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摘要

敗血症是加護病房內嚴重疾病之一，此疾病發病後可能導致患者的高死亡率

和多種併發症。由於不同的患者、生命特徵、敗血症標準和預測方法，敗血症的

早期預測是具有挑戰性。本研究旨在通過機器學習算法和深度學習方法開發一種

高準確率的早期敗血症預測模型，該模型可以提高敗血症的早期預測，藉此警示

醫生那些未來可能發展成敗血症的病患，從而降低發病率和死亡率。

此研究所開發的模型分類結果顯示 XGBoost和 CNN預測模型在分類敗血症

方面表現出很強的性能。在 MIMIC-III資料庫中，使用 SIRS標準和 XGBoost模

型在敗血症發病時的病患 AUROC約為 0.876，發病前 8小時的 AUROC為 0.780。

使用 qSOFA標準在敗血症發病時的病患 AUROC約為 0.942，發病前 8小時的

AUROC 為 0.729。CNN 預測模型使用 SIRS 標準在敗血症發病時達到了 0.996

AUROC，在發病前 8小時的 AUROC值為 0.945。

在 MIMIC-IV資料庫中，使用 SIRS標準和 XGBoost模型在敗血症發病時的

病患 AUROC約為 0.836，發病前 8小時的 AUROC為 0.902。使用 qSOFA標準

在敗血症發病時的病患 AUROC約為 0.823，發病前 8小時的 AUROC為 0.737。

CNN預測模型使用 SIRS標準在敗血症發病時達到了 0.992的 AUROC，在發病前

8小時的 AUROC值為 0.917.

和前人做法不同的地方是我將一般的數值輸入轉換成圖像輸入，並且使用

iii

http://dx.doi.org/10.6342/NTU202202105


doi:10.6342/NTU202202105

圖像輸入比起數值輸入可以得到更好的分類效果。因此，相信 CNN和 XGBoost

預測模型可以用於提前 8 小時預測敗血症發作。根據本研究的結果，CNN 和

XGBoost預測模型可以使用八個特徵提前 8小時準確預測敗血症發作。此外，僅

使用八個特徵就獲得了這些高準確率的早期預測結果。總之，結果顯示 CNN和

XGBoost預測模型在敗血症的早期預測上可以得到很好的效果。

關鍵字：敗血症、早期預測、加護病房、機器學習、深度學習
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Abstract

Sepsis is one of the severe diseases which has high mortality, multiple complications,

and cost overruns among patients treated in the intensive care unit (ICU). Because of

variations in different patient cohorts, clinical variables, sepsis criterion, and prediction

tasks, early clinical recognition of sepsis is challenging. This study aimed to develop a

high-performance early sepsis prediction model by a machine learning algorithm and deep

learning method that can improve the early detection of sepsis, thereby reducing morbidity

and mortality.

The model classification results developed in this study show that the XGBoost and

CNN prediction models exhibit strong performance in classifying sepsis. In the MIMIC-

III dataset, subjects using the SIRS criterion and the XGBoost model had an AUROC of

approximately 0.876 at the onset of sepsis and an AUROC of 0.780 eight hours before

onset. Using the qSOFA criterion had an AUROC of 0.942 at the onset of sepsis and an

AUROC of 0.729 eight hours before onset. The CNN prediction model achieved 0.996
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AUROC at the onset of sepsis using the SIRS criterion and an AUROC value of 0.945

eight hours before the onset of sepsis.

In the MIMIC-IV dataset, using the SIRS criterion and the XGBoost model had an

AUROC of 0.836 at the onset of sepsis and an AUROC of 0.902 eight hours before onset.

Subjects using the qSOFA criterion had an AUROC of approximately 0.823 at the onset

of sepsis and an AUROC of 0.737 eight hours before onset. Using the SIRS criterion,

the CNN prediction model achieved an AUROC of 0.992 at the onset of sepsis and an

AUROC value of 0.917 eight hours before the onset of sepsis.

According to the results, using eight features, the CNN andXGBoost predictionmod-

els could accurately predict sepsis onset up to eight hours in advance. Our model signif-

icantly outperformed previously existing ones. Furthermore, these high-accuracy early

prediction results were obtained using only eight features. In summary, results demon-

strated that the CNN and XGBoost prediction models could improve early sepsis detec-

tion.

Keywords: Sepsis, Early prediction, Intensive care unit, Machine learning, Deep learn-

ing
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Chapter 1 Introduction

In both the intensive care unit and the general ward, sepsis is a disease with signif-

icant death and morbidity rates [5]. Sepsis typically results from an infection and can

cause organ failure throughout the body. However, they might also be molds, viruses, or

parasites [6]. Bacteria make up the majority of infectious pathogens. Lung, brain, urinary

tract, skin, and abdominal organs are common primary infection sites in sepsis. Early

detection and management of sepsis will lower patient mortality.

SIRS (systemic inflammatory response syndrome), SOFA (sequential organ failure

assessment), and qSOFA (quick SOFA) are clinical criteria used to diagnose sepsis [2, 3].

Each of these judgment scores, however, has a disadvantage. The SIRS score looks for

four vital signs to indicate organ failure. The SIRS score’s high sensitivity and low speci-

ficity can identify critically ill patients in the ICU, but can easily misidentify those who

do not have the disease [7, 8]. This could lead to a waste of medical resources. Aside

from wasting medical resources, misdiagnosis of sepsis causes the doctor to use the in-

correct treatment method, such as aggressive fluid administration, causing the patient to

be treated inappropriately [9]. The SOFA score is calculated using six different mark-

ers, including laboratory test results and assessments of consciousness, as proof of organ

failure. Although the SOFA score is more thorough than the SIRS score in determining

organ failure, the process takes longer because laboratory test data are required. Addi-
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tionally, it can overlook the best opportunity to treat patients quickly. Three metrics are

used in the qSOFA score, two from the SOFA score and one from the SIRS score. The

time-consuming nature of assessing the SOFA score and its high specificity for predicting

patient mortality are both issues resolved by the qSOFA score [10]. While there is no es-

tablished, accepted standard, each of these three scores has advantages and disadvantages

in diagnosing sepsis. The three criteria frequently employed in the clinical definition of

sepsis were also utilized in this investigation as the sepsis diagnostic criteria.

Every minute and every second matter to the patient in the intensive care unit. A

priceless life might be lost if the patient’s prime time for treatment is missed. Numerous

patient vital signs must be considered to identify sepsis because doctors cannot care for all

patients simultaneously. So it is essential to create a high-performance machine learning

model for early sepsis detection. The intended use of this machine learning model will be

to build a warning system for monitoring patients’ vital signs and laboratory data when

admitted to the intensive care unit. This will be done with the help of the patients. Utilize

this system to collect patients’ data once they have been admitted to the ICU. Remind the

doctor when sepsis may occur, and then ask the doctor to treat the patient as quickly as

possible. This machine learning approach can lighten the load on ICU doctors. They are

using it to foretell if a patient will experience sepsis and inform medical professionals so

they can provide patients with the best care available as soon as feasible. In this study,

the models were training using two datasets. This study also used numerical data, such

as heartrate and blood pressure, and converted that data into heatmaps and deep learning

techniques for early sepsis prediction. This study has also achieved high accuracy mod-

els utilizing deep learning and machine learning techniques. According to the model’s

test findings, if it performs well at a particular moment, it suggests that sepsis may be

2
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accurately predicted.

A concise overview of the current condition of sepsis is provided in Chapter 1. In

Chapter 2, where I will organize prior studies on sepsis prediction, there will be a review

of the literature as well as a status report on the research that is currently being conducted.

My study methodology is discussed in the third chapter, which covers topics such as the

introduction of databases, patient screening, definition of sepsis, data preprocessing, ma-

chine learning algorithms employed, and the process of developing a model. In Chapter 4,

the findings of the research are presented and compared. To explain my findings in their

entirety, data visualization tools were used as well as tables. The results of my investi-

gation will be discussed and concluded in Chapter 5. In Chapter 6, this study discussed

potential developments in future research as well as the limits of this study.

