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Abstract

In one-dimensional sparse arrays, multiple sensors are placed on a line with different
intervals. Sparse arrays are able to distinguish O(N?) uncorrelated sources with O(N)
sensors. The reason is that the difference coarray, defined as the differences between
any two sensors of an array, has a central uniform linear array (ULA) segment of length
O(N?). The coarray-based angle estimators such as coarray MUItiple SIgnal Classifica-
tion (MUSIC) can use the data on the difference coarray to estimate the source directions.
Empirically, difference coarrays are easily influenced by sensor failures. They will occur
randomly and cause the sensors not to receive the signals accurately. Therefore, the faulty
sensors will be removed from the array. Once the sensors are removed, sparse arrays are

not guaranteed to have the advantage of identifying the O(N?) uncorrelated sources.

Traditional ULA are known to be more robust than sparse arrays, but they can only
resolve at most /N — 1 uncorrelated sources. A method that can enhance the robustness of

sparse arrays is to symmetrize the array. This thesis advances some properties related to the
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symmetrical arrays. For instance, the upper bound and the lower bound of the generalized

1-fragility are studied. Additionally, we prove that coprime arrays can achieve the lower

bound of the generalized 1-fragility after symmetrizing them.

If each sensor fails independently with probability p, then the expected value of the

size of the central ULA segment in the difference coarray can be derived from the view of

the probability mass function (PMF). The expected value is an unary polynomial with the

variable p. Besides quantifying the robustness of an array, the expected value is suitable

to compare the performance of different arrays. Finally, the benefits of symmetrical arrays

under the influence of sensor failures will be shown through the simulation results.

Keywords: sparse arrays, difference coarrays, sensor failures, robustness, symmetrical

arrays, expected value
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Chapter 1 Introduction

1.1 Overview and Motivation

Array signal processing is widely used in many fields such as radar [, 2], commu-
nications [3] and acoustics [4]. Sensors in an array are used for receiving signals emitted
from the sources in the environment. Through these received data, we can extract the in-
terested information of sources by appropriate algorithms. Direction-Of-Arrival (DOA)
estimation is one of the application in array signal processing, which let us obtain the angle
information of the sources. Additionally, sparse arrays have been extensively discussed
in recent years [5, 6], since they are able to distinguish O(N?) uncorrelated sources with
O(N) sensors. The reason is that the difference coarray, defined as the differences be-
tween any two sensors of an array, has a central uniform linear array (ULA) segment
of length O(N?). Then the algorithms such as coarray MUItiple SIgnal Classification
(MUSIC) [7] and coarray Estimation of Signal Parameters via Rotational Invariance Tech-
niques (ESPRIT) [&], can utilize the data on the difference coarray to estimate the source
directions. They are based on the orthogonality of the signal subspace and the noise sub-
space. A large ULA segment in the difference coarray generally increase the performance
[6, 9, 10]. Hence, the size of the ULA segment is an important metric in designing sparse

arrays.
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However, if we consider the system reliability [11, 12], there is an important issue
called “sensor failures”. Every sensor may fails randomly according to-their usage time
[11, 12]. Since it could cause the sensors not to receive the signals accurately, the faulty
sensors will be removed from the array. Therefore, the size of the ULA segment in the dif-
ference coarray may decrease accordingly. This condition usually happens when the array
has O(N?)-long central ULA segment in the difference coarray such as minimum hole
arrays (MHA) [13], minimum redundancy arrays (MRA) [14] and nested arrays [0]. The
methods in the literature are mainly divided into two aspects to deal with the issue of sen-
sor failures. First, creating new algorithms that are useful under the circumstance of sensor
failures. Second, analyzing the robustness of different array configurations. In the first
case, several approaches have been explored. For example, the authors in [15] provided a
signal model with sensor failures and a corresponding method to estimate the covariance
matrix. Also, the authors in [16] proposed a learning algorithm, minimal resource alloca-
tion network (MRAN), for the DOA estimation with sensor failures. On the other hand, in
the second case, the authors in [ 1 7] proposed the robustness metric “fragility” to quantify
the robustness of an array and they further analyzed the robustness of different sparse ar-
rays based on the fragility in [18]. Moreover, [ 19] extended the fragility to “generalized
k-fragility”. This definition is more general because we can define any indicators if four
designated conditions are met. Under these robustness metrics, an array is more robust if

the measured value closing to 0.

Empirically, sparse arrays are not robust [ 1 7], especially for the arrays which have a
large difference coarray size. The authors in [20] proposed a new array geometry called ro-
bust MRA (RMRA). This array own the maximum size of the hole-free difference coarray,

like the MRA. Furthermore, it is as robust as the ULA. However, the RMRA is computa-
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tionally expensive to solve in general. In our study, we will enhance the robustness of an
array by symmetrizing them. Symmetrical arrays also have the advantages that they can
advance the performance of the DOA estimation [21, 22]. The method of symmetrizing
the asymmetrical sparse array has been mentioned in [23]. However, in our study, we will
further decompose the sparse array into two subarrays before symmetrizing. This action
will help us to do a more in-depth analysis of the array. For example, we can provide
some properties related to the generalized 1-fragility of the symmetrized array. These
properties will be studied in this thesis. Moreover, we can obtain the concept that how to

design robust arrays through these properties.

Since sensor failures would occur randomly [11, 12], we assume that the sensors in
an array have a certain probability, p, of failure and each sensor fails independently. In
[24], the authors derived an expression, F,, for the probability that the difference coarray
changes due to the sensor failure probability p. As the usage time increases, the proba-
bility p will also go up [, 12]. Therefore, the benefit of P, is that it can be used for
comparing the robustness of arrays based on random sensor failures. However, P. has a
shortcoming that it only depends on whether the difference coarray changes. Neverthe-
less, the key of DOA estimation performance is the ULA segment size in the difference
coarray [0, 10]. Therefore, we will combine the ULA segment size and the sensor failure
probability to generate a new metric. Itis a expected value of the random variable “the size
of central ULA segment in the difference coarray”. Also, it is a unary polynomial with
the variable p. Besides defining the robustness of an array, it can also compare the per-
formance of different arrays. If we consider a two-dimensional point with the proposed
expected value expression, then it is possible to simultaneously evaluate the robustness

and the performance of different arrays.
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Here the main contributions of this thesis are listed.

1. We propose some properties of symmetrical sparse arrays, including the size re-
lationship between difference coarrays, the upper bound and the lower bound of
generalized 1-fragility of symmetrical arrays, and the condition of improving the

robustness if an array is symmetrized.

2. We prove that the symmetrical coprime arrays can reach the lower bound of gener-
alized 1-fragility. Namely, they are the most robust arrays based on the definition

of generalized 1-fragility.

3. We propose the expected value of the random variable “the size of central ULA
segment in the difference coarray” based on sensor failure probability p. We will use
it for defining a robustness metric and also comparing the estimation performance

of different arrays.

4. Through point 3, we further discuss the performance of the uniform linear arrays

(ULA) with different number of sensors based on random sensor failures.

5. Through the simulation results, we show that it can improve the robustness and the

performance at the same time after symmetrizing the array.

1.2 Outline of The Thesis

Chapter 2 reviews some critical prior knowledge, making us understand the following
study comprehensively. Chapter 3 advances some useful properties related to symmetri-
cal arrays, along with discussions and proofs. In Chapter 4, we will detail our proposed
robustness metric of sparse arrays and demonstrate the advantages of symmetrical arrays
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by experiments. Finally, in Chapter 5, we will conclude this thesis and provide the future

direction that can be researched.

1.3 Notation

This section defines the notations that are used in this thesis. Scalars and vectors
are represented as lower case (such as a) and lower case with bold symbol (such as a),
respectively. Moreover, matrices and sets are represented as upper case with bold symbol
(such as A) and blackboard boldface (such as A), respectively. Additionally, A repre-
sents the nonnegative part of A. The intersection and the union of two sets A and B are
denoted by ANDB and A U B, respectively. The relative complement of a set A with

respect to a set B is written as

B\A={zeB | z¢A} (1.1)

We use E|[-| to represent the expectation operator. For a full column rank matrix A, the
pesudo inverse of A and the orthogonal projection onto the null space A’ are defined as
follows.

Al = (AATIAR - Ty =T1T—- AAT. (1.2)

For A € CM*¥  the Kronecker product between A and the matrix B is defined as

_[A]HB Al ;B [AhNB-
[A]21B [A]22B [A}QNB

A®B= ’ ’ ’ . (1.3)
(Al B [A],,B [AlynB
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Assume that A = {31 a, - an] and B = [bl by - bn:| , the Khatri-Rao

product between A and B is defined as

A@B:|:al®b1 32®b2 an®bn:| (14)

On the other hand, we use the row vectors to represent the the matrices A and B, where

a; b1
Ao bQ
a, b,

The Face-splitting product, which also called the transposed Khatri-Rao product, is de-

fined as

a;®b;

a; @ by
AeB — . (1.6)

a, ®b,

Finally we define the bracket notation [10, Def.2]. Let x(¢) be the signal col-
umn vector received by the array S, where S is an integer set. The square bracket
[x(t)]; is the i-th component of x(¢), and the triangular bracket (x(¢)), for n € S
is the signal received by the sensor n. These bracket notations extending to covari-
ance matrices A = E [x(t)x"(¢)] is represented as [A];; = E[[x(¢)];[x(t)];] and

(A), ny = E [(x(1)),,, (x(t)r,] for ny,ny €.

6 doi:10.6342/NTU202202947


http://dx.doi.org/10.6342/NTU202202947

Chapter 2 Preliminaries

In this chapter, Section 2.1 will introduce the data model of array signal processing.
The definition and use of the difference coarray and the weight function will be mentioned
in Section 2.2. Several common sparse arrays will be introduced in Section 2.3. Sensor
failure is an important issue considered by this thesis. It will be presented in Section 2.4.
Regarding how to quantify the robustness of an array, some definitions have been pro-
posed in the previous studies [ 17, 19], and they will be introduced in Section 2.5. Finally,
in Section 2.6, we will introduce how to use the difference coarray to implement DOA

estimation [3, 10]. Coarray-based MUSIC is the main algorithm used by this thesis.

2.1 Data Model of Array Signal Processing

In this section, [3] is taken as a reference. Figure 2.1 illustrates the model of one-
dimensional array signal processing. Red solid circles represent the physical sensors that
used for receiving signals. All sensors are placed on the x-axis, which consist of the
sensor array. Multiple sources emit propagating waves from different directions in the
environment. After the sensor array receives the signals, we can get the information of

interest through appropriate algorithms such as the source angle and the source distance.
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y-axis
4 The ith source

Sensor

= 0 . b

Array Signal Processing }

!

Source Information

Figure 2.1: The system model for array signal processing.

Now suppose that there are two sensors M, and M, and the distance between them
is d (as shown in Figure 2.2). There is a point source at position () which at a distance of
R from My, so the distance from M; to Q is M;Q = [(d — Rsin®#)? + (Rcos 0)2]1/2.
Assume that the source emits the waveform sq(t) = Ae’?™/!, propagation velocity is ¢

and wavelength A = ¢/ f. Also, there is no path loss. Then the waveform at M, is

SMO(t) = 5Q (t — m) = Aeﬂﬂ-f(tngQ) . (21)

Cc

We need to assume that the point source () is at far-field, d < R, so the wavefront can

be approximated by plane waves. Thus, at M, the waveform becomes
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Q : (Rsinf ,Rcosf )

=

Figure 2.2: The position of sensor M, M; and point source () on the coordinate plane.

There is a phase difference between the signals received by these two different sen-

sors, and the phase depends on M) — M; Q. It can be simplified as follows.

MoQ — MiQ = R — [(d — Rsin6)” + (R cos6)?]

=R

1 —

N|=

1
2

(sin& — %)2 + (cos 9)2]

[ adsing [ d\?]?
[z ()
(1 2dsing [d\’ (2:3)
~ 1— |1+ - —=
1 2d sin 6
~ 1—114=1( -
af- L ()
1 2dsinf
—R. 5 TR
= dsinfd
Therefore, we can change (2.2) to
sa () = SMO(t)ejQ’T(%SiM) . (2.4)

9
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Eq.(2.4) demonstrates that the signal received by the sensors M, and Mj is related to
the source angle 6 and the wavelength A. Note that the distance d cannot exceed A/2

because of spatial ambiguity [25]. Hence, in this thesis, d is always set as

(2.5)

| >

In the previous description, we only used two sensors. The same concept can be general-

ized to an array with N sensors which are located at

MO : (do,O), M1 : (dl,O), cee MN_1 . (dN_l,O) . (26)

The signal received by the array is represented by a vector x(¢) which contains the noise

term n(t). They are denoted by

xMo(t) nMo(t)
I‘Ml t TL]\/[1 t
x(t) = ( ) , n(t) = ( ) ) (2.7)
oy (1) (1)

Therefore, we can get the signal data model x(t) received by the array,

gy (1) ¢ (3 sin0) nag (1)
T, (1) /275 md) nar, (1)

)= | = sl | H1 | = sa(al®) +n(),
Tare (1) () | @)

(2.8)

where a(f) is called the steering vector.

In reality, it is possible that multiple sources exist at the same time, so here we as-
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sume that there are D sources: s1(%),- -, sp(t). The incident angle of the ith source is
denoted by 0;, and these angles satisfy —7 < 6; < 7. All of the sources are monochro-
matic, which means all of them have the same frequency f. Then the data model for the

array output vector x(t) can be represented as

Sl(t)

x(t) = |a(6,) --- a(fp) : +n(t) = A(0)s(t) + n(t), (2.9)

SD(t)

where A(0) is called the array manifold matrix. From (2.9), we can find that the time
and angle information of the sources are separated. This property is favorable for signal
processing algorithms. In this thesis, we will use a integer set S to represent the array
geometry. Assume that the sensor locations belong to a uniform grid of distance d. That

is, they can be modeled by nd, where n € S. Finally, we look at an example.

Example 2.1.1. Here we consider the array geometry in Figure 2.3, S = {0,2,3,4,6,9}.
There are D monochromatic sources with the same wavelength A, which emit the signal
to the array from far-field. If the spacing d is equal to A\/2, then the output signals of

each sensor can be expressed as

(x(#))q 1 el (n(t)),
<X(t)>2 6j7r sin f1-2 ej7r sinfz-2 |, ejwsinGD-Q S1 (t) (n(t))2
<X(t>>3 eim sin @1 -3 ed™ sinf2-3 | | ejﬂsinGD-B So (t) (n(t))3
- + . (2.10)
<X(t>>4 €j7r sinfy -4 ej7r sinf2-4 . ejwsinGD-4 (n(t))4
<X(t)>6 eim sin @1 -6 el sinfz-6 | | ej7rsin€D-6 Sp (t) <Il(t)>6
<X(t>>9 €j7r sinf1-9 ej7r sinf2-9 | ejﬂ' sinfp-9 <Il(t)>9

The triangular bracket was mentioned in Section 1.3.
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0 2 3 4 6 9
S [ ] X [ ] ] [ ] X [ ] X X [ ]
-9 -7 0 7 9
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7 0 7
U L J [ ] [ J [ J [ ] L J [ [ J [ ] [ J L J [ J L J [ L ]

Figure 2.3: An illustration of array geometry S, difference coarray I, and the central
ULA segment U. The the dots are elements and the crosses are empty space. The array
geometry we consider here is the coprime array with M =2 and N = 3.

