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摘要: 

  這份報告中，主要是專注於瑞奇流的局部解以及給定瑞奇曲率，求解黎

曼度量的局部解。這兩個主題之證明，主要是判定他們是否分別為拋物型

與橢圓型方程，進而使用偏微分方程的已知理論求解。不過就是由於他們

並非能恰巧滿足已知理論條件,所以我們必須去修改方程使其能滿足條

件。 

  這篇報告之所有內容都是 D.M. Deturck 所得到，故詳細內容可參閱其所

著相關論文。 

 

 

 

關鍵詞: 瑞奇流、瑞奇曲率、拋物型方程、橢圓型方程、局部可解性 



Abstract

In this review, we would concentrate on two main results ”Short-time ex-

istence of Ricci flow” and ”Local existence of metrics with prescribed Ricci

curvature”. All of these materials could be found in the original papers

by D.M. Deturck.([2],[3]) Both proofs depended on whether they’re strictly

parabolic and elliptic, resp. Because ∂g
∂t

= -2Ricc(g) and Ricc′(g)h are not

strictly parabolic and elliptic, we must modify the equations (i.e. adding

some terms) to make them to satisfy the requirements. Without complete

proofs we would just point out the key steps in Chapter 3 after giving some

preliminaries.

Keywords: Ricci flow, Ricci curvature, strictly parabolic, elliptic, local solv-

ability
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1 Introduction

In 1982, R.S. Hamilton proved that if M3 is a compact three-dimensional

Riemannian manifold which admits a Riemannian metric with strictly pos-

itive Ricci curvature, then M also admits a metric of constant positive sec-

tional curvature. Hamilton used the Nash-Moser implicit-function theorem

to prove the local existence of Ricci flow.([4]) Later, in 1983, D.M. Deturck

found out that this local existence cound be deduced from the classical ex-

istence and uniqueness theorems for initial-value problems for quasilinear

parabolic systems and for systems of ODE. So Deturck improved the proof

of Hamilton in [3].

In [2], Deturck showed that local existence of metrics with prescribed

Ricci curvature. He used the similar method to show the local existence.

(i.e. adding some terms to the original equation such that the new one be-

comes an elliptic equation) And then, by performing the usual contracting

mapping iteration to prove the modified equation, it could give a solution to

the original one.

2 Preliminaries

2.1 Some equalities

In this section, we would derive some equalities which will be useful in

Chapter 3. The method of proof of the propositions is mostly deduced by

local coordinate method due to [1],[3]. So we provide another path. (Main

proofs here followed [7])

Let (M, g) be a Riemannian manifold, g = g(t) ∈ Γ(S2T ∗M) defined on

an open interval in R and h := ∂g
∂t

.

Notations:

G(T ) := T − 1

2
tr(T )g = Tij −

1

2
gij(g

stTst) (Gravitation operator)
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for T ∈ Γ(S2T ∗M).

(δh)i := (divh)i := −gst∇shti := −gsthsi;t, (div∗v)ij :=
1

2
(vi;j + vj;i)

for h ∈ Γ(S2T ∗M), v ∈ Γ(T ∗M).

(∆Lh)(X,W ) : = (∆h)(X,W ) + 2trh(R(X, ·)W, ·)− h(X,Ricc(W ))− h(W,Ricc(X))

= h s
ij;s + 2Risjth

st −Rish
s
j −Rjsh

s
i (Lichnerowicz − Laplacian)

for h ∈ Γ(S2T ∗M), Ricc(W ) := (Ricc(W, ·))].

Firstly, we give the linearization of Ricci curvature :

Proposition 1. (Variation of Ricci formula) ∂
∂t
Riccg = −1

2
[∆Lh+L(δG(h))]g].

We need some lemmas as follows:

Lemma 1. 〈Π(X, Y ), Z〉 = 1
2
[(∇Y h)(X,Z) + (∇Xh)(Y, Z) − (∇Zh)(X, Y )]

where Π(X, Y ) := ∂
∂t

(∇XY ), 〈·, ·〉 := g(·, ·).

proof.

〈Π(X, Y ), Z〉 =
∂

∂t
〈∇XY, Z〉 − h(∇XY, Z)

=
∂

∂t
[X〈Y, Z〉 − 〈Y,∇XZ〉]− h(∇XY, Z)

= [Xh(Y, Z)− h(Y,∇XZ)− g(Y,
∂

∂t
∇XZ)]− h(∇XY, Z)

= (∇Xh)(Y, Z)− 〈Π(Z,X), Y 〉.

By this identity, we have

〈Π(X, Y ), Z〉 = (∇Xh)(Y, Z)− [(∇Zh)(X, Y )− 〈Π(Y, Z), X〉]

= (∇Xh)(Y, Z)− (∇Zh)(X, Y ) + (∇Y h)(Z,X)− 〈Π(X, Y ), Z〉

=⇒ 〈Π(X, Y ), Z〉 =
1

2
[(∇Y h)(X,Z) + (∇Xh)(Y, Z)− (∇Zh)(X, Y )].

