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摘要 

  在氣候劇烈變遷時代，生物多樣性的喪失儼然是一個迫切關注的議題，而如何量

化生態系中物種的重要性和多樣性是生態研究中的兩個緊迫問題。由於物種的獵補關

係而形成食物網，因此引發我們想從拓撲網路學角度量化物種重要性和生物多樣性。

傳統上，物種網路的重要性即考慮了物種對整個食物網的影響以及其所處位置的中心

性；近來，另一個物種重要性的評斷概念也逐漸被重視，那就是物種獨特性。在本論

文中，我們提出了一個直覺的物種獨特性測量方法，以矩陣方式量化了食物網中物種

彼此間的相互影響，進而計算物種間的距離與獨特性。本論文所產生的結果與過往研

究方法所產生的結果近乎相同；然而避免重複使用計算的資訊、所耗費的計算時間也

更少。此外，本論文也提供了一個基本框架，可用於接受不同的網路特質和距離度量

以量化物種的獨特性。 

  生態系統的生物多樣性可以通過多種方式量化，其中之一即為「功能多樣性」，其

可量化生態系統中物種特徵的異質性，此處「功能多樣性」包括物種特徵的豐富性,多

樣性與差異性。本論文中，提出了三種不同類型且基於網路基礎的「功能多樣性」測

量方式。第一種是基於食物網的物種相互作用結構、第二種是基於各種拓撲中心性指

數、第三種類型是基於物種在食物網中的獵食關係。此處也研究了基於網路的功能多

樣性與食物網的網路屬性之間的關係，以及它們與傳統的基於生態特徵的功能多樣性

指數的關係。本論文分析表明，連接性稀疏的食物網和具有高度模塊化結構的食物網

往往具有高度基於網絡的功能多樣性。此外，基於網絡的功能多樣性指數與其傳統的

基於特徵的對應物之間的適度相關性表明，我們的方法提供了生態系統功能多樣性的

補充視圖。 
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Abstract 

The loss of biodiversity is a major concern in the era of global warming and climate change. 

How to quantify species’ importance and biodiversity of an ecosystem are two pressing issues 

in ecological research. Since species interact trophically forming a food web, it is nature to 

quantify species importance and biodiversity from a network perspective. Traditionally, the 

network perspective of species importance considers the effect of a species on the whole food 

and the centrality of species’ network position. Recently the concept of species uniqueness has 

been suggested as an alternative view on species importance. In this study, we propose a simple 

species uniqueness measurement. Our approach quantifies the effects between species, which 

constitute the interaction structure of a food web. Rows of such an interaction matrix are 

compared to compute distances between species, which are then used to calculate uniqueness 

values of species in a food web. Our approach produces results almost identical to that from a 

previous approach; however, ours requires less information and therefore requires much shorter 

computation time. Our approach also provides a basic framework for quantifying species 

uniqueness using different network-related information and distance measures.  

 

Biodiversity of an ecosystem can be quantified in various ways. One of them, functional 

diversity, quantifies the heterogeneity in species traits in an ecosystem. Since species’ network 

positions in a food web reflect their functional roles, we argue functional diversity of an 
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ecosystem can also be measured from a network perspective. In this study, we propose three 

different types of network-based functional diversity measurement. The first type is based on 

the interaction structure of a food web, and the functional diversity of a food web is the average 

dissimilarity between species’ interaction profiles. The second type is based on various 

centrality indices. Here, different centrality indices are applied to quantify the network position 

of species; and the functional diversity of a food web is quantified by several properties of 

species distribution in a multi-dimensional centrality trait space. The third type is based on the 

trophic role of species in a food web. Functional diversity here includes average trophic role 

dissimilarity between species, the number of trophic role groups, and how evenly species are 

partitioned into different trophic roles. Furthermore, we investigate the relationship between 

network-based functional diversity and several network properties of a food web, as well as 

their relationship with conventional trait-based functional diversity indices. Our analysis 

suggests that sparsely connected food webs and those with highly modular structures tend to 

have high network-based functional diversity. Also, the moderate correlation between network-

based functional diversity indices and their conventional trait-based counterparts suggests that 

our approach provides a complementary view of an ecosystem’s functional diversity.  
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Chapter 1 Introduction 

 

One fundamental research question in ecology is how species interact and the consequences of 

such interactions. There exists a huge volume of literature that theoretically explores species 

interaction. In the simplest case, there are single-species models that examine how simple birth-

death processes and self-regulation can produce a rich set of population dynamics, and these 

include exponential population growth, the sigmoid-shaped logistic growth curve, stable and 

chaotic fluctuations in population densities (May 1976, Hassell et al. 1976). Moving on to two-

species interactions, some models examine the effect of competition between species and 

delineate the condition for two-species coexistence (Volterra 1926, Lotka 1932). There are also 

two-species models where one species assumes the role of a predator while the other plays the 

role of the prey. Such interaction can produce cyclic population dynamics for the two species, 

with the change in the population density of one species lagging behind that of the other 

(Volterra 1926, Lotka 1932, Maynard Smith and Slatkin 1973, Murdoch and Oaten 1975). 

Building on two-species interactions, some three-species models model the exploitive 

competition between two predators on a shared prey (May and Hassell 1981, Hogarth and 

Diamond 1984), as well as the apparent competition between two species that share the same 

natural enemy (Holt 1977, Bonsall and Hassell 1997). Furthermore, there are also models for 

three-species food chains (Spiller and Schoener 1994) and three-species intra-guild predation 
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(Holt and Polis 1997). Research interests in those three-species systems often focus on the 

condition for species coexistence and the types of population dynamics they can exhibit.  

 

Species in nature are embedded in a network of trophic interaction (i.e., a food web) that is 

much larger and has more complexity than those simple motifs explored by the above-

mentioned models. Of course, one can scale up those simple models to the level of an 

ecosystem with a vast number of species, but the sheer amount of parameters involved makes 

the model difficult to explore and analyze. Instead of building more complex theoretical models 

and exploring model behavior in high dimensional parameter space, one useful and perhaps a 

more practical direction is to analyze the observed (empirical) network of trophic interaction 

between species and understand its organization and behavior; and this is the aim of food web 

research in ecology. To date, food web research investigates issues that generally fall into four 

categories: structural organization of food webs, the governing process shaping food webs, 

food web models, and quantifying species importance in food webs. We discuss each of those 

issues in turn before we outline the research topics explored in this thesis. 
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1.1 Structural organization of food webs 

Early food web research focuses on the structural properties of food webs (May 1972, Pimm 

1980, 1982). Connectence is the most fundamental property that is the proportion of possible 

trophic links that are realized or observed in a food web. In general, connectence is low for 

many food webs, and it has a negative relationship with species richness (Briand 1983, 

Schoenly et al. 1991); in order words, larger food webs are more sparsely connected than 

smaller ones. Such a negative relationship can be explained from the perspective of food web 

stability, as it has been demonstrated that (larger) food webs are prone to collapse after the 

removal of a few species if their connectence is too high (May 1972, Pimm 1979a, 1979b, Chen 

and Cohen 2001). Another fundamental food web property is the number of trophic levels in a 

food web. Instead of piling up species to form a linear food chain comprising many trophic 

levels, food webs in nature seem to settle for, on average, 4 trophic levels. It has been suggested 

that the number of trophic levels is limited by the amount of resources or energy available to 

sustain an ecosystem. Matters and energy are progressively lost when passed on from lower to 

upper trophic levels (Vander Zanden et al. 1999, Post et al. 2000). Food webs also have other 

more complicated structures. For instance, species that engage in frequent trophic interactions 

tend to form a compartment in a food web; and the number of compartments in a food web is 

influenced by the heterogeneity of the habitat and is related to the phylogenetic relationship 

between species (Krause et al. 2003, Rezende et al. 2009). Another example is the trophic 

structure of a food web, where species performing similar trophic roles are aggregated into the 
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same groups (Luczkovich et al. 2003, Lai et al. 2021). The trophic role of a species depends on 

how it transfers energy and organic matters; thus, it can be a basal species acting as the source 

node, a top predator species acting as a sink node, or various types of intermediate species 

connecting other species in different trophic levels. The assemblage or the composition of each 

trophic role group in a food web is found to be determined by the phylogenetic relatedness of 

the constituting species ( Lai et al. 2021). Furthermore, the food web structure may also cause 

an interesting ecological phenomenon. For instance, the topological structure of wasp-waist 

marine ecosystems can serve as a constrain affecting the population dynamics of economically 

important fishes (Jordán et al. 2005). Another example is that food web structure can also 

determine the distribution of parasite diversity among host species in an ecosystem (Chen et 

al., 2008, Liu and Chen 2022). 

 

1.2 Governing processes shaping food webs 

One research question in food web research that has a long history is what process or processes 

govern the behavior of a food web. Since every species is linked directly or indirectly to basal 

species that act as the source of energy and organic matters, the bottom-up control effect from 

basal species is believed to be the dominant governing process (Pimm 1991). However, effects 

from top predators, namely the top-down control effect, can also be important (Paine 1980). 

For instance, the competitive exclusion principle predicts the competition between prey species 

for a shared resource often results in the dominance of the superior competitor (Hardin et al. 
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1960). In contrast, the predatory effect from a predator species can mitigate the competition 

between prey species such that those prey species coexist in relatively similar abundances 

(Paine 1980). Moreover, for example, in many aquatic ecosystems, the top-down control can 

be even more important than the bottom-up control (Strong 1992); and there are also examples 

where both processes may be equally important as governing forces in food webs (Schmitz et 

al. 2000, Polis et al. 2000, Chase 2003). And in a different context, it has been shown recently 

that the environmental filtering process (rather than the competitive exclusion process) is the 

dominant force that shapes the assemblage of trophic role groups and the trophic structure of 

several food webs (Lai et al. 2021). 

 

1.3 Food web models 

Understanding the structural organization of food webs and their governing processes is 

undeniably important in food web research. Still, this information is merely descriptive, and 

they don’t tell us how food webs are constructed from the first principle. Also, those structural 

properties calculated from food web datasets are point estimates of actual structural properties; 

therefore, there is a need to infer those actual values statistically. A food web model is useful 

in addressing those above-mentioned issues. Although May (1972) created random food webs 

to investigate the relationship between stability property and the connectence of food webs, 

those random food webs were generated in the framework of the Erdős–Rényi (ER) random 

graph model, which lacks any ecological realism. The first proper food web model 
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incorporating ecological concepts is the cascade model of Cohen et al. (1990). In this model, 

species are distributed randomly on a linear line, with the trophic value of a species being its 

corresponding position (or coordinate) on that line. The model then assumes a species of higher 

trophic value can consume a lower species with a probability p. Such a simple model can 

capture, to a certain extent, some structural properties of real food webs (e.g., food chain 

lengths). Ten years after the cascade model, Williams and Martinez (2000) proposed the niche 

model for food webs. The niche model is an extension of the cascade model and assumes a 

linear dimension on which species can be distributed. Unlike the cascade model, the niche 

model assumes a species has a diet window, which can be placed randomly on the linear line, 

but the center of its diet window must not be higher than the trophic value of the species. As a 

consequence of this, the niche model is able to produce food web structures not observable in 

the cascade model (e.g., cannibalism). Since then, other types of food web models were also 

proposed. For example, Liu et al. (2012) construct a food web model with an intuitive rule: 

given a set of limited resources and a set of species, a species compete randomly with others 

for resources. Once it obtains a resource, it then becomes a resource for other species at higher 

trophic levels and so on. Another example is the work of Eklöf et al. (2012), who constructed 

a food web model by considering the evolutionary history of species. In essence, the model 

assumes that closely related species should have similar traits, and therefore their pattern of 

trophic interaction should be similar; species are then partitioned into several taxonomic groups, 
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and trophic links are then being added between individuals of different groups probabilistically. 

Although those above-mentioned models are novel, whether they can produce random food 

webs similar to the real ones is still debatable. To this end, Liu et al. (2017) propose a statistical 

approach that generates bootstrap samples from a real food web; such an approach can 

construct the sampling distribution of various food web statistics, allowing for their statistical 

inference. 

 

1.4 Quantifying species importance in food webs 

One natural question in food web research is how to define or quantify species’ importance. 

Such a question not only has a theoretical interest, but it also has practical values in other 

research fields such as conservation biology. To ecologists, how important a species is depends 

on how it affects others (Paine 1969). Species are embedded in a food web; therefore, it is 

nature to study how a species affect others by examining how its effect can propagate to others 

through a food web (Sih et al. 1985, Bondavalli and Ulanowicz 1999). There are methodologies 

for quantifying the effect of one species on another. The mixed trophic impact approach from 

the Ecopath with Ecosim (EwE) methodology is an example of this (Christensen and Walters 

2004). EwE is a mass balance model of a food web with parameters quantified using real food 

web data, and the mixed trophic impact of a species on another quantifies how changes in the 

biomass of the former can affect the equilibrium biomass of the latter. In a much simpler 

manner (but at the expense of biological realism), Müller et al. (1999) propose an approach for 
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quantifying indirect effects in host-parasitoid communities. By extending the approach of 

Müller et al. (1999), Jordán et al. (2003) quantify the probability of one species i affecting 

another species j via pathways up to a predefined length in a food web; and the effect of species 

i on the whole food web is the sum of those probabilities over all species (including itself). 

Such a simple approach has been used to measure the positional importance of species in a 

food web (Jordán et al. 2006, Chen et al. 2008, Endrédi et al. 2021). Since a food web is a type 

of network, the importance of species can also be quantified from a network perspective. To 

this end, the concept of node centrality from social network analysis (Wasserman and Faust 

1994) has been applied to measure species’ importance in food webs (Jordán et al. 2006, 

Estrada 2007). Node centrality can be measured in various ways. At the local level, there is 

degree centrality that simply counts the number of connections a node has. At the meso to a 

global scale, there are closeness centrality and betweenness centrality, which respectively 

measure node importance by considering how close a node is to others or how frequently a 

node appears on all shortest paths in a network. Armed with those various methods for 

quantifying species importance, several researches have shown that important species can have 

interesting consequences. For example, species occupying important or central network 

positions tend to have higher parasite diversity (Chen et al. 2008), and the removal of 

topologically important species tends to affect food web assemblage and causes the collapse of 

food webs (Estrada 2007, Dunne and Williams 2009). More recent researches have extended 
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to investigate the relationship between the morphological traits and the network position of 

species in food webs, and this can help us further understand the biological nature of species 

importance in food webs (Olmo Gilabert et al. 2019, Endrédi et al. 2021). 

 

In addition to using effect of species and their network positions as measures of species 

importance, a relatively new concept has emerged in the past decade. The uniqueness of a 

species from the network perspective was firstly proposed by Jordán et al. (2009). With a 

predefine cut-off threshold, the approach of Jordán et al. (2009) identifies those species that 

are within the range of a species trophic field as its strong interactors; and its uniqueness is 

defined in terms of the extent of overlap between its set of strong interactors with that of other 

species. A species is unique if it shares fewer strong interactors with other species, and the 

implication of this is that it may occupy a role or a network position in a food web not like 

other species do. Lai et al. (2012) investigate this concept of species uniqueness using several 

food web datasets and suggest that species in central network positions (or those that exert a 

huge effect on others) tend to be less unique. Their work reveals the redundant nature of food 

web structure as a possible mechanism for curbing the loss of important species. Lai et al. 

(2015) extend the methodology of Jordán et al. (2009) and propose a more complete measure 

of species uniqueness that quantify how well a species’ sets of strong and weak interactors 

overlap with those of other species. 

doi:10.6342/NTU202203106



 

10 

 

1.5 Research topics explored in this thesis 

In this thesis, we focus on two research topics regarding food webs. The first is on species 

uniqueness. The approaches of Jordán et al. (2009) and Lai et al. (2015) reply on the 

identification of interactors of each species under various cut-off effect thresholds, and they 

then quantify the overlap between species’ sets of interactors. Such a procedure can be time-

consuming, and the result can also depend on the cut-off effect thresholds. In fact, their 

approaches require one to quantify the interaction structure of a food web first (i.e., a matrix 

recording the effect of one species on another), and there is no reason why one cannot simplify 

the procedure by comparing the species’ interaction profiles from the interaction matrix and 

then develop a uniqueness measure directly. Thus, we aim to develop a new and simple species 

uniqueness index in this study. 

 

As for the second topic, we aim to quantify the diversity in species’ network characteristics in 

a food web. From the brief review on food web research mentioned above, we know that each 

species can be characterized (e.g., its network effect, and its centrality values etc.) in different 

ways by using information from a food web. We aim to quantify the diversity in species food 

web characteristics, which can then be used as a diversity measurement for a food web (or an 

ecosystem in general). Such a concept is relevant to functional diversity in ecology. 

Traditionally, the most fundamental diversity measure of an ecosystem is species richness 

(MacArthur 1965, Hill 1973), and in the past few decades, different ways of viewing species 
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richness were called for, and one of those is the functional diversity of an ecosystem (Villéger 

et al. 2008, Laliberté and Legendre 2010, Mammola et al. 2021). Ecologists argue that the 

function of a species is related to various morphological traits, and many have been using 

information derived from the species distribution in the multi-dimensional trait space as a proxy 

for functional diversity of an ecosystem. However, since trophic interaction is the most 

fundamental interaction species can perform, their positions in a food web must also reflect 

their functions (at least trophically). Therefore, we argue that information embedded in a food 

web must at least contain the functional diversity of an ecosystem to some extent. And this 

motivates us to investigate functional diversity of species from a network or food web 

perspective.  