2.2 Difference Coarray and Weight Function

In sparse array design related papers, difference coarray plays a fundamental and
important role, since the signals received by the array S can be converted to the statistical
signals on the difference coarray D [7, 10]. The definition of the difference coarray is

shown as follows.
Definition 2.2.1. [17, Def.1] The difference coarray D of an array S is defined as a set

generated by the differences between the sensor locations. Namely,

D = {ny —ns | n1,ny € S}. (2.11)

We take the coprime array with M = 2 and N = 3 as an example. Figure 2.3
illustrates the array geometry (red points) and the corresponding difference coarray (blue
points). It can be found that there exists holes, —8 and 8, in the difference coarray. There-
fore, the set U (green points) is defined as the central ULA segment in the difference

coarray. It can be denoted by

U={m|{0,1,...,|m|} CD}. (2.12)
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If D = U, then we can say that the difference coarray is a hole-free difference coarray.

Furthermore, the set of holes is defined as
H = {m | min(D) < m < max(D),m ¢ D}. (2.13)
In addition, difference coarray has two special cases [ | £], the self difference and the cross

difference. They are defined as follows.

Definition 2.2.2. The self difference of a set Q is denoted by

SD(Q) = {my —my | my,my € Q}, (2.14)

and the cross difference between two sets Q; and Q. is denoted by

CD(Q1,Q2) ={q1 — @2 | @1 € Q1,2 € Qi }. (2.15)

Among several commonly used coarray based DOA estimators such as coarray MU-
SIC [7] and coarray ESPRIT [£], the data measured by the difference coarray does not be
used completely. In fact, only the data on U will be used. Therefore, the central ULA

segment in the difference coarray U is a focus of the analysis in this thesis.

In Definition 2.2.1, the difference coarray DD is an integer set. However, it is possible
that multiple sensor pairs in S generate the same difference. Thus, here we define the

weight function.

Definition 2.2.3. [17, Def.2] The weight function w(m) of an array S is defined as the

number of sensor pairs with coarray index m. That is,

w(m) = [{(n1,n2) € $* | ny — no = m}|. (2.16)
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When the weight function is larger, there are more signal data will be collected on the
coarray index m. It also could impact the estimation performance. The result can be seen
through the experiments in Chapter 4. Here we list four properties of the weight function

which are provided by Pal [6].

Corollary 2.2.1. An array with N sensors is considered. Following properties of weight

function are related to its difference coarray D.

l. w(0) = N.
2.1<w(m)<N-1 VmeD\{0}.
3. w(m) =w(—m) Vm e D.

4. Zmemjm?éow(m) =N(N—1).

We can use the view of permutation to explain Property 4 in Corollary 2.2.1. The sum
of all occurrences of differences except for m = 0, is equal to N!/(N — 2)!. This is all
possible permutations of two elements from an array set S with N sensors. According
to this property, we can know the maximum degrees of freedom that can be obtained from
a difference coarray. Therefore, if an array geometry is properly designed, it is possible
that we get O(N?) degrees of freedom using only O(N) physical sensors. The example
arrays will be introduced in the next section. Also, we will see their weight functions with

figures.

2.3 Review of Sparse Arrays

In this section, we will review four different sparse arrays that will be discussed in
Chapter 3 and Chapter 4.
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2.3.1 Minimum Redundancy Arrays (MRA)

MRA were first proposed by Moffet [ 14]. The purpose is to minimize the redundancy R

of the array, where R is defined as

R GO I )
R=0T-12 = max (0 @17)

The definition of MRA is shown below.

Definition 2.3.1. The MRA with N physical sensors can be defined as [14]

Smra = argmax |D| subjectto S| =N, D=T. (2.18)
S

This equation indicates that MRA have the largest hole-free difference coarray for a

given number of sensors. Furthermore, the corresponding D and U can be denoted by
DMRA = [UMRA = {O, :|:]., :|:2, Tty + (maX(SMRA) — min(SMRA))}. (219)

However, the disadvantage is that when the number of sensors increases, the complex-
ity of solving this optimization problem will also increase. That will cause complicated

execution. Here we look at an example of MRA.

Example 2.3.1. A MRA with 6 elements [14] is considered. Syra = {0, 1,4,5,11, 13}.
Figure 2.4 illustrates its geometry and the weight function. It can be observed that except
for w(+1) = w(44) = 2, all the weight functions at the other coarray index m are equal
to 1. That means only one sensor pair in S can generate this difference, and that is the

reason why MRA can minimize the redundancy.
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Figure 2.4: Array geometry of the MRA with 6 sensors, and the corresponding weight
function.

2.3.2 Nested Arrays

Unlike MRA, the sensor locations of nested arrays can be represented as a closed
form [6]. It does not require a lot of computation to obtain the array geometry. Also,
the configuration is easily scalable. We can obtain the array geometry as long as the

parameters N; and N, are given. The definition of nested arrays is shown below.

Definition 2.3.2. Assume that N; and N, are positive integers, the sensor locations of
nested arrays [0] are

Snested = Gl U GZ ) (
2.20)

where Gl = {1,2, '-'7N1}7 GQ = {n(N1 + 1) | n = 1,2, ...,NQ}.

The number of sensors is N; + N, . Based on (2.20), the geometry of nested arrays
is composed of a dense ULA, G, with spacing 1 and a sparse ULA, G, with spacing
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Figure 2.5: Array geometry of the nested array with N; = N, = 3, and the corresponding
weight function.

N7 + 1. The corresponding D and U are equal, and they can be represented with V;

and N,, like

Dhested = Unestea = {0, £1, £2, ..., £(No(Ny + 1) — 1) }. (2.21)

Given N sensors, if both N; and N, are approximately equal to N /2, the size of the
difference coarray can be shown that |Dyeged| = O (N?) [6]. Thus, nested arrays are pos-
sible to identify O (N?) uncorrelated sources with O(N) physical sensors. This property

is similar to MRA. Here we look at an example of nested arrays.

Example 2.3.2. We consider the nested array with N; = Ny = 3. The sensor locations
can be obtained based on (2.20) that Syeea = {1,2,3,4,8,12}. Its weight function is
shown in Figure 2.5. Since there is a dense part in the nested array, it can be observed that
the weight function at m = 1 and m = —1 are higher than the other weight function

except for m = 0.
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2.3.3 Coprime Arrays

The sensor locations of coprime arrays can also be expressed as a closed form with
two coprime integers M and N. They were first proposed in [5]. In recent research about
sparse array signal processing, coprime arrays have obtained great interest [9, 26, 27]. The

definition of coprime arrays is shown below.

Definition 2.3.3. Assume that M and N are two positive and coprime integers, the

sensor locations of coprime arrays [5] are

Scoprime = IF‘1 U ]F2 ’
2.22)

where Ty = {0,M,2M,...,(N —1)M}, TFy={0,N,2N,...,(2M — 1)N}.

The number of sensors is N + 2M — 1. Based on (2.22), the geometry of coprimes
arrays is composed of two sparse ULA with spacing M and N, respectively. Although
Deoprime 18 not hole-free, its central ULA segment can be represented as a closed form [5],

where

Ueoprime = {0, £1, ..., =(MN + M — 1)}, (2.23)

Thus, there must exist holes at £(M N + M). Coprime arrays can provide O(MN)
degrees of freedom and only need O(M + N) physical sensors. Here we look at an

example.

Example 2.3.3. We can use the parameters M = 2 and N = 3 to obtain a coprime
array with 6 sensors. The sensor locations are denoted by Scoprime = {0, 2,3,4,6,9}. In
Figure 2.6, the geometry of Ucoprime is equalto {—7,---,0,--- 7}, which consists with

Eq.(2.23).
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Figure 2.6: Array geometry of the coprime array with M = 2, N = 3, and the corre-
sponding weight function.

2.3.4 Uniform Linear Arrays (ULA)

ULA are one of the most widely used arrays. The ULA with N sensors are defined
as [3]

Suta = {0,1,..., N — 1}, (2.24)

Moreover, the difference coarray of ULA can be expressed as

Duta = {0, £1,... + (N — 1)}, (2.25)

and Uyra = Dypa. This property indicates that ULA can identify at most N — 1 un-
correlated sources with N physical sensors. Figure 2.7 is an example of ULA with 6

sensors. We can find that the weight function of the ULA has two properties:
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Figure 2.7: Array geometry of ULA with 6 sensors, and the corresponding weight func-
tion.

l. w(m)=N—-m, for 0<m< N —1.

2. wim)—1=w(m+1), for 0<m< N —2.

2.3.5 Summary

Finally, we use Table 2.1 to make the summary. This table contains the size of the
array, the size of the difference coarray and the size of central ULA segment in the differ-
ence coarray. We denote these values by the given parameters. For more details of these

arrays, the authors in [ 18] had a lot of discussion and analysis.
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Array Description S| |D| U]
MRA with N sensors,
(a) min(SMRA) N 2L —1 2L —1
—i—max(SMRA) =L

Nested array
(b) with N, and Ny N; + N, 2No(Ny+1) —1 | 2No(N; +1) — 1
Coprime array
(c) with M and N 2M + N —1 X 2M(N +1) -1
(d) ULA N sensors N 2N -1 2N —1

Table 2.1: Array summary of this section.

2.4 Sensor Failure

Most electronic devices demonstrate a constant failure rate during their useful life-
time [ 11, 12]. If applying this concept to our study on sparse arrays, every sensor may fail
randomly. We assume that the sensor cannot receive the signals accurately. Therefore,
the faulty sensors will be removed from the array. This issue may lead to a decrease in the
estimation performance because the difference coarrays are possible to be changed after
removing sensors. Thus, this is an important issue we need to consider when implementing

the DOA estimation with sparse arrays.

In the following, we will introduce two definitions that are proposed in [ 1 7] to identify

the set of faulty sensors.

Definition 2.4.1. [17, Def.4] A subarray A of array S is said to be k-essential with

respect to S if the following properties are satisfied.

1. The size of A isequal to k.

2. The difference coarray changes when A is removed from S.
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Definition 2.4.2. [17, Def.5] The k-essential family &, with respect to array S is de-
fined as

Er = {A | A is k-essential with respect to S}, (2.26)

where k€ {1,2,...,|S|}.

2.4.1 Importance Function

From the description above, we know that the sensors in an array have a certain
probability of causing defects as the usage time increases. Therefore, we must remove
the faulty sensors to keep the array running. The lack of different sensors in the array
has different effects, so the author in [19] proposed the importance function to quantify
the impact of the removed sensors (or subsets). We can define any indicator ourselves,
as long as four properties are met. The definition of the importance function is shown as

follows.

Definition 2.4.3. [19, Def.4] A function .# is said to be an importance function with

respect to the array S if it can satisfy all the following properties.

1. 0< 7(A) <1 forall ACS.

2. (@) =0, where @ isthe empty set.

3. .7(S) = 1.

4. .7 is monotone. Thatis, if A CB C S, then .#(A) < .7 (B).

If #(A) = 1, then we can say that the subset A is the most important. Large

importance will cause significant impact on the array. Conversely, if .#(A) = 0, then
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the subset A is the least important. It will not cause any impact on the array when it is

removed.

Two different examples of the importance function are provided in [19]..One is re-
lated to the k-essentialness property and the other one is related to the size of U. First,
the importance function corresponds to k-essentialness property is defined as

1, if A is |A|-essential
Foss(A) = , (2.27)

0, otherwise
where A CS.
Second, the importance function corresponds to the size U is defined as

U
Sy(A) = —%%, (2.28)

where A C S. The set U corresponds to DD, where D is the difference coarray of

S=S\A.

Both of two indicators satisfy the properties of Definition 2.4.3, whose details are
shown in [19]. Figure 2.8 shows two different importance functions with four different
arrays. We can find a property in Figure 2.8 that these two importance functions satisfy
Ju(A) < SF.(A). Based on (2.27), the importance function 7 .(A) is either 1 or
0. If Zs(A) = 1, then the inequality holds true due to Property 1 in Definition 2.4.3
that .#;(A) must be less than 1. Furthermore, if .Z,,,(A) = 0, then both the difference
coarray and the corresponding ULA segment will not be changed when A is removed. It

means that U = U. According to (2.28), .#y(A) = 0. Thus, .Zy(A) < .7, (A).
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Figure 2.8: Two different importance functions .%.¢,(A) and .#;(A) of every sensor with
respect to (a) MRA with 6 sensors, (b) nested array with N; = Ny = 3, (¢) coprime array
with M =2, N = 3 and (d) ULA with 6 sensors.
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2.5 Existing Robustness Metrics

In this section, we will introduce a metric called generalized k-fragility. It was pro-
posed in [ 1 9] to quantify the whole array robustness with a specified importance function.

The definition is shown below.

Definition 2.5.1. [19, Def.6] The generalized k-fragility F;(S, .#) with respect to the

array S and the importance function .# is defined as

Assy= Y 24 (2.29)

for k=0,1,...,]S|.

An array is said to be more robust if F;(S,.# ) is close to 0, and less robust if
Fi(S,.#) is close to 1. From (2.29), we know that every subset A with size |A| =k
in S will be considered once when calculating Fi(S,.# ). If all the importance .#(A)

are close to 1, then the answer on the right-hand side of (2.29) will also be close to 1.

Several properties of F(S,.# ) are provided in [19], and they are shown as follows.

1. 0< Fi(S,7)<1 fork=0,1,.... S|
2. Fo(S,#)=0 and Fg(S,7)=1.

3. Fi(S,.#) is an increasing function of k.

Note that these properties are suitable for any importance functions .#.

Now we use Fi(S, Zess ) and Fi(S, Ay ) to compare four arrays which were in-

troduced in Section 2.3. Figure 2.9(a) shows the result of F (S, 7., ). It can be observed
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that the ULA is the most robust array, followed by the coprime array, and then the MRA
and the nested array. In particular, the curves of the MRA and the nested array fit per-
fectly. It means the robustness of them is equal no matter which k& we consider based on
Fi(S, Zess ). The reason is that both of MRA and nested arrays are maximally economic
arrays [23]. On the other hand, if we choose %y as the importance function (Figure 2.9
(b)), the nested array is more robust than the MRA. In fact, this relationship is more con-
sistent with the simulation performance of the DOA estimation, and we will show it in

Chapter 4.

