similar way as in (1), we then obtain the polarizability of the shell in this case as 

follows: 

  
1 1

1 2 1 1 2

1 2( ) ( )
m m

m m

f C
A B

 


 

 



 (2.34) 

Now if the ―effective particle‖ really represents the original shell, then Eqs. (2.33) 

and (2.34) must give us identical results when each of them is placed in the same 

medium of dielectric function 2 . Here by setting 1s

m m  , we can solve for s

m  

and obtain the following result:  
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  1 2
2

1 2 1 2

1 21 2 1 2

[ ( ) ( )] [ ( ) ( )]

[ ( ) ( )] [ ( ) ( )]

s m m m m
m

m m m m

A B B B

A A B A

    

  
 

  

  


  
. (2.35) 

Note that although Eq. (2.35) is only a necessary condition that the dielectric 

function s

m  of the effective particle must fulfill, the uniqueness in the boundary 

value problem solutions also guarantees it to be a sufficient condition. Hence, Eq. 

(2.35) implies that one the dielectric and geometric parameters of the original 

spheroidal shell are given, the effective s

m  can be uniquely determined. 

(3) With the original spheroidal shell now replaced by a solid particle with an effective 

s

m  in the same host medium (dielectric constant h ), the multipole polarizability 

of the original shell can then be obtained in the following form [cf. Eq. (2.33) or Eq. 

(2.34)]: 

2 1

2 1 2 1 1 2 1 1 2 2 2 2

1 1 2 1 2 2 2

2

2 2 2

2

2 1

( ) ( )

( )[ ( ) ( )] ( )[ ( ) ( )]

[ ( ) ( )][ ( ) ( )] ( ) ( )( )( )

s

m h
m m s

m m h m

h m m m h m
m

m m m h m m m h

f C
A B

A B B A
f C

A B A B A B

 


 

       

      

 

   

     










    


    

  (2.36) 

Drude resonance 

If one adopts the ideal Drude model for the metallic shell: 
2 2

2 2( ) /p      , 

then the resonance frequency of order ( , )m  can be obtained from the poles of Eq. (2.36) 

in the following form: 

 

2

p

m

m




 






 

, (2.37) 
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with 

 

2

2

4m m mm

m

m

q

p

q p r
  


 

, (2.38) 

where 

 2 1 2( )[ ( ) ( )]m m m mp A B B    , (2.39) 

 2 2 1 2 21 1( )[ ( ) ( )] ( )[ ( ) ( )]m m m m h m m mq A B A B A B          , (2.40) 

and 

 2 1 21 ( )[ ( ) ( )]m h m m mr B A A     . (2.41) 

Figure 2.3 shows the coupled resonance frequency with two different modes, 0m   and 

1m . 
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Figure 2.3 Coupled resonance modes, 0m   and 1m  , of a confocal prolate metallic nanoshell as a 

function of the aspect ratio of the core. 
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2.5 Dipolar and spherical limits 

The dipolar response can be obtained by set 1  in the previous formula. For 

prolate spheroidal shells, we have the following results, 

 
3

2 1 1 2 1 1 2 2 2 2
1

1 1 2 1 2 2 2 1 2 2 2 2

( )( ) ( )( )

3 ( )( ) ( )( )

m m m m

h h
m m m m m m m

h h

f F G G F

F G F G F G

       


       

    


    
 (2.42) 

where 

 
2 2

( ) ( )
1

1
, , 1 or 2, 0,

1
.

) ( )1(

m mj j

j j j j

m m

j j

L L
F G j m

 

   


  





 (2.43) 

Here 0 1 1( , , )L L L  or equivalently ( , , )x y zL L L  are the static geometrical factors, which 

are defined as 

 
2

0( ) ( ) ( ) ln 1
2

1
1

1
zL L

 
  








  
    

  
, (2.44) 

 
1

1 ( )
( ) ( ) ( )

2

z
x y

L
L L L


  


   . (2.45) 

Note that these factors can also be expressed in a simple form in terms of the eccentricity 

of the spheroids [11]. Note that the Cartesian components can be obtained from the 

following relations: 

 
10 114 4,h x yz h        . (2.46) 

 In the limit of a spherical shell, we consider the parameters 1 1 /r a  , 2 2 /r a   

(with 1 2r r ) and then take the limit 0a  (hence i  ).  Since for x  , we 

have 
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 1(2 1)!! ( )!
( ) , ( )

( )! (2 1)!!

m m m l m
P x i x Q x x

m l

   
 

 
 (2.47) 

we obtain for both the oblate and prolate spheroidal case: 

 2 1 2 11
( ) , ( )m m m mA C B C      

    (2.48) 

Substitute Eq. (2.48) into Eq. (2.36) yields the following well-known result for a spherical 

shell [19]: 

 
2 1 2 1

2 1 2 1 2 1 1 2 2 2
2 2 1 2 1

1 2 2 1 1 2 2 2

( )[ ( 1) ] ( )[( 1) ]

[ ( 1) ][ ( 1) ] ( 1)( )( )

h h
m

h h

r r
r

r r

       


       

 


 

      


       
(2.49) 

which is independent of m . 

 

2.6 Multi-layered spheroidal “nanomatryushka” 

 For a multi-layered system of confocal spheroidal nanoshells, the LSC model can be 

applied to two of the shell surfaces at a time starting with the innermost two surfaces.  For 

a system of n-layered shell, the following recurrence relation can be established by 

generalizing the result in Eq. (2.36): 

     
     

1 1 1 1 1 1

2 1

1 1 1 1 1 1

n n n n n n n n

n h h m m n m m h m n m n m h mn

m m n n n n n n n n n n

n m h m h m m n m m m m h m n m n h

A B B A
f C

A B A B A B

           


           

     



     

    


    

  (2.50) 

where we define 

 
2 1 2 1

( ), ( )

,

n n

m m n m m n

n n n n n n

m m m m m m m m

A A B B

A C a B C a

 

    

 

   
 (2.51) 
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and the result in Eq. (2.36) is now the value for 2

m . Here n  is the n-th boundary of this 

multi-layered system. 
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Chapter 3 Dynamic Effects 

3.1 Mie theory 

In 1908 G. Mie presented a theory describing the scattering and absorption spectra of 

the spherical particle. It is known as the only exact solution to Maxwell’s equations in the 

problem relative to the particle. Here we briefly review G. Mie’s solution which is 

consider the spherical particle embedded in a uniform medium [10, 20-21]. For a 

time-harmonic electromagnetic field: 

 ( ( )

0 0

) ,t ti ie e     k x k x
E E H H  (3.1) 

propagating in a linear, isotropic, homogeneous medium have to satisfy the Maxwell’s 

equations: 

 
0,

0, i

i

  

   

 

H

H H

E E

E
 (3.2) 

These four equations may be reduced to the two wave equations: 

 

2 2

2 2

0

0

k

k

  

  

E E

H H

 (3.3) 

where 
22k    . 