This thesis is organized as follows. In the second chapter, we summarize food web datasets that 

were analyzed in this study. In the third chapter, we present a new measure for species 

uniqueness based on the interaction structure between species in a food web. The fourth, fifth, 

and sixth chapters all deal with a network (or food web)-based measure of functional diversity, 

but they differ in the type of network information they use. The fourth chapter uses interaction 

profiles from the interaction structure of a food web; the fifth chapter uses information of 

species’ centrality measurements; the sixth chapter considers diversity in species’ trophic roles 

in a food web. Finally, the seventh chapter concludes with future research direction relevant to 

those presented in this thesis.  
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Chapter 2 A basic description of food web datasets 

 

2.1 Dataset sources 

Throughout this thesis, we analyzed the same 92 food web datasets. Those food webs were 

produced by the Ecopath with Ecosim methodology (i.e., EwE (Christensen and Walters 2004)), 

and they are thus methodologically standard and comparable. All datasets are exactly the same 

as those in Endrédi et al. (2021), and they are available from EcoBase 

(http://ecobase.ecopath.org/) and from other sources as indicated in Heymans et al. (2014). We 

note that food webs produced from EwE methodology can have resolution problems. Higher 

trophic levels of a EwE food web tend to have better resolution than lower trophic levels. 

Specifically, species at the lower trophic levels tend to be aggregated into few number of large 

tropho groups; and in contrast, tropho groups at higher trophic levels often consist of few 

number of species. 

 

2.2 Information in each dataset 

Each food web dataset contains the trophic interactions between species (i.e., a food web) in 

the format of an edge list. For example, an edge of a food web is recorded as a row “A B X”, 

which indicates that species A is consumed by species B with a weight X; the weight X is 

expressed in terms of the biomass transferred per unit area and per unit time from species A to 

species B (e.g., in grams of carbon per square meter per year). Also available for each food 
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web is the trait information for many species; these traits are habitat type, mobility, and body 

size. Habitat type has two categories, benthic (i.e., living near the bottom of seas or lakes) and 

water column (i.e., living in the middle or the upper section of the seas or lakes). Note that 

habitat type is not an intrinsic property of a species; however, it may correlate with some 

intrinsic traits of a species. Mobility has four categories, sessile (i.e., lacking mobility and 

attached to other organisms or objects), drifter (i.e., passive moving), limited mobility (i.e. slow 

moving), and mobile (i.e. fast moving). Body size ranges from shorter than 0.001 cm to greater 

than 1000 cm. 

 

2.3 The nature of ecosystems and their geographical distribution 

These 92 food webs cover various aquatic ecosystems across the globe. The majority of them, 

or 64 out of 92, are from “sea” ecosystems covering various coasts, bays, gulfs, sounds, 

channels and straits. Four food webs are from “reef” ecosystems, and 16 are from “lagoon” 

ecosystems, while the remaining 8 food webs are from “estuary” ecosystems. Figure 2.1 shows 

the locations of the ecosystems from which those 92 food web data were collected on the world 

map. Eighty food webs are from locations in the northern hemisphere while the remaining 12 

are from the southern hemisphere. Among these 92 food webs, 42 and 26 are from locations 

surrounding the Atlantic Ocean and the Pacific Ocean, respectively, while 8 are from the Indian 

Ocean, 6 from the Baltic Sea, 5 from the Mediterranean Sea, and 5 from the Adriatic Sea. Table 

2.1 summarizes basic information on all 92 food webs. It contains information on the 
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ecosystems from which food web data were collected, including food web ID, the name of the 

ecosystem, the country of origin, the geographic coordinates (i.e., latitude and longitude), and 

the type of the ecosystem (e.g., sea, reef, lagoon, or estuary). 

 

Figure 2. 1 Geographical distribution of food webs analyzed in this thesis. 
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Table 2. 1 Food web summary 

FoodWebID Ecosystem Name Country Latitude Longitude Type 

FW1 Cape Verde Cape Verde 15.87 -24.08 sea 

FW2 Gambia Gambia 13.43 -16.53 sea 
FW3 Sakumo Lagoon Ghana 5.64 -0.03 lagoon 

FW4 Guinea-Bissau Guinea-Bissau 11.68 -15.70 estuary 
FW5 Mauritania Mauritania 18.06 -16.11 sea 
FW6 Morocco Morocco 31.31 -10.02 sea 

FW7 Maputo Mozambique -26.04 32.73 sea 
FW8 Northern Benguela Namibia -17.34 11.59 sea 

FW9 Senegambien Senegal 13.51 -15.58 sea 
FW10 Sierre Leone 1990 Sierra Leone 7.90 -13.05 sea 

FW11 Gamtoos Estuary South Africa -33.96 25.04 estuary 
FW12 Kromme Estuary South Africa -34.14 24.84 estuary 

FW13 Sundays Estuary South Africa -33.72 25.85 estuary 
FW14 Swartkops Estuary South Africa -33.86 25.63 estuary 

FW15 Great Barrier Reef-prawn Australia -20.79 151.76 reef 
FW16 Bay of Bengal Bangladesh 15.75 88.85 sea 

FW17 Brunei Brunei Darussalam 5.16 115.10 sea 
FW18 East China Sea China 30.43 125.25 sea 
FW19 SE Arabian Sea India 12.88 64.49 sea 

FW20 Southwest coast of India India 9.69 75.78 sea 
FW21 West coast of Sarawak Malaysia 1.69 110.55 sea 

FW22 West coast of Sabah Malaysia 6.04 115.97 sea 
FW23 Loyalty Islands Atoll New Caledonia -20.87 167.10 lagoon 

FW24 San Pedro Bay, Leyte Philippines 11.18 125.08 sea 
FW25 San Miguel Bay Philippines 13.90 123.20 sea 

FW26 Kuosheng Bay Taiwan 25.21 121.67 sea 
FW27 Lagoon Chiku-Taiwan Taiwan 23.14 120.07 lagoon 

FW28 Gulf of Thailand Thailand 9.57 101.35 sea 
FW29 Curonian Lagoon Poland, Lituania 55.01 20.97 lagoon 

FW30 Gulf of Riga Estonia, Latvia 57.30 23.75 sea 
FW31 Lithuanian Coast Lituania 55.80 21.00 sea 

FW32 Parnu Bay Estonia, Latvia 58.32 24.42 sea 
FW33 Puck Bay Poland, Lituania 54.56 18.63 sea 
FW34 Bay of Calvi France 42.56 8.78 sea 

FW35 Bay of Somme France 50.21 1.61 estuary 
FW36 Seine Estuary France 49.43 0.29 estuary 

FW37 Etang de Thau France 43.38 3.60 lagoon 
FW38 Gironde Estuary France 45.42 -0.88 estuary 

FW39 Aegean model Greece 39.20 24.90 sea 
FW40 Iceland Iceland 65.05 -19.47 sea 

FW41 Iceland - 1950 Iceland 65.05 -19.47 sea 
FW42 Orbetello Lagoon Italy 42.44 11.19 lagoon 

FW43 Lagoon of Venice Italy 45.38 12.28 lagoon 
FW44 Venice Lagoon (Seagrass habitat) Italy 45.38 12.28 lagoon 

FW45 Miramare Natural Marine Reserve Italy 45.69 13.71 sea 
FW46 Venice Lagoon (Tapes habitat) Italy 45.38 12.28 lagoon 

FW47 North-Central Adriatic 1990s Italy 43.53 14.69 sea 
FW48 Sorfjord Norway 60.25 6.60 sea 
FW49 Catalan sea 2003 Spain 40.33 2.00 sea 

FW50 Cantabrian Sea Spain 43.80 -5.27 sea 
FW51 Baltic Sea Poland 58.32 19.86 sea 

FW52 West Coast of Scotland UK 56.27 -6.89 sea 
FW53 Western English Chanel UK 50.17 -2.61 sea 

FW54 English Channel 1995 UK 50.11 -0.36 sea 
FW55 North Sea 1880 UK 56.24 2.62 sea 

FW56 North Sea 1991 UK 56.24 2.62 sea 
FW57 Deep sea West Coast of Scotland  UK 56.27 -6.89 sea 

FW58 Strait of Georgia Canada 49.35 -123.88 sea 
FW59 Eastern Scotian Shelf 1990s Canada 44.41 -62.60 sea 
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FW60 Northern Gulf of St. Lawrence Canada 49.90 -60.46 sea 
FW61 Southern Gulf of St. Lawrence Canada 46.81 -61.97 sea 

FW62 Tampamachoco Lagoon Mexico 21.01 -97.35 lagoon 
FW63 Celestun Lagoon Mexico 20.82 -90.41 lagoon 

FW64 Huizache-Caimanero  Mexico 22.95 -106.09 lagoon 
FW65 Campeche Bank Mexico 22.00 -90.01 reef 

FW66 Tamiahua Lagoon Mexico 21.61 -97.56 lagoon 
FW67 Terminos Lagoon Mexico 18.65 -91.56 lagoon 

FW68 Terminos Lagoon (S&M) Mexico 18.65 -91.56 lagoon 
FW69 Alto Golfo de California Mexico 31.76 -114.75 sea 

FW70 Central Gulf of California Mexico 26.86 -111.08 sea 
FW71 Northern Gulf of California Mexico 31.09 -114.33 sea 

FW72 Sonda de Campeche Mexico 22.00 -90.01 sea 
FW73 Yucatan Continental Shelf Mexico 21.39 -89.81 sea 

FW74 Gulf of Mexico Mexico 25.27 -90.28 sea 
FW75 La Paz Bay Mexico 24.24 -110.44 sea 
FW76 Mandinga Lagoon Mexico 19.01 -96.07 lagoon 

FW77 Western Gulf of Mexico Mexico 24.51 -97.13 sea 
FW78 Prince William Sound_1980s USA 60.69 -147.00 sea 

FW79 Prince William Sound 1990s USA 60.69 -147.00 sea 
FW80 Aleutians Islands USA 54.35 -164.57 sea 

FW81 Western Bering Sea USA 56.47 173.80 sea 
FW82 Monterey Bay USA 36.79 -121.95 sea 

FW83 Looe Key Sanctuary USA 24.58 -81.20 reef 
FW84 West Florida Shelf USA 27.67 -83.55 sea 

FW85 Southern Brazil Shelf Brazil -17.41 -38.43 sea 
FW86 South Brazil Bight Brazil -26.98 -47.97 sea 

FW87 Tongoy Bay Chile -30.27 -71.55 sea 
FW88 Central Chile Chile -36.79 -73.85 sea 
FW89 Golf of Dulce Costa Rica 8.44 -83.21 sea 

FW90 Gulf of Nicoya Costa Rica 9.73 -84.80 sea 
FW91 Venzuela Shelf Venzuela 11.69 -65.51 sea 

FW92 Virgin Islands Virgin Islands 18.15 -64.72 reef 
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Chapter 3 Simplifying a trophic overlap-based measure for 

species uniqueness in food webs 

 

3.1 Introduction 

Identifying important species is of utmost importance since we are living in a world where 

species extinctions occur at an unprecedented speed, and conserving important species may 

have a desirable effect on curbing species extinction and the collapse of an ecosystem (Johnson 

et al. 2017, Ortiz et al. 2017, Mason et al. 2020). The most fundamental pattern of interaction 

between species can be summarized in a food web (Cohen 1978, Pimm 1982). Given that food 

webs are a type of a network, ecological researches in the past decades have employed network 

analysis to identify important species in various ecosystems (Jordán et al. 2006, Scotti and 

Jordán 2010, Endrédi et al. 2021). 

 

The most well-known concept of species importance is node centrality which has its origin in 

sociology (Wassermann and Faust 1994, Jordán et al. 2006). It can be measured in various 

ways, but they all concern with how dominant a node is in a network. For instance, degree 

centrality measures the number of links a node has; closeness centrality quantifies how close a 

node is to all others in a network; betweenness centrality measures how frequent a node is 

incident to the shortest pathways in a network (Estrada 2007). More recently, an alternative 

approach to species importance starts to emerge, and it measures how unique a species is in its 
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interaction pattern when compared to others in the same food web (Jordán et al. 2009, Lai et 

al. 2012, 2015). Again, borrowed from sociology, the REGE analysis (i.e., regular equivalence) 

has been employed to quantify the similarity between species’ network positions in a food web 

(Luczkovich et al. 2003), and Lai et al. (2012) extent this concept to develop a new index for 

species uniqueness. Another approach that is more relevant to ecology than REGE-based 

analysis is the concept of trophic field overlap (TFO for short) (Jordán et al. 2009, Lai et al. 

2015). In this approach, both direct and indirect effects between species are being quantified, 

and this results in a matrix describing the interaction structure between species (Müller et al. 

1999, Rott and Godfray 2000, Jordán et al. 2003). Trophic field overlap between a focal species 

and all others is determined as the number of shared interactors between them, and the extent 

of this overlap is then used as the uniqueness value of the focal species. 

 

Although conceptually appealing, the TFO-based uniqueness index requires users to specify 

effect cutoff thresholds for its calculation, and the computation can be very time-consuming. 

Here, in this chapter, we examine whether information directly from the interaction matrix can 

be used to compute the TFO-based uniqueness index in order to simplify its computation and 

shorten its computation time. Next, we describe in full the TFO-based uniqueness index. 
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3.2 Trophic field overlap-based uniqueness index 

Given a food web, we first quantify the one-step effect of species i on species j as (i.e., direct 

effect): 

𝑎𝑖𝑗 =
1

𝐷𝑗
 ,        (3.1) 

where Dj is the number of species connected to species j. All one-step effects can be organized 

in a matrix A where the ijth element of this matrix is the one-step effect of species i on species 

j. Effects between species up to n steps (i.e., indirect effects) can be calculated through the self-

multiplication of matrix A: 

𝐄𝑛 =
1

𝑛
(𝐀1 + 𝐀2 + 𝐀3 + ⋯ 𝐀𝑛),     (3.2) 

where Ax is the matrix recording the effects between species in x steps. Thus, the ijth element 

of matrix En , namely En,ij, is the average effect of species i on species j up to n steps. Moreover, 

En can be regarded as the interaction matrix between species for the entire food web. 

 

With an effect cutoff T, for each species i, we define two sets of interactors, Si and Wi: if the 

average effect of species i on species j up to n steps is greater than or equal to T (i.e., En,ij>=T), 

then species j is species i’s strong interactor and belongs to Si, otherwise a weak interactor (i.e., 

En,ij<T) and belongs to Wi. With an effect cutoff T, the extent of overlap between species i’s 

two sets of interactors and that of all other species is defined as:  

𝑇𝑂𝑇,𝑖 = ∑ 𝑛(S𝑖 ∩ S𝑗)𝑗 + ∑ 𝑛(W𝑖 ∩ W𝑗)𝑗 ,    (3.3) 

where 𝑛(S𝑖 ∩ S𝑗) and 𝑛(W𝑖 ∩ W𝑗) respectively are the numbers of strong interactors and weak 
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interactors shared by species i and j. Doing this for T from 0 to 1 with a user predefined 

increment t (e.g., t=0.05) thus produces a trophic overlap (TO) profile, which shows how 

species i overlaps with all other species in their interactors for the entire range of T (Fig. 3.1). 

Furthermore, the summed TOT,i across all Ts, namely STOi, is the uniqueness value for species 

i: 

𝑆𝑇𝑂𝑖 = ∑ 𝑇𝑂𝑇,𝑖𝑇 .       (3.4) 

A unique species should in theory has a low STO value as it overlaps little with all other species 

for the entire range of T; and conversely, a species with a large STO value is not unique. 

 

We analyzed the Great Barrier Reef ecosystem (i.e., the food web named “FW15” in Chapter 

2), and plotted the TO profile for benthic autotrophs (i.e., “Benthau”) with increment t=0.05, 

0.025 and 0.00001. Fig. 3.1 shows how t can affect the resolution of the TO profile; and when 

the increment in T is small, TO profile shows details that are absent when the increment in T is 

large. This can also affect the STO values calculated for individual species. We plotted the STO 

values calculated for individual species when t=0.05 (i.e., STOt=0.05) against that  
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Figure 3. 1 Trophic overlap (TO) profiles for species “Benthau” from Great Barrier Reef food web using 

different increment values t (blue: t=0.05; red: t=0.025; and black: t=0.0001). 

 

obtained with t=0.00001 (i.e., STOt=0.00001), and observed little (Kendall’s) rank correlation 

between those two sets of STO values (Fig. 3.2a). And when we plotted that obtained with 

t=0.025 (i.e., STOt=0.025) against that for t=0.00001 (i.e., STOt=0.00001), rank correlation becomes 

larger (Fig. 3.2b). All these suggest that in order to obtain stable STO values, increment in T, 

or the value of t, is preferably as small as possible, but this will inevitably add more to the 

computation time. 
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Figure 3. 2 Scatter plots showing the relationship between different sets of STO values obtained using different 

increment values t. 

