
doi:10.6342/NTU202202947

國立臺灣大學電機資訊學院電信工程學研究所

碩士論文

Graduate Institute of Communication Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

基於感測器錯誤與陣列對稱性的稀疏陣列穩健性分析

Robustness Analysis of Sparse Arrays with Sensor Failures
and Array Symmetry

陳崇瀚

Chung-Han Chen

指導教授: 劉俊麟博士

Advisor: Chun-Lin Liu, Ph.D.

中華民國 111年 8月

August, 2022

http://dx.doi.org/10.6342/NTU202202947

i

doi:10.6342/NTU202202947ii

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

致謝

回想起兩年前，抱著期待與緊張的心情進入實驗室，對一切都還很陌生，如

今即將完成自己的研究，著實令人感動。這一路走來，成長了許多，從課堂中學

到的理論基礎、論文中學到的研究方法、還有做過的各種實驗模擬，都使我一點

一滴地進步。

能夠走到今天，有許多要感謝的人。首先要感謝指導教授，劉俊麟教授。即

使很忙碌，也依然每週都與實驗室的同學個別 meeting。在與教授討論的過程中，

從教授身上學到對學術研究嚴謹的態度，並也激發出許多想法。在論文撰寫方面，

很感謝教授的多方建議，也因此我才能完成這份研究。

接著要感謝實驗室一起努力的其他三位同學，在遇到困難時互相協助，遇到

研究與課業上的問題時互相討論。雖然只相處短短的兩年，但也謝謝各位使我的

研究所生活更加的豐富。這段時間的辛苦，即將有個成果，大家共同的努力，使

我們能夠一起走到今天。

最後要感謝我的家人們，在學習的這條路上不斷地給予支持，默默地成為重

要的力量。一直以來心中都充滿著感謝，也要將完成碩士論文的這份感動與喜悅

與你們一起分享。

iii

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947iv

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

摘要

在一維稀疏陣列中，多個感測器以不同的間距被擺放在一直線上。稀疏陣列

能夠用 O(N)個感測器分辨出 O(N2)個不相關訊號源，原因是差異協列中間之連

續片段有 O(N2)的長度，而差異協列定義為陣列中任兩個感測器位置的差所形成

的集合。基於差異協列的角度估計器如協同陣列多信號分類，可以使用在差異協

列上的資料來估計訊號源角度。經驗上來說，差異協列容易被感測器錯誤所影響，

感測器錯誤會隨機發生並造成感測器無法準確地接收信號，因此錯誤的感測器會

從陣列中被移除。一旦有感測器被移除，稀疏陣列便不保證能擁有辨別 O(N2)個

不相關訊號源的優點。

傳統均勻線性陣列比稀疏陣列更穩健，但其最多只能辨別N − 1個不相關訊

號源。一個強化稀疏陣列穩健性的方法是將陣列做對稱。本篇論文提出一些關於

對稱陣列的性質，例如，被研究過的「廣義 1-脆弱性」之上下限。此外，我們證

明將互質陣列做對稱後，它可以達到廣義 1-脆弱性的下限。

如果每個感測器失敗的機率為 p，且互相獨立，那差異協列中間連續片段的

期望值可以用機率質量函數的觀點被推導出來。此期望值是變數 p的一元多項式。

除了能量化一個陣列的穩健性之外，此期望值還適合去比較不同陣列的效能。最

後透過模擬的結果，可以展現出在感測器錯誤影響下，對稱陣列的優勢。

關鍵字：稀疏陣列、差異協列、感測器錯誤、穩健性、對稱陣列、期望值

v

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947vi

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Abstract

In one-dimensional sparse arrays, multiple sensors are placed on a line with different

intervals. Sparse arrays are able to distinguish O(N2) uncorrelated sources with O(N)

sensors. The reason is that the difference coarray, defined as the differences between

any two sensors of an array, has a central uniform linear array (ULA) segment of length

O(N2) . The coarray-based angle estimators such as coarray MUltiple SIgnal Classifica-

tion (MUSIC) can use the data on the difference coarray to estimate the source directions.

Empirically, difference coarrays are easily influenced by sensor failures. They will occur

randomly and cause the sensors not to receive the signals accurately. Therefore, the faulty

sensors will be removed from the array. Once the sensors are removed, sparse arrays are

not guaranteed to have the advantage of identifying theO(N2) uncorrelated sources.

Traditional ULA are known to be more robust than sparse arrays, but they can only

resolve at most N−1 uncorrelated sources. A method that can enhance the robustness of

sparse arrays is to symmetrize the array. This thesis advances some properties related to the

vii

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

symmetrical arrays. For instance, the upper bound and the lower bound of the generalized

1-fragility are studied. Additionally, we prove that coprime arrays can achieve the lower

bound of the generalized 1-fragility after symmetrizing them.

If each sensor fails independently with probability p, then the expected value of the

size of the central ULA segment in the difference coarray can be derived from the view of

the probability mass function (PMF). The expected value is an unary polynomial with the

variable p. Besides quantifying the robustness of an array, the expected value is suitable

to compare the performance of different arrays. Finally, the benefits of symmetrical arrays

under the influence of sensor failures will be shown through the simulation results.

Keywords: sparse arrays, difference coarrays, sensor failures, robustness, symmetrical

arrays, expected value

viii

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Contents

Page

口試委員會審定書 i

致謝 iii

摘要 v

Abstract vii

Contents ix

List of Figures xiii

List of Tables xvii

Chapter 1 Introduction 1

1.1 Overview and Motivation . 1

1.2 Outline of The Thesis . 4

1.3 Notation . 5

Chapter 2 Preliminaries 7

2.1 Data Model of Array Signal Processing 7

2.2 Difference Coarray and Weight Function 12

2.3 Review of Sparse Arrays . 14

2.3.1 Minimum Redundancy Arrays (MRA) 15

2.3.2 Nested Arrays . 16

ix

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

2.3.3 Coprime Arrays . 18

2.3.4 Uniform Linear Arrays (ULA) . 19

2.3.5 Summary . 20

2.4 Sensor Failure . 21

2.4.1 Importance Function . 22

2.5 Existing Robustness Metrics . 25

2.6 Coarray-Based DOA Estimation Algorithm 29

Chapter 3 Symmetrical Arrays and Proposed Properties 35

3.1 Symmetrical Array Generation . 36

3.2 Relationship between Sets and Relationship between Size of Sets . . 39

3.3 Properties of Importance Function and Generalized 1-fragility 45

3.4 Robustness of Symmetrical Coprime Arrays 52

3.5 Numerical Comparison . 57

Chapter 4 Array Analysis with Random Sensor Failures 63

4.1 The Factors Impacting MSE . 64

4.1.1 Size of Ū versus MSE . 64

4.1.2 Sensor Failure Probability versus MSE 66

4.2 Derivation and Comparison . 70

4.2.1 Expected Value of Ū Size . 70

4.2.2 Proposed Robustness Metric . 75

4.2.3 Numerical Results . 77

4.2.3.1 The Expected Value and The Corresponding Approxi-

mation . 77

4.2.3.2 Comparison of Different Arrays 84

x

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

4.2.3.3 The Symmetrical Array Compare with The Original Array 88

4.2.3.4 Random Source Direction 94

4.3 ULA Analysis . 96

4.3.1 ULA with N sensors and ULA with N + 1 sensors 98

4.3.2 ULA with N sensors and ULA with N + 2 sensors 100

4.3.3 Numerical Results . 102

4.4 Concluding Remarks . 108

Chapter 5 Conclusion and Future Work 109

References 111

xi

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947xii

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

List of Figures

2.1 The system model for array signal processing. 8

2.2 The position of sensorM0,M1 and point source Q on the coordinate plane. 9

2.3 An illustration of array geometry S, difference coarray D, and the central

ULA segment U. The the dots are elements and the crosses are empty

space. The array geometry we consider here is the coprime array with

M = 2 and N = 3. 12

2.4 Array geometry of theMRAwith 6 sensors, and the correspondingweight

function. 16

2.5 Array geometry of the nested array with N1 = N2 = 3, and the corre-

sponding weight function. 17

2.6 Array geometry of the coprime array with M = 2, N = 3 , and the corre-

sponding weight function. 19

2.7 Array geometry of ULA with 6 sensors, and the corresponding weight

function. 20

2.8 Two different importance functions Iess(A) and IU(A) of every sensor

with respect to (a)MRAwith 6 sensors, (b) nested array with N1 = N2 =

3, (c) coprime array with M = 2, N = 3 and (d) ULA with 6 sensors. . 24

2.9 Generalized k-fragility of four arrays (same as Figure 2.8) with two dif-

ferent importance functions, (a) Iess(A) and (b) IU(A). 27

2.10 Pc of four different arrays (same as Figure 2.8). The curves are depicted

based on (2.31). 28

3.1 The relationship between the sets S , Sr , So , Se and Sr
o 37

xiii

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

3.2 An illustration of the sets Se, So and Sr
o. Here we consider a symmetrical

coprime array, where S̃ = {0, 3, 5, 6, 9, 10, 12, 13, 15, 16, 19, 20, 22, 25}. . 38

3.3 D(1,I) for six different types of arrays. They are coprime arrays, thinned

coprime arrays, nested arrays, MRA, MISC arrays and MHA, respec-

tively. The circles with the same color are the arrays generated by different

parameters under the same array definition. 58

3.4 The comparison of Pc of S and S̃. We consider the array S in Example

3.5.1 and plot the curves based on (2.31). 61

4.1 Estimation error versus size of Ū. Ū is obtained from S̄ = S \A, where

S = {0, 1, 2, 5, 8, 9, 12, 15, 16, 17} and A = {n1, n2, n3 | n1 ̸= n2, n1 ̸=

n3, n2 ̸= n3 and n1, n2, n3 ∈ S}. SNR is 0 dB and the number of snap-

shots is 500. There is one source with θ = π/4. Each point is averaged

from 300 Monte-Carlo runs. The dotted line is the least square approxi-

mation of these points based on (4.4) to (4.7). 66

4.2 Estimation error versus probability of failure for each sensor, p. Here we

consider four arrays in Table 4.1. SNR is 0 dB and the number of snap-

shots is 500. There is one source with θ = π/4. Each point is averaged

from 5 · 105 Monte-Carlo runs. 69

4.3 PMF of |Ū| with different failure probability p. Here we consider the

coprime array with M = 2 and N = 3. For each p, the number of trials

is 105, and the PMF is obtained by counting the occurrence of every |Ū|

through Algorithm 2. 79

4.4 (Continued from Figure 4.3). 80

4.5 The comparison of the expected value obtained from the statistical PMF

and Eq.(4.11). 81

4.6 Here we consider the MRA with 6 sensors in Table 4.1. (a) Each term

of k in E
[
|Ū|
]
. (b) The approximations of E

[
|Ū|
]
, E
[
|Ū|
]
approx.0

and

E
[
|Ū|
]
approx.1

defined in (4.21). 82

xiv

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

4.7 Here we consider the ULA with 6 sensors in Table 4.1. (a) Each term

of k in E
[
|Ū|
]
. (b) The approximations of E

[
|Ū|
]
, E
[
|Ū|
]
approx.0

and

E
[
|Ū|
]
approx.1

defined in (4.21). 83

4.8 The comparison of p90% and 0.9 · |U| of four arrays. Each array has 6

sensors and the array geometries are listed in Table 4.1. 87

4.9 The comparison of p90% and 0.9 · |U| of four arrays. Each array has 10

sensors and (4.32) shows the array geometries. 87

4.10 The comparison of S and S̃ of the MRA in Table 4.2. 89

4.11 The comparison of S and S̃ of the nested array with N1 = 3 and N2 =

3 in Table 4.2. 89

4.12 The comparison of S and S̃ of the coprime array with M = 2 and

N = 3 in Table 4.2. 89

4.13 The estimation error comparison of the MRA S and its symmetrical ver-

sion S̃. We estimate one source with θ = π/4. SNR is 0 dB and the

number of snapshots is 500. Each point is averaged from 5 · 105 Monte-

Carlo runs. 91

4.14 The estimation error comparison of the nested array S and its symmet-

rical version S̃. We estimate one source with θ = π/4. SNR is 0 dB

and the number of snapshots is 500. Each point is averaged from 5 · 105

Monte-Carlo runs. 91

4.15 The estimation error comparison of the coprime array S and its symmet-

rical version S̃. We estimate one source with θ = π/4. SNR is 0 dB

and the number of snapshots is 500. Each point is averaged from 5 · 105

Monte-Carlo runs. 92

4.16 The comparison of S and S̃ of the array in (4.34). (a) The expected value

curve based on (4.11). (b) Robustness metrics p90% and performancemet-

rics 0.9 · |U|. 93

xv

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

4.17 The estimation error comparison of the symmetrical nested array estimat-

ing different source angles. The fixed angle include π/3, π/4, and π/6.

The random angle is θ ∈ [−π/2.5, π/2.5] with uniform distribution. It

will be regenerated for every S̄, so every S̄ will estimate one random

source angle and perform 100 Monte-Carlo runs. There are 1000 S̄ so

that each point is averaged from 105 Monte-Carlo runs. We set SNR to

0 dB and the number of snapshots to 500. 95

4.18 A schematic diagramwe compare the ULAwith different number of sensors. 97

4.19 The comparison of ULA 7 and ULA 8 of each k item in Table 4.3. . . . 104

4.20 The comparison of ULA 6 and ULA 8 of each k item in Table 4.4. . . . 105

4.21 The comparisons of E
[
|Ū|
]
of (a) ULA with 7 sensors and 8 sensors.

(b) ULA with 6 sensors and 8 sensors. 106

4.22 The comparisons of p90% and 0.9 · |U| of three ULA. They have 6 sen-

sors, 7 sensors and 8 sensors, respectively. 107

4.23 The estimation error comparison of the three ULA. They have 6 sensors,

7 sensors and 8 sensors, respectively. We estimate one source with θ =

π/4. SNR is 0 dB and the number of snapshots is 500. Each point is

averaged from 5 · 105 Monte-Carlo runs. 107

xvi

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

List of Tables

2.1 Array summary of this section. 21

3.1 The importance function Iess of each sensor in S and S̃. 60

3.2 The importance function IU of each sensor in S and S̃. 60

4.1 The comparison of four arrays, each of them has 6 sensors. The second

column is their corresponding
∣∣Ū∣∣ when p = 0. The third and fourth

column are their generalized 1-fragility with respect to Iess and IU, re-

spectively. 67

4.2 Symmetrical arrays compare with original arrays (Here S are the arrays

in Table 4.1 and S̃ are generated from (3.4) and (3.5)). 88

4.3 All the components of E
[
|Ū|
]
of the ULA with N sensors and N + 1

sensors. 98

4.4 All the components of E
[
|Ū|
]
of the ULA with N sensors and N + 2

sensors. 100

xvii

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947xviii

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Chapter 1 Introduction

1.1 Overview and Motivation

Array signal processing is widely used in many fields such as radar [1, 2], commu-

nications [3] and acoustics [4]. Sensors in an array are used for receiving signals emitted

from the sources in the environment. Through these received data, we can extract the in-

terested information of sources by appropriate algorithms. Direction-Of-Arrival (DOA)

estimation is one of the application in array signal processing, which let us obtain the angle

information of the sources. Additionally, sparse arrays have been extensively discussed

in recent years [5, 6], since they are able to distinguish O(N2) uncorrelated sources with

O(N) sensors. The reason is that the difference coarray, defined as the differences be-

tween any two sensors of an array, has a central uniform linear array (ULA) segment

of length O(N2). Then the algorithms such as coarray MUltiple SIgnal Classification

(MUSIC) [7] and coarray Estimation of Signal Parameters via Rotational Invariance Tech-

niques (ESPRIT) [8], can utilize the data on the difference coarray to estimate the source

directions. They are based on the orthogonality of the signal subspace and the noise sub-

space. A large ULA segment in the difference coarray generally increase the performance

[6, 9, 10]. Hence, the size of the ULA segment is an important metric in designing sparse

arrays.

1

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

However, if we consider the system reliability [11, 12], there is an important issue

called “sensor failures”. Every sensor may fails randomly according to their usage time

[11, 12]. Since it could cause the sensors not to receive the signals accurately, the faulty

sensors will be removed from the array. Therefore, the size of the ULA segment in the dif-

ference coarray may decrease accordingly. This condition usually happens when the array

has O(N2)-long central ULA segment in the difference coarray such as minimum hole

arrays (MHA) [13], minimum redundancy arrays (MRA) [14] and nested arrays [6]. The

methods in the literature are mainly divided into two aspects to deal with the issue of sen-

sor failures. First, creating new algorithms that are useful under the circumstance of sensor

failures. Second, analyzing the robustness of different array configurations. In the first

case, several approaches have been explored. For example, the authors in [15] provided a

signal model with sensor failures and a corresponding method to estimate the covariance

matrix. Also, the authors in [16] proposed a learning algorithm, minimal resource alloca-

tion network (MRAN), for the DOA estimation with sensor failures. On the other hand, in

the second case, the authors in [17] proposed the robustness metric “fragility” to quantify

the robustness of an array and they further analyzed the robustness of different sparse ar-

rays based on the fragility in [18]. Moreover, [19] extended the fragility to “generalized

k-fragility”. This definition is more general because we can define any indicators if four

designated conditions are met. Under these robustness metrics, an array is more robust if

the measured value closing to 0.

Empirically, sparse arrays are not robust [17], especially for the arrays which have a

large difference coarray size. The authors in [20] proposed a new array geometry called ro-

bust MRA (RMRA). This array own the maximum size of the hole-free difference coarray,

like the MRA. Furthermore, it is as robust as the ULA. However, the RMRA is computa-

2

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

tionally expensive to solve in general. In our study, we will enhance the robustness of an

array by symmetrizing them. Symmetrical arrays also have the advantages that they can

advance the performance of the DOA estimation [21, 22]. The method of symmetrizing

the asymmetrical sparse array has been mentioned in [23]. However, in our study, we will

further decompose the sparse array into two subarrays before symmetrizing. This action

will help us to do a more in-depth analysis of the array. For example, we can provide

some properties related to the generalized 1-fragility of the symmetrized array. These

properties will be studied in this thesis. Moreover, we can obtain the concept that how to

design robust arrays through these properties.

Since sensor failures would occur randomly [11, 12], we assume that the sensors in

an array have a certain probability, p, of failure and each sensor fails independently. In

[24], the authors derived an expression, Pc, for the probability that the difference coarray

changes due to the sensor failure probability p. As the usage time increases, the proba-

bility p will also go up [11, 12]. Therefore, the benefit of Pc is that it can be used for

comparing the robustness of arrays based on random sensor failures. However, Pc has a

shortcoming that it only depends on whether the difference coarray changes. Neverthe-

less, the key of DOA estimation performance is the ULA segment size in the difference

coarray [6, 10]. Therefore, we will combine the ULA segment size and the sensor failure

probability to generate a newmetric. It is a expected value of the random variable “the size

of central ULA segment in the difference coarray”. Also, it is a unary polynomial with

the variable p. Besides defining the robustness of an array, it can also compare the per-

formance of different arrays. If we consider a two-dimensional point with the proposed

expected value expression, then it is possible to simultaneously evaluate the robustness

and the performance of different arrays.

3

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Here the main contributions of this thesis are listed.

1. We propose some properties of symmetrical sparse arrays, including the size re-

lationship between difference coarrays, the upper bound and the lower bound of

generalized 1-fragility of symmetrical arrays, and the condition of improving the

robustness if an array is symmetrized.