In Section 2.4, we mentioned that sensor failures could occur randomly. Thus, we
can assume that each sensor fails independently with probability p. After removing the
faulty sensors, we use S and D to denote the array and its corresponding difference

coarray, respectively. There is a robustness definition based on the probability p, which

was proposed in [24]. It can be defined as

P, =Pr[D +#D). (2.30)

Eq.(2.30) denotes the probability that the difference coarray changes when faulty sensors
are removed. An array is more robust when P. close to 0, since its difference coarray

does not be impacted easily by sensor failures.
Here the set A, composed of faulty sensors, are stochastic because of the failure
probability of each sensor, p. The following is the advantages of P, [24].
1. We do not need to know the information of the number of faulty sensors.

2. The parameter p can be designed based on the budget because it is related to the

quality and the cost of the sensing device.
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Figure 2.9: Generalized k-fragility of four arrays (same as Figure 2.8) with two different
importance functions, (a) .Z.ss(A) and (b) Ay(A).
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Probability of failure for each sensor, p

Figure 2.10: P. of four different arrays (same as Figure 2.8). The curves are depicted
based on (2.31).

The authors in [24] presented a closed-form relationship between P, and Fy (S, Zess ),

like the following equation.

IS| IS|

_ k(1 \ISI—k _ S| k(1 _ . \IS|—k
=Yt =Y () A o -p @31
k=1 k=1

Also, we compare the same four arrays as Figure 2.8. In Figure 2.10, we plot the
curves of P, through (2.31). It can be found that the curves of the MRA and the nested
array still overlap. They are the least robust arrays among these arrays based on P.. The

ULA is the most robust array due to the smallest probability of difference coarray changes.

However, the robustness metrics related to the size of U and the sensor failure prob-
ability p has not been developed yet. Therefore, we will propose a new metric that related
to them at the same time, and also derive a closed-form relationship with F (S, .#y ) in
Chapter 4.
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2.6 Coarray-Based DOA Estimation Algorithm

The DOA estimator we use in this thesis is the coarray MUSIC algorithm [0, 10].

Hence, we will review the details of the algorithm in this section.

From (2.9), we know the array output can be denoted by x(¢) = A(0)s(t) + n(t),
where x(t),n(t) € CFl. For the derivation of the algorithm, there are some statistical
assumptions that must be met. The signal term s(¢) and the noise term n(¢) are zero-

mean and uncorrelated random vectors. These relations mean that

Els()] =0, E[n(t)]=0, E[s()n”](t) = Ofsjxs, (2.32)
0 0
0 py -+ 0

E[s(t)s (1)) =P = o RE E[n(t)n ()] = p.I, (2.33)
0 0 --- pp

where p;, p, are the source power and the noise power, respectively.

The essence of coarray-based algorithms is to convert the data to their second-order

statistics. Then the covariance matrix of x(¢) is defined as

Rs = E [x(¢)x"(t) ]
=E [(A(0)s(t) +n(t)) (A(O)s(t) +n(t)" ]
(2.34)
— A(O)E [s(t)s” (1) ] A”(8) + E [n(t)n” ()]

= A(0)PAT(0) + p,1.
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All of the entries in A(@)PA(0) can be obtained from

(AOPA"(D)),,,, = D, peTmmT), (2.35)

ni,ne€S

These elements can be seen as the factors associated with the difference coarray. Thus,
by vectoring Rs, we can get the autocorrelation vector defined on the difference coarray,
like

r=(A"©Ap+pi, (2.36)

where p = [p1,po,- -+ ,pp|T and i = vec(I). Eq.(2.36) can be regarded as the output
on the difference coarray. If we carefully select the rows of r, then we can obtain the

measurement vector on U by a selection matrix F [7], where

1 — —
w(m—u) yApg =m —u

Fm7p+(q—1)N

0 , otherwise (2.37)

form=1,2,---,2u—1, p=1,2,--- N, ¢=1,2,---,N.

Among (2.37), N is the number of physical sensors, w(-) is the weight function defined
in Definition 2.2.3, v = max(U) + 1, and the (m, n)-th element of Rg is associated with
the difference s,, — s, = A, Where s,,,s, € S. Therefore, the measurement vector
on U can be represented as

xy = Fr. (2.38)

In the MUSIC algorithm, it is necessary to perform eigen-decomposition on a posi-
tive semidefinite covariance matrix. Thus, a spatially smoothed matrix R,; was proposed

to fit the positive semidefinite property[6], and perform the MUSIC algorithm on the dif-
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ference coarray. R,; can be constructed by

R, =-) zz. (2.39)

where z;, = I'yxy and T'y = [0y (o-1) Tuxu Oux(u—r) for & =1,2,...,u. Moreover,
another positive semidefinite matrix R,, was proposed in [10], and R, can be con-
structed by

Ru2 = [Zu Zy 1 """ Zl]. (240)

The two matrices R,; and R, have the relationship that R,; = R?, / u. The equation
means that R,; and R, share the same eigenspace. Here we use R,s to perform the

MUSIC algorithm. R,,; can also be represented as
R,> = AyPA{ + p, I, (2.41)

where A]U = [aU(Gl) aU(¢92> cee aU(GD)]uxp and aU(Hi) = [1 Gjﬂsmei s e 6j(u—1)7rsin9i]T'

We begin by decomposing AyPA# in (2.41) into the eigenvalues y; and the eigenvectors

u;, where i
i - 0 ul?
AvPAY =[u; -~ up) | 2 .. . (2.42)
0 - upl| ul
The eigenvalues satisty p; > ps > --- > up > 0, and the eigenvectors are orthonor-

mal. Assume Ay is full-rank that rank(Ay) = D. We can construct the other v — D
orthonormal eigenvectors [up,; --- u,] to operate eigen-decomposition on the matrix

R,2 in (2.41). Therefore,
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AuPAY +p I =

p1+pp - 0 0O --- 0 uff
0 o ppt+p, 0 - 0 ug (2.43)
[ul...uDuD+1...uu] .
0 0 Pn 0| [uf,
0 0 0 Dn, ul?

Through these eigenvectors, we can separate the space C* into a signal subspace and a
noise subspace. The first D eigenvectors {u;, ---, up}, which corresponds to the D
larger eigenvalues {y; + pn, -+, p + pn}, consist of the bases of the signal subspace.
Moreover, the remaining u — D eigenvectors {up,1, -, u,}, which corresponds to
the uw— D smaller eigenvalues {p,,, ---, p,}, consist of the bases of the noise subspace.
We can represent the subspace as a matrix that composed of their corresponding bases, like

the following form.

U,=[uuy - up] € C*P, for the signal subspace,
(2.44)

U, =[upyiupe -+ u,] € C»*®=P) " for the noise subspace.

Then through the orthonormal property, multiplying the noise bases vector to (2.42) will
obtain a zero vector. Besides that, since Ay 1is full-rank and P is positive definite, we

can make a conclusion that

Ufay(0;) =0, fori=1,2,---,D. (2.45)
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Based on (2.45), the MUSIC spectrum can be defined as

1

Pyusic() = U ay(6)2°

for — % << (2.46)
Now we add the tilde notation to distinguish the actually received data. The sig-

nal measured at the array is denoted by Xg and the estimated covariance matrix can be

obtained by K snapshots, where

1

Rg = e D XX (1). (2.47)

We replace the measurement xy with the finite snapshot version Xy, which is defined as

follows [10].

<iU>m=ﬁ: > (R (2.48)

ni,n2
ni—nz2=m

for all m € U. It was proved that the MUSIC spectrum can be computed directly from

the Toeplitz matrix ﬁuz [10], where

xuvl,  [Xul,, (xul,

~ [iU]uH [iU]u T [iU]Q
R, = . (2.49)

_[iUbu—l Xulgy o - [iU]u_

Also, it was proved in [10] that the computational complexity of performing the coarray

MUSIC algorithm from l~(u2 1s lower than that from ﬁul.
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Chapter 3 Symmetrical Arrays and

Proposed Properties

As we mentioned in Chapter 1, symmetrical arrays have the advantage of improv-
ing the performance. Moreover, symmetrical arrays are more robust than asymmetrical
arrays. The reasons will be discussed in Chapter 3 and Chapter 4. In Section 3.1, we will
introduce how to construct the symmetrical array S through the original array S. The cor-
responding difference coarray and the ULA segment in the difference coarray are denoted
by D and fLVI, respectively. Thus, in Section 3.2, we will present the relationship between
these sets and the size relationship between them. Several importance function properties
related to the symmetrical arrays will be mentioned in Section 3.3. Through these prop-
erties, we can give the lower bound and the upper bound of the generalized 1-fragility of
symmetrical arrays. Additionally, in Section 3.4, we will prove that symmetrical coprime
arrays can reach the lower bound of the generalized 1-fragility, which is as robust as ULA.
Finally, in Section 3.5, we will provide some examples of the comparison between S and

S through the numerical results.
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3.1 Symmetrical Array Generation

We know that every function f(z) can be uniquely decomposed into the sum of the

even part f.(x) and the odd part f,(z). Thatis, f(z) = f.(z) + fo(z), where

f(z) + f(==)
2

and  f,(7) = o) = fl=e) (3.1)

fe(z) = 5

For arrays, we can also decompose them into a similar form. It is a union of two subarrays.
Assume that the sensor array is denoted by S, then it can be represented as the union of

the even part S, and the odd part S, like the following form.

S=S.US, and S.NS,=2. (3.2)

Before explaining the method of decomposition, we need to define the reverse set, the

even subset and the odd subset.

Definition 3.1.1. Q" is said to be the reverse set of a set Q, if

Q" = {min(Q) + max(Q) — n | n € Q}. (3.3)

Definition 3.1.2. S, is the even subset of S, where S, =S N S", and S, is the odd

subset of S, where S, =S\ S..

Figure 3.1 shows the relationship of the sets S,S",S,, S., and S] . Note that three

sets S, S,,and S! are mutually exclusive. Then we can get

S=S,US., S =S.US.. (3.4)
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S?"

Figure 3.1: The relationship between the sets S,S",S,, S, and S} .

Now the symmetrical array with respect to the original array S can be easily con-

structed. We denote the symmetrical array by g, where

S=S.US,US!. (3.5)

An example is shown in Figure 3.2. We consider the coprime array with M = 3 and
N = 5,550 S = {0,3,5,6,9,10,12,15,20,25}. From the discussion above, we can
get S = {0,5,10,13,15,16,19,20,22,25}, S. =S N §" = {0,5,10,15,20,25} and
So =S\ S. = {3,6,9,12}. Finally, if we construct the reverse set of S,, then we can get

the symmetrical array S= {0,3,5,6,9,10,12,13, 15,16, 19, 20, 22, 15}.

In the following discussion, two symbols related to the array S will be used. Thus,

here we need to define them.

Definition 3.1.3. If the size ofthe S, ofthe array S is odd, then the sensor in the middle

of the array S 1is defined as

middle(s) = TE) ;—min(S). (3.6)
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t t t t

So

Figure 3.2: An illustration of the sets S., S, and S]. Here we consider a symmetrical
coprime array, where S = {0, 3,5,6,9,10,12,13, 15,16, 19, 20, 22, 25}.

Definition 3.1.4. The aperture of an array S is defined as

aperture(S) = max(S) — min(S). (3.7)

Actually, S and S have the same aperture. According to (3.4) and (3.5), it can be

observed that S C S.
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3.2 Relationship between Sets and Relationship between

Size of Sets

There will be a corresponding difference coarray after symmetrizing the array S. We
use D to represent the difference coarray of S. Also, we use U to represent the central
ULA segment in D. In order to discuss the properties conveniently, we split D and D

into several different subsets by (2.14) and (2.15).

D = SD(S,)USD(S.)UCD(S,,S. ).

D = SD(S,)USD(S.)USD(SL)UCD(S,,S.)UCD(S.,S.)UCD(S,,S.).
(3.8)

The following properties will illustrate the relationship between D and IBD, also U and
U. They help us to know more about the difference coarray of symmetrical arrays, and
they contribute to the discussion of the generalized 1-fragility which will be illustrated in

the next section.

Proposition 3.2.1. D C D.

Proof. Let m € D, there exist ny;,ny € S such that n;y — ny = m. Since S C g, we

have ny,ny € S implying m € D. Then D C D. [

From Proposition 3.2.1, we can know that |D| < |D|. Moreover, there is a necessary

and sufficient condition related to this inequality:

CD(S,,S.)CD ifandonlyif D=D. (3.9)

070

Equivalently, if C'D(S,,Sr) C D, then |D| = |B|. The proof is shown as follows.
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Proof. CD(S,,S;) C D ifand only if D = D.

1. If CD(S,,S.) C D = SD(S,)USD(S.)UCD(S,,S.), then

D = SD(S,)USD(S.)USD(SL)UCD(S,,S.)UCD(S.,S’)UCD(S,,S")
= SD(S,)USD(S,)UCD(S,,S.)

=D,
(3.10)

since SD(S,)=SD(S]) and CD(S,,S.) = CD(S,,S}, ), which are proved in

Lemma 3.2.1 and Lemma 3.2.2.

2. If D= ]ﬁ), where

D=S5SD(S,)USD(S.)USD(S,)uUCD(S,,S.)UCD(S,,S,)uUCD(S,,S}),
(3.11)

then CD(S,,S)) CD = SD(S,)USD(S,)UCD(S,,S.) =D,since SD(S,) =

SD(S}) and CD(S,,S.) = CD(S.,S] ), which are proved in Lemma 3.2.1 and

Lemma 3.2.2.

By 1 and 2, Eq.(3.9) can be proved. [

Lemma 3.2.1. SD(S,) = SD(S}), where S, and S/ are defined in Definition 3.1.2.

Proof. SD(S,) = SD(S!). The proof is divided into two parts, SD(S,) C SD(S})

and SD(S]) C SD(S,).

1. Let m € SD(S, ), there exist ny,ny € S, such that n; —ny = m. In S, we can
also find two numbers which are associated with n; and n,. That is, there exist
my, me € S}, where m; = min(S)+max(S)—n; and ms = min(S)+max(S)—n,.
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Since mo—my = [min(S)+max(S)—ns |—[ min(S)+max(S)—n, | =ng—ny = m,

m € SD(S!). Then we can obtain SD(S,) C SD(S}).

2. Let m € SD(S})), there exist ny,ny € S, such that ny —ny = m. In S, , we can
also find two numbers which are associated with n; and ns. That is, there exist
my, me € S,, where m; = min(S)+max(S)—n; and ms = min(S)+max(S)—ns.
Since mo—my = [min(S)+max(S)—ns |—[min(S)+max(S)—n | = ny—ny = m,

m € SD(S, ). Then we can obtain SD(S]) C SD(S, ).

By 1 and 2, Lemma 3.2.1 holds true. ]

Lemma 3.2.2. CD(S,,S.) = CD(S,,S]), where S,,S. and S are defined in Defi-

nition 3.1.2.

Proof. CD(S,,S.) =CD(S,,S}). The proofis divided into two parts, CD(S,,S. ) C

e Yo

CD(S.,S!) and CD(S.,S.) C CD(S,,S.).

