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I 

 

摘要 

設施選址問題長年以來受到了廣泛的討論。在一般的設施選址問題中，決策者

需要決定設施的位址、以及分配哪些使用者該前往哪些設施。然而，當我們討論到

服務性設施時，我們會發現使用者會對不同設施擁有不同偏好，在這種情況下，使

用者的行為便不能被決策者強制決定。除此之外，現實中的設施是具有負載量限制

的，這使得使用者無法選擇已經滿載的設施。再者，不同的設施可能會提供不同的

服務，成為另一個設施差異性的來源。因此，將不同的服務種類納入考慮能讓我們

的問題更貼近現實情況。 

在我們的研究中，我們考慮一個具有不同服務類型、附載量有限、且使用者偏

好各異的設施選址問題，決策者需要決定設施的位址、規模、及其所提供的服務類

型，目標是在給定的預算內最大化設施的總服務人數。為解決此問題，我們建立了

一個混和整數規劃模型與一個以貪婪法為底、結合最大流問題的啟發式演算法，透

過數值實驗，可以看到我們的演算法能在可接受的時間範圍內得到接近最佳解的

結果。 

 

關鍵字： 設施選址，服務性設施選址，有限容量設施選址，啟發式演算法，最

大流問題 
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II 

 

Abstract 

The facility location problems have been widely discussed for decades. In a typical 

facility location problem, a decision maker decides where to build facilities among some 

given locations. However, when it comes to service facilities facing end consumers, 

customers would have different preferences toward them. In this case, whether one 

customer should visit one specific facility cannot be determined by the decision maker. 

Besides, facilities have limited capacities, so customers cannot go to the one is fully 

occupied. Moreover, once a facility is built, it may provide several types of services and 

make facilities different from each others. Therefore, taking the service types into account 

may make our problem closer to reality. 

In our research, we consider a multi-types capacitated facility location problem with 

preference. The decision maker plans to choose locations and scale levels to build 

facilities and decide what services should they provide. The problem aims to maximize 

total served customers within budget constraint. We formulate a mixed integer 

programming model and provide a greedy-based heuristic algorithm (GSA) with 

maximum flow to solve this problem. In numerical study, we find that our algorithm can 

provide near-optimal solutions in reasonable time. 

 

Keywords: Facility location, Service facility location, Capacitated facility location, 

Heuristic algorithm, Maximum flow 
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Chapter 1

Introduction

1.1 Background and motivation

The facility location problems have been widely discussed for decades. In a typical facility

location problem, a decision maker decides where to build facilities among some given

locations. Typical objectives of the problem include profit maximization, cost minimiza-

tion, etc., for the decision maker. Some facility location problems are uncapacitated,

i.e., facilities are not subject to capacity constraints. On the contrary, there may be

capacitated facility location problem, in which facilities have limited amount of capacity.

Traditional applications lie in the fields of supply chain management (Pirkul and Jayara-

man, 1998), logistics (Lu and Bostel, 2007), and operations management (Harkness and

ReVelle, 2003).

When it comes to service facilities facing end consumers, several extensions for the

facility location problem have been studied in recent years. One extension is to consider

1
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user preference, which is critical when one builds service facilities like retail stores, parks,

hospitals, public bike stations, etc. Naturally, these service facilities are heterogeneous to

customers, i.e., customers would have different preferences for them. In this case, whether

one customer should visit one specific facility cannot be determined by the decision maker,

and each of the customer will choose the most preferred facility among the built ones.

Applications of facility location problem with user preference can be in many industries.

For example, building parks and hospitals (Hiassat, 2017), emergency response facility

(Li et al., 2011), retail stores (Hanjoul and Petters, 1987), among others.

A further extension is to incorporate the service types. In many cases, once a facility

is built, it may provide several types of services and make facilities different from each

others. Different services may have different characterizations, e.g. different costs or

capacities, and customers may also have different interests or requirements toward them.

There are many researches work on such topic in many fields. For instance, transportation

(Xi et al., 2013), health care (Stummer et al., 2004), retail stores (Wang et al., 2014), etc.

Therefore, taking the service types into account may make our model closer to reality.

One major motivating applications of our proposed model is to build public sport

facilities. With medical technology progressing and economic growth, population aging is

a widespread issue recently. To improve the welfare of an aging society, it is suggested for a

government to increase the frequency and strength of regular exercise of the elder (Laforge

et al., 1999). To make this happen, constructing enough public sport facilities that are

appropriate to the elder is crucial. To make a good construction decision, the first step is

being able to estimate the benefit of building some facilities, which may be measured by

the number of elders using built facilities. An important feature of this problem is that

2
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the government cannot specify a facility or a service for a citizen; instead, each citizen will

make her/his own choice. Whether a construction plan may really benefit citizens cannot

be determined if customer preference is ignored. Note that sporting habits vary between

citizens (Nagy and Tobak, 2015), and different types of sport centers or infrastructures

may affect users’ desires (Afthinos et al., 2005). Therefore, if the government neglects

elders’ service-type preferences, and assumes that all elders will use any available sport

service, it will overestimate the effective capacity of a facility. Nevertheless, dealing with

different sport services may lead to consideration of costs and places they take. The

former affect the budget constraint and the latter have influence on the decisions of scale

levels. Together makes this problem more realistic. Formulating a model that includes

service-type-dependent customer preference is thus required for this application. To the

best of our knowledge, no previous study simultaneously takes aforementioned factors

into account. Therefore, the investigation of a multi-types capacitated facility location

problem with customers’ preferences contributes to the literature.

1.2 Research objectives

In this study, we consider a multi-types capacitated facility location problem with pref-

erence. A decision maker first plans to choose the locations and scale levels to build

facilities from a set of candidate locations. The scale level determines the total floor area

that could be taken up by services. Decision maker then chooses the types of services

that each facility to provide. The types of services determine the maximal number of

customers could be served in this facility. There are groups of customers with different

3
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population sizes locating at various places. Customers in the same group have identical

preference over each service in each facility. However, they may hold different preferences

over different services or different facilities. Among all built facilities and the services they

provide, if some services are still available, a customer will choose her/his most preferred

facility-service pair to use that service in that facility. We assume that a customer always

has the option of staying at home without visiting any facility, which gives her/him a

null utility. If one finds that no facility-service pair may give her/him a positive utility,

she/he will stay at home. The decision maker acts to maximize the number of served

customers subject to a budget constraint.

To solve this problem, we develop two different solution approaches. The first one

is through formulating a mixed integer program. When one seeks for an exact solution,

she/he may obtain it by solving the program using any existing algorithm (such as branch

and bound). Chiang (2017) proposes a single-level model that incorporates preference

and capacity based on Hanjoul and Petters’ formulation (1987). Nevertheless, this model

using sets to express customers’ preference which has high time complexity causing the

problem harder to be solved in acceptable time. Chuang (2020) reformulates the model

in Chiang (2017) with the idea in Camacho-Vallejo et al. (2014a). He also further extends

the model with time-dependent preferences. However, these works omit the multi-types

issue. Inspired by their contributions, we formulate a single-level mixed integer program

for our multi-types capacitated facility location problem with customer preferences, which

are allowed to be service-type-dependent.

Given that the problem is NP-hard, in many cases a heuristic algorithm is more

realistic. The proof of our problem is NP-hard will be provided in the following chapters.

4
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To this end, we are going to propose a heuristic algorithm and test its performance.

1.3 Research plan

In the next chapter, we will review some literature about the variants of facility lo-

cation problems and maximal covering location problems, especially which considering

customers’ preferences. The mathematical model of the problem is described in Chapter

3, in which we will present a single-level mixed-integer model of multi-types capacitated

facility location problem with customer preferences. Expected results are then described

in detail in Chapter 4.

5
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Chapter 2

Literature Review

A facility location problem is a problem where a decision maker decides where to locate

facilities and how to assign customers to those built facilities (Francis and White, 1974).