2. We prove that the symmetrical coprime arrays can reach the lower bound of gener-

alized 1-fragility. Namely, they are the most robust arrays based on the definition

of generalized 1-fragility.

3. We propose the expected value of the random variable “the size of central ULA

segment in the difference coarray” based on sensor failure probability p. Wewill use

it for defining a robustness metric and also comparing the estimation performance

of different arrays.

4. Through point 3, we further discuss the performance of the uniform linear arrays

(ULA) with different number of sensors based on random sensor failures.

5. Through the simulation results, we show that it can improve the robustness and the

performance at the same time after symmetrizing the array.

1.2 Outline of The Thesis

Chapter 2 reviews some critical prior knowledge, making us understand the following

study comprehensively. Chapter 3 advances some useful properties related to symmetri-

cal arrays, along with discussions and proofs. In Chapter 4, we will detail our proposed

robustness metric of sparse arrays and demonstrate the advantages of symmetrical arrays

4

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

by experiments. Finally, in Chapter 5, we will conclude this thesis and provide the future

direction that can be researched.

1.3 Notation

This section defines the notations that are used in this thesis. Scalars and vectors

are represented as lower case (such as a) and lower case with bold symbol (such as a),

respectively. Moreover, matrices and sets are represented as upper case with bold symbol

(such as A) and blackboard boldface (such as A), respectively. Additionally, A+ repre-

sents the nonnegative part of A. The intersection and the union of two sets A and B are

denoted by A ∩ B and A ∪ B, respectively. The relative complement of a set A with

respect to a set B is written as

B \A = {x ∈ B | x /∈ A}. (1.1)

We use E[·] to represent the expectation operator. For a full column rank matrix A, the

pesudo inverse of A and the orthogonal projection onto the null space AH are defined as

follows.

A† = (AAH)−1AH , Π⊥
A = I− AA† . (1.2)

For A ∈ CM×N , the Kronecker product between A and the matrix B is defined as

A⊗ B =



[A]1,1 B [A]1,2 B · · · [A]1,N B

[A]2,1 B [A]2,2 B · · · [A]2,N B

...

[A]M,1 B [A]M,2 B · · · [A]M,N B


. (1.3)

5

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Assume that A =

[
a1 a2 · · · an

]
and B =

[
b1 b2 · · · bn

]
, the Khatri-Rao

product between A and B is defined as

A⊙ B =

[
a1 ⊗ b1 a2 ⊗ b2 · · · an ⊗ bn

]
. (1.4)

On the other hand, we use the row vectors to represent the the matrices A and B, where

A =



a1

a2
...

an


, B =



b1

b2
...

bn


. (1.5)

The Face-splitting product, which also called the transposed Khatri–Rao product, is de-

fined as

A • B =



a1 ⊗ b1

a2 ⊗ b2
...

an ⊗ bn


. (1.6)

Finally we define the bracket notation [10, Def.2]. Let x(t) be the signal col-

umn vector received by the array S, where S is an integer set. The square bracket

[x(t)]i is the i-th component of x(t), and the triangular bracket ⟨x(t)⟩n for n ∈ S

is the signal received by the sensor n. These bracket notations extending to covari-

ance matrices A = E
[
x(t)xH(t)

]
is represented as [A]i,j = E

[
[x(t)]i[x(t)]∗j

]
and

⟨A⟩n1,n2
= E

[
⟨x(t)⟩n1

⟨x(t)⟩∗n2

]
for n1, n2 ∈ S.

6

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Chapter 2 Preliminaries

In this chapter, Section 2.1 will introduce the data model of array signal processing.

The definition and use of the difference coarray and the weight function will be mentioned

in Section 2.2. Several common sparse arrays will be introduced in Section 2.3. Sensor

failure is an important issue considered by this thesis. It will be presented in Section 2.4.

Regarding how to quantify the robustness of an array, some definitions have been pro-

posed in the previous studies [17, 19], and they will be introduced in Section 2.5. Finally,

in Section 2.6, we will introduce how to use the difference coarray to implement DOA

estimation [3, 10]. Coarray-based MUSIC is the main algorithm used by this thesis.

2.1 Data Model of Array Signal Processing

In this section, [3] is taken as a reference. Figure 2.1 illustrates the model of one-

dimensional array signal processing. Red solid circles represent the physical sensors that

used for receiving signals. All sensors are placed on the x-axis, which consist of the

sensor array. Multiple sources emit propagating waves from different directions in the

environment. After the sensor array receives the signals, we can get the information of

interest through appropriate algorithms such as the source angle and the source distance.

7

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Figure 2.1: The system model for array signal processing.

Now suppose that there are two sensors M0 and M1, and the distance between them

is d (as shown in Figure 2.2). There is a point source at position Q which at a distance of

R from M0, so the distance from M1 to Q is M1Q = [(d−R sin θ)2 + (R cos θ)2]1/2.

Assume that the source emits the waveform sQ(t) = Aej2πft, propagation velocity is c

and wavelength λ = c/f . Also, there is no path loss. Then the waveform at M0 is

sM0(t) = sQ

(
t− M0Q

c

)
= Ae

j2πf
(
t−M0Q

c

)
. (2.1)

We need to assume that the point source Q is at far-field, d ≪ R, so the wavefront can

be approximated by plane waves. Thus, at M1, the waveform becomes

sM1(t) = Ae
j2πf

(
t−M1Q

c

)
= Ae

j2πf
(
t−M0Q

c

)
ej

2π
λ
(M0Q−M1Q) = sM0(t)e

j 2π
λ
(M0Q−M1Q) .

(2.2)

8

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Figure 2.2: The position of sensorM0,M1 and point source Q on the coordinate plane.

There is a phase difference between the signals received by these two different sen-

sors, and the phase depends on M0Q−M1Q. It can be simplified as follows.

M0Q−M1Q = R−
[
(d−R sin θ)2 + (R cos θ)2

] 1
2

= R

1−

[(
sin θ − d

R

)2

+ (cos θ)2
] 1

2


= R

1−

[
1− 2d sin θ

R
+

(
d

R

)2
] 1

2


≈ R

{
1−

[
1 +

1

2

(
−2d sin θ

R
+

(
d

R

)2
)]}

≈ R

{
1−

[
1 +

1

2

(
−2d sin θ

R

)]}
= R · 1

2
· 2d sin θ

R

= d sin θ.

(2.3)

Therefore, we can change (2.2) to

sM1(t) = sM0(t)e
j2π(d

λ
sin θ) . (2.4)

9

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Eq.(2.4) demonstrates that the signal received by the sensors M0 and M1 is related to

the source angle θ and the wavelength λ. Note that the distance d cannot exceed λ/2

because of spatial ambiguity [25]. Hence, in this thesis, d is always set as

d =
λ

2
. (2.5)

In the previous description, we only used two sensors. The same concept can be general-

ized to an array with N sensors which are located at

M0 : (d0, 0), M1 : (d1, 0), · · · , MN−1 : (dN−1, 0) . (2.6)

The signal received by the array is represented by a vector x(t) which contains the noise

term n(t). They are denoted by

x(t) =



xM0(t)

xM1(t)

...

xMN−1
(t)


, n(t) =



nM0(t)

nM1(t)

...

nMN−1
(t)


. (2.7)

Therefore, we can get the signal data model x(t) received by the array,

x(t) =



xM0(t)

xM1(t)

...

xMN−1
(t)


= sM0(t)



ej2π(
d0
λ

sin θ)

ej2π(
d1
λ

sin θ)

...

e
j2π

(
dN−1

λ
sin θ

)


+



nM0(t)

nM1(t)

...

nMN−1
(t)


= sM0(t)a(θ) + n(t) ,

(2.8)

where a(θ) is called the steering vector.

In reality, it is possible that multiple sources exist at the same time, so here we as-

10

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

sume that there are D sources: s1(t), · · · , sD(t). The incident angle of the ith source is

denoted by θi, and these angles satisfy −π
2
≤ θi ≤ π

2
. All of the sources are monochro-

matic, which means all of them have the same frequency f . Then the data model for the

array output vector x(t) can be represented as

x(t) =
[
a(θ1) · · · a(θD)

]

s1(t)

...

sD(t)

+ n(t) = A(θ)s(t) + n(t) , (2.9)

where A(θ) is called the array manifold matrix. From (2.9), we can find that the time

and angle information of the sources are separated. This property is favorable for signal

processing algorithms. In this thesis, we will use a integer set S to represent the array

geometry. Assume that the sensor locations belong to a uniform grid of distance d. That

is, they can be modeled by nd, where n ∈ S. Finally, we look at an example.

Example 2.1.1. Here we consider the array geometry in Figure 2.3, S = {0, 2, 3, 4, 6, 9}.

There are D monochromatic sources with the same wavelength λ, which emit the signal

to the array from far-field. If the spacing d is equal to λ/2 , then the output signals of

each sensor can be expressed as



⟨x(t)⟩0

⟨x(t)⟩2

⟨x(t)⟩3

⟨x(t)⟩4

⟨x(t)⟩6

⟨x(t)⟩9



=



1 1 · · · 1

ejπ sin θ1·2 ejπ sin θ2·2 · · · ejπ sin θD·2

ejπ sin θ1·3 ejπ sin θ2·3 · · · ejπ sin θD·3

ejπ sin θ1·4 ejπ sin θ2·4 · · · ejπ sin θD·4

ejπ sin θ1·6 ejπ sin θ2·6 · · · ejπ sin θD·6

ejπ sin θ1·9 ejπ sin θ2·9 · · · ejπ sin θD·9





s1(t)

s2(t)

...

sD(t)


+



⟨n(t)⟩0

⟨n(t)⟩2

⟨n(t)⟩3

⟨n(t)⟩4

⟨n(t)⟩6

⟨n(t)⟩9



. (2.10)

The triangular bracket was mentioned in Section 1.3.

11

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Figure 2.3: An illustration of array geometry S, difference coarray D, and the central
ULA segment U. The the dots are elements and the crosses are empty space. The array
geometry we consider here is the coprime array with M = 2 and N = 3.

2.2 Difference Coarray and Weight Function

In sparse array design related papers, difference coarray plays a fundamental and

important role, since the signals received by the array S can be converted to the statistical

signals on the difference coarray D [7, 10]. The definition of the difference coarray is

shown as follows.

Definition 2.2.1. [17, Def.1] The difference coarray D of an array S is defined as a set

generated by the differences between the sensor locations. Namely,

D = {n1 − n2 | n1, n2 ∈ S}. (2.11)

We take the coprime array with M = 2 and N = 3 as an example. Figure 2.3

illustrates the array geometry (red points) and the corresponding difference coarray (blue

points). It can be found that there exists holes,−8 and 8, in the difference coarray. There-

fore, the set U (green points) is defined as the central ULA segment in the difference

coarray. It can be denoted by

U = {m | {0, 1, ..., |m|} ⊆ D}. (2.12)

12

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

If D = U, thenwe can say that the difference coarray is a hole-free difference coarray.

Furthermore, the set of holes is defined as

H = {m | min(D) ≤ m ≤ max(D),m /∈ D}. (2.13)

In addition, difference coarray has two special cases [18], the self difference and the cross

difference. They are defined as follows.

Definition 2.2.2. The self difference of a set Q is denoted by

SD(Q) = {m1 −m2 | m1,m2 ∈ Q}, (2.14)

and the cross difference between two sets Q1 and Q2 is denoted by

CD(Q1,Q2) = {q1 − q2 | q1 ∈ Q1, q2 ∈ Q1}. (2.15)

Among several commonly used coarray based DOA estimators such as coarray MU-

SIC [7] and coarray ESPRIT [8], the data measured by the difference coarray does not be

used completely. In fact, only the data on U will be used. Therefore, the central ULA

segment in the difference coarray U is a focus of the analysis in this thesis.

In Definition 2.2.1, the difference coarray D is an integer set. However, it is possible

that multiple sensor pairs in S generate the same difference. Thus, here we define the

weight function.

Definition 2.2.3. [17, Def.2] The weight function w(m) of an array S is defined as the

number of sensor pairs with coarray index m. That is,

w(m) =
∣∣{(n1, n2) ∈ S2 | n1 − n2 = m}

∣∣ . (2.16)

13

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

When the weight function is larger, there are more signal data will be collected on the

coarray index m. It also could impact the estimation performance. The result can be seen

through the experiments in Chapter 4. Here we list four properties of the weight function

which are provided by Pal [6].

Corollary 2.2.1. An array with N sensors is considered. Following properties of weight

function are related to its difference coarray D.

1. w(0) = N .

2. 1 ≤ w(m) ≤ N − 1 ∀m ∈ D \ {0}.

3. w(m) = w(−m) ∀m ∈ D.

4.
∑

m∈D,m ̸=0 w(m) = N(N − 1).

We can use the view of permutation to explain Property 4 in Corollary 2.2.1. The sum

of all occurrences of differences except for m = 0, is equal to N !/(N − 2)!. This is all

possible permutations of two elements from an array set S with N sensors. According

to this property, we can know the maximum degrees of freedom that can be obtained from

a difference coarray. Therefore, if an array geometry is properly designed, it is possible

that we get O(N2) degrees of freedom using only O(N) physical sensors. The example

arrays will be introduced in the next section. Also, we will see their weight functions with

figures.

2.3 Review of Sparse Arrays

In this section, we will review four different sparse arrays that will be discussed in

Chapter 3 and Chapter 4.

14

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

2.3.1 Minimum Redundancy Arrays (MRA)

MRAwere first proposed byMoffet [14]. The purpose is tominimize the redundancy R

of the array, where R is defined as

R =

(|S|
2

)
(|U| − 1) /2

=

(|S|
2

)
max (U)

. (2.17)

The definition of MRA is shown below.

Definition 2.3.1. The MRA with N physical sensors can be defined as [14]

SMRA = argmax
S

|D| subject to |S| = N, D = U. (2.18)

This equation indicates that MRA have the largest hole-free difference coarray for a

given number of sensors. Furthermore, the corresponding D and U can be denoted by

DMRA = UMRA = {0,±1,±2, · · · ,± (max(SMRA)−min(SMRA))}. (2.19)

However, the disadvantage is that when the number of sensors increases, the complex-

ity of solving this optimization problem will also increase. That will cause complicated

execution. Here we look at an example of MRA.

Example 2.3.1. AMRA with 6 elements [14] is considered. SMRA = {0, 1, 4, 5, 11, 13}.

Figure 2.4 illustrates its geometry and the weight function. It can be observed that except

for w(±1) = w(±4) = 2, all the weight functions at the other coarray index m are equal

to 1. That means only one sensor pair in S can generate this difference, and that is the

reason why MRA can minimize the redundancy.

15

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Figure 2.4: Array geometry of the MRA with 6 sensors, and the corresponding weight
function.

2.3.2 Nested Arrays

Unlike MRA, the sensor locations of nested arrays can be represented as a closed

form [6]. It does not require a lot of computation to obtain the array geometry. Also,

the configuration is easily scalable. We can obtain the array geometry as long as the

parameters N1 and N2 are given. The definition of nested arrays is shown below.

Definition 2.3.2. Assume that N1 and N2 are positive integers, the sensor locations of

nested arrays [6] are

Snested = G1 ∪G2 ,

where G1 = {1, 2, ..., N1}, G2 = {n(N1 + 1) | n = 1, 2, ..., N2}.
(2.20)

The number of sensors is N1 +N2 . Based on (2.20), the geometry of nested arrays

is composed of a dense ULA, G1, with spacing 1 and a sparse ULA, G2, with spacing

16

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Figure 2.5: Array geometry of the nested array with N1 = N2 = 3, and the corresponding
weight function.

N1 + 1. The corresponding D and U are equal, and they can be represented with N1

and N2, like

Dnested = Unested = {0,±1,±2, ...,±(N2(N1 + 1)− 1)}. (2.21)

Given N sensors, if both N1 and N2 are approximately equal to N/2 , the size of the

difference coarray can be shown that |Dnested| = O (N2) [6]. Thus, nested arrays are pos-

sible to identify O (N2) uncorrelated sources with O(N) physical sensors. This property

is similar to MRA. Here we look at an example of nested arrays.

Example 2.3.2. We consider the nested array with N1 = N2 = 3. The sensor locations

can be obtained based on (2.20) that Snested = {1, 2, 3, 4, 8, 12}. Its weight function is

shown in Figure 2.5. Since there is a dense part in the nested array, it can be observed that

the weight function at m = 1 and m = −1 are higher than the other weight function

except for m = 0.

17

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

2.3.3 Coprime Arrays

The sensor locations of coprime arrays can also be expressed as a closed form with

two coprime integers M and N . They were first proposed in [5]. In recent research about

sparse array signal processing, coprime arrays have obtained great interest [9, 26, 27]. The

definition of coprime arrays is shown below.

Definition 2.3.3. Assume that M and N are two positive and coprime integers, the

sensor locations of coprime arrays [5] are

Scoprime = F1 ∪ F2 ,

where F1 = {0,M, 2M, ..., (N − 1)M} , F2 = {0, N, 2N, ..., (2M − 1)N}.
(2.22)

The number of sensors is N + 2M − 1. Based on (2.22), the geometry of coprimes

arrays is composed of two sparse ULA with spacing M and N , respectively. Although

Dcoprime is not hole-free, its central ULA segment can be represented as a closed form [5],

where

Ucoprime = {0,±1, ...,±(MN +M − 1)}. (2.23)

Thus, there must exist holes at ±(MN + M). Coprime arrays can provide O(MN)

degrees of freedom and only need O(M + N) physical sensors. Here we look at an

example.

Example 2.3.3. We can use the parameters M = 2 and N = 3 to obtain a coprime

array with 6 sensors. The sensor locations are denoted by Scoprime = {0, 2, 3, 4, 6, 9}. In

Figure 2.6, the geometry of Ucoprime is equal to {−7, · · · , 0, · · · , 7}, which consists with

Eq.(2.23).

18

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Figure 2.6: Array geometry of the coprime array with M = 2, N = 3 , and the corre-
sponding weight function.

2.3.4 Uniform Linear Arrays (ULA)

ULA are one of the most widely used arrays. The ULA with N sensors are defined

as [3]

SULA = {0, 1, ..., N − 1}. (2.24)

Moreover, the difference coarray of ULA can be expressed as

DULA = {0,±1, ...± (N − 1)}, (2.25)

and UULA = DULA. This property indicates that ULA can identify at most N − 1 un-

correlated sources with N physical sensors. Figure 2.7 is an example of ULA with 6

sensors. We can find that the weight function of the ULA has two properties:

19

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Figure 2.7: Array geometry of ULA with 6 sensors, and the corresponding weight func-
tion.

1. w(±m) = N −m, for 0 ≤ m ≤ N − 1.

2. w(m)− 1 = w(m+ 1) , for 0 ≤ m ≤ N − 2.

2.3.5 Summary

Finally, we use Table 2.1 to make the summary. This table contains the size of the

array, the size of the difference coarray and the size of central ULA segment in the differ-

ence coarray. We denote these values by the given parameters. For more details of these

arrays, the authors in [18] had a lot of discussion and analysis.

20

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Array Description |S| |D| |U|

(a)
MRA with N sensors,

min(SMRA)
+max(SMRA) = L

N 2L− 1 2L− 1

(b) Nested array
with N1 and N2

N1 +N2 2N2(N1 + 1)− 1 2N2(N1 + 1)− 1

(c) Coprime array
with M and N

2M +N − 1 × 2M(N + 1)− 1

(d) ULA N sensors N 2N − 1 2N − 1

Table 2.1: Array summary of this section.