1. Let m € CD(S,,S.), there exist n; € S, and ny € S, such that ny — ny = m.
In S}, we can find a number which is associated with n;. That is, there exists
my € ), where m; = min(S) + max(S) —ny. The elements in S, are symmetric,
so if we take an element my that my = min(S) + max(S) — no, then my is also
in S.. Since my — my = [min(S) + max(S) — ny | — [Min(S) + max(S) — n, | =

ny—ng =m, m € CD(S,,S] ). Then we can obtain CD(S,,S,) C CD(S,,S}).

2. Let m € CD(S,,S)), there exist n; € S! and ny € S, such that ny — ny = m.
In S,, we can find a number which is associated with n;. That is, there exists
my; € S, where m; = min(S) + max(S) — n;. If we take an element m, that

mo = min(S) + max(S) — noy, then my isalsoin S.. Since my —m; = [min(S) +
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max(S) — ne | — [min(S) + max(S) — ny| = ny —ny = m, m € CD(S,,S¢).

Then we can obtain CD(S,,S!) C CD(S,,S.).

By 1 and 2, Lemma 3.2.2 holds true. O

Proposition 3.2.2. [D| < |D| < D] + [S,](1 + [So]).

Proposition 3.2.1 illustrates the condition that |]13)| reaches its lower bound: |D|.
Thus, here we will focus on the right inequality of Proposition 3.2.2, i.e., the upper bound
of |]13>| There are two sufficient conditions that |I[ND| can reach its upper bound. Note that

both of the conditions need to be satisfied.

1. DNCD(S,,S) = 2.

2. |CD(S,,S;)| reaches its upper bound [S,|(1 + |S,|)-

According to (3.8), we know that D = D U CD(S,,S’). Therefore, the size of D,
ID| = |D| + |CD(S,,S:)| — [D N CD(S,,S")|. If the first condition is met, namely
DN CD(S,,S.) = @, then |D| = |D| + |CD(S,,S”)|. Next, it can be demonstrated
that the upper bound of |C'D(S,,S!)| is equal to [S,|(1 + |S,|). First, CD(S,,S])
is composed of the differences between two sensors which are located in S, and S,
respectively. Both S, and S! have [S,| numbers, so there are 2 x |S,|*> differences
can be generated. Based on Definition 3.1.1, we know the relationship between S, and
Sy s

Sy = {min(S,) + max(S,) —n | n €S,}. (3.12)

Now we pick two elements, min(S,) + max(S,) —n; in S, and ns in S,. The dif-
ferences between them are +[min(S,) + max(S,) — n; — ny|. We can find that swap-
ping n; and ng will not change the differences. But now the element we pick in S| is
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min(S,) + max(S,) — ne and the element we pick in S, is n;. After deducting these
repetitive elements in |[C'D(S,,S! )|, if all of the remaining elements are not repetitive,

then |C'D(S,,S! )| can reach its upper bound [S,|(1 4+ [S,]).
Here we look at an example that |D| = |D| + [S,|(1 + [S,)).

Example 3.2.1. We consider the array S = {0, 1,5,6,10,15}. By (3.2) and (3.3), we can
get the other sets, where S, = {0,5,10,15}, S, = {1,6} and S! = {9, 14}. First, it can
be found that DNCD(S,,S’ ) = @, since D = {0, &1, £4, £5, £6, 29, £10, £15, 16}
and CD(S,,S] )= {£3,£8,+13}. Second, |CD(S,,S! )| reaches its upper bound that
|CD(S,,SL)| =6 = [Se|(1+ |S,|). Finally, we can examine the size of ID|, and find

that |D| = 23, which is equal to D] + [S,|(1 + [S,]).

Proposition 3.2.3. U C U.

Proof. Based on (2.12), U = {m | {0,1,...,|m|} C D}. There exist ny,ny € S such

that n;y — ny = m. Since S C g, we have ni,n, € S implying m € U. Then

UCTU. O

With this relationship, we know that |U| < |fJ| Now let us discuss the condition

that the equality holds true.

1. Ifthe original difference coarray I is hole-free, then |U| = |U|. Since |D| = |DJ,

no new elements will be generated after symmetrizing the array S.
2. Assume that the original difference coarray I is not hole-free.

(a) If CD(S,,S) N {£min(H")} # @, then |U| < |U|.
(b) If CD(S,,S.) N {+min(H")} = @, then |[U| = |U].
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Here the set H was defined in (2.13). The definition of U can also be expressed as this
form: U = {m | —min(H*) < m < min(H")}. If there exist elements in D fill the
holes {-=min(H*)}, then the length of U will become larger, so |U| < |U}. Conversely,
if no new elements can fill the holes {£min(H™)}, then the length of U will still be the
same, so |U| = [U].

Proposition 3.2.4. 1. If D = D, then U =U. 2. If U= U and [H'| € {0,1}, then

D =D.

For the first statement, if two difference coarrays are equal, then the central ULA
segments of them will be equal as well. But conversely, for the second statement, U = U
does not mean that D is definitely equal to D. It is possible to happen that D have
the elements which are not belong to ). However, as long as we add another condition
that [H*| € {0,1}, D will be equal to D. The reasons can be expressed as follows.
|H*| =0 means D is a hole-free difference coarray, and U = ID. Under the premise, D
is also a hole-free difference coarray, so I = D. Also, |H*| = 1 means there is a hole in
D*. After symmetrizing the array, new elements in the difference coarray, CD(S,,S}),

probably fill this hole. Nevertheless, if this hole is filled, the assumption U = U will be

violated, so definitely there is a same hole in the D*. Then we can obtain D = D.
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3.3 Properties of Importance Function and Generalized

I-fragility

In Chapter 2, we introduced the importance function and the generalized k-fragility.
The importance function is a metric that can quantify the influence on the difference coar-
ray of sensors or subsets. Therefore, some properties of the importance function will arise
after symmetrizing the array S. Furthermore, according to these proposed properties of
the importance function, we can give the range of the generalized 1-fragility. For the

convenience of discussion, here we define a set A" based on Definition 3.1.1, where
A" = {d' = min(S) + max(S) —a | a € A}. (3.13)

Proposition 3.3.1. .7 (A,S) = .# (A", S), for VA, VS, and two types of the importance
function .#.,s and 7. Here we add the array S to the bracket of the importance function

to represent that A is reomved from S.

Proof. Assume that H;)A is the difference coarray of the array g\A, and ]BN is the

difference coarray of the array S \A".

ﬁ)A = {m1 — My | le,mg S g\A}
= {(min(S) + max(S) — m1) — (min(S) + max(S) — ms) | Vmy,ms € S\ A}

= {p1 —p2 | Vp1,p2 € S\ A"}

- ]D)A'r
(3.14)

According to this derivation, we know that both removing the subset A and removing the

subset A" have the same difference coarray. Hence, regardless of .7 (A) or #y(A)

45 doi:10.6342/NTU202202947


http://dx.doi.org/10.6342/NTU202202947

we consider, the value of the importance function will be equal. Namely, Z..,(A, g) =

S..s(A”,S) and Fy(A,S) = Fy(A,S). 0

Proposition 3.3.2. We consider the subset A ofthe array S and the importance function
S.ss. Four properties of Z.q5(A, §) are shown as follows. The relationship between a

and A was defined in (3.13).

1. Assumethat [A| =1, ACS, and Z(A,S) = 1.

If +(d' —a) €D, then .Z.,(A,S) =0 and 7,.,(A",S) = 0.

2. Assumethat [A|=1, ACS, and .Z(A,S) =0.

If +(d' —a) €D, then .Z.,(A,S) =0 and 7,.,(A",S) = 0.
3. Assume that |[A| =1, A CS,\ {middle(S.)} and .7 (A,S)=1.

(a) If w(£(a' —a)) > 1, then Z,;,(A,S) =0 and .7, (A",S) = 0.
(b) If w(£(d' —a)) =1, and £(d’ — a) € CD(S,,S!), then .Z..,(A,S) = 0
and Jess(Ar,g) =0.

() If w(£(d —a)) =1, and £(a’ — a) ¢ CD(S,,S.), then F..,(A,S) = 1

and ﬂess(Ar,g) =1.
Note that the weight function here is corresponding to the original array S.

4. Assume that |A| =k, ACS,. If JQSS(A,g) =0, then JSSS(A’,SV) =0.

Property 1 and Property 2 can be explained together. Note that a € S, and o’ € S).
After symmetrizing the array S, except for the difference +(a’ — a), all the other differ-
ences which are related to a can be found at least one alternative pair. Since SD(S,) =
SD(S!) inLemma 3.2.1 and CD(S,,S.) = CD(S,,S!) in Lemma 3.2.2, removing
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a or @ from S will not reduce the elements in the set D\ C'D(S,,S"). In addition, as
we discussed in Proposition 3.2.2, there must exist repetitive elements when computing
CD(S,,SL). Thus, except for £(a’ — a), the other elements in C'D(S,,S! ) will also
not disappear after removing a or «’ from S. Note that the pair (a,a’) only belongs to

S. If we want to let the equations (A, g) =0 and Z4 (A", §) = 0 be true, the only

sufficient condition is £(a’ — a) € D.

In Property 3, both a and o’ are belong to S., so D has the difference +(a’ — a).
For (a), w(%(a’ —a)) > 1 means that we can find another sensor pair in S to gen-
erate the difference +(a’ — a). Here we assume that two sensors b; and b, are in the
array S. They are different from the sensor pair (a,a’) and they can generate the dif-
ference +(a’ — a). If by,by € S,, then removing a or ' will not change D because
of SD(S,) = SD(S}) in Lemma 3.2.1. Also, if b; € S, and b, € S., then remov-
ing a or @ will not change D because of CD(S,,S.) = CD(S.,S’) in Lemma
3.2.2. The final case, both b; and by are in S.. The difference +(a’ — a) will also
not disappear because of the symmetry of S.. Therefore, we can obtain .7, (A, §) =0
and .7,,,(A",S) = 0. For (b), if w(+(a’—a)) =1 and (' — a) € CD(S,,S}]),
the same result with (a) can be obtained. According to Figure 3.1, we know that S,, S,
and S} are mutually exclusive. Removing a or o’ does not change CD(S,,S}, ). Thus,
Fes(A,S) = 0 and 7., (A",S) = 0. However, for (c), if w(+(a'—a)) = 1 and
+(d —a) ¢ CD(S,,S.), only the sensor pair (a,a’) in S can generate the difference

+(a’ — a). Thus, JeSS(A,g) =1 and JeSS(AT,g) =1

In Property 4, arbitrary sensors in S, are removed. If the removal of A does not
change the difference coarray D, then removing the corresponding A" will not change D

as well. Here we can take Proposition 3.3.1 as the reference.
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Proposition 3.3.3. Basedon D = D, the generalized 1-fragility with respect to the sym-
metrical array S and two importance functions %, and % have a certain range. They

are shown as follows.

2 ~
1. = < FA(S, L) < ‘Sf‘.
S| S|
~ S S
2. 0 < A(S, Ay) < |f| — ~| e|~.
S| Ul x S|

For the first case, through Definition 2.5.1, F; (g, Fess) 1s defined as

jess (A)

fl(ga jess) - Z

— (3.15)
ACS,|A|=1 (|§|)

According to (3.5), S can be decomposed into three subsets. Hence, JF; (g, Foss) can

be represented as the addition of three parts, like

s <%ess A jess A jess A
FI(S, Fess) = § —N( )+ § —g( )+ § g( ). (3.16)
ACS,CS | | ACS.CS | | ACSrCS | |

[A|=1 [A|=1 [A|=1

Here we use the Proposition 3.3.2 to simplify (3.16). First, we consider the sensors in S,,.
Property 1, and 2 in Proposition 3.3.2 tell us that if +(a’ — a) € D, then both a and o
can be removed from S and that does not impact D. Since we have already assumed that
D = D, every +(a’ — a) which is generated by different a are definitely in . Then we
can get fess(A,g) = Foss (A ,g) =0, where A C'S,, |A| = 1. Therefore, the following

two summations are equal to 0.

jess A jess A
> (A) 0 and > s(A) _ g, (3.17)
ACSDC§ |S’ ACSTCS |S|
lA|l=1 [A]=1
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Eq.(3.16) can be rewrote as

-Fl(gu jess) =

%85("&) . (3.18)

<= IS
ACS.CS
=1

Eq.(3.18) indicates that JF; (g, J.ss) 1s only related to the essentialness property of the
sensors in S.. The least robust case of (3.18) is that all of the considered A are 1-essential.

Then Fy(S, .%..,) will reach its upper bound |S.|/|S|. Here we look at an example.

Example 3.3.1. We consider a MRA that S = {0, 1, 3,6, 13,20,27,31,35,36}. Its dif-
ference coarray is hole-free, so D = D. The even subset Se = {0,1,35,36}, and the
symmetrical array S = {0,1,3,5,6,9,13, 16, 20, 23,27, 30, 31, 33, 35,36 }. If checking
the essentialness for every sensor in S, based on g, we can find that all of them are

1-essential. Thus, F; (g, Foss) = 4/16, which is equal to the upper bound.

On the other hand, the most robust case of (3.18) is that all of the considered A can
be removed from S except for two sensors min(S.) and max(S.). Then F; (g, Fess)

will reach its lower bound 2/ [S|. Here we look at an example.

Example 3.3.2. An array S = {0,1,3,5,8,9,10,12} is considered. The difference
coarray is hole-free so that D = D. The even subset Se = {0, 3,9, 12}, and the symmet-
rical array S = {0,1,2,3,4,5,7,8,9,11,12}. For all the sensors in S,, it can be found
that only the sensors min(S,) and max(S,) are l-essential with respect to S. Thus,

Fi (g, F.ss) = 2/10, which is equal to the lower bound.
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For the second case of Proposition 3.3.3, we can similarly decompose F; (g, )

into the addition of three parts:

~ A A A
FiS, )= ) Sulh) | Sulh) | > Sulh) (3.19)
ACS,CS SI ACS.CS SI ACSTCS S|
[A|=1 [A|=1 |A|=1

We have already known that .7, (A, §) = S (A §) =0,where ACS, and |A| = 1.
Thus, these A can be removed from S and does not change U. So that the equation

(A, S) = Fy(A',S) = 0 also holds true. Then we can rewrite (3.19) as

~ (A
Fi(S, #y) = Z “{S<, ). (3.20)
ACS.CS | |
[A]=1

The least robust case of (3.20) is that the remaining U only have one element {0} no
matter which sensor we remove from S., where S, C S. In this case, the importance
function of all the sensors in S, are .#y(A) = 1 — 1/|U|. If adding all these values, then

the result is

$ ijM _ ISe\(l: 1/|0) _ !SA B ~\Se|~ ‘ (3.21)
scscs IS S| S| |U| x|S|
JA|=1

This case usually happens when U = {0}.

As for the most robust case of (3.20), if U will not be changed after removing any
sensors from S, then .#;(A) = 0 for all sensors in S,. This case only happens when D
is not a hole-free difference coarray. Because if D is hole-free, then removing min(S,)

or max(S,.) must change U. Let us look at an example that Fi(S, .#) = 0.
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Example 3.3.3. We consider the array S = {0,2,6,8,9,13}. Its difference coarray is
not hole-free, but it still fits our assumption D = D. The even subset Se = {0,13}, and
the symmetrical array S = {0,2,4,5,6,7,8,9,11,13}. In S, we can find that both 0
and 13 will not change U after removing one of them from S. Thus, fU({O},g) =
5({13},S) = 0. According to (3.20), Fi(S,.#y) = 0, which is equal to the lower

bound.