The first capacitated facility location models are proposed by Kuehn and Hamburger

(1963) and Balinski (1965). They aim to find the optimal locations to minimize the

facility construction and customer transportation costs. Problem types vary according

to the objective function and constraints. Some important examples include the p-center

problem, set covering problem, and maximal covering problems.

2.1 Capacitated facility location problem

Sridharan (1995) solves this problem by proposing an “add and drop” algorithm based on

Lagrangian relaxation. Similarly, Tragantalerngsak et al. (2000) propose a solution ap-

proach by combining branch and bound and Lagrangian relaxation. Melkote and Daskin

(2001) propose a combined facility location design problem, which is a capacitated fa-

6
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cility location problem with endogenous underlying network topology. Wu et al. (2006)

consider a capacitated facility location problem with general setup costs, the fixed loca-

tion setup cost and the facility setup cost decided by the size of the facility built in the

location. However, none of these works consider customers’ self-selection.

In fact, they put emphasis on the supply side and assume that the decision maker may

assign “customers” (which are almost always retail stores) to specific facilities like firms,

plants, machines, etc. Instead, as we mentioned in Chapter 1, in view of the service-side

problem, we consider the facility location problem including both customers’ preferences

and capacity constraints.

2.2 Facility location problem with preference

The facility location problem with user preference is usually formulated as a bi-level

program, where the upper-level problem is for the decision maker to decide locations to

build facilities and the lower-level one is for customers to choose facilities to visit. Three

reformulations of the uncapacitated bi-level problem using sets to express user preference

are proposed by Hanjoul and Petters (1987). Two greedy-based heuristic algorithms

are also presented. Some other researchers, e.g., Hansen et al. (2004), Cánovas et al.

(2007), and Vasil’ev et al. (2009), reformulate the model using similar ideas. However,

the reformulation method using sets has been shown to be not so efficient.

Camacho-Vallejo et al. (2014b) present two reformulations. Using the primal-dual

relationship and complementary slackness of the lower level, they obtain two linearized

single-level facility location models. Camacho-Vallejo et al. (2014a) propose another

7
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reformulation. Adding the most preferred assignment constraint, they turn the bi-level

model into a single-level one. The computational results in Casas-Ramı́rez and Camacho-

Vallejo (2017) shows that the reformulation in Camacho-Vallejo et al. (2014a) requires less

time compared to which in Camacho-Vallejo et al. (2014b) to obtain the optimal solutions.

Based on the models designed by Camacho-Vallejo et al. (2014b) and Camacho-Vallejo

et al. (2014a), Casas-Ramı́rez et al. (2018) present a valid bound of the preference-

considered capacitated facility location problem but without budget constraint. They

use a cross entropy method to solve the upper level problem, and then solve the lower

level problem using a greedy randomized adaptive procedure. Calvete et al. (2020) further

point out that focusing on number of customers instead of total demand, people can avoid

the NP-hard issue of lower-level problem in Casas-Ramı́rez et al. (2018). They therefore

propose a single-level reformulation based on duality theory without the inclusion of

additional binary variables.

2.3 Maximal covering location problem with prefer-

ence

Since our objective is to maximize total number of served customers, one related branch

of facility location problem is maximal covering location problem. This problem usually

tries to minimize number of facilities with all demand points are covered, or maximize

the covered demand with a limited number of facilities. Since it was first introduced in

Church and ReVelle (1974), many extensions have been proposed. Farahani et al. (2012)

and Garćıa and Maŕın (2015) provide excellent reviews of different variants of this topic.

8
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Recently, there are some works incorporating customer preferences with covering prob-

lems. For example, Lee and Lee (2012) maximize the weighted covered demand consid-

ering customer preferences, but customers’ behaviors are controlled by decision maker.

They introduce a mixed integer programming model and a heuristic solution based on

Lagrangian relaxation. In Casas-Ramı́rez et al. (2020), they propose a bi-level model to

capture customers’ self-selection without budget and capacity constraints. They also re-

formulate it into single level with the method proposed in Camacho-Vallejo et al. (2014b).

Mrkela and Stanimirović (2021) further consider an uncapacitated maximal covering lo-

cation problem with preference and limited budget. In their work, customers’ preferences

are represented as ordered sets, and a Variable Neighborhood Search is proposed as so-

lution approach.

2.4 Capacitated facility location problem with pref-

erence to maximize total served demand

Our goal is to build several finite-capacity facilities providing several services under a bud-

get constraint and maximize the total number of customers with service-type-dependent

preferences.

To the best of our knowledge, Kim and Kim (2013) is the first one that explicitly

includes both customer preference and facility capacity in a single model. They consider

different preferences of customers depending on their income levels. An integer program-

ming formulation and a Lagrangian relaxation-based heuristic algorithm are present.

9
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Instead of the restricted settings in Kim and Kim (2013), Chiang (2017) introduces

a general form of the integer programming model. He proposes a greedy algorithm for

solving that NP-hard problem. In each iteration, the benefit evaluation problem is trans-

formed into a maximum flow problem, and the location with the highest benefit-to-cost

ratio is selected.

Based on Chiang’s work (2017), Chuang (2020) first constructs a time-dependent

single-level mixed integer program where using sets to express customers’ preferences.

He then reformulates the problem with a novel approach, and modifies the algorithm

proposed in Chiang (2017) by utilizing properties among neighboring solutions. These

two improvements are shown to be much efficient than previous ones.

In our study, we extend the formulation in Chuang (2020) and introduce an algorithm

to incorporate the service types.

2.5 The difference between previous research and

our study

The main difference between our model and previous literature are summarized below.

First, the objective of out model is to maximize the total served demand within budget

constraint. This is different from most facility location problems, which minimize the total

cost or maximize the total profit. Mainly motivated by public service infrastructures, our

study puts focus on serving as many customers as possible.

Second, in addition to the difference of objective function, the decision maker in our

10
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study decides how many facilities should be built based on market conditions. There-

fore, our study is different from most maximal covering problems, which typically try to

maximize the total served demand with exact given number of facilities.

Third, we expand the problem with service types. In general, customers would not

use any available service provided by a facility. Moreover, even for the same service,

customers would have various preferences if it provided by different facilities. The two

issues cause demand overestimated. Therefore, taking service types into account could

make the model closer to the real situation.

11
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Chapter 3

Problem Description and

Formulation

3.1 Problem description

In this section, the problem statement and formation of our multi-types capacitated

facility location problem with preference are provided.

We consider a decision maker deciding where to build facilities along with the scale

levels and different service types. Let J = {1, 2, 3, ..., |J |} denote the set of locations

where a facility may be built, and K = {1, 2, 3, ..., |K|} represent the set of scale levels

that for each facility decision maker may choose from. For ease of exposition, we may

call the facility built at location j as facility j from time to time. One of the decision

maker’s decision is to choose locations to build facilities at a certain scale level. To model

this, let yjk ∈ {0, 1} be 1 if a facility is built at location j with scale k or 0 otherwise.

12
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Consider a virtual facility 0, the meaning of which will be explained later. Let J ∪ {0}

be denoted as J0. According to above definitions, we have the constraints

∑
k∈K

yjk ≤ 1 ∀j ∈ J0, (3.1)

which ensure that the decision maker can only build at most one facility with one scale

level at each location.

Let W = {1, 2, 3, ..., |W |} be the set of service types that decision maker may choose

for each facility. For ease of exposition, we may call the service with type w as service w

from time to time. Another decision maker’s decision is to decide what types of services

should a facility provides. Consider zjw ∈ {0, 1} as 1 if service w is provided by facility

j or 0 otherwise. Assume that Hk is the total floor area of facility with scale k and hw is

the place required for setting up service w. Again, we introduce a virtual service 0 whose

meaning will be explained later. Let W0 to represent W ∪ {0}. We then have

∑
w∈W0

hwzjw ≤
∑
k∈K

Hkyjk ∀j ∈ J0, (3.2)

which state that total space taken by all provided services in the facility cannot exceed

the floor area of this facility.