3
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Chapter 2 Literature Reviews

Sepsis is one of the most deadly diseases in the intensive care unit because there

is not a single biomarker that can be used to diagnose sepsis [4]. The relationship be-

tween different vital signs must be considered when diagnosing sepsis; therefore, sepsis is

difficult to diagnose clinically and is both complicated and challenging. Vincent and Jean-

Louis also pointed out the challenges of clinically judging sepsis in their study [11]. They

pointed out that most studies have focused on changes in single indicators, and progress

in diagnosing sepsis using biomarkers has been slow. This is partly because the sepsis

response involves several players at different points during the disease process. However,

it is essential to make a rapid diagnosis of sepsis to begin appropriate therapy promptly

and provide patients with the best possible chance of survival.

In recent years, manymachine learning approaches have been implemented inmedicine

due to advances in technology and software, as well as an increase in the use of big data.

One of theseways is the early prediction of sepsis. Predictivemachine learning approaches

can be pretty helpful when looking at many data sets and identifying links between them.

An LSTM-based model was suggested by Zhang et al. to diagnose sepsis utilizing the def-

inition of Sepsis-2, which incorporates the SIRS score and probable infection [12]. Their

research could accurately predict sepsis up to four hours before the condition manifested

itself, and their model was able to attain AUROC of 0.84, which ensured both accurate

5
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prediction and clinical applicability. Chen Lin et al. presented a generalized framework

based on LSTM [13]. They used LSTM in combination with CNN and static information.

Especially noteworthy is that their proposed architecture, LSTM + CNN + Static-last,

achieved an AUC greater than 0.92 and an F1 Score greater than 0.85 using only the first

three hours of the EHRs. Burdick et al. came up with a retrospective approach by com-

bining the results of a Dascena analysis with the data from the Cabell Huntington Hospital

dataset [14]. They determined the time to the onset of sepsis as the first hour in which two

or more SIRS criteria were met along with at least one organ dysfunction criterion. This

was the definition of the time to the onset of sepsis. The effectiveness of their strategy

was assessed zero, four, six, twelve, twenty-four, and forty-eight hours before the start of

sepsis. Their model exhibited a mean AUROC of 0.931 at the beginning of severe sepsis

and 0.827 48 hours before the beginning. Table 2.1 provides a summary of the findings

from the earlier studies, and compiled the results from 11 separate investigations. Most of

the compiled information consists of retrospective studies that utilized medical databases

and early sepsis diagnoses, much like this thesis. I found that these types of studies were

very helpful. The findings of the final categorization can be affected by a wide range

of circumstances, some of which include the databases consulted, the time of early pre-

diction, and the definition of sepsis. Several of these studies, including mine, used the

MIMIC database, which can be used for comparison. Although the procedures used are

different and may not be suitable to be discussed together, the final results are compared

to determine if there are significant differences between them.

Due to the difficulty and complexity of clinical diagnosis of sepsis, as well as the

application of medical big data, the use of machine learning for early prediction of sepsis

is emerging as a viable option, and the technology that is currently available for machine

6
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Table 2.1: Summary of previous studies on sepsis onset prediction.

Authors Dataset Sepsis definition Machine learning model Hours before
sepsis onset AUROC

Zhang et al. [12] Cerner Health Facts dataset Sepsis-2 LSTM 4 0.84

Chen et al. [13] Christiana Care Health System Sepsis-3 LSTM based + CNN 3 0.92

Burdick et al. [14] Dascena Analysis Dataset Sepsis-3 MLA method 0 0.92

Futoma et al. [15] Duke University Health System Sepsis-2 MGP-RNN 0 0.91

Shashikumar et al. [16] Emory healthcare system Sepsis-3 ElasticNet 4 0.78

Guillen et al. [17] MIMIC-II Lactate concentration SVM 2 0.87

Moor et al. [18] MIMIC-III Sepsis-3 MGP-TCN 0 0.91

Desautels et al. [19] MIMIC-III Sepsis-3 InSight 4 0.74

Nemati et al. [20] MIMIC-III Sepsis-3 Artificial Intelligence
Sepsis Expert (AISE) 4 0.85

Barton et al. [21] MIMIC-III Sepsis-3 XGBoost 0 0.88

Scherpf et al. [22] MIMIC-III Sepsis-3 Recurrent neural network 3 0.81

learning can produce excellent early sepsis prediction results. These findings were found

in several studies that were just discussed. On the other hand, most research does not

validate their findings against other databases, which is necessary to generalize the pro-

posed strategy. In my study, I used two datasets, MIMIC-III and MIMIC-IV, to validate

my method and to make my method generalizable to different datasets. In addition, the

majority of the study input is made up of numerical data. The features are first sorted ac-

cording to different sorting methods and then normalized. After the feature arrangement

and normalization, the data can be converted to different heatmaps and input into the mod-

els. In my research, this study provided a novel way to input graphified numerical data,

which can also produce good results.

7
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Chapter 3 Methods

3.1 Research Procedure

This research aims to develop a predictive model to predict sepsis early. The research

process is shown in Figure 3.1, the dataset, machine learning method and data preprocess-

ing process used in this study are explained in this figure. First, based on Burdick et al .

[14] and collaborating physicians, this study selected eight predicted features age, systolic

blood pressure, oxygen saturation measurement, diastolic blood pressure, heart rate, tem-

perature, respiratory rate, and white blood cell count. Because diagnosing sepsis involves

determining whether or not there is evidence of organ failure, the characteristics chosen

for this study are indications of organ failure. Therefore, it is believed that using these

features to predict sepsis can achieve good results. Some overlap between these eight

traits and the three sepsis criteria may contribute to bias in my sepsis model. Because the

onset time of sepsis is determined by different criteria, it is possible that the model using a

score close to the predicted features could perform better. Fleuren et al. also classified the

characteristics of sepsis prediction [23]. They analyzed 28 kinds of research and catego-

rized each predictive feature’s usage frequency. Heart rate, respiration rate, temperature,

systolic blood pressure, oxygen saturation, white blood cell count, age, diastolic blood

pressure, mean arterial blood pressure, and blood urea nitrogen are the top 10 features

9
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ranking from the most frequent to least used. The eight features that have been chosen are

within the top 10 features according to their feature usage frequency ranking. Thus it is

appropriate to determine these features in predicting sepsis.

Then, these features were extracted according to preset nine-time points. I labeled

the time as t0 when the sepsis was presumed to have begun and then pushed it back by

eight hours, giving a total of nine-time points ranging from t0 to t−8. After preprocess-

ing the data, the numerical data were converted into heatmaps and were applied to deep

learning methods. This was because this study aimed to use a different method to forecast

sepsis and applied a graph input to produce good classification results instead of the ini-

tial numerical input. The machine learning methods are Logistic regression and XGBoost,

and the deep learning method is a convolution neural network. The data were split into

80 % training set and 20% testing set. Because of utilizing the validation data to alter the

model’s parameters to get better training results, I split some of the data were intended for

training into a separate set, which is referred to as the validation data. In the end, five-fold

cross-validation method was performed to ensure that the model was reliable. I compared

the testing results using two different datasets, three different sepsis-defining criteria, and

three different machine learning approaches.

3.2 Sepsis Definition

Sepsis means bacteria invade the human body, and the immune capacity is insuffi-

cient, causing many bacteria to multiply in the blood and produce toxins [6]. This will

damage the function of various human body organs and seriously lead to organ failure,

hypotension, or shock state. Symptoms of sepsis include fever, chills, rapid heartbeat,

10
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Figure 3.1: Flowchart of this study. The dashed box represented the machine learning
model we used in this study.

shortness of breath, and confusion. The patient will have gastrointestinal, liver, and kid-

ney dysfunction symptoms with systemic inflammatory response and thrombus formation

everywhere. Without effective treatment, the patient will eventually begin to decrease

urine output, lower blood pressure, and eventually lead to shock, or even death.