2.4 Sensor Failure

Most electronic devices demonstrate a constant failure rate during their useful life-

time [11, 12]. If applying this concept to our study on sparse arrays, every sensor may fail

randomly. We assume that the sensor cannot receive the signals accurately. Therefore,

the faulty sensors will be removed from the array. This issue may lead to a decrease in the

estimation performance because the difference coarrays are possible to be changed after

removing sensors. Thus, this is an important issuewe need to consider when implementing

the DOA estimation with sparse arrays.

In the following, wewill introduce two definitions that are proposed in [17] to identify

the set of faulty sensors.

Definition 2.4.1. [17, Def.4] A subarray A of array S is said to be k-essential with

respect to S if the following properties are satisfied.

1. The size of A is equal to k.

2. The difference coarray changes when A is removed from S.

21

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Definition 2.4.2. [17, Def.5] The k-essential family Ek with respect to array S is de-

fined as

Ek = {A | A is k-essential with respect to S}, (2.26)

where k ∈ {1, 2, ..., |S|}.

2.4.1 Importance Function

From the description above, we know that the sensors in an array have a certain

probability of causing defects as the usage time increases. Therefore, we must remove

the faulty sensors to keep the array running. The lack of different sensors in the array

has different effects, so the author in [19] proposed the importance function to quantify

the impact of the removed sensors (or subsets). We can define any indicator ourselves,

as long as four properties are met. The definition of the importance function is shown as

follows.

Definition 2.4.3. [19, Def.4] A function I is said to be an importance function with

respect to the array S if it can satisfy all the following properties.

1. 0 ≤ I (A) ≤ 1 for all A ⊆ S.

2. I (∅) = 0, where ∅ is the empty set.

3. I (S) = 1.

4. I is monotone. That is, if A ⊆ B ⊆ S, then I (A) ≤ I (B).

If I (A) = 1, then we can say that the subset A is the most important. Large

importance will cause significant impact on the array. Conversely, if I (A) = 0 , then

22

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

the subset A is the least important. It will not cause any impact on the array when it is

removed.

Two different examples of the importance function are provided in [19]. One is re-

lated to the k-essentialness property and the other one is related to the size of U. First,

the importance function corresponds to k-essentialness property is defined as

Iess(A) =


1, if A is |A| -essential

0, otherwise

, (2.27)

where A ⊆ S .

Second, the importance function corresponds to the size U is defined as

IU(A) = 1−
∣∣Ū∣∣
|U|

, (2.28)

where A ⊆ S. The set Ū corresponds to D̄, where D̄ is the difference coarray of

S̄ = S \A .

Both of two indicators satisfy the properties of Definition 2.4.3, whose details are

shown in [19]. Figure 2.8 shows two different importance functions with four different

arrays. We can find a property in Figure 2.8 that these two importance functions satisfy

IU(A) ≤ Iess(A). Based on (2.27), the importance function Iess(A) is either 1 or

0. If Iess(A) = 1, then the inequality holds true due to Property 1 in Definition 2.4.3

that IU(A) must be less than 1. Furthermore, if Iess(A) = 0, then both the difference

coarray and the corresponding ULA segment will not be changed when A is removed. It

means that Ū = U. According to (2.28), IU(A) = 0. Thus, IU(A) ≤ Iess(A).

23

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

(a)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

(b)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

(c)

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

(d)

Figure 2.8: Two different importance functions Iess(A) andIU(A) of every sensor with
respect to (a) MRAwith 6 sensors, (b) nested array with N1 = N2 = 3, (c) coprime array
with M = 2, N = 3 and (d) ULA with 6 sensors.

24

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

2.5 Existing Robustness Metrics

In this section, we will introduce a metric called generalized k-fragility. It was pro-

posed in [19] to quantify the whole array robustness with a specified importance function.

The definition is shown below.

Definition 2.5.1. [19, Def.6] The generalized k-fragility Fk(S,I) with respect to the

array S and the importance function I is defined as

Fk(S,I) =
∑

A⊆S,|A|=k

I (A)(|S|
k

) , (2.29)

for k = 0, 1, ..., |S|.

An array is said to be more robust if Fk(S,I) is close to 0, and less robust if

Fk(S,I) is close to 1. From (2.29), we know that every subset A with size |A| = k

in S will be considered once when calculating Fk(S,I). If all the importance I (A)

are close to 1, then the answer on the right-hand side of (2.29) will also be close to 1.

Several properties of Fk(S,I) are provided in [19], and they are shown as follows.

1. 0 ≤ Fk(S,I) ≤ 1 for k = 0, 1, ..., |S|.

2. F0(S,I) = 0 and F|S|(S,I) = 1.

3. Fk(S,I) is an increasing function of k.

Note that these properties are suitable for any importance functions I .

Now we use Fk(S,Iess) and Fk(S,IU) to compare four arrays which were in-

troduced in Section 2.3. Figure 2.9(a) shows the result of Fk(S,Iess). It can be observed

25

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

that the ULA is the most robust array, followed by the coprime array, and then the MRA

and the nested array. In particular, the curves of the MRA and the nested array fit per-

fectly. It means the robustness of them is equal no matter which k we consider based on

Fk(S,Iess). The reason is that both of MRA and nested arrays are maximally economic

arrays [23]. On the other hand, if we choose IU as the importance function (Figure 2.9

(b)), the nested array is more robust than the MRA. In fact, this relationship is more con-

sistent with the simulation performance of the DOA estimation, and we will show it in

Chapter 4.

In Section 2.4, we mentioned that sensor failures could occur randomly. Thus, we

can assume that each sensor fails independently with probability p. After removing the

faulty sensors, we use S̄ and D̄ to denote the array and its corresponding difference

coarray, respectively. There is a robustness definition based on the probability p, which

was proposed in [24]. It can be defined as

Pc = Pr[D̄ ̸= D]. (2.30)

Eq.(2.30) denotes the probability that the difference coarray changes when faulty sensors

are removed. An array is more robust when Pc close to 0, since its difference coarray

does not be impacted easily by sensor failures.

Here the set A, composed of faulty sensors, are stochastic because of the failure

probability of each sensor, p. The following is the advantages of Pc [24].

1. We do not need to know the information of the number of faulty sensors.

2. The parameter p can be designed based on the budget because it is related to the

quality and the cost of the sensing device.

26

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

(a)

(b)

Figure 2.9: Generalized k-fragility of four arrays (same as Figure 2.8) with two different
importance functions, (a) Iess(A) and (b) IU(A).

27

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Figure 2.10: Pc of four different arrays (same as Figure 2.8). The curves are depicted
based on (2.31).

The authors in [24] presented a closed-form relationship between Pc and Fk(S,Iess),

like the following equation.

Pc =

|S|∑
k=1

|Ek| pk(1− p)|S|−k =

|S|∑
k=1

(
|S|
k

)
Fk(S,Iess) p

k(1− p)|S|−k (2.31)

Also, we compare the same four arrays as Figure 2.8. In Figure 2.10, we plot the

curves of Pc through (2.31). It can be found that the curves of the MRA and the nested

array still overlap. They are the least robust arrays among these arrays based on Pc . The

ULA is the most robust array due to the smallest probability of difference coarray changes.

However, the robustness metrics related to the size of U and the sensor failure prob-

ability p has not been developed yet. Therefore, we will propose a newmetric that related

to them at the same time, and also derive a closed-form relationship with Fk(S,IU) in

Chapter 4.

28

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

2.6 Coarray-Based DOA Estimation Algorithm

The DOA estimator we use in this thesis is the coarray MUSIC algorithm [6, 10].

Hence, we will review the details of the algorithm in this section.

From (2.9), we know the array output can be denoted by x(t) = A(θ)s(t) + n(t),

where x(t), n(t) ∈ C|S|. For the derivation of the algorithm, there are some statistical

assumptions that must be met. The signal term s(t) and the noise term n(t) are zero-

mean and uncorrelated random vectors. These relations mean that

E[s(t)] = 0, E[n(t)] = 0, E[s(t)nH](t) = O|S|×|S|, (2.32)

E[s(t)sH(t)] = P =



p1 0 · · · 0

0 p2 · · · 0

...

0 0 · · · pD


, E[n(t)nH(t)] = pnI, (2.33)

where pi, pn are the source power and the noise power, respectively.

The essence of coarray-based algorithms is to convert the data to their second-order

statistics. Then the covariance matrix of x(t) is defined as

RS = E
[
x(t)xH(t)

]
= E

[
(A(θ)s(t) + n(t)) (A(θ)s(t) + n(t))H

]
= A(θ)E

[
s(t)sH(t)

]
AH(θ) + E

[
n(t)nH(t)

]
= A(θ)PAH(θ) + pnI.

(2.34)

29

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

All of the entries in A(θ)PAH(θ) can be obtained from

〈
A(θ)PAH(θ)

〉
n1,n2

=
∑

n1,n2∈ S

pie
jπ sin θi(n1−n2) . (2.35)

These elements can be seen as the factors associated with the difference coarray. Thus,

by vectoring RS, we can get the autocorrelation vector defined on the difference coarray,

like

r = (A∗ ⊙ A)p+ pni , (2.36)

where p = [p1, p2, · · · , pD]T and i = vec(I). Eq.(2.36) can be regarded as the output

on the difference coarray. If we carefully select the rows of r, then we can obtain the

measurement vector on U by a selection matrix F [7], where

Fm, p+(q−1)N =


1

w(m−u)
,∆pq = m− u

0 , otherwise

.

for m = 1, 2, · · · , 2u− 1, p = 1, 2, · · · , N, q = 1, 2, · · · , N.

(2.37)

Among (2.37), N is the number of physical sensors, w(·) is the weight function defined

in Definition 2.2.3, u = max(U)+1, and the (m,n)-th element of RS is associated with

the difference sm − sn = ∆mn , where sm, sn ∈ S. Therefore, the measurement vector

on U can be represented as

xU = Fr . (2.38)

In the MUSIC algorithm, it is necessary to perform eigen-decomposition on a posi-

tive semidefinite covariance matrix. Thus, a spatially smoothedmatrix Ru1 was proposed

to fit the positive semidefinite property[6], and perform the MUSIC algorithm on the dif-

30

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

ference coarray. Ru1 can be constructed by

Ru1 =
1

u

u∑
i=1

zizHi . (2.39)

where zk = ΓkxU and Γk = [0u×(k−1) Iu×u 0u×(u−k)] for k = 1, 2, ..., u. Moreover,

another positive semidefinite matrix Ru2 was proposed in [10], and Ru2 can be con-

structed by

Ru2 = [zu zu−1 · · · z1]. (2.40)

The two matrices Ru1 and Ru2 have the relationship that Ru1 = R2
u2 / u. The equation

means that Ru1 and Ru2 share the same eigenspace. Here we use Ru2 to perform the

MUSIC algorithm. Ru2 can also be represented as

Ru2 = AUPAH
U + pnI, (2.41)

where AU = [aU(θ1) aU(θ2) · · · aU(θD)]u×D and aU(θi) = [1 ejπ sin θi · · · ej(u−1)π sin θi]T .

We begin by decomposing AUPAH
U in (2.41) into the eigenvalues µj and the eigenvectors

uj , where

AUPAH
U = [u1 · · · uD]


µ1 · · · 0

...

0 · · · µD




uH1
...

uHD

 . (2.42)

The eigenvalues satisfy µ1 ≥ µ2 ≥ · · · ≥ µD > 0, and the eigenvectors are orthonor-

mal. Assume AU is full-rank that rank(AU) = D. We can construct the other u − D

orthonormal eigenvectors [uD+1 · · · uu] to operate eigen-decomposition on the matrix

Ru2 in (2.41). Therefore,

31

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

AUPAH
U + pnI =

[u1 · · · uD uD+1 · · · uu]



µ1 + pn · · · 0 0 · · · 0

...

0 · · · µD + pn 0 · · · 0

0 · · · 0 pn · · · 0

...

0 · · · 0 0 · · · pn





uH1
...

uHD

uHD+1

...

uHu



.

(2.43)

Through these eigenvectors, we can separate the space Cu into a signal subspace and a

noise subspace. The first D eigenvectors {u1 , · · · , uD}, which corresponds to the D

larger eigenvalues {µ1 + pn , · · · , µD + pn}, consist of the bases of the signal subspace.

Moreover, the remaining u − D eigenvectors {uD+1 , · · · , uu}, which corresponds to

the u−D smaller eigenvalues {pn , · · · , pn}, consist of the bases of the noise subspace.

We can represent the subspace as a matrix that composed of their corresponding bases, like

the following form.

Us = [u1 u2 · · · uD] ∈ Cu×D , for the signal subspace,

Un = [uD+1 uD+2 · · · uu] ∈ Cu×(u−D) , for the noise subspace.
(2.44)

Then through the orthonormal property, multiplying the noise bases vector to (2.42) will

obtain a zero vector. Besides that, since AU is full-rank and P is positive definite, we

can make a conclusion that

UH
n aU(θi) = 0 , for i = 1, 2, · · · , D. (2.45)

32

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Based on (2.45), the MUSIC spectrum can be defined as

PMUSIC(θ) =
1

∥UH
n aU(θ)∥22

, for − π

2
≤ θ ≤ π

2
. (2.46)

Now we add the tilde notation to distinguish the actually received data. The sig-

nal measured at the array is denoted by x̃S and the estimated covariance matrix can be

obtained by K snapshots, where

R̃S =
1

K

K∑
t=1

x̃(t)x̃H(t). (2.47)

We replace the measurement xU with the finite snapshot version x̃U, which is defined as

follows [10].

⟨x̃U⟩m =
1

w(m)
=

∑
n1−n2=m

〈
R̃S

〉
n1,n2

, (2.48)

for all m ∈ U. It was proved that the MUSIC spectrum can be computed directly from

the Toeplitz matrix R̃u2 [10], where

R̃u2 =



[x̃U]u [x̃U]u−1 · · · [x̃U]1

[x̃U]u+1 [x̃U]u · · · [x̃U]2
...

[x̃U]2u−1 [x̃U]2u−2 · · · [x̃U]u


. (2.49)

Also, it was proved in [10] that the computational complexity of performing the coarray

MUSIC algorithm from R̃u2 is lower than that from R̃u1.

33

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU20220294734

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Chapter 3 Symmetrical Arrays and

Proposed Properties

As we mentioned in Chapter 1, symmetrical arrays have the advantage of improv-

ing the performance. Moreover, symmetrical arrays are more robust than asymmetrical

arrays. The reasons will be discussed in Chapter 3 and Chapter 4. In Section 3.1, we will

introduce how to construct the symmetrical array S̃ through the original array S. The cor-

responding difference coarray and the ULA segment in the difference coarray are denoted

by D̃ and Ũ, respectively. Thus, in Section 3.2, we will present the relationship between

these sets and the size relationship between them. Several importance function properties

related to the symmetrical arrays will be mentioned in Section 3.3. Through these prop-

erties, we can give the lower bound and the upper bound of the generalized 1-fragility of

symmetrical arrays. Additionally, in Section 3.4, we will prove that symmetrical coprime

arrays can reach the lower bound of the generalized 1-fragility, which is as robust as ULA.

Finally, in Section 3.5, we will provide some examples of the comparison between S and

S̃ through the numerical results.

35

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

3.1 Symmetrical Array Generation

We know that every function f(x) can be uniquely decomposed into the sum of the

even part fe(x) and the odd part fo(x). That is, f(x) = fe(x) + fo(x), where

fe(x) =
f(x) + f(−x)

2
and fo(x) =

f(x)− f(−x)

2
. (3.1)

For arrays, we can also decompose them into a similar form. It is a union of two subarrays.

Assume that the sensor array is denoted by S, then it can be represented as the union of

the even part Se and the odd part So, like the following form.

S = Se ∪ So and Se ∩ So = ∅. (3.2)

Before explaining the method of decomposition, we need to define the reverse set, the

even subset and the odd subset.

Definition 3.1.1. Qr is said to be the reverse set of a set Q , if

Qr = {min(Q) +max(Q)− n | n ∈ Q}. (3.3)

Definition 3.1.2. Se is the even subset of S, where Se = S ∩ Sr, and So is the odd

subset of S, where So = S \ Se.

Figure 3.1 shows the relationship of the sets S , Sr , So , Se , and Sr
o . Note that three

sets Se , So , and Sr
o are mutually exclusive. Then we can get

S = So ∪ Se , Sr = Se ∪ Sr
o . (3.4)

36

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Figure 3.1: The relationship between the sets S , Sr , So , Se and Sr
o .

Now the symmetrical array with respect to the original array S can be easily con-

structed. We denote the symmetrical array by S̃, where

S̃ = Se ∪ So ∪ Sr
o . (3.5)

An example is shown in Figure 3.2. We consider the coprime array with M = 3 and

N = 5, so S = {0, 3, 5, 6, 9, 10, 12, 15, 20, 25}. From the discussion above, we can

get Sr = {0, 5, 10, 13, 15, 16, 19, 20, 22, 25}, Se = S ∩ Sr = {0, 5, 10, 15, 20, 25} and

So = S \ Se = {3, 6, 9, 12}. Finally, if we construct the reverse set of So, then we can get

the symmetrical array S̃ = {0, 3, 5, 6, 9, 10, 12, 13, 15, 16, 19, 20, 22, 15}.

In the following discussion, two symbols related to the array S will be used. Thus,

here we need to define them.

Definition 3.1.3. If the size of the Se of the array S is odd, then the sensor in the middle

of the array S is defined as

middle(S) =
max(S) +min(S)

2
. (3.6)

37

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Figure 3.2: An illustration of the sets Se, So and Sr
o. Here we consider a symmetrical

coprime array, where S̃ = {0, 3, 5, 6, 9, 10, 12, 13, 15, 16, 19, 20, 22, 25}.

Definition 3.1.4. The aperture of an array S is defined as

aperture(S) = max(S)−min(S). (3.7)

Actually, S and S̃ have the same aperture. According to (3.4) and (3.5), it can be

observed that S ⊆ S̃.

38

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

3.2 Relationship between Sets and Relationship between

Size of Sets

There will be a corresponding difference coarray after symmetrizing the array S. We

use D̃ to represent the difference coarray of S̃. Also, we use Ũ to represent the central

ULA segment in D̃. In order to discuss the properties conveniently, we split D and D̃

into several different subsets by (2.14) and (2.15).

D = SD(So) ∪ SD(Se) ∪ CD(So, Se) .

D̃ = SD(So) ∪ SD(Se) ∪ SD(Sr
o) ∪ CD(So, Se) ∪ CD(Se, Sr

o) ∪ CD(So, Sr
o) .

(3.8)

The following properties will illustrate the relationship between D and D̃, also U and

Ũ. They help us to know more about the difference coarray of symmetrical arrays, and

they contribute to the discussion of the generalized 1-fragility which will be illustrated in

the next section.

Proposition 3.2.1. D ⊆ D̃.

Proof. Let m ∈ D, there exist n1, n2 ∈ S such that n1 − n2 = m. Since S ⊆ S̃, we

have n1, n2 ∈ S̃ implying m ∈ D̃. Then D ⊆ D̃.

From Proposition 3.2.1, we can know that |D| ≤ |D̃|. Moreover, there is a necessary

and sufficient condition related to this inequality:

CD(So, Sr
o) ⊆ D if and only if D = D̃. (3.9)

Equivalently, if CD(So, Sr
o) ⊆ D, then |D| = |D̃|. The proof is shown as follows.