Now consider a vector function ( )M c , where c  is a constant vector and 

  is a scalar function. By this definition of M  it is easy to obtain the following 
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relations: 

 0 M  (3.4) 

  22 2 2 kk        
 

M M c  (3.5) 

Therefore, M  satisfies the wave equation if   is also a solution of the wave function: 

 
22 0k     (3.6) 

Now define another vector N : 

 1k N M  (3.7) 

Thus, we have 

 
0,

0,

k

k 

 



 



NM

N

M

N M
 (3.8) 

 
2 2 2 20, 0k k     M M N N  (3.9) 

This means the properties of ( , )M N  are similarly to the electric and magnetic fields 

( , )E H , compare Eqs. (3.2) and (3.8). Thus, the problem is reduced to solve ( , )M N , 

which only need to find the solution of the scalar wave equation Eq. (3.6). The scalar 

function   is called a generating function for the vector field M  and N ; and c  is 

called the guiding or pilot vector. 

 In this problem, we take  

 ( )M r  (3.10) 

Thus, M  is everywhere tangential to any sphere, i.e., 0 r M .  
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 The scalar wave equation in spherical coordinates is 

 
2

2 2

2 2 2 22

1 1 1
sin

sin sin
0r k

r r r r r

  
 

    

      
     

      





 (3.11) 

The solutions are 

 
cos (cos ) ( )

sin (cos ) ( )

m

emn n n

m

omn n n

m P z kr

m P z kr

  

  




 (3.12) 

where the subscript e  and o  indicates the even or odd solution, respectively. nz  is 

any one of the four spherical Bessel functions nj , ny , (1)

nh , or (2)

nh . The vector fields 

M  and N  are  

 
1 1

( ), ( )

,

emn omn omne

emn emn omn omn

mn

k k

 

 

 

   

M r M r

N M N M
 (3.13) 

The explicit form may be written: 

 
(cos )ˆ ˆ(cossin

sin
) ( ) cos ( )

m
m n

n n nemn

dP
P m z

d
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Orthogonal relations 
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The orthogonal relations of vector fields are given here, one can refer C. F. Bohren’s 

book for more detail [10]. 

 0,  ,  ,  ,  em n omnd m m n n 
    M M  (3.18) 

Similarly, for the pairs ( , )omn em n N N , ( , )omn om n M N , ( , )emn em n M N  are all orthogonal 

sets for all m , m , n , and n . Another kind of the orthogonal pairs is for the same type 

but different order vector fields: ( , )emn em n M M , ( , )omn om n M M , ( , )emn em n N N , and 

( , )omn om n N N  for all m m  or n n . 

 

Spherical harmonic expansion of plane wave 

Suppose there is a plane wave incident to a spherical particle with x  polarization. 

The incident wave can be written as 
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Apply the orthogonal relations of the vector fields, the incident field can then be written 

as 
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where 
0(2 1) / ( 1)n

nE i E n n n    and the superscript (1) indicates that n nz j . The 

corresponding incident magnetic field can be obtained by 
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Similarly, the field inside the particle can be set as: 
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And also for the scattering field: 
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where the superscript (3) indicates (1)

n nz h . 

Apply the boundary conditions: 
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One can find the coefficients: 
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Where  

 (1)( ) ( ), ( ) ( )n n n nj h          (3.27) 
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Scattering cross sections 

The scattered electromagnetic energy crossing an imaginary sphere A  outside the 

particle can be obtained via consider the integration  
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where S  is the poynting vector of the scattered field. The energy of the incident plane 

wave is 
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 (3.29) 

Therefore, the scattering cross section is [10]: 
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Similarly, the extinction cross section is: 
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3.2 Modify long wavelength approximation 

Although Mie theory is an exact solution of the Maxwell’s equations, however, it is 
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very complicated for the consideration of some other geometrical particle shapes. Thus, 

there are many other approaches providing a relative simpler method for improving the 

electrostatic results. Though these methods are not the exact solution of the Maxwell’s 

equations, they give quite precise results for the situation of the particle size small than 

10% of the wavelength. Here we give a brief introduction of a model proposed by M. 

Meier and A. Wokaun in 1983 [11-12]. 

 Consider a sphere embedded in a uniform medium. According to the results of the 

weak Eshelby conjecture: for any uniform applied field the field inside the particle is 

uniform if and only if the particle is of elliptic or ellipsoidal in shape [22], the 

polarization P  inside the particle is uniform and with the relation,  

 
0( 1)(4 )dip   P E E  (3.32) 

where 0E  is the external applied field and 
dipE  is the depolarization field. The 

depolarization field due to the retarded dipole can be determined by the relation: 
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 (3.33) 

The retarded dipole here is 

 
2[ ] , [ ], [ ] [ ][ ]ikrp pe p pi p p      (3.34) 

Expand ikre  up to the order 3k , and using 
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one can find the depolarization field inside the particle generated by the dipole moment 

d dVp P , 
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For sphere, it is simply to see that 
,ddE 

  part vanished after integrate over the whole 

sphere. The result after integrate over the sphere is 
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Substitute this result into Eq. (3.32) one have  
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The term 
3(2 / 3)( 1)( )i ka   in the denominator is the radiation-damping correction to 

the electrostatic solution [23]. The term 
2( 1)( )ka   is the dynamic depolarization 

which comes from the dynamic effects. 

 

3.3 MLWA for spheroidal nanoshells 

Now let us consider this modify long wavelength approximation (MLWA) for the 

case of nanoshells. Note that the MLWA is the lowest order correction which applies only 
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to the modification of the dipolar response [Eqs. (2.42)-(2.46)] and is consistent with the 

lowest order result from the exact Mie theory [11-12].  In spite of its limitations, the 

MLWA has been found to be quite accurate for the description of a large range of 

experiments on these nano particles [5, 24-27].  

 Note that in the original formalism [11], the MLWA was derived only for the case of a 

solid spherical particle. But since in the LSC model, a spherical shell is now replaced by 

―an effective solid particle‖, the MLWA can thus be applied to shell structure as well, as 

has already been demonstrated in the original LSC paper [14].  

 Hence, in order to formulate the MLWA for spheroidal shells, we first follow Moroz 

[11] to express the static dipolar (Rayleigh) polarizability of a spheroidal particle in a host 

(of dielectric constants   and h , respectively) as follows: 
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 (3.40) 

where V is the volume of the particle, and the static geometrical factors mL are as defined 

in Eqs. (2.44) and (2.45).  Next, as shown by Moroz [11], the MLWA corrections of Meier 

and Wokaun [12] can be obtained for a spheroid by generalizing Eq. (3.40) to the following 

form:  
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, (3.41) 

where E  is the half-length of the spheroidal axis along which the electric field is applied, 
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and the generalized depolarizing factor mq  which incorporates both geometric and 

dynamic effects can be expressed as follows: 

 
2 32

4 3 4
m m m
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k V k V
q L D i

 
   , (3.42) 

where mD  is the dynamic geometrical factor as given by Moroz [11], and 2k     is 

the wave vector in free space.  Note that while the first term in Eq. (3.42) corresponds to 

the familiar static polarization term, the second and third terms give rise to the so-called 

dynamic polarization and radiation reaction which are originated from the exact 

electrodynamic fields of an oscillating dipole.  Hence by using the appropriate quantities 

    and m j m jL q   with 1,2j   corresponding to the inner and outer shells, 

respectively, into the results expressed in Eqs. (2.42) - (2.46), we can obtain the MLWA 

results for the polarizability of a spheroidal nanoshell. We give more details for both 

spheroidal and spherical geometries as follows: 

For prolate spheroidal shells: 

The dynamic geometrical factors are given by [11]: 
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 (3.43) 

Hence the MLWA corrections can be obtained by simply replacing m

jF  and m

jG  in Eqs. 