The essential part of the TFO-based index calculation is to compare the trophic fields between 

species; intuitively, if two species overlap greatly in their trophic fields, then their 

corresponding rows in the interaction matrix En should be similar. Thus, this prompts us to 

speculate on the possibility of whether the whole procedure can be simplified and reduced to 

the comparison between rows in the interaction matrix En. To this end, we propose the 

following simplified approach. 
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3.3 Using interaction matrix to compute species uniqueness index 

We repeat the same procedure as above until we obtain the interaction matrix En. Note that the 

i-th row of En represents the interaction profile of species i and it records the effects of species 

i on individual species in the same food web. We then compare every two rows of matrix En 

and calculate their distance or dissimilarity in two different ways. First is the Manhattan 

distance between the interaction profiles of species i and j: 

𝑑𝑀𝑎𝑛ℎ,𝑖𝑗 = ∑ |𝐸𝑛,𝑖𝑘 − 𝐸𝑛,𝑗𝑘|𝑘 ,     (3.5) 

and after calculating for all species pairs, those distance values can be placed in a distance 

matrix DManh. We then calculate the sum of the i-th row of matrix DManh to be the uniqueness 

value for species i: 

𝑈𝑞𝑀𝑎𝑛ℎ,𝑖 = ∑ 𝐷𝑀𝑎𝑛ℎ,𝑖𝑗𝑗 .      (3.6) 

Second is the Euclidean distance between the interaction profiles of species i and j: 

𝑑𝐸𝑢𝑐𝑙,𝑖𝑗 = √∑ (𝐸𝑛,𝑖𝑘 − 𝐸𝑛,𝑗𝑘)2
𝑘 ,     (3.7) 

and again, after calculating for all species pairs, those distance values can be placed in a 

distance matrix DEucl. Similarly, the sum of the i-th row of matrix DEucl is the uniqueness value 

for species i: 

𝑈𝑞𝐸𝑢𝑐𝑙,𝑖 = ∑ 𝐷𝐸𝑢𝑐𝑙,𝑖𝑗𝑗 .       (3.8) 

Here, a species with a large value for UqManh or UqEucl is unique since the distance between its 

interaction profile and that of others is large. Note that for the TFO-based uniqueness index, a 

small value indicates a species is unique because it overlaps little with other species in terms  

doi:10.6342/NTU202203106



 

24 

 

 

Figure 3. 3 Scatter plots showing the relationship between the TFO-based uniqueness index (i.e., STOt=0.00001) and 

our interaction matrix-based uniqueness indices (i.e., UqManh and UqEucl ). 

 

 

of interactors. 

 

Again, we applied our simplified approach of species uniqueness to the Great Barrier Reef 

ecosystem, and examined the relationship between STOt=0.00001 (i.e., STO values when 

increment t=0.00001) and each of UqManh and UqEucl. Fig. 3.3a shows that the relationship 

between STOt=0.00001 and UqManh is perfectly linear and shows a perfect negative rank 

correlation. Although not perfect, the relationship between STOt=0.00001 and UqEucl is also linear 

and shows a strong negative rank correlation (Fig. 3.3b). To ascertain that this result is  
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Figure 3. 4 Distribution of Kendall rank correlation coefficients between TFO-based uniqueness index (i.e., 

STOt=0.00001) and the two interaction matrix-based uniqueness indices (i.e., UqManh and UqEucl ) calculated for 92 

food webs. 

 

 

not exclusive to the dataset analyzed, we repeated the same analysis to 92 different food webs 

from Chapter 2. Of all the food web analyzed, 90 show a perfect negative rank correlation 

between STOt=0.00001 and UqManh (i.e., Kendall τ=1) and the remaining 2 food webs show an 

almost perfect negative correlation (i.e., Kendall τ=0.995) (Fig. 3.4a). As for the relationship 

between STOt=0.00001 and UqEucl , Kendall rank correlation coefficient varies from -0.762 to -1 

for those 92 food webs examined, with a mean value of -0.890 (Fig. 3.4b). These results point 

to the possibility and plausibility of using the interaction matrix directly to quantify species 

uniqueness in the framework of trophic field overlap. 
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3.4 Discussion and conclusion 

In this chapter, we have revisited the TFO-based species uniqueness index and have proposed 

two possible ways to simplify its calculation. Species uniqueness rankings produced by our 

Manhattan distance-based index are almost identical to that produced by the TFO-based index. 

Although the agreement in species uniqueness ranking between our Euclidean distance-based 

index and the TFO-based index is not perfect, they still show a strong correlation. Based on 

these results, one might prefer the use of Manhattan distance over Euclidean distance in 

quantifying species uniqueness. However, since distances of different lengths in Euclidean 

space may correspond to the same Manhattan distance (and vice versa), we suggest both 

distance-based indices should be used in order to gain a more complete view on species 

uniqueness. We note that Euclidean distance is an intuitive measure of the shortest distance 

between two objects, and it has been widely used in social network analysis to quantify the 

similarity in the connection pattern between nodes (Burt and Bittner 1981, Faust and Romney 

1985, Burt 1987). However, it has also been shown that Euclidean distance is not an appropriate 

measure of similarity between objects when the dimensionality is high, and Manhattan distance 

is often preferred (Aggarwal 2001). Given that a food web often consists of a large number of 

species, comparing the interaction profile of a species with that of all other species is akin to 

the process of finding distances between objects in a high-dimensional space. Therefore, on 

this note, one should be cautious when using Euclidean distance-based index to measure 

species uniqueness. 
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We need to emphasize that our simplified approach does not make the TFO-based approach 

redundant or obsolete. In fact, using interaction matrix directly to quantify species uniqueness 

like we have done here ignores much information that otherwise could be of interest in some 

circumstances. For instance, one prominent feature of the TFO-based index is the use of TO 

profiles of different species, which is being omitted altogether in our simplified approach. Each 

species has a TO profile, and the shape of TO profile differs from species to species. A TO 

profile tells us how a species’ trophic field overlaps with that of other species across the entire 

range of T. The shape of TO profile for some species changes drastically over small values of 

T, while some are more sensitive to changes at larger T values (Lai et al. 2015). Those TO 

profiles can be considered as species traits, which can be incorporated into the general 

framework of Schmera et al.(2009) for quantifying the functional diversity of an ecosystem. 

Furthermore, although our simplified approach omits the need to define an effect threshold for 

interaction strength, in practice, it is still valuable and informative to set one (with appropriate 

domain knowledge) if there is a need to identify the strong or weak interactors of a species. 

Such detailed information can be of use to, for example, conservation practice when one wishes 

to understand how an endangered species interacts with each other species in the same food 

web. In a nutshell, our proposed approach here offers a quick and simple calculation of species 

uniqueness using principles akin to TFO-based approach; however, if one opts to study species 

uniqueness in more detail, then we suggest using the TFO-based approach. 
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Quantifying species uniqueness from the network perspective may have important implications 

in helping us better understand an ecosystem. Stable isotope analysis (Post 2002, Bearhop et 

al. 2004) is a widely used tool to quantify the flow of matter and energy between species, and 

this provides insights into the level of trophic diversity and redundancy within an ecosystem 

(Mondal and Bhat 2021). Our simplified approach to species uniqueness measurement can 

provide similar information. For instance, in a given food web, one can simply determine the 

extent of variation in species uniqueness value by calculating its coefficient of variation. A 

large variation indicates greater diversity in species’ trophic roles in a food web, whereas a 

small variation implies redundancy in trophic roles. 

 

The way we implemented in this study also offers a simple framework for quantifying species 

uniqueness. Firstly, one needs to construct a matrix where each row contains information about 

how a species interacts with or relates to all species in the same food web; here we used the 

interaction structure where each row records how a species affects every species up to a 

predefined number of steps. Other types of information can be used instead depending on one’s 

research interest. For instance, one can use basic information such as whether a species is 

connected to others via predator-prey trophic links (i.e., the adjacency matrix representing a 

food web); or a matrix recording the length of the shortest path between species, and each row 
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here records how far a species is from all other species in the food web. Secondly, similarity or 

dissimilarity matrices can be constructed by comparing every pair of rows of the matrix 

obtained from the first step. Here we calculated Manhattan and Euclidean distance matrices to 

measure the dissimilarity between the interaction profiles of every two species. Other measures, 

such as Pearson correlation coefficient, can be employed as an alternative approach for 

assessing the similarity or dissimilarity between species. And lastly, similarity or dissimilarity 

matrices from the second step can be interrogated to derive species uniqueness measures. Here 

we simply calculated the row sums of Manhattan and Euclidean distance matrices to be our 

species uniqueness indices. Other more complicated procedures can be used here; for instance, 

those similarity or dissimilarity matrices can be subjected to dimension reduction techniques 

(e.g., multi-dimensional scaling) or cluster analysis in order to identify unique species. 

Quantifying species uniqueness from the network perspective is still in its infancy, and all of 

above possibilities are potential directions for future research.  
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Chapter 4 Functional diversity from a network perspective I: an 

interaction-based functional diversity index 

 

4.1 Introduction 

The biodiversity crisis is a major concern in the era of climate change (Pimm 2008, Bellard et 

al. 2012, Scheffers and Pecl 2019) as we are losing species at an unprecedented rate (Chase et 

al. 2020, Gabara et al. 2021). In consequence, quantifying biodiversity in ecosystems has been 

the focus of considerable research in recent decades. Biodiversity in its most fundamental sense 

is the number of species present in an ecosystem, but researchers have extended this concept 

by incorporating either abundance data (MacArthur 1965, Hill 1973, Jost 2006) or genetic 

diversity (Wennerström et al. 2017) in order to gain a better picture of biodiversity in nature. 

Furthermore, species have their own characteristics or traits, and these ultimately influence 

ecosystem functioning (Tilman et al. 1997, Flynn et al. 2011). Thus, it is also possible to 

measure biodiversity from the functional perspective, in terms of the diversity of the functional 

traits of species (Villéger et al. 2008, Schmera et al. 2009, Laliberté and Legendre 2010, Chiu 

and Chao 2014, Mammola et al. 2021). 

 

Species are embedded in an intricate network of trophic interactions, namely a food web. How 

species interact in a food web reveals their functional roles (Jordán et al. 2006). For instance, 

the effect of one predator species on another predator species via a shared prey species can be 
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quantified as a two-step effect, resulting in exploitative competition. Similarly, in a food chain 

consisting of four species, the effect of the top predatory species on a basal species via two 

intermediary species can be quantified as a three-step effect, measuring the extent of top-down 

control. Social network analysis has been applied to partition species based on their interaction 

pattern into functional units in order to reveal the fundamental structure of a food web (e.g., 

environs analysis (Fath and Patten1999) and regular equivalence analysis (White and Reitz 

1983, Borgatti and Everett 1989, Luczkovich et al. 2003)). More recently, species with similar 

sets of interactors were assumed to have similar functional roles, and such a concept has been 

used to quantify the uniqueness of species in a food web (Jordán et al. 2009, Lai et al. 2012, 

2015). All this suggest that species’ functional roles depend on how they interact with each 

other in a food web. 

 

In this chapter, we use species interaction patterns in a food web to quantify the diversity in 

their functional roles. The conventional concept of functional diversity is based on how species 

are distributed in a multi-dimensional space constructed by using trait information. In contrast, 

our approach here uses information on how species interact with each other in a food web. Our 

work here thus provides a complementary view to functional diversity of an ecosystem. 
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4.2 Material and method 

4.2.1 Food web data analyzed in this study 

We analyzed 92 food webs in this study. Please refer to Chapter 2 for basic information on 

these food webs. 

 

4.2.2 Measuring functional diversity from the interaction structure of a food web 

Given a food web of N species and treating it as a network with undirected and unsigned edges, 

the method of Jordán et al. (2003) produces a square matrix E where an element Eij is the effect 

of a row species i on a column species j up to n steps (i.e., equations (3.1) and (3.2) from 

Chapter 3). Specifically, Eij is the probability of species j being affected by species i in one step, 

two steps, or up to n steps; and steps here refer to the number of links in a pathway linking 

species i and j. Treating the same food web as a network with directed and signed edges (i.e., 

a signed digraph), the method of Liu et al. (2010) can further partition matrix E into two 

matrices E+ and E-. An element Eij
+ of E+ is the magnitude of the positive effect of species i on 

species j up to n steps; and it is the probability of species j being positively affected by species 

i in one step, two steps, or up to n steps. Similar interpretation applies to an element Eij
- of E- 

for negative effects. Examples of effects are as follows. Positive one-step effects are those from 

prey species on predator species; and negative two-step effects include those associated with 

exploitative competition (i.e., from a predatory species to another via a shared prey species) or 

apparent competition (i.e., from a prey species to another prey species via a shared predator 

species). We provide a detailed description on how to construct those matrices and demonstrate 
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with a simple food web in Appendix 1. In this chapter, n is 3 throughout unless stated otherwise. 

E+ and E- can be considered as the interaction structure of a food web. The i-th row of E+ is the 

positive interaction profile of species i which records its positive effects on all species in the 

food web, and similarly the i-th row of E- is its negative interaction profile. These two rows 

then form a vector of length 2N which is the interaction profile of species i. Throughout this 

chapter, we use the terms “profile” and “pattern” interchangeably. We use Marczewski-

Steinhaus index (i.e., complementary to the weighted Jaccard index) (Podani 2000, Schmera et 

al. 2009) to quantify the dissimilarity between the interaction profiles of species i and j: 

 

𝑑𝑖𝑗 =
∑ |𝐸𝑖𝑘

+−𝐸𝑗𝑘
+|𝑁

𝑘=1 +∑ |𝐸𝑖𝑘
−−𝐸𝑗𝑘

− |𝑁
𝑘=1

∑ max {𝐸𝑖𝑘
+,𝐸𝑗𝑘

+}𝑁
𝑘=1 +∑ max {𝐸𝑖𝑘

−,𝐸𝑗𝑘
−}𝑁

𝑘=1

,    (4.1) 

 

where dij ranges from 0 to 1, and a large dij indicates high dissimilarity between the interaction 

profiles of species i and j. We then quantify the diversity in interaction profiles of a food web 

as: 

 

𝐼𝑃𝐷 =
∑ ∑ 𝑑𝑖𝑗

𝑁
𝑗>i

𝑁
𝑖=1

(𝑁2−𝑁)/2
,        (4.2) 

 

where the nominator is the summation of all pairwise dissimilarities and the denominator is the 

total number of species pairs (note that pairs ij and ji count only once and we don’t include 
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self-pairs). Thus, IPD is the average dissimilarity between two interaction profiles of a food 

web, and a large IPD value indicates high interaction diversity. 

 

4.2.3 Global network properties 

For a given food web, we calculated several global properties of the whole network in order to 

investigate whether and how IPD was correlated with them. These network properties are as 

follows.  

a) Number of species (N): this is the number of species in the food web. 

b) Number of trophic links (L): this is the number of prey-predator trophic links in the food 

web. 

c) Connectance of a food web (C): this is the link density of a food web, 

𝐶 =
𝐿

𝑁(𝑁−1)/2
.        (4.3) 

d) Diameter of a food web (diam): for this measure we determined all the shortest paths 

between all species pairs. The diameter of a food web is the length of the longest and shortest 

path. 

e) Maximum trophic position (TPmax): we applied the approach of Levine (1980) to quantify 

the trophic position of each species in the food web. TPmax is the maximum value of those 

trophic positions. 

f) Network cohesion (coh): we borrowed this concept directly from sociology (White and 

Harary 2001, Moody and White 2003). Specifically, we determined the number of nodes that 
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need to be removed in order to make the original food web disintegrate into at least two 

components. We then divided this number by the number of species in the food web. 

g) Number of clusters (clu): we applied the algorithm of Clauset et al. (2004) to identify the 

number of clusters in a given food web. In general, nodes belonging to the same clusters interact 

more frequently than nodes belonging to different clusters. 

h) Network modularity (mod): after we partitioned nodes into several clusters, we then 

quantified the difference between the fraction of edges within clusters and the fraction of edges 

between clusters. We used this as a measure of network modularity (Clauset et al. 2004, 

Newman 2006). 

 

4.2.4 Conventional functional diversity indices 

To examine the uniqueness of our new measure, we need to investigate its relationship with 

conventional functional diversity indices. For every food web we analyzed, trait information 

for many species was also available (see Chapter 2). These traits were: habitat type, mobility, 

and body size (note that habitat type is not an intrinsic property of a species; however, we still 

include it as it may correlate with some intrinsic traits of a species). Thus, we also calculated 

the functional richness (Tric), evenness (Teve), dispersion (Tdis), and Rao’s Q (Traoq) based 

on these three traits (Villéger et al. 2008, Laliberté and Legendre 2010). We used the R package 

“FD” version 4.2.0 to calculate those conventional functional diversity indices, and then 

examined their relationship with IPD.  
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4.2.5 Weight of trophic links 

Those 92 food web data also have information on the weight of each trophic link (i.e., in terms 

of the biomass transferred per unit area and per unit time, for example, in grams of carbon per 

square meter per year). We also quantified the interaction structure of each food web by 

considering each trophic link as a weighted edge (see Appendix 1), and calculated the weighted 

version of interaction profile diversity (i.e., IPDw). 

 

4.2.6 Number of steps n 

There is one parameter in our methodology, namely the number of steps n up to which the 

interaction structure of a food web is quantified. We investigated how changing n (from 1 to 

50) can affect the values of IPD and IPDw. We note that the interpretation for large n may be 

less clear than that for small n. For instance, with n=2, inter-specific effects include those from 

exploitative competition and apparent competition. With n=50 however, its ecological meaning 

is unclear. Therefore, we suggest n should not be greater than the diameter of a food web. 

 

4.3 Results 

For each of those 92 food webs involved in this study, we quantified its interaction structure 

up to n=3 steps and then calculated its interaction profile diversity (i.e., IPD), as well as those 

other indices mentioned in the Material and Method section. We used Kendall rank correlation 

to determine the association between IPD and eight global network properties (Fig. 4.1). IPD 

correlates positively with diameter, the number of clusters and network modularity, and 
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negatively with connectance and cohesion. As for the relationship with conventional functional 

diversity indices (Fig. 4.2), IPD shows weak-to-moderate positive correlation with functional 

richness (Tric), functional dispersion (Tdis) and Rao’s Q (Traoq).  

 

We also calculated the weighted version of interaction profile diversity (i.e., IPDw) for each 

food web, and repeated the same correlation analysis as before. In general, IPDw correlates 

with these eight global network indices in the same way as its un-weighted counterpart despite 

changes in the magnitude of their correlation coefficients (Fig. 4.3). Furthermore, IPDw 

correlates with conventional functional diversity indices in a manner similar to that for  
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Figure 4. 1 Correlation between interaction profile diversity (i.e., IPD) and eight different network properties. τ 

is Kendall correlation coefficient.  