If we take the Fi(S, %) and Fi(S, #y) as the robustness metrics, it is worth
nothing that S is more robust than S. The relationship can be proved based on the
assumption D = D. Similar to (3.16) and (3.19), we also decompose the generalized

1-fragility of S into two parts:

jess(A) + Z jess(A) )

FiS, Suss) = > (3.22)
ACS,CS | ’ ACS:.CS | ‘
[A|=1 [A|=1
Su(A) Ju(A)
FiS, )= ) + > . (3.23)
ACS,CS | | ACS.CS | |
[A|=1 [A|=1

Both (3.16) and (3.22) have one term which considers the sensors in S.. We know

that the number of sensors |S| < |S|, so definitely

Z jesé(A) 2 Z jesi(‘A) ) (324)
ACS.CS 1S ACS.CS SI
fAl=1 TAl<T

Therefore, based on (3.17) and (3.24), we can obtain Fi(S, Z..s) > fl(g, Soss). For
the same reason, the inequality of generalized 1-fragility with respectto U is available.
That is, Fi(S, #y) > F (g, Ju). In the next section, we will show that the symmetrical
coprime arrays can reach the lower bound of F; (g, Fess) and Fy (g, ).
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3.4 Robustness of Symmetrical Coprime Arrays

Generally, D = D only happens when I is a hole-free difference coarray. How-
ever, as we metioned in Section 2.3, the difference coarray of coprime arrays is not hole-
free. Nevertheless, in this section, we will prove that Deqprime = ﬁcoprime even if Deoprime
is not hole-free. With this result, we will prove that the generalized 1-fragility of sym-

metrical coprime arrays can reach the lower bound:

Fl(gcoprimea fess ) = = and Fl(gcoprimey tﬁ‘U ) = 0. (325)

’ Scoprime |

Proposition 3.4.1. After symmetrizing the coprime arrays, the difference coarray will not

be changed. Namely, Deoprime = Ib3coprime-

We will explain C'D(S,,S! ) C D, and then through the proof of (3.9), we can obtain

Proposition 3.4.1.

First, we build a [S,| x [S,| matrix C to store half of the elements in the set

CD(S,,S;). Assume that min(S) + max(S) = @, the elements in C is defined as

[Clij = Q —ni —ny, (3.26)

where n; and n; are the sensorsin S,. According to (2.22) and Definition 3.1.2, we know
that the size of the S, of coprime arrays is equal to (N — 1)M. The sensors in S, can
be denoted by S, = {n1,n2,...,nn_1)n}, and they satisfy n; < ny < -+ < nv_1)m.
Because of the symmetric property of difference coarrays in Definition 2.2.1, another half
of the elements in the set C'D(S,,S]) is —C. The matrix C can be used in not only
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coprime arrays but also any other arrays. For coprime arrays, C is equal to

_(2M—1)N—2M (2M — 1)N — 3M (2M — 1)N — NM -
(2M —1)N — 3M (2M — 1)N —4M v (2M —1)N — (N +1)M
(2M —1)N - NM (2M —1)N —(N+1)M --- (2M —1)N —2(N —1)M
i (3.27)

This matrix can be observed that it is a Hankel matrix. Hence, there are many repetitive
elements in the matrix. If each element is considered once only, then the set which is

composed of these elements can be denoted as

{2M = 1)N —m | m € {2M,3M, ... NM, (N + 1)M,...,2(N — 1)M}}. (3.28)

Now we can combine the other part differences in —C so that all the elements in

CD(S,,S]) of coprime arrays are

{£[2M = )N —m] | m € {2M,3M, ... NM,(N + 1)M,...,2(N —1)M}}. (3.29)

If all the elements in (3.29) can be found in D¢oprime, then the equation Deoprime = HNDCOprime

holds true. The following is our discussion.

Picking the element (2M — 1)N in S, and the element in

{2M, 3M, ..., (N —1)M} €S, (3.30)

can generate the differences

{(2M —1)N —2M, (2M —1)N —3M, ..., 2M —1)N — (N = 1)M}. (3.31)
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Thus, (3.31) belongsto C'D(S,,S. ). Also, the difference between (M —=1)N €,
and 0 €S, is

(M —1)N = (2M — 1)N — NM, (3.32)

which is just the element in (3.28). It means that (2M — 1)N — NM € SD(S, ). More-

over, through (3.32), the element (M — 1)N and the element in
(M, 2M, ..., (N —2)M} €S, (3.33)
can generate the difference

{@M—=1)N=(N+1)M, 2M—=1)N—=(N+2)M, ..., 2M—1)N-2(N—1)M}. (3.34)

Thus, (3.34) also belongs to C'D(S,,S. ), and they complement the remaining el-
ements in (3.28). Due to the symmetric property of difference coarrays, (2.11), all of
the elements in (3.29) can be generated at the same time. Therefore, we have explained

CD(S,,S!) C D. Through the proof of (3.9), Deoprime = ﬁcopimre can be obtained.

Proposition 3.4.2. The generalized 1-fragility with respect to .Z.,; of symmetrical co-

prime arrays can reach the lower bound and also can be represented as a closed form.

~ 2 1
NameIYa -Fl( Scoprimea jess ) = = = .
‘Scoprime’ N + M -1

According to (3.18), here we need to focus on the elements in S.. Removing an
element in S, from S will affect the sets SD(S, ), CD(S,,S.) and CD(S., Sr).
However, CD(S,,S.) and CD(S.,S]) would complement each other due to Lemma
3.2.2. Tt is not possible that C'D(S,,S.) and CD(S,,S]) reduce the difference at the

same time, because C'D(S,,S.) = CD(S,,S],) in Lemma 3.2.2 and the size of S, of
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coprime arrays is definitely an even number. If recalling the sensor locations of coprime
arrays, S, = {0, N,2N,...,(2M — 1)N}, thesize of S, is (2M —1)—0+1 = 2M,
which is an even number. Moreover, S. of coprime arrays is an ULA with a spacing
of N. Except for the sensors “min(S)” and “max(S)”, all the other sensors in ULA are

inessential [1&]. In conclusion, we can get

S fess A 2
fl(SCOprime, jess) = Z < ) o

ACS.CS
[A|=1

(3.35)

| Scoprime | | Scoprime |

From Section 2.3.2, we know the size of Scoprime 1S N +2M — 1. Therefore, gcoprime

can also be represented as a closed form with parameters M and N.

[Scoprime| = [S] + IS5
=(N+2M —1)+ (N —1) (3.36)

=2N +2M — 2.

Then we can further simplify (3.35) to the following form.

~ 2 2 1

F Sco rime»jess = = = - .
t(Seop ) Seoprime] 2N +M 1)  N+M -1

(3.37)

Proposition 3.4.3. The generalized 1-fragility with respect to .y of symmetrical co-

prime arrays can reach the lower bound, zero. Namely, F7( Scoprime; -7v ) = 0.

In Proposition 3.2.4, we mentioned a property that if D = D, then U = U. Thus,

for coprime arrays,

Ucoprime = Ucoprime = {0, %1, ..., £(MN + M —1)}. (3.38)
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Also, from Proposition 3.4.2, we know that only the sensors 0 and (2M —1)N in gcopﬁme
are 1l-essential. This indicates that removing one sensor from gcoprime \ {0, 2M—=1)N}
does not change ﬁcoprime and @coprime. Then we can get the following conclusion through

Eq.(2.28).

(A, Seoprime) = 0, for [A] =1, A € Seoprime \ {0, (2M — 1)N} . (3.39)
The reason why 0 and (2M — 1)N are 1-essential is because the difference between
them, (2M — 1)N, will disappear after removing one of them. Through (3.14), we know
that the difference coarray of removing 0 from S is the same as the difference coarray
of removing (2M — 1)N from S. Therefore, the missing difference (2M — 1)N does

not change ﬁcoprime in (3.38). Then we can rewrite (3.39) as

j‘U(A7 S<:oprime) =0, for |A| =1, Ae gcoprime‘ (340)

According to (3.40), the generalized 1-fragility with respect to .y of symmetrical co-

prime arrays is

~ Hu(A
JT'.l(Scoprime;le) = Z §U< ) —0. (341)
ACS. §§ | coprime|
|Al=1
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3.5 Numerical Comparison

Among several common metrics for measuring the robustness of an array, such as
Fi(S, Loss), Fi(S, Ay), and P,., we can intuitively think that the symmetrical array is
more robust than its original array, since more sensors are placed in the same aperture.
As the content we discussed in Section 3.3 and Section 3.4, if the same faulty sensors are
removed from S and g, the impact on S is relatively small. Now we compare different
arrays through an experiment. Besides the arrays we introduced in Section 2.3, we also
consider other arrays in the following comparisons, including thinned coprime arrays [2£],
MISC arrays [29] and minimum hole arrays (MHA) [13]. Here we define an indicator

that can measure the increasing degree of robustness after symmetrizing the array.

Definition 3.5.1. Given the array S, the importance function .# and the value of &, then

the increasing degree of robustness after symmetrizing the array is defined as

_ Fi(S, ) — Fu(S, #)
D(k,.7) = 7.5.7) . (3.42)

The comparison results are shown in Figure 3.3. We compare the values of D(1,.7)
of different arrays. Each vertical line in a plot represent the same type of arrays, and
the circles with the same color are the arrays generated by different parameters under
the same array definition. By (3.42), if Fi(S,.#) > Fi(S,.#), then D(k,.#) will
be greater than 0. Therefore, it can be observed in Figure 3.3 that all of the points for
both D(1, Z.,s) and D(1,.#y) are greater than 0. For these arrays, we can say that

symmetrizing them will increase the robustness based on generalized 1-fragility.
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Figure 3.3: D(1,.#) for six different types of arrays. They are coprime arrays, thinned
coprime arrays, nested arrays, MRA, MISC arrays and MHA, respectively. The circles
with the same color are the arrays generated by different parameters under the same array
definition.
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From the discussion below (3.24), we only sure that F (S, Zss) > Fi (g, Fess) and
Fi(S, #y) > Fi (g, Jy) basedon D = D. Nevertheless, if D + D, we still can find the
special cases that D(k,.#) < 0 with respect to .#.,s and .#y. The examples are shown

as follows.

Example 3.5.1. We consider the array S = {0,3,5,8,10,13,15}. Its corresponding
symmetrical array is S= {0,2,3,5,7,8,10,12,13,15}. Table 3.1 shows the importance
function .7,,, of each sensorin S and S. If summing up all the importance values based
on the same array S or g, we can get the result F(S, Z.ss) = 4/7 and fl(g, Foss) =
6/10. Because

4 6
Z 05714 < — =0, 3.43
- = 05714 < 15 =06, (3.43)

the generalized 1-fragility with respect to .7, is larger after symmetrizing the array.

Example 3.5.2. The same array S = {0,3,5,8,10, 13,15} is considered. Table 3.2
shows the importance function %y of each sensor in S and S. If summing up them
based on the same array S or S, then we can get the result that Fi(S, #y) = 0 and
Fi(S, Ay) = 32 /27. Tt indicates the generalized 1-fragility with respect to .#y is larger

after symmetrizing the array.

For P.,another robustness definition we introduced in Section 2.5, lower probability
Pr[D # D] represents the array is more robust. We compare the same S and S as
Example 3.5.1. In Figure 3.4, we plot the curves of P. based on (2.31) for S and g,
respectively. We can find that no matter which p we take, P. of S is higher than P,

of S. That means S is less robust than S based on the definition of P..
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nes 0 X 3 5 X 8 10 X 13 15
Fes({n}) | 1 x |1 0 x |0 |0 x b1 1
nes 0 |2 |3 5 7 |8 10 |12 |13 |15
Fes({n}) | 1 1 1 o |0 |0 |o 1 1 1

Table 3.1: The importance function .#,.,, of each sensorin S and S.
nes 0 X 3 5 X 8 10 X 13 15
HJu({n}) |0 X 0 0 X 0 0 X 0 0
nes 0 |2 |3 |5 |7 |8 10 |12 |13 |15
Sy({n}) [0 | E 1% Jo o o o |£ |2 |o

Table 3.2: The importance function .#; of each sensorin S and S.

In the next chapter, we will present a different view to mitigate this condition. Al-

though it cannot be guaranteed that S is more robust than S, different insights can be

obtained through the observations of the size of U. Moreover, we will illustrate the ben-

efits of symmetrizing the arrays through more experiments.
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107
10 103 102 107 10
Probability of failure for each sensor, p

0

Figure 3.4: The comparison of P. of S and S. We consider the array S in Example
3.5.1 and plot the curves based on (2.31).
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Chapter 4 Array Analysis with

Random Sensor Failures

In Section 2.6, we introduced the DOA estimation algorithm, coarray MUSIC. It
can utilize the data on U to estimate the source directions. Therefore, larger size of U
indicates that more virtual sensors are used. In this Chapter, we will consider two factors,
|U| and p, at the same time. Both of them would impact the performance of the DOA
estimation. Note that U is the corresponding central ULA segment in the difference
coarray of the sensor array S, where S = S\ A. Also, p is the probability of failure for
each sensor. In Section 4.1, we will discuss the relationship between |U| and the MSE,
also p and the MSE, through the experiments. Actually, |U| is a random variable because
of the sensor failure probability p. Thus, in Section 4.2, we will derive the expected value
expression of |U| based on p. Furthermore, we will provide a robustness metric which
related to |U| and p at the same time. We can get a two-dimensional point with this
robustness metric as z-axis and a performance metric as y-axis. That can be used for
comparing different arrays. Therefore, in Section 4.2.3, we will have some numerical
results to compare the arrays, verify the expression we have derived, and see the benefits
of the symmetrical arrays. Finally, in Section 4.3, we will focus on the analysis of the

ULA with different number of sensors.

63 doi:10.6342/NTU202202947


http://dx.doi.org/10.6342/NTU202202947

4.1 The Factors Impacting MSE

In Chapter 4, we will use the coarray MUSIC to perform many experiments. There-

fore, here we define the empirical MSE to evaluate the simulation performance.

D

L
MSE = =33 (40— 40), @.1)

=1 =1

where D is the number of sources and L is the number of trials.

4.1.1 Size of U versus MSE

We consider an array with 10 sensors that S = {0,1,2,5,8,9,12,15,16,17}. As-
sume that we have already known there are 3 faulty sensors in S. Thus, here the set A

which consist of the faulty sensors can be denoted by
A= {n17n2,n3 | nq 7& Ng, N1 7é ns, No 7é ns and ny, No, N3 € S} (42)

Every case of A will be considered once so that there are (') = 120 different A in
total. Then we will use the S to perform the DOA estimation, so there are 120 different
S as well, since S =S\ A. Moreover, U is obtained from S. Here SNR is 0 dB and the

number of snapshots is 500. For each case, we will do 300 Monte-Carlo runs and then

take the average. The result is shown as Figure 4.1 and we have two observations:
1. For two arrays with the same number of sensors and size of U, the estimation results
will be different. The reason is that the weight functions of them are different.