Sepsis is defined as an infection of the body plus organ failure. Three scores are

commonly used to assess organ failure: SIRS, SOFA, and qSOFA. Table 3.1 and Table 3.2

show the detailed calculation process of these three scores. According to the Third Inter-

national Consensus Conference on Definitions of Sepsis and Septic Shock in 2016, the

Sepsis-3 criteria were proposed and the original 2001 definition of the Sepsis-2 criteria

was abandoned [24, 25]. A patient with a simple infection was identified as having sepsis

by Sepsis-2 in 2001. To determine whether or not the patient has organ failure, Sepsis-2

uses the SIRS score. Sepsis is identified in a patient when the SIRS score is greater than 2,

and the patient is considered to have sepsis. The definition of sepsis according to Sepsis-3

in 2016 is the same as that according to Sepsis-2. This definition requires first determining

whether the patient has a simple infection and then determining whether the patient has
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organ failure. In contrast to Sepsis-2, Sepsis-3 uses both the qSOFA score and the SOFA

score to determine whether or not organ failure has occurred.

Therefore, three different criteria for sepsis were used to determine the time of occur-

rence of sepsis. In the diagnostic criteria of Sepsis-3, the first thing is to confirm whether

the patient is infected and then judge the evidence of organ failure according to the qSOFA

score and SOFA score. In this research, I used the evidence of organ failure directly to

evaluate sepsis without adding infection as a factor. When judging evidence of organ

failure, I not only used the qSOFA score and SOFA score but also the SIRS score was

used to believe the evidence of organ failure. I used these three scores to evaluate organ

failure judgments and compare the results of the three scores applied to different models

simultaneously.

Table 3.1: SIRS and qSOFA scores are satisfied if more than two indicators are met [2, 3].

Criteria SIRS qSOFA

Temperature (◦C) < 36 or > 38 –
Heart rate (beats/min) > 90 –
White blood cell count (103/uL) < 4 or > 12 –
Respiratory rate (breaths/min) > 20 ≥ 22
Glasgow coma scale – ≤ 14
Systolic blood pressure (mmHg) – ≤ 100

Table 3.2: SOFA score is satisfied when one gets more than two points [4].
Criteria 0 1 2 3 4

Cardiovascular MAP ≥ 70 mmHg MAP < 70 mmHg dopamine ≤ 5 μg/kg/min
dobutamine (any dose)

dopamine > 5 μg/kg/min
epinephrine ≤ 0.1 μg/kg/min

norepinephrine ≤ 0.1 μg/kg/min

dopamine > 15 μg/kg/min
epinephrine > 0.1 μg/kg/min

norepinephrine > 0.1 μg/kg/min

PaO2/FiO2 [mmHg] (kPa) ≥ 400 (53.3) < 400 (53.3) < 300 (40) < 200 (26.7)with
respiratory support

< 100 (13.3) with
respiratory support

Platelets×103/uL ≥ 150 < 150 < 100 < 50 < 20

Bilirubin (mg/dl) [μmol/L] < 1.2 [< 20] 1.2–1.9 [20-32] 2.0–5.9 [33-101] 6.0–11.9 [102-204] > 12.0 [> 204]

Creatinine (mg/dl) [μmol/L]
(or urine output) < 1.2 [< 110] 1.2–1.9 [110-170] 2.0–3.4 [171-299] 3.5–4.9 [300-440]

(or < 500 ml/day)
> 5.0 [> 440]

(or < 200 ml/day)

Glasgow coma scale 15 13–14 10–12 6–9 < 6

MAP, mean arterial pressure; PaO2, partial pressure of oxygen.; FiO2, fraction of inspired oxygen
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3.3 Dataset

In this work, the Medical Information Mart for Intensive Care (MIMIC)-III and IV

datasets were used [26, 27], which were built at the Beth Israel Deaconess Medical Center

in Boston. The database had pre-de-identified patients to protect patient privacy. Before

using this database, I must enter the CITI website and take the ethics exam. Before the

exam, I needed to register an account and fill in my personal information. After comple-

tion, I needed to upload a certificate on physionet website to obtain permission to use the

MIMIC database.

The MIMIC-III dataset collected more than 46,000 patients from 2001 to 2012. The

data in MIMIC-III comes from two different ICU database systems: one is the CareVue

database system [28], and the other is the MetaVision system. As the result, the same clin-

ical data may correspond to multiple different IDs. Therefore, when extracting features,

it must be noted that the features of both systems cannot be omitted. The data are stored

in different CSV tables and there are 26 CSV tables. These tables detail the patients’ data

during ICU treatment, including vital signs, admission and discharge information, treat-

ment process, nursing staff information, andmore. Each table does not exist independently

but was linked to other tables through different identifiers. The CHARTEVENTS table

and the LABEVENTS table are the mainly used CSV tables. The CHARTEVENTS tables

can extract important vital features such as heartrate, blood pressure, respiratory rate, and

more. I needed to use these features when predicting sepsis and extract the features at

nine time points. In the LABEVENTS table, laboratory test data were extracted, such as

WBC count, which must be extracted from this table. The measurement time should also

be extracted to help push back earlier features.

13
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The MIMIC-IV set collected more than 60,000 patients from 2008 to 2019. More-

over, theMIMIC-IV set only uses theMetavison system compared withMIMIC-III. Com-

pared with the confusion caused by using two database systems at the same time, using

one database system can be more precise. It is newer, and the original data storage form

has become more modular, which converts 26 original CSV tables into three modules:

“hosp”, “core”, and “icu”. Module “hosp” contains laboratory measurement data, micro-

bial cultures, medication administration, medication prescriptions, service-related data,

supplier orders, and hospital billing information. Module “core” contains demographics,

records of each admission, and records of ward admissions per admission. Module “icu”

contains intravenous and fluid inputs, procedures, information documented such as a date

or time, patient outputs, and other charted information. This makes data extraction easier.

My methods were applied to these two datasets for result comparison.

3.4 Patient Selection

Patients in the MIMIC-III and MIMIC-IV datasets were screened using the same

criteria. Adult patients 18 years of age or older with no missing data at t0 to t−8 after

imputation was the criterion employed in my research. Adults were selected since the

average data of the vital signs of adults would be different from the data of kids. This

was the reason behind why adults were chosen. Patients were screened to determine if

they had sepsis based on the ICD-9 or ICD-10 codes provided by the database. Figure 3.2

illustrates my patient selection process for the MIMIC-III and MIMIC-IV datasets.

14
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(a) (b)

Figure 3.2: Flowchart of patient selection in (a) MIMIC-III and (b) MIMIC-IV dataset.

3.5 Data Preprocessing

This study selected age, systolic blood pressure, oxygen saturation measurement, di-

astolic blood pressure, heart rate, temperature, respiratory rate, and WBC as features to

be included in the model. The features chosen from the datasets are based on Burdick

et al. [14] and the physician’s professional clinical opinion. These vital signs are evi-

dence that helps doctors in diagnosing sepsis. After selecting the features, they were from

the database. In addition to filtering the predicted features, the features were used for

calculating the SIRS score, SOFA score, and qSOFA score. The database medium was

PostgreSQL. Different IDs were used to extract the features. All utilized characteristics

are listed in Table 3.3. In addition, it is possible to deduce from the table that each mea-

surement possesses more than one ID. This is because the MIMIC database uses not one

but two different ICU database systems. The Carevue system and the Metavision sys-

tem are the two that are utilized. It is important to remember that both systems’ IDs are

included when extracting features from them.
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Table 3.3: All feature IDs that need to be extracted from the database.