Lemma 2. ∂
∂t
R(X, Y )W = (∇Y Π)(X,W )− (∇XΠ)(Y,W ).

6



proof. By Lemma 1, we have

∂

∂t
R(X, Y )W =

∂

∂t
(∇Y∇XW −∇X∇YW +∇[X,Y ]W )

= [Π(Y,∇XW ) +∇Y (Π(X,W ))]− [Π(X,∇YW ) +∇X(Π(Y,W ))]

+ Π([X, Y ],W )

= (∇Y Π)(X,W )− (∇XΠ)(Y,W ) + Π(T (X, Y ),W )

= (∇Y Π)(X,W )− (∇XΠ)(Y,W ) where T : torsion in (M, g).

Lemma 3. ∂
∂t
Rm(X, Y,W,Z) = 1

2
[h(R(X, Y )W,Z) − h(R(X, Y )Z,W ) +

∇2
Y,Wh(X,Z)−∇2

X,Wh(Y, Z) +∇2
X,Zh(Y,W )−∇2

Y,Zh(X,W )].

proof. WLOG, may assume ∇X = 0 = ∇Y = ∇Z = ∇W at a time t, at

p ∈M .

By Lemma 2,

∂

∂t
〈R(X, Y )W,Z〉 = h(R(X, Y )W,Z) + 〈 ∂

∂t
〈R(X, Y )W,Z〉

= h(R(X, Y )W,Z) + 〈(∇Y Π)(X,W )−∇XΠ)(Y,W ), Z〉.

By Lemma 1,

〈(∇Y Π)(X,W ), Z〉 = 〈∇Y (Π(X,W )), Z〉

=
1

2
Y [(∇Wh)(X,Z) + (∇Xh)(W,Z)− (∇Zh)(X,W )]

=
1

2
[(∇Y∇Wh)(X,Z) + (∇Y∇Xh)(W,Z)− (∇Y∇Zh)(X,W )]

=
1

2
[(∇2

Y,Wh)(X,Z) + (∇2
Y,Xh)(W,Z)− (∇2

Y,Zh)(X,W )].

Hence

∂

∂t
Rm(X, Y,W,Z) = h(R(X, Y )W,Z)

+
1

2
[(∇2

Y,Wh)(X,Z)− (∇2
X,Wh)(Y, Z) + (∇2

Y,Xh)(W,Z)

− (∇2
X,Y h)(W,Z)− (∇2

Y,Zh)(X,W ) + (∇2
X,Zh)(Y,W )].
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By Ricci identity

−(∇2
X,Y h)(W,Z) + (∇2

Y,Xh)(W,Z) = −[h(R(X, Y )W,Z) + h(R(X, Y )Z,W )],

we obtain the result.

Lemma 4. ∂
∂t

(trα) = −〈h, α〉+ tr(∂α
∂t

) where α(t) ∈ Γ(⊗2T ∗M).

proof. Using the local coordinate, let

α := αijdx
i ⊗ dxj.

So

∂

∂t
(trα) =

∂

∂t
(gijαij) = −hijαij + gij

∂αij
∂t

= −〈h, α〉+ tr(
∂α

∂t
).

Let us complete the proof of Proposition 1 as follows:

proof. By Lemma 4,

∂

∂t
Ricc(X,W ) = −〈Rm(X, ·,W, ·), h〉+ tr[

∂

∂t
Rm(X, ·,W, ·)].

By Lemma 3 and Ricci identity, we have

∂

∂t
Rm(X, Y,W,Z) =

1

2
[h(R(X, Y )W,Z)− h(R(X, Y )Z,W ) + h(R(Y,W )X,Z)

+ h(R(Y,W )Z,X)] +
1

2
[(∇2

W,Y h)(X,Z)− (∇2
X,Wh)(Y, Z)

+ (∇2
X,Zh)(Y,W )− (∇2

Y,Zh)(X,W )].

We could observe that

tr(∇2
X,·h(·,W )) = −(∇δh)(X,W ), tr(∇2

X,Wh(·, ·)) = ∇2
X,W (trh) = Hess(trh)(X,W )

and

tr(∇2
·,·h(X,W )) = (∆h)(X,W ).
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Substituting these into the preceding equation, and use

tr(h(R(W, ·)·, X)) = −h(X,RicW ), tr(h(R(X, ·)W, ·)) = 〈Rm(X, ·,W, ·), h〉.

We have

∂

∂t
Ricc(X,W ) = −1

2
tr[h(R(X, ·)W, ·) + h(R(X, ·)·,W )

+ h(R(W, ·)X, ·) + h(R(W, ·)·, X)]

− 1

2
[(∇δh)(X,W ) +Hess(trh)(X,W )

+ (∇δh)(W,X) + (∆h)(X,W )].