2. There is a banded inverse relationship between the size of U and the MSE.
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To find a more specific relationship between the size of U and the MSE, we can fit these

points to a straight line by the least square approximation. Assume that these points are

(10g10 r1, logo 1), (10810 T, log, Y2), -+ (loggTi20, l0gyg Y120)- (4.3)

The straight line in Figure 4.1 can be expressed as

log,,y = a + blog,, . (4.4)

If substitute the points in (4.3) into (4.4), we can obtain that log,,v; = a + blog,, z; for

1 =1,2,---,120. Hence, we need to solve

1 logyym log,, 1

1 logx2 log,, v2
a

~ 4.5)

b

1 log, 120 log, o ¥120

L _ 1 L 4
D e

Since D is full column rank, (a,b) can be obtained by the least square approximation,

which 1s shown as follows.

Y (D'D)'D”e. (4.6)

b
For the data points in Figure 4.1, a is equal to —2.3620 and b is equal to —2.4966, so

we can get

log,, MSE ~ —2.3620 — 2.4966 log,, |U]
(4.7)

— MSE =~ 1072.3620 . |[U‘72‘4966 )
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) O  Estimation error of each case
) Least square approximation
107 F .8
g .
(o)
= o g
<2 . O
= o - g
5L ,
10 -
8 "
o} v
8 6®
%8 ¢
10 | = B
3 5 7 9 11 15 17 19212325 31 35

Size of U

Figure 4.1: Estimation error versus size of U. U is obtained from S = S\ A, where
S = {0,1,2,5,8,9,12,15,16,17} and A = {ny,na,ng | n1 # n9,ny # nz,ng #
ns and nq,ny,n3 € S}. SNR is 0 dB and the number of snapshots is 500. There is one
source with § = 7/4. Each point is averaged from 300 Monte-Carlo runs. The dotted
line is the least square approximation of these points based on (4.4) to (4.7).

Therefore, we can generally assume that an array S which has large size of U can
obtain better estimation performance. The advantage of using single indicator |U| as
performance metric is that it can simplify the comparisons of arrays. Furthermore, we can

consider random sensor failures at the same time.

4.1.2 Sensor Failure Probability versus MSE

As we mentioned in Section 2.4, sensor failure probability p increases with the usage
time of the array. For different values of p, the estimation performance of different arrays
would be changed. Therefore, we conduct an experiment to see the relationship between
the failure probability for each sensor, p, and the estimation performance, MSE. Here we

consider four arrays which have introduced in Section 2.3. Table 4.1 shows their U size
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Arrays Size of U, when p =0 | Fi(S, Z...) | Fi(S, )
(a) MRA
27 1 0.7901
S = {0,1,4,5,11,13}
b) Nested Arra
®) y 23 1 0.6232
S ={1,2,3,4,8,12}
¢) Coprime Arra
(c) Cop Y 15 0.8333 03111
S = {0,2,3,4,6,9)
(d) ULA
11 0.3333 0.0606
S =1{0,1,2,3,4,5)

Table 4.1: The comparison of four arrays, each of them has 6 sensors. The second column
is their corresponding |U‘ when p = 0. The third and fourth column are their generalized
1-fragility with respect to %, and 7y, respectively.

when p = 0, namely their original U size. Also, we have their generalized 1-fragility

with respect to two importance functions, .7, and 7.

Assume that there is one source ¢ = 7/4. SNR is 0 dB and the number of snap-
shots is 500. We consider 11 different values of p, where p € {1074 2-107% 5.
1074, 1073, 2-107%, 5-1073, 1072, 2- 1072, 5-1072, 0.1, 0.2}. In the beginning,
random faulty sensors will be removed from the array S with a fixed probability p. The
set A is composed of these faulty sensors. Then we will use the S, defined as S\ A,
to do 100 Monte-Carlo runs. Next, the random faulty sensors will be regenerated for an-
other 100 Monte-Carlo runs. This action will be repeated 5000 times. That is, each data

point is averaged from 5 - 10° Monte-Carlo runs. The results are shown in Figure 4.2.

Figure 4.2 can be divided into four regions. In Region (I), the MRA possess the
smallest MSE. The nested array own the second smallest MSE, then the coprime array,
and finally the ULA. They are sorted in order of the size of U. Since p is sufficiently
small, few sensors will be removed in each run. Thus, |U|] ~ |U|, and more virtual
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sensors in the MRA are used. In Region (II), the nested array possess the smallest MSE.
Although the size of U,egeq 1s smaller than the size of Upra, the estimation performance
is possible to be different when the value of p increases. It can be observed in Table 4.1
that F1(S, #y) ofthe nested array is smaller than Fi(S, .#y) ofthe MRA. Thus, we can
deduce that the robustness has helped to improve the estimation performance. As the value
of p continuously go up, in Region (III), the coprime array possess the smallest MSE. Its
Fi(S, Ay) is smaller than Fi(S, .#y) of the nested array and the MRA. Therefore, the
least MSE of the coprime array itself is sustained longer. Finally, in Region (IV), p is quite
large. The estimation performance is sorted of the robustness metric (S, .#y) instead
of the size of U. Therefore, the ULA own the least MSE, and the MSE of the MRA is the
highest. In particular, in Table 4.1, we can observe that the value of Fi(S, .Z.s) of the
MRA and the nested array are equal. It is not consistent with the simulation result. Hence,
the robustness metrics should be designed based on the size of U. Moreover, both of the

robustness and the size of U need to be considered when designing array geometries.
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—f— Nested Array
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N
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Probability of failure for each sensor, p

10°

Figure 4.2: Estimation error versus probability of failure for each sensor,p. Here we
consider four arrays in Table 4.1. SNR is 0 dB and the number of snapshots is 500.
There is one source with § = /4. Each point is averaged from 5-10°> Monte-Carlo runs.
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4.2 Derivation and Comparison

4.2.1 Expected Value of U Size

In this section, we will derive the expression of E [|U|]. It combines two factors
impacting the estimation MSE, which we introduced in Section 4.1.1 and Section 4.1.2.
Here the set A that consists of the faulty sensors is stochastic because every sensor in the
array S fails independently with the same probability. Also, the set S, definedas S\ A,
and the corresponding U are stochastic as well. The size of U now become a random

variable, which maps U to a real number. The definition is defined as follows.

U] = {u|u= U], U denotes the central ULA segment in the difference coarray

of S=S\A, where A is a subset of S} .
(4.8)
Since the set U generated by different A may be different, here we separate all A
sets with different symbols. They can be written as A7, where k = 0,1, ..., S| is the
number of elements in A, and j = 1,2,..., () is the index of Aj. Also, weuse S, to
separate different cases that S\ Al and the corresponding central ULA segment in the
difference coarray is denoted by UJ. Note that A7, S/, and U}, are deterministic. Now

let us look at the probability of A = Ai. This probability is inspired by [24, Eq.32].
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If every sensor in the array S fails independently with the same probability p, then

Pr(A = Al)=Pr () (nafails) | 0| [ (no fails)®

ni EA{; n2 ESfc
— H Pr(n, fails) | - H [1 — Pr(n, fails)] (4.9)
ni GA{; no Egi
=pF(1—p)FI".
Eq.(4.9) is also the probability of S = S?, so
Pr(A=A])=Pr(S=8])=p(1—p)lE* (4.10)

For every array S7, the corresponding central ULA segment in the difference coarray, H_Ji,
can be obtained based on (2.12). Therefore, the probability that every IUi happens is also
equal to p*(1—p)SI=*. We calculate the size of all U} Ifevery |Uj| are multiplied their
corresponding probability, and we sum up all of them, then we can obtain the expected

value of |U|. The expression is shown as follows.

s ()
E[[0]] =) > [0} p*(1—p)ei*. (4.11)

k=0 j5=1

In (4.11), Z](E‘l) ‘IUM purely depends on the array configuration. Thus, it is possible
toincrease E [|U|] by designing the array geometry. Furthermore, p*(1—p)*!=* depends
on the probability p, the summation index k, and the size of the array |S|. For a fixed
array configuration, we can try to sustain the largest E [|U]] by controlling p or [S|. In
Section 2.5, we mentioned that p is affected by the sensing device. On the other hand,

the size of |S| can be changed by adding other sensors to the array.
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Next, we will present a closed-form relationship between E [|U|] and generalized
k-fragility F(S, #y) which was introduced in Section 2.5. First, we rewrite (4.11) by
multiplying |U| / |U|, and we can get

\S\ ISI

S| IS|

E [|U]] Zp (1—p)E= kZ|UJ|_\U|Zp 1—p)lsi=+ |M|Z‘UJ . (4.12)

If adding |S| ) to the parentheses, (4.12) will become
k

si S S O
E[|0]] = IUIZp p)l¥=* (’k‘) - (’k‘)—wg}w L (413)

Then we move 1/|U| and (}') to the summation of 7, so (4.13) become

IS|

E [|0]] = \U\Zp p)ISI=* (E')— 1—% . (4.14)

Then we multiply (') / () to (4.14), so (4.14) become

5| (%) 1- [i]
- U
E [|0]] = \WZ( ) pEE =3 — o @
J=1

In Definition 2.5.1, we have defined Fi (S, ) = 3_, g jajmr Fu(A) / ("), and #(A)

is equal to 1 — |U| /|U| based on (2.28). Thus, we can rewrite (4.15) as

IS|

E 0[] = |U|Z() )R (L= F(S, ). (4.16)

Finally, we know that 3 | (") p¥(1—p)®I=* = 1, because it is the CDF of the binomial

distribution. Therefore, we can obtain the relationship between E [[U|] and F(S, #y )
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like the following form.

IS|
E[|U]] = |U] 1—2(‘?)19’“(1—19)'5"“ﬂ(S,ﬂU) . (4.17)

k=0

We can notice the content in the parentheses of (4.17). Its range is

IS|
o< (1-% (‘i')p’“u )RS, ) | <1 (4.18)

k=0

As we mentioned in Section 2.5, the value of F(S,.# ) is between 0 and 1. Here
Fi(S,.#) of each k will be multiplied a probability of the binomial distribution, so the
summation of £ is range from 0 to 1. That is the reason we can obtain the inequality of
(4.18). An array is more robust if its Fy(S, .#y ) is close to 0. Hence, for a fixed p, the
computed value in the parentheses of (4.18) is close to 1 if the array is more robust. Also,
the value of E [|U]] willcloseto |U| according to (4.17). It indicates that a robust array

is more likely to maintain its original |U|, even though it is under the influence of p.

However, the complexity of computing E [|U|] based on (4.11)is O(25/), since we
need to compute ('i') values of }I[_ch‘ for each £ and sum up all of them. It will become
computationally expensive for large |S|. If we consider two terms & = 0 and k = 1,
the complexity will become O(|S|). Furthermore, if we only consider one term &k = 0,
then the complexity is O(1). It greatly reduce the complexity. But the approximation is
not suitable for any arrays, and we will further explain through the numerical results in

Section 4.2.3.
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For the convenience of the following discussion, we define two symbols, Ry (S) and

Px(p,S), where

H M?rw

(4.19)
Pi(p,S) = Ry(S) (1 — p)*I*.
Therefore, E [|U|] of (4.11) also can be represented as
IS IS|
E[|0]] =) Ru(S)p* (1 —p)™F =) Pu(p,S). (4.20)
k=0 k=0

Now we can define the approximations of E [[U|] depending on the summation of

k in (4.20). They are expressed as follows.

k=0
1
U H approz.1 - Z ]P)k(p’ S)’
k=0
2
E U HappromZ - Z ]P)k(p’ S)’
k=0 (4.21)
- [S|]—1
E |:|U|:| approz.(|S|—1) - Z Ip)k(p’ S)
k=0
IS|
E U approz.|S| Z ]P)k p’ ‘UH )

From the top to the bottom of (4.21), the value of these approximations continuously

accumulate. We know that
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Hence, the approximations in (4.21) have the following relationship.

E [|[U|]appro:p.0 < E UIUHapprox.l <. = E [|[[_J|]appro:v.(|8|fl) < E U[UH U (423)

4.2.2 Proposed Robustness Metric

Here we define a robustness metric based on E [|TD|] The advantage is that it is

related to p and |U| at the same time. The definition is shown below.

Definition 4.2.1. The robustness metric of the array S is defined as pgge, , Where pgge,

is the value of p when E [|U|] decreasing to 0.9 - |U].

Different arrays have different size of |U|, and this metric pggo, take the |U| of the
array itself as the reference point. It can be regarded as the usage time of the array when
the value of E [[U|] is between |U| and 0.9- |U|. An array is more robust if the value of
Poov, close to 1, and less robust if the value of pgge, close to 0. We can solve the value of

Pooe, through the following equation with the variable p.

s ()
STpH - p)EE ST 0| = 0.9 (U] (4.24)
k=0 j=1

This is a unary polynomial equation with up to |S|-th power. It can be written as

Co+er1pteap’ + o+ g1 p 4 g P = 0.9 U (4.25)

Algorithm 1 shows how to get all the coefficients c¢; in (4.25). We just follow up the
steps of Algorithm 1, and then we can get a vector [co, ¢y, ¢z, -+, ¢js)—1, ¢jg/]. In fact, ¢,
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is equal to |U|, so the equation we actually need to solve is

SIEL e pBl = 0, (4.26)

0.1-|U] +c1p+cap®+--- +Cs|-1P
The answer of (4.26) can be easily obtained through a MATLAB function: roots.
Since pgy, is the intersection of p of E [|U|] and 0.9 - [U|, there is only a real solution

of p between 0 and 1. The solution of p 1S pgge.

Algorithm 1 Generate the coefficients of all k-th power of the variable p of E [|U]].

build a vector h = [1, —1]
build a vector a =h xh
build a column vector b, where b € NS
build a matrix B, where B € Z/SI*(SI+1)
assign B\SHS\ JS|+1 = h
assign Byg|_1,j5-1:(sj+1 = a
fork=0,1,...,|S|—1do
bii1 = Ri(S)
if £ is equal to 0 or 1 then
continue
else
a=axh

R A AN A S S e

—_— = e =
W N = O

Bis|—k,|s|—k:|s|+1 = 2
end if
: end for
: Sum up all the values of each column of the matrix b ¢ B

—_ = =

In Algorithm 1, we use the convolution operator between vectors. For digital signal

processing, the convolution of two signals f[n| and g[n] is

yln] = fln] * g[n] = flmlgln —m]. (4.27)

If fln] =30 f;6[n — 5] and g[n] = 322" g; 6[n — j], then the output

=0
Mi+Ms—1

ylnl = > y;dln—jl. (4.28)
j=0
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Assume that the vector f = [fy, f1, -+, far,—1] andthe vector g = [go, 91, , g1

the convolution between them is f * g. The answer is also a vector, where

y=Ffxg=1[yo, Y1, -, Uiyt Mp—1]- (4.29)

If f and g are vectors of polynomial coefficients, the convolution of them is equivalent
to multiplying the two polynomials [30]. That is the reason we use vector convolution in

the algorithm, since we have this term p*(1 — p)®I=* in (4.24).