Measurement CSV table Item IDs
Heartrate Chartevent 220045
Systolic blood pressure Chartevent 220179, 220050
Diastolic blood pressure Chartevent 220180, 220051
Respiratory rate Chartevent 220210, 224609
Temperature Chartevent 223761, 223762
SpO2 Chartevent 220277
White blood cell count Chartevent 220546
Platelets Labevent 51265
Bilirubin Labevent 50885

Mean arterial pressure Chartevent 456, 52, 6702, 443,
220052, 220181, 225312

Dopamine Labevent 30043, 30307
Dobutamine Labevent 30042, 30306
Epinephrine Labevent 30044, 30119, 30309
Noepinephrine Labevent 30047, 30120

GCS score Chartevent 723, 454, 184 ,
223900, 223901, 220739

Creatinine Labevent 50912
Urine output Ouputevent 40055, 43175

While extracting the data, some vital features are not reasonable, such as the heart

rate of some patients being more significant than 300. Therefore, I had to set up some

conditions to filter these variables which contained unreasonable values. Please refer to

Table 3.4 for the criteria. The research conducted by Johnson et al. [26, 27, 29], who have

made their code available on Github for use, served as the foundation for the establish-

ment of these standards. The code’s functionality covers the extraction of features, data

preparation, handling inappropriate value ranges, and many other things. According to

these criteria, more reasonable values could be left.

When trying to extract various features, I encountered numerous difficulties. The

following paragraph described in further depth the solutions found to these issues and

how to implement them because the database’s de-identified actions for the patient and

personal information were not provided in the database. When dealing with age, I have to

calculate the age from the shifted dates. Because the database had the patient’s processed
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Table 3.4: Filter criteria for features.

Measurement Filter criteria
Heartrate (bpm) 0≤ value ≤300
Systolic blood pressure (mmHg) 0≤ value ≤400
Diastolic blood pressure (mmHg) 0≤ value ≤300
Respiratory rate (breaths/min) 0≤ value ≤70
Temperature (◦F) 70≤ value ≤120
Temperature (◦C) 10≤ value ≤50
SpO2 (mmHg) 0≤ value ≤100
Mean arterial pressure (mmHg) 0≤ value ≤300
GCS eye 0≤ value ≤5
GCS mortor 0≤ value ≤6
GCS verbal 0≤ value ≤5
FiO2 (mmHg) 20≤ value ≤100

date of birth and the processed date of the first admission, I could determine the patient’s

age during their first visit by subtracting the two dates and using the difference as the

starting point. After doing the math, some of the patients aged more than 300 years old,

which is quite peculiar. As described in MIMIC database’s introduction, this group was

older than the average and the median age of 91.4. As a result, the median age was used

to replace the whole age group of patients who appeared to be more than 300 years old.

In the context of the GCS index, the MIMIC database does not directly supply this

feature; hence, it needed to be derived. Eye-opening, verbal response, and motor reaction

are the three components that make up the GCS index. The eye-opening component is the

most important. A separate measured score is assigned to each of the indicators’ scores.

The patient’s condition is consideredmore serious when the score is lower. TheGCS index

can be obtained by first obtaining these three indicators, then calculating the sum of those

three indicators, and finally obtaining the GCS index. Because the database contains two

different ICU versions, the body temperature records will contain Fahrenheit and Celsius

units. I converted all body temperature readings into Fahrenheit to standardize the unit.

There was a problem when calculating the cumulative urine volume for 24 hours,
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and it was not possible to obtain a whole day’s worth of urine data. This was because

the time interval between the urine output records was different, which caused a problem

when calculating the cumulative urine volume for 24 hours. Following a conversationwith

the attending physician, the recommended solution was to determine the amount of urine

output by taking the average of the recorded time intervals. For instance, if a patient’s

total urine output from 15:00 to 18:00 is 300 ml, that is, 300 ml/3 hr, I would average the

patient’s urine volume during these three hours, and the resultant value would be 100 ml/

hr rather than the original 300 ml/3 hr. After completing the transformation, the whole

24-hour urine data was based on each hour’s data.

After sorting out the unreasonable numerical data, nine-time points were preset to

train different prediction models. The onset time was denoted as t0 according to the def-

inition of sepsis. After determining t0, eight features were extracted mentioned above at

eight-time points, i.e., 1 to 8 hours before the onset of sepsis, and which was t−1 to t−8.

Different time points also corresponded to different numbers of patients, so the model

training results at different times would not be the same. At nine-time points, the train-

ing results of different models were compared. The visualization of the preset nine-time

points is shown in Figure 3.3, and the features are extracted at these nine-time points.

Figure 3.3: Graphical explanation of setting nine time points.

The data are stored initially in the form of long data, and there will be missing values

when being converted to a wide data format. Because the time intervals of each variable

record are different, there will be missing values of some time points when sorting vari-
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ables from different time points to uniformly sampled time points. The backward filling

method propagated the most recent value backwardly to a time point to facilitate the sub-

sequent classification task. Using this method of filling missing values, each patient’s vital

characteristics can be filled by their previous data and would not be affected by outliers or

other patient values. For example, if a patient’s heart rate is null at a certain point, I would

take the patient’s most recent measurement to fill in, which is the most recent information

the doctor can know about the patient at that time. Assuming that 15:00 is identified as

t0, Figure 3.4 depicts the real procedure following this approach. It is clear that the values

of blood pressure and body temperature are not available at this time points. Therefore,

to fill in the missing number at 15:00, I would utilize the blood pressure reading taken at

13:00 and the temperature reading taken at 12:00. The filled information represented the

latest information known at a specific time.

Figure 3.4: An example of backfill method. The dot means the data exist in these time
points.

After the data pre-processing, clean data will be obtained. The content of the data

is that there are eight features with no missing values at nine-time points, including age,

systolic blood pressure, oxygen saturation measurement, diastolic blood pressure, heart

rate, temperature, respiratory rate, and white blood cell count. I then applied different ma-

chine learning methods to these data to predict sepsis and compared the different models’

results.
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3.6 Heatmaps

Bruno and Calimeri provided evidence to show that applying heatmaps to the classi-

fication of tumors might produce valuable results [1]. They wanted to classify the disease

by judging the information provided by DNA microarrays and gene expression profiles.

They employed data on breast disease, mammography mass data, Parkinson’s disease,

breast or kidney disease, and lymphoma data in their study. Principal component analysis

was utilized in their research because determining which genes contribute to the catego-

rization is an important task. As a result, dimension deduction was accomplished through

the use of this technique. Because there are just eight predictive indicators included in my

research, dimension deduction is not necessary. Figure 3.5 is an example of a heatmap that

was used in their research. The purpose of using heatmaps was to depict the expression

level of numerous genes or characteristics across several comparable samples. In addition

to that, they classified the heatmaps using techniques such as deep neural networks and

convolution neural networks.

Figure 3.5: A heatmap example from Bruno et al. [1].

Because of the success of their study, this study endeavored to use the benefits of
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convolutional neural networks in feature extraction and object recognition by first trans-

forming the numerical data into visuals. Beginning by arranging the characteristics in

random order to generate a heatmap from my data. After that, I could construct heatmaps

at various time periods once the data had been normalized following the various attributes.

For instance, if there were data from 100 patients at t0, the data were translated into one

hundred individual heatmaps. The figures on my heatmaps and in the numerical data are

comparable to one another. In addition, various techniques were utilized to organize the

characteristics to investigate whether or not the order in which the features are listed im-

pacted the categorization findings. They were organized in one of three ways: (1) in a

random order, (2) according to the pairs of correlation coefficients, and (3) using hierar-

chical clustering.

After that, I will proceed to provide an in-depth explanation of the three different

classification procedures. The first method was called random arrange, and it created a

heat map by randomly arranging the features that make up the map, then combining and

sorting those features in random order. The models were trained with 30 combinations

of randomly sorted features and calculated the average AUROC using those results. The

second approach was called paired correlation coefficients. I determined the correlation

coefficient between each pair of characteristics, and then ranked the correlation coeffi-

cients from lowest to highest in magnitude. The correlation coefficient matrix can be

found in Figure 3.6. Then, the feature sorting option was based on the correlation coef-

ficients. The order of the sorted heatmap is as: DBP, SBP, age, heartrate, temperature,

SpO2, respiratory rate, and WBC. Hierarchical clustering [30], which can also be referred

to as hierarchical cluster analysis, is the final approach. This method is an algorithm that

groups comparable items together that are referred to as clusters. The endpoint is a collec-
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tion of clusters, each distinct from the others. The hierarchical clustering method was used

to determine whether there is a clustering phenomenon between the features. I utilized the

Euclidean distance and the complete clustering methods for my parameter setting. The

hierarchical clustering method organized the related coefficients in the same cluster by

looking at Figure 3.7. Because of this, this order was employed to build the heatmap.