Because

L(ω])g(X,W ) = ∇ω(X,W ) +∇ω(W,X)

and

L(δG(h))]g = L(δh)]g +Hess(trh),

by L(df)]g = L(∇f)g = 2Hess(f), we obtain the proof!

And then it’s sufficient to obtain the linearization of Bian(g,R) which

will be used in Chapter 3.

Proposition 2. If T ∈ Γ(S2T ∗M) is independent of t, then ( ∂
∂t
δG(T ))Z =

−T ((δG(h))], Z) + 〈h,∇T (·, ·, Z)− 1
2
∇ZT 〉.

Before doing the linearization, we also need some Lemmas.

Lemma 5. ∂
∂t
R = −〈Ricc, h〉+ δ2h−∆(trh).

proof. By Lemma 4,

∂R

∂t
= −〈h,Ricc〉+ tr(

∂

∂t
Ricc).

Then, by Proposition 1, we have

tr(
∂

∂t
Ricc) = −1

2
tr[∆Lh+ L(δh)]g +Hess(trh)].
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By

h(X,Ricc(W )) = −tr(h(R(W, ·)·, X)) = 〈h(X, ·), Ricc(W, ·)〉

which could be proved by orthonormal frame, and

tr(h(R(X, ·)W, ·)) = 〈Rm(X, ·,W, ·), h〉,

then

tr(∆Lh) = ∆(trh).

We also know tr(L(δh)]g) = −2δ2h and tr(Hess) = ∆ , so

∂R

∂t
= −〈h,Ricc〉+ δ2h−∆(trh).

Lemma 6. If ω(t) ∈ Γ(T ∗M), then ∂
∂t

(δω) = δ(∂ω
∂t

) + 〈h,∇ω〉 − 〈δG(h), ω〉.

proof. Because (δα)dV = ±d(∗α) and δ(fα) = −〈df, α〉 + f(δα) for f :

(M, g) −→ R, ∫
〈df, α〉dV =

∫
f(δα)dV.

So∫
(
∂

∂t
(δω))fdV = −

∫
h(df, ω)dV +

∫
〈df, ∂ω

∂t
〉dV −

∫
[(δω)f − 〈df, ω〉]1

2
(trh)dV.

The last term on the RHS is derived from Lemma 7.

We have∫
h(ω, df)dV =

∫
〈df, h(ω, ·)〉dV =

∫
fδ(h(ω, ·))dV =

∫
[〈δh, ω〉 − 〈h,∇ω〉]fdV.

The last equality of integrand is proved by local coordinate.

Let α = ω in δ(fα) = −〈df, α〉+ f(δα), α = ∂ω
∂t

in
∫
〈df, α〉dV =

∫
f(δα)dV

and α = fω, f = trh
2

in
∫
〈df, α〉dV =

∫
f(δα)dV .

So it follows that∫
[
∂

∂t
(δω) + 〈δh, ω〉 − 〈h,∇ω〉 − δ∂ω

∂t
+ 〈d(

trh

2
), ω〉]fdV = 0.
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Therefore, we have

∂

∂t
(δω) = δ

∂ω

∂t
+ 〈h,∇ω〉 − 〈δG(h), ω〉.

Lemma 7. ∂
∂t
dV = 1

2
(trh)dV .

proof. This follows from

d

dt
[log det(gij(t))] = tr[(gij(t))

−1d(gij(t))

dt
]

and

∂

∂t

√
det(gij) =

∂

∂t
(e

1
2
log(det(gij))).

Now we can complete the proof of Proposition 2 as follows:

proof. Firstly, we have

(δS)Z = δ(S(·, Z)) +
1

2
〈S, LZg〉 (1)

for S ∈ Γ(S2T ∗M), proved by local coordinate. And ∂
∂t

(LZg)(X, Y ) =

h(∇XZ, Y )+h(X,∇YZ)+(∇Zh)(X, Y ) by Lemma 1. By (1), set S = G(T ),

(
∂

∂t
δG(T ))Z =

∂

∂t
δ(G(T )(·, Z)) +

1

2

∂

∂t
〈G(T ), LZg〉.

Let us deal with the first term on the RHS.

Because G(T ) := T − 1
2
(trT )g, by Lemma 4,

∂G(T )

∂t
=

1

2
[〈h, T 〉g − (trT )h]. (2)
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Then, by Lemma 6, δ(fα) = −〈df, α〉+ f(δα) for α 1-form,

and L(δG(h))]g = L(δh)]g +Hess(trh),

∂

∂t
δ(G(T )(·, Z)) = δ

∂

∂t
(G(T )(·, Z)) + 〈h,∇(G(T )(·, Z))〉 − 〈δG(h), G(T )(·, Z)〉

= δ[
1

2
(〈h, T 〉g − (trT )h)(·, Z)] + 〈h, (∇G(T ))(·, ·, Z)〉

+ 〈h,G(T )(·,∇·Z)〉 − 〈δG(h), T (·, Z)− 1

2
(trT )g(·, Z)〉

= −1

2
Z〈h, T 〉+

1

2
〈h, T 〉δ(g(·, Z)) + h(∇(

trT

2
), Z)− 1

2
(trT )δ(h(·, Z))

+ 〈h,∇T (·, ·, Z)〉+ 〈h,−1

2
d(trT )⊗ g(·, Z)〉

+ 〈h,G(T )(·,∇·Z)〉 − T ((δG(h))], Z) +
1

2
(trT )(δG(h))Z.