 

10 20 30 40 50 60

0
.4

0
.6

0
.8

0 100 200 300 400 500 600

0
.4

0
.6

0
.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
.4

0
.6

0
.8

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0
.4

0
.6

0
.8

2 3 4 5 6

0
.4

0
.6

0
.8

0.0 0.1 0.2 0.3 0.4 0.5

0
.4

0
.6

0
.8

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0
.4

0
.6

0
.8

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0
.4

0
.6

0
.8

τ=0.076, p-value=0.288 τ=-0.126  , p-value=0.076

τ=-0.800, p-value<0.001 τ=0.633, p-value<0.001

τ=-0.130, p-value=0.067 τ=-0.481, p-value<0.001

τ=0.241, p-value=0.003 τ=0.685, p-value<0.001

Number of species, N Number of trophic links, L

Connectance, C Diameter, diam

Max trophic position, TPmax Network cohesion, coh

Number of clusters, clu Network modularity, mod

IP
D

IP
D

IP
D

IP
D

IP
D

IP
D

IP
D

IP
D

doi:10.6342/NTU202203106



 

39 

 

 

Figure 4. 2 Correlation between interaction profile diversity (i.e., IPD) and conventional functional diversity 

indices (i.e., Tric, Teve, Tdis and Traoq). τ is Kendall correlation coefficient. 
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Figure 4. 3 Correlation between weighted version of interaction profile diversity (i.e., IPDw) and eight different 

network properties. τ is Kendall correlation coefficient.  
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Figure 4. 4 Correlation between weighted version of interaction profile diversity (i.e., IPDw) and other 

conventional functional diversity indices (i.e., Tric, Teve, Tdis and Traoq). τ is Kendall correlation coefficient. 

 

IPD (Fig. 4.4). 

 

We investigated how changing n (from 1 to 50) can affect the value of IPD for all 92 food webs. 

For all food webs, as n increases, IPD decreases and stabilizes to a fixed value, and the same 

trend is observed for IPDw (Fig. 4.5). As for the relationship between both IPDs and each of 

those network properties examined, the sign of Kendall correlation coefficient remains the 

same, but its magnitude stabilizes to a fixed value as n increases (Fig. 4.6 and Fig. 4.7). We 

note that food web diameter varies from 2 to 5 for those 92 food webs we analyzed  
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Figure 4. 5 Effect of changing the number of steps n on IPD and IPDw. 

 

(Please see the corresponding sub figure in Figure 4.1); and both IPD and IPDw, as well as their 

correlation coefficients with other network properties, stabilize at n values that are much larger 

than the values of food web diameter (Fig. 4.5, Fig. 4.6 and Fig. 4.7). 

 

4.4 Discussion 

Some general pattern emerges from our analysis. First, our proposed diversity index correlates 

negatively with connectance and positively with network diameter. This information indicates 

that the more compactly organized a food web is, the less diverse is the  
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Figure 4. 6 Effect of changing the number of steps n on the correlation (Kendall) between IPD and various network 

properties. 
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Figure 4. 7 Effect of changing the number of steps n on the correlation (Kendall) between IPDw and various 

network properties. 
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results in similarity in their interaction patterns. In a sparsely connected food web, however, 

species are far apart in terms of network distance, and they occupy very different network 

positions. This then results in higher dissimilarity in their interaction patterns. Although the 

strong (negative) correlation between interaction diversity and connectance suggests that one 

can be used as a proxy of the other, we need to emphasize that they are based on very different 

concepts and provide different kinds of information. Connectance describes the structure of a 

food web and interaction diversity measures the dissimilarity between species’ interaction 

patterns; these two types of information are important in their own right and do not make one 

another redundant. In fact, connectance should be viewed as a mechanism that explains the 

observed level of interaction diversity in a food web. 

 

Second, our diversity index correlates negatively with network cohesion. This implies that a 

robust food web tends to have lower interaction diversity than a less robust food web. This is 

because, in a less diverse food web, species are similar in their interaction patterns. Therefore, 

if one species is lost, it is easily compensated for by other similar species. Thus, in a less diverse 

food web, the level of species redundancy should be higher. Positional redundancy (i.e., 

overlapping trophic roles) is prevalent in many food webs. As Lai et al. (2012) have 

demonstrated, existing ecosystems tend to be redundant in central or important species. They 

suggest that this pattern of organization is required to render an ecosystem resilient to species 
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loss. Redundancy has also been found to be a common feature in other biological networks 

such as metabolic networks, gene networks, and biochemical networks (Stelling et al. 2002, 

Liu et al. 2007, Tian et al. 2020). 

 

Third, interaction diversity is also positively associated with the number of clusters in a food 

web. Food webs are compartmentalized and consist of modules of interacting species (Guimerà 

et al. 2010, Stouffer and Bascompte 2011). Intuitively, a food web with many modules implies 

greater heterogeneity in its structural organization. There should therefore be greater diversity 

in the network position of species than in a food web with few modules. This then results in a 

natural and positive association between interaction diversity and the number of clusters in a 

food web. Moreover, we found that interaction diversity is positively correlated with network 

modularity. Network modularity measures how well-defined clusters are by examining how 

links are distributed within clusters relative to between clusters (Clauset et al. 2004, Newman 

2006). Our results, therefore, imply that modules or clusters are better defined in a functionally 

more diverse food web. 

 

Our analysis shows that interaction diversity has some positive correlation with trait-based 

functional diversity, but their relationship is far from perfect. Intuitively, a positive correlation 

is expected as species with similar traits may have similar interactions with other species; 
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however, other factors may lower such a correlation. For instance, functional traits might not 

be strongly linked to feeding behavior; or competition may drive species with similar traits to 

interact with different species. Moreover, some traits can be shared by species in different 

trophic groups; or species in the same trophic group can differ greatly in characteristics such 

as body sizes. In addition, indirect interactions in a complex food web might alter the 

relationship between trophic functions and traits. All in all, our result suggests that interaction 

diversity provides a complementary view of functional diversity to those trait-based ones.  

 

We conclude with possible research directions. First, we can combine the conventional concept 

of functional diversity with what we have proposed here. Many functional diversity indices in 

the literature are weighted measures where relative abundances of species are often taken into 

account (Laliberté and Legendre 2010, Mammola et al. 2021). We can borrow this concept and 

multiply each pairwise dissimilarity (i.e., equation (4.1)) by the relative abundance of the 

species pair involved, and then sum them up to obtain a weighted version of IPD or IPDw. We 

note that IPDw is already a weighted version of IPD by incorporating trophic weights. We 

speculate that species abundance and trophic weight may be related quantities; therefore, how 

to interpret a weighted version (based on relative abundance) of IPDw warrants further 

investigation.  Second, one can quantify the network characteristics of each species by using 

measures borrowed from social network analysis. For example, the position of a node in a 
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network can be characterized by using degree-centrality, closeness centrality, betweenness 

centrality and others (Wasserman and Faust 1994, Jordán et al. 2006). Each of these can be 

considered as a trait for a species, and the conventional functional diversity measures can then 

be calculated directly on those traits; and these can potentially be measures for quantifying the 

diversity in species’ network positions in a food web. In Chapter 5, we present new network-

based measures of functional diversity by considering this new idea. Finally, we note that there 

are other ways of quantifying positional dissimilarity in networks (White and Reitz 1983, 

Borgatti and Everett 1989, Yodzis and Winemiller 1999). The approach we have adopted in this 

study is based on the ecological concept of species interactions. In Chapter 6, we will employ 

the concept of regular equivalence as an alternative approach to positional dissimilarity and 

develop other network-based measures of functional diversity. 
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Chapter 5 Functional diversity from a network perspective II: a 

centrality-based functional diversity index 

 

5.1 Introduction 

Species’ ecological functions are related to their morphological traits (Tilman et al. 1997, Flynn 

et al. 2011), and it has been suggested that trait diversity among species can be a proxy to 

functional diversity in an ecosystem (Villéger et al. 2008, Mammola et al. 2021). Each species 

can be characterized by several morphological traits (e.g., body size, weight, color and 

mobility), and conventional approaches to functional diversity mainly concern with how 

species are distributed in a multi-dimensional trait space (Petchey and Gaston 2002, Villéger 

et al. 2008). Several indices have been developed to measure different facets of functional 

diversity from such a distribution (Laliberté and Legendre 2010, Pla et al. 2011, Mammola et 

al. 2021). These include how to quantify the range or boundary of the trait space (Mason et al. 

2003, Cornwell et al. 2006, Layman et al. 2007), how even and/or dispersed species are in this 

trait space (Mouillot et al. 2005, Villéger et al. 2008, Laliberté and Legendre 2010), and how 

similar species are in their morphological traits (Rao 1982, Botta-Dukát 2005). 

 

One aspect of species function is how species interact with each other. A food web is the 

simplest representation of inter-specific interactions as it depicts who eats whom in an 

ecosystem (Pimm 1982). A food web, in essence, is a network where nodes and links 
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respectively represent species and their trophic interactions, and species’ network positions can 

be quantified in different ways by using methods borrowed from (social) network analysis 

(Wassermann and Faust 1994). These range from local measures that simply count the number 

of neighbors a node has to more global measures that use the information on the entire network 

(Jordán et al. 2006). We argue that a species can also have various traits in a network sense, 

and for convenience, we call those as their network traits. We further argue that how species 

are distributed within this multi-dimensional network trait space can also be a proxy to the 

network-based functional diversity in an ecosystem. Thus, following the research idea from the 

end of Chapter 4, we propose in this chapter a new network-based concept of functional 

diversity by combining conventional measurements of functional diversity with network 

analysis. To be more specific, for each of 92 food webs from Chapter 2, we quantify the 

network position of individual species in a food web by using several centrality indices, and 

regard them as various network traits. We then apply conventional methods of functional 

diversity on those network traits just like one would have done for morphological traits. For 

our convenience, we refer to the resulting network-based indices as centrality-based functional 

diversity indices. Furthermore, we conduct the same analysis as those in Chapter 4, and 

investigate the relationship between our new functional diversity indices and several global 

network properties. Finally, we also compare these centrality-based functional diversity indices 

with their interaction-based and morphological trait-based counterparts to assess their novelty. 
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5.2 Material and method 

5.2.1 Food web data analyzed in this study 

We analyzed 92 food webs in this study. Please refer to Chapter 2 for basic information on 

these food webs. 

 

5.2.2 Centrality indices 

Centrality indices quantify from different perspectives the network position of each species in 

a food web. There are eight centrality indices in this study, and they were calculated by using 

R package igraph ver1.3.4. A brief description for those indices is as follows. 

 

a) Degree centrality (DC) (Wassermann and Faust 1994). This is the number of neighbors a 

node has in a network. Here, it is the total number of predator and prey species of one species.  

 

b) Closeness centrality (CC) (Wassermann and Faust 1994). This measures how close a node 

is to all other nodes in a network: 

𝐶𝐶𝑖 =
1

∑ 𝑑𝑖𝑗
𝑁
𝑗=1

,         (5.1) 

where N is the number of nodes and dij is the length of the shortest path between node i and 

node j. A node with a large CC value indicates that it is close to many other nodes in the same 

network. 
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c) Betweenness Centrality (BC) (Freeman 1977, Wassermann and Faust 1994). This index 

measures how frequently a node i appears on all shortest paths between node pairs: 

𝐵𝐶𝑖𝑗 = ∑
𝑔𝑗𝑘,𝑖

𝑔𝑗𝑘
𝑗>𝑘 ,        (5.2) 

where gjk is the number of shortest paths between node pair j and k, and gjk,i is the number of 

these shortest paths that contain node i. 

 

d) Eigenvector Centrality (EC) (Bonacich 2007). This is an extension of degree centrality. 

Degree centrality and eigenvector centrality differ in how neighbors contribute to a node’s 

centrality. In the former, a node i’s neighbors contribute equally; but in the latter, each neighbor 

j contributes an amount proportional to j’s eigenvector centrality. Let A denotes the adjacency 

matrix representing a network with an element Aij=1 if nodes i and j are connected, then 

eigenvector centrality for node i (ECi) is: 

𝜆 𝐸𝐶𝑖 = ∑ 𝐴𝑖𝑗 𝐸𝐶𝑗
𝑁
𝑗=1 ,       (5.3) 

or alternatively in matrix notation: 

𝜆𝐄 = 𝐀𝐄,         (5.4) 

where E is an eigenvector vector containing eigenvector centrality of individual nodes and λ is 

the associated eigenvalue. In plain language, eigenvector centrality of a node simply describes 

its importance by taking into account how important its neighbors are. 
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e) Alpha centrality (AC) (Katz 1953). Also known as Katz centrality, it measures the influence 

of a focal node on all others in the same network. Here, a node’s influence diminishes with 

distance; thus, its immediate neighbors receive stronger influence than more distant ones. It 

can be formulated as: 

𝐴𝐶𝑖 = ∑ ∑ 𝛼𝑘𝐴𝑖𝑗
𝑘𝑁

𝑗=1
∞
𝑘=1 ,       (5.5) 

where k is the length of a given distance between node i and node j, while α is an attenuation 

factor. 

 

f) Average nearest neighbor degree (KNN) (Newman 2002). This is simply the average degree 

centrality of a node i’s neighbors: 

𝐾𝑁𝑁𝑖 =
1

𝐷𝐶𝑖
∑ 𝐴𝑖𝑗 𝐷𝐶𝑗

𝑁
𝑗=1 ,       (5.6) 

where DCi and DCj are the degree centralities for node i and node j respectively. In essence, 

KNN measures the connectivity of the immediate neighborhood of a focal node. 

 

g) Harmonic Centrality (HC) (Marchiori and Latora 2000). This is also a measure of how close 

a node is to all other nodes in a network. It is similar to closeness centrality, but here the lengths 

of shortest distances between nodes are being inversed first before the summation of those 

inversed values: 

𝐻𝐶𝑖 = ∑
1

𝑑𝑖𝑗

𝑁
𝑗=1,𝑗≠𝑖 .        (5.7) 
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h) Kleinberg's centrality (KC) (Kleinberg 1999). KC is obtained by calculating the principal 

eigenvector of the matrix (AT)A, and nodes that serve as hubs in a network have high KC scores. 

Again, A is the adjacency matrix representing a network and AT is its transpose. 

 

5.2.3 Relationship between centrality indices 

Several studies have examined the relationship between various centrality indices and have 

found that some indices are more closely related than others (Jordán et al. 2006, Oldham et al. 

2019, Endrédi et al. 2021). These findings suggest that some centrality indices are redundant 

in terms of the information they can provide. Therefore, we needed to elucidate the relationship 

between those eight centrality indices in this study. This was a necessary step as some measures 

might be similar, and including similar measures in subsequent analysis might produce a biased 

result. As such we did the followings. For each food, we quantified the centrality values for 

each species by using all eight centrality indices as mentioned above. We then calculated 

Kendall’s rank correlation coefficient between every two centrality indices. Doing this for all 

92 food webs, we then investigated how the correlation between every two centrality indices 

varies across all 92 food webs. If those correlation coefficients don’t vary much, then we can 

pool all results together and compute a correlation matrix, where each element of this matrix 

represents the averaged correlation coefficient between a particular pair of centrality indices 

across those 92 food webs. Such a correlation matrix was then subjected to hierarchical cluster 
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analysis to identify clusters of centrality indices. In the end, we then chose one centrality index 

from each cluster, and used the selected centrality indices for the subsequent functional 

diversity analysis. 

 

5.2.4 Functional diversity indices 

Those M chosen centrality indices were regarded as M network traits. We then carried out 

functional diversity analysis on M selected network traits. Here, each species is a data point in 

a M-dimensional trait space, and its position is defined by its M trait values (i.e., its coordinates). 

We used R package fundiversity Ver 0.2.1 to calculate the following functional diversity indices; 

each quantifies a different facet of functional diversity from the M-dimensional trait space. 

 

a) Functional richness (Cric) (Mason et al. 2003, Cornwell et al. 2006, Layman et al. 2007). 

This is the volume of the convex hull encapsulating data points in the M-dimensional trait space.  

 

b) Functional evenness (Ceve) (Mouillot et al. 2005, Villéger et al. 2008). A minimum spanning 

tree can be constructed linking all data points in the M-dimensional trait space. A tree branch 

linking two data points represents the trait distance between the two species involved. If all tree 

branches are of the same length, this indicates that species are evenly spaced out in the trait 

space. In contrast, if tree branches vary drastically, this indicates that species are clustered in 

certain part(s) of the trait space, or some sections of the trait space are void of species.  
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c) Functional dispersion (Cdis) (Laliberté and Legendre 2010). Here, a centroid is located in 

the M-dimensional trait space, where each of its coordinates is the average of the corresponding 

trait. Functional dispersion is the mean distance between this centroid and a data point.  

 

d) Rao’s Q (Craoq) (Rao 1982, Botta-Dukát 2005). This is an entropy-based measure. First, a 

distance matrix is constructed where an ij-th element is the Euclidean distance between species 

i and species j in the M-dimensional trait space. Rao’s Q is the average distance between two 

species if we sample two species with replacement from the ecosystem. 