DBP comes first, followed by SBP, then respiratory rate, heartrate, temperature, SpO2,

white blood cell count, and age.

Figure 3.6: Correlation coefficient matrix for eight features.

Heatmaps were built using the normalized eight life qualities, and the results of es-

tablishing the heatmaps are depicted in Figure 3.8, respectively. The number serves as the

graphic’s vertical axis, while the various life characteristics serve as the graphic’s horizon-

tal axis. These life characteristics include age, systolic blood pressure, oxygen saturation

measurement, diastolic blood pressure, heart rate, temperature, respiratory rate, and white

blood cell count. Since it is difficult to tell with the naked eye whether the picture in

this chapter represents the data of sepsis patients or ordinary individuals, a deep learning
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Figure 3.7: Hierarchical clustering for eight features.

method such as CNN was applied to categorize the heatmap.

(a)

(b)

Figure 3.8: A heatmaps example. The row represents the patient number. The column
represents features.
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3.7 Classification Models

3.7.1 Logistic regression

A classification model similar to linear regression is called logistic regression [31].

The purpose is to find a straight line referred to as a linear regression classifier that can

separate and categorize all data. The primary focus of logistic regression is to investigate

the connection between dependent and independent variables. In linear regression, the

dependent variables are often continuous variables; however, in logistic regression, the

dependent variables being examined are predominantly categorical variables, particularly

ones that may be separated into two groups. In the context of this study, the objective was

to use the electronic health record of a patient to make a binary categorization of a patient

as having sepsis or not. The logistic regression approach can assist us in finishing the

sepsis classification task while also allowing us to compare it to other machine learning

methods.

3.7.2 Long short-term memory

Long Short-Term Memory [32], LSTM refers to a type of recurrent neural network

(RNN) that was initially introduced in 1997 [33]. The one-of-a-kind architectural structure

of the LSTMmakes it well suited for the processing and forecasting of significant events in

time series that are separated by very long intervals and delays. In general, LSTM solves

various issues present in earlier RNN models, and LSTM is made up of four different

units: an input gate, an output gate, a memory cell, and a forget gate. The amount of

content that has been added has resulted in an increase in the number of parameters, as
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well as a significant rise in the level of difficulty associated with training.

The usage of LSTM was addressed to generate predictions in my literature study

[12, 13], and their researches were focused on making adjustments based on LSTM. My

research was to review the literature. Since it is clear that they can also obtain good results

in the early categorization of sepsis, I intend to use LSTM as one of the machine learning

methods when comparing my results with those of others.

3.7.3 Extreme gradient boosting

Themost popular method in Kaggle contests and the model utilized bymost victors is

Extreme Gradient Boosting, or XGBoost [34]. University of Washington Ph.D. candidate

suggested this machine learning model Chen Tianqi [34]. Since XGBoost is a boosted tree

model that combines many tree models to create a robust classifier, it is based on gradient

boosting and incorporates a few novel approaches. One may argue that it combines the

benefits of boosting and bagging. To ensure that the development of each decision tree is

connected, XGBoost maintains gradient boosting. The objective is to anticipate that the

later-generated tree will be able to fix the errors of the earlier trees. Additionally, XGboost

employs the method of random feature sampling. It generates each tree by randomly

extracting characteristics, similar to a random forest [35]. Therefore, not all traits are

considered while making decisions during the development of each tree. Additionally,

XGboost standardizes the objective function to further complicate the model. Because the

model will produce several high-order functions to suit the training data, it is susceptible

to noise and can overfit.
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3.7.4 Convolutional neural network

Convolutional Neural Network, or CNN for short, is a highly effective tool for im-

age identification [36–38]. Many image recognition models are also expanded based on

the CNN architecture, and CNN is the foundation for many of these models. It is also

important to point out that CNN is a deep learning model developed by referring to how

the human brain processes visual information. To put it simply, the image pass after the

convolution layer, pooling layer, and fully connected layer is the architecture of CNN.

The convolution layer primarily accomplishes the transformation from point compar-

ison to local comparison by executing convolution operations on the input picture carried

out by various kernels. It can get superior outcomes by researching the features of each

block, making judgments about those features, and then progressively stacking the find-

ings of extensive comparisons. The feature map is the outcome of the identification pro-

cess, which is the picture obtained after the convolution. When extracting features from

the image, the scale of the network should not affect the objective I am trying to achieve,

which is the primary idea behind the pooling layer. By scaling the problem in this way,

I may further minimize the number of parameters used by the neural network. To put it

simply, the fully connected layer is a classifier that sorts the data into categories after they

have been subjected to several convolutions and pooling operations.
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Chapter 4 Results

Duringmy investigation, the training procedurewas validated by employing five-fold

cross-validation and calculating to determine AUROC, sensitivity, and specificity. After

drawing the ROC curve, AUROC can be calculated. The purpose of calculating an ROC

curve is to analyze the degree to which the true positive rate and the false positive rate shift

in response to alterations in the decision threshold. Figure 4.1 shows the definition of a

confusion matrix. The confution matrix was built by four indicators; true positive (TP),

true negative (TN), false negative (FN), and false positive (FP). The calculation method

of true positive rate (TPR) and false positive rate (FPR) is explained as

TPR =
TP

(TP + FN)
(4.1)

and

FPR =
FP

(FP + TN)
. (4.2)

Figure 4.2 offers an example of an ROC curve. The ROC curve has a certain area

that it covers, and this area is referred to as the AUROC. The computation of the AUROC

will be immediately followed by the determination of the sensitivity and specificity of the

ideal cutoff point. Eq. (4.3) to Eq. (4.5) explain how to calculate accuracy, sensitivity and
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specificity.

Accuracy =
TN + TP

(TN + TP + FN + FP )
, (4.3)

Sensitivity =
TP

(TP + FN)
, (4.4)

and

Specificity =
TN

(TN + FP )
. (4.5)

Figure 4.1: Confusion matrix.

To facilitate comparison, it will be broken down into the following three subsections.

The outcomes of applying the machine learning method to the MIMIC-III and MIMIC-IV

datasets and three different sepsis judgment criteria will be shown in the two subsections

in Sec. 4.2 and Sec. 4.3. In Sec. 4.4, there is a discussion of a detailed comparison of

various datasets.
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Figure 4.2: An example of ROC curve.

4.1 Patient Demographics

The results of my demographic calculations, which can be found in Table 4.1, were

compiled from the MIMIC-III and MIMIC-IV repositories. The eight features used for

model prediction are listed in Table 4.1. These features are as follows: age, systolic

blood pressure, oxygen saturation measurement, diastolic blood pressure, heart rate, tem-

perature, respiration rate, and white blood cell count. According to the ICD code, the

patients were separated into those who had sepsis and those who did not have the con-

dition to determine whether or not there was a significant difference between the two

groups based on the data. From Table 4.1, there was not much difference between the two

databases regarding the mean values of the patient attributes. The mean values of vital

signs did not differ much between the septic and non-septic patients in the same dataset.
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Table 4.1: Demographics in MIMIC-III dataset and MIMIC-IV dataset. The value in the
table represents the mean (standard deviation).