Using (1) with S = g, h, we then have

∂

∂t
δ(G(T )(·, Z)) = −1

2
〈∇Zh, T 〉 −

1

2
〈∇ZT, h〉 −

1

4
〈h, T 〉tr(LZg)

− 1

2
(trT )[(δh)Z − 1

2
〈h, LZg〉] + 〈h,∇T (·, ·, Z)〉+ 〈h,G(T )(·,∇·Z)〉

− T ((δG(h))], Z) +
1

2
(trT )(δh)Z +

1

4
(trT )Z(trh)

= [−T (δG(h))], Z) + 〈h,∇T (·, ·, Z)〉 − 1

2
〈h,∇ZT 〉]−

1

2
〈∇Zh,G(T )〉

− 1

4
〈h, T 〉tr(LZg) +

1

4
(trT )〈h, LZg〉+ 〈h,G(T )(·,∇·Z)〉.

Using the similar method in Lemma 4, we have

1

2

∂

∂t
〈G(T ), LZg〉 =

1

2
〈 ∂
∂t
G(T ), LZg〉+

1

2
〈G(T ),

∂

∂t
LZg〉

− 〈h,G(T )(·,∇·Z)〉 − 〈G(T ), h(·,∇·Z)〉,

then, by (2) and ∂
∂t

(LZg) = h(∇XZ, Y ) + h(∇YZ,X) + (∇Zh)(X, Y ),

1

2

∂

∂t
〈G(T ), LZg〉 =

1

2
〈(1

2
〈h, T 〉g − 1

2
(trT )h), LZg〉+

1

2
〈G(T ), (2h(∇·Z, ·) +∇Zh)〉

− 〈h,G(T )(·,∇·Z)〉 − 〈G(T ), h(·,∇·Z)〉

=
1

4
〈h, T 〉tr(LZg)− 1

4
(trT )〈h, LZg〉

+
1

2
〈G(T ),∇Zh〉 − 〈h,G(T )(·,∇·Z)〉.
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Combining two formulas, we conclude that

(
∂

∂t
δG(T ))Z = −T ((δG(h))], Z) + 〈h,∇T (·, ·, Z)〉 − 1

2
〈h,∇ZT 〉.

2.2 The principal symbol on vector bundle

In this section, we give the generalization of notion of principle symbol

in PDE. So we also have similar results, such as existence and uniqueness of

solution of strictly parabolic equations. Then applying these to the problems:

Short-time existence of Ricci flow.

Definition 1. E: vector bundle over closed manifold M , v := vαeα ∈ Γ(E)

for local frame {eα} on E,

∂v

∂t
= L(v)

where L is a linear second order differential operator. (i.e.

L : Γ(E) −→ Γ(E)

v 7−→ [aijαβ∂i∂jv
β + biαβ∂iv

β + cαβv
β]eα.

in local coordinates {xi} and local frames {eα} on E)

σ(L) : Π−1(E) −→ Π−1(E)

(x, ξ)v 7−→ σ(L)(x, ξ)v := (aijαβξiξjv
β)eα

where Π : T ∗M −→ M , is called the principal symbol on vector bundle E

over M . The definition is equivalent to the condition: ∀(x, ξ) ∈ T ∗M, v ∈
Γ(E), φ : M −→ R with dφ(x) = ξ,

σ(L)(x, ξ)v = lim
s→∞

s−2e−sφ(x)L(esφv)(x).

Definition 2. ∂v
∂t

= L(v) is called strictly parabolic if there exists λ > 0 s.t.

〈σ(L)(x, ξ)v, v〉 ≥ λ|ξ|2|v|2

for all (x, ξ) ∈ T ∗M, v ∈ Γ(E).
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Definition 3. Let P : Γ(E) −→ Γ(E) be a quasilinear second order differ-

ential operator.

∂v

∂t
= P (v)

is called parabolic at w ∈ Γ(E) if ∂v
∂t

= [DP (w)]v is parabolic.

Example: σ(∆)(x, ξ) = |ξ|2id.

Remark: From PDE, we know that if ∂v
∂t

= P (v) is strictly parabolic at w,

then there exists ε > 0, v(t) ∈ Γ(E) for t ∈ [0, ε] s.t. ∂v
∂t

= P (v), v(0) = w.