(2.42) and (2.43) by the following expressions: 
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with mq given in Eq. (3.42). 

 Although the above formalism is derived only for a single-layered nanoshell, it is 

rather straightforward to generalize it to a multi-layered stratified system of spheroidal 

shells (a ―nanomatryushka‖) in a systematic way (see Appendix II). 

Spherical limit:  

 By setting /j jr a   and let 0a , we have 
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where 2j j jx k r r    , and 1r  and 2r  are the radius of the inner and outer surfaces, 

respectively.  In this limit, we have: 
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With the results in Eqs. (3.45)–(3.47), we finally obtain the following MLWA result  

for a spherical nanoshell: 
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To our knowledge, the result in Eq. (3.48), being independent of m, has not been obtained 

before and is as significant as the corresponding one for spherical particles available in the 
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literature [5, 24-27]. 

 

3.4 Improvements on MLWA 

 While the MLWA provides a simple recipe to include the lowest order dynamic 

corrections to the static polarizability for spheroidal nanoshells as illustrated above, the 

assumption of uniform polarization inside the particle renders the approach inaccurate for 

larger size particles.  Following Stevenson [28-29] and Moroz [11], we further introduce 

a semi-empirical ―improved MLWA‖ (IMLWA) which allows the particle polarization 

along the spheroidal axis of symmetry to vary in magnitude with the angle of 

inclination   from this axis in the following form: 

  2 2 21 sinP k r P   , (3.49) 

where   is a dimensionless fitting parameter.  As a consequence, following Moroz 

[11], we obtain below a modified dynamic geometrical factor in place of the zD  in Eq. 

(3.43): 
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where the integrals over the particle volume are defined as: 
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For a general spheroidal particle, the integrals in Eq. (3.51) are given in Ref. [11].  For the 
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simple case of a spherical particle, we have 
2

2 1
n

a
I

n


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
 and 

2
1

5
zD D    . 

In the following numerical studies, we shall also use this modified dynamic 

polarization as given in (3.50) and (3.51) to illustrate how good the original MLWA can be 

improved to, in comparison with the exact electrodynamic results. 

 

3.5 Numerical results 

 In order to demonstrate the dynamical effects from our MLWA and IMLWA models 

formulated above for the optical response of a spheroidal nanoshell, we have carried out 

some numerical studies on the coupled plasmon frequencies and the extinction cross 

sections of the silver nanoshell systems studied in Ref. [8] within the context of the 

hybridization model.  The dielectric function for silver as given in Ref. [8] has the 

following form:    2 /S B i          with 5.0S  , 9.5eVB  , and 0.15eV  . 

To access the accuracy of our various long wavelength approximations, we first compared 

them with the exact electrodynamic results (Mie theory) for a spherical shell system which 

are easily available [10].   
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Figure 3.1 Comparison of the extinction cross sections obtained from the static limit, from MLWA, and 

from IMLWA against the exact Mie theory results. The results are shown for a spherical nanoshell with 

inner radius 
1r  and outer radius 

2r  which are shown on the plots. The silver nanoshell is hollow inside 

and placed in vacuum.  

 

Figure 3.1 shows the calculation of the spectrum of the extinction cross section 

 1Imext k   for a hollow silver spherical shell according to all the three approximations 

(static, MLWA, and IMLWA with 1  ) in comparison with the exact electrodynamic result 

from the Mie theory [10].  As is clear from the figure, while the exact result shows both the 

split-dipole and the quadrupole modes, all the three approximations can only show the 

split-dipole modes as expected.  Furthermore, while all of them give quite close results for 
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the frequency   of the antibonding mode, significant errors occur in   with the static 

model yielding blue-shifted resonances, and the long-wavelength approximations leading to 

red-shifted resonances for the bonding modes.  

Note that it is a rather general result that for a hollow shell, the high frequency   is 

relatively insensitive to the change in the interaction between the two individual plasmons, 

and thus retardation effects are quite insignificant for this mode. This is analogous to the 

in-phase oscillation of two coupled mechanical oscillators with characteristic frequencies 

quite insensitive to the strength of the coupling.  Note also that the blue-shifted peaks from 

static calculation also occur in a very general way, since retardation effect will lead to an 

overall weaker interaction between the cavity and the surface plasmons.  Most importantly, 

one sees the significant failure of the static approximation for such a size of the shell 

1 60 nmr   and 2 70 nmr   (predicting in this case a blue shift of ~ 20% for   and a 

peak ~ 5 times larger in value), and how the MLWA (and especially the IMLWA) can yield 

rather accurate results in comparison with the exact Mie theory.  This thus confirms the 

usefulness of the MLWA’s in the calculation of dipole extinction for nanoshells of these 

dimensions which are often encountered in experimental studies, and are not too small 

compared to the optical wavelengths used in the experiments. 

 Having established the accuracy of the MLWA’s for spherical nanoshells, we next 

apply them to the study of speroidal shells.  Figure 3.2 shows the calculation of the 
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extinction cross section for the prolate silver spheroidal shell studied in [8] with a dielectric 

core ( 9.5  ) and foci a =40 nm according to the three models: static, MLWA, and 

IMLWA. The complete geometry of the nanoshell is specified in the figure caption and the 

incident plane wave is polarized along the axis of rotational symmetry (note that our above 

formalism for the IMLWA only applies to this type of polarization).  We notice that in this 

case the high frequency modes are still relatively insensitive to the different models.  

While the ―static results‖ compare closely to those given by the hybridization model (see 

Fig. 7 in Ref. [8] ), the significance of the corrections from both the long wavelength 

models is clearly revealed and is qualitatively similar to that found in the case for spherical 

shells. Again, we expect the result from IMLWA to be closer to the exact one from 

electrodynamics. 
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Figure 3.2 Comparison of the extinction cross sections obtained in the static limit, from MLWA, and from 

IMLWA. The results are shown for a confocal prolate metallic shell with 40 nm foci and aspect ratios 1/2 

(core) and 2/3 (outer surface). The nanoshell has a hematite core ( 9.5  ) with the silver shell embedded 

in vacuum. The electric field is along the rotational symmetry axis of the spheroidal nanoshell. 

 

 Having demonstrated the significance of the MLWA’s, we next apply it to study the 

effect of different aspect ratios on the extinction of the nanoshell.  Figure 3.3 shows the 

MLWA results for the spheroidal nanoshell in Figure 3.2 except that now the inner aspect 

ratio is varied.  The polarization of the incident field is along [ 0m  , Figure 3.3 (a)] and 

perpendicular [ 1m , Figure 3.3 (b)] to the rotational axis, respectively.  For the 0m   

case, one sees similar qualitative features for the resonance frequencies as observed in the 

static HM calculation [8] such as the red-shifted bonding mode, and the almost-unchanged 
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antibonding mode with the increase of the inner aspect ratio with fixed outer ratio. 