39

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Proof. CD(So, Sr
o) ⊆ D if and only if D = D̃.

1. If CD(So, Sr
o) ⊆ D = SD(So) ∪ SD(Se) ∪ CD(So, Se), then

D̃ = SD(So) ∪ SD(Se) ∪ SD(Sr
o) ∪ CD(So, Se) ∪ CD(Se, Sr

o) ∪ CD(So, Sr
o)

= SD(So) ∪ SD(Se) ∪ CD(So, Se)

= D,
(3.10)

since SD(So) = SD(Sr
o) and CD(So, Se) = CD(Se, Sr

o), which are proved in

Lemma 3.2.1 and Lemma 3.2.2.

2. If D = D̃, where

D̃ = SD(So)∪SD(Se)∪SD(Sr
o)∪CD(So, Se)∪CD(Se, Sr

o)∪CD(So, Sr
o),

(3.11)

then CD(So, Sr
o) ⊆ D = SD(So)∪SD(Se)∪CD(So, Se) = D, since SD(So) =

SD(Sr
o) and CD(So, Se) = CD(Se, Sr

o), which are proved in Lemma 3.2.1 and

Lemma 3.2.2.

By 1 and 2, Eq.(3.9) can be proved.

Lemma 3.2.1. SD(So) = SD(Sr
o), where So and Sr

o are defined in Definition 3.1.2.

Proof. SD(So) = SD(Sr
o). The proof is divided into two parts, SD(So) ⊆ SD(Sr

o)

and SD(Sr
o) ⊆ SD(So).

1. Let m ∈ SD(So), there exist n1, n2 ∈ So such that n1 − n2 = m. In Sr
o , we can

also find two numbers which are associated with n1 and n2. That is, there exist

m1,m2 ∈ Sr
o , where m1 = min(S)+max(S)−n1 and m2 = min(S)+max(S)−n2.

40

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Since m2−m1 = [min(S)+max(S)−n2]−[min(S)+max(S)−n1] = n1−n2 = m,

m ∈ SD(Sr
o). Then we can obtain SD(So) ⊆ SD(Sr

o).

2. Let m ∈ SD(Sr
o), there exist n1, n2 ∈ Sr

o such that n1 − n2 = m. In So , we can

also find two numbers which are associated with n1 and n2. That is, there exist

m1,m2 ∈ So , where m1 = min(S)+max(S)−n1 and m2 = min(S)+max(S)−n2.

Since m2−m1 = [min(S)+max(S)−n2]−[min(S)+max(S)−n1] = n1−n2 = m,

m ∈ SD(So). Then we can obtain SD(Sr
o) ⊆ SD(So).

By 1 and 2, Lemma 3.2.1 holds true.

Lemma 3.2.2. CD(So, Se) = CD(Se, Sr
o), where So , Se and Sr

o are defined in Defi-

nition 3.1.2.

Proof. CD(So, Se) = CD(Se, Sr
o). The proof is divided into two parts, CD(So, Se) ⊆

CD(Se, Sr
o) and CD(Se, Sr

o) ⊆ CD(So, Se).

1. Let m ∈ CD(So, Se), there exist n1 ∈ So and n2 ∈ Se such that n1 − n2 = m.

In Sr
o , we can find a number which is associated with n1. That is, there exists

m1 ∈ Sr
o , where m1 = min(S)+max(S)−n1. The elements in Se are symmetric,

so if we take an element m2 that m2 = min(S) + max(S) − n2, then m2 is also

in Se. Since m2 −m1 = [min(S) +max(S)− n2]− [min(S) +max(S)− n1] =

n1−n2 = m, m ∈ CD(Se, Sr
o). Then we can obtain CD(So, Se) ⊆ CD(Se, Sr

o).

2. Let m ∈ CD(Se, Sr
o), there exist n1 ∈ Sr

o and n2 ∈ Se such that n1 − n2 = m.

In So , we can find a number which is associated with n1. That is, there exists

m1 ∈ So where m1 = min(S) + max(S) − n1. If we take an element m2 that

m2 = min(S)+max(S)−n2, then m2 is also in Se. Since m2−m1 = [min(S)+

41

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

max(S) − n2] − [min(S) + max(S) − n1] = n1 − n2 = m, m ∈ CD(So, Se).

Then we can obtain CD(Se, Sr
o) ⊆ CD(So, Se).

By 1 and 2, Lemma 3.2.2 holds true.

Proposition 3.2.2. |D| ≤ |D̃| ≤ |D|+ |So|(1 + |So|).

Proposition 3.2.1 illustrates the condition that |D̃| reaches its lower bound: |D|.

Thus, here we will focus on the right inequality of Proposition 3.2.2, i.e., the upper bound

of |D̃|. There are two sufficient conditions that |D̃| can reach its upper bound. Note that

both of the conditions need to be satisfied.

1. D ∩ CD(So, Sr
o) = ∅.

2. |CD(So, Sr
o)| reaches its upper bound |So|(1 + |So|).

According to (3.8), we know that D̃ = D ∪ CD(So, Sr
o). Therefore, the size of D̃,

|D̃| = |D| + |CD(So, Sr
o)| − |D ∩ CD(So, Sr

o)|. If the first condition is met, namely

D ∩ CD(So, Sr
o) = ∅, then |D̃| = |D| + |CD(So, Sr

o)|. Next, it can be demonstrated

that the upper bound of |CD(So, Sr
o)| is equal to |So|(1 + |So|). First, CD(So, Sr

o)

is composed of the differences between two sensors which are located in So and Sr
o ,

respectively. Both So and Sr
o have |So| numbers, so there are 2 × |So|2 differences

can be generated. Based on Definition 3.1.1, we know the relationship between So and

Sr
o is

Sr
o = {min(So) +max(So)− n | n ∈ So}. (3.12)

Now we pick two elements, min(So) + max(So) − n1 in Sr
o and n2 in So. The dif-

ferences between them are ±[min(So) + max(So) − n1 − n2]. We can find that swap-

ping n1 and n2 will not change the differences. But now the element we pick in Sr
o is

42

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

min(So) + max(So) − n2 and the element we pick in So is n1. After deducting these

repetitive elements in |CD(So, Sr
o)|, if all of the remaining elements are not repetitive,

then |CD(So, Sr
o)| can reach its upper bound |So|(1 + |So|).

Here we look at an example that |D̃| = |D|+ |So|(1 + |So|).

Example 3.2.1. We consider the array S = {0, 1, 5, 6, 10, 15}. By (3.2) and (3.3), we can

get the other sets, where Se = {0, 5, 10, 15}, So = {1, 6} and Sr
o = {9, 14}. First, it can

be found that D∩CD(So, Sr
o) = ∅, since D = {0,±1,±4,±5,±6,±9,±10,±15,±16}

and CD(So, Sr
o) = {±3,±8,±13}. Second, |CD(So, Sr

o)| reaches its upper bound that

|CD(So, Sr
o)| = 6 = |So|(1 + |So|). Finally, we can examine the size of |D̃|, and find

that |D̃| = 23, which is equal to |D|+ |So|(1 + |So|).

Proposition 3.2.3. U ⊆ Ũ.

Proof. Based on (2.12), U = {m | {0, 1, ..., |m|} ⊆ D}. There exist n1, n2 ∈ S such

that n1 − n2 = m. Since S ⊆ S̃, we have n1, n2 ∈ S̃ implying m ∈ Ũ. Then

U ⊆ Ũ.

With this relationship, we know that |U| ≤ |Ũ|. Now let us discuss the condition

that the equality holds true.

1. If the original difference coarray D is hole-free, then |U| = |Ũ|. Since |D| = |D̃| ,

no new elements will be generated after symmetrizing the array S.

2. Assume that the original difference coarray D is not hole-free.

(a) If CD(So, Sr
o) ∩ {±min(H+)} ̸= ∅, then |U| < |Ũ|.

(b) If CD(So, Sr
o) ∩ {±min(H+)} = ∅, then |U| = |Ũ|.

43

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Here the set H was defined in (2.13). The definition of U can also be expressed as this

form: U = {m | −min(H+) < m < min(H+)}. If there exist elements in D̃ fill the

holes {±min(H+)}, then the length of U will become larger, so |U| < |Ũ|. Conversely,

if no new elements can fill the holes {±min(H+)}, then the length of U will still be the

same, so |U| = |Ũ|.

Proposition 3.2.4. 1. If D = D̃, then U = Ũ. 2. If U = Ũ and |H+| ∈ {0, 1}, then

D = D̃.

For the first statement, if two difference coarrays are equal, then the central ULA

segments of them will be equal as well. But conversely, for the second statement, U = Ũ

does not mean that D is definitely equal to D̃. It is possible to happen that D̃ have

the elements which are not belong to D. However, as long as we add another condition

that |H+| ∈ {0, 1}, D will be equal to D̃. The reasons can be expressed as follows.

|H+| = 0 means D is a hole-free difference coarray, and U = D. Under the premise, D̃

is also a hole-free difference coarray, so D = D̃. Also, |H+| = 1means there is a hole in

D+. After symmetrizing the array, new elements in the difference coarray, CD(So, Sr
o),

probably fill this hole. Nevertheless, if this hole is filled, the assumption U = Ũ will be

violated, so definitely there is a same hole in the D̃+. Then we can obtain D = D̃.

44

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

3.3 Properties of Importance Function and Generalized

1-fragility

In Chapter 2, we introduced the importance function and the generalized k-fragility.

The importance function is a metric that can quantify the influence on the difference coar-

ray of sensors or subsets. Therefore, some properties of the importance function will arise

after symmetrizing the array S. Furthermore, according to these proposed properties of

the importance function, we can give the range of the generalized 1-fragility. For the

convenience of discussion, here we define a set Ar based on Definition 3.1.1, where

Ar = {a′ = min(S) +max(S)− a | a ∈ A}. (3.13)

Proposition 3.3.1. I (A, S̃) = I (Ar, S̃), for ∀A, ∀ S, and two types of the importance

function Iess and IU. Here we add the array S̃ to the bracket of the importance function

to represent that A is reomved from S̃.

Proof. Assume that ¯̃DA is the difference coarray of the array S̃ \A, and ¯̃DAr is the

difference coarray of the array S̃ \Ar.

¯̃DA = {m1 −m2 | ∀m1,m2 ∈ S̃ \A}

= {(min(S) +max(S)−m1)− (min(S) +max(S)−m2) | ∀m1,m2 ∈ S̃ \A}

= {p1 − p2 | ∀ p1, p2 ∈ S̃ \Ar}

=
¯̃DAr

(3.14)

According to this derivation, we know that both removing the subset A and removing the

subset Ar have the same difference coarray. Hence, regardless of Iess(A) or IU(A)

45

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

we consider, the value of the importance function will be equal. Namely, Iess(A, S̃) =

Iess(Ar, S̃) and IU(A, S̃) = IU(Ar, S̃).

Proposition 3.3.2. We consider the subset A of the array S and the importance function

Iess. Four properties of Iess(A, S̃) are shown as follows. The relationship between a

and A was defined in (3.13).

1. Assume that |A| = 1, A ⊆ So and Iess(A, S) = 1.

If ±(a′ − a) ∈ D, then Iess(A, S̃) = 0 and Iess(Ar, S̃) = 0.

2. Assume that |A| = 1, A ⊆ So and Iess(A, S) = 0.

If ±(a′ − a) ∈ D, then Iess(A, S̃) = 0 and Iess(Ar, S̃) = 0.

3. Assume that |A| = 1, A ⊆ Se \ {middle(Se) } and Iess(A, S) = 1.

(a) If w (±(a′ − a)) > 1, then Iess(A, S̃) = 0 and Iess(Ar, S̃) = 0.

(b) If w (±(a′ − a)) = 1, and ±(a′ − a) ∈ CD(So, Sr
o), then Iess(A, S̃) = 0

and Iess(Ar, S̃) = 0.

(c) If w (±(a′ − a)) = 1, and ±(a′ − a) /∈ CD(So, Sr
o), then Iess(A, S̃) = 1

and Iess(Ar, S̃) = 1.

Note that the weight function here is corresponding to the original array S.

4. Assume that |A| = k, A ⊆ Se. If Iess(A, S̃) = 0, then Iess(A′, S̃) = 0.

Property 1 and Property 2 can be explained together. Note that a ∈ So and a′ ∈ Sr
o.

After symmetrizing the array S, except for the difference ±(a′ − a), all the other differ-

ences which are related to a can be found at least one alternative pair. Since SD(So) =

SD(Sr
o) in Lemma 3.2.1 and CD(So, Se) = CD(Se, Sr

o) in Lemma 3.2.2, removing

46

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

a or a′ from S̃ will not reduce the elements in the set D̃ \CD(So, Sr
o). In addition, as

we discussed in Proposition 3.2.2, there must exist repetitive elements when computing

CD(So, Sr
o). Thus, except for ±(a′ − a), the other elements in CD(So, Sr

o) will also

not disappear after removing a or a′ from S̃. Note that the pair (a, a′) only belongs to

S̃. If we want to let the equations Iess(A, S̃) = 0 and Iess(Ar, S̃) = 0 be true, the only

sufficient condition is ±(a′ − a) ∈ D.

In Property 3, both a and a′ are belong to Se, so D has the difference ±(a′ − a).

For (a), w (±(a′ − a)) > 1 means that we can find another sensor pair in S to gen-

erate the difference ±(a′ − a). Here we assume that two sensors b1 and b2 are in the

array S. They are different from the sensor pair (a, a′) and they can generate the dif-

ference ±(a′ − a). If b1, b2 ∈ So, then removing a or a′ will not change D̃ because

of SD(So) = SD(Sr
o) in Lemma 3.2.1. Also, if b1 ∈ So and b2 ∈ Se, then remov-

ing a or a′ will not change D̃ because of CD(So, Se) = CD(Se, Sr
o) in Lemma

3.2.2. The final case, both b1 and b2 are in Se. The difference ±(a′ − a) will also

not disappear because of the symmetry of Se. Therefore, we can obtain Iess(A, S̃) = 0

and Iess(Ar, S̃) = 0. For (b), if w (±(a′ − a)) = 1 and ±(a′ − a) ∈ CD(So, Sr
o),

the same result with (a) can be obtained. According to Figure 3.1, we know that So, Se

and Sr
o are mutually exclusive. Removing a or a′ does not change CD(So, Sr

o). Thus,

Iess(A, S̃) = 0 and Iess(Ar, S̃) = 0. However, for (c), if w (±(a′ − a)) = 1 and

±(a′ − a) /∈ CD(So, Sr
o), only the sensor pair (a, a′) in S̃ can generate the difference

±(a′ − a). Thus, Iess(A, S̃) = 1 and Iess(Ar, S̃) = 1.

In Property 4, arbitrary sensors in Se are removed. If the removal of A does not

change the difference coarray D̃, then removing the corresponding Ar will not change D̃

as well. Here we can take Proposition 3.3.1 as the reference.

47

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Proposition 3.3.3. Based on D = D̃, the generalized 1-fragility with respect to the sym-

metrical array S̃ and two importance functions Iess and IU have a certain range. They

are shown as follows.

1.
2

|S̃|
≤ F1(S̃,Iess) ≤

|Se|
|S̃|

.

2. 0 ≤ F1(S̃,IU) ≤
|Se|
|S̃|

− |Se|
|Ũ| × |S̃|

.

For the first case, through Definition 2.5.1, F1(S̃,Iess) is defined as

F1(S̃,Iess) =
∑

A⊆ S̃,|A|=1

Iess(A)(|S̃|
1

) . (3.15)

According to (3.5), S̃ can be decomposed into three subsets. Hence, F1(S̃,Iess) can

be represented as the addition of three parts, like

F1(S̃,Iess) =
∑

A⊆ So ⊆ S̃
|A|=1

Iess(A)
|S̃|

+
∑

A⊆ Se ⊆ S̃
|A|=1

Iess(A)
|S̃|

+
∑

A⊆ Sro ⊆ S̃
|A|=1

Iess(A)
|S̃|

. (3.16)

Here we use the Proposition 3.3.2 to simplify (3.16). First, we consider the sensors in So.

Property 1, and 2 in Proposition 3.3.2 tell us that if ±(a′ − a) ∈ D, then both a and a′

can be removed from S̃ and that does not impact D̃. Since we have already assumed that

D = D̃, every ±(a′ − a) which is generated by different a are definitely in D. Then we

can get Iess(A, S̃) = Iess(A′, S̃) = 0, where A ⊆ So, |A| = 1. Therefore, the following

two summations are equal to 0.

∑
A⊆ So ⊆ S̃
|A|=1

Iess(A)
|S̃|

= 0 and
∑

A⊆ Sro ⊆ S̃
|A|=1

Iess(A)
|S̃|

= 0. (3.17)

48

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Eq.(3.16) can be rewrote as

F1(S̃,Iess) =
∑

A⊆ Se ⊆ S̃
|A|=1

Iess(A)
|S̃|

. (3.18)

Eq.(3.18) indicates that F1(S̃,Iess) is only related to the essentialness property of the

sensors in Se. The least robust case of (3.18) is that all of the considered A are 1-essential.

Then F1(S̃,Iess) will reach its upper bound |Se| / |S̃|. Here we look at an example.

Example 3.3.1. We consider a MRA that S = {0, 1, 3, 6, 13, 20, 27, 31, 35, 36}. Its dif-

ference coarray is hole-free, so D = D̃. The even subset Se = {0, 1, 35, 36}, and the

symmetrical array S̃ = {0, 1, 3, 5, 6, 9, 13, 16, 20, 23, 27, 30, 31, 33, 35, 36}. If checking

the essentialness for every sensor in Se based on S̃, we can find that all of them are

1-essential. Thus, F1(S̃,Iess) = 4/16, which is equal to the upper bound.

On the other hand, the most robust case of (3.18) is that all of the considered A can

be removed from S̃ except for two sensors min(Se) and max(Se). Then F1(S̃,Iess)

will reach its lower bound 2 / |S̃|. Here we look at an example.

Example 3.3.2. An array S = {0, 1, 3, 5, 8, 9, 10, 12} is considered. The difference

coarray is hole-free so that D = D̃. The even subset Se = {0, 3, 9, 12}, and the symmet-

rical array S̃ = {0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 12}. For all the sensors in Se, it can be found

that only the sensors min(Se) and max(Se) are 1-essential with respect to S̃. Thus,

F1(S̃,Iess) = 2/10, which is equal to the lower bound.

49

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

For the second case of Proposition 3.3.3, we can similarly decompose F1(S̃,IU)

into the addition of three parts:

F1(S̃,IU) =
∑

A⊆ So ⊆ S̃
|A|=1

IU(A)
|S̃|

+
∑

A⊆ Se ⊆ S̃
|A|=1

IU(A)
|S̃|

+
∑

A⊆ Sro ⊆ S̃
|A|=1

IU(A)
|S̃|

. (3.19)

We have already known that Iess(A, S̃) = Iess(A′, S̃) = 0, where A ⊆ So and |A| = 1.

Thus, these A can be removed from S̃ and does not change Ũ. So that the equation

IU(A, S̃) = IU(A′, S̃) = 0 also holds true. Then we can rewrite (3.19) as

F1(S̃,IU) =
∑

A⊆ Se ⊆ S̃
|A|=1

IU(A)
|S̃|

. (3.20)

The least robust case of (3.20) is that the remaining U only have one element {0} no

matter which sensor we remove from Se, where Se ⊆ S̃. In this case, the importance

function of all the sensors in Se are IU(A) = 1− 1/|Ũ|. If adding all these values, then

the result is ∑
A⊆ Se ⊆ S̃
|A|=1

IU(A)
|S̃|

=
|Se|(1− 1/|Ũ)

|S̃|
=

|Se|
|S̃|

− |Se|
|Ũ| × |S̃|

. (3.21)

This case usually happens when Ũ = {0}.