2.3 Local solvability

In the last section, we have introduced some convection of strictly parabolic

equations on manifold which would be applied in the first topic (Theorem 1).

And then we developed some notion of elliptic equation to solve the second

topic as follows (Theorem 2).

Consider

Fj(x,D
αu) = 0 (∗)

for j ∈ Ip := {1, 2...p}, |α| ≤ r, u = (u1(x), ..., uq(x)), x ∈ Rn.

where Fj ∈ Cm+σ
x ∩ C∞Dαu.

Definition 4. (∗) is called elliptic at x0 for u0 if

Ljw :=
∑

|β|=r,k≤q

∂Fj
∂Dβuk

(x0, D
αu0)Dβwk :=

∑
|β|=r,k≤q

cjβkD
βwk for j ∈ Ip

is elliptic. (This means that ∀ξ ∈ Rn\{0}, [σLjk] : principal symbol of {Lj}
has maximal rank, where σLjk := ir

∑
|β|=r cjβkξ

β, j ∈ Ip, k ∈ Iq)

Definition 5. (∗) is called determined/overdetermined/underdetermined el-

liptic if its principal symbol is bijective/injective/surjective. u0(x) is called

an infinitesimal solution of (∗) at x0 if

Fj(x,D
αu0)|x=x0 = 0 ∀j ∈ Ip.
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To note the later description of preceding definition, this just means the

infinitesimal solution of (∗) at x0 is ”very local” solution.

Lemma 8. (Local solvability) If u0 is an infinitesimal solution of a deter-

mined or underdetermined elliptic system (∗) at x0, then for ρ sufficiently

small, there exists u ∈ Cm+r+σ which is a solution of (∗) for |x− x0| < ρ.

Remark: We would modify the context of the following proof to achieve proof

of Theorem 2 !

proof. Firstly, assume Fj(x,D
αu) is determined. WLOG., may assume u0 =

0, x0 = 0. Let v(y) be a function on B1(0), ρ ∈ R,

Φ : R× Cm+r+σ
B1(0) (Rq) −→ Cm+σ

B1(0)(R
p)

(ρ, v) 7−→ F (ρy, ρr−|α|Dα
y v).

We just claim: Φ(ρ, v) = 0 for some ρ > 0. Because

u(x) := ρrv(
x

ρ
)

on Bρ(0) gives a solution of Fj(x,D
αu) = 0.

∂Φ

∂v
(0, 0) := Φ2(0, 0) := Lj =

∑
|β|=r,k≤q

cjβkD
β for j ∈ Ip.

As such it admits a continuous linear right inverse(see[5,Lemma 9.5]):

S : Cm+σ
B1(0)(R

p) −→ Cm+r+σ
B1(0) (Rq).

By the implicit function theorem(see[6,Theorem 6.1.1]), we know that for ρ

sufficiently small,

v 7−→ v − S(Φ(ρ, v))

is a strict contraction for v near zero. The fixed point of this mapping is what

we want. Secondly, for Fj(x,D
αu) : underdetermined. Notice that the LL∗ :

determined elliptic, so the above proof could be applied to Fj(x,D
αL∗u).
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2.4 Banach submanifold of solutions of Fj(x,D
αu) = 0

We adapted notations in [8] and assumed L is underdetermined. By some

deduction, Φ (given in the preceding Lemma) is really a submersion, so we

can write

Φ : R× kerΦ2(0, 0)× Im(L∗S) −→ Cm+σ
B1(0)(R

p)

(intersection with Cm+r+σ
B1(0) (Rq) is understood on the left), and then by the

implicit function theorem in [6], there is

φ : [0, ε)× kerΦ2(0, 0) −→ Im(L∗S) ∈ C∞

that yields solutions of Fj(x,D
αu) = 0.

The submersion mapping φ satisfies F (x,Dα
xρ

r[k(x
ρ
)+φ(ρ, k)(x

ρ
)]) = 0 for

x ∈ Bρ(0), k ∈ ker(Φ2(0, 0)) near 0.

Conclude it as follows:

Lemma 9. If L := Φ2(0, 0) is the highest-order constant coefficient part of

the underdetermined elliptic system (∗) at x0 and the infinitesimal solution

u0, then for ρ sufficiently small, there is a Banach submanifold of solutions

of Fj(x,D
αu) = 0, parametrized by functions in ker(Φ2(0, 0)). �

Lemma 10. If R is nonsingular, then Bian(g,R) is an underdetermined el-

liptic operator.

Notation:

Bian(g,R) := −div(G(R)).

proof.

Because Bian′(g,R)h = Rs
m(div(G(h)))s − T qsm hqs

where T qsm := gqkgsl[
∂Rlm

∂xk
− 1

2

Rkl

∂xm
− ΓiklRim] for h ∈ S2T ∗M,

we only prove the principal symbol of div(G·) is surjective. (i.e. ∀ξ ∈
T ∗M, v ∈ T ∗M , we should solve

gst(ξsptm −
1

2
ξmpst) = vm

16



for p) So we just choose

pkl =
ξkvl + ξlvk
gstξsξt

.