However, the values for the cross section obtained in our MLWA are quite different from 

those obtained in the HM as expected.  For the 1m  case, Figure 3.3 (b) shows a 

stronger extinction for the antibonding mode, and the greater dependence of this resonance 

frequency on the inner aspect ratio, with a blue-shifted peak as the ratio increases.  For 

clarity, we have not shown the IMLWA results in Figure 3.3 (a) but we expect these results 

will give less red-shifted resonances, and slightly lower peak cross sections compared with 

those obtained from the MLWA as shown. 
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Figure 3.3 The extinction cross section of the confocal prolate metallic nanoshells (foci is fixed at 40 nm) 

with a fixed aspect ratio (2/3) for the outer surface and four different aspect ratios (0.2, 0.5, 0.55, and 0.6) 

for the core. The nanoshell has a hematite core ( 9.5  ) with the silver shell embedded in the vacuum. The 

electric fields are oriented parallel (a) and perpendicular (b) to the rotational symmetry axis of the 

spheroidal nanoshell. The calculation is based on the MLWA model. 
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 Finally, we also study the split eigen-frequencies using our model.  Figure 3.4 shows 

the resonance frequencies of the coupled bonding and antibonding modes according to the 

three different models for the same spheroidal shell studied in Fig. 5 of Ref. [8].  We show 

both the resonance wavelengths [Figure 3.4 (a)] and frequencies in eV [Figure 3.4 (b)] as a 

function of the inner aspect ratio of the shell.  First we point out that our results according 

to the static model reproduce identical results as obtained from the HM (compare the solid 

curves in Figure 3.4 (b) to those in Fig. 5 (c) in Ref. [8]).  Those obtained from the 

MLWA’s, however, will give red-shifted resonance frequencies in general.  These red 

shifts are particular significant for the bonding modes in the present 0m   case; and we 

have also found (not shown) that they actually become more pronounced for the 

antibonding modes in the 1m  case for this filled shell (core with 9.5  ).  In addition, 

we note that the dynamic modifications are more significant for lower inner aspect ratio of 

the shell as expected, since the effective scattering volume is greater in this case, which 

leads to a manifestation of the corrections from the finiteness of the wavelengths within the 

MLWA approach. 
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Figure 3.4 coupled resonance modes of a confocal prolate metallic nanoshell as a function of the aspect 

ratio of the core obtained from the static, MLWA, and IMLWA models, respectively. The aspect ratio of the 

outer surface and foci are fixed at 2/3 and 40 nm, respectively. The nanoshell has a hematite core ( 9.5  ) 

with the silver shell embedded in the vacuum. The electric field is along the rotational symmetry axis of the 

spheroidal nanoshell. Note that (a) is in nanometers and (b) is eV for direct comparison with the results in 

Ref. [8]. 
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3.6 Discussion and Conclusion 

 In this chapter, we have presented a systematic formulation, alternative to the 

hybridization model, for the calculation of the polarizability and coupled resonance 

frequencies of a spheroidal metallic nanoshell (i.e. nanorice).  Our effective medium 

approach generalizes the previous work (LSC, Ref. [14]) to the spheroidal geometry; 

which allows for a very efficient computation of the polarizability of the nanoshells, as 

well as the incorporation of the lowest order dynamic effects in the framework of the 

MLWA (or IMLWA) for the description of the optical properties of these nanoparticles.  

 On the other hand, while the hybridization approach is powerful in many aspects in 

the account of the plasmonic coupling within these nanoshells including the physical 

origin of the split bonding and antibonding modes; the treatment of very general geometry 

of interacting surfaces such as two external spherical surfaces, two non-concentric 

surfaces;…etc.; it will be rather nontrivial for it to go beyond the strictly static formulation 

based on the Coulomb interaction between the uncoupled plasmons, and to account for 

effects due to the finiteness of the optical wavelengths used in various spectroscopy 

experiments.  

 In a wide range of optical experiments involving these metallic nanoshells, it is likely 

that there is no need for a complicated full electrodynamic analysis of the observations due 
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to the small sizes of these particles in comparison with the wavelengths.  Moreover, 

recent studies have reaffirmed that, the introduction of the lowest order dynamic effects in 

the form of the MLWA does provide a very good account for many of these experiments – 

in both far field [5, 24, 26-27] and near field [25] studies.  Thus our present work of 

extending this MLWA (and IMLWA) to spheroidal metallic nanoshells should be of value 

for future understanding of various optical experiments with these systems of particles of 

not-too-small sizes (say, for 10 nm < r < 100 nm); especially that our formulation not only 

yields the coupled resonance frequencies, but also the modified polarizability in a rather 

straightforward and systematic way.  Thus it will be of interest and value to pursue further 

our present approach, to see if it can also handle other more irregular geometries (e.g. 

non-concentric shells) so that it can really be established as a viable alternative to the 

hybridization model for the description of the optical response of these irregular metallic 

nanoparticles. 
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Chapter 4 Förster resonance energy transfer 

4.1 Introduction 

 The radiationless energy transfer between a donor molecule (D) and an acceptor 

molecule (A) at resonance – known as Förster resonance energy transfer (FRET) – is a 

fundamental process which is significant at close D-A separations (R ~ 2 – 6 nm), and is 

important for many photophysical and photochemical processes such as photosynthesis 

[30-31]. It is also a very useful tool as an efficient probe for studying biological systems; 

and as a rule for various spectroscopic measurements [32]. Moreover, it is a rather weak 

interaction process based on the electrostatic dipole-dipole interaction between the 

molecules which falls off in the order of R
-6

.  Hence it will be of great significance if 

mechanisms can be available through which this weak FRET process can be enhanced to 

become effective over a greater range with D and A separated over farther distances apart. 

 Since the first observation of the surface enhanced Raman scattering (SERS) effect in 

the 1970’s and the subsequent recognition of the key role played by the resonant excitation 

of the collective plasmonic motion of the free electrons in the metallic structure (e.g. on a 

rough surface) [33], huge amount of effort has been devoted by researchers from different 

fields to the study of the possibility of plasmonic enhancement for other important 
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optical/spectroscopic processes such as photochemical reactions, spontaneous 

emission,…etc [34-35].  Not surprisingly, plasmonic enhancement of FRET has also 

been studied by many people focusing on the interaction between the D and A in the 

vicinity of certain metallic structure such as a metallic cavity [36], a spherical/spheroidal 

particle [37-38], a dielectric/metallic cylinder [39], and most recently also metallic 

nanoshells [40-41].  Experiments have also been successfully carried out in the last few 

years with single- [42-43] as well as ensemble of molecules
12

 confirming the possibility of 

dramatic plasmonic enhancement of FRET using metallic nanoparticles. 