Building facilities and providing services are costly. Let the parameters fjk and fw

be the costs of building facility at location j with scale k and providing service w, re-

spectively. Without loss of generality, we assume that 0 ≤ fj,1 ≤ fj,2 ≤ ... ≤ fj,|K| for all

facility j.1 If B is the decision maker’s budget amount, the following constraint

∑
j∈J0

(∑
k∈K

fjkyjk +
∑
w∈W0

fwzjw

)
≤ B, (3.3)

1If the number of the scale level candidates of location j is less than |K|, set fj,k′ to infinite for those

k′ ∈ K which cannot be chosen for location j.

13
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requires that the total construction cost should not exceed the given budget B.

We define I = {1, 2, 3, ..., |I|} as the set of customer locations. Similarly, we call

customers at location i as customer i. Let xijw ∈ [0, 1] to present the proportion of

customer i served by service w in facility j. For a built facility, the space which is not

taken by any service may still be utilized by some customers. We consider those empty

spaces as service w̃. For ease of notation, we denote W ∪ {w̃} and W ∪ {0, w̃} as W̃

and W̃0, respectively. Therefore, knowing that the total proportion of customers visiting

facilities and services cannot exceed 1, we then may have the following constraints

∑
j∈J0

∑
w∈W̃0

xijw ≤ 1 ∀i ∈ I. (3.4)

Note that xijw are fractional because facilities and services are capacitated, so it is possible

for customers at the same location to make different decisions.

Suppose di is the population size at customer location i, and called as the demand

of customer i from time to time. In addition, a service w is able to serve at most qw

customers, which considered as the capacity of service w. We have

∑
i∈I

dixijw ≤ qwzjw ∀j ∈ J0, w ∈ W0, (3.5)

which ensure that the customers can only go to the location where a facility is built and

a service is provided. Besides, the number of customers from all locations cannot exceed

the capacity of the service.

As mentioned above, we consider those empty spaces as a special service w̃. We

assume that service w̃ has cost 0 and can serve l customers per unit area. To model the

14
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limited capacity of w̃, we consider

∑
i∈I

dixi,j,w̃ ≤ l

(∑
k∈K

Hkyjk −
∑
w∈W0

hwzjw

)
∀j ∈ J0, (3.6)

which is similar as constraint (3.5). The only difference is the capacity of service w̃ in

a facility is determined as the floor area of that facility subtract the place taken by all

services provided by the facility.

To model customers’ preferences, assume that customer i has a preference level over

service w set up in facility j, represented by pijw. We have pi,j1,w1 > pi,j2,w2 if customer i

prefers service w1 in facility j1 to service w2 in facility j2. For those customers at the same

location, we assume that they have identical preference for the same service provided by

the same facility. Recall that it is always possible that all built facilities have no attractive

services for a customer, and the customer may choose to stay at home without visiting

any facility. To model this, we introduce the aforementioned virtual facility, facility 0,

and virtual service, service 0. This facility 0 has no construction cost (i.e., f0,k = 0 for

all k ∈ K), while this service 0 has infinite capacity (i.e, q0 is infinite), without needing

any place or cost (i.e., h0 = f0 = 0), can only be built in facility 0 (i.e., zj,0 = 0 for all

j ∈ J), and zero preference level for all customers (i.e., pi,0,0 = 0 for all i ∈ I). Moreover,

the special case y0,k for any k is always 1 since customers can decide to stay at home.

We are ready to formulate the decision maker’s objective function. Recall that facility

0 and service 0 are virtual. Only J and W̃ include the true number of customers served by

the construction plan. Therefore, the total number of customers going to built facilities

to use provided services can be described as

∑
i∈I

∑
j∈J

∑
w∈W̃

dixijw. (3.7)
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The decision maker’s objective is to maximize such a quantity.

After facilities are built and services are provided, each customer either chooses one

facility to use one service or stay at home. That decision is made according to her/his

preferences. We assume that customers’ preferences are exogenous; i.e., the preference

over one service will not be affected by other customers’ decisions or whether other

facilities are built or not.

We now need to add constraints to ensure that a customer cannot go to a facility-

service pair if there is another more preferred pair that is still available. To do this, we

define three auxiliary variables tjw, ai, and x̄ijw. A binary variable tjw is 1 if service

w provided by facility j is still available in equilibrium with respect to the capacity

constraints. i.e.,

qw −
∑
i∈I

dixijw ≤Mtjw ∀j ∈ J0, w ∈ W0, (3.8)

and

l

(∑
k∈K

Hkyjk −
∑
w∈W0

hwzjw

)
−
∑
i∈I

dixi,j,w̃ ≤Mtjw̃ ∀j ∈ J0, (3.9)

where M is a positive and sufficiently large constant. If tjw = 0, constraints (3.5) and

(3.8), or constraints (3.6) and (3.9) together ensure that service w provided by facility j

is fully occupied. On the contrary, if tjw = 1, constraints (3.8) and (3.9) are relaxed, and

service w provided by facility j still have residual capacity.

The variable ai represents customer i’s preference of the most preferred facility-service

pair among all available ones. Therefore, we have

ai ≥ pijwtjw ∀i ∈ I, j ∈ J0, w ∈ W̃0. (3.10)

Furthermore, we define the binary variable x̄ijw is 1 if at least one customer in location
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i use service w provided by facility j. In effect, x̄ijw is 1 implies that either service w

provided by facility j is out of capacity in equilibrium or that facility-service pair is the

most preferred out of all available ones. We may use the following constraints

pijwx̄ijw +M(1− x̄ijw) ≥ ai ∀i ∈ I, j ∈ J, w ∈ W̃0, (3.11)

and

x̄ijw ≥ xijw ∀i ∈ I, j ∈ J0, w ∈ W̃0, (3.12)

to model customers’ preference-based decision making process under capacity constraints.

For the available facility-service pair which is most preferred by customer i, we have

pijw = ai according to (3.10), and thus x̄ijw can be 1. For all the remaining pairs, x̄ijw is

forced to be 0 by constraint (3.11). Constraint (3.12) then ensures that the only available

facility-service pair that a customer may choose is her/his top-priority choice.

Collectively, we may formulate the decision maker’s problem as

max (3.7)

s.t. (3.1)–(3.6)

(3.8)–(3.12)

xijw ≥ 0 ∀i ∈ I, j ∈ J0, w ∈ W̃0 (3.13)

yjk ∈ {0, 1} ∀j ∈ J0, k ∈ K (3.14)

zjw ∈ {0, 1} ∀j ∈ J0, w ∈ W0 (3.15)

tjw ∈ {0, 1} ∀j ∈ J0, w ∈ W̃0 (3.16)

ai ≥ 0 ∀i ∈ I (3.17)

x̄ijw ∈ {0, 1} ∀i ∈ I, j ∈ J0, w ∈ W̃0. (3.18)
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It is worth mentioning that, as the objective function is to maximize the number of

served customers, it is acceptable for a customer to use any services provided by any

facility as long as she/he obtains a positive utility (so that visiting the facility is better

than staying at home). In other words, with the current objective function, a decision

maker facing this problem does not need to precisely estimate all the preference levels

pijw. Instead of this, the decision maker only needs to estimate whether a given preference

level pijw is positive or not. In this study, we still choose to formulate the problem with

pijw as a real number to retain the generality of our model.

We may show that the problem is NP-hard by reducing the problem studied in Chiang

(2017) to our problem. This is trivial by observing that his problem is a special case of

ours with |W | = 0, i.e., any facility can only provide service w̃. In this case, the capacity

of each facility is only determined by its floor area.

Table 3.1 introduces all the decision variables mentioned above, and Table 3.2 intro-

duces all the sets and parameters mentioned above.