We would assume two facts as follows: (Because these two facts are not

the main results in this review, we skip their proofs, but their deduction

could be referred to [2])

Fact 1. If R is nonsingular, then the infinitesimal solution of Bian(g,R) = 0

exists.

So we have the following lemma by Lemma 9.

Lemma 11. If R−1(0) exists, then for sufficiently small ρ > 0, the solu-

tions of Bian(g,R)=0 on Bρ(0) near a given infinitesimal solution g0 form a

submanifold of the Banach manifold of metrics on Bρ(0). �

3 Proofs

This chapter is dedicated to the two theorems as promised in Introduction.

3.1 Short-time existence of Ricci flow

First, by some calculation and Chapter 2.1, we know ∂g
∂t

= Q(g) :=

−2Ricc(g) on E := S2T ∗M isn’t strictly parabolic. For if, we have

σ(L)(x, ξ)h = |ξ|2h− ξ ⊗ h(ξ], ·)− h(ξ], ·)⊗ ξ + (ξ ⊗ ξ)trh

Let h := ξ ⊗ ξ, ⇒ σ(L)(x, ξ)h = 0 where ∂h
∂t

= Lh := [DQ(g)]h = ∆Lh +

L(δG(h))]g.

Theorem 1. (Short-time existence)If g0 is a smooth metric on a closed Rie-

mannian manifold M , then there exists a smooth solution g(t) to the Ricci

flow defined on some small time interval with g(0) = g0. (i.e. ∃ε > 0, g(t)

on [0, ε), s.t. ∂g
∂t

= −2Ricc(g), g(0) = g0 on [0, ε))

17



Remark: We just focus on the existence rather than uniqueness, so the

proof of uniqueness can be referred to [1,P.113∼P.116].

proof. Let T ∈ Γ(S2T ∗M) be fixed, positve definite. Denote by T the invert-

ible map Γ(T ∗M) −→ Γ(T ∗M) which is induced by T . Let

P (g) := −2Ricc(g) + L(T−1δG(T ))]g.

By some calculations, we have

∂

∂t
L(T−1δG(T ))]g = −L(δG(T ))]g + A(h,∇h)

where h := ∂g
∂t

. (That’s why we choose P (g) !)

[DP (g)]h = ∆h+ A(h,∇h) =⇒ σ(DP (g))(x, ξ)h = |ξ|2h

=⇒ ∂g

∂t
= P (g) : strictly parabolic.

There exists a family of diffeomorphisms ψt : M −→M corresponding to

(−T−1δG(T ))].

Set

g(t) := (ψ∗t g).

We have that for all g0: smooth, ∃ε > 0,∃ g(t): solution of ∂g
∂t

= −2Ricc(g), g(0) =

g0.

3.2 Local existence of metrics with prescribed Ricci
curvature

In this section, we may omit several steps of proofs of lemmas or even

not give their proofs. (It will be better to grip the main idea without tedious

deduction or details)

By observing

Ricc′(g)h = −[
1

2
∆Lh+ div∗(div(G(h)))],

Bian′(g,R)h = Rs
m(div(G(h)))s − T qsm hqs

18



where T qsm := gqkgsl[
∂Rlm

∂xk
− 1

2

Rkl

∂xm
− ΓiklRim] for h ∈ S2T ∗M,

we’ll consider the equation

Ricc(g) + div∗(R−1Bian(g,R)) = R. (∗∗)

It’s elliptic !

Fact 2. If R is invertible s.t. R(0) is diagonal and all first partial deriva-

tives of R vanish at 0, then we can choose a metric g0 of form (g0)ij = δij +

O(x2) s.t. Ricc(g0)|x=0 = R(0), Bian(g0, R)|x=0 = 0, and ∂iBian(g0, R)|x=0 =

0 for all i ∈ In.

This result would reduce some tedious calculations in latter work.

Theorem 2. If Rij is a Cm+σ(resp. C∞, Cω) tensor field(m > 2) in a

neighborhood of p on Mn (n ≥ 3) and R−1(p) exists, then there exists a met-

ric g with prescribed R as its Ricci curvature tensor locally. (More precisely,

there exists g ∈ Cm+σ(resp. C∞, Cω) : Riemann metric s.t. Ricc(g) = R

in some neighborhood of p)

proof. Because this proof is more complicated than previous ones, we divide

it into several steps and lemmas.

Outlines of the proof

Considering

Bian(g0 + h,R) = 0,

we set X to be the submanifold of solutions of Bian(g0 + h,R) = 0. By the
Lemma 11, we know that X is parametrized by ρ, k(∈ kernel of the highest-
order constant-coefficient part of the linearization of the Bianchi identity
about g0 at 0). Denote the constant-coefficient operator by

div0G0.