4.2.3 Numerical Results

4.2.3.1 The Expected Value and The Corresponding Approximation

First, we compare the expected value obtained from the statistical PMF with the the-
oretical expected value we derived in (4.11). We consider the coprime array with M = 2
and N = 3. Then we generate the PMF of |U| through Algorithm 2. There are 16 dif-
ferent p values, each p will be run Algorithm 2 once and then generate a PMF plot. The

results are shown in Figure 4.3 and Figure 4.4.

Algorithm 2 PMF of |U| generation.

1: Given an array with N sensors, S = {ny,ng, -+ ,ny}
2: Fix p and the number of trials
3: for iteration = 1,2, ..., number of trials do
4: for ny, no,...,ny do
5 ¢ = single uniformly distributed random number in the interval (0, 1)
6 if ¢ < p then
7: Remove the current sensor from S
8 end if
9 end for
10:  Calculate |U| of the current array S
11: end for

12: Counting the occurrence of every |U|, and dividing all of them by the number of trials
13: Plot the PMF
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In Algorithm 2, we set the number of trials to 10°, and randomly decide whether to
remove the sensor based on the probability p in each trial. Then we calculate the value
of |U|. After getting all the values of |U| in each trial, we will count the occurrence of

every |U| to obtain the final PMF.

In Figure 4.3 and Figure 4.4, we can observe several features. When p = 0, all
sensors work normally, and all A sets are empty sets. The PMF is like a delta function at
15 (the size of U). The PMF will gradually concentrate to the left when p is increasing.

Finally, when p = 1, the PMF is like a delta function at 0.

Now we can take the expected value of each plot in Figure 4.3 and Figure 4.4. They
are shown as the blue curve in Figure 4.5. Moreover, we plot the theoretical expected
value based on (4.11) with the same 16 values of p. They are shown as the red curve
in Figure 4.5. It can be seen that two curves are completely overlapped. That is, the
expression of the expected value E [HBH can be confirmed. Note that this expression is

suitable for any array configurations.
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Figure 4.3: PMF of |U| with different failure probability p. Here we consider the coprime
array with M/ = 2 and N = 3. For each p, the number of trials is 10%, and the PMF is
obtained by counting the occurrence of every |U| through Algorithm 2.
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Figure 4.4: (Continued from Figure 4.3).
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Figure 4.5: The comparison of the expected value obtained from the statistical PMF and
Eq.(4.11).

For the approximation of E [|@|], we have two examples. One is the MRA and
the other one is the ULA. Both of them has 6 sensors, and the array geometry is the
same as Table 4.1. Figure 4.6 shows the approximation of the MRA. In this case, £ = 0
term accounts for a large proportion of E [|U|] (Figure 4.6(a)). This k = 0 term can be
denoted by

= [U]-(1—p)¥l. (4.30)

UIUH approx.0

In Figure 4.6(b), the blue line (approximation of k£ = 0) is close to the gray line (original
expected value) in the interval p = 107 ~ 5 - 1073, If we consider two terms k£ = 0
and k£ = 1, the closeness is more obvious. The brown line is close to the gray line in the

interval p = 10~* ~ 0.05.
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Figure 4.6: Here we consider the MRA with 6 sensors in Table 4.1. (a) Each term of £ in

E [[U]]. (b) The approximations of E [|U|], E[|U[] -~ and E[[U|] . defined
in (4.21).
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Figure 4.7: Here we consider the ULA with 6 sensors in Table 4.1. (a) Each term of £ in
E [|U]]. (b) The approximations of E [|U]], E [|U]] and E[[U|] . defined
in (4.21).
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However, the approximations of the ULA are more inaccurate. In Figure 4.7(b),

E [|[U|}appmx.0 separates E [[U|] from p =107, and E [|U]] separates E [|U]]

approx.1
from p = 1072 For the ULA, except for k¥ = 0 and k = 1, the other P;(p,S) also
occupy a certain proportion of E [|U|] (Figure 4.7(a)). If we ignore them, then it will not

be able to approximate E [|U|] well.

Due to these two examples, we know that the approximations are more suitable for
the arrays that are not robust, such as MRA and nested arrays. From another point, ac-
cording to the discussion of (4.17), small value of Fj (S, .#y) makes |U| decrease less.
Therefore, the robust arrays like ULA can sustain the original |U| longer while p is in-
creasing. However, from (4.30), the value of |U|- (1 —p)®! would start dropping rapidly

around p = 1072 Thus, E [|U]] can fit E [|U]] better for the MRA. On the other

approx.0

hand, we need to consider more terms of k for the robust array.

4.2.3.2 Comparison of Different Arrays

In order to compare different arrays comprehensively, here we will consider the re-
spective |U| of the array. Namely, we can evaluate the array by a two-dimensional point,
where z-axis is pogy, and y-axis is 0.9 - |U|. Moreover, for the convenience of the com-

parison, we will take the logarithm of pgqo, that
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The first comparison is associated with four arrays listed in Table 4.1. Each of them
has 6 sensors. The comparison results are shown in Figure 4.8. The pgg, of them are
consistent with the results measured by JFi(S,.#y ) which was listed in Table 4.1." The
most robust array is the ULA and the least robust array is the MRA. However, if we
compare their y-axis value, 0.9 - |U|, the MRA has the highest value. In Figure 4.8,
we can observe that there exits a trade-off between the robustness metric pgge, and the
performance metric 0.9-|U|. This trade-off also can be observed in Figure 4.2 simulation.
For the arrays with the same number of sensors, large size of |U| indicates that the weight
function w(m) on most of the coarray index m are small. According to Property 4 of
Corollary 2.2.1, the summation of w(m) for m € D, m # 0, is fixed. It depends on the
size of the array. Hence, the elements in U of the robust array are not easily disappeared

based on a fixed p.

The second comparison is associated with four arrays, and each of them has 10 sen-

sors. Their array geometries are shown below.

Swra = {0, 1,3,6,13,20, 27,31, 35, 361,
Snested = {17 27 37 47 57 6, 127 187 24a 30}7
(4.32)
Scoprime = {0,3,5,6,9,10,12, 15,20, 25},

Sua = {0,1,2,3,4,5,6,7,8,9}.

Figure 4.9 is the comparison result. With the same reason, if an array is designed for hav-
ing large size of U, then the elementsin U are easily disappeared since the corresponding
weight function is relatively small. Therefore, in Figure 4.9, the inverse relationship be-
tween pgge, and 0.9-|U| also can be observed. For different arrays with the same number

of sensors, it is not possible that an array has the best pggo, and 0.9 - |U| at the same time.
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Now we observe these 8 different arrays in Figure 4.8 and Figure 4.9. We compare
the same type of the arrays. For example, the MRA with 6 sensors and the MRA with
10 sensors are compared with each other. Then we can find that including the MRA,
the nested arrays and the coprime arrays, their pgge, will get smaller when the number of
sensors increases. On the other hand, pgge, of the ULA with 10 sensors is larger than
Poow, Of the ULA with 6 sensors. That is, ULA are more robust with larger number of
sensors. Therefore, in Section 4.3, we will discuss the robustness and the performance of

ULA with different number of sensors.
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Figure 4.8: The comparison of pgge, and 0.9-|U| of four arrays. Each array has 6 sensors

and the array geometries are listed in Table 4.1.
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Figure 4.9: The comparison of pggy, and 0.9 - |U| of four arrays. Each array has 10

sensors and (4.32) shows the array geometries.
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Arrays | Number of sensors | pgge, P Increasing of P

S 6 0.0221 | -1.655

MRA +0.815
S 10 0.1446 | -0.840
S 6 0.0282 | -1.550

Nested Array +0.826
S 10 0.1887 | -0.724
S 6 0.0523 | -1.282

Coprime Array +0.617
S 8 0.2163 | -0.665

Table 4.2: Symmetrical arrays compare with original arrays (Here S are the arrays in
Table 4.1 and S are generated from (3.4) and (3.5)).

4.2.3.3 The Symmetrical Array Compare with The Original Array

In Chapter 3, we introduced how to transfer an array S to its symmetrical version
S. Here we will compare S and S. In Table 4.2, we have three examples that all of the S
are the same as Table 4.1. The last column of Table 4.2 is the increasing value of P after
symmetrizing the array. We define Ps as the P of the array S. Thus, the increasing of
P are obtained from Pg — Ps. It can be observed that the nested array increase the most
among these three arrays. However, if we consider the number of sensors, the coprime
array is the most economical. Since only two sensors are added to the symmetrical coprime
array, adding one sensor can increase 0.3085 of P on average. On the other hand, there
are four new sensors in S for both the MRA and the nested array. Therefore, adding one
sensor can only increase 0.20375 of P for the MRA and 0.2065 of P for the nested

array.

Weuse E [|U]], torepresent the expected value defined in (4.11) of the array S. In
Figure 4.10 - Figure 4.12, we plot the E [HUHS and the E U@Hg based on the same p.
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Figure 4.11: The comparison of S and S of the nested array with Ny =3 and N, =3

in Table 4.2.
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Figure 4.12: The comparison of S and S of the coprime array with M =2 and N =3

in Table 4.2.
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Also, we mark the point of pgge, and 0.9 - |U|. All of these three arrays have the property
that D = D, since the MRA and the nested have hole-free difference coarrays and we
have proved that Deoprime = f)coprime in Proposition 3.4.1. That is why the expected value
curvesof S and S in Figure 4.10 - Figure 4.12 have the same start point when p is quite

small. It can be observed that the following inequality always holds true for these arrays.

E (U] <E[|Ul]5, for 0<p<1. (4.33)

In Proposition 3.3.3, we proved that F; (S, .#y) is definitely less than Fy(S,.#y)
based on D = D. Here the arrays in Figure 4.10 - Figure 4.12 are consistent with this
proof. According to Figure 3.3, the decrease of JF;(S,.#y) is usually large empirically.
Also, from (4.17), we know that small generalized 1-fragility Fi(S, #y) can get large
expected value E [|I[_J'H Thus, S is more capable of maintaining the original size of U
than S. However, we have not found a method that is suitable for proving (4.33) always

holds true for arbitrary arrays. Hence, this part will be placed in future work.

Nowweuse S and S to estimate one source, # = 7 /4, with different sensor failure
probability p. SNR is 0 dB and the number of snapshots is 500. Like the experiment in
Figure 4.2, random faulty sensors will be removed from the array with a fixed probability
p. For every p, we have 5000 S, defined as S\ A. Here A is composed of the random
faulty sensors. Then each S will be run 100 Monte-Carlo runs. Namely, each data point
is averaged from 5 - 10> Monte-Carlo runs. There are three comparisons: the MRA, the

nested array and the coprime array. The results are shown in Figure 4.13 - Figure 4.15.
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Figure 4.13: The estimation error comparison of the MRA S and its symmetrical version
S. We estimate one source with §# = /4. SNR is 0 dB and the number of snapshots is
500. Each point is averaged from 5 - 10° Monte-Carlo runs.
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Figure 4.14: The estimation error comparison of the nested array S and its symmetrical
version S. We estimate one source with § = 7/4. SNR is 0 dB and the number of
snapshots is 500. Each point is averaged from 5 - 10> Monte-Carlo runs.
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Figure 4.15: The estimation error comparison of the coprime array S and its symmetrical
version S. We estimate one source with § = 7/4. SNR is 0 dB and the number of
snapshots is 500. Each point is averaged from 5 - 10° Monte-Carlo runs.

In Figure 4.13 - Figure 4.15, the MSE performance simulated by S is relatively
small with all sensor failure probability p. It can be noticed that when p is quite small, S
still has smaller MSE even though the size of U and U are the same. We have seen this
condition in Section 4.1. It is because of the different weight functions. Here for S and
S, we know that S C S. Thus, S has more physical sensors that can collect the signal
data in the environment. Also, with the same location of the virtual sensor, the weight
function of S must not be less than the weight function of S. That is, for the same virtual
sensor, more data are collected in U than U. From the figure(b) of Figure 4.10 - Figure
4.12, the robustness of S of these arrays are better than the robustness of S based on
Poov- This result is reflected in the simulations. It can be found that S can maintain its
least MSE longer than S. With all these reasons, we can say that symmetrizing the array

is very beneficial.
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Figure 4.16: The comparison of S and S of the array in (4.34). (a) The expected value
curve based on (4.11). (b) Robustness metrics pggy, and performance metrics 0.9 - |U].

The final comparison is associated with the arrays in Example 3.5.2. In that case,

S = {0,3,5,8,10, 13, 15},
(4.34)

S =1{0,2,3,5,7,8,10,12,13, 15},
and the robustness increase after symmetrizing the array. The reason is that U only has
one element {0}, but U = {0,+1,--- ,+13}. The difference coarray of S has the
holes that H = {+1, +4, +6, 49, £11, +14}, and most of the holes will be filled after
symmetrizing the array since CD(S,,S)) = {£1,+4,46,+9,+11}. The cross dif-
ference was defined in Section 2.2. Here for S, removing sensors does not have much
impact on U. Hence, in (4.34), S is more robust than S based on Fi( g, F.ss) and
]—"1(§, 4 ). However, if we use them to estimate the source direction, S will be better
than S. For coarray MUSIC algorithm, S does not work, but S can get a MSE perfor-
mance, 1.1395 - 1079, based on (4.1). Here the SNR is 0 dB, the number of snapshots is

500, only one source located at § = /4, and the MSE is averaged from 300 Monte-Carlo

runs.
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In Figure 4.16, we evaluate the arrays with E [|U|] also mark the pggy, and 0.9-[U].
For pgge,, S is better than S. It meets our description above because |U| = 1. However,
if we compare the y-axis, 0.9 - [U|, S is much better than S, since |U| = 27. For the
expected value curve, Eq.(4.33) also holds true. Therefore, considering the robustness and
the performance at the same time allows us to evaluate the array more comprehensive, and

also has the connection to the simulation.