 Our present work in this chapter is to explore the possibility of enhancing FRET 

using one of the most interesting nanoparticle fabricated in the last few years – the metallic 

nanorice [6].  While the latest theoretical study [39] of RET (both Förster and the 

far-distance radiative transfer) on an infinite (2D) cylinder has revealed the significance of 

plasmonic excitations via a comparative study of a dielectric (real constant dielectric 

function  ) and a metallic cylinder (dispersive and dissipative as described by the 

Drude-Lorentz model), such phenomenon has also been noted in the literature for some 

time from the study of FRET at metallic nanoparticles [37-38, 40-41].  In particular, 

recent studies of FRET at spherical nanoshells have observed greater enhancements for the 

shell compared to those for a solid particle [41],
 
as well as the importance of higher 

multipole excitations [40-41].  Furthermore, the significance of the bonding and 
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antibonding modes from the coupling (―hybridization‖) of the surface and cavity modes, 

as well as the nonlocal optical response of the metallic shell have also been established 

[40].  However, while the spherical nanoshells admit high tunability in their bonding and 

antibonding modes via the adjustment of the size and thickness of the shell, the 

recently-fabricated (spheroidal) nanorice will be in addition capable of providing much 

greater enhanced local fields for the FRET process.  Furthermore, it may have even 

higher tunability due to the greater number of geometric parameters (e.g. the aspect ratio) 

available for adjustment.  Hence it will be of interest to calculate the FRET rate at such a 

nanorice to provide guidance for possible future experimental observations. 

 

4.2 Theoretical model 

In our present formulation, we shall model the D and A as harmonic point dipoles 

interacting directly with each other, as well as via the electromagnetic interaction mediated 

by a spheroidal metallic nanorice (Figure 4.1).   
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Figure 4.1 The geometry for the donor (D) and acceptor (A) near the nanorice, with A at various positions 

oriented normal to the spheroidal surface. 

 

To calculate the FRET rate  K  between the D and the A, we follow the original 

theory [30-31, 38] which applied the Fermi golden rule and obtain the following 

expression: 

 
  

 
 




4
2

4

( ) ( )9
( ) | ( ) |

8
DAc

K U , (4.1) 

where  A   is the absorption cross section of the acceptor,  D   the emission rate 

per unit frequency of the donor, and  U  is the interaction energy between D and A in 

the presence of the nanorice.  In principle, both the absorption and emission of the 

molecules will be modified by the presence of the nanorice. However, as discussed 

previously [40], these modifications are of higher order effects.  Hence, to first order 
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perturbation, the presence of the nanorice will only modify ( )U   which we shall study in 

the following adopting the long wavelength (electrostatic) approximation. 

 

FRET on a spheroidal solid particle 

 Before we consider the nanorice case, let us first review briefly the problem of energy 

transfer between the D and A near a solid spheroidal particle [38].  Working in spheroidal 

coordinates  , ,   , the electrostatic potential both inside and outside the particle can be 

obtained by solving the Laplace equation 2 0    [38].  For a position outside the 

particle (
2

  ), the potential can be expressed as 

 
, ,

( ) ( ) ( ) ( ) ( )
D D ind A A ind

        r r r r r , (4.2) 

where  
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is the dipolar potential associated with the isolated donor (D) or acceptor (A), and  
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 
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  (4.4) 

is the potential due to the induced charge (on the particle) caused by the donor or acceptor, 

where m

nP  and m

nQ  are the associated Legendre functions, and f is the foci of the prolate 

spheroid. Here we shall use the symbol tilde (~) for quantities in the case of solid particle to 
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distinguish from those for the nanorice.  The quantity 
nm

  in Eq. (4.4) can be obtained as 

[38] 

 
2 2

( ) ( )
h

nm nm
nm h nm

F
A B

 

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



, (4.5) 

which is a dimensionless factor determined by the geometry and the dielectric property of 

the particle ( ) and that of the host medium (
h
 ). The various coefficients in Eq. (4.5) are 

defined as follows: 
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  (4.6) 

where  '  denotes the derivative with respect to the argument as indicated. 

 

FRET on a spheroidal nanoshell 

 Next we consider the energy transfer process between the D and A in the vicinity of a 

nanorice modeled as a confocal prolate spheroidal nanoshell (Figure 4.1), where the two 

interfaces are specified by 
1

   and 
2

   in prolate spheroidal coordinates, with the 

same foci for these interfaces [8]. It is clear that a direct approach to solving the boundary 

value problem for this case will be very involved.  However, in chapter 2 or Ref. [9], we 

have discovered that an application of a previously-formulated effective medium model 

[14] can greatly simplify the mathematical description of the dielectric response of a 
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spheroidal nanoshell, and it is this approach we shall apply in our following study of the 

FRET process at a nanorice. 

 The main idea of this effective medium model is to replace the multilayer shell 

structure of different media by a homogeneous solid particle (i.e. a solid spheroid) with an 

effective dielectric function accounting for both the geometric and dielectric characteristics 

of the given shell.  By requiring this ―effective particle‖ with the shape of the external 

surface (dimension 2 ) to produce the same multipolar polarizability of the original 

spheroidal shell, in an environment when the outside medium is filled with the material of 

the shell (dielectric function 2 ) [9, 14], the effective dielectric function can be obtained as: 
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Using this result, the potential of the D-A system outside the spheroidal shell (Figure 4.1) 

can simply be obtained from the results in Eqs. (4.2)-(4.6) by replacing the dielectric 

function   by s

nm
  for each multipole order ( , )n m .  Thus we have (all quantities 

without tilde): 
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  (4.9) 
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and [9] 
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where we have made explicit use of the result in Eq. (4.7). 

The electric field 
A
E  at the acceptor position can then be obtained from the 

expression 
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Hence the interaction energy for the acceptor in the presence of both the donor and the 

nanorice is obtained as: 
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and 
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  (4.14) 

To study the energy transfer between the donor and acceptor we only have to consider the 

first two terms in Eq. (4.12), i.e. 
,AD AD ind

U U  with the latter given as in Eq. (4.14). The 
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last term in (4.12), 
,AA ind

U , is associated with the energy transfer between the acceptor and 

the nanorice which leads to modifications on the decay rates of the acceptor molecule [38].  

From this and the result in Eq. (4.1), we can now introduce the enhancement factor for the 

FRET process at a nanorice defined as: 

 

2 2

, ,1AD AD ind AD ind

AD AD

U U U
R

U U


   , (4.15) 

which measures the efficiency of the energy transfer between the D and A in the vicinity of 

the nanorice. 