 

5.2.5 Global network properties 

Following the analysis from Chapter 4, we quantified eight global network properties and 

assessed their relationship with our centrality-based functional diversity indices. Details of 

those global network properties are in section 4.2.3, and briefly they are: number of species 

(N), number of trophic links (L), connectance (C), network diameter (diam), maximum trophic 

position (TPmax), network cohesion (coh), number of clusters (clu) and network modularity 

(mod). 
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5.3 Results 

5.3.1 Relationship between centrality indices 

For each of 92 food webs, we calculated eight above-mentioned centralities indices for 

individual species. For each food web and for each centrality index, we standardized each value 

by subtracting from the mean and divided this by the standard deviation; we then pooled all 

standardized values from all 92 food webs together. Using these standardized values, we then 

examined the relationship between every pair of centrality indices (Fig. 5.1). From the pooled 

results, we can observe that the majority of pairs of centrality indices show certain amounts of 

association. However, there are exceptions. We can observe that alpha  
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Figure 5. 1 Scatter plots showing the relationship between pairs of centrality indices.  
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Figure 5.1 (continued) Scatter plots showing the relationship between pairs of centrality indices.  
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Figure 5.1 (continued) Scatter plots showing the relationship between pairs of centrality indices. 

 

centrality (AC) and average nearest neighbor degree (KNN) show no association with other 

centrality indices. 

 

For each food web, we also calculated Kendall rank correlation coefficient between every pair 

of centrality indices, and examined how each of these correlation coefficients varied across all 

92 food webs (Fig. 5.2). We can observe that although most correlation coefficients  
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Figure 5. 2 Distribution of Kendall rank correlation coefficient between pairs of centrality indices.  
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Figure 5.2 (continued) Distribution of Kendall rank correlation coefficient between pairs of centrality indices. 
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Figure 5.2 (continued) Distribution of Kendall rank correlation coefficient between pairs of centrality indices. 

 

vary across all 92 food webs, they do center around particular values. However, there is only 

one exception, as correlation coefficients involving average nearest neighbor degree (KNN) 

seem to vary more than the majority of others. Thus, the relational trends between centrality 

indices seem to be consistent across all 92 food webs. 

 

For each pair of centrality indices, we then calculated the average Kendall rank correlation  
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Figure 5. 3 A cluster tree showing the relationship between various centrality indices.  

 

coefficient over those 92 food webs. This resulted in a correlation matrix, which was then 

subjected to hierarchical cluster analysis to identify clusters of related centrality indices (Fig. 

5.3). We can observe that DC, CC, and HC are closely related and form a cluster; the same can 

be said for EC and KC which form another cluster. BC, AC, and KNN respectively form their 

own clusters. Thus, we chose one centrality index from each cluster to be included as species 

traits in the subsequent functional diversity analysis: specifically, we chose DC, EC, BC, and 

AC. We omitted KNN because strictly speaking it is not a centrality index; or to be more precise, 

KNN describes the neighborhood of a node, not how central a node is in a network. 
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5.3.2 Relationship between centrality-based functional diversity and network structure 

We quantified four centrality-based functional diversity indices and eight global network 

properties for all 92 food webs. Kendall rank correlation coefficients between functional 

diversity indices and global network properties are summarized in Table 5.1. 

 

For functional richness, there are significant positive correlations with the number of species, 

number of trophic links, network diameter, maximum trophic position, number of clusters and 

network modularity. Functional richness correlates significantly and negatively with 

connectance and network cohesion. 

 

Functional evenness shows a weak and positive correlation with connectance and network 

cohesion; however, it does not correlate significantly with the remaining six network properties. 

 

Functional dispersion and Rao’s Q show similar relational tends with network properties. They 

both correlate positively and significantly with the number of species, number of trophic links, 

network diameter, maximum trophic position, number of clusters and network  
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Table 5. 1 Kendall rank correlation coefficients between centrality-based measures of 

functional diversity and eight global network properties after analyzing 92 food webs.  

 Cric Ceve Cdis Craoq 

N 0.521 (<0.001) -0.016<(0.821) 0.638 (<0.001) 0.610 (<0.001) 

L 0.341 (<0.001) 0.058<(0.414) 0.438 (<0.001) 0.412 (<0.001) 

C -0.495 (<0.001) 0.177<(0.012) -0.510 (<0.001) -0.527 (<0.001) 

diam 0.527 (<0.001) -0.078<(0.337) 0.438 (<0.001) 0.480 (<0.001) 

TP_max 0.231< (0.001) 0.127<(0.074) 0.254 (<0.001) 0.231 <(0.001) 

coh -0.590 (<0.001) 0.264(<0.001) -0.526 (<0.001) -0.550 (<0.001) 

clu 0.378 (<0.001) -0.103<(0.210) 0.417 (<0.001) 0.419 (<0.001) 

mod 0.309 (<0.001) -0.113<(0.111) 0.293 (<0.001) 0.314 (<0.001) 

 

modularity. Both functional diversity indices show significant negative correlations with 

connectance and network cohesion. 

 

5.3.3 Relationship between centrality-based functional diversity indices and other functional 

diversity indices 

We also examined the relationship between centrality-based functional diversity and 

interaction-based and trait-based functional diversity (from Chapter 4). Kendall rank 

correlation coefficients between various functional diversity indices are summarized in Table 

5.2. We can observe that centrality-based functional richness, dispersion and Rao’s Q correlate 

positively and significantly with interaction-based indices. In contrast, centrality-based 

functional evenness correlates negatively and marginally with interaction-based indices. As for 

the relationship between centrality-based and trait-based functional diversity, only centrality-

based richness correlates positively and significantly with  

Table 5. 2 Kendall rank correlation coefficients between centrality-based measures of functional diversity and 

interaction-based and trait-based measures of functional diversity after analyzing 92 food webs. 
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 Cric Ceve Cdis Craoq 

IPD 0.408 (<0.001) -0.158 (0.025) 0.388 (<0.001) 0.412 (<0.001) 

IPDw 0.327 (<0.001) -0.149 (0.035) 0.371 (<0.001) 0.383 (<0.001) 

Tric 0.358 (<0.001) -0.097 (0.174) 0.329 (<0.001) 0.351 (<0.001) 

Teve -0.268 (<0.001) -0.012 (0.863) -0.358 (<0.001) -0.324 (<0.001) 

Tdis -0.032< (0.656) 0.003 (0.962) -0.108< (0.127) -0.081< (0.251) 

TraoQ -0.044< (0.535) 0.005 (0.941) -0.124< (0.079) -0.097< (0.173) 

 

its trait-based counterpart, whereas the others do not. 

 

5.4 Discussions 

Species interact trophically forming a food web. Their network positions in a food web reflect 

their trophic functions. Thus, it is intuitive to quantify the diversity of species’ network 

positions in a food web and use this as a proxy to the functional diversity of an ecosystem. 

Network position can be measured using a host of centrality indices, and each focuses on a 

particular aspect of network position measurement (Jordán et al. 2006, Oldham et al. 2019). In 

this chapter, through the meta network analysis of 92 food webs, we selected four distinct 

centrality indices to be species network traits, and performed conventional functional diversity 

analysis on them. Out of those four centrality-based functional diversity indices, evenness is 

the only index that shows no relationship with the network structure of a food web. Functional 

richness, dispersion and Rao’s Q are consistent in how they correlate with various network 

properties. 
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First, large food webs, in terms of the numbers of species and trophic interactions, tend to have 

higher richness, dispersion and Rao’s Q. In other words, more enormous food webs are diverse 

in species’ network positions. This result is somehow expected as more nodes and links open 

up the opportunity to have various network positions in a network. Second, centrality-based 

functional richness, dispersion and Rao’s Q reflect the structural organization of a food web. A 

compactly organized food web should have high connectance, shorter network diameter and 

lower maximum trophic position; and the result shows that those food webs tend to have lower 

centrality-based functional diversity. This finding suggests that species’ network positions are 

more homogeneous in a compactly organized food web than those in a sparsely connected food 

web. Third, food webs that have many structural clusters and high network modularity tend to 

be more diverse in species’ network positions. And lastly, a food web that is robust to species 

deletion tends to have lower centrality-based functional diversity. This suggests that species in 

a robust food web tend to have similar network positions, and a natural consequence of this is 

that the loss of one species can be compensated for by similar other species, rendering higher 

food web robustness.  

 

Many of the relational trends mentioned above are also observed between interaction-based 

functional diversity and the network structure of a food web (Chapter 4 and Lin et al. 2022); 

In fact, both sets of results can be explained in a very similar fashion. Although the centrality-
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based functional diversity measurement correlates positively with the interaction-based one, 

their correlation is far from perfect. We note that both types of measures are network-related; 

the one developed in this chapter is based on the diversity of network positions while the other 

(i.e., Chapter 4) is based on the diversity in the interaction profiles of species in a food web. 

Furthermore, the one developed in this chapter is based on the topology of network structure, 

while the other incorporates ecological concepts such as competition and trophic cascade. Thus, 

both types of functional diversity measurements correlate through their network-based origin, 

but they differ in whether or not ecological concepts are incorporated. Having said this, we 

need to emphasize that centrality indices used in this chapter have little or no ecological origin 

in their development. There exist several indices that quantify the centrality of species in a food 

web (i.e., species importance) in a more ecology-orientated manner. For instance, direct and 

indirect effects of species on the whole food web (Jordán et al. 2003, Liu et al. 2010, 2020), 

keystone species indices (Jordán et al. 2006) and species trophic overlap indices (Yodzis and 

Winemiller 1999, Jordán et al. 2009, Lai et al.2015). All of these ecology-orientated centrality 

indices can also be incorporated into our framework of centrality-based functional diversity as 

the next step of future work.  

 

Species with similar morphological traits intuitive should be similar in how they interact 

trophically with others; therefore, their network positions in a food web should be similar. By 
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similar logic, an ecosystem consisting of species with very diverse morphological traits should 

be more diverse in species’ network positions; thus, trait-based and centrality-based functional 

diversity indices should be positively correlated. After analyzing 92 food webs, we found that 

centrality-based richness is the only functional diversity measure that shows a positive and 

significant correlation with its trait-based counterpart. There are possible explanations for the 

discrepancy between our intuition and the observed results. For instance, competition between 

morphologically or phylogenetically similar species might drive them to evolve to have 

different ecological niches (Webb et al. 2002, Gerhold et al. 2015); this might result in very 

different patterns of trophic interaction and different network positions in a food web (Lai et 

al. 2021). 

 

To summarize, in this chapter, we have quantified functional diversity from the perspective of 

species’ network positions in a food web. Centrality-based functional diversity is positively 

related to the size of a food web, and is dependent on how a food web is organized. Future 

studies in this research field should consider other more complicated network traits. For 

instance, a food web can be treated as a signed and direct network, and there exist other 

centrality measures for signed digraphs (Liu et al. 2010, Everett and Borgatti 2014, Liu et al. 

2020). Future studies should also consider network traits that incorporate ecological concepts 

(Jordán et al. 2006, Lai et al.2015). For instance, species have different top-down and/or 
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bottom-up effects, as well as horizontal competition effects. Lastly, given that we are dealing 

with how species are distributed in a multi-dimensional trait space, multi-variate techniques 

such as principal component analysis and multi-dimensional scaling (Mammola et al. 2021) 

can be applied for analyzing centrality-based functional diversity. 
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Chapter 6 Functional diversity from a network perspective III: a 

trophic role-based functional diversity index 

 

6.1 Introduction 

In a food web, two species that have the same connection pattern (i.e., share the same predator 

and prey species) bound to have the same interaction profiles (Chapter 4) and occupy the same 

network positions (Chapter 5). This sort of definition has one major shortcoming. Imagine, two 

basal species that don’t have any consumer species in common will have different interaction 

profiles and network positions, but intuitively their ecological roles are the same; namely, they 

are basal species or producers of an ecosystem. Trophic role of a species can be considered as 

how a species deals with the transfer of organics maters and/or energy in a food web (Pimm 

1982, Yodzis and Winemiller 1999). Species at the bottom of a food web are often producers 

or basal species that are the source of energy or organics matters. At the other end of the food 

web (i.e., the top), there are top predators acting as sink nodes as all energy or organic matters 

ultimately end up with them (we omit decomposers for simplicity). In between the top and the 

bottom layers of a food web, there is a bulk of consumer species with various (omnivorous) 

feeding patterns as they all perform the role of passing on energy or organic matters from one 

species to another via different pathways. 
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Figure 6. 1 Upper figure: a food web with species coloration that fulfills strict REGE definition. Lower figure: 

the simplified food web after species aggregation into the same color types.  

 

To reveal the role of species in an otherwise complicated network of trophic interactions, 

Luczkovich et al. (2003) applied the concept of regular equivalence to several food webs and 

elucidated their fundamental structure. Regular equivalence (REGE for short) has its root in 

1 2 3

4

7

5

9

8

6

1110

1 2,3

6

4,5

7,8,9

10,11

doi:10.6342/NTU202203106



 

74 

 

social network analysis (White and Reitz 1983, Borgatti and Everett 1989); it states that two 

nodes are regularly equivalent if they have links to the same types of nodes, as well as if they 

receive links from the same types of nodes. Note that REGE does not require these two nodes 

to have precisely the same connecting neighbors. Taken and derived from Luczkovich et al. 

(2003), Fig. 6.1 and Fig. 6.2 show a simple demonstration of REGE concept. The food web in 

Fig. 6.1 fulfills strict REGE definition; this is because species of the same type (e.g., color in 

this case) are connected to and from the same types of species. As a consequence, the food web 

can be reduced to a simpler one (i.e., the lower sub-figure of Fig. 6.1). Fig. 6.2 is a food web 

that falls short of strict REGE definition; this is because even though species 6, 7, 8, and 9 

belong to the “red” group, species 6 has different connection pattern to that for species 7, 8 and 

9. Although this food web can be reduced to a simpler one by grouping species of the same 

color together, links between the aggregated groups may only hold true for some species (dotted 

lines in the lower sub-figure of Fig. 6.2); for example, the link between the “black” group and 

the “red” group is only applicable to species 6, but not to species 7, 8 and 9. Due to the 

complexity of a food web (or a network in general), it is rarely we have species that are 

perfectly equivalent under REGE. In a more practical sense, the REGE analysis calculates the 

degree of regular equivalence between species pairs, which can be considered as similarity 

scores ranging from 0 to 1. Subtracting each similarity score from 1 thus produces a score that 

measures the dissimilarity in the role of two species.  
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Figure 6. 2 Upper figure: a food web with species coloration that does not fulfills strict REGE definition. Lower 

figure: the simplified food web after species aggregation into the same color types.  

 

Pooling all dissimilarity scores together gives us a dissimilarity matrix, which can then be used 

in a similar fashion as those in Chapter 4 to calculate the functional diversity of an ecosystem. 
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This chapter extends the future research idea from Chapter 4 and explores the potential of 

REGE concepts in quantifying functional diversity from a network perspective. For our 

convenience, we call this type of network-based concept of functional diversity as trophic role 

or REGE-based functional diversity. Specifically, three measures of functional diversity are 

proposed in this chapter. The first is to calculate the average dissimilarity between the roles of 

a species pair in a food web. The second is to use REGE to partition species into an optimal 

number of trophic role groups, and this number can be treated as a proxy for network-based 

functional diversity. The third is an extension of the second measure where we also take into 

account the number of species, total abundance, or biomass for each trophic role group and 

calculate Shannon’s diversity index as a proxy to network-based functional diversity.  

 

This chapter is organized as follows. First, in the material and method section, we present the 

REGE algorithm and how this can be modified for food webs; this is then followed by the 

formulation of three REGE-based functional diversity indices. Second, in the result section, we 

first present the distributions of these REGE-based functional diversity indices after analyzing 

92 food webs; and then we compare these results with that obtained from a random food web 

model. Also, in the result section, this chapter follows the same analysis as those in Chapters 4 

and 5: we present the relationship between our new functional diversity indices and several 

global network properties, as well as their relationship with other network-based and trait-based 
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functional diversity indices. Lastly, this chapter finishes with a general discussion. 

 

6.2 Material and method 

 

6.2.1 Food web data analyzed in this study 

Again, we analyzed 92 food webs in this study. Please refer to Chapter 2 for basic information 

on these food webs. 

 

6.2.2 Measuring trophic role similarity between species 

Borrowed from social network analysis (White and Reitz 1983, Borgatti and Everett 1989), we 

present the REGE algorithm and show how the extent of regular equivalence between two 

nodes can be quantified for a directed network. REGE is an iterative algorithm, and let Rt be 

an N*N matrix where the ijth element Rt
ij represents the extent of regular equivalence between 

node i and node j at iteration t. The algorithm proceeds as follows: 

1. At iteration 0, set R0
ij=1 for all ijs, meaning all node pairs are perfectly equivalent. 

2. At iteration t+1, Rt+1
ij is determined by the following steps: 

a) Considering outgoing links only, for each (outgoing) neighbor k of node i, we find 

which (outgoing) neighbor m of node j is most equivalent to k; in other words, given k, 

we find m by maximizing the value of Rt
km. We then define a quantity Xi,k,j, which denotes 

how well the outgoing link from node i to node k can be matched by an outgoing link from 

node j, and this quantity takes the value of Rt
km. Similarly, considering outgoing links only, 
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for each (outgoing) neighbor m of node j, we find which (outgoing) neighbor k of node i 

is most equivalent to m by maximizing the value of Rt
mk. We also define a quantity Xj,m,i 

which is equal to Rt
mk. 

b) Considering incoming links only, for each (incoming) neighbor h of node i, we find 

which (incoming) neighbor n of node j is most equivalent to h by maximizing the value 

of Rt
hn. We also define a quantity Yi,h,j, which denotes how well the incoming link from 

node h to node i can be matched by an incoming link to node j, and this quantity takes the 

value of Rt
hn. Similarly, considering incoming links only, for each (incoming) neighbor n 

of node j, we find which (incoming) neighbor h of node i is most equivalent to n by 

maximizing the value of Rt
nh; and we also define a quantity Yj,n,i which takes the value of 

Rt
nh. 