As for the most robust case of (3.20), if Ũ will not be changed after removing any

sensors from Se, then IU(A) = 0 for all sensors in Se. This case only happens when D̃

is not a hole-free difference coarray. Because if D̃ is hole-free, then removing min(Se)

or max(Se) must change Ũ. Let us look at an example that F1(S̃,IU) = 0.

50

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Example 3.3.3. We consider the array S = {0, 2, 6, 8, 9, 13}. Its difference coarray is

not hole-free, but it still fits our assumption D̃ = D. The even subset Se = {0, 13}, and

the symmetrical array S̃ = {0, 2, 4, 5, 6, 7, 8, 9, 11, 13}. In Se, we can find that both 0

and 13 will not change Ũ after removing one of them from S̃. Thus, IU({0}, S̃) =

IU({13}, S̃) = 0. According to (3.20), F1(S̃,IU) = 0, which is equal to the lower

bound.

If we take the F1(S,Iess) and F1(S,IU) as the robustness metrics, it is worth

nothing that S̃ is more robust than S. The relationship can be proved based on the

assumption D = D̃. Similar to (3.16) and (3.19), we also decompose the generalized

1-fragility of S into two parts:

F1(S,Iess) =
∑

A⊆ So ⊆ S
|A|=1

Iess(A)
|S|

+
∑

A⊆ Se ⊆ S
|A|=1

Iess(A)
|S|

. (3.22)

F1(S,IU) =
∑

A⊆ So ⊆ S
|A|=1

IU(A)
|S|

+
∑

A⊆ Se ⊆ S
|A|=1

IU(A)
|S|

. (3.23)

Both (3.16) and (3.22) have one term which considers the sensors in Se. We know

that the number of sensors |S| ≤ |S̃|, so definitely

∑
A⊆ Se ⊆ S
|A|=1

Iess(A)
|S|

≥
∑

A⊆ Se ⊆ S̃
|A|=1

Iess(A)
|S̃|

. (3.24)

Therefore, based on (3.17) and (3.24), we can obtain F1(S,Iess) > F1(S̃,Iess). For

the same reason, the inequality of generalized 1-fragility with respect to U is available.

That is, F1(S,IU) > F1(S̃,IU). In the next section, we will show that the symmetrical

coprime arrays can reach the lower bound of F1(S̃,Iess) and F1(S̃,IU).

51

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

3.4 Robustness of Symmetrical Coprime Arrays

Generally, D = D̃ only happens when D is a hole-free difference coarray. How-

ever, as we metioned in Section 2.3, the difference coarray of coprime arrays is not hole-

free. Nevertheless, in this section, we will prove that Dcoprime = D̃coprime even if Dcoprime

is not hole-free. With this result, we will prove that the generalized 1-fragility of sym-

metrical coprime arrays can reach the lower bound:

F1(S̃coprime,Iess) =
2

|S̃coprime|
and F1(S̃coprime,IU) = 0. (3.25)

Proposition 3.4.1. After symmetrizing the coprime arrays, the difference coarray will not

be changed. Namely, Dcoprime = D̃coprime.

Wewill explain CD(So, Sr
o) ⊆ D, and then through the proof of (3.9), we can obtain

Proposition 3.4.1.

First, we build a |So| × |So| matrix C to store half of the elements in the set

CD(So, Sr
o). Assume that min(S) +max(S) = Q, the elements in C is defined as

[C]i,j = Q− ni − nj , (3.26)

where ni and nj are the sensors in So. According to (2.22) andDefinition 3.1.2, we know

that the size of the So of coprime arrays is equal to (N − 1)M . The sensors in So can

be denoted by So = {n1, n2, ..., n(N−1)M}, and they satisfy n1 < n2 < · · · < n(N−1)M .

Because of the symmetric property of difference coarrays in Definition 2.2.1, another half

of the elements in the set CD(So, Sr
o) is −C. The matrix C can be used in not only

52

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

coprime arrays but also any other arrays. For coprime arrays, C is equal to



(2M − 1)N − 2M (2M − 1)N − 3M · · · (2M − 1)N −NM

(2M − 1)N − 3M (2M − 1)N − 4M · · · (2M − 1)N − (N + 1)M

...

(2M − 1)N −NM (2M − 1)N − (N + 1)M · · · (2M − 1)N − 2(N − 1)M


(3.27)

This matrix can be observed that it is a Hankel matrix. Hence, there are many repetitive

elements in the matrix. If each element is considered once only, then the set which is

composed of these elements can be denoted as

{(2M − 1)N −m | m ∈ {2M, 3M, ..., NM, (N + 1)M, ..., 2(N − 1)M}}. (3.28)

Now we can combine the other part differences in −C so that all the elements in

CD(So, Sr
o) of coprime arrays are

{±[(2M − 1)N −m] | m ∈ {2M, 3M, ..., NM, (N + 1)M, ..., 2(N − 1)M}}. (3.29)

If all the elements in (3.29) can be found in Dcoprime, then the equation Dcoprime = D̃coprime

holds true. The following is our discussion.

Picking the element (2M − 1)N in Se and the element in

{2M, 3M, ..., (N − 1)M} ∈ So (3.30)

can generate the differences

{(2M − 1)N − 2M, (2M − 1)N − 3M, ... , (2M − 1)N − (N − 1)M}. (3.31)

53

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Thus, (3.31) belongs to CD(So, Se). Also, the difference between (M−1)N ∈ Se

and 0 ∈ Se is

(M − 1)N = (2M − 1)N −NM, (3.32)

which is just the element in (3.28). It means that (2M − 1)N −NM ∈ SD(Se). More-

over, through (3.32), the element (M − 1)N and the element in

{M, 2M, ..., (N − 2)M} ∈ So (3.33)

can generate the difference

{(2M−1)N−(N+1)M, (2M−1)N−(N+2)M, ..., (2M−1)N−2(N−1)M}. (3.34)

Thus, (3.34) also belongs to CD(So, Se), and they complement the remaining el-

ements in (3.28). Due to the symmetric property of difference coarrays, (2.11), all of

the elements in (3.29) can be generated at the same time. Therefore, we have explained

CD(So, Sr
o) ⊆ D. Through the proof of (3.9), Dcoprime = D̃copimre can be obtained.

Proposition 3.4.2. The generalized 1-fragility with respect to Iess of symmetrical co-

prime arrays can reach the lower bound and also can be represented as a closed form.

Namely, F1(S̃coprime,Iess) =
2

|S̃coprime|
=

1

N +M − 1
.

According to (3.18), here we need to focus on the elements in Se. Removing an

element in Se from S̃ will affect the sets SD(Se), CD(So, Se) and CD(Se, Sr
o).

However, CD(So, Se) and CD(Se, Sr
o) would complement each other due to Lemma

3.2.2. It is not possible that CD(So, Se) and CD(Se, Sr
o) reduce the difference at the

same time, because CD(So, Se) = CD(Se, Sr
o) in Lemma 3.2.2 and the size of Se of

54

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

coprime arrays is definitely an even number. If recalling the sensor locations of coprime

arrays, Se = {0, N, 2N, ..., (2M − 1)N}, the size of Se is (2M − 1) − 0 + 1 = 2M ,

which is an even number. Moreover, Se of coprime arrays is an ULA with a spacing

of N . Except for the sensors “min(S)” and “max(S)”, all the other sensors in ULA are

inessential [18]. In conclusion, we can get

F1(S̃coprime,Iess) =
∑

A⊆ Se ⊆ S̃
|A|=1

Iess(A)
|S̃coprime|

=
2

|S̃coprime|
. (3.35)

From Section 2.3.2, we know the size of Scoprime is N+2M−1. Therefore, S̃coprime

can also be represented as a closed form with parameters M and N .

|S̃coprime| = |S|+ |Sr
o|

= (N + 2M − 1) + (N − 1)

= 2N + 2M − 2.

(3.36)

Then we can further simplify (3.35) to the following form.

F1(S̃coprime,Iess) =
2

|S̃coprime|
=

2

2(N +M − 1)
=

1

N +M − 1
. (3.37)

Proposition 3.4.3. The generalized 1-fragility with respect to IU of symmetrical co-

prime arrays can reach the lower bound, zero. Namely, F1(S̃coprime,IU) = 0.

In Proposition 3.2.4, we mentioned a property that if D = D̃, then U = Ũ. Thus,

for coprime arrays,

Ucoprime = Ũcoprime = {0,±1, ...,±(MN +M − 1)}. (3.38)

55

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Also, from Proposition 3.4.2, we know that only the sensors 0 and (2M−1)N in S̃coprime

are 1-essential. This indicates that removing one sensor from S̃coprime \ {0, (2M − 1)N}

does not change D̃coprime and Ũcoprime. Then we can get the following conclusion through

Eq.(2.28).

IU(A, S̃coprime) = 0, for |A| = 1, A ∈ S̃coprime \ {0, (2M − 1)N} . (3.39)

The reason why 0 and (2M − 1)N are 1-essential is because the difference between

them, (2M − 1)N , will disappear after removing one of them. Through (3.14), we know

that the difference coarray of removing 0 from S̃ is the same as the difference coarray

of removing (2M − 1)N from S̃. Therefore, the missing difference (2M − 1)N does

not change Ũcoprime in (3.38). Then we can rewrite (3.39) as

IU(A, S̃coprime) = 0, for |A| = 1, A ∈ S̃coprime. (3.40)

According to (3.40), the generalized 1-fragility with respect to IU of symmetrical co-

prime arrays is

F1(S̃coprime,IU) =
∑

A⊆ Se ⊆ S̃
|A|=1

IU(A)
|S̃coprime|

= 0. (3.41)

56

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

3.5 Numerical Comparison

Among several common metrics for measuring the robustness of an array, such as

F1(S,Iess), F1(S,IU), and Pc , we can intuitively think that the symmetrical array is

more robust than its original array, since more sensors are placed in the same aperture.

As the content we discussed in Section 3.3 and Section 3.4, if the same faulty sensors are

removed from S and S̃, the impact on S̃ is relatively small. Now we compare different

arrays through an experiment. Besides the arrays we introduced in Section 2.3, we also

consider other arrays in the following comparisons, including thinned coprime arrays [28],

MISC arrays [29] and minimum hole arrays (MHA) [13]. Here we define an indicator

that can measure the increasing degree of robustness after symmetrizing the array.

Definition 3.5.1. Given the array S, the importance function I and the value of k, then

the increasing degree of robustness after symmetrizing the array is defined as

D(k,I) =
Fk(S,I)−Fk(S̃,I)

Fk(S,I)
. (3.42)

The comparison results are shown in Figure 3.3. We compare the values of D(1,I)

of different arrays. Each vertical line in a plot represent the same type of arrays, and

the circles with the same color are the arrays generated by different parameters under

the same array definition. By (3.42), if Fk(S,I) > Fk(S̃,I), then D(k,I) will

be greater than 0. Therefore, it can be observed in Figure 3.3 that all of the points for

both D(1,Iess) and D(1,IU) are greater than 0. For these arrays, we can say that

symmetrizing them will increase the robustness based on generalized 1-fragility.

57

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

(a) I = Iess.

(b) I = IU.

Figure 3.3: D(1,I) for six different types of arrays. They are coprime arrays, thinned
coprime arrays, nested arrays, MRA, MISC arrays and MHA, respectively. The circles
with the same color are the arrays generated by different parameters under the same array
definition.

58

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

From the discussion below (3.24), we only sure that Fk(S,Iess) > Fk(S̃,Iess) and

Fk(S,IU) > Fk(S̃,IU) based on D = D̃. Nevertheless, if D ̸= D̃, we still can find the

special cases that D(k,I) < 0 with respect to Iess and IU. The examples are shown

as follows.

Example 3.5.1. We consider the array S = {0, 3, 5, 8, 10, 13, 15}. Its corresponding

symmetrical array is S̃ = {0, 2, 3, 5, 7, 8, 10, 12, 13, 15}. Table 3.1 shows the importance

function Iess of each sensor in S and S̃. If summing up all the importance values based

on the same array S or S̃, we can get the result F1(S,Iess) = 4/7 and F1(S̃,Iess) =

6/10. Because

4

7
= 0.5714 <

6

10
= 0.6, (3.43)

the generalized 1-fragility with respect to Iess is larger after symmetrizing the array.

Example 3.5.2. The same array S = {0, 3, 5, 8, 10, 13, 15} is considered. Table 3.2

shows the importance function IU of each sensor in S and S̃. If summing up them

based on the same array S or S̃, then we can get the result that F1(S,IU) = 0 and

F1(S̃,IU) = 32/27. It indicates the generalized 1-fragility with respect to IU is larger

after symmetrizing the array.

For Pc , another robustness definition we introduced in Section 2.5, lower probability

Pr[D̄ ̸= D] represents the array is more robust. We compare the same S and S̃ as

Example 3.5.1. In Figure 3.4, we plot the curves of Pc based on (2.31) for S and S̃,

respectively. We can find that no matter which p we take, Pc of S̃ is higher than Pc

of S. That means S̃ is less robust than S based on the definition of Pc.

59

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

n ∈ S 0 × 3 5 × 8 10 × 13 15

Iess({n}) 1 × 1 0 × 0 0 × 1 1

n ∈ S̃ 0 2 3 5 7 8 10 12 13 15

Iess({n}) 1 1 1 0 0 0 0 1 1 1

Table 3.1: The importance function Iess of each sensor in S and S̃.

n ∈ S 0 × 3 5 × 8 10 × 13 15

IU({n}) 0 × 0 0 × 0 0 × 0 0

n ∈ S̃ 0 2 3 5 7 8 10 12 13 15

IU({n}) 0 6
27

10
27

0 0 0 0 6
27

10
27

0

Table 3.2: The importance function IU of each sensor in S and S̃.

In the next chapter, we will present a different view to mitigate this condition. Al-

though it cannot be guaranteed that S̃ is more robust than S, different insights can be

obtained through the observations of the size of U. Moreover, we will illustrate the ben-

efits of symmetrizing the arrays through more experiments.

60

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Figure 3.4: The comparison of Pc of S and S̃. We consider the array S in Example
3.5.1 and plot the curves based on (2.31).

61

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU20220294762

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Chapter 4 Array Analysis with

Random Sensor Failures

In Section 2.6, we introduced the DOA estimation algorithm, coarray MUSIC. It

can utilize the data on U to estimate the source directions. Therefore, larger size of U

indicates that more virtual sensors are used. In this Chapter, we will consider two factors,

|Ū| and p, at the same time. Both of them would impact the performance of the DOA

estimation. Note that Ū is the corresponding central ULA segment in the difference

coarray of the sensor array S̄, where S̄ = S \A. Also, p is the probability of failure for

each sensor. In Section 4.1, we will discuss the relationship between |Ū| and the MSE,

also p and theMSE, through the experiments. Actually, |Ū| is a random variable because

of the sensor failure probability p. Thus, in Section 4.2, we will derive the expected value

expression of |Ū| based on p. Furthermore, we will provide a robustness metric which

related to |Ū| and p at the same time. We can get a two-dimensional point with this

robustness metric as x-axis and a performance metric as y-axis. That can be used for

comparing different arrays. Therefore, in Section 4.2.3, we will have some numerical

results to compare the arrays, verify the expression we have derived, and see the benefits

of the symmetrical arrays. Finally, in Section 4.3, we will focus on the analysis of the

ULA with different number of sensors.

63

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

4.1 The Factors Impacting MSE

In Chapter 4, we will use the coarray MUSIC to perform many experiments. There-

fore, here we define the empirical MSE to evaluate the simulation performance.

MSE =
1

DL

L∑
l=1

D∑
i=1

(
θ̂
(l)
i − θ

(l)
i

)2
, (4.1)

where D is the number of sources and L is the number of trials.

4.1.1 Size of Ū versus MSE

We consider an array with 10 sensors that S = {0, 1, 2, 5, 8, 9, 12, 15, 16, 17}. As-

sume that we have already known there are 3 faulty sensors in S. Thus, here the set A

which consist of the faulty sensors can be denoted by

A = {n1, n2, n3 | n1 ̸= n2, n1 ̸= n3, n2 ̸= n3 and n1, n2, n3 ∈ S}. (4.2)

Every case of A will be considered once so that there are
(
10
3

)
= 120 different A in

total. Then we will use the S̄ to perform the DOA estimation, so there are 120 different

S̄ as well, since S̄ = S \A. Moreover, Ū is obtained from S̄. Here SNR is 0 dB and the

number of snapshots is 500. For each case, we will do 300 Monte-Carlo runs and then

take the average. The result is shown as Figure 4.1 and we have two observations:

1. For two arrays with the same number of sensors and size of Ū, the estimation results

will be different. The reason is that the weight functions of them are different.

2. There is a banded inverse relationship between the size of Ū and the MSE.

64

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

To find a more specific relationship between the size of Ū and the MSE, we can fit these

points to a straight line by the least square approximation. Assume that these points are

(log10 x1, log10 y1), (log10 x2, log10 y2), · · · , (log10 x120, log10 y120). (4.3)

The straight line in Figure 4.1 can be expressed as

log10 y = a+ b log10 x. (4.4)

If substitute the points in (4.3) into (4.4), we can obtain that log10 yi = a+ b log10 xi for

i = 1, 2, · · · , 120. Hence, we need to solve



1 log10 x1

1 log10 x2

... ...

1 log10 x120


︸ ︷︷ ︸

D

a
b

 ≈



log10 y1

log10 y2
...

log10 y120


︸ ︷︷ ︸

e

. (4.5)

Since D is full column rank, (a, b) can be obtained by the least square approximation,

which is shown as follows. a
b

 = (DTD)−1DT e. (4.6)

For the data points in Figure 4.1, a is equal to −2.3620 and b is equal to −2.4966, so

we can get

log10MSE ≈ −2.3620− 2.4966 log10 |Ū|

→ MSE ≈ 10−2.3620 · |Ū|−2.4966 .

(4.7)

65

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Figure 4.1: Estimation error versus size of Ū. Ū is obtained from S̄ = S \A, where
S = {0, 1, 2, 5, 8, 9, 12, 15, 16, 17} and A = {n1, n2, n3 | n1 ̸= n2, n1 ̸= n3, n2 ̸=
n3 and n1, n2, n3 ∈ S}. SNR is 0 dB and the number of snapshots is 500. There is one
source with θ = π/4. Each point is averaged from 300 Monte-Carlo runs. The dotted
line is the least square approximation of these points based on (4.4) to (4.7).

Therefore, we can generally assume that an array S which has large size of Ū can

obtain better estimation performance. The advantage of using single indicator |Ū| as

performance metric is that it can simplify the comparisons of arrays. Furthermore, we can

consider random sensor failures at the same time.