3.2 An illustrative example

The following example shows how these constraints express the relationships among ser-

vice types, limited area, and customer preferences. In this example, there are three

locations where facilities can be built at, and two services types can be chosen from for

each service. Note that we also take empty space as one service that customers may visit,

which denoted as w̃. Suppose that customers all live in the same location, say location

1, the preferences of customers toward different facilities and different services are listed
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Variables

xijw

A nonnegative variable that verifies the proportion of customer i using service w

provided by facility j.

yjk

A binary variable that verifies whether a facility is built at location j with scale

level k, 1 if a facility is built or 0 otherwise.

zjw

A binary variable that verifies whether a service w is provided by facility j, 1 if a

service is provided or 0 otherwise.

tjw

A binary variable that verifies whether service w provided by facility j is available

in equilibrium, 1 if service is available or 0 otherwise.

ai

A nonnegative variable that verifies the preference of customer i’s most preferred

facility-service pair among all available ones.

x̄ijw

A binary variable that verifies whether there is at least one customer in location i

using service w provided by facility j, 1 if there is or 0 otherwise.

Table 3.1: Notations of variables
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Set and Parameters

I The set of customer locations, I = {1, 2, ..., |I|}.

J The set of locations where a facility may be built, J = {1, 2, ..., |J |}.

K
The set of scale levels that decision maker may choose from for each facility, K =

{1, 2, ..., |K|}.

W
The set of service types that decision maker may choose from for each facility,

W = {1, 2, ..., |W |}.

di The population size at customer location i.

fjk The fixed cost of building facility at location j with scale k.

Hk The floor area of facility with scale k.

fw The fixed cost of providing service w.

hw The place taken by service w.

qw The maximal number of customers could be served by service w.

pijw The preference of customer i on service w provided by facility j.

l
The maximal number of customers could be served per unit area which not taken

by any service.

B The total budget.

M A very large positive number.

Table 3.2: Notations of parameters and sets20
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in Table 3.3. We assume that the total demand of the customers at location 1 is 1.

(j, w) p1,j,w (j, w) p1,j,w

(1, 1) 0.1 (3, 1) −0.7

(1, 2) 0.2 (3, 2) −0.8

(1, w̃) 0.3 (3, w̃) −0.9

(2, 1) 0.4

(2, 2) 0.5

(2, w̃) 0.6

Table 3.3: The preference of the example

In this case, no one will go to facility 3 to use any service since the customers hold

negative preference over pairs (3, 1), (3, 2), and (3, w̃), which is lower than the zero utility

of staying at home. Therefore, facility 3 does not need to be taken into consideration.

We then consider two scale levels can be chosen for each facility. If a facility is built with

scale 1, its total floor area is 30 unit. On the other hand, if it is with scale 2, the total

floor area is 15 unit. Assume that service 1 takes place 15 unit area and can provide

capacity 0.6, while services 2 needs 10 unit area and can satisfy at most 0.5 demand. If

there are spaces not taken by any facility, it is considered as empty space and provide

capacity 0.01 per unit area. Suppose we build facility 1 with scale 1 and facility 2 with

scale 2, we may see that the latter cannot provide both service 1 and 2 and the same

time due to the area constraint (3.2). We make facility 1 provide service 1 and 2, while

facility 2 only have service 1. Therefore, it remains 5 unit empty space for facility 1 and

the floor area of facility 2 is fully occupied. We conclude the capacity and required area
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of each provided service in each facility in Table 3.4.

(j, w) p1,j,w capacity required area

(1, 1) 0.1 0.6 15

(1, 2) 0.2 0.5 10

(1, w̃) 0.3 0.05 5

(2, 1) 0.4 0.6 15

Table 3.4: The capacity of the example

If the customers choose to be served by service 1 in facility 1, empty space in facility

1, and service 1 in facility 2 with proportion 0.35, 0.05, and 0.6 respectively, the status is

presented in Table 3.5. Since pair (1, w̃) and (2, 1) are fully occupied (i.e. t1,w̃ = t2,1 = 0),

according to (3.8) and (3.9), the preference of the most preferred available pair among

available ones is p1,1,2 (i.e. a1 = 0.2). Constraint (3.11) restricts x̄1,1,1 to be 0 since it is

not the most preferred one. However, this creates a contradiction with the result given

by constraint (3.12), where x̄1,1,1 = 1. The above discussion is summarized in Table 3.5.

(j, w) p1,j,w x1,j,w residual capacity tjw x̄1,j,w in (3.11) x̄1,j,w in (3.12)

(1, 1) 0.1 0.35 0.25 1 0 1

(1, 2) 0.2 0 0.5 1 1 1

(1, w̃) 0.3 0.05 0 0 1 1

(2, 1) 0.4 0.6 0 0 1 1

Table 3.5: The case violating preference constraint
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The above solution cannot be a valid equilibrium outcome is due to the fact that there

exists an service having residual capacity that is more preferred than one that is chosen

by some customers (i.e, p1,1,2 > p1,1,1 while (j, w) = (1, 2) still has residual capacity). For

this example, the only valid equilibrium that satisfies all preference constraints is listed

in Table 3.6. In this case, the customers choose to use service 2 in facility 1, service w̃

in facility 1, and service 1 in facility 2 with proportion 0.35, 0.05, and 0.6, respectively.

Similarly, according to constraint (3.10), the value of a1 is 0.2, and no constraint is

violated.

(j, w) p1,j,w x1,j,w residual capacity tjw x̄1,j,w in (3.11) x̄1,j,w in (3.12)

(1, 1) 0.1 0 0.6 1 0 0

(1, 2) 0.2 0.35 0.15 1 1 1

(1, w̃) 0.3 0.05 0 0 1 1

(2, 1) 0.4 0.6 0 0 1 1

Table 3.6: The case satisfying preference constraint

In short, our formulation guarantees that if there is still any service having residual

capacity that a customer prefers more, the customer will go to the more preferred one

instead of others. Therefore, each customer will act to maximize her/his preference.
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Chapter 4

The Algorithm

4.1 Overview

In this chapter, a iterative greedy heuristic algorithm, GSA, for our problem is proposed.

In each iteration of our proposed algorithm, we obtain the recommended service types for

each unbuilt facility with each scale level with the service selection algorithm, STSMF.

After recommended service types are decided, we choose the most recommended scale

level for each facility. Among all unbuilt facilities with their recommended scale levels

and services, we add the facility with the better performance ratio into the construction

plan. The next iteration is proceeded until the terminate conditions met.

In the following sections, we provide detailed description of our proposed algorithm,

Greedy selection algorithm (GSA).
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4.2 Benefit evaluation

As described in Chapter 3, among the built facilities and the services they provide, cus-

tomers will choose where to go according to their preference order. Therefore, suppose we

have a set of built facilities with determined scale levels, represented by y = [yjk]j∈J,k∈K ,

and sets of services they provide, i.e., z = [zjw]j∈J,w∈W . We have to find the number of

customers served by this plan, i.e., to solve the objective value ζ(y, z) of the following

program

ζ(y, z) = max
∑
i∈I

∑
j∈J

∑
w∈W̃

dixijw

s.t. (3.4)–(3.6), (3.8)–(3.13), (3.16)–(3.18),

which named as benefit evaluation problem. Chiang (2017) proposes a way to transform

the facility location problem with given construction plan and customer preferences to a

maximum flow problem. We now show how to extend this method to incorporate service

types, which is not considered in his work. Given a construction plan, i.e., given y and z,

we construct a directed acyclic graph whose structure is similar to that in Figure 4.1. For

each customer location i, we add a customer node Ci into the graph. A source node S is

created and connected to customer node Ci with capacity di for all i in I. For facility j

in J , if it is built at scale level k under the given construction plan (i.e., yjk = 1), we add

a node Fjw for each service w it provides (i.e., zjw = 1). Moreover, if facility j is built

and its floor area is not fully occupied (i.e., Hkyjk −
∑

w∈W hwzjw > 0), we add another

node Fjw̃ representing the empty space. A destination node D is created and linked from

node Fjw. For each edge connecting node D and node Fjw, if w is not w̃, the edge is

with capacity qw; otherwise, the capacity of the edge is determined by the empty space
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capacity l and the remaining floor area, i.e., l(Hkyjk−
∑

w∈W hwzjw). Finally, a link from

node Ci to node Fjw is added with infinite capacity if pijw > 0.