 

4.3 Numerical results 

For all computations in this section, the nanorice is made by a dielectric core (hermatite, 

  
1

) covered by a silver shell and embedded in the vacuum [8]. The semi-major and 

semi-minor axes of the outer surface are fixed at 26.8 nm and 17.9 nm, respectively, and 

the dielectric function of silver is described by the following Drude model [8]: 

 


  
  
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2
( )

( )
p

s i
, (4.16) 

with 5
s
  , 9.5 eV

p
  , and  eV   . We divide our numerical studies of the 

enhancement spectrum into the following three aspects: 
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a. Effects from the nanoshell geometry 

Here we fix the outer shell geometry along with the positions and orientations of the two 

molecules D and A (see caption of Figure 4.2), but with the inner aspect ratio varied. As 

this ratio increases, the thickness of the silver shell decreases and one would expect 

cross-coupling of the plasmons at the two interfaces will become more significant.  Indeed, 

from the results of Figure 4.2, one can clearly draw the following conclusions: (i) as in the 

spherical case [40], all the shell structures (in contrast to the solid spheroid case) yield 

resonances split into the low frequency bonding and high frequency antibonding modes, 

with the splitting more pronounced as the shell gets thinner; (ii) enhancements from the 

bonding modes are in general greater (up to an order of magnitude) than the corresponding 

ones from the antibonding models, due to the relative dominance of the outer surface 

modes over the cavity modes; and (iii) multipolar resonances emerge and can be resolved 

mostly for the bonding modes except for the thinnest case (aspect ratio 0.6) where they can 

also be seen among the antibonding modes.  All these results are in qualitative consistence 

with those observed previously for a spherical nanoshell [40]. 
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Figure 4.2 Comparison of the enhancement factor ( )R   for different geometries of the nanorice. The foci 

and the outer (surface) aspect ratio are fixed at 20 nm and 2/3, respectively. The inner aspect ratios are set for 

three different values, which are 0.2, 0.4, and 0.6. The nanorice has a hematite core (
1   ) with the silver 

shell embedded in the vacuum. The donor and the acceptor are located at the two ―poles‖ at (0, 0, 30nm)  and 

(0, 0, 30nm)  in Cartesian coordinates and aligned along the z direction. 

 

b. Effects from the orientations of the molecules 

In this case, we have the donor fixed at the north pole as in Figure 4.2, but the acceptor 

moved to the equatorial position at which two orthogonal orientations (i.e., the normal n̂  

and tangential ẑ  orientations) of it are considered.  From the enhancement spectrum in 

Figure 4.3, we observe that while the multipolar feature in the solid particle case differs 

appreciably for the two molecular orientations; that for the two split resonances in the 

nanorice case is less pronounce with both the n̂  and ẑ  oriented acceptor yielding rather 
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similar resonance structure. Since here we consider a rather thin shell (with aspect ratio 

fixed at 0.6), we observe the multipolar resonance for both the bonding and antibonding 

modes as revealed in Figure 4.2. The most interesting observation from Figure 4.3 is the 

general greater enhancement obtained in the case with the D and A in a relatively 

perpendicular orientation (i.e. A along n̂  in this case). This is generally valid for both the 

solid and shell particles, except for frequencies close to the plasmon resonances, and can be 

understood from the electrostatic interaction between two arbitrarily oriented dipoles. 
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Figure 4.3 Comparison of the enhancement factor ( )R  for different molecular orientations. The 

configurations of the nanorice (at a fixed inner aspect ratio of 0.6) and the donor are as in Figure 4.2, but the 

acceptor is moved to the equatorial position at (22.36nm, 0, 0)  in Cartesian coordinates. Two different 

orientations are considered with each along the symmetry axis ( ẑ ) and perpendicular to the surface (i.e. 

along n̂ ), respectively. The solid lines indicate the results for the nanorice, where we also show the 

corresponding results (dashed lines) for a solid spheroid for comparison. 
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c. Effects from the relative positions of the molecules 

Finally we study the enhancement as a function of the relative position between the D and 

A. Here we have D fixed at the north pole and the position of A varied along a spheroidal 

surface with  =1.5.  The orientations of both molecules are all the time in the normal 

direction.  Positions of A at various angles from the positive z  axis are studied as 

indicated in Figure 4.4, from which one observed that the values of the two resonance 

frequencies remain roughly unchanged for all the angular positions of A since they are 

determined largely by the geometry and materials of the nanoshell which remain constant 

throughout.  However, it is worthwhile to note that the enhancement ratio increases as A 

and D get farther from each other due to the decrease in the strength in the direct transfer 

between them. 
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Figure 4.4 Comparison of the enhancement factor ( )R  for different relative positions between the 

molecules. The configurations of the nanorice (inner aspect ratio 0.4) and the donor are as in Figure 4.2, but 

the acceptor is varied in position along a spheroidal surface outside the nanorice. The orientations of both the 

donor and the acceptor are always perpendicular to the surface and the trajectory of the acceptor is fixed on a 

spheoridal surface with 1.5  . 

 

4.4 Conclusion 

In this chapter we have presented some model studies of the FRET process between 

two molecules in the vicinity of a metal nanorice, generalizing the previous works on 

metallic spheroidal particles [38] and spherical nanoshells [41-43].  Numerical results 

show that while FRET enhancements at spheroidal shells are comparable to the 

corresponding ones for solid spheroids, the plasmonic tunability into the bonding and 

antibonding resonance modes is much higher in the shell case.  In addition, interesting 
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dependence of the enhanced FRET on the relative orientation and position of the two 

molecules is observed. 

 Our approach is based on a effective medium theory [9, 14]  which highly simplified 

the multi-boundary value problem of the spheroidal shell structure.  Though we have so 

far only studied cases with both the molecules lying outside the nanoshell, it is possible to 

employ the present formalism to study also cases with one or both the molecules lying 

within the structure, as was done in our previous study [40].  In addition, we also have not 

studied the possible nonlocal optical response from the nanorice as we have done for the 

spherical shells [40].  Note also that even within the context of our previous effective 

medium model [9], here we cannot incorporate the modified long-wavelength 

approximation (MLWA) formulated there to improve our purely-electrostatic calculations, 

since this was formulated only for dipolar response whereas here we need to account for 

many higher-order multipoles in our study of near-field interactions for the FRET process.  

Thus it is clear that while our present modeling results should be of interest for future 

experiments to compare with; there are also rooms for future improvements in the 

theoretical modeling of the phenomenon --- one which is highly significant in many 

photophysical processes in Nature. 
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Chapter 5 Metallic Nanoshell Composites 

5.1 Introduction 

 Since its first fabrication in 1998 [44], the spherical metallic nanoshell has evolved to 

become one of the most versatile plasmonic systems with significant potential applications 

from spectroscopic enhancements to cancer therapy [45-46].  Due to its high flexibility in 

the variations of the core and shell materials as well as in the aspect ratio, it possesses high 

tunability in its plasmonic resonances covering the whole visible range and beyond.  This 

has hence motivated a large number of studies in the past decade on the fundamental 

optical properties of this system, both in experiment and in theory [45-46].  Moreover, in 

applications, both individual nanoshells and composites made of these shells are of 

significance; and it seems that the study of the optical properties of the latter has started to 

receive attentions from researchers only in the last few years [14, 47-49]. 