3. The extent of regular equivalence between node i and node j at iteration t+1 is: 

𝑅𝑖𝑗
𝑡+1 =

∑ 𝑋𝑖,𝑘,𝑗𝑘 +∑ 𝑋𝑗,𝑚,𝑖𝑚 +∑ 𝑌𝑖,ℎ,𝑗ℎ +∑ 𝑌𝑗,𝑛,𝑖𝑛

𝑀𝐴𝑋(∑ 𝑋𝑖,𝑘,𝑗𝑘 +∑ 𝑋𝑗,𝑚,𝑖𝑚 +∑ 𝑌𝑖,ℎ,𝑗ℎ +∑ 𝑌𝑗,𝑛,𝑖𝑛 )
,   (6.1) 

where the denominator is the maximum possible value of the numerator if node i and node j 

are perfectly equivalent; in other words, the denominator is the total number of links connected 

to and from node i and node j. We then repeat steps 2 and 3 until all REGE values stabilize, 

and define R’ to be the final REGE matrix. 

 

Luczkovich et al. (2003) extend the original REGE concept for food webs by incorporating 
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species’ dietary information. However, their method is slightly different from the original 

REGE concept. Specifically, when they compute the REGE similarity between two species, 

comparison is only made from the perspective of one of the two species; but in the original 

REGE algorithm, comparison is made from the perspective of both species. Thus, in this 

chapter, we combine both the original approach and that of Luczkovich et al. (2003). Our 

modified approach is as follows. First, we need to derive a dietary matrix Z from the original 

food web data. The ijth element of Z, namely Zij, is the proportion of species j’s diet that comes 

from species i. The REGE algorithm follows almost the same procedure as above, and for 

clarity, we re-iterate it with food web-specific modification as follows. Again, let Rt be the 

REGE matrix at iteration t. The algorithm proceeds as follows: 

1. At iteration 0, set R0
ij=1 for all ijs, meaning all species pairs are perfectly equivalent. 

2. At iteration t+1, Rt+1
ij is determined by the following steps: 

a) Considering outgoing trophic links only, for each predator k of species i, we find which 

predator m of species j is most equivalent to k. Here equivalence has two components; one 

is based on the REGE value Rt
km while the other is based on the dietary values Zik and Zjm; 

in other words, we find predator species m that not only has to be regularly as equivalent 

as possible to predator species k, but species m must also consume species j in a proportion 

similar to the way predator k consumes species i. Thus, all this amounts to finding a 

predator species m by maximizing the product of Rt
km and Min(Zik, Zjm)/Max(Zik, Zjm), and 
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then we equate Xi,k,j to the value of this product. Similarly, considering outgoing trophic 

links only, for each predator m of species j, we find which predator k of species i is most 

equivalent to m by maximizing the product of Rt
mk and Min(Zjm, Zik)/Max(Zjm, Zik); and we 

define a quantity Xj,m,i which is equal to the value of this product. 

b) Considering incoming trophic links only, for each prey h of species i, we find which 

prey n of species j is most equivalent to h by maximizing the product of Rt
hn and Min(Zhi, 

Znj)/Max(Zhi, Znj); and we define a quantity Yi,h,j which is equal to the value of this product. 

In other words, we find a prey species n that is regularly as equivalent as possible to 

species h, and species j must consume prey species n in a proportion similar to species i 

consumes prey species h. Similarly, considering incoming trophic links only, for each prey 

n of species j, we find which prey species h of species i is most equivalent to n by 

maximizing the product of Rt
nh and Min(Znj, Zhi)/Max(Znj, Zhi); and we also define a 

quantity Yj,n,i which takes the value of this product. 

3. The extent of regular equivalence between species i and species j at iteration t+1 is still given 

by Eq. (6.1). Again, we repeat steps 2 and 3 until all REGE values stabilize, and define R’ to 

be the final REGE matrix. 
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6.2.3 Three REGE-based functional diversity indices 

The REGE matrix R’ is a similarity matrix, it can be converted to a dissimilarity matrix by 

subtracting each element of R’ from 1, and this results in a dissimilarity matrix D: 

𝐃 = 𝐉 − 𝐑′,        (6.2) 

where J is a matrix of ones that has the same dimension as R’. Below we propose three REGE-

based functional diversity indices. 

 

a) Average dissimilarity in species’ trophic roles (TRD) 

Here, from matrix D, calculating the average value of its upper (or lower) triangle gives the 

average dissimilarity in species’ trophic roles: 

𝑇𝑅𝐷 =
∑ ∑ 𝐷𝑖𝑗

𝑁
𝑗>i

𝑁
𝑖=1

(𝑁2−𝑁)/2
.        (6.3) 

A large TRD value indicates that species differ greatly in their trophic roles, whereas a small 

TRD value shows homogeneity in species’ trophic roles. 

 

b) Number of trophic role groups (TRN) 

One can carry out hierarchical cluster analysis by using REGE matrix R’ and partition species 

into different clusters or trophic role groups. Ideally, we would expect species pairs in the same 

trophic role groups to have large REGE values (i.e., they have similar trophic roles), whereas 

those pairs in different groups should have small REGE values (i.e., they have different trophic 
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roles). The method of Luczkovich et al. (2003) finds the optimal number of trophic role groups 

in a food web as follows. First, given a partition of species into M trophic role groups, we 

define a binary dummy variable Wij to indicate whether species pair ij are in the same groups 

or not (i.e., 1 for “yes” and 0 for “no”). Second, associated with each species pair ij is the REGE 

value R’ij measuring the extent of regular equivalence between species i and species j. Third, 

we then carry out a regression analysis using Wij as the explanatory variable and R’ij as the 

dependent variable and then calculate the R-squared value. The R-squared value from a 

regression analysis indicates the percentage of the variation in R’ij that can be explained by Wij; 

thus, the optimal partition of species should correspond to the largest R-squared value, and TRN 

is the number of trophic role groups resulted from this analysis. 

 

c) A Shannon diversity-based index (TRS) 

After finding the optimal number of trophic role groups (i.e., TRN), we can employ the Shannon 

diversity index as a measure of network-based functional diversity:  

𝑇𝑅𝑆 =
− ∑ 𝑝𝑖 ln(𝑝𝑖)𝑇𝑅𝑁

𝑖=1

ln (𝑇𝑅𝑁)
,       (6.4) 

where TRN is the optimal number of trophic role groups and pi is the proportion of certain 

quantity (e.g., total abundance, total biomass or total number of species) in the ith group. In this 

study, we only have the total number of species in a food web available to us; thus, pi is the 

proportion of a total number of species belonging to the ith trophic role group: 
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𝑝𝑖 =
𝑛𝑖

𝑁
,        (6.5) 

where N is the total number of species in the food web, and ni is the number of species in the 

ith trophic role group. TRS in essence measures how evenly species are being distributed across 

different trophic role groups. 

 

6.2.4 Global network properties 

Again, following the analysis from Chapter 4, we quantified eight global network properties 

and assessed their relationship with our REGE-based functional diversity indices. Details of 

those global network properties are in section 4.2.3, and briefly they are: number of species 

(N), number of trophic links (L), connectance (C), network diameter (diam), maximum trophic 

position (TPmax), network cohesion (coh), number of clusters (clu) and network modularity 

(mod). 

 

6.3 Results 

We first present the result for one demonstrative food web, namely the Great Barrier Reef 

ecosystem (GBR) in Australia (i.e., the food web named “FW15” in Chapter 2), and then we 

present the result from our meta-analysis on all 92 food webs. 
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6.3.1 A demonstrative result using the GBR food web 

We subjected the GBR food web to REGE analysis and constructed a cluster tree showing the 

relationship between species (Fig. 6.3). We partitioned species into different numbers of trophic 

role groups, from 2 up to 16 groups; and for each partitioning, we carried out the regression 

analysis as mentioned in the material and method section to calculate the corresponding R-

squared value. Fig. 6.4 shows the relationship between the number of trophic role groups and 

their respective R-squared values. We can observe that, for GBR food web, the largest R-square 

value occurs at nine trophic role groups (Fig. 6.4), and thus we partitioned species into nine 

groups according to this optimal partition (Fig. 6.3). We organized the GBR food web with 

species in the same trophic role grouped together in order to reveal the fundamental trophic 

structure of the GBR food web (Fig. 6.5). At the bottom of the GBR food web, there are 

Benthau, Decomp and Phyto forming the basal group (light green). At the top (or near the top) 

of the food web there are three groups: one for Turtle (purple) which mainly consumes the 

basal group (light green) and the lower-level group (green), one for Lgroup (brown) which 

mainly consumes lower (green) and mid-level groups (orange), and one for Lshark, Seabird 

and Scom (red) which almost consume everything  
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Figure 6. 3 Cluster tree of GBR food web after carrying out REGE analysis. Color boxes represent the optimal 

partition of species into different trophic role groups.  

 

 

 

 

Keys:

Benthau: Benthic autotrophs

Bmoll: Benthic molluscs/worms

Ceph: Cephalopods

Crus: Crustaceans

Decomp: Decomposer/microfauna

Echino: Echinoderms

Fishh: Fish herbivore

Lfishc: Large fish carnivore

Lgroup: Large groupers

Lschool: Large schooling fish

Lshark: Large sharks/rays

Mende: M. endeavouri

Pescul: P. esculentus

Phyto: Phytoplankton

Plongi: P. longistylus

Prown: Other prawns

Scom: Scombrids/jacks

Seabird: Sea birds

Sess: Sessile animals

Sfisho: Small fish omnivore

Sschool: Small schooling fish

Turtle: Turtle

Zoopl: Zooplankton
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Figure 6. 4 Relationship between R-squared value and the number of trophic role groups for the GBR food web. 

Red line indicates the optimal number of groups. 

 

except for the basal group and the turtle. The average REGE dissimilarity of the GBR food 

web (TRD) is 0.804, and the number of trophic role groups (TRN) is 9, with the evenness of 

species distribution in different trophic role groups (TRS) equal to 0.935. 

 

6.3.2 Distribution of TRD, TRN and TRS for all 92 food webs 

Fig.6.6a shows the distribution of TRD for all 92 food webs analyzed in this study. The 

distribution has a mean TRD of 0.817 and ranges from a minimum of 0.692 to a maximum of 

0.942. Fig. 6.6b shows the distribution of TRN for the same 92 food webs and it is skewed to  
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Figure 6. 5 A simplified representation of the GBR food web after aggregating species into various trophic role 

groups (indicated by different colors). 

 

the left. This distribution has a median of 5 trophic role groups, and the minimum and the 

maximum are 3 and 14, respectively. Fig. 6.6c shows the distribution of TRS and it is slightly 

skewed to the right. The distribution has a median of 0.886, with the minimum and the 

maximum equal to 0.602 and 0.992, respectively. 
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Fishh: Fish herbivore

Lfishc: Large fish carnivore

Lgroup: Large groupers

Lschool: Large schooling fish

Lshark: Large sharks/rays

Mende: M. endeavouri

Pescul: P. esculentus

Phyto: Phytoplankton

Plongi: P. longistylus

Prown: Other prawns

Scom: Scombrids/jacks

Seabird: Sea birds

Sess: Sessile animals

Sfisho: Small fish omnivore

Sschool: Small schooling fish

Turtle: Turtle

Zoopl: Zooplankton

doi:10.6342/NTU202203106



 

88 

 

 

Figure 6. 6 Frequency distributions for TRD, TRN and TRS after analyzing 92 food webs. 

 

6.3.3 Comparison with a random food web model 

For each food web, we constructed random food webs by using the cascade model (Cohen et 

al. 1990, 1993) with the observed number of species and the observed connectance value. We 

then calculated TRD, TRN and TRS for those random food webs and compared them with the 

corresponding observed values. Fig. 6.7a shows the distribution of TRD after simulating the 

cascade model 100 times and the position of the observed TRD for all 92 food webs. We can 

see that the observed TRD is greater than the median of the simulated TRDs for all food webs; 

furthermore, the observed TRDs are all greater than the upper bounds of their respective 95%  
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Figure 6. 7 Distributions for a) TRD, b) TRN and c) TRS after 100 simulations of the cascade model for each 

food web. d) is the distribution for TRS after 100 simulations of random species partition for each food web. Red 

dots are observed TRD, TRN and TRS. 

 

confidence intervals. Fig. 6.7b shows the result for TRN where 88 food webs have the observed 

value greater than the median of the simulated ones; moreover, 73 food webs have their 

observed TRN greater than the upper bound of the 95% confidence interval. Fig. 6.7c shows 

the result for TRS, where 62 food webs have the observed value being greater than the median 
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of the simulated values, and 30 food webs have a lower observed value than the median of the 

simulated value. In contrast to TRD and TRN, the TRS for 77 food webs falls within the 95% 

confidence interval and is indistinguishable from the simulated values.  

 

Although the result for TRS indicates the observed value is well-predicted by the cascade model 

for most food webs, it remains to be seen whether the observed TRS of a food web is any 

different from the random assignment of species into different trophic role groups. To this end, 

we constructed a species partition model where species have an equal probability of being 

assigned to any trophic role group; in other words, we randomly assigned N species to TRN 

trophic role groups, and then calculated TRS value for this partition. We construed such a 

random partition model 100 times for each food web. Fig. 6.7d shows the distributions of 

simulated TRS for 92 food webs as well as the observed TRS values; and we can observe that 

most food webs have their observed TRS indistinguishable from the simulated values. In fact, 

the observed TRS for 87 food webs falls within the 95% confidence interval derived from the 

random partition model. This suggests that for almost all food webs analyzed in this study, the 

evenness of species distribution among trophic role groups is no different to a random partition 

model. 
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Table 6. 1 Kendall rank correlation coefficients between REGE-based functional diversity indices and various 

global network properties after analyzing 92 food webs. 

 TRD TRN TRS 

N -0.084 <(0.244) 0.050< (0.514) -0.337 (<0.001) 

L -0.243 (<0.001) -0.110< (0.145) -0.391 (<0.001) 

C -0.465 (<0.001) -0.422 (<0.001) -0.088 <(0.217) 

diam 0.433 (<0.001) 0.401 (<0.001) 0.065 <(0.423) 

TP_max -0.162 <(0.023) -0.021< (0.777) -0.213 <(0.003) 

coh -0.238 (<0.001) -0.341 (<0.001) 0.144< (0.044) 

clu 0.078 <(0.345) 0.325 (<0.001) -0.043< (0.606) 

mod 0.522 (<0.001) 0.325 (<0.001) 0.233< (0.001) 

 

6.3.4 Relationship with global network properties 

We calculated the Kendall rank correlation coefficients between the three REGE-based 

functional diversity indices and eight global network properties (Table 6.1). TRD and TRN 

show similar correlation patterns with global network properties. First, TRD and TRN seem to 

be independent of system size or the number of species (N). Second, they correlate negatively 

and significantly with connectance (C) and network cohesion (coh). Third, they correlate 

positively and significantly with network diameter (diam) and modularity (mod). Fourth, 

although both TRD and TRN show a negative correlation with the number of trophic links (L) 

and the maximum trophic position (TP_max), only correlations involving TRD are significant. 

Lastly, correlation coefficients between TRD, TRN, and the number of clusters (clu) are all 

positive, but only the one involving TRN is significant. In contrast to TRD and TRN, TRS shows 

rather different correlation patterns with global network properties. TRS shows a negative and 

significant correlation with the numbers of species (N) and trophic links (L) and  
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Table 6. 2 Kendall rank correlation coefficients between REGE-based functional diversity indices and other 

network-based and trait-based indices after analyzing 92 food webs. 

 TRD TRN TRS 

Tric 0.208< (0.003) 0.418 (<0.001) 0.055< (0.442) 

Teve 0.264 (<0.001) 0.191< (0.011) 0.402 (<0.001) 

Tdis 0.400 (<0.001) 0.316 (<0.001) 0.327 (<0.001) 

TraoQ 0.385 (<0.001) 0.321 (<0.001) 0.339 (<0.001) 

IPD 0.566 (<0.001) 0.431 (<0.001) 0.167< (0.018) 

IPDw 0.460 (<0.001) 0.286 (<0.001) 0.018< (0.800) 

Cric 0.179< (0.012) 0.302 (<0.001) -0.149< (0.035) 

Ceve -0.006< (0.933) -0.138< (0.067) 0.018< (0.798) 

Cdis 0.164< (0.020) 0.237< (0.002) -0.182< (0.010) 

Craoq 0.172< (0.015) 0.270 (<0.001) -0.167< (0.019) 

 

maximum trophic position (TP_max); while it shows a weak and positive correlation with 

network cohesion (coh) and modularity (mod). 

 

6.3.5 Relationship with other functional diversity indices 

We also calculated the Kendall rank correlation coefficients between REGE-based indices and 

other functional diversity indices (Table 6.2). Again, TRD and TRN show similar correlation 

patterns as they have a significant and positive correlation with most other functional diversity 

indices; in particular, they show the strongest correlation with IPD (i.e., Kendall’s τ=0.566 and 

0.431) and no significant correlation with Ceve. TRS only shows a significant and positive 

correlation with Teve, Tdis, and TraoQ, whereas it either has a weak or non-significant 

correlation with other remaining functional diversity indices. 
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6.4 Discussion 

This chapter presents three network-based functional diversity indices using the information 

on the trophic role of species in a food web. First, TRD measures the average dissimilarity in 

the trophic roles of two species. Second, TRN is the number of trophic role groups that 

maximizes the between-group dissimilarity while at the same time minimizing the within-

group dissimilarity. Third, TRS quantifies the evenness of species partition into trophic role 

groups. Like interaction-based (Chapter 4) and centrality-based (Chapter 5) functional 

diversity indices, TRD and TRN correlate with a certain network structure of a food web. 