4.2.3.4 Random Source Direction

In this section, we will use the symmetrical nested array to estimate the source an-
gle. The array configuration we consider is S = {1,2,3,4,5,8,9,10,11, 12}. The source
angle contains 7/3, 7/4, 7/6, and a random angle. The random angle is taken from a
uniform distribution over a range from —7/2.5 to 7/2.5. In this way, we can observe
whether strange phenomena occur at a specific angle when we perform the DOA esti-
mation. Here the SNR is 0 dB and the number of snapshots is 500. For the symmet-
rical nested array, there still exist random sensor failures. The probability we choose is
pe {1073, 1072 2-1072, 5-1072, 0.1}. The set A will be generated randomly based
on a fixed probability, p. Then we will use the S, defined as S\ A, to estimate the source
angle. Note that we only estimate one source at a time. Moreover, every S will perform
100 Monte-Carlo runs and there are 1000 S will be generated for each p. Thus, each
point is averaged from 10° Monte-Carlo runs. For the random source angle, it will be
regenerated for every S. Therefore, every S will estimate one random source angle and
perform 100 Monte-Carlo runs. The curves in Figure 4.17 are the results of estimating

the different angles mentioned above.
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Figure 4.17: The estimation error comparison of the symmetrical nested array estimating
different source angles. The fixed angle include 7/3, /4, and /6. The random angle
is € [~m/2.5,7/2.5] with uniform distribution. It will be regenerated for every S,
so every S will estimate one random source angle and perform 100 Monte-Carlo runs.
There are 1000 S so that each point is averaged from 10° Monte-Carlo runs. We set
SNR to 0 dB and the number of snapshots to 500.

It can be observed that the change tendency of the MSE is consistent under the dif-
ferent probability p. These lines do not overlap entirely because the source angle is also
one of the factors affecting the MSE [7]. However, strange phenomena such as the MSE

fluctuating dramatically do not occur even if we estimate the random angle.
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4.3 ULA Analysis

From the experiments in Section 4.2.3.2, we found that ULA is the array that can
simultaneously enhance the robustness and performance when increasing the number of
sensors. This property is different from the other arrays such as nested arrays and co-
prime arrays. Hence, we will specifically analyze the ULA with random faulty sensors
in this section. Here we use “ULA N to represent the ULA with N sensors defined in
(2.24). For ULA, the values of Ry(S) and R;(S) can be easily obtained because of their

geometry. If & = 0, it means there is no faulty sensor in the array, so

Ro(S) = > |U}| = U] =2N —1. (4.35)

Also, the values of the Fi(S, Z.,,) of the ULA with N sensors is equal to 2/N for
N > 4 [18]. Except for the sensors at the end points, “min( Sy )” and “max( Syra )”,
the difference coarray will not be changed after removing one of the other sensors from the
array. The value of |U| still equals to 2N — 1. On the other hand, removing min( Sy )

or max(Syra ) make the value of |U| equal to 2N — 3. With these results, we can get

(\I
Ri(S) =) |Uj|=(N—-2)-(2N —1)+2- (2N —3)

1

=

~—

J
(4.36)
= (2N? = N — 4N +2) + (4N —6)

=2N? - N — 4.

Through (4.35), we know that the size of U of ULA increases with the number of
sensors. However, we want to know whether the size of U will also increase under the

influence of random sensor failures. Thus, we will use the expected value expression in
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Figure 4.18: A schematic diagram we compare the ULA with different number of sensors.

(4.11) to compare the ULA with different number of sensors. In the following sections,
we will discuss two comparisons of the ULA. One is the ULA with N sensors versus the
ULA with N + 1 sensors, and the other one is the ULA with /N sensors versus the ULA

with N 4+ 2 sensors.

According to (4.11), when computing E [|U|], we need to calculate the summa-
tion from k£ = 0 to k = |S|. However, k& = |S| indicates that all of the sensors are
removed. Thus, |U| = 0, and Pg((p,S) = 0. Namely, k¥ = [S| can be ignored,
and we only need to consider £ = 0,1,....|S| — 1. Figure 4.18 is a schematic dia-
gram that we compare Py(p, ULAN) and Py(p,ULA N+1) of each k terms. On
the p-axis, if Py(p, ULAN+1) > P(p,ULA N), it will show the red line, otherwise
it will show the blue line. Assume that the intersection of p of Pj(p, ULA N+1) and
Pr(p,ULAN) is pg. Also, py satisty pg < p; < ps < ---. Therefore, we can find
the interval of p that it only contains the red lines. Then we can obtain the inequality

E [[Ul]yray <E U] ypays; in that interval of p.
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4.3.1 ULA with N sensors and ULA with N + 1 sensors

Pr(p,S) \ S
ULA N ULA N+l
k
0 Ro(S) - (1 —p)™ Ro(S) - (1 = p)*
1 Ri(S) - p(1 —p)¥* Ri(S) - p(1 —p)¥
2 Ro(S) - p*(1=p)¥72 | RofS)-p*(1 —p)¥t
N-1 Ry-1(S) - pN (1 = p) | Ry-1(S) - p¥ (1 — p)?
N 0 Ry (S) - pM(1 —p)
N+1 x 0

Table 4.3: All the components of E [[U|] ofthe ULA with N sensorsand N+1 sensors.

Table 4.3 lists all the Py (p,S) of ULA N and ULA N+1 from k=0 to k = N+1
based on (4.19). The intersection of p of their Py (p,S) for a certain k& can be solved by

the equation

Ri(ULAN) - p*(1 — p)V ™" = R, (ULA N+1) - p*(1 — p)V =+, (4.37)

where k£ = 0,1, .-, N. There are the same components on both sides of (4.37), and they

can be deleted. Thus, the answer of p between 0 and 1 is

R,(ULAN )
R,(ULAN+1)’

p=1 (4.38)
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where k= 0,1,--- , N. Moreover, through (4.34) and (4.35), the value of R,(S) and
R;(S) of ULAN and ULA N+1 can be easily obtained with only one parameter N.

That is, when k = 0, the intersection of p is

2N —1 2
1 — = =T 4.39
20N+1)—1 2N+4+1 U (4.39)
and when k = 1, the intersection of p is
2N?2 — N — 4 4N +1
1-— + Ts . (4.40)

QAN+12—(N+1)—4 2N?+3N-3

If comparing the values of (4.39) and (4.40), then we can find that

2 AN +1
h-b= oy o aN =3
_AN? 46N —6— (AN +1)(2N +1)
B (2N +1)(2N2 + 3N — 3) @41
—ON? — 4
" (2N +1)(2N2 + 3N — 3)
<0.

Thus, it is sure that the intersections of p of £ = 1 is larger than the intersections of
p of k = 0. Except for these two intersections that can be obtained from the parameter

N, the other intersections must be calculated from the summation of |[[_J§c

, and then get it

from (4.38).
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4.3.2 ULA with N sensors and ULA with N + 2 sensors

Pr(p,S) \ S
ULA N ULA N+2
k
0 Ro(S) - (1 =p)¥ Ro(S) - (1 —p)"+?
1 Ri(S) - p(1—=p)V~" | Ru(S)-p(1—p)N+!
2 Ra(S) - p*(L—=p)" 72 | Ro(S)-p*(1—p)"
N-1 Ry_1(S) - pV (1 = p) | Ry_1(S) - p¥ (1 — p)?
N 0 Ry(S)-pV(1 = p)?
N+1 X Ry41(S) - p"*'(1 - p)
N+2 X 0

Table 4.4: All the components of E [[U|] ofthe ULA with N sensorsand N+2 sensors.

Second, we compare ULA N with ULA N+2. Table 4.4 lists their respective
Pr(p,S) from k& = 0 to k = N + 2. The process is very similar with the compari-

son in Section 4.3.1. The intersection of p ofeach k term can be solved by the equation

Ri(ULAN) - p*(1 — p)V =% = R (ULA N+2) - p*(1 — p)VF+2, (4.42)
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where k£ = 0,1,--- , N. Deleting the same components on both sides of (4.42) will letus

obtain the answer of p between 0 and 1 that

., R,(ULA N )
P= R,(ULAN+2)"

When k = 0, the intersection of p is

N — 1
l— e =W
2(N+2) -1 b

and when k = 1, the intersection of p is

2AN+22—(N+2)—4

2N? — N — 4
- W,

Similarly, we compare the values of (4.44) and (4.45).

Wi — Wy

(4.43)

(4.44)

(4.45)

(4 N — 1 X N2 — N —4
VU Veawwv+2 -1 U Vev+22—(N+2) -4

B N2 — N —4 IN — 1
VoW +22-(N+2) -4 \2(v+2) -1

[ (2N?* = N —4)(2N +3) (2N? + 7N +2)(2N — 1)
B VN2 + TN +2)2N +3)°

(2N2 + 7N +2)(2N + 3)

Now we just need to compare the numerator, and then we can get

(4.46)

(2N? — N —4)(2N +3) — (2N* + TN + 2)(2N — 1)

= _—8N? —6N —10

<0.

101

(4.47)
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This result tells us the intersection of p of £ = 0 is smaller than that of & = 1. For the

,and then

other intersections, we can only obtain the answer from the summation of |[U§C

get it from (4.43).

4.3.3 Numerical Results

In Figure 4.19, we compare the Px(p,S) of ULA7 and ULAS8 from k& = 0 to
k = 7. Here N isequal to 7. The intersection of p of k£ = 0 can be obtained through
(4.39) that

2 2
= — =0.1333 4.48
2N+1 15 ’ (4.48)

and the intersection of £ = 1 can be obtained through (4.40) that

4N +1 29
= — =0.25. 4.49
2N?2 43N -3 116 (4.49)

We calculate the other intersections of p through (4.38) and R (S). We can find that for
k=23,---,7,all the intersections are larger than 0.25. Thus, it is sure that in the range

of 0 < p <0.1333, the following inequality holds true.
Py (p, ULAN ) < Py (p, ULAN+1), for k=0,1,---,N. (4.50)

Since E [|U]] = l,io Pi(p,S), we can get the following result based on (4.50).

_ _ 2
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In Figure 4.20, we have another experiment. The comparison of Py(p,S) of ULA 6
and ULAS from £k = 0 to £k = 7. Here N is equal to 6. The intersection of p of

k = 0 can be obtained through (4.44) that

/11
1—4/—==0.14 4.52
15 = 0-1437, (4.52)

and the intersection of £ = 1 can be obtained through (4.45) that

62
1 —14/—=—==0.2689. 4.
116 0.2689 (4.53)

Also, the other intersections of p are calculated from Ry (S) based on (4.43). Here we
can find that for £ = 2,3,--- |6, all the intersections are larger than 0.2689. Therefore,

it is sure that in the range of 0 < p < 0.1437, the following inequality holds true.
Py (p, ULAN ) < P (p, ULAN+2) fork=0,1,...,N. (4.54)

Then we can get the following result based on (4.54).

_ _ 2N —1
EllUluLany <ElUJuLan+y, for0<p<i—yfomm——y. (459

Next, we sum up all the Py(p,S) of S to compare E [|U|] of these ULA with
different number of sensors. Figure 4.21 shows the result. It can be observed that the

curves confirm the inequality in (4.51) and (4.55).
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Figure 4.19: The comparison of ULA 7 and ULA 8 of each £ item in Table 4.3.
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Figure 4.21: The comparisons of E [|[[_J|] of (a) ULA with 7 sensors and 8 sensors. (b)
ULA with 6 sensors and 8 sensors.

0
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Finally, we compare ULA 6, ULA7 and ULA 8 of their respective 0.9 - |U| and
Poov- Also, we will use them to estimate one source, § = 7/4, based on random sensor
failures. In Figure 4.22, we can find that ULA 8 is the most robust array, and it has
the highest 0.9 - |U| as well. If considering the generalized 1-fragility, /;( ULA S8, .y )
is 0.0333, F1(ULA7, #y) is 0.0440, and F;(ULAG,.#y) is 0.0606. Therefore, we
know that ULA 8 is more capable of maintaining its original |U| than ULA 6 and ULA 7

through (4.17).

In the simulation of Figure 4.22, we set SNR to be 0 dB and the number of snapshots
to be 500. For each probability p, 5000 S will be generated. S is defined as S\ A.
Also, for each S, we will do 100 Monte-Carlo runs. Therefore, each data point is aver-
aged from 5 - 10° Monte-Carlo runs. We can find that the estimation MSE of ULA S8 is
the least with all the sensor failure probability p. On the other hand, ULA 6 get the worst
performance with all probability p. One reason is the number of physical sensors. ULA 8
has more sensors to receive the signal data. From the view of weight function, we men-
tioned two properties of ULA in Section 2.3.4. We know that for ULA, w(+m) = N —m,
for 0 < m < N — 1. Hence, the weight function on the coarray index m of ULAS is
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Figure 4.22: The comparisons of pggy, and 0.9 - |U| of three ULA. They have 6 sensors,

7 sensors and 8 sensors, respectively.
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Figure 4.23: The estimation error comparison of the three ULA. They have 6 sensors, 7
sensors and 8 sensors, respectively. We estimate one source with # = /4. SNRis 0 dB
and the number of snapshots is 500. Each point is averaged from 5 - 10° Monte-Carlo
runs.
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larger than that of ULA7 and ULA 6. Moreover, we can get some information by ob-
serving Figure 4.22 and Figure 4.23 together. In Figure 4.22, the point of ULA 7is on
the top-right side of ULA 6, and ULA 7 have better performance than ULA 6 with all
probability p in Figure 4.23. The same result can be observed if we choose any two arrays
in Figure 4.22. However, the time to get Figure 4.23 is about 40 hours, and the time to
get Figure 4.22 only need about 1 second. Therefore, finding the connection between the

two-dimensional point and the simulation result is a research direction.

4.4 Concluding Remarks

In this chapter, we simultaneously considered two factors impacting the estimation
performance: the size of U and the sensor failure probability p. We derived the ex-
pected value of |U| based on p. Also, we derived the relationship between E [|®|] and

Fi(S, Ay) in (4.17). The approximation of E [|U[] is E [|U]] For different K,

approx. K"
we had the inequality in (4.23). Afterwards, we had some comparisons of different arrays
based on E [|U|]. The results were shown in Section 4.2.3. For the analysis of ULA, we
introduced the closed-form to solve the intersection of p of Py(p,S) between two ULA

with different number of sensors. Here & is equal to 0 or 1. Then we had the numerical

results to obtained the inequality of E [|U|] of ULA in (4.51) and (4.55).
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Chapter 5 Conclusion and Future

Work

In Chapter 3, we proposed some properties related to the symmetrical arrays. Through
these properties, we got the lower bound and the upper bound of the generalized 1-
fragility and showed that symmetrizing the array definitely increase the robustness based
on D = D. Also, we proved that symmetrical coprime arrays can reach the lower bound
of generalized 1-fragility, namely they are the most robust arrays. In Chapter 4, we con-
sidered random sensor failures and proposed the expected value expression of |U|. We
defined a robustness metric which combine the |U| and the probability p. It has not been
proposed before. Through the simulations, we knew that the symmetrical array can obtain
better performance than its original version with all the sensor failure probabilities. Addi-
tionally, we discussed the ULA with different number of sensors. We found that the ULA
with more number of sensors are able to enhance the robustness and the performance at

the same time. For the future work, we have three directions:

1. Relaxing the assumptions for proving Fy(S,.#y) < Fi(S, .#y ). For instance, if

IU| > 1, than Fi(S, %) < Fi(S, H).

2. Proving E [|TU|]§ >E [|IUHS for all sensor failure probability p.
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3. Finding the theoretical relationship between the two dimensional mettic ( pgge, ver-
sus 0.9-|U|) and the simulation result ( p versus MSE). In this way, the estimation

performance of the array at each p can be known before the simulation.
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