Figure 4.1 is an example for three customers, and a construction plan that builds two

facilities where one provides one service and has empty spaces, while the other provides

two services and the floor area is fully occupied. According to the way we connect Ci

and Fjw, we may see, e.g., customer 1 is unwilling to get served by service 1 provided

by facility 2. Once the graph is constructed, its maximum flow may be solved. For the

maximum flow instance made from a construction plan with given y and z, we denote

the maximized flow value as ξ(y, z).

Figure 4.1: An example of the maximum flow graph

Note that the information about preference levels pijw is largely omitted in the con-

structed maximum flow problem: It only matters whether pijw > 0 or not. It is thus not

surprising that the solutions to the two problems are not always the same. Nevertheless,

as for our main purpose is to obtain the objective value, the constructed maximum flow

problem is enough. We now show in Theorem 1 that the maximized flow value ξ(y, z) of

the maximum flow problem constructed given a construction plan with y and z is always
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identical to ζ(y, z), the objective value of the benefit evaluation problem we mentioned

above.

Theorem 1. For any construction plan with given y and z, we have ζ(y, z) = ξ(y, z).

Proof. Given any y and z, each flow on the graph we constructed is bounded by demand of

customer and capacity of service. Therefore, the capacity constraints in benefit evaluation

problem are obeyed. For every node Ci, if the maximum flow flows out according to the

preference levels in equilibrium, the customers’ decisions in graph are exactly same as

which in problem. It turns out ζ(y, z) = ξ(y, z). Based on this maximum flow instance,

assume that there is at least one flow flowing out some node Ci changes to the less

preferred edge. If this change does not decrease ξ(y, z), i.e., does not make any edge

out of capacity, ζ(y, z) = ξ(y, z). If it does, this new instance is impossible to be an

outcome of the maximum flow problem. In conclusion, even we allow the customers to

choose the facility which is not her/his most preferred in constructed maximum flow,

ζ(y, z) = ξ(y, z) still holds.

4.3 Service types selection with maximum flow

In each iteration of GSA, for each unbuilt facility, we try to select its recommended

providing services with different scale levels. To do this, given facility j and scale k, we

introduce two performance ratios Ratio1 and Ratio2 as our selection rules.

We first define a variable ȳ ∈ {0, 1} and a function f(j, k, w, ȳ). The variable ȳ is 1 if

we have selected at least one type of services for the facility which we are considering, and

0 otherwise. The function f(j, k, w, ȳ) is the marginal construction cost. More precisely,
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if ȳ is 1, f(j, k, w, ȳ) is fw, the cost of the service w. On the other hand, f(j, k, w, ȳ) is

fjk + fw, the fixed cost of building facility at location j with scale level k the service w

providing service w, when ȳ is 0. With above definitions, we now introduce two functions

R1(j, k, w, ȳ|y, z) and R2(j, k, w, ȳ|y, z) for calculating performance ratios Ratio1 and

Ratio2, respectively. The function R1(j, k, w, ȳ|y, z) is the benefit-to-construction-cost

ratio by building facility providing service w at location j with scale k into a construction

plan, while R2(j, k, w, ȳ|y, z) is the benefit-to-required-area ratio. Let yo(j0, k0, ȳ|y) be

the original construction plan before adding facility j0 at scale k0 to form plan y, i.e.,

yojk(j0, k0, ȳ|y) =


yjk − 1, if (j, k) = (j0, k0) and ȳ = 0

yjk, otherwise

∀j ∈ J, k ∈ K.

Similarly, let zo(j0, S|z) be the original construction plan before selecting services from

set S for facility j0 to form plan z, i.e.,

zojw(j0, S|z) =


zjw − 1, if j = j0, and w ∈ S

zjw, otherwise

∀j ∈ J, w ∈ W̃ .

The ratio functions are then defined as

R1(j, k, w, ȳ|y, z) =
marginal objective value

marginal construction cost
=

ζ(y, z)− ζ
(
yo(j, k, ȳ|y), zo(j, {w}|z)

)
f(j, k, w, ȳ)

,

and

R2(j, k, w, ȳ|y, z) =
marginal objective value

marginal required area
=

ζ(y, z)− ζ
(
yo(j, k, ȳ|y), zo(j, {w}|z)

)
hw

.

In each iteration of STSMF, for unbuilt facility j with scale level k, we first calculate

Ratio1 and Ratio2 of all unchosen service types. After performance ratios are calculated,
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let w∗1 be the service with the highest Ratio1 and w∗2 with the highest Ratio2 among

others. Between w∗1 and w∗2, we choose the one increasing the objective value more

into the construction plan. The next iteration is proceeded until all services have been

chosen, or we run out of budget, or there is no enough floor area for any unchosen

services. For convenience, we define two functions F(y, z) and H(j, z). F(y, z) is the

total construction cost given a construction plan with y and z, i.e.,

F(y, z) =
∑
j∈J

∑
k∈K

∑
w∈W

fjkyjk + fwzjw.

H(j, z) is the requires area of services at facility j given a construction plan z, i.e.,

H(j, z) =
∑
w∈W

hwzjw.

After the recommended service types are chosen, as mentioned in Chapter 3, there is

a possible construction plan for the facility that not providing any service, i.e., only

provides service w̃. Considering this possibility, we first calculate the performance ratio

of w̃ with function R1(j, k, w̃, ȳ = 0|y, z) and compare it with the performance ratio of

the recommended services. To be more specific, given a set of recommended services, say

SW , we define a new function R(j, k, SW |y, z) as

R(j, k, SW |y, z) =
marginal objective value

marginal construction cost

=

ζ(y, z)− ζ
(
yo(j, k, ȳ = 0|y), zo(j, SW |z)

)
F(y, z)−F

(
yo(j, k, ȳ = 0|y), zo(j, SW |z)

) ,
for calculating its performance ratio. Finally, if the performance ratio of w̃ is better, the

facility only provides empty spaces; otherwise, it provides services in the set of recom-

mended ones.

The algorithm is summarized in Algorithm 1.
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Algorithm 1 Service types selection with maximum flow (STSMF)

Require: y, z, j, k

1: SW ← ∅, ȳ ← 0, yjk ← 1

2: aRatio←R1(j, k, w̃, ȳ|y, z)

3: repeat

4: Ratio1 ← 0, Ratio2 ← 0, w∗1 ← 0, w∗2 ← 0, objw∗
1
← 0, objw∗

2
← 0

5: for w ∈ W \ SW do

6: if F(y, z) + fjw ≤ B and H(j, z) + hw ≤ Hk then

7: zjw ← 1

8: for n ∈ {1, 2} do

9: aRation ←Rn(j, k, w, ȳ|y, z)

10: if aRation > Ration then

11: Ration ← aRation, w∗n ← w, objw∗
n
← ζ(y, z)

12: end if

13: end for

14: zjw ← 0

15: end if

16: end for

17: w∗ ← argmaxw∗
n
objw∗

n

18: zjw∗ ← 1, SW ← SW ∪ {w∗}, ȳ ← 1

19: until (w∗1, w
∗
2) = (0, 0)

20: Ratio←R(j, k, SW |y, z)

21: if aRatio > Ratio then

22: SW ← {w̃}, Ratio← aRatio

23: end if

24: return SW , Ratio
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4.4 The greedy algorithm

In each iteration of our proposed algorithm, GSA, we are given an original construction

plan. We decide the recommended services for each unbuilt facility and each candidate

scale level with Algorithm STSMF, introduced in Section 4.3. After recommended service

types are decided, we choose the scale level with the highest performance ratio for each

facility. Among all unbuilt facilities with their recommended scale levels and services, we

add the facility with the better performance ratio into the construction plan. The next

iteration is proceeded until all facilities are built or there is not enough budget to build

any new facility. The pseudocode of our proposed Greedy selection algorithm (GSA) is

presented in Algorithm 2.