4.1.2 Sensor Failure Probability versus MSE

Aswementioned in Section 2.4, sensor failure probability p increases with the usage

time of the array. For different values of p, the estimation performance of different arrays

would be changed. Therefore, we conduct an experiment to see the relationship between

the failure probability for each sensor, p, and the estimation performance, MSE. Here we

consider four arrays which have introduced in Section 2.3. Table 4.1 shows their Ū size

66

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Arrays Size of Ū, when p = 0 F1(S,Iess) F1(S,IU)

(a) MRA

S = {0, 1, 4, 5, 11, 13}
27 1 0.7901

(b) Nested Array

S = {1, 2, 3, 4, 8, 12}
23 1 0.6232

(c) Coprime Array

S = {0, 2, 3, 4, 6, 9}
15 0.8333 0.3111

(d) ULA

S = {0, 1, 2, 3, 4, 5}
11 0.3333 0.0606

Table 4.1: The comparison of four arrays, each of them has 6 sensors. The second column
is their corresponding

∣∣Ū∣∣ when p = 0. The third and fourth column are their generalized
1-fragility with respect to Iess and IU, respectively.

when p = 0, namely their original U size. Also, we have their generalized 1-fragility

with respect to two importance functions, Iess and IU.

Assume that there is one source θ = π/4. SNR is 0 dB and the number of snap-

shots is 500. We consider 11 different values of p, where p ∈ {10−4, 2 · 10−4, 5 ·

10−4, 10−3, 2 · 10−3, 5 · 10−3, 10−2, 2 · 10−2, 5 · 10−2, 0.1, 0.2}. In the beginning,

random faulty sensors will be removed from the array S with a fixed probability p. The

set A is composed of these faulty sensors. Then we will use the S̄, defined as S \A,

to do 100 Monte-Carlo runs. Next, the random faulty sensors will be regenerated for an-

other 100 Monte-Carlo runs. This action will be repeated 5000 times. That is, each data

point is averaged from 5 · 105 Monte-Carlo runs. The results are shown in Figure 4.2.

Figure 4.2 can be divided into four regions. In Region (I), the MRA possess the

smallest MSE. The nested array own the second smallest MSE, then the coprime array,

and finally the ULA. They are sorted in order of the size of U. Since p is sufficiently

small, few sensors will be removed in each run. Thus, |Ū| ≈ |U|, and more virtual

67

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

sensors in the MRA are used. In Region (II), the nested array possess the smallest MSE.

Although the size of Unested is smaller than the size of UMRA, the estimation performance

is possible to be different when the value of p increases. It can be observed in Table 4.1

that F1(S,IU) of the nested array is smaller than F1(S,IU) of the MRA. Thus, we can

deduce that the robustness has helped to improve the estimation performance. As the value

of p continuously go up, in Region (III), the coprime array possess the smallest MSE. Its

F1(S,IU) is smaller than F1(S,IU) of the nested array and the MRA. Therefore, the

leastMSE of the coprime array itself is sustained longer. Finally, in Region (IV), p is quite

large. The estimation performance is sorted of the robustness metric F1(S,IU) instead

of the size of U. Therefore, the ULA own the least MSE, and the MSE of the MRA is the

highest. In particular, in Table 4.1, we can observe that the value of F1(S,Iess) of the

MRA and the nested array are equal. It is not consistent with the simulation result. Hence,

the robustness metrics should be designed based on the size of U. Moreover, both of the

robustness and the size of U need to be considered when designing array geometries.

68

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Figure 4.2: Estimation error versus probability of failure for each sensor, p. Here we
consider four arrays in Table 4.1. SNR is 0 dB and the number of snapshots is 500.
There is one source with θ = π/4. Each point is averaged from 5 ·105 Monte-Carlo runs.

69

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

4.2 Derivation and Comparison

4.2.1 Expected Value of Ū Size

In this section, we will derive the expression of E
[
|Ū|
]
. It combines two factors

impacting the estimation MSE, which we introduced in Section 4.1.1 and Section 4.1.2.

Here the set A that consists of the faulty sensors is stochastic because every sensor in the

array S fails independently with the same probability. Also, the set S̄, defined as S \A,

and the corresponding Ū are stochastic as well. The size of Ū now become a random

variable, which maps Ū to a real number. The definition is defined as follows.

|Ū| = {u | u = |Ū| , Ū denotes the central ULA segment in the difference coarray

of S̄ = S \A, where A is a subset of S} .
(4.8)

Since the set Ū generated by different A may be different, here we separate all A

sets with different symbols. They can be written as Aj
k, where k = 0, 1, ..., |S| is the

number of elements in A, and j = 1, 2, ...,
(|S|
k

)
is the index of Ak. Also, we use S̄j

k to

separate different cases that S \Aj
k, and the corresponding central ULA segment in the

difference coarray is denoted by Ūj
k. Note that Aj

k, S̄
j
k, and Ūj

k are deterministic. Now

let us look at the probability of A = Aj
k. This probability is inspired by [24, Eq.32].

70

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

If every sensor in the array S fails independently with the same probability p, then

Pr(A = Aj
k) = Pr

 ⋂
n1 ∈Aj

k

(n1 fails)

 ∩

 ⋂
n2 ∈ S̄jk

(n2 fails)c


=

 ∏
n1 ∈Aj

k

Pr(n1 fails)

 ·

 ∏
n2 ∈ S̄jk

[1− Pr(n2 fails)]


= pk(1− p)|S|−k.

(4.9)

Eq.(4.9) is also the probability of S̄ = S̄j
k, so

Pr(A = Aj
k) = Pr(S̄ = S̄j

k) = pk(1− p)|S|−k. (4.10)

For every array S̄j
k, the corresponding central ULA segment in the difference coarray, Ūj

k,

can be obtained based on (2.12). Therefore, the probability that every Ūj
k happens is also

equal to pk(1−p)|S|−k. We calculate the size of all Ūj
k. If every |Ūj

k| are multiplied their

corresponding probability, and we sum up all of them, then we can obtain the expected

value of |Ū|. The expression is shown as follows.

E
[
|Ū|
]
=

|S|∑
k=0

(|S|
k
)∑

j=1

∣∣Ūj
k

∣∣ pk(1− p)|S|−k . (4.11)

In (4.11),
∑(|S|

k
)

j=1

∣∣Ūj
k

∣∣ purely depends on the array configuration. Thus, it is possible
to increase E

[
|Ū|
]
by designing the array geometry. Furthermore, pk(1−p)|S|−k depends

on the probability p, the summation index k, and the size of the array |S|. For a fixed

array configuration, we can try to sustain the largest E
[
|Ū|
]
by controlling p or |S|. In

Section 2.5, we mentioned that p is affected by the sensing device. On the other hand,

the size of |S| can be changed by adding other sensors to the array.

71

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Next, we will present a closed-form relationship between E
[
|Ū|
]
and generalized

k-fragility Fk(S,IU) which was introduced in Section 2.5. First, we rewrite (4.11) by

multiplying |U| / |U|, and we can get

E
[
|Ū|
]
=

|S|∑
k=0

pk(1−p)|S|−k

(|S|
k
)∑

j=1

∣∣Ūj
k

∣∣ = |U|
|S|∑
k=0

pk(1−p)|S|−k

 1

|U|

(|S|
k
)∑

j=1

∣∣Ūj
k

∣∣
 . (4.12)

If adding
(|S|
k

)
−
(|S|
k

)
to the parentheses, (4.12) will become

E
[
|Ū|
]
= |U|

|S|∑
k=0

pk(1− p)|S|−k

(|S|
k

)
−

(|S|
k

)
− 1

|U|

(|S|
k
)∑

j=1

∣∣Ūj
k

∣∣

 . (4.13)

Then we move 1/|U| and
(|S|
k

)
to the summation of j, so (4.13) become

E
[
|Ū|
]
= |U|

|S|∑
k=0

pk(1− p)|S|−k

(|S|
k

)
−

(|S|
k
)∑

j=1

1−
∣∣Ūj

k

∣∣
|U|

 . (4.14)

Then we multiply
(|S|
k

)
/
(|S|
k

)
to (4.14), so (4.14) become

E
[
|Ū|
]
= |U|

|S|∑
k=0

(
|S|
k

)
pk(1− p)|S|−k

1−
(|S|

k
)∑

j=1

1−
∣∣Ūj

k

∣∣
|U|(|S|

k

)
 . (4.15)

In Definition 2.5.1, we have defined Fk(S,IU) =
∑

A⊆S,|A|=k IU(A) /
(|S|
k

)
, and IU(A)

is equal to 1− |Ū| / |U| based on (2.28). Thus, we can rewrite (4.15) as

E
[
|Ū|
]
= |U|

|S|∑
k=0

(
|S|
k

)
pk(1− p)|S|−k (1−Fk(S,IU)) . (4.16)

Finally, we know that
∑|S|

k=0

(|S|
k

)
pk(1−p)|S|−k = 1, because it is the CDF of the binomial

distribution. Therefore, we can obtain the relationship between E
[
|Ū|
]
and Fk(S,IU)

72

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

like the following form.

E
[
|Ū|
]
= |U|

1−
|S|∑
k=0

(
|S|
k

)
pk(1− p)|S|−kFk(S,IU)

 . (4.17)

We can notice the content in the parentheses of (4.17). Its range is

0 ≤

1−
|S|∑
k=0

(
|S|
k

)
pk(1− p)|S|−kFk(S,IU)

 ≤ 1. (4.18)

As we mentioned in Section 2.5, the value of Fk(S,I) is between 0 and 1. Here

Fk(S,I) of each k will be multiplied a probability of the binomial distribution, so the

summation of k is range from 0 to 1. That is the reason we can obtain the inequality of

(4.18). An array is more robust if its Fk(S,IU) is close to 0. Hence, for a fixed p, the

computed value in the parentheses of (4.18) is close to 1 if the array is more robust. Also,

the value of E
[
|Ū|
]
will close to |U| according to (4.17). It indicates that a robust array

is more likely to maintain its original |U|, even though it is under the influence of p.

However, the complexity of computing E
[
|Ū|
]
based on (4.11) is O(2|S|), since we

need to compute
(|S|
k

)
values of

∣∣Ūj
k

∣∣ for each k and sum up all of them. It will become

computationally expensive for large |S|. If we consider two terms k = 0 and k = 1,

the complexity will become O(|S|). Furthermore, if we only consider one term k = 0,

then the complexity is O(1). It greatly reduce the complexity. But the approximation is

not suitable for any arrays, and we will further explain through the numerical results in

Section 4.2.3.

73

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

For the convenience of the following discussion, we define two symbols, Rk(S) and

Pk(p, S), where

Rk(S) =
(|S|

k
)∑

j=1

∣∣Ūj
k

∣∣ ,
Pk(p, S) = Rk(S) pk(1− p)|S|−k.

(4.19)

Therefore, E
[
|Ū|
]
of (4.11) also can be represented as

E
[
|Ū|
]
=

|S|∑
k=0

Rk(S) pk(1− p)|S|−k =

|S|∑
k=0

Pk(p, S). (4.20)

Now we can define the approximations of E
[
|Ū|
]
depending on the summation of

k in (4.20). They are expressed as follows.

E
[
|Ū|
]
approx.0

=
0∑

k=0

Pk(p, S),

E
[
|Ū|
]
approx.1

=
1∑

k=0

Pk(p, S),

E
[
|Ū|
]
approx.2

=
2∑

k=0

Pk(p, S),

...

E
[¯|U|]

approx.(|S|−1)
=

|S|−1∑
k=0

Pk(p, S),

E
[
|Ū|
]
approx.|S| =

|S|∑
k=0

Pk(p, S) = E
[
|Ū|
]
.

(4.21)

From the top to the bottom of (4.21), the value of these approximations continuously

accumulate. We know that

P0(p, S) ≤ P0(p, S) + P1(p, S) ≤ P0(p, S) + P1(p, S) + P2(p, S) ≤ · · · . (4.22)

74

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Hence, the approximations in (4.21) have the following relationship.

E
[
|Ū|
]
approx.0

≤ E
[
|Ū|
]
approx.1

≤ · · · ≤ E
[
|Ū|
]
approx.(|S|−1)

≤ E
[
|Ū|
]
. (4.23)

4.2.2 Proposed Robustness Metric

Here we define a robustness metric based on E
[
|Ū|
]
. The advantage is that it is

related to p and |Ū| at the same time. The definition is shown below.

Definition 4.2.1. The robustness metric of the array S is defined as p90% , where p90%

is the value of p when E
[
|Ū|
]
decreasing to 0.9 · |U|.

Different arrays have different size of |U|, and this metric p90% take the |U| of the

array itself as the reference point. It can be regarded as the usage time of the array when

the value of E
[
|Ū|
]
is between |U| and 0.9 · |U|. An array is more robust if the value of

p90% close to 1, and less robust if the value of p90% close to 0. We can solve the value of

p90% through the following equation with the variable p.

|S|∑
k=0

pk(1− p)|S|−k

(|S|
k
)∑

j=1

∣∣Ūj
k

∣∣ = 0.9 · |U| . (4.24)

This is a unary polynomial equation with up to |S|-th power. It can be written as

co + c1 p+ c2 p
2 + · · ·+ c|S|−1 p

|S|−1 + c|S| p
|S| = 0.9 · |U|. (4.25)

Algorithm 1 shows how to get all the coefficients ci in (4.25). We just follow up the

steps of Algorithm 1, and then we can get a vector [c0, c1, c2, · · · , c|S|−1, c|S|]. In fact, co

75

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

is equal to |U|, so the equation we actually need to solve is

0.1 · |U| + c1 p+ c2 p
2 + · · ·+ c|S|−1 p

|S|−1 + c|S| p
|S| = 0. (4.26)

The answer of (4.26) can be easily obtained through a MATLAB function: roots.

Since p90% is the intersection of p of E
[
|Ū|
]
and 0.9 · |U|, there is only a real solution

of p between 0 and 1. The solution of p is p90%.

Algorithm 1 Generate the coefficients of all k-th power of the variable p of E
[
|Ū|
]
.

1: build a vector h = [1, −1]
2: build a vector a = h ∗ h
3: build a column vector b, where b ∈ N|S|

4: build a matrix B, where B ∈ Z|S|×(|S|+1)

5: assign B|S|, |S| : |S|+1 = h
6: assign B|S|−1, |S|−1 : |S|+1 = a
7: for k = 0, 1, . . . , |S| − 1 do
8: bk+1 = Rk(S)
9: if k is equal to 0 or 1 then
10: continue
11: else
12: a = a ∗ h
13: B|S|−k, |S|−k : |S|+1 = a
14: end if
15: end for
16: Sum up all the values of each column of the matrix b • B

In Algorithm 1, we use the convolution operator between vectors. For digital signal

processing, the convolution of two signals f [n] and g[n] is

y[n] = f [n] ∗ g[n] =
∑
m

f [m]g[n−m]. (4.27)

If f [n] =
∑M1−1

j=0 fj δ[n− j] and g[n] =
∑M2−1

j=0 gj δ[n− j], then the output

y[n] =

M1+M2−1∑
j=0

yj δ[n− j]. (4.28)

76

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Assume that the vector f = [f0, f1, · · · , fM1−1] and the vector g = [g0, g1, · · · , gM2−1],

the convolution between them is f ∗ g. The answer is also a vector, where

y = f ∗ g = [y0, y1, · · · , yM1+M2−1]. (4.29)

If f and g are vectors of polynomial coefficients, the convolution of them is equivalent

to multiplying the two polynomials [30]. That is the reason we use vector convolution in

the algorithm, since we have this term pk(1− p)|S|−k in (4.24).

4.2.3 Numerical Results

4.2.3.1 The Expected Value and The Corresponding Approximation

First, we compare the expected value obtained from the statistical PMF with the the-

oretical expected value we derived in (4.11). We consider the coprime array with M = 2

and N = 3. Then we generate the PMF of |Ū| through Algorithm 2. There are 16 dif-

ferent p values, each p will be run Algorithm 2 once and then generate a PMF plot. The

results are shown in Figure 4.3 and Figure 4.4.

Algorithm 2 PMF of |Ū| generation.
1: Given an array with N sensors, S = {n1, n2, · · · , nN}
2: Fix p and the number of trials
3: for iteration = 1, 2, . . ., number of trials do
4: for n1, n2,. . ., nN do
5: c = single uniformly distributed random number in the interval (0, 1)
6: if c ≤ p then
7: Remove the current sensor from S
8: end if
9: end for
10: Calculate |Ū| of the current array S̄
11: end for
12: Counting the occurrence of every |Ū|, and dividing all of them by the number of trials
13: Plot the PMF

77

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

In Algorithm 2, we set the number of trials to 105, and randomly decide whether to

remove the sensor based on the probability p in each trial. Then we calculate the value

of |Ū|. After getting all the values of |Ū| in each trial, we will count the occurrence of

every |Ū| to obtain the final PMF.

In Figure 4.3 and Figure 4.4, we can observe several features. When p = 0, all

sensors work normally, and all A sets are empty sets. The PMF is like a delta function at

15 (the size of U). The PMF will gradually concentrate to the left when p is increasing.

Finally, when p = 1, the PMF is like a delta function at 0.

Now we can take the expected value of each plot in Figure 4.3 and Figure 4.4. They

are shown as the blue curve in Figure 4.5. Moreover, we plot the theoretical expected

value based on (4.11) with the same 16 values of p. They are shown as the red curve

in Figure 4.5. It can be seen that two curves are completely overlapped. That is, the

expression of the expected value E
[
|Ū|
]
can be confirmed. Note that this expression is

suitable for any array configurations.

78

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

(a) p = 0.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

(b) p = 10−4.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

(c) p = 2 · 10−4.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

(d) p = 5 · 10−4.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

(e) p = 10−3.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

(f) p = 2 · 10−3.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

(g) p = 5 · 10−3.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

(h) p = 10−2.

Figure 4.3: PMF of |Ū| with different failure probability p. Herewe consider the coprime
array with M = 2 and N = 3. For each p, the number of trials is 105, and the PMF is
obtained by counting the occurrence of every |Ū| through Algorithm 2.

79

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

(a) p = 2 · 10−2.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

(b) p = 5 · 10−2.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

(c) p = 0.1.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

(d) p = 0.2.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

(e) p = 0.3.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

(f) p = 0.4.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

(g) p = 0.5.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

(h) p = 1.

Figure 4.4: (Continued from Figure 4.3).

80

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Figure 4.5: The comparison of the expected value obtained from the statistical PMF and
Eq.(4.11).

For the approximation of E
[
|Ū|
]
, we have two examples. One is the MRA and

the other one is the ULA. Both of them has 6 sensors, and the array geometry is the

same as Table 4.1. Figure 4.6 shows the approximation of the MRA. In this case, k = 0

term accounts for a large proportion of E
[
|Ū|
]
(Figure 4.6(a)). This k = 0 term can be

denoted by

E
[
|Ū|
]
approx.0

= |U| · (1− p)|S| . (4.30)

In Figure 4.6(b), the blue line (approximation of k = 0) is close to the gray line (original

expected value) in the interval p = 10−4 ∼ 5 · 10−3. If we consider two terms k = 0

and k = 1, the closeness is more obvious. The brown line is close to the gray line in the

interval p = 10−4 ∼ 0.05.

81

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

(a)

(b)

Figure 4.6: Here we consider the MRAwith 6 sensors in Table 4.1. (a) Each term of k in
E
[
|Ū|
]
. (b) The approximations of E

[
|Ū|
]
, E
[
|Ū|
]
approx.0

and E
[
|Ū|
]
approx.1

defined
in (4.21).

82

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

(a)

(b)

Figure 4.7: Here we consider the ULA with 6 sensors in Table 4.1. (a) Each term of k in
E
[
|Ū|
]
. (b) The approximations of E

[
|Ū|
]
, E
[
|Ū|
]
approx.0

and E
[
|Ū|
]
approx.1

defined
in (4.21).