Sparsely connected food webs and those with large diameter, high network modularity, and 

low robustness property, tend to have higher TRD and TRN. Like Ceve, which is also an 

evenness-related measure, TRS does not correlate with network structure of a food web in a 

manner that can be explained with a clear mechanism. One peculiar result from our analysis is 

the relationship between maximum trophic position (i.e., TP_max) and REGE-based functional 

diversity. Intuitively, a food web with many trophic levels should have a larger TP_max and 

also should have diverse trophic roles; therefore TP_max in theory should correlate positively 

with TRD or TRN. However, such relationships were not observed from our analysis. We 

speculate that in many food webs there are cross-level trophic links connecting various trophic 

levels, and this might reduce the dissimilarity between species’ trophic roles. This might then 

obscure the relationship between TP_max and REGE-based functional diversity. 
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We also compared the observed REGE-based functional diversity of real food webs with those 

derived from random food webs. Our results show that real food webs seem to have higher 

average trophic role dissimilarity and more trophic role groups than random food webs have. 

Rather surprisingly, it appears to be no difference between real and random food webs in terms 

of how evenly species are being partitioned into trophic role groups. In other words, trophic 

role groups in real food webs are more or less equal in size, or there is a lack of dominant 

trophic role groups in real food webs. This phenomenon can be explained from the perspective 

of food web robustness (Dunne and Williams 2009) and species redundancy (Lai et al. 2012) 

as follows. If a food web has trophic role groups that vary disproportionately in their group 

sizes such that some groups consist of only one species, then the loss of one species from those 

small groups will not be compensated for and this results in the collapse of the food web (due 

to the lack of certain trophic roles pertained to these extinct groups). In contrast, in a food web 

with equally abundant trophic role groups, the loss of one species can be easily compensated 

for by another species that performs the same trophic role, and this ensures the proper 

functioning and integrity of the food web. 

 

Finally, we conclude with potential research directions. First, REGE is a very general concept 

that defines the trophic role of species, and this can be problematic. For instance, two top 

predators, one with many prey species whereas the other only has one, may still be in the 
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trophic role group according to REGE. But clearly, the first predator bounds to exert wider 

competitive effects and top-down control on others than the second predator does. In other 

words, although these two predators perform the same trophic role, but their effects on other 

species are clearly different. How to incorporate information on species interaction (Lin and 

Liu 2021, Lin et al. 2022) into REGE-based functional diversity measurement remains as an 

open question. Second, many species of these 92 food webs analyzed in this study are trophy 

species (i.e., aggregation of several species). Aggregating species information and the 

resolution of food webs (Martinez 1991, Jordán et al. 2018) are two issues that need to be 

examined. These might not be serious issues for TRD and TRS as they both are not correlated 

with the number of species, but for TRS they can be problematic. Third, we note that there are 

other methods for measuring trophic role similarity/dissimilarity between species. For instance, 

the additive trophic similarity proposed by Yodzis and Winemiller (1999) measures the degree 

of overlap between the preys and the predators of two species. Future research on trophic role-

based functional diversity measurement should consider such an approach. 
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Chapter 7 Conclusion 

 

In this thesis, we have explored two topics in food web research. The first topic is the 

development of a new measure for species uniqueness. This approach requires one to quantify 

the interaction structure of a food web, which records the average effect of one species on 

another up to a predefined number of steps; then, one computes a distance matrix by comparing 

row pairs of the interaction structure matrix, and the row sums of this distance matrix are then 

the uniqueness values of species in a food web. Such an approach produces results almost 

identical to that proposed by Lai et al. (2015) while omitting the need to predefine the cut-off 

effect threshold and reducing a significant amount of computation time. However, our approach 

is not without its shortcomings. Like the earlier approaches of Jordán et al. (2009) and Lai et 

al. (2015), our approach also needs to predefine the number of steps up to which indirect effects 

are to be quantified in order to construct the interaction structure of a food web. A future study 

should consider ways to avoid the need for this parameter, but how this can be achieved is not 

clear to us. One can consider the case where effects diminish with path length, but this still 

requires an attenuation parameter. Having said this, our approach outlines a basic framework 

for the future development for species uniqueness in food webs. For example, one can use 

network geodesic matrix instead of interaction structure matrix for the relationship between 

species, and other measures such as cosine similarity can be used to compute the distance 
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matrix. A systematic approach to explore all those possibilities is essential to compare results 

derived from them. Furthermore, since species interact trophically in a food web, effects 

between species can be positive and negative. Future work on species uniqueness should 

consider how to incorporate signed effects. 

 

The second topic of this thesis is the development of network-based functional diversity of an 

ecosystem. This thesis proposes three different types of measurement. The first is based on the 

interaction structure of a food web, where functional diversity is the average dissimilarity of 

two interaction profiles of a food web. The second is centrality-based. A set of centrality indices 

can be quantified for each species, and functional diversity is measured from properties of 

species distribution in this multi-dimensional centrality trait space. Specifically, these include 

the richness, evenness, and dispersion of this trait space, as well as Rao’s Q, which measures 

the average dissimilarity in species’ centrality traits. The third is trophic-role based. This 

approach proposes three indices: one quantifying the average dissimilarity in species’ trophic 

role, one for the number of trophic role groups in a food web, and one measuring the evenness 

of species partition into different trophic role groups. Our analysis has shown that network-

based functional diversity indices are correlated with certain structural properties of food webs. 

In general, sparsely connected food webs, those with long diameter, as well as food webs with 

lows robustness property and high network modularity, tend to have higher network-based 
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functional diversity. We note food web datasets often have resolution issues, and this is can be 

a serious problem with EwE-based food webs as species at lower trophic levels are aggregated 

into a small number of large tropho groups. Our work in this thesis is based on those EwE food 

webs, and as a future research direction it is imperative to examine how sensitive our proposed 

indices are to changes in food web resolution. We also note that conventional functional 

diversity analysis often incorporates relative species abundance into diversity indices, and our 

proposed indices at the present do not use such information. Therefore, another future research 

direction is to incorporate species abundance data into network-based functional diversity 

measurement. Furthermore, recent food web researches have shown the importance of 

combining species trait information into the analysis of food webs (Olmo Gilabert et al. 2019, 

Endrédi et al. 2021); therefore, future research should follow similar footsteps and add trait 

information into network-based functional diversity indices. This thesis mainly focuses on the 

relationship between network-based functional diversity and various structural properties of 

food webs. There are also other ecology-related information available for those food webs 

analyzed. For instance, there are information on the geographical coordinates and the type of 

ecosystem from which a food web dataset was collected. Future extensions from this thesis 

should investigate whether there exists a longitudinal gradient in network-based functional 

diversity, and how different ecosystems types differ in their network-based functional diversity. 

Moreover, accompanied with EwE datasets are demographic information on various 
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ecosystems; and future research can also examine how ecosystem properties (e.g., turn-over 

rate) are related with network-based functional diversity. Lastly, we also need to emphasize 

that the work presented in this thesis is based on food webs. There are other types of ecological 

networks that are also of ecological importance. For instance, there are various bipartite 

networks in ecology (e.g., host-parasite networks, flower-pollinator networks), and species 

interactions in those cases are very different to the trophic interactions in food webs. And as a 

possible future direction, one can extent concepts developed in this thesis to measure species 

uniqueness and systems functional diversity by considering different types of (non-trophic) 

interactions. 
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Appendix 1 Method used to quantify the interaction structure of a 

food web 

 

In this appendix we provide a detailed description on how to quantify the interaction structure 

of a food web. First, we start with the methodology developed by Müller et al. (1999) and 

Jordán et al. (2003) for a food web treated as a network with undirected and unsigned edges. 

Second, borrowed from Liu et al. (2010, 2020), we then describe how the method of Müller et 

al. (1999) and Jordán et al. (2003) can be extended for a food web treated as a network with 

directed and signed edges. Lastly, we provide an example of how interaction structure is 

quantified by using a toy food web. 

 

A.1 Interaction structure for a food web with undirected and unsigned edges 

In this section, we treat each trophic link between two species as an edge without direction and 

sign.  

 

Given a food web, let i-j be a link connecting species i to species j, then we define the one-step 

effect of species i on species j as: 

𝑎𝑖𝑗,1 =
1

𝐷𝑗
 ,           

    (A1) 
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where Dj is the number of neighbors of species j (i.e., the degree of species j). To be more 

explicit, if species i is a neighbor of species j, then aij,1 is given by (A1); if species i is not a 

neighbor of species j, then aij,1 is zero. The interpretation of one-step effect aij,1 is as follows: 

if species j is affected by one species that is one step away from it (i.e., one trophic link away 

from species j), then the probability of this influence coming from species i is aij,1. Terms such 

as “affect” and “influence” here may refer to changes in the population size of a species cause 

changes in the population size of another species. 

 

There are two simple rules in this method. First, effects are multiplicative. For a pathway 

consisting of more than one step (i.e., trophic link), we define the effect from the starting 

species on the ending species via this pathway as the product of the constituent one-step effects. 

For instance, consider a 2-step pathway i-k-j, the effect of species i on species j through species 

k is defined as: 

𝑎𝑖𝑘,1 × 𝑎𝑘𝑗,1 =
1

𝐷𝑘
×

1

𝐷𝑗
.          

    (A2) 

Second, effects are additive. If there are m pathways of length l (i.e., l steps) connecting two 

species, then the effect of the starting species on the ending species in l steps is the sum of 

effects along those m pathways. For instance, if there are only three 2-step pathways linking 

species i and species j, via species k, h and g respectively, then the 2-step effect of species i on 
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species j is:  

𝑎𝑖𝑗,2 = (𝑎𝑖𝑘,1 × 𝑎𝑘𝑗,1) + (𝑎𝑖ℎ,1 × 𝑎ℎ𝑗,1) + (𝑎𝑖𝑔,1 × 𝑎𝑔𝑗,1) 

= (
1

𝐷𝑘
×

1

𝐷𝑗
) + (

1

𝐷ℎ
×

1

𝐷𝑗
) + (

1

𝐷𝑔
×

1

𝐷𝑗
).        

   (A3) 

The interpretation of (A3) is as follows: if species j is affected by one species that is two steps 

away from it (i.e., two trophic links away from species j), then the probability of this influence 

coming from species i is aij,2. 

 

By using the same principle, one can quantify the effect of one species on another in one step, 

two steps, three steps and so on. The effect of species i on species j “up to” n steps is: 

𝐸𝑖𝑗 =
1

𝑛
(𝑎𝑖𝑗,1 + 𝑎𝑖𝑗,2 + 𝑎𝑖𝑗,3 … + 𝑎𝑖𝑗,𝑛).       

   (A4) 

The interpretation of (A4) is as follows: if species j is affected by one species that is one step, 

two steps, three steps or up to n steps away from it, then the probability of this influence coming 

from species i is Eij. 

 

One can construct a matrix E where the ij-th element is given by (A4). Matrix E here can be 

regarded as the interaction structure of a food web as it contains the effects between all species 

pairs. Furthermore, the i-th row of matrix E is the interaction profile of species i, which contains 
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the effects of species i on all species in the same food web. Note that this matrix is not 

symmetrical, meaning the effect of species i on species j is not the same as the effect of species 

j on species i. Also, this method allows for a species affecting itself (i.e., self-effect, Eii). 

 

Furthermore, if we consider the weight of trophic links (i.e., in terms of the biomass transferred 

per unit area and per unit time, for example, in grams of carbon per square meter per year), we 

can also define the weighted one-step effect as follows: 

𝑎𝑖𝑗,1 =
𝑊𝑖𝑗

∑ 𝑊𝑘𝑗𝑘
,           

    (A6) 

where wij is the weight associated with the trophic link i-j; and wkj is the weight for the trophic 

link between species j and its neighbor k. The above-mentioned method is still applicable to 

weighted food webs, and one simply uses (A6) for one-step effects instead of (A1). 

 

A.2 Interaction structure for a food web with directed and signed edges 

In this section, we assume a trophic link from a prey species to a predator species consists of 

two edges with opposite signs and in opposite directions. Specifically, there is a positive edge 

pointing from the prey species to the predator species, and this indicates the former affects the 

latter in a positive manner; in other word, increases (or decreases) in the population size of the 

prey species cause increases (or decreases) in the population size of the predator species. And 
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then in the opposite direction, there is a negative edge pointing from the predator species to the 

prey species as the former affects the latter negatively; in other words, increases (or decreases) 

in the population size of the predator species cause decreases (or increases) in the population 

size of the prey species. Quantifying interaction structure here still follows the same principle 

outlined in Section A.1, and as we will see, effects defined in Section A.1 can be partitioned 

into positive and negative components. 

 

We define one-step effects as before with additional information. Let i→j denotes the link from 

species i to species j, and let S i→j be the sign of the link (i.e., S i→j = + or -). Let Din
j be the 

number of species connected to species j (i.e., the in-degree of species j), then the magnitude 

of the one-step effect from i on j is: 

𝑎𝑖𝑗,1 =
1

𝐷𝑗
𝑖𝑛 ,           

    (A7) 

and the sign of this effect is S i→j . The interpretation of this one-step effect is as follows: if 

species j is affected by one species that is one step away from it, then aij,1 is the probability that 

such an influence is from species i with the sign determined by S i→j. 

 

Again, there are two rules in this method. First, effects are multiplicative. For a pathway 

consisting of more than one step, we define the magnitude of the effect from the starting species 
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on the ending species via this pathway as the product of the magnitudes of the constituent one-

step effects. For instance, consider a 2-step pathway i→k→j, the magnitude of the effect of 

species i on species j through species k is defined as: 

𝑎𝑖𝑘,1 × 𝑎𝑘𝑗,1 =
1

𝐷𝑘
𝑖𝑛 ×

1

𝐷𝑗
𝑖𝑛,          

   (A8) 

and the sign of this effect is the product of signs of the constituent one-step effects (i.e., Si→k × 

Sk→j). Second, again, effects are additive; but here we only add effects of the same sign together. 

Assuming there are m pathways of length l (i.e., l steps) starting with species i and ending with 

species j, where p pathways resulting in positive effects and the remaining m-p pathways 

producing negative effects; then the effect of the starting species on the ending species in l 

steps (i.e., aij,l) is partitioned into the positive component (i.e., aij,l
+) and the negative 

component (i.e., aij,l
-). Specifically, the positive component is the sum of the magnitudes of 

those p positive effects, and the negative component is the sum of the magnitudes of those (m-

p) negative effects. For instance, if there are only three 2-step pathways from species i to 

species j, they are i→k→j , i→h→j and i→g→j, and all one-step effects involved are positive 

except for the link g→j (which is negative); then the magnitudes and the signs of those three 

2-step effects are as follows. 

The magnitude and the sign of the effect along pathway i→k→j are: 

𝑎𝑖𝑘,1 × 𝑎𝑘𝑗,1 =
1

𝐷𝑘
𝑖𝑛 ×

1

𝐷𝑗
𝑖𝑛,          
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  (A9) 

𝑆𝑖→𝑘 × 𝑆𝑘→𝑗 = (+) × (+) = (+);         

 (A10) 

magnitude and the sign of the effect along pathway i→h→j are: 

𝑎𝑖ℎ,1 × 𝑎ℎ𝑗,1 =
1

𝐷ℎ
𝑖𝑛 ×

1

𝐷𝑗
𝑖𝑛,          

  (A11) 

𝑆𝑖→ℎ × 𝑆ℎ→𝑗 = (+) × (+) = (+);         

 (A12) 

and the magnitude and the sign of the effect along pathway i→g→j are: 

𝑎𝑖𝑔,1 × 𝑎𝑔𝑗,1 =
1

𝐷𝑔
𝑖𝑛 ×

1

𝐷𝑗
𝑖𝑛 ,          

  (A13) 

𝑆𝑖→𝑔 × 𝑆𝑔→𝑗 = (+) × (−) = (−).         

 (A14) 

Therefore the 2-step effect of species i on species j (i.e., aij,2) can be partitioned into the positive 

component (i.e., aij,2
+) and the negative component (i.e., aij,2

+) as follows: 

𝑎𝑖𝑗,2 = 𝑎𝑖𝑗,2
+ + 𝑎𝑖𝑗,2

−          

   (A15) 

where 

𝑎𝑖𝑗,2
+ =

1

𝐷𝑘
𝑖𝑛 ×

1

𝐷𝑗
𝑖𝑛 +

1

𝐷ℎ
𝑖𝑛 ×

1

𝐷𝑗
𝑖𝑛         
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  (A16) 

and 

𝑎𝑖𝑗,2
− =

1

𝐷𝑔
𝑖𝑛 ×

1

𝐷𝑗
𝑖𝑛           

   (A17) 

 

The interpretation of these two components is as follows: if species j is affected by one species 

that is two steps away from it, then the probability of this influence being positive and coming 

from species i is aij,2
+; and the probability of this influence being negative and coming from 

species i is aij,2
-. 

 

Following the same principle, we can quantify the positive effect and the negative effect of one 

species on another in one step, two steps, three steps and so on. The magnitude of the positive 

effect of species i on species j “up to” n steps is: 

𝐸𝑖𝑗
+ =

1

𝑛
(𝑎𝑖𝑗,1

+ + 𝑎𝑖𝑗,2
+ + 𝑎𝑖𝑗,3

+ … + 𝑎𝑖𝑗,𝑛
+).      