Let h0 := φ(ρ, 0) be the point of X corresponding to our chosen small value
of ρ where φ is defined in section 2.4 .
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Step1: Given hj for j ∈ N
′
:= N

⋃
{0}, perform the contracting iteration to

form hj.

Step2: Let hj+1 ∈ X be the projection of hj onto X by φ and the decom-
position

Cm+2+σ(S2T ∗M) = ker(div0G0)⊕ Im(div∗0S).

Firstly, we pick the special continuous linear right inverses of Bianchi op-
erator Bian(g,R) and (∗∗) operator.

Let

F (x,Dαh) := Bian(g0 + h,R)

for h ∈ S2T ∗M (defined near 0).
Let

Φ(ρ, υ) := F (ρy, ρ1−|α|Dα
y υ) on B1(0),

we obtain

Φ2(0, 0)w = R(0)div0G0(w).

Choose S s.t.

1

2
S(R(0)·)

solves the Dirichlet problem for ∆1 := −
∑

j∈In ∂
2
j as a right inverse of

Φ2(0, 0)div∗0.

Notice that why we not select S as a right inverse of Φ2(0, 0)Φ2(0, 0)∗, it’s
due to

R(0)div0G0div
∗
0(υ) =

1

2
R(0)∆1(υ).

By the implicit function theorem, there exists

φ : R× kerΦ2(0, 0) −→ Im(Φ2(0, 0)∗S)

s.t. Φ(ρ, k + φ(ρ, k)) = 0 for ρ > 0, k ∈ kerΦ2(0, 0): sufficiently small.

We have the property of φ :
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Lemma 12. φ(0, 0) = 0 = φ1(0, 0) = φ2(0, 0). �

Its proof could be deduced from Φ(ρ, k + φ(ρ, k)) = 0.

Because

Cm+σ(S2T ∗M) = ker(div0G0)⊕ Im(div∗0S),

we have that both equations

P1 : Cm+σ(S2T ∗M) −→ ker(div0G0)

P2 : Cm+σ(S2T ∗M) −→ Im(div∗0S)

are canonical projections.
So the above discussion could be concluded with a sequence :

Cm+1+σ(T ∗M)
div∗0→ Cm+σ(S2T ∗M)

Φ(ρ,−),R(0)div0G0−→ Cm−1+σ(T ∗M)
S→ Cm+1+σ(T ∗M).

From definition, we have

Φ2(0, 0) : Im(div∗0S)
'→ Cm−1+σ(T ∗M).

So these imply

P2h = div∗0S(R(0)div0G0(h)) for h ∈ Cm+σ(S2T ∗M). (3)

Let

H(x,Dαh) := Ricc(g0 + h) + div∗R−1(Bian(g0 + h,R))−R

and

Ψ(ρ, υ) := H(ρy, ρ2−|α|Dα
y υ) on B1(0).

We obtain

Ψ2(0, 0)h =
1

2
∆2h

where ∆2 is the standard Laplacian operating componentwise on h ∈ S2T ∗M .

Let T be a right inverse of Ψ2(0, 0) chosen as follows :
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Lemma 13. If m ≥ 1, then for any continuous linear right inverse S
of Φ2(0, 0)div∗0, there exists T : Cm+σ(S2T ∗M) −→ Cm+2+σ(S2T ∗M) is a
bounded linear mapping s.t. for h ∈ Cm+σ(S2T ∗M),

div0G0T (h) = S(R(0)div0G0(h))

P1(T (h)) = T (P1(h))

1

2
∆2(T (h)) = h. �

proof. (Sketch of proof of Lemma 13)
1. Let h ∈ Im(div∗0S). We set Th := div∗0S(R(0)S(Φ2(0, 0)h)).

2. Let h ∈ ker(div0G0). Let N be the fundamental solution right inverse of
1
2
∆2. This means that

N(h)ij :=

∫
B1(0)

2hij(ξ)

rn−2
dVξ

where r := |x − ξ|. Let Ni be the inverse for the (n − 1)-variable scalar
Laplacians on B1(0)

⋂
(x1, . . . , xi−1, 0, xi+1, . . . , xn).

Set

Q : Cm+2+σ
B1(0) (T ∗M) −→ Cm+2+σ

B1(0) (S2T ∗M)

v 7−→ Q(v)(x1, . . . , xn) := diag{−
∫ xi

0

vidx
i +Ni(Divi)(x

1, . . . , xi−1, 0, xi+1, . . . , xn)}.

So we set

Th := N(h)−G−1
0 Q(div0G0N(h))

where G−1
0 (h) = h− tr(h)

n−2
g0.

3. Combine 1 and 2 , we have that T is well-defined on C
m+σ

(S2T ∗M).