83

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

However, the approximations of the ULA are more inaccurate. In Figure 4.7(b),

E
[
|Ū|
]
approx.0

separates E
[
|Ū|
]
from p = 10−3 , and E

[
|Ū|
]
approx.1

separates E
[
|Ū|
]

from p = 10−2. For the ULA, except for k = 0 and k = 1, the other Pk(p, S) also

occupy a certain proportion of E
[
|Ū|
]
(Figure 4.7(a)). If we ignore them, then it will not

be able to approximate E
[
|Ū|
]
well.

Due to these two examples, we know that the approximations are more suitable for

the arrays that are not robust, such as MRA and nested arrays. From another point, ac-

cording to the discussion of (4.17), small value of Fk(S,IU) makes |U| decrease less.

Therefore, the robust arrays like ULA can sustain the original |U| longer while p is in-

creasing. However, from (4.30), the value of |U| · (1− p)|S| would start dropping rapidly

around p = 10−2. Thus, E
[
|Ū|
]
approx.0

can fit E
[
|Ū|
]
better for the MRA. On the other

hand, we need to consider more terms of k for the robust array.

4.2.3.2 Comparison of Different Arrays

In order to compare different arrays comprehensively, here we will consider the re-

spective |U| of the array. Namely, we can evaluate the array by a two-dimensional point,

where x-axis is p90% and y-axis is 0.9 · |U|. Moreover, for the convenience of the com-

parison, we will take the logarithm of p90% that

P = log10 p90%. (4.31)

84

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

The first comparison is associated with four arrays listed in Table 4.1. Each of them

has 6 sensors. The comparison results are shown in Figure 4.8. The p90% of them are

consistent with the results measured by F1(S,IU) which was listed in Table 4.1. The

most robust array is the ULA and the least robust array is the MRA. However, if we

compare their y-axis value, 0.9 · |U|, the MRA has the highest value. In Figure 4.8,

we can observe that there exits a trade-off between the robustness metric p90% and the

performance metric 0.9 · |U|. This trade-off also can be observed in Figure 4.2 simulation.

For the arrays with the same number of sensors, large size of |U| indicates that the weight

function w(m) on most of the coarray index m are small. According to Property 4 of

Corollary 2.2.1, the summation of w(m) for m ∈ D,m ̸= 0, is fixed. It depends on the

size of the array. Hence, the elements in U of the robust array are not easily disappeared

based on a fixed p.

The second comparison is associated with four arrays, and each of them has 10 sen-

sors. Their array geometries are shown below.

SMRA = {0, 1, 3, 6, 13, 20, 27, 31, 35, 36},

Snested = {1, 2, 3, 4, 5, 6, 12, 18, 24, 30},

Scoprime = {0, 3, 5, 6, 9, 10, 12, 15, 20, 25},

SULA = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

(4.32)

Figure 4.9 is the comparison result. With the same reason, if an array is designed for hav-

ing large size of U, then the elements in U are easily disappeared since the corresponding

weight function is relatively small. Therefore, in Figure 4.9, the inverse relationship be-

tween p90% and 0.9 · |U| also can be observed. For different arrays with the same number

of sensors, it is not possible that an array has the best p90% and 0.9 · |U| at the same time.

85

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Now we observe these 8 different arrays in Figure 4.8 and Figure 4.9. We compare

the same type of the arrays. For example, the MRA with 6 sensors and the MRA with

10 sensors are compared with each other. Then we can find that including the MRA,

the nested arrays and the coprime arrays, their p90% will get smaller when the number of

sensors increases. On the other hand, p90% of the ULA with 10 sensors is larger than

p90% of the ULA with 6 sensors. That is, ULA are more robust with larger number of

sensors. Therefore, in Section 4.3, we will discuss the robustness and the performance of

ULA with different number of sensors.

86

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Figure 4.8: The comparison of p90% and 0.9·|U| of four arrays. Each array has 6 sensors
and the array geometries are listed in Table 4.1.

Figure 4.9: The comparison of p90% and 0.9 · |U| of four arrays. Each array has 10
sensors and (4.32) shows the array geometries.

87

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Arrays Number of sensors p90% P Increasing of P

MRA
S 6 0.0221 -1.655

+0.815
S̃ 10 0.1446 -0.840

Nested Array
S 6 0.0282 -1.550

+0.826
S̃ 10 0.1887 -0.724

Coprime Array
S 6 0.0523 -1.282

+0.617
S̃ 8 0.2163 -0.665

Table 4.2: Symmetrical arrays compare with original arrays (Here S are the arrays in
Table 4.1 and S̃ are generated from (3.4) and (3.5)).

4.2.3.3 The Symmetrical Array Compare with The Original Array

In Chapter 3, we introduced how to transfer an array S to its symmetrical version

S̃. Here we will compare S and S̃. In Table 4.2, we have three examples that all of the S

are the same as Table 4.1. The last column of Table 4.2 is the increasing value of P after

symmetrizing the array. We define PS as the P of the array S. Thus, the increasing of

P are obtained from PS̃ −PS. It can be observed that the nested array increase the most

among these three arrays. However, if we consider the number of sensors, the coprime

array is themost economical. Since only two sensors are added to the symmetrical coprime

array, adding one sensor can increase 0.3085 of P on average. On the other hand, there

are four new sensors in S̃ for both the MRA and the nested array. Therefore, adding one

sensor can only increase 0.20375 of P for the MRA and 0.2065 of P for the nested

array.

We use E
[
|Ū|
]
S to represent the expected value defined in (4.11) of the array S. In

Figure 4.10 - Figure 4.12, we plot the E
[
|Ū|
]
S and the E

[
|Ū|
]
S̃ based on the same p.

88

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

10
-4

10
-3

10
-2

10
-1

10
0

0

5

10

15

20

25

30

(a) p versus E
[
|Ū|
]
.

10
-4

10
-3

10
-2

10
-1

10
0

0

5

10

15

20

25

30

(b) p90% versus 0.9 · |U|.

Figure 4.10: The comparison of S and S̃ of the MRA in Table 4.2.

10
-4

10
-3

10
-2

10
-1

10
0

0

5

10

15

20

25

(a) p versus E
[
|Ū|
]
.

10
-4

10
-3

10
-2

10
-1

10
0

0

5

10

15

20

25

(b) p90% versus 0.9 · |U|.

Figure 4.11: The comparison of S and S̃ of the nested array with N1 = 3 and N2 = 3
in Table 4.2.

10
-4

10
-3

10
-2

10
-1

10
0

0

2

4

6

8

10

12

14

16

(a) p versus E
[
|Ū|
]
.

10
-4

10
-3

10
-2

10
-1

10
0

0

2

4

6

8

10

12

14

16

(b) p90% versus 0.9 · |U|.

Figure 4.12: The comparison of S and S̃ of the coprime array with M = 2 and N = 3
in Table 4.2.

89

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Also, we mark the point of p90% and 0.9 · |U|. All of these three arrays have the property

that D = D̃, since the MRA and the nested have hole-free difference coarrays and we

have proved that Dcoprime = D̃coprime in Proposition 3.4.1. That is why the expected value

curves of S and S̃ in Figure 4.10 - Figure 4.12 have the same start point when p is quite

small. It can be observed that the following inequality always holds true for these arrays.

E
[
|Ū|
]
S ≤ E

[
|Ū|
]
S̃ , for 0 ≤ p ≤ 1. (4.33)

In Proposition 3.3.3, we proved that F1(S̃,IU) is definitely less than F1(S,IU)

based on D = D̃. Here the arrays in Figure 4.10 - Figure 4.12 are consistent with this

proof. According to Figure 3.3, the decrease of F1(S,IU) is usually large empirically.

Also, from (4.17), we know that small generalized 1-fragility F1(S,IU) can get large

expected value E
[
|Ū|
]
. Thus, S̃ is more capable of maintaining the original size of U

than S. However, we have not found a method that is suitable for proving (4.33) always

holds true for arbitrary arrays. Hence, this part will be placed in future work.

Now we use S and S̃ to estimate one source, θ = π/4, with different sensor failure

probability p. SNR is 0 dB and the number of snapshots is 500. Like the experiment in

Figure 4.2, random faulty sensors will be removed from the array with a fixed probability

p. For every p, we have 5000 S̄, defined as S \A. Here A is composed of the random

faulty sensors. Then each S̄ will be run 100 Monte-Carlo runs. Namely, each data point

is averaged from 5 · 105 Monte-Carlo runs. There are three comparisons: the MRA, the

nested array and the coprime array. The results are shown in Figure 4.13 - Figure 4.15.

90

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Figure 4.13: The estimation error comparison of the MRA S and its symmetrical version
S̃. We estimate one source with θ = π/4. SNR is 0 dB and the number of snapshots is
500. Each point is averaged from 5 · 105 Monte-Carlo runs.

Figure 4.14: The estimation error comparison of the nested array S and its symmetrical
version S̃. We estimate one source with θ = π/4. SNR is 0 dB and the number of
snapshots is 500. Each point is averaged from 5 · 105 Monte-Carlo runs.

91

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Figure 4.15: The estimation error comparison of the coprime array S and its symmetrical
version S̃. We estimate one source with θ = π/4. SNR is 0 dB and the number of
snapshots is 500. Each point is averaged from 5 · 105 Monte-Carlo runs.

In Figure 4.13 - Figure 4.15, the MSE performance simulated by S̃ is relatively

small with all sensor failure probability p. It can be noticed that when p is quite small, S̃

still has smaller MSE even though the size of U and Ũ are the same. We have seen this

condition in Section 4.1. It is because of the different weight functions. Here for S and

S̃, we know that S ⊆ S̃. Thus, S̃ has more physical sensors that can collect the signal

data in the environment. Also, with the same location of the virtual sensor, the weight

function of S̃ must not be less than the weight function of S. That is, for the same virtual

sensor, more data are collected in Ũ than U. From the figure(b) of Figure 4.10 - Figure

4.12, the robustness of S̃ of these arrays are better than the robustness of S based on

p90%. This result is reflected in the simulations. It can be found that S̃ can maintain its

least MSE longer than S. With all these reasons, we can say that symmetrizing the array

is very beneficial.

92

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

10
-4

10
-3

10
-2

10
-1

10
0

0

5

10

15

20

25

30

(a)

10
-4

10
-3

10
-2

10
-1

10
0

0

5

10

15

20

25

30

(b)

Figure 4.16: The comparison of S and S̃ of the array in (4.34). (a) The expected value
curve based on (4.11). (b) Robustness metrics p90% and performance metrics 0.9 · |U|.

The final comparison is associated with the arrays in Example 3.5.2. In that case,

S = {0, 3, 5, 8, 10, 13, 15},

S̃ = {0, 2, 3, 5, 7, 8, 10, 12, 13, 15},
(4.34)

and the robustness increase after symmetrizing the array. The reason is that U only has

one element {0}, but Ũ = {0,±1, · · · ,±13}. The difference coarray of S has the

holes that H = {±1,±4,±6,±9,±11,±14}, and most of the holes will be filled after

symmetrizing the array since CD(So, Sr
o) = {±1,±4,±6,±9,±11}. The cross dif-

ference was defined in Section 2.2. Here for S, removing sensors does not have much

impact on U. Hence, in (4.34), S is more robust than S̃ based on F1(S̃,Iess) and

F1(S̃,IU). However, if we use them to estimate the source direction, S̃ will be better

than S. For coarray MUSIC algorithm, S does not work, but S̃ can get a MSE perfor-

mance, 1.1395 · 10−6, based on (4.1). Here the SNR is 0 dB, the number of snapshots is

500, only one source located at θ = π/4, and theMSE is averaged from 300 Monte-Carlo

runs.

93

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

In Figure 4.16, we evaluate the arrays with E
[
|Ū|
]
also mark the p90% and 0.9 · |U|.

For p90%, S is better than S̃. It meets our description above because |U| = 1. However,

if we compare the y-axis, 0.9 · |U|, S̃ is much better than S, since |Ũ| = 27. For the

expected value curve, Eq.(4.33) also holds true. Therefore, considering the robustness and

the performance at the same time allows us to evaluate the array more comprehensive, and

also has the connection to the simulation.

4.2.3.4 Random Source Direction

In this section, we will use the symmetrical nested array to estimate the source an-

gle. The array configuration we consider is S̃ = {1, 2, 3, 4, 5, 8, 9, 10, 11, 12}. The source

angle contains π/3, π/4, π/6, and a random angle. The random angle is taken from a

uniform distribution over a range from –π/2.5 to π/2.5. In this way, we can observe

whether strange phenomena occur at a specific angle when we perform the DOA esti-

mation. Here the SNR is 0 dB and the number of snapshots is 500. For the symmet-

rical nested array, there still exist random sensor failures. The probability we choose is

p ∈ {10−3, 10−2, 2 · 10−2, 5 · 10−2, 0.1}. The set A will be generated randomly based

on a fixed probability, p. Then we will use the S̄, defined as S \A, to estimate the source

angle. Note that we only estimate one source at a time. Moreover, every S̄ will perform

100 Monte-Carlo runs and there are 1000 S̄ will be generated for each p. Thus, each

point is averaged from 105 Monte-Carlo runs. For the random source angle, it will be

regenerated for every S̄. Therefore, every S̄ will estimate one random source angle and

perform 100 Monte-Carlo runs. The curves in Figure 4.17 are the results of estimating

the different angles mentioned above.

94

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Figure 4.17: The estimation error comparison of the symmetrical nested array estimating
different source angles. The fixed angle include π/3, π/4, and π/6. The random angle
is θ ∈ [−π/2.5, π/2.5] with uniform distribution. It will be regenerated for every S̄,
so every S̄ will estimate one random source angle and perform 100 Monte-Carlo runs.
There are 1000 S̄ so that each point is averaged from 105 Monte-Carlo runs. We set
SNR to 0 dB and the number of snapshots to 500.

It can be observed that the change tendency of the MSE is consistent under the dif-

ferent probability p. These lines do not overlap entirely because the source angle is also

one of the factors affecting the MSE [7]. However, strange phenomena such as the MSE

fluctuating dramatically do not occur even if we estimate the random angle.

95

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

4.3 ULA Analysis

From the experiments in Section 4.2.3.2, we found that ULA is the array that can

simultaneously enhance the robustness and performance when increasing the number of

sensors. This property is different from the other arrays such as nested arrays and co-

prime arrays. Hence, we will specifically analyze the ULA with random faulty sensors

in this section. Here we use “ULAN” to represent the ULA with N sensors defined in

(2.24). For ULA, the values of R0(S) and R1(S) can be easily obtained because of their

geometry. If k = 0, it means there is no faulty sensor in the array, so

R0(S) =
(|S|

0
)∑

j=1

∣∣Ūj
0

∣∣ = |U| = 2N − 1. (4.35)

Also, the values of the F1(S,Iess) of the ULA with N sensors is equal to 2/N for

N ≥ 4 [18]. Except for the sensors at the end points, “min(SULA)” and “max(SULA)”,

the difference coarray will not be changed after removing one of the other sensors from the

array. The value of |Ū| still equals to 2N − 1. On the other hand, removing min(SULA)

or max(SULA) make the value of |Ū| equal to 2N − 3. With these results, we can get

R1(S) =
(|S|

1
)∑

j=1

∣∣Ūj
1

∣∣ = (N − 2) · (2N − 1) + 2 · (2N − 3)

= (2N2 −N − 4N + 2) + (4N − 6)

= 2N2 −N − 4.

(4.36)

Through (4.35), we know that the size of U of ULA increases with the number of

sensors. However, we want to know whether the size of U will also increase under the

influence of random sensor failures. Thus, we will use the expected value expression in

96

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Figure 4.18: A schematic diagram we compare the ULAwith different number of sensors.

(4.11) to compare the ULA with different number of sensors. In the following sections,

we will discuss two comparisons of the ULA. One is the ULA with N sensors versus the

ULA with N + 1 sensors, and the other one is the ULA with N sensors versus the ULA

with N + 2 sensors.

According to (4.11), when computing E
[
|Ū|
]
, we need to calculate the summa-

tion from k = 0 to k = |S|. However, k = |S| indicates that all of the sensors are

removed. Thus, |Ū| = 0, and P|S|(p, S) = 0. Namely, k = |S| can be ignored,

and we only need to consider k = 0, 1, ..., |S| − 1. Figure 4.18 is a schematic dia-

gram that we compare Pk(p,ULAN) and Pk(p,ULAN+1) of each k terms. On

the p-axis, if Pk(p,ULAN+1) > Pk(p,ULAN), it will show the red line, otherwise

it will show the blue line. Assume that the intersection of p of Pk(p,ULAN+1) and

Pk(p,ULAN) is pk. Also, pk satisfy p0 ≤ p1 ≤ p2 ≤ · · · . Therefore, we can find

the interval of p that it only contains the red lines. Then we can obtain the inequality

E
[
|Ū|
]
ULAN

< E
[
|Ū|
]
ULAN+1 in that interval of p.

97

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

4.3.1 ULA with N sensors and ULA with N + 1 sensors

k

Pk(p, S) S

ULA N ULA N+1

0 R0(S) · (1− p)N R0(S) · (1− p)N+1

1 R1(S) · p(1− p)N−1 R1(S) · p(1− p)N

2 R2(S) · p2(1− p)N−2 R2(S) · p2(1− p)N−1

...

N -1 RN−1(S) · pN−1(1− p) RN−1(S) · pN−1(1− p)2

N 0 RN(S) · pN(1− p)

N+1 × 0

Table 4.3: All the components of E
[
|Ū|
]
of the ULAwith N sensors and N+1 sensors.

Table 4.3 lists all the Pk(p, S) of ULAN and ULAN+1 from k = 0 to k = N+1

based on (4.19). The intersection of p of their Pk(p, S) for a certain k can be solved by

the equation

Rk(ULAN) · pk(1− p)N−k = Rk(ULAN+1) · pk(1− p)N−k+1 , (4.37)

where k = 0, 1, · · · , N . There are the same components on both sides of (4.37), and they

can be deleted. Thus, the answer of p between 0 and 1 is

p = 1− Rk(ULAN)

Rk(ULAN+1)
, (4.38)

98

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

where k = 0, 1, · · · , N . Moreover, through (4.34) and (4.35), the value of R0(S) and

R1(S) of ULAN and ULAN+1 can be easily obtained with only one parameter N .

That is, when k = 0, the intersection of p is

1− 2N − 1

2(N + 1)− 1
=

2

2N + 1
= T1 , (4.39)

and when k = 1, the intersection of p is

1− 2N2 −N − 4

2(N + 1)2 − (N + 1)− 4
=

4N + 1

2N2 + 3N − 3
= T2 . (4.40)

If comparing the values of (4.39) and (4.40), then we can find that

T1 − T2 =
2

2N + 1
− 4N + 1

2N2 + 3N − 3

=
4N2 + 6N − 6− (4N + 1)(2N + 1)

(2N + 1)(2N2 + 3N − 3)

=
−2N2 − 4

(2N + 1)(2N2 + 3N − 3)

< 0 .

(4.41)

Thus, it is sure that the intersections of p of k = 1 is larger than the intersections of

p of k = 0. Except for these two intersections that can be obtained from the parameter

N , the other intersections must be calculated from the summation of
∣∣Ūj

k

∣∣, and then get it
from (4.38).