MIMIC-III MIMIC-IV

Measurement Non-septic patient (n=42,632) Septic patient (n=4,913) Non-septic patient (n=61,612) Septic patient (n=5,522)

Age 64.67 (19.30) 74.13 (20.41) 64.77 (16.25) 65.41 (16.02)

Diastolic blood pressure 62.08 (15.2) 60.11 (17.23) 64.25 (15.68) 60.02 (14.88)

Systolic blood pressure 122.63 (24.68) 116.11 (22.54) 120.43 (22.76) 114.68 (22.28)

Heartrate 87.72 (18.04) 92.08 (17.56) 85.91 (18.55) 92.12 (18.81)

Temperature 91.32 (19.82) 94.64 (20.81) 98.44 (1.08) 98.45 (1.39)

SpO2 99.43 (3.92) 96.91 (2.13) 96.69 (3.53) 96.85 (3.96)

Respiratory rate 21.37 (7.09) 20.45 (6.52) 19.87 (5.91) 21.43 (6.36)

White blood cell count 12.49 (8.21) 13.41 (7.79) 11.52 (8.29) 13.36 (9.51)

This may present a hurdle in constructing models because the vital signs of sepsis and non-

septic sickness are very similar. There was no discernible difference between the patients

regarding their essential characteristics.

4.2 Numerical Model Results

4.2.1 MIMIC-III

In the MIMIC-III dataset, this study included a total of 47,545 patients, and then

retrieved varying numbers of patients based on the various sepsis diagnostic criteria and

nine distinct time points (t0 to t−8). Table 4.2 displays the number of patients suffering

from sepsis at various times. I chose an equal number of non-sepsis patients and patients

with sepsis before including them in the model so that the total number of patients would

be proportional. This means there would be an equal number of sepsis and non-sepsis

patients. Table 4.3 shows the results of different models using three sepsis criteria, three

machine learning models, and nine different time points. After doing five-fold cross-

validation, the average AUROC findings are presented in Table 4.3.
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Table 4.2: Patient numbers for whole clock prediction in MIMIC-III dataset.

Time points SIRS SOFA qSOFA
t0 4,915 1,028 4,064
t−1 677 190 83
t−2 555 155 261
t−3 480 132 212
t−4 432 121 1,396
t−5 385 109 151
t−6 341 104 211
t−7 314 95 127
t−8 288 89 903

Table 4.3: Mean AUROC of three machine learning models at whole clock prediction in
MIMIC-III dataset.

Time points SIRS SOFA qSOFA

XGBoost Logistic
Regression LSTM XGBoost Logistic

Regression LSTM XGBoost Logistic
Regression LSTM

t0 0.876 0.704 0.633 0.757 0.612 0.645 0.9420.9420.942 0.712 0.733

t−1 0.7980.7980.798 0.617 0.611 0.670 0.683 0.612 0.652 0.687 0.641

t−2 0.7910.7910.791 0.622 0.596 0.613 0.643 0.675 0.707 0.643 0.696

t−3 0.8090.8090.809 0.674 0.661 0.647 0.672 0.616 0.673 0.662 0.561

t−4 0.8220.8220.822 0.627 0.638 0.543 0.621 0.628 0.791 0.617 0.638

t−5 0.8220.8220.822 0.682 0.556 0.591 0.543 0.568 0.754 0.643 0.556

t−6 0.8770.8770.877 0.711 0.567 0.537 0.577 0.537 0.616 0.677 0.577

t−7 0.8350.8350.835 0.645 0.641 0.684 0.589 0.541 0.793 0.579 0.541

t−8 0.7800.7800.780 0.642 0.648 0.679 0.674 0.548 0.729 0.574 0.548

Furthermore, to see the results of the model training on a larger scale, this study

attempted to incorporate additional patients by either adding or deducting ten minutes

from the starting time of the hour. For instance, if the first forecast time was 120 minutes

ago, then the interval prediction will become 110 minutes to 130 minutes. And the patient

number was shown in Table 4.4. This will expand the number of samples and improve

the model’s capacity for learning new information. Table 4.5 shows the average AUROC

results of the three machine learning models.

During the process of MIMIC-III XGBoost numerical model training, to prevent the

issue of overfitting and ensure that the model is not improperly trained, an early stop was
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Table 4.4: Patient numbers for different prediction intervals in MIMIC-III dataset.

Time points SIRS SOFA qSOFA
t0 9,295 1,892 4,066
t−1 1,023 321 85
t−2 785 222 266
t−3 683 189 214
t−4 607 186 1,400
t−5 540 167 153
t−6 464 152 213
t−7 414 145 129
t−8 379 133 906

Table 4.5: Mean AUROC of three machine learning models at interval prediction in
MIMIC-III dataset.

Time points SIRS SOFA qSOFA

XGBoost Logist
Regression LSTM XGBoost Logist

Regression LSTM XGBoost Logist
Regression LSTM

t0 0.856 0.721 0.623 0.747 0.672 0.615 0.9120.9120.912 0.752 0.753

t−1 0.7680.7680.768 0.717 0.619 0.660 0.638 0.612 0.712 0.687 0.651

t−2 0.7510.7510.751 0.634 0.696 0.615 0.631 0.676 0.717 0.613 0.712

t−3 0.8190.8190.819 0.671 0.561 0.617 0.673 0.616 0.673 0.663 0.662

t−1 0.8330.8330.833 0.637 0.538 0.613 0.631 0.638 0.791 0.617 0.654

t−6 0.8130.8130.813 0.683 0.666 0.591 0.613 0.668 0.751 0.613 0.546

t−6 0.8170.8170.817 0.611 0.568 0.637 0.677 0.537 0.616 0.677 0.577

t−7 0.785 0.615 0.611 0.681 0.698 0.511 0.7930.7930.793 0.579 0.511

t−8 0.7800.7800.780 0.613 0.618 0.671 0.676 0.518 0.739 0.671 0.518

set to interrupt the training process. To end training the model, the models were set to

stop after 30 epochs in my parameter settings, then the model will cease training. The

parameters of my model’s training, as determined by the validation set, are the next thing

to consider. The following are the six parameters obtained after applying the adjustment:

learning rate = 0.30012, max delta step = 0, max depth = 6, nestimators = 100, njobs =

8, num parallel tree = 1; the remaining parameters are not listed here since there are too

many values.
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4.2.2 MIMIC-IV

In the MIMIC-IV dataset, this study included a total of 67,132 patients. I retrieved

varying numbers of patients based on the two sepsis diagnostic criteria, which were SIRS

and qSOFA, and nine distinct time points (t0 to t−8). On the other hand, from the extracted

information in the MIMIC-IV dataset, I discovered that many patients with sepsis met the

SOFA score on the first record. This was likely because these patients were already in seri-

ous condition at hospital admission. Because of this, no earlier vital signs before the onset

can be extracted to forecast sepsis if the SOFA score was utilized to judge sepsis. Hence,

two different sepsis judgment criteria were used to apply to the machine learning model.

Table 4.6 displays the number of patients suffering from sepsis at various times among

two scores. The machine learning strategies implemented on the MIMIC-IV dataset are

outlined in Table 4.7. At nine different time points, the models were used. The findings

of the 5-fold cross-validation are summarized in Table 4.7 as the average AUROC.

Table 4.6: Patient numbers for whole clock prediction in MIMIC-IV dataset.

Time points SIRS qSOFA
t0 5,521 4,975
t−1 809 1,191
t−2 687 950
t−3 590 794
t−4 542 695
t−5 495 614
t−6 450 561
t−7 413 494
t−8 377 454

Furthermore, to see the results of the model training on a larger scale, I attempted

to incorporate additional patients and shifted forward or backward ten minutes from the

starting time on the hour. For instance, if the first forecast time was 120 minutes ago, then

the interval prediction will become 110 minutes to 130 minutes. And the patient number
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Table 4.7: Mean AUROC of XGBoost model at whole clock prediction in MIMIC-IV
dataset.

Time points SIRS qSOFA
t0 0.8360.8360.836 0.823

t−1 0.8310.8310.831 0.777

t−2 0.8010.8010.801 0.789

t−3 0.8260.8260.826 0.743

t−4 0.8010.8010.801 0.784

t−5 0.8630.8630.863 0.833

t−6 0.8270.8270.827 0.818

t−7 0.8410.8410.841 0.818

t−8 0.9020.9020.902 0.737

is shown in Table 4.8. This will allow us to expand the number of samples and improve

the model’s capacity for learning more information. Table 4.9 shows the average AUROC

results of the three machine learning models.