4.4.1 Time complexity analysis

Let V and E be the number of the nodes and edges in the graph for evaluating the

objective function ζ(y, z). The numbers of V and E satisfy |V | ≤ |I|+ |J |(|W |+ 1) + 2

and |E| ≤ |I| + (|I| + 1)|J |(|W | + 1). A classic way to solve maximum flow problem

is to use the Edmonds-Karp algorithm proposed in Edmonds and Karp (1972), which

is an implementation of Ford-Fulkerson method using breadth-first search in finding the

augmenting path. The Edmonds-Karp algorithm provide a solution with a O(|V ||E|2)

bound. Therefore, in our problem, the time complexity of benefit evaluation in our

algorithm is

O(|V ||E|2) = O

(
|I|2|J |2|W |2(|I|+ |J ||W |)

)
.

In each iteration of STSMF, i.e., Algorithm 1, it takes O

(
|I|2|J |2|W |2(|I|+ |J ||W |)

)
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Algorithm 2 Greedy Selection Algorithm (GSA)

1: y ← 0, z ← 0, SJ ← ∅

2: repeat

3: (j∗, k∗)← (0, 0)

4: for j ∈ J \ SJ do

5: for k ∈ K do

6: SWjk ← ∅, RatioWjk ← 0

7: if F(y, z) + fjk ≤ B then

8: SWjk , Ratio
W
jk ← STSMF(y, z, j, k)

9: end if

10: end for

11: end for

12: (j∗, k∗)← argmax(j,k)Ratio
W
jk

13: if (j∗, k∗) 6= (0, 0) then

14: yj∗k∗ ← 1, SJ ← SJ ∪ {j∗}

15: if SWj∗k∗ 6= {w̃} then

16: for w ∈ SWj∗k∗ do

17: zj∗w ← 1

18: end for

19: end if

20: end if

21: until (j∗, k∗) = (0, 0)

22: return y, z
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to compute the number of the customers served by the construction plan. The algorithm

will be executed for O(|W |2) iterations. Therefore, the time complexity is

O

(
|I|2|J |2|W |4(|I|+ |J ||W |)

)
.

For GSA, Algorithm 2 we proposed, it finds the recommended services with STSMF

in each iteration. Algorithm 1 will be executed for O(|J |2|K|) times. Therefore, the total

complexity is

O

(
|I|2|J |4|K||W |4(|I|+ |J ||W |)

)
.

4.4.2 Incremental maximum flow

In each iteration of STSMF, we try all services to add one into the construction plan with

solving the maximum flow problem, which takes long computational time. However, in

our algorithm, there are only slight changes of the graph comparing to which in previous

iteration, so most of the flow are still the same. We only need to find new augmenting

path and the backward path after adding new service nodes and edges. More precisely,

adding a new edge is equivalent to changing one edge’s capacity from zero to some positive

number on the previous solved graph. The difference between previous maximum flow

and the new one will only be determined by those vertices affected by this insertion.

Therefore, whenever we add a new service into the construction plan, instead of creating

a whole new graph, we add vertices and edges to the previous solved graph then continue

solving the maximum flow problem.

Kumar and Gupta (2003) propose an incremental algorithm for maximum flow prob-

lem of inserting an edge in the graph. The time complexity of the algorithm isO(|∆V |2|E|),
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where |∆V | is the number of affected vertices and |E| is the number of edges. When an

edge is inserted into the graph, there may exist new augmenting path from source to sink

through the new edge. The affected vertices are those that lie on at least one augmenting

path. That is, when we add a new service node Fjw into the construction plan, it is equiv-

alent to insert |I| edges, i.e. (Ci,Fwj) for all i ∈ I, to the graph and affects |∆V | = O(|I|)

nodes. Therefore, the time complexity of adding a new service node to the graph is

O(|∆V |2|E|) = O
(
|I|2 (|I||J ||W |)

)
= O(|I|3|J ||W |),

and the time complexity of STSMF is

O(|I|3|J ||W |3).

For GSA, the total time complexity becomes

O(|I|3|J |3|K||W |3).

The implementation with incremental maximum flow indeed reduces the time complexity

of GSA.

4.5 Service types selection with maximum flow esti-

mation

In GSA, given a construction plan with y and z, we have to calculate the correspond-

ing number of served customers. However, considering large number of customers and

facilities, Algorithm 1 requires long computational time for calculating maximum flow.

Therefore, we propose a new algorithm STSMFE. It uses the estimation algorithm pro-

posed in Chiang (2017) to evaluate the objective value and extend it with service types.
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With the aid of the estimation, we could replace STSMF in Algorithm 2 with STSMFE,

and make the algorithm more efficient.

Let Ijw be the set of customers that pijw > 0 for service w ∈ W̃ provided by facility

j and JWi be the set of facility-service pairs (j, w) that pijw > 0 for customer i. For

the service w ∈ W provided by facility j, we denote q′jw = qw. On the other hand, for

the empty space, i.e., service w̃, in facility j, we denote its capacity q′jw̃ as l(Hkyjk −∑
w∈W hwzjw) for given construction plan with y and z. Therefore, we can then define

two variable αi and βjw where the former is the potential demand of customer i. We

define

αi = min

di, ∑
(j,w)∈JWi

q′jwzjw

 .

Similarly, βjw is the potential supply of service w provided by facility j as

βjw = min

∑
i∈Ijw

di, q
′
jwzjw

 .

The estimated objective value ζ ′(y, z) of the construction plan y and z is the minimum

of the potential demand and supply. That is

ζ ′(y, z) = min

∑
i∈I

αi,
∑
j∈J

∑
w∈W̃

βjw

 .

In our algorithm with flow estimation reduction, we replace ζ(y, z) in Algorithm

1 with its estimated value ζ ′(y, z). Therefore, we can also replace R1(j, k, w, ȳ|y, z),

R2(j, k, w, ȳ|y, z) and R(j, k, SW |y, z) with R′1(j, k, w, ȳ|y, z), R′2(j, k, w, ȳ|y, z) and R′(j, k, SW |y, z),

respectively, where

R′1(j, k, w, ȳ|y, z) =

ζ ′(y, z)− ζ ′
(
yo(j, k, ȳ|y), zo(j, {w}|z)

)
f(j, k, w, ȳ)

,
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R′2(j, k, w, ȳ|y, z) =

ζ ′(y, z)− ζ ′
(
yo(j, k, ȳ|y), zo(j, {w}|z)

)
hw

,

and

R′(j, k, SW |y, z) =

ζ ′(y, z)− ζ ′
(
yo(j, k, ȳ = 0|y), zo(j, SW |z)

)
F(y, z)−F

(
yo(j, k, ȳ = 0|y), zo(j, SW |z)

) .
The pseudocode of the Service types selection with maximum flow estimation is pre-

sented in Algorithm 3. The only difference between Algorithms 1 and 3 is using ζ(y, z)

or ζ ′(y, z) for benefit evaluation in each iteration.

4.5.1 Time complexity analysis

Given a construction plan with y and z, the solution of ζ ′(y, z) can be found inO(|I||J ||W |),

and the time complexity of STSMFE is

O(|I||J ||W |3).

Therefore, the total complexity of Algorithm 2 with STSMFE is

O(|I||J |3|K||W |3).

which reduce the time complexity of our algorithm.