99

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

4.3.2 ULA with N sensors and ULA with N + 2 sensors

k

Pk(p, S) S

ULA N ULA N+2

0 R0(S) · (1− p)N R0(S) · (1− p)N+2

1 R1(S) · p(1− p)N−1 R1(S) · p(1− p)N+1

2 R2(S) · p2(1− p)N−2 R2(S) · p2(1− p)N

...

N -1 RN−1(S) · pN−1(1− p) RN−1(S) · pN−1(1− p)3

N 0 RN(S) · pN(1− p)2

N+1 × RN+1(S) · pN+1(1− p)

N+2 × 0

Table 4.4: All the components of E
[
|Ū|
]
of the ULAwith N sensors and N+2 sensors.

Second, we compare ULA N with ULA N+2. Table 4.4 lists their respective

Pk(p, S) from k = 0 to k = N + 2. The process is very similar with the compari-

son in Section 4.3.1. The intersection of p of each k term can be solved by the equation

Rk(ULAN) · pk(1− p)N−k = Rk(ULAN+2) · pk(1− p)N−k+2 , (4.42)

100

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

where k = 0, 1, · · · , N . Deleting the same components on both sides of (4.42) will let us

obtain the answer of p between 0 and 1 that

p = 1−

√
Rk(ULAN)

Rk(ULAN+2)
. (4.43)

When k = 0, the intersection of p is

1−

√
2N − 1

2(N + 2)− 1
= W1 , (4.44)

and when k = 1, the intersection of p is

1−

√
2N2 −N − 4

2(N + 2)2 − (N + 2)− 4
= W2 . (4.45)

Similarly, we compare the values of (4.44) and (4.45).

W1 −W2

=

(
1−

√
2N − 1

2(N + 2)− 1

)
−

(
1−

√
2N2 −N − 4

2(N + 2)2 − (N + 2)− 4

)

=

√
2N2 −N − 4

2(N + 2)2 − (N + 2)− 4
−

√
2N − 1

2(N + 2)− 1

=

√
(2N2 −N − 4)(2N + 3)

(2N2 + 7N + 2)(2N + 3)
−

√
(2N2 + 7N + 2)(2N − 1)

(2N2 + 7N + 2)(2N + 3)
.

(4.46)

Now we just need to compare the numerator, and then we can get

(2N2 −N − 4)(2N + 3)− (2N2 + 7N + 2)(2N − 1)

=− 8N2 − 6N − 10

< 0 .

(4.47)

101

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

This result tells us the intersection of p of k = 0 is smaller than that of k = 1. For the

other intersections, we can only obtain the answer from the summation of
∣∣Ūj

k

∣∣, and then
get it from (4.43).

4.3.3 Numerical Results

In Figure 4.19, we compare the Pk(p, S) of ULA 7 and ULA 8 from k = 0 to

k = 7. Here N is equal to 7. The intersection of p of k = 0 can be obtained through

(4.39) that

2

2N + 1
=

2

15
= 0.1333, (4.48)

and the intersection of k = 1 can be obtained through (4.40) that

4N + 1

2N2 + 3N − 3
=

29

116
= 0.25. (4.49)

We calculate the other intersections of p through (4.38) and Rk(S). We can find that for

k = 2, 3, · · · , 7, all the intersections are larger than 0.25. Thus, it is sure that in the range

of 0 ≤ p ≤ 0.1333, the following inequality holds true.

Pk (p, ULAN) < Pk (p, ULAN+1) , for k = 0, 1, · · · , N. (4.50)

Since E
[
|Ū|
]
=
∑|S|

k=0 Pk(p, S), we can get the following result based on (4.50).

E
[
|Ū|
]
ULAN

< E
[
|Ū|
]
ULAN+1 , for 0 ≤ p ≤ 2

2N + 1
. (4.51)

102

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

In Figure 4.20, we have another experiment. The comparison of Pk(p, S) of ULA 6

and ULA 8 from k = 0 to k = 7. Here N is equal to 6. The intersection of p of

k = 0 can be obtained through (4.44) that

1−
√

11

15
= 0.1437, (4.52)

and the intersection of k = 1 can be obtained through (4.45) that

1−
√

62

116
= 0.2689. (4.53)

Also, the other intersections of p are calculated from Rk(S) based on (4.43). Here we

can find that for k = 2, 3, · · · , 6, all the intersections are larger than 0.2689. Therefore,

it is sure that in the range of 0 ≤ p ≤ 0.1437, the following inequality holds true.

Pk (p, ULAN) < Pk (p, ULAN+2) for k = 0, 1, ..., N. (4.54)

Then we can get the following result based on (4.54).

E
[
|Ū|
]
ULAN

< E
[
|Ū|
]
ULAN+2 , for 0 ≤ p ≤ 1−

√
2N − 1

2(N + 2)− 1
. (4.55)

Next, we sum up all the Pk(p, S) of S to compare E
[
|Ū|
]
of these ULA with

different number of sensors. Figure 4.21 shows the result. It can be observed that the

curves confirm the inequality in (4.51) and (4.55).

103

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

0 0.2 0.4 0.6 0.8 1
0

5

10

15

 p = 0.1333

(a) k = 0.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

 p = 0.25

(b) k = 1.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 p = 0.3724

(c) k = 2.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

 p = 0.5699

(d) k = 3.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

 p = 0.7576

(e) k = 4.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p = 0.8167

(f) k = 5.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

p = 0.8333

(g) k = 6.

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(h) k = 7.

Figure 4.19: The comparison of ULA 7 and ULA 8 of each k item in Table 4.3.

104

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

0 0.2 0.4 0.6 0.8 1
0

5

10

15

 p = 0.1437

(a) k = 0.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

 p = 0.2689

(b) k = 1.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 p = 0.4204

(c) k = 2.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

 p = 0.6464

(d) k = 3.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

 p = 0.7816

(e) k = 4.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p = 0.8174

(f) k = 5.

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(g) k = 6.

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(h) k = 7.

Figure 4.20: The comparison of ULA 6 and ULA 8 of each k item in Table 4.4.

105

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

10
-4

10
-3

10
-2

10
-1

10
0

0

2

4

6

8

10

12

14

16

(a)

10
-4

10
-3

10
-2

10
-1

10
0

0

2

4

6

8

10

12

14

16

(b)

Figure 4.21: The comparisons of E
[
|Ū|
]
of (a) ULA with 7 sensors and 8 sensors. (b)

ULA with 6 sensors and 8 sensors.

Finally, we compare ULA 6, ULA 7 and ULA 8 of their respective 0.9 · |U| and

p90%. Also, we will use them to estimate one source, θ = π/4, based on random sensor

failures. In Figure 4.22, we can find that ULA 8 is the most robust array, and it has

the highest 0.9 · |U| as well. If considering the generalized 1-fragility, F1(ULA 8,IU)

is 0.0333, F1(ULA 7,IU) is 0.0440, and F1(ULA 6,IU) is 0.0606. Therefore, we

know that ULA 8 is more capable ofmaintaining its original |U| than ULA 6 and ULA 7

through (4.17).

In the simulation of Figure 4.22, we set SNR to be 0 dB and the number of snapshots

to be 500. For each probability p, 5000 S̄ will be generated. S̄ is defined as S \A.

Also, for each S̄, we will do 100 Monte-Carlo runs. Therefore, each data point is aver-

aged from 5 · 105 Monte-Carlo runs. We can find that the estimation MSE of ULA 8 is

the least with all the sensor failure probability p. On the other hand, ULA 6 get the worst

performance with all probability p. One reason is the number of physical sensors. ULA 8

has more sensors to receive the signal data. From the view of weight function, we men-

tioned two properties of ULA in Section 2.3.4. We know that for ULA, w(±m) = N−m,

for 0 ≤ m ≤ N − 1. Hence, the weight function on the coarray index m of ULA 8 is

106

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Figure 4.22: The comparisons of p90% and 0.9 · |U| of three ULA. They have 6 sensors,
7 sensors and 8 sensors, respectively.

Figure 4.23: The estimation error comparison of the three ULA. They have 6 sensors, 7
sensors and 8 sensors, respectively. We estimate one source with θ = π/4. SNR is 0 dB
and the number of snapshots is 500. Each point is averaged from 5 · 105 Monte-Carlo
runs.

107

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

larger than that of ULA 7 and ULA 6. Moreover, we can get some information by ob-

serving Figure 4.22 and Figure 4.23 together. In Figure 4.22, the point of ULA 7 is on

the top-right side of ULA 6, and ULA 7 have better performance than ULA 6 with all

probability p in Figure 4.23. The same result can be observed if we choose any two arrays

in Figure 4.22. However, the time to get Figure 4.23 is about 40 hours, and the time to

get Figure 4.22 only need about 1 second. Therefore, finding the connection between the

two-dimensional point and the simulation result is a research direction.

4.4 Concluding Remarks

In this chapter, we simultaneously considered two factors impacting the estimation

performance: the size of Ū and the sensor failure probability p. We derived the ex-

pected value of |Ū| based on p. Also, we derived the relationship between E
[
|Ū|
]
and

Fk(S,IU) in (4.17). The approximation of E
[
|Ū|
]
is E

[
|Ū|
]
approx.K

. For different K,

we had the inequality in (4.23). Afterwards, we had some comparisons of different arrays

based on E
[
|Ū|
]
. The results were shown in Section 4.2.3. For the analysis of ULA, we

introduced the closed-form to solve the intersection of p of Pk(p, S) between two ULA

with different number of sensors. Here k is equal to 0 or 1. Then we had the numerical

results to obtained the inequality of E
[
|Ū|
]
of ULA in (4.51) and (4.55).

108

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

Chapter 5 Conclusion and Future

Work

In Chapter 3, we proposed some properties related to the symmetrical arrays. Through

these properties, we got the lower bound and the upper bound of the generalized 1-

fragility and showed that symmetrizing the array definitely increase the robustness based

on D = D̃. Also, we proved that symmetrical coprime arrays can reach the lower bound

of generalized 1-fragility, namely they are the most robust arrays. In Chapter 4, we con-

sidered random sensor failures and proposed the expected value expression of |Ū|. We

defined a robustness metric which combine the |Ū| and the probability p. It has not been

proposed before. Through the simulations, we knew that the symmetrical array can obtain

better performance than its original version with all the sensor failure probabilities. Addi-

tionally, we discussed the ULA with different number of sensors. We found that the ULA

with more number of sensors are able to enhance the robustness and the performance at

the same time. For the future work, we have three directions:

1. Relaxing the assumptions for proving F1(S̃,IU) < F1(S,IU). For instance, if

|U| > 1, than F1(S̃,IU) < F1(S,IU).

2. Proving E
[
|Ū|
]
S̃ ≥ E

[
|Ū|
]
S for all sensor failure probability p.

109

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

3. Finding the theoretical relationship between the two dimensional metric (p90% ver-

sus 0.9 · |U|) and the simulation result (p versus MSE). In this way, the estimation

performance of the array at each p can be known before the simulation.

110

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

References

[1] J. Li and P. Stoica,MIMO radar signal processing. John Wiley & Sons, 2008.

[2] J. R. Guerci, Space-time adaptive processing for radar. Artech House, 2014.

[3] H. L. VanTrees, Optimum array processing: Part IV of detection, estimation, and

modulation theory. John Wiley & Sons, 2004.

[4] J. Benesty, J. Chen, and Y. Huang, Microphone array signal processing, vol. 1.

Springer Science & Business Media, 2008.

[5] P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime samplers and arrays,”

IEEE Transactions on Signal Processing, vol. 59, no. 2, pp. 573–586, 2010.

[6] P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel approach to array process-

ing with enhanced degrees of freedom,” IEEE Transactions on Signal Processing,

vol. 58, no. 8, pp. 4167–4181, 2010.

[7] M. Wang and A. Nehorai, “Coarrays, MUSIC, and the Cramér–Rao bound,” IEEE

Transactions on Signal Processing, vol. 65, no. 4, pp. 933–946, 2016.

[8] C. Zhou and J. Zhou, “Direction-of-arrival estimation with coarray ESPRIT for co-

prime array,” Sensors, vol. 17, no. 8, p. 1779, 2017.

111

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

[9] P. Pal and P. P. Vaidyanathan, “Coprime sampling and the MUSIC algorithm,” in

2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/

SPE), pp. 289–294, 2011.

[10] C. L. Liu and P. P. Vaidyanathan, “Remarks on the spatial smoothing step in coarray

MUSIC,” IEEE Signal Processing Letters, vol. 22, no. 9, pp. 1438–1442, 2015.

[11] P. O’Connor and A. Kleyner, Practical reliability engineering. John Wiley & Sons,

2012.

[12] A. Myers, Complex system reliability. Springer, 2010.

[13] H. Taylor and S. W. Golomb, “Rulers part I,” Univ. Southern Calif., Los Angeles,

Tech. Rep, pp. 85–05, 1985.

[14] A. Moffet, “Minimum-redundancy linear arrays,” IEEE Transactions on antennas

and propagation, vol. 16, no. 2, pp. 172–175, 1968.

[15] M. Wang, Z. Zhang, and A. Nehorai, “Direction finding using sparse linear arrays

with missing data,” in 2017 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pp. 3066–3070, 2017.

[16] S. Vigneshwaran, N. Sundararajan, and P. Saratchandran, “Direction of arrival

(DOA) estimation under array sensor failures using a minimal resource allocation

neural network,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 2,

pp. 334–343, 2007.

[17] C. L. Liu and P. P. Vaidyanathan, “Robustness of coarrays of sparse arrays to sensor

failures,” in 2018 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 3231–3235, 2018.

112

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

[18] C. L. Liu and P. P. Vaidyanathan, “Robustness of difference coarrays of sparse ar-

rays to sensor failures—part II: Array geometries,” IEEE Transactions on Signal

Processing, vol. 67, no. 12, pp. 3227–3242, 2019.

[19] C. L. Liu, “A general framework for the robustness of structured difference coar-

rays to element failures,” in 2020 IEEE 11th Sensor Array and Multichannel Signal

Processing Workshop (SAM), pp. 1–5, 2020.

[20] C. L. Liu and P. P. Vaidyanathan, “Optimizing minimum redundancy arrays for ro-

bustness,” in 2018 52nd Asilomar Conference on Signals, Systems, and Computers,

pp. 79–83, 2018.

[21] X. Xu, Z. Ye, Y. Zhang, and C. Chang, “A deflation approach to direction of ar-

rival estimation for symmetric uniform linear array,” IEEE Antennas and Wireless

Propagation Letters, vol. 5, pp. 486–489, 2006.

[22] Z. Ye and X. Xu, “DOA estimation by exploiting the symmetric configuration of

uniform linear array,” IEEE Transactions on Antennas and Propagation, vol. 55,

no. 12, pp. 3716–3720, 2007.

[23] C. L. Liu and P. P. Vaidyanathan, “Maximally economic sparse arrays and cantor

arrays,” in 2017 IEEE 7th International Workshop on Computational Advances in

Multi-Sensor Adaptive Processing (CAMSAP), pp. 1–5, 2017.

[24] C. L. Liu and P. P. Vaidyanathan, “Robustness of difference coarrays of sparse arrays

to sensor failures—part I: A theory motivated by coarray music,” IEEE Transactions

on Signal Processing, vol. 67, no. 12, pp. 3213–3226, 2019.

[25] D. H. Johnson and D. E. Dudgeon, Array signal processing: concepts and tech-

niques. Simon & Schuster, Inc., 1992.

113

http://dx.doi.org/10.6342/NTU202202947

doi:10.6342/NTU202202947

[26] S. Qin, Y. D. Zhang, andM. G. Amin, “Generalized coprime array configurations for

direction-of-arrival estimation,” IEEE Transactions on Signal Processing, vol. 63,

no. 6, pp. 1377–1390, 2015.

[27] K. Adhikari, J. R. Buck, and K. E. Wage, “Extending coprime sensor arrays to

achieve the peak side lobe height of a full uniform linear array,” EURASIP Jour-

nal on Advances in Signal Processing, vol. 2014, no. 1, pp. 1–17, 2014.

[28] A. Raza, W. Liu, and Q. Shen, “Thinned coprime array for second-order difference

coarray generation with reduced mutual coupling,” IEEE Transactions on Signal

Processing, vol. 67, no. 8, pp. 2052–2065, 2019.

[29] Z. Zheng, W. Q. Wang, Y. Kong, and Y. D. Zhang, “MISC array: A new sparse array

design achieving increased degrees of freedom and reduced mutual coupling effect,”

IEEE Transactions on Signal Processing, vol. 67, no. 7, pp. 1728–1741, 2019.

[30] M. T. Heideman, “Convolution and polynomial multiplication,” in Multiplicative

Complexity, Convolution, and the DFT, pp. 27–60, Springer, 1988.

114

http://dx.doi.org/10.6342/NTU202202947

	口試委員會審定書
	致謝
	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Overview and Motivation
	Outline of The Thesis
	Notation

	Preliminaries
	Data Model of Array Signal Processing
	Difference Coarray and Weight Function
	Review of Sparse Arrays
	Minimum Redundancy Arrays (MRA)
	Nested Arrays
	Coprime Arrays
	Uniform Linear Arrays (ULA)
	Summary

	Sensor Failure
	Importance Function

	Existing Robustness Metrics
	Coarray-Based DOA Estimation Algorithm

	Symmetrical Arrays and Proposed Properties
	Symmetrical Array Generation
	Relationship between Sets and Relationship between Size of Sets
	Properties of Importance Function and Generalized 1-fragility
	Robustness of Symmetrical Coprime Arrays
	Numerical Comparison

	Array Analysis with Random Sensor Failures
	The Factors Impacting MSE
	Size of versus MSE
	Sensor Failure Probability versus MSE

	Derivation and Comparison
	Expected Value of Size
	Proposed Robustness Metric
	Numerical Results
	The Expected Value and The Corresponding Approximation
	Comparison of Different Arrays
	The Symmetrical Array Compare with The Original Array
	Random Source Direction

	ULA Analysis
	ULA with N sensors and ULA with N+1 sensors
	ULA with N sensors and ULA with N+2 sensors
	Numerical Results

	Concluding Remarks

	Conclusion and Future Work
	References
	10cda745-37f0-4971-8357-7dc288c66816.pdf
	口試委員會審定書
	致謝
	摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Overview and Motivation
	Outline of The Thesis
	Notation

	Preliminaries
	Data Model of Array Signal Processing
	Difference Coarray and Weight Function
	Review of Sparse Arrays
	Minimum Redundancy Arrays (MRA)
	Nested Arrays
	Coprime Arrays
	Uniform Linear Arrays (ULA)
	Summary

	Sensor Failure
	Importance Function

	Existing Robustness Metrics
	Coarray-Based DOA Estimation Algorithm

	Symmetrical Arrays and Proposed Properties
	Symmetrical Array Generation
	Relationship between Sets and Relationship between Size of Sets
	Properties of Importance Function and Generalized 1-fragility
	Robustness of Symmetrical Coprime Arrays
	Numerical Comparison

	Array Analysis with Random Sensor Failures
	The Factors Impacting MSE
	Size of versus MSE
	Sensor Failure Probability versus MSE

	Derivation and Comparison
	Expected Value of Size
	Proposed Robustness Metric
	Numerical Results
	The Expected Value and The Corresponding Approximation
	Comparison of Different Arrays
	The Symmetrical Array Compare with The Original Array
	Random Source Direction

	ULA Analysis
	ULA with N sensors and ULA with N+1 sensors
	ULA with N sensors and ULA with N+2 sensors
	Numerical Results

	Concluding Remarks

	Conclusion and Future Work
	References