 It is the purpose of our present study in this chapter to report new observations from 

theoretical modeling on the optical behaviors of some of these composites which contain a 

collection of these nanoshells, dispersed randomly in the form of either isolated particles or 

in clustered state throughout an insulating solid host.  This mimics a kind of ―nanoshell 

cermets‖ and is different from the recently-studied photonic crystals composed of such 
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shells [14, 47].  The ellipsoidal shell composite studied in [48-49] is similar to ours, and 

the focus there has been on the effects from the particle shape distribution in the 

composite.  Our focus here, however, will be on the effects from particle-clustering of 

these shells, as well as from temperature variations on the optical properties of these 

composites which the previous works have not studied [48-49].  One motivation for the 

study of the temperature effects is from the recent proposition of drug-delivery applications 

via manipulations of these effects [50].  In addition, temperature dependent optical 

bistability has been reported for composites of nanoshells made of metallic core coated 

with nonlinear dielectric [51].  Previously, we have studied these temperature effects on 

the optical properties of individual isolated nanoshells in their function as spectroscopic 

enhancers [52-53].  We shall employ the same temperature model for our present study of 

the composite; and as for the particle-clustering phenomenon, we shall assume 

fractal-clusters are formed in the composite and employ the previously-available effective 

medium models in the literature.  For simplicity, we shall only consider spherical 

nanoshells in the present study. 

 

5.2 Theoretical model 

 For a system of metallic nanoshells in a solid dielectric host with the shells distributed 
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randomly either in isolated or in clustered form throughout the host as illustrated with 

various parameters specified in Figure 5.1, let us first recapitulate the essence of several 

models from previous literature which will be useful for our numerical studies in the 

present work. 

 

 

Figure 5.1 Two different distributions of the nanoshell composites. (a) The geometry of the nanoshell with 

inner and outer radius a  and b , respectively. The material of core/shell is 
2 /SiO Ag  with dielectric 

function 
1 2/  . 

 

 

a. EMT for randomly-distributed nanoshells 

According to the results of chapter 2, an individual nanoshell can be replaced by an 

effective spherical particle of the same size, see Eq. (2.35). For the spherical limitation Eq. 
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(2.35) reduce to  
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Now we can apply the well-established effective medium theory (EMT) to obtain the 

dielectric response of the composite.  For the case when the particles disperse randomly 

throughout the host (of dielectric constant h ), we have here the effective dielectric 

function   given simply by the Maxwell-Garnett (MG) model in the form [54-55]: 

 
2 2s h h

s h h

f
   

   

 


 
 (5.2) 

where f  is the volume fraction of the particles.  

 

b. EMT for clustered nanoshells 

For the case when the particles coalesce to form fractal-clusters (FC) in the host, we 

apply the differential-effective medium model available in the literature [56] and obtain the 

average dielectric function ( )R  for a spherical FC of radius R , in the limit of low 

particle concentration given implicitly by the following cubic equation: 

 

3

( ) ( )

( ) ( )
h S

S h

R b
f

b R

  

  

 
 

 
 (5.3) 

where 

 3 3 fd
R

f
b



 
   

 
 is the volume fraction of the particles in the cluster with 

fd  the 

fractal dimension of the cluster.  Note that we have explicitly stated the size of the 

effective particle (radius b ) in Eq. (5.3).  The dielectric function of the composite in this 
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case will be obtained by applying the MG theory once more to a system with the same host 

but containing a randomly distributed collection of these ―clustered particles‖ of radius R  

and dielectric constant ( )R  obtained from solving Eq. (5.3).  In addition, the 

concentration of these ―clustered particles‖ will be given by a volume fraction 

1/3( )Cf f f   , where f  is the original given volume fraction of nanoshells in the 

composite.  Hence using Eq. (5.2) with ( )S R   and Cf f , we can finally obtain 

the effective dielectric function for the whole composite with the nanoshells forming 

fractal clusters in the host dielectric. 

 

c. Model for temperature effects 

To account for the temperature effects on the optical properties of these nanoshell 

composites, we assume such effects are only significant for the metallic part of the shell 

and describe its dielectric response using the Drude model: 

 
 

2

 1 P

ci




  
 


 (5.4) 

where ( )C T is the collision frequency and ( )P T the plasma frequency, whose  

temperature dependence can be found from our previous work [52]. The collision 

frequency will have contributions from both phonon-electron and electron-electron 

scattering, as well as a surface scattering term from the two shell boundaries [52]: 
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where the surface scattering term is given by 
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with Fv  being the Fermi velocity of the metal, A  is a geometrical factor of unity order of 

magnitude, and the shell radii as functions of temperature given by 

 0 03
( ) 1b T b T T

     , …etc., in terms of the volume expansion of the metal.  Thus Eqs. 

(5.4) – (5.6) provide a model for the temperature dependence of  , which when used as 

2  for the nanoshell together with the models in b and c will describe the temperature 

variation of the optical properties for the nanoshell composite. 

 

5.3 Numerical results 

 To illustrate the above models, we have studied numerically both the temperature and 

clustering effects on a composite of silver–glass core shells in a dielectric host of 

magnesium fluoride: (core/shell/medium) = ( 2SiO / Ag / 2MgF ). The reference temperature 

0T  is set at 293 K, at which the dimensions and concentration of the shells are set with 

30 nma  , 50 nmb  , and 0.01shellf  .  The dielectric constants for the core and the 

host medium are taken as 2.25 and 1.93, respectively, and are assumed constants 

throughout; and that for the Drude metal can be found from our previous work [52] and 
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references therein.  Figure 5.2 shows both the real and imaginary parts of the nanoshell 

composite at three different temperatures as described by the MG theory.  While the 

dipolar resonances of the composite plasmon modes ( 40  nm   ) are clearly seen, they 

are slightly red-shifted and the corresponding peak dielectric constant values lowered with 

rise of temperature.  This can easily be understood by referring to the lowering of the 

metallic plasmon frequency due to the decrease in electronic density and increase in 

electronic damping at high temperatures.   
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Figure 5.2 Temperature dependence of dielectric function of nanoshell composites in MG distribution. The 

volume fraction is set at 0.01f  , and the aspect ratio is set at 30 nma   and 50 nmb  . 

 

The most unique feature of the spectra in Figure 5.2 is the weak resonance appeared at 

18  nm   , which are manifestations of the ―single-particle‖ nanoshell resonance.  This 
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has never been seen in a composite of solid particle and is unique for the nanoshell 

composite as can be seen also in the following figures.  In the solid particle case, only 

resonances for the whole composite (i.e. the strong peaks) remain. 

To confirm this, we plot in Figure 5.3 (or Figure 5.4 in logarithmic scale) comparison 

between a composite of solid spheres and shells, and this manifestation of the 

―single-particle resonances‖ can be seen only in the shell case with a very minor 

dependence on the volume fraction of the particles.  
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Figure 5.3 The imaginary part of the dielectric functions of (a) solid sphere composites and (b) nanoshell 

composites in MG distribution with different volume fraction f . The temperatures is fixed at 300 K for all 

plats. 
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Figure 5.4 Identical to the Figure 5.3 but with logarithmic scale. 