4.6 An illustrative example

In this section, we demonstrate an example of the STSMFE algorithm to better explain

how it works. Given a construction plan already with service 2 provided by facility 1

(z12 = 1) with scale 1 (y11 = 1), suppose we are going to run STSMF and STSMFE for
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Algorithm 3 Service types selection with maximum flow estimation (STSMFE)

Require: y, z, j, k

1: SW ← ∅, ȳ ← 0, yjk ← 1

2: aRatio←R′1(j, k, w̃, ȳ|y, z)

3: repeat

4: Ratio1 ← 0, Ratio2 ← 0, w∗1 ← 0, w∗2 ← 0, objw∗
1
← 0, objw∗

2
← 0

5: for w ∈ W \ SW do

6: if F(y, z) + fjw ≤ B and H(j, z) + hw ≤ Hk then

7: zjw ← 1

8: for n ∈ {1, 2} do

9: aRation ←R′n(j, k, w, ȳ|y, z)

10: if aRation > Ration then

11: Ration ← aRation, w∗n ← w, objw∗
n
← ζ(y, z)

12: end if

13: end for

14: zjw ← 0

15: end if

16: end for

17: w∗ ← argmaxw∗
n
objw∗

n

18: zjw∗ ← 1, SW ← SW ∪ {w∗}, ȳ ← 1

19: until (w∗1, w
∗
2) = (0, 0)

20: Ratio←R′(j, k, SW |y, z)

21: if aRatio > Ratio then

22: SW ← {w̃}, Ratio← aRatio

23: end if

24: return SW , Ratio
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unbuilt facility j = 2 with scale level k = 2. Moreover, we assume that there are three

customers and four service types can be chosen. The budget of the construction plan

B = 60. The customer demands is listed in Table 4.1, while facility construction costs

and total floor areas are in Table 4.2. Service costs, required areas and capacities are

listed in Table 4.3. In Table 4.4, we label the preference levels larger than 0 with the plus

sign (+) for each customer.

customer i demand di

1 6

2 8

3 10

Table 4.1: Example demands

facility j scale k construction cost fjk total floor area Hk

1 1 10 35

2 2 20 40

Table 4.2: Example construction costs and total floor area of facilities

Let the capacity of empty space w̃ to be 0.6 per area. Since in our construction

plan, we have y11 = 1 and z12 = 1, there are 10 unit area of empty space for facility 1.

Therefore, the capacity of service w̃ provided by facility 1 is 0.6× 10 = 6.

We now start to run STSMF and STSMFE on this example. In iteration 1, the esti-

mation step of first iteration, since no service is recommended by facility 2, we compute
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service w cost fw required area hw capacity qw

1 2 5 2

2 12 25 8

3 12 35 10

4 22 50 12

Table 4.3: Example service costs, required areas, and capacities

customer i
(j, w) : facility j providing service w

(1, 2) (1, w̃) (2, 1) (2, 2) (2, 3) (2, 4) (2, w̃)

1 + + +

2 + + + +

3 + + +

Table 4.4: Example preferences (positive ones are marked)

the estimated flow ζ ′(y, z) of all services. The estimated flow ζ ′(y, z) and the performance

ratios Ratio′1 and Ratio′2 calculated by R′1(j, k, w, ȳ|y, z) and R′2(j, k, w, ȳ|y, z) are listed

in Table 4.5. We also list the exact objective value ζ(y, z) and its corresponding perfor-

mance ratio Ratio1 and Ratio2 of our STSMF algorithm, which solves exact objective

value ζ(y, z) with maximum flow in every iteration, in the table. Note that we do not

have to consider service 4 for facility 2 since there is no enough floor area for it.

Take service 1 for example. If we add it into the construction plan, we have empty

space 40 − 5 = 35 unit area, leading to capacity 35 × 0.6 = 21 for service w̃ provided
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service w capacity of service w̃ ζ(y, z) ζ ′(y, z) Ratio1 Ratio′1 Ratio2 Ratio′2

1 21 18 18 9
11

9
11

18
5

18
5

2 9 23 23 23
32

23
32

23
25

23
25

3 6 22 24 22
16

3
4

22
35

24
35

w̃ 24 16 16 4
5

4
5

- -

Table 4.5: Estimated flows and ratios in iteration 1 of the example

by facility 2. According to customer preferences, customer 1 is willing to get served by

service 2 and w̃ at facility 1, while customer 2 and 3 are interested in service 1 and w̃

provided by facility 2, respectively. The construction plan can be transformed into Figure

4.2 as a maximum flow problem we mentioned in Section 4.2. The numbers on the edges

in Figure 4.2 are their capacities.

Figure 4.2: The maximum flow graph of the illustrative example

Thus, for STSMF, the maximum flow ζ(z, y) is 18. For STSMFE, the potential

customer demand of each customer is α1 = min{d1, q′1,2 + q′1,w̃} = min{6, 14}, α2 =

min{d2, q′2,1} = min{8, 2} and α3 = min{d3, q′2,w̃} = min{10, 21}, respectively. The
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potential facility supply of each service nodes are β1,2 = min{d1, q′1,2} = min{6, 8}, β1,w̃ =

min{d1, q′1,w̃} = min{6, 6}, β2,1 = min{d2, q′2,1} = min{8, 2}, and β2,w̃ = min{d3, q′2,w̃} =

min{10, 21}, respectively. Therefore, the estimated flow of adding service 1 at facility

2 is ζ ′(y, z) = min{
∑

i∈I αi,
∑

j∈J
∑

w∈W̃ βjw} = min{6 + 2 + 10, 6 + 6 + 2 + 10} = 18.

Since we have not chosen any service for facility 2 yet, ȳ = 0. Therefore, f(j = 2, k =

2, w = 1, ȳ = 0) = fjk + fw = f22 + f1 = 22 and its required area h1 is 5. We then have

Ratio1 = Ratio′1 = 18
22

= 9
11

and Ratio2 = Ratio′2 = 18
5

.

According to Table 4.5, we choose service 1 since both its performance is the highest

one no matter with STSMF or STSMFE. After adding it into the construction plan, we

end this iteration and proceed to the second iteration with only service 2 and 3 remain

as candidates. The result is shown in Table 4.6.

service w capacity of service w̃ ζ(y, z) ζ ′(y, z) Ratio1 Ratio′1 Ratio2 Ratio′2

2 6 20 20 5
3

5
3

4
5

4
5

3 0 16 22 4
3

11
6

16
35

22
35

Table 4.6: Estimated flows and ratios in iteration 2 of the example

At the end of the third iteration, for using STSMF algorithm, we add service 2 into

the construction plan since both Ratio1 and Ratio2 of service 2 are the highest. However,

we find that if we apply STSMFE algorithm, we will choose service 3 since service 3 has

higher Ratio′1 and also has larger estimated flow value ζ ′(y, z).

After the second iteration, there is no enough floor area at facility 2 to provide any

other service, so both STSMF and STSMFE end. Therefore, for STSMF algorithm,
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the final recommended service types for facility 2 with scale 2 are service 1 and 2, with

the exact objective value ζ(y, z) = 20. On the other hand, our STSMFE algorithm

recommends service 1 and 3. Notice that the actual flow value provided by these services

is 16. In this example, we find that STSMFE sometimes may overestimate and choose a

solution worse than STSMF.
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Chapter 5

Numerical Study

5.1 Experiment setting

To present the experimental results of the algorithm, we adopt five factors to analyze the

performance under different circumstances. The first factor is the size of the problem,

which considers three sizes, small, medium and large, respectively. We set |I| = 30,

|J | = 25 as the small size, |I| = 60, |J | = 50 as the medium size and |I| = 90, |J | = 75

as the large size for the problem. The second factor is the number of scales which each

facility has. We consider two scenarios: one is each facility has only one scale and the

other is each facility has three scale levels to choose from. The third factor is the numbers

of service types which are under three scenarios: problems with three service types, with

six service types, and without any service, i.e., only empty spaces are allowed.