 (A18) 

The interpretation of (A18) is as follows: if species j is affected by one species that is one step, 

two steps, three steps or up to n steps away from it, then the probability of this influence being 

positive and coming from species i is Eij
+. Similarly, the magnitude of the negative effect of 

species i on species j “up to” n steps is: 
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𝐸𝑖𝑗
− =

1

𝑛
(𝑎𝑖𝑗,1

− + 𝑎𝑖𝑗,2
− + 𝑎𝑖𝑗,3

− … + 𝑎𝑖𝑗,𝑛
−).      

 (A19) 

The interpretation of (A19) is as follows: if species j is affected by one species that is one step, 

two steps, three steps or up to n steps away from it, then the probability of this influence being 

negative and coming from species i is Eij
-. 

 

One can construct two matrices E+ and E-, where the ij-th elements of those two matrices are 

given by (A18) and (A19) respectively. Matrices E+ and E- together can be regarded as the 

interaction structure of a food web, as they respectively contain the magnitudes of positive and 

negative effects between all species pairs. The i-th row of E+ records the magnitudes of positive 

effects that species i exerts on all species in the same food web, while the corresponding row 

in E- records the magnitudes of negative effects; therefore, those two rows together form the 

interaction profile of species i. Note that adding matrices E+ and E- together produces E. 

A.3 An example of quantifying interaction structure of a food web 

Fig. A1 shows a toy food web consisting of seven species and eight trophic links. Each  
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Figure A1. A toy food web 

 

trophic link connects a prey species to a predator species (i.e., in the direction of the arrow). 

We first consider this food web as a network with undirected and unsigned edges, and quantify 

the interaction structure up to three steps. 

 

Table 1 is a matrix representing the one-step effects, where the ij-th element represents the 

effect of species i (i.e., row species) on species j (i.e., column species). For instance, the  
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Table 1. One-step effects for the toy food web in Fig. A1. Each element of the table is the effect 

of a row species on a column species. 

Sp\Sp 1 2 3 4 5 6 7 

1 0 0 0.333 0.333 0 0 0 
2 0 0 0 0.333 0 0 0 

3 0.500 0 0 0 0.250 0.500 0 

4 0.500 1.000 0 0 0.250 0 0 
5 0 0 0.333 0.333 0 0.500 1.000 

6 0 0 0.333 0 0.250 0 0 

7 0 0 0 0 0.250 0 0 

 

Table2. Two-step effects for the toy foo web in Fig A1. Each element of the table is the effect 

of a row species on a column species. 

Sp\Sp 1 2 3 4 5 6 7 
1 0.333 0.333 0 0 0.167 0.167 0 
2 0.167 0.333 0 0 0.083 0 0 

3 0 0 0.417 0.250 0.125 0.125 0.250 
4 0 0 0.250 0.583 0 0.125 0.250 
5 0.333 0.333 0.167 0 0.542 0.167 0 

6 0.167 0 0.083 0.083 0.083 0.292 0.250 
7 0 0 0.083 0.083 0 0.125 0.250 

 

one-step effect of species 5 on species 4 is 1/3=0.333, this is because species 4 has three 

neighbors, and species 5 is one of them. This can be interpreted as follows: if species 4 is 

affected by one species that is one step away from it, then the probability of this species being 

species 5 is 0.333. Also, note that the one-step effect of species 7 on species 4 is zero, as the 

former cannot reach the latter in one step.  

 

Table 2 is a matrix representing the two-step effects, where the ij-th element is the effect of 

species i on species j in two steps. For instance, species 1 can reach species 5 in two steps via 
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two pathways, namely 1-3-5 and 1-4-5. The effect of species 1 on species 5 via species 3 is the 

product of two one-step effects: 

𝑎13,1 × 𝑎35,1 =
1

3
×

1

4
= 0.083.         

  (A20) 

Similarly, the effect of species 1 on species 5 via species 4 is: 

𝑎14,1 × 𝑎45,1 =
1

3
×

1

4
= 0.083.         

  (A21) 

The 2-step effect of species 1 on species 5 is: 

𝑎13,1 × 𝑎35,1 + 𝑎14,1 × 𝑎45,1 =
1

3
×

1

4
+

1

3
×

1

4
= 0.167.     

 (A22) 

Thus, if species 5 is affected by one species that is two steps away from it, then the probability 

of this species being species 1 is 0.167. 

 

Table 3 summarizes the three-step effects, and each element of the matrix is calculated by using 

the same principle as that used to calculate values in Table 2. For instance, Species 7 can reach 

species 1 via two pathways of length three, one is 7-5-3-1, and the other is 7-5-4-1, therefore 

the effect of species 7 on species 1 in three steps is: 

𝑎75,1 × 𝑎53,1 × 𝑎31,1 + 𝑎75,1 × 𝑎54,1 × 𝑎41,1 =
1

4
×

1

3
×

1

2
+

1

4
×

1

3
×

1

2
= 0.083.  (A23) 

Thus, if species 1 is affected by one species that is three steps away from it, then the probability 
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of this species being species 7 is 0.167.  

 

Table 3. Three-step effects for the toy food web in Fig. A1. Each element of the table is the 

effect of a row species on a column species. 

Sp\Sp 1 2 3 4 5 6 7 

1 0 0 0.222 0.278 0.042 0.083 0.167 

2 0 0 0.083 0.194 0 0.042 0.083 
3 0.333 0.250 0.083 0.042 0.260 0.271 0.125 

4 0.417 0.583 0.042 0 0.302 0.125 0 

5 0.083 0 0.347 0.403 0.083 0.354 0.542 
6 0.083 0.083 0.181 0.083 0.177 0.083 0.083 

7 0.083 0.083 0.042 0 0.135 0.042 0 

 

Table 4. The interaction structure up to three steps for the toy food web in Fig. A1. The food 

web is treated as a network with undirected and unsigned edges. Each element of the table is 

the effect of a row species on a column species. 

Sp\Sp 1 2 3 4 5 6 7 
1 0.111 0.111 0.185 0.204 0.069 0.083 0.056 
2 0.056 0.111 0.028 0.176 0.028 0.014 0.028 

3 0.278 0.083 0.167 0.097 0.212 0.299 0.125 
4 0.306 0.528 0.097 0.194 0.184 0.083 0.083 
5 0.139 0.111 0.282 0.245 0.208 0.340 0.514 

6 0.083 0.028 0.199 0.056 0.170 0.125 0.111 
7 0.028 0.028 0.042 0.028 0.128 0.056 0.083 

 

Adding Tables 1, 2 and 3, and then dividing each element of the resulting table by 3 produces 

Table 4, which is a matrix representing the effect of one species on another up to 3 steps. For 

instance, the effect of species 7 on species 1 is 0.028. This is the probability of species 7 

affecting species 1 in one step, two steps or three steps. Table 4 represents the interaction 

structure of the toy food web and is equivalent to matrix E in the main text of this paper. 
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Figure A2. The toy network of Figure 1 as a signed diagraph.  

 

Fig. A2 shows the toy food web in the form of a signed digraph (i.e., a network with directed 

and signed edges). Each trophic link in the toy food web is converted to two edges with opposite 

signs and pointing in the opposite directions. One-step effects now can be partitioned into two 

components, one for positive effects (Table 5.1), and one for negative effects (Table 5.2). For 

instance, species 5 has four edges pointing toward it, and one of them is negative and is from 

species 7; then the magnitude of negative one-step effect of species 7  
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Table 5.1. The magnitudes of positive one-step effects for the toy food web in Fig. A2. Each 

element of the table is the effect of a row species on a column species. 

Sp\Sp 1 2 3 4 5 6 7 

1 0 0 0.333 0.333 0 0 0 
2 0 0 0 0.333 0 0 0 

3 0 0 0 0 0.250 0.500 0 

4 0 0 0 0 0.250 0 0 
5 0 0 0 0 0 0.500 1.000 

6 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 

 

Table 5.2. The magnitudes of negative one-step effects for the toy food web in Fig. A2. Each 

element of the table is the effect of a row species on a column species. 

Sp\Sp 1 2 3 4 5 6 7 
1 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 

3 0.500 0 0 0 0 0 0 
4 0.500 1.000 0 0 0 0 0 
5 0 0 0.333 0.333 0 0 0 

6 0 0 0.333 0 0.250 0 0 
7 0 0 0 0 0.250 0 0 

 

on species 5 is 1/4=0.25. This can be interpreted as follows: if species 5 is affected by one 

species in one step, then the probability of this influence being negative and coming from 

species 7 is 0.25. This can be considered as the effect of a predator species on a prey species. 

Note that the magnitude of positive one-step effect of species 7 on species 5 is 0. Another 

example, species 6 has two positive edges pointing toward it, and one of them is from species 

3; then the magnitude of positive one-step effect of species 3 on species 6 is 1/2=0.5. In other 

words, if species 6 is affected by one species in one step, then the probability of this influence 

being positive and coming from species 3 is 0.5. This can be regarded as the effect of a prey 
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species on a predator species. Also note that adding Tables 5.1 and 5.2 together produces Table 

1 (i.e., Table 1 can be partitioned into Table 5.1 and 5.2). 

 

Calculating two-step effects and partitioning them into positive effects and negative effects 

result in Table 6.1 and Table 6.2. For instance, we can calculate the two-step effect of species 

4 on species 3 as follows. First, identify pathways (with direction) starting from species 4 and 

ending with species 3, and in this case there are two such pathways: one is 4→1→3, akin to 

the effect of one competitor on another competitor via a shared food item; and the other is 

4→5→3, akin to apparent competition where one prey species can affect another via a common 

predator. For the effect of species 4 on species 3 via pathway 4→1→3, its magnitude and sign 

are: 

𝑎41,1 × 𝑎13,1 =
1

2
×

1

3
= 0.167.         

  (A24) 

𝑆4→1 × 𝑆1→3 = (−) × (+) = (−).         

 (A25) 

For the effect of species 4 on species 3 via pathway 4→5→3, its magnitude and sign are: 

𝑎45,1 × 𝑎53,1 =
1

4
×

1

3
= 0.083.        

  (A26) 

𝑆4→5 × 𝑆5→3 = (+) × (−) = (−).         
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 (A27) 

Therefore, in 2 steps, the effects of species 4 on species 3 are all negative, with a resultant 

magnitude of 0.167+0.083=0.25. This can be interpreted as follows: if species 3 is affected by  

Table 6.1. The magnitudes of positive two-step effects for the toy food web in Fig. A2. Each 

element of the table is the effect of a row species on a column species. 

Sp\Sp 1 2 3 4 5 6 7 

1 0 0 0 0 0.167 0.167 0 

2 0 0 0 0 0.083 0 0 
3 0 0 0 0 0 0.125 0.250 

4 0 0 0 0 0 0.125 0.250 

5 0.333 0.333 0 0 0 0 0 
6 0.167 0 0.083 0.083 0 0 0 

7 0 0 0.083 0.083 0 0 0 

 

Table 6.2. The magnitudes of negative two-step effects for the toy food web in Fig. A2. Each 

element of the table is the effect of a row species on a column species. 

Sp\Sp 1 2 3 4 5 6 7 
1 0.333 0.333 0 0 0 0 0 

2 0.167 0.333 0 0 0 0 0 

3 0 0 0.417 0.250 0.125 0 0 
4 0 0 0.250 0.583 0 0 0 

5 0 0 0.167 0 0.542 0.167 0 

6 0 0 0 0 0.083 0.292 0.250 
7 0 0 0 0 0 0.125 0.250 

 

one species two steps away in the food web, then the probability of this influence being 

negative and is from species 4 is 0.25. Also, the effect of species 7 on species 3 is calculated as 

follows. There is only one pathway from species 7 to species 3, namely 7→5→3, and the 

magnitude and the sign for this effect are: 

𝑎75,1 × 𝑎53,1 =
1

4
×

1

3
= 0.083,        
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  (A28) 

𝑆7→5 × 𝑆5→3 = (−) × (−) = (+),         

 (A29) 

and this can be regarded as the effect of a top predator on the prey of its prey. Note that adding 

Tables 6.1 and 6.2 together produces Table 2 (i.e., Table 2 can be partitioned into Tables 6.1 

and 6.2). 

 

Calculating three-step effects and partitioning them into positive effects and negative effects 

result in Table 7.1 and Table 7.2. Values in Tables 7.1 and 7.2 are calculated in a similar manner 

as those in Tables 6.1 and 6.2. For instance, to quantify the three-step effect of species 7 on 

species 1, we identify pathways of length 3 staring from species 7 and ending with species 1. 

In this case, there are two such pathways, they are 7→5→3→1 and 7→5→4→1. The 

magnitude and the sign for the effect along pathway 7→5→3→1 are: 

𝑎75,1 × 𝑎53,1 × 𝑎31,1 =
1

4
×

1

3
×

1

2
= 0.042,       

 (A30) 

𝑆7→5 × 𝑆5→3 × 𝑆3→1 = (−) × (−) × (−) = (−),      

 (A31) 

and for pathway 7→5→4→1 they are: 

𝑎75,1 × 𝑎54,1 × 𝑎41,1 =
1

4
×

1

3
×

1

2
= 0.042,       
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 (A32) 

𝑆7→5 × 𝑆5→4 × 𝑆4→1 = (−) × (−) × (−) = (−),      

 (A33) 

Thus, the three-step effect of species 7 on species 1 is negative with a magnitude of 0.083, and 

this can be considered as the top-down effect of species 7 on species 1. Similarly, adding Tables 

7.1 and 7.2 together produces Table 3 (i.e., Table 3 can be partitioned into Table 7.1 and 7.2). 

 

Table 7.1. The magnitudes of positive three-step effects for the toy food web in Fig. A2. Each 

element of the table is the effect of a row species on a column species. 

Sp\Sp 1 2 3 4 5 6 7 

1 0 0 0 0 0 0.083 0.167 

2 0 0 0 0 0 0.042 0.083 
3 0.333 0.250 0.042 0.042 0 0 0 

4 0.417 0.583 0 0 0 0 0 

5 0.083 0 0.347 0.403 0.042 0 0 
6 0 0 0.181 0.083 0.177 0.042 0 

7 0 0 0.042 0 0.135 0.042 0 

 

Table 7.2. The magnitudes of negative three-step effects for the toy food web in Fig. A2. Each 

element of the table is the effect of a row species on a column species. 

Sp\Sp 1 2 3 4 5 6 7 
1 0 0 0.222 0.278 0.042 0 0 

2 0 0 0.083 0.194 0 0 0 

3 0 0 0.042 0 0.260 0.271 0.125 
4 0 0 0.042 0 0.302 0.125 0 

5 0 0 0 0 0.042 0.354 0.542 

6 0.083 0.083 0 0 0 0.042 0.083 
7 0.083 0.083 0 0 0 0 0 

 

Adding Tables 5.1, 6.1 and 7.1, and then dividing each element of the resulting table by three 
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produces Table 8.1, which is a matrix representing the magnitudes of positive effects between 

species up to three steps. For instance, the positive effect of species 6 on species 1 is 0.056; 

this is the probability of species 1 being positively affected by species 6 in one step, two steps 

or three steps. Note that Table 8.1 is the positive component of the interaction structure for the 

toy food web, and it is equivalent to matrix E+ in the main text of this paper. Similarly, for 

negative effects, adding Tables 5.2, 6.2 and 7.2, and then dividing each element of the  

Table 8.1. The positive component of the interaction structure for the toy food web in Fig. A2. 

The food web is treated as a network with directed and signed edges. Each element of the table 

is the effect of a row species on a column species. 

Sp\Sp 1 2 3 4 5 6 7 

1 0 0 0.111 0.111 0.056 0.083 0.056 
2 0 0 0 0.111 0.028 0.014 0.028 

3 0.111 0.083 0.014 0.014 0.083 0.208 0.083 

4 0.139 0.194 0 0 0.083 0.042 0.083 
5 0.139 0.111 0.116 0.134 0.014 0.167 0.333 

6 0.056 0 0.088 0.056 0.059 0.014 0 

7 0 0 0.042 0.028 0.045 0.014 0 

 

Table 8.2. The negative component of the interaction structure for the toy food web in Fig. A2. 

The food web is treated as a network with directed and signed edges. Each element of the table 

is the effect of a row species on a column species. 

Sp\Sp 1 2 3 4 5 6 7 
1 0.111 0.111 0.074 0.093 0.014 0 0 

2 0.056 0.111 0.028 0.065 0 0 0 

3 0.167 0 0.153 0.083 0.128 0.090 0.042 
4 0.167 0.333 0.097 0.194 0.101 0.042 0 

5 0 0 0.167 0.111 0.194 0.174 0.181 

6 0.028 0.028 0.111 0 0.111 0.111 0.111 
7 0.028 0.028 0 0 0.083 0.042 0.083 

 

resulting table by 3 produces Table 8.2, which is a matrix representing the magnitudes of 
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negative effects up to 3 steps. For instance, the magnitude of the negative effect of species 6 

on species 7 is 0.111; and this is the probability of species 7 being negatively affected by species 

6 in one step, two steps or three steps. Note that Table 8.2 is the negative component of the 

interaction structure for the toy food web, and it is equivalent to matrix E- in the main text of 

this paper. Also note that adding Tables 8.1 and 8.2 produces Table 4 (i.e., Table 4 can be 

partition into Tables 8.1 and 8.2, or Matrix E can be partition into E+ and E-). 

 

In summary, E records the unsigned effect of one species on another up to n steps, and each 

row is the interaction profile of one particular species. E can be partition into E+ and E-, where 

E+ and E- record respectively the magnitudes of positive effects and negative effects between 

species up to n steps. The i-th row of E+ and the i-th row of E- together form a vector of length 

2×N (N is the number of species in the food web), and this is the interaction profile of species 

i. Furthermore, the first half of this vector records the magnitudes of positive effects that species 

i exerts on every species up to n steps, and the second half of this vector records the magnitudes 

of the negative effects. 
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