Table 4.8: Patient numbers for different prediction intervals in MIMIC-IV dataset.

Time points SIRS qSOFA
t0 11,582 10,718
t−1 1,433 2,168
t−2 1,111 1,557
t−3 905 1,250
t−4 879 1,097
t−5 771 935
t−6 671 801
t−7 641 711
t−8 567 694

During the process of training the MIMIC-IV numerical XGBoost model, an early

stop was set to interrupt the training process to prevent the problem of overfitting and

to ensure that the model is trained correctly. This was done to ensure that the model is

not inappropriately trained. The parameter settings were set such that the training of the

model will end after 30 iterations of the process. This indicates that the model will stop
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Table 4.9: Mean AUROC of XGBoost model at interval prediction in MIMIC-IV dataset.

Time points SIRS qSOFA
t0 0.805 0.8150.8150.815

t−1 0.7870.7870.787 0.731

t−2 0.7850.7850.785 0.710

t−3 0.7330.7330.733 0.679

t−4 0.7810.7810.781 0.717

t−5 0.7770.7770.777 0.665

t−6 0.8230.8230.823 0.610

t−7 0.7610.7610.761 0.655

t−8 0.7720.7720.772 0.634

training after 30 epochs if the AUC does not show any signs of change during that time

period. The second item that needs to be considered is the training parameters used in

the model, as indicated by the validation set. After making the adjustment, the following

results for the six parameters were obtained: learning rate = 0.30012, maximum depth =

6, maximum delta step = 0, nestimators = 100, number of jobs = 8, and number of parallel

trees = 1. The other parameters are not included here since too many of them exist.

4.3 Heatmap Model Results

In this chapter, the EHR was converted into a heatmap, and then the images were

classified images using the CNN model. Three distinct configurations of features were

used to arrange the features, namely random order, pairs of correlation coefficients, and

hierarchical clustering, to validate the model’s reliability. The following findings were

obtained by applying the procedures to the MIMIC-III and MIMIC-IV datasets. These

configurations of features are shown in Section 4.3.1 and Section 4.3.2.
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4.3.1 MIMIC-III

SIRS criteria were applied to the criterion for assessing sepsis to the CNNmodel and

the model used the same number of patients in the prior numerical model for the MIMIC-

III dataset. The mean AUROC values for image classification using the CNN model are

presented in Table 4.10.

Table 4.10: AUROC of CNN model results from different feature arrange methods in
MIMIC-III dataset. Values in parentheses represent standard deviation

Time points Randomly Pairs of
correlation coefficients

Hierarchical
clustering

t0 0.996 (0.01)0.996 (0.01)0.996 (0.01) 0.994 0.932

t−1 0.832 (0.03) 0.9120.9120.912 0.904

t−2 0.915 (0.02) 0.9230.9230.923 0.921

t−3 0.933 (0.01) 0.876 0.9650.9650.965

t−4 0.923 (0.01) 0.9320.9320.932 0.917

t−5 0.919 (0.02) 0.9230.9230.923 0.876

t−6 0.819 (0.04) 0.9520.9520.952 0.877

t−7 0.817 (0.08) 0.9110.9110.911 0.909

t−8 0.821 (0.09) 0.9450.9450.945 0.884

The training results of t0 to t−8 were presented in a bar plot, as shown in Figure 4.3,

so that the three distinct approaches may be compared in a manner that is more compre-

hensible. This allowed me to thoroughly check the outcomes of my model’s training. The

chart makes it quite evident that all three of the feature arrangement approaches have the

potential to produce good outcomes, the best of which can obtain an AUROC of approx-

imately 0.99. However, after doing an in-depth comparison, it was discovered that the

correlation pairs approach may have good results at 9 different time points, whereas the

randomly arrange method can only have better classification results at t0. To make a con-
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clusion, the above results show that using the correlation pairs method in the MIMIC-III

database can obtained more consistent and better results at nine time points.

Figure 4.3: Bar plot of the heatmaps model testing result using CNN inMIMIC-III dataset.

A few time points were chosen throughout the process of model training to conduct

observations to determinewhether or notmymodel training suffers from overfitting issues.

A good fit condition occurs when the plot of training loss lowers to the point of stability

and the plot of validation loss declines to the end of stability and has a small gap with the

training loss. This indicates that the training loss and validation loss are well matched.

In an overfitting condition, the plot of the training loss curve continues to decline with

the training process, while the plot of validation loss decreases to a point and then begins

climbing again. Thismeans that themodel is already experiencing an overfitting state. The

loss curve for the MIMIC-III model training is visualized in Figure 4.4. It can be deduced

from these three images that the model has a decent fit and is convergent because both the

training loss and the validation loss are getting closer and closer to a stable state. So from

Figure 4.4, figures show that the training procedure has no problem with overfitting.
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(a) t0 (b) t−4 (c) t−8

Figure 4.4: Loss curves at three different time points.

4.3.2 MIMIC-IV

SIRS scores were applied to the criterion for defining sepsis to the CNN model and

the model used the same number of patients as the prior numerical model for the MIMIC-

IV dataset. The mean AUROC values for image classification using the CNN model are

presented in Table 4.11. The results presented in the table are the average AUROCs, and

three sorting methods are used at the same time.

Table 4.11: AUROC of CNN model results from different feature arrange methods in
MIMIC-IV dataset. Values in parentheses represent standard deviation

Time points Randomly Pairs of
correlation coefficients

Hierarchical
clustering

t0 0.984 (0.02) 0.9920.9920.992 0.923
t−1 0.953 (0.01) 0.9640.9640.964 0.874
t−2 0.942 (0.06)0.942 (0.06)0.942 (0.06) 0.915 0.854
t−3 0.914 (0.05) 0.832 0.9310.9310.931
t−4 0.864 (0.02) 0.9960.9960.996 0.921
t−5 0.885 (0.01) 0.9130.9130.913 0.902
t−6 0.874 (0.07) 0.8750.8750.875 0.852
t−7 0.874 (0.09) 0.913 0.9410.9410.941
t−8 0.832 (0.07) 0.9170.9170.917 0.882

To check the results of my model’s training more clearly, the training results of t0

to t−8 were presented in a bar plot, as shown in Figure 4.5. This allows for more precise

comparison of the three distinct approaches, which can be checked more easily. It can be
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seen from the graph that the model will perform best at t0, which is exactly as anticipated,

and that level will gradually decline with increasing time. However, after taking a closer

look at the graph, it was discovered that the training outcomes of the correlation pairs

approach performed well throughout all nine time points, and at some time points, they

performed even more favorably than the other two methods. I assumed that the correla-

tion pairs approach would be the most effective one to utilize because the features in this

method group are comparable together, so the results would be better than the other two

methods.

Figure 4.5: Bar plot of the heatmapsmodel testing result using CNN inMIMIC-IV dataset.

The outcomes of the three distinct approaches for rating features varied. According

to the results, the best results can be obtained by employing the correlation pairs at t0, t−1,

t−4, t−5, t−6 and t−8. At times t−7 and t−3, the technique that made use of hierarchical

clustering shows the best result at these time points. When using the random arrange-

ment, the best results can only be obtained at time t−2. According to the results shown

above, the conclusion is that the sorting method of correlation pairs can produce more re-
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liable and accurate classification results. This study provided that using correlation pairs

arrangement methods could earn better results than random arrangement and hierarchical

clustering methods.

4.4 Comparison

All the results are detailed in this subsection. It was possible to determine from Ta-

ble 4.12 that the XGBoost model performed better in either the MIMIC-III or MIMIC-IV

database by comparing the numerical results. My initial hypothesis was that this was

because XGBoost was a superior model to the other two models. However, different pa-

tients will be determined according to different judgment scores, which may also affect the

model’s training. Therefore, the features defined for predicting sepsis will be discussed in

detail in chapter 5. In particular, the prediction results for the complete clock are superior

to the interval prediction results. The initial anticipation was that interval prediction might

include more temporal information about the same patient. This would allow the model

to be trained more realistically and bring it closer to the clinical situation. Our results

show that using the whole clock prediction and the interval prediction do not differ by a

significant number.