The fourth factor is customer’s preference. In our experiment, the customer and

facility locations are mapped onto a 2-dimensional coordinate. Let dij be the Euclidean
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distance between customer i and facility j, and we set customer i’s location preference

to facility j to be 1
d2ij

. We denote rJi , rIi , and rWiw as customer i’s location preference,

individual preference, and service preference of service w, respectively. Put above factors

together, the preference of customer i to service w provided by facility j, i.e., pijw, is

rJi ( 1
d2ij

+ rIi ) + rWiw . There are two scenarios of this factor: low divergence and high

divergence. The former randomly distributes rJi from 0.75 to 1.25, rIi from −0.5 to 0.5,

and rWiw from −2 to 2. In the latter type, rJi , rIi , and rWiw are randomly distributed from

0.5 to 1.5, from −2 to 2, and from −10 to 10, respectively.

The last factors is the budget of the construction plan, having two types in the exper-

iment. The tight budget is set to 40 percent of the total construction cost and the loose

budget is set to 80 percent.

The above five factors generate 3 × 2 × 3 × 2 × 2 = 72 scenarios, and we generate

30 instances for each scenario. The experiments were performed on a PC with a 3.2

GHz Intel(R) Core i7-5820K processor and 16 GB RAM. The heuristic algorithm was

implemented in Spyder 4.0 using python 3.8. And the MIP model was solved using 41

Gurobi 8.1 and implemented through Gurobi python.

5.2 Solution performance

In this section, let ζ be the objective value of the solution found by GSA with STSMFE,

and ζ∗ be which found by mathematical model. We denote the average value of ζ
ζ∗

as

AV G, and the minimum of it as MIN .

In Table 5.1, we find that both average and the worst performance of our algorithm
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are better when the instance size increases. When the problem size increases, the ef-

fect of making single non-optimal decision may impact less on the total objective value.

Moreover, the number of iterations increase with the problem size. Therefore, even if

the algorithms choose a non-optimal solution in an iteration, there are more chances for

them to further improve the objective value in the following iterations.

Instance size AV G MIN

Small 0.9453 0.6260

Medium 0.9671 0.7744

Large 0.9763 0.8086

Table 5.1: Numerical result of problem size

Table 5.2 shows that the performance of our algorithm does not change so much in

two scenarios. Typically, if a facility has multiple scale levels can choose, there are more

chances to pick the non-optimal solutions. Therefore, the problem becomes more difficult.

However, our algorithm has many chances to fix the non-optimal decisions. If we select

the non-optimal scale which larger than the optimal one, it may cost more and sacrifice

the budget of building other facilities. Even so, larger scale provides more floor area to

provide more services. Similarly, if our non-optimal scale selection is smaller than the

optimal one, it may bring a limitation of service types that the facility can choose from.

However, smaller scale costs less, leading to more budget to build other facilities and

services. As a result, the non-optimal solutions have less influence on the objective value.

In Table 5.3, we can first observe that the performance of the scenario without any

service is better. In fact, if there is no service can be provided by any facility, the capacity
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Number of scale levels AV G MIN

1 0.9641 0.6260

3 0.9617 0.6673

Table 5.2: Numerical result of number of scale level

of each facility is only determined by their floor area, or more precisely, its scale level.

Therefore, our problem is then reduced to the problem in Chiang (2017). In this scenario,

since we do not have to decide z in the construction plan, it becomes an easier problem

and not surprising that it has a better performance. Moreover, Table 5.3 also shows that

the performance of our algorithm only slightly decreases as the number of service types

increases. When there are more service types, there are more non-optimal solutions

and makes it more difficult to choose the optimal one. However, more service types

significantly increases the number of combinations of provided services. The number of

customers’ options also increases and turns out more chances that customers can still be

served by other facilities and services. Therefore, number of service types only has little

effect on the objective value.

Number of service types AV G MIN

0 0.9728 0.7791

3 0.9593 0.6960

6 0.9565 0.6260

Table 5.3: Numerical result of number of service types
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Table 5.4 indicates that the performance is better when the customers’ preferences

have low divergence. When customers’ preferences are pretty similar, the customer be-

haviors are more controllable. Therefore, our algorithm could better estimate the problem

and easier to get good solutions.

Preference divergence AV G MIN

Low 0.9970 0.7778

High 0.9288 0.6260

Table 5.4: Numerical result of customer preference

Finally, Table 5.5 shows that our algorithm performs better when the budget is loose.

If we have more budget, we are able to build more facilities and provide more services.

Even though the algorithm selects a non-optimal solution in an iteration, we have more

chances to make customers be served by other facilities and services in the following

processes. Consequently, the result of our algorithm gets closer to the optimal objective

value easier when the budget is loose.

Budget AV G MIN

Tight 0.9502 0.6260

Loose 0.9755 0.7364

Table 5.5: Numerical result of budget
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5.3 Time performance

In this section, we test the computation time of our algorithm under different problem

sizes with three experiments. First, we set the number of facilities |J | = 50 and the

number of services |W | = 6. The number of customer |I| increases from 60 to 240. Next,

|I| and |W | are set to be 60 and 6, respectively, while |J | is set from 50 to 200. In the

last experiment, |I| is fixed at 60 and |J | is fixed at 50. We test the algorithm under

different |W | from 6 to 96. For the other factors, there are two scenarios of scale, one or

three scale levels can be chosen, two scenarios of preference, low or high divergence, and

two scenarios of budget, tight or loose. We generate 10 instances for each scenario.

The average of computation result of the first experiment is listed in Table 5.6. Mean-

while, Figure 5.1 visualizes the result of Table 5.6. It fits a linear function of |I| with

R2 = 0.999. In Section 4.5.1 we claim that GSA with STSMFE has a time complexity

O(|I||J |3|K||W |3). Figure 5.1 helps us verify this result.
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|I| Time (sec)

60 3.92

90 5.82

120 7.86

150 9.80

180 11.95

210 14.05

240 16.41

Table 5.6: Computation

time of different |I| Figure 5.1: Computation time of different |I|

Table 5.7 and Figure 5.2 show the computation time of our algorithm under different

number of facilities |J |, while Table 5.8 and Figure 5.3 present which under different

number of services |W |. We find that Figures 5.2 fits a quadratic polynomial function of

|J | withR2 = 0.998, and Figure 5.3 fits another quadratic polynomial function of |W | with

R2 = 0.997. Although the theoretical time complexity of our algorithm is proportional

to |J |3 and |W |3, we may see that in Algorithm 2 and 3, we remove the selected facilities

and services from the candidate lists. i.e., in every iterations of GSA and STSMFE,

the numbers of considered facilities and services are strictly decreasing. Therefore, our

algorithm is efficient in practical and this can be supported via the quadratic fitting in

Figures 5.2 and 5.3.
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|J | Time (sec)

50 3.92

75 11.74

100 24.97

125 46.37

150 77.28

175 116.98

200 117.31

Table 5.7: Computation

time of different |J | Figure 5.2: Computation time of different |J |
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|W | Time (sec)

6 3.92

16 27.76

26 72.10

36 138.40

46 232.51

56 356.58

66 507.48

76 697.44

86 885.97

96 1101.06

Table 5.8: Computation

time of different |W | Figure 5.3: Computation time of different |W |
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Chapter 6

Conclusion

In this study, we consider a multi-types capacitated facility location problem with cus-

tomer preferences. Inspired by previous literature, we formulate a single-level mixed

integer program with objective to maximize the total number of served customers. Since

the problem is NP-hard, we develop a greedy-based heuristic algorithms with maximum

flow network and flow estimation. Through our numerical study, we find that our algo-

rithm can provide near-optimal solutions in reasonable time.

There are several ways to extend this study. First, in our setting, the decision maker

only has to consider a facility should provide a service or not, while the amount is not

taken into account. For example, if the decision maker is building sport facilities, she/he

determines not only whether a sport center should provide a basketball court, but also how

many basketball courts should a sport center have. Extending our model and algorithm

to include this feature will make them more applicable in practice. Another research

direction is to investigate the proposed algorithm from a more theoretical perspective to

see whether there is a worst-case performance guarantee. An investigation on this may
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generate theoretical contributions to the literature of discrete optimization.
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