For all ρ > 0, h ∈ Cm+σ
B1(0)(S

2T ∗M), we define

Bh(x,D
αR) := −div(G(R))

where divergence and gravitational operators are those of metric

g0(x) + ρ2h(
x

ρ
)
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for x ∈ Bρ(0) , and let

ηρ(h)(r) := Bh(ρy, ρ
1−|α|Dα

y r)

for r ∈ Cm+σ
B1(0)(S

2T ∗M).
Note that

‖ηρ(h) + div0G0‖ −→ 0 as ρ→ 0, ‖h‖Cm+σ
B1(0)

(S2T ∗M) → 0.

and

if Bian(g,R) = 0 for ρ > 0 , g(x) = g0(x) + ρ2h(
x

ρ
), then ηρ(h)(Ψ(ρ, h)) = 0.

Let

φ(ρ, k) :=
1

ρ
φ(ρ, ρk) for ρ > 0

and X be the submanifold of R×Cm+σ
B1(0)(S

2T ∗M) consisting of points of the
form

(ρ, k + φ(ρ, k))

for ρ > 0, k ∈ ker(Φ2(0, 0)). We use this smooth submanifold X instead of
using the submanifold X in the outlines of the proof. And we set Xρ :=
X|{ρ}×Cm+σ

B1(0)
(S2T ∗M).

Let us complete the issues of convergence of iterates and verification that
the limit is what we want !

Because we are looking for a solution of Ψ(ρ, v) = 0 for some ρ > 0, that
lies on X, all of the iterates will be required to lie in Xρ.

Set

k0 := 0,

ki+1 := Nρ(ki) := ki − P1(TΨ(ρ, ki + φ(ρ, ki))).

It’s clear that {ki} ⊆ ImT
⋂
kerdiv0G0.

Let B̂ρ(0) be the ball of radius ρ centered at 0 in ker(div0G0)
⋂
Im T .

Secondly, we show that the convergence of {ki} is hold.
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Choose ε < 1 s.t.

ε‖Ψ2(0, 0)‖‖T‖‖P1‖ <
1

6
and ε‖T‖‖P1‖ <

1

6
.

We obtain that

|Ψ2(0, 0)(u− v)−Ψ(ρ, u) + Ψ(ρ, v)| < ε|u− v| if u, v ∈ Cm+σ
B1(0)(S

2T ∗M)

with |u|, |v| < δ′ for sufficiently small ρ, δ′ > 0 by MVT. ([6])

Because

lim
ρ→0

φ(ρ, k) = 0 and φ2(0, 0) = 0

by Lemma 12, we have

|k + φ(ρ, k)| < δ′ and ‖φ2(ρ, k)‖ < ε

if k ∈ ker(div0G0), |k| < δ for ρ, δ sufficiently small.

These imply the following equations

|φ(ρ, k)− φ(ρ, l)| < ε|k − l| for k, l ∈ B̂δ(0),

Nρ(k)−Nρ(l) = P1T [Ψ2(0, 0)(k − l)−Ψ(ρ, k) + Ψ(ρ, l)]− P1[TΨ2(0, 0)(φ(ρ, k)− φ(ρ, l))]

where k, l ∈ B̂δ(0), k := k + φ(ρ, k), l := l + φ(ρ, l).

So we have |Nρ(k)−Nρ(l)| ≤ 1
2
|k − l|.

May decrease ρ s.t.

|T (P1(Ψ(ρ, φ(ρ, 0))))| < δ

2
.

We obtain the proof of {ki}i∈N: converges in B̂ρ(0) for ρ sufficiently small.

Finally, we want to show that, for ρ, δ sufficiently small, if k ∈ B̂δ(0), and
Nρ(k) = k, then Ψ(ρ, k) = 0.

Because

T is a bounded isomorphism

and

‖ηρ(k) + div0G0‖ −→ 0 as ρ↘ 0, ‖k‖Cm+σ
B1(0)

(S2T ∗M) ↘ 0,
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so

|R(0)|2 · |div∗0SS(ηρ(k) + div0G0)(k)| ≤ 1

2
|Tk|

for all k, |k| < δ, for ρ, δ sufficiently small.

This follows from that |Tk| > λ|k| for some λ, so if ρ, δ sufficiently small,
then

‖ηρ(k) + div0G0‖ ≤
λ

2‖div∗0SS‖ · |R(0)|2

for |k| < δ.

It’s clear that

P2T (Ψ(ρ, k)) = T (Ψ(ρ, k)).

By (3), Lemma 13 and the paragraph below it,

|P2T (Ψ(ρ, k))| = |div∗0S(R(0)div0G0TΨ(ρ, k))|
= |div∗0SSR(0)2[ηρ(k) + div0G0]Ψ(ρ, k)|

≤ 1

2
|TΨ(ρ, k)|.

So

TΨ(ρ, k) = 0 =⇒ Ψ(ρ, k) = 0.

Hence we complete the proof of Theorem 2.
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