 

Figure 5.5 and Figure 5.6 show how these properties vary when the nanoshells coalesce to 

form fractal clusters.  The temperature is fixed at 300 K.  Consistent with what was 

reported previously in the literature [56], we observe here that particle-clustering among 

the nanoshells in the composite will lead to appreciable red-shifts in the SP resonance 

peak – with these shifts more dramatic for lower fractal dimensions  (i.e. greater deviation 

from 3, see Figure 5.5) and larger cluster sizes (see Figure 5.6). 
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Figure 5.5 Fraction dimension dependence of dielectric functions for nanoshell composites in FC 

distribution with the same parameters as in Figure 5.2. The cluster radius is fixed at 10R b . The 

temperature is fixed at 300 K. 
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Figure 5.6 Cluster radius dimension dependence of dielectric functions for nanoshell composites in FC 

distribution with the same parameters as in Figure 5.2. The fractal dimension fixed at 2.5fd  . The 

temperature is fixed at 300 K. 
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To possibly observer these changes in the optical properties of the nanoshell 

composite, we have plotted in Figure 5.7 the transmission spectrum at normal incidence 

through a thin film made of such composite materials – for both non-clustering (Figure 5.7 

(a)) and clustering (Figure 5.7 (b)) cases at three different temperatures.  The oscillating 

patterns shown in Figure 5.7 represent the Fabry-Perot interference of the composite 

films. Note that in our modeling of the later case, we have assumed both the fractal 

dimension and cluster size stay unchanged with the rise of temperature, an assumption 

should be reasonable for the present case with a solid host background.  While the 

transmission dips correspond well to the plasmon resonant absorption peaks in the 

dielectric functions (both single-particle and composite resonances) for both cases, it is 

observed that the rise in temperature generally decreases the transmission slightly for both 

materials; and particle-clustering will yield an additional dip in the transmission spectrum 

near the single-particle resonance frequency. 
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Figure 5.7 The temperature dependence of the transmission spectrum for nanoshell composite films in (a) 

the MG case and (b) the FC case with the same parameters as in Figure 5.2. (c) The transmission of solid 

sphere composite films in MG and FC cases. The temperature in (c) is fixed at 300 K and the thicknesses of 

all films are set at 1d m . 

 

It is also shown (Figure 5.7 (c)) how such spectrum for a solid particle composite 

differs from those for the nanoshell composite in the absence of the ―single-particle dips‖.  

Note that the additional dip mentioned in Figure 5.7 (b) also appears in Figure 5.7 (c), 

confirming its origin really from clustering of the particles [56].  From comparison 

between the results in Figure 5.7 (a) and (b), one observes the effect of particle-clustering 
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according to the FC model is to red-shift the composite resonance (at ~ 400 nm in Figure 

5.7 (a)) to a value of ~ 1000 nm in Figure 5.7 (b), and to ―create a new resonance‖ (at ~ 130 

nm) near the single-particle resonance wavelength, while leaving this latter resonance 

almost intact.  This can further be confirmed by analyzing the results in Figure 5.7 (c) for 

a composite of solid particles where no single-resonance exists.  As is clear from Figure 

5.7 (c), one can observe again that the composite resonance (at ~ 300 nm) is ―split‖ into one 

at long wavelength (~ 850 nm) and one at short wavelength (~ 130 nm) due to fractal 

clustering.  We have further confirmed that the short wavelength resonances (~ 130 nm in 

both Figure 5.7 (b) and (c)) are due to the resonance of a single cluster (radius R ); 

whereas the long wavelength ones (~ 1000 nm in Figure 5.7 (b) and 850 nm in Figure 5.7 

(c)) arise from the characteristic absorptions of the average of all these clusters.  All the 

above observations are in consistency with the results reported previously in Ref. [56]. We 

believe all these new signatures for particle-clustering and shell particles in the composite 

could be checked against experiments without too much difficulty. 

 

5.4 Conclusion 

 In this chapter, we have provided a simple model for the description of the optical 

properties of metallic nanoshell composites.  In particular, our model can account for 
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both the temperature and particle-clustering effects on these properties.  Among the 

several interesting results we obtain from our modeling such as red-shifts in plasmon 

resonances due to either temperature rise or fractal clustering of particles, we regard the 

most interesting feature revealed from our work is the persistent manifestation of 

single-particle resonances of the individual nanoshells in the spectra of the dielectric 

functions.  These resonances, while not reported in the previous study of the optical 

properties of similar core-shell particle composites [48-49], can provide a new signature 

for the optical probing of this kind of materials. 
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Chapter 6 Summary and outlook 

In this thesis we have focused on the properties of surface plasmon resonance for 

core-shell particles by using an effective medium model (LSC model).  According to 

this effective medium model we can treat the core-shell particle as an effective solid 

particle, thus, allowing us to generalize many theories form the solid particle version to 

the core-shell version. 

This effective medium model has been verified to give the exact polarizability in 

electrostatic situation as demonstrated in chapter 2. This is a consequence of uniqueness 

property of the boundary value problem in electrostatic theory, which is based on the 

solution of Laplace equation. 

When the particle is very small, typically smaller than 1% of the incident wavelength, 

we have used LSC model to obtain the exact electrostatic polarizability for spherical and 

spheroidal core-shell particles. Based on the Drude model for the metallic shell, the split 

surface plasmon resonance modes are obtained. These split resonance modes are 

determined by the materials, thickness and geometrical shapes of the core-shell particle. 

The results obtained from the LSC model are identical to those results from the 

hybridization model. 

After verified the static case, we have extended this model to the electrodynamic 
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case which is required for bigger particles. The wavelength dependence can be introduced 

by using long-wavelength approximation models such as MLWA and IMLWA. 

Combining these long-wavelength approximation models with LSC model we have been 

able to generate the wavelength dependence for the polarizability of the core-shell 

particle. In comparison with Mie theory, we have verified that this core-shell result 

generated from LSC model is much better than the static model (i.e. closer to the results 

from Mie theory). 

 In the study of the near fields from the plasmonic excitation of the nanoshells, we 

have studied the FRET process between the two dipoles near a spheroidal nanoshell. 

Large enhancements for the energy transfer due to surface plasmon resonance of the 

nanoshell have been observed. In agreement with the hybridization model, we have 

obtained the multipole resonance peaks which split into two groups corresponding to the 

two coupled bounding and anti-bounding interfacial plasmon modes. As the results have 

shown, the dominating modes depend on the positions and orientations of the two 

dipoles. 

 Finally, we have also considered the optical properties of metallic nanoshell 

composites. We have studied the fractal cluster systems with different fractal dimensions 

and cluster sizes. The results have shown three types of resonances: those from the whole 

system, those from the individual cluster, and those from the single shells. Among the 
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interesting results from our modeling, a large red-shift was observed with the decrease of 

the fractal dimension or increase of the cluster size. 

Base on the results of this thesis one can propose some further studies. For nanoshell 

composites we discussed in chapter 5, it will be interest to generalize from spherical to 

spheroidal nanoshells. It has been thought in the literature that the anisotropic nature of 

the solid spheroidal particles can be used to enhance the nonlinear response of a 

composite of these shells [57-62]. It will be interest to study several effects from a 

composite of these nanoshells. 

Another direction is to study the nonlocal effects. Since the local dielectric functions 

are usually based on the classical oscillator models, they only provide the classical 

responses. However, for the ultrasmall particles, typically smaller than 10 nm, the 

quantum effects will become more important and should not be neglected [63-67]. It will 

be easier to introduce the quantum effects via the nonlocal dielectric function than from 

solving the quantum mechanical many body Problem. According to the results we 

presented in this thesis, the LSC model may provide a simple approach to study the 

nonlocal effects for a system of multi-shell particle. 
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