And the way to compare things is by looking at how different the training outcomes

of a machine learning model are when it was applied to the two different datasets. In

the MIMIC-III dataset, t0 had the best performance among the nine time points, but in

MIMIC-IV, the result at t−8 show the best. The problem may be caused by an insufficient

quantity of samples. Therefore, more patients should be included in the related research in

the future. Once more, it has been discovered that the SIRS standard is applied to achieve
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superior results. However, in the model training results from t−2 to t−7, there is not much

difference between the two datasets. This could mean that in both training sets, good

results can be obtained using XGBoost and using SIRS criteria. This also requires a larger

sample size to validate the model generalization among two datasets.

Table 4.12: Comparison of the best training results using numerical input and XGBoost
model in the MIMIC-III and MIMIC-IV.

Dataset Timepoints Whole clock (A) or
interval prediction (B) Definition AUROC

MIMIC-III

t0 A qSOFA 0.942
t−1 A SIRS 0.798
t−2 A SIRS 0.791
t−3 B SIRS 0.819
t−4 B SIRS 0.833
t−5 A SIRS 0.822
t−6 A SIRS 0.877
t−7 A SIRS 0.835
t−8 B SIRS 0.780

MIMIC-IV

t0 A SIRS 0.836
t−1 A SIRS 0.831
t−2 A SIRS 0.801
t−3 A SIRS 0.826
t−4 A SIRS 0.801
t−5 A SIRS 0.863
t−6 A SIRS 0.827
t−7 A SIRS 0.841
t−8 A SIRS 0.902

The training results of the heatmap are being discussed here. When contrasted with

the numerical data presented in Table 4.13, the strategy of combining deep learning with

image processing could produce superior learning outcomes at any given time point. This

was found by examining Table 4.12. This is a noteworthy discovery. When the model

was training, the training curve that the convergence speed of using correlation pairs will

be faster, approximately 20 epochs, whereas the convergence speed of using randomly

selected features is approximately 70 epochs. Three different methods of feature arrange-
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ment do significantly affect the training results. Using a CNN model in conjunction with

the correlation pairs approach can, in general, produce better training outcomes and in-

crease training speed.

Table 4.13: Comparison of the best training results using graphical input in theMIMIC-III
and MIMIC-IV.

Dataset Timepoints Arrangement method AUROC

MIMIC-III

t0 Correlation pairs 0.996
t−1 Randomly 0.912
t−2 Correlation pairs 0.923
t−3 Hierarchical 0.965
t−4 Randomly 0.932
t−5 Correlation pairs 0.923
t−6 Correlation pairs 0.952
t−7 Correlation pairs 0.911
t−8 Correlation pairs 0.945

MIMIC-IV

t0 Correlation pairs 0.992
t−1 Correlation pairs 0.964
t−2 Randomly 0.942
t−3 Hierarchical 0.931
t−4 Correlation pairs 0.996
t−5 Correlation pairs 0.913
t−6 Correlation pairs 0.875
t−7 Hierarchical 0.941
t−8 Correlation pairs 0.917

After comparing the results of this study with other studies, this study provided the

following findings. Although the methods did not coincide, this can serve as a reference

point. Three time points were chosen to compare with others: t0, t−4, and t−8, and used

the best-performing results of my model to compare my results with others’ results. The

studies selected also used machine learning to predict sepsis. Because there are many

different machine learning methods, I only list the research results and do not compare

machine learning methods and databases in detail. The comparison results are shown in

Table 4.14. Although the database or sepsis definition used may be different, which may

result in bias, this comparison can still provide some reference. My results are better when

compared with others. In contrast to the research conducted by other individuals, I utilized
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not only a numerical model but also a heatmaps model. Overall, this study yields better

results than others.

Table 4.14: A comparison of my research with other researches.

Study Dataset Input 0 hour before
sepsis onset

4 hours before
sepsis onset

8 hours before
sepsis onset

Zhang et al. (2020) Cerner Health
Facts database EHR - 0.843 -

Nemati et al. (2018) MIMIC-III EHR - 0.822 0.804
Burdick et al. (2020) Dascena Analysis Dataset EHR 0.924 0.851 -

My study
MIMIC-III EHR 0.942 0.833 0.780

Heatmaps 0.9960.9960.996 0.932 0.902

MIMIC-IV EHR 0.836 0.801 0.902
Heatmaps 0.992 0.9960.9960.996 0.9170.9170.917
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Chapter 5 Discussion

The outcome substantiates two of the research findings. First, the machine learning

approach produced good classification results on both MIMIC-III and MIMIC-IV at spe-

cific time points. There is no significant difference between the results and those of other

studies. Second, numerical data were converted into a heatmap before training the CNN

model. The model achieved satisfactory results in terms of categorization, which was in

line with expectations. This is a significant finding because no research has been done

to turn numerical data into heatmaps for early sepsis prediction. Our contribution is the

realization that good results may also be obtained when heatmaps are used in conjunction

with image categorization.

Comparing the differences in the results of the SIRS, SOFA, and qSOFA scores to

discuss the findings of the studies on the definition of sepsis, I used the SIRS score, the

SOFA score, and the qSOFA score. Regardless of which machine learning model, the

results at different time points showed promising results when using the SIRS criteria to

classify sepsis. These findings are based on the results presented in Chapter 4. I arranged

the predicted features, SIRS score, SOFA score, and qSOFA score to correspond to the

information in Table 5.1. This table presents the features used in themodel and the features

for which the different scores were calculated, with the overlapping parts in bold. The

markers used by the SIRS score and my predictive features all overlapped. This may have
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Table 5.1: The predicted features and the features used for the three scores. The bolded
features overlap with the predicted features.

Features
Predicted
features DBP, SBP, age, heart rate, temperature, spo2, respiratory rate, WBC.

SIRS score Temperature, respiratory rate, heartrate,WBC

SOFA score Mean arterial pressure, PaO2/FiO2, platelets, bilirubin, glasgow coma scale,
creatinine, urine output, dopamine, dobutamine, norepinephrine

qSOFA score SBP, respiratory rate, glasgow coma scale

resulted in an inaccurate initial definition of sepsis, which caused the model to use the

SIRS score to perform better, and the findings are the same. My research shows that any

of these three scores has its value.; but, when it comes to the classification of the model,

the SIRS score is the one that is most similar to the machine learning model employed.

It lacks validation from other databases and comparisons with physicians; therefore,

it has some limitations linked with those two factors. None of the studies have shown that

the results of machine learning or deep learning models can be better than the diagnostic

criteria used by clinicians. Therefore, further research should be carried out in the circum-

stances more representative of the actual world to generalize the model and compare it to

clinicians.
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Chapter 6 Conclusion

When applied to the datasets compiled for MIMIC-III and MIMIC-IV datasets, the

model I have proposed can get good results in predicting sepsis up to eight hours before

symptoms start. This research was not only the new trial that numerical data were trans-

formed into heatmaps but also the new finding that CNNs were successfully employed to

anticipate sepsis. Despite this, even if the model is well trained, there is still a significant

amount of room for improvement in this specific area of research. This is because there is

a lot of untapped potentials. On the other hand, because this study did not include any val-

idation with any other databases or categorical comparison with any clinicians, this study

may have specific limitations due to the variables above.

This research contributed to discovering a new prediction method distinct from the

ones before. This new method would convert the general numerical data into image input

and compare the practicability of using thismethod simultaneouslywith the use of two data

sets. Future research should be conducted so that the model is generalized and can obtain

good results in other databases. Alternatively, machine learning model methods should

be used to compare with clinicians’ diagnoses to demonstrate that machine learning is, in

fact, helpful for intensive care units.
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