SRR SRR S 2R 2 3
ERCE
Department of Mathematics
College of Science

National Taiwan University

Master Thesis

Hopf AL Z 3+ &2 7~ 3

A Survey On Hopfibifurcation

QEFN-
Chung-Lin Tseng

Ry L hze gL
Advisor: Chun-Hsiung Hsia, Ph.D.

P EA 99 & 7

July, 2010



RES]
S RIRBIEI PO S ER RIS fofna ’:”F}*s?fiiﬁ%ﬁfﬁéﬂﬁ'
HiE [lu:[‘ pmﬁ"‘ﬂ iR Hﬁﬂhﬂ ?“,%ﬁ bl 7{%%1@‘«%&@&& EI#J“}JEIU[PJ
SRV FRL iﬁ—ﬁiﬁ'# LR

1




= S5 E[
e ¥ kL Hopf 53 [Repiv-b et 2
g ng‘? IEr(')pf 5 ﬁge?r;, ,%a% NG ﬁﬁiﬁi j:H,S F:]:”\L%J%L“Efaf‘m "35 ST P
53 TR i Jq% HUF"U;QL_%;EJ CTTF Ji;j ’ _Ii’[ ;;7 Al FPETP = Rl i Hopf
e Zgﬂ%%mﬁgqgjg | {ﬁ_{ggf, _ EL"IH[‘EE 'mHl JH\F—,H', VERRTRS R
1 A T A S B

e

JE _‘k_,» . S
FTJ%J : Hopf » 5315 » Floquet H2F1 » Jef i » p[ R
L:r °




Abstract
This paper is a survey on Hopf bifurcation, Hopf bifurcation is very important in
many areas. In this paper, we focus on the properties and proofs of Hopf bifurcation.
The proof in this paper give the bifurcation formula, and we give some examples after

we proved the theorem.
Keywords: Hopf, bifurcation, Floquet theorem, center manifold, periodic

solution.
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1 Introduction

In history, many interesting examples arise in engineering have periodic behaviors,
like James Watt’s centrifugal’ governor. Nowj periodic phéhomena can be observed in

many place, like biology and chemistry.: ‘fﬁezHopf bifurcation 1s discussing about this
‘ P

phenomena. In this survey,we focusion the autonomous system with one parameter, and

state the properties and proofs:of Hopf bifurcation.| The Hopf bifurcation can be proved

in many ways [3, 8]. The proof in-this‘survey give the bifurcation formula, and we will

give examples in the last section.

2 Statement of the Theorem

We investigate the autonomous system of differential equations

=) m
where X € R"” and u is a real parameter on an open interval /.
Theorem. (Ct— Hopf Bifurcation)[5] If

(1) F(O,u) = 0 for u in an open interval containing 0, and 0 € R" is an isolated
stationary point of F.

(2) All partial derivatives of F of order < L+2 (L > 2) exist and are continuous in X

and L in a neighborhood of (0,0) in R" x R!



(3) A(1) = DxF(0, ) has a pair of complex conjugate eigenvalue A and A such that

where
®(0) =y >0, a(0) =0, a'(0) #0.

(4) The remaining n — 2 eigenvalues of A(0) have strictly negative real parts,
then the system (1) has a family of periodic solutions satisfies the following properties:

(a) There exist an € > 0 and a C**! function p(¢),

L =
7
Z oie* o) “ 0 <e< %)

such that for each € € (0,%) there exists-a peripdic solution P:(t), occurring for g =
W(€). There is a neighborhood R.of X * :61;1,3 ;Cll"l openiinterval I containing 0 such that
for any u € I the only nonconstant periodzc solutzons of (1) that lie in N are the members
of the periodic solution P (t) whtch satzsﬁes ee)— ,LL, €€ (0,‘5)

(b) The period T (€) of Pe(t)isia. CE=" fumction
2n (el+!
T(e) === l—l—Z’L’z, ) 0<e<%)

(c) The periodic solution P (t) has two exactly Floquet exponents [2, 4, 6] approach

0as e — 0, oneis 0 for € € (0,%) and the other is a C**" function
(5] _
=Y Bue*+0(e") (0<e<%)
i=1

the periodic solution Pg(t) is orbitally asymptotically stable with asymptotic phase if

B(€) <O, is unstable if B(€) >0



3 Proof of the Theorem

The proof is divided into three main parts:

e Partl : The proof of 2 x 2 systems in Poincaré normal form;
e Part2 : The reduction of general 2 x 2 systems to Poincaré normal form;

e Part3 : Application of the Center Manifold Theorem to reduce general n x n sys-

tems to the 2 x 2 case on center manifold.

Partl1(A) Existence

Assume we have the 2 x 2 Poincaré normal form[1}:

4] ,

X =A(WX £ Y B/@X[X [ + o(IXI(X, 1)) = F(X, 1) )
=1 ,

where :;;_
x=| " el Ma) = a(p) + io(w)
x (L) o)
ReC; —ImC;
Bi(u) = i (1) (1) (1§j§[§]>

ImC](u) RCCJ'(‘LL)

and F (X, ) is jointly C*2 in X and u.

If we let £ = x| + ix, then (2) can be written as

) 5] ,
C=A(1n)C+ ZHCJ(H)CICI” +O(SI1(E, ).
=
Let X = €Y. We have

5 .
Y =AY+ Y eBi(u)Y|Y ¥ +O(|r||(e¥,w)[*), 3)
j=1



with initial condition ¥ (0) = (1,0)7, which is X(0) = (¢,0)?. Since F(X,u) is Ct*2
jointly in X and u, the R.H.S of (3) is CE! jointly in ¥, u, €. Welet Y =Y(t,&,u)
denote the solution of (3) satisfies initial condition (1,0)T. Now for € =0 and u small,

Y (¢,0, 1) will cross yj-axis for t = Ty(u ), where

27

T — +0 L+1 )
Now,
1 2ma(y) L1
Y(To(u),0,u) = fe oW o)),
0
Y € Ct*1jointly int, €, u, and
) OC([J) ) L+1
Y(To(@),0, )= Jefel o).
pL)

Since () > 0 for y in a neighberhood of()lfyz(t, eiu)=0fort=T(e,u) withT(0, 1) =
To(u) and T € CEF1 jointly in &, u,;if} welet I(eiu) = yl(T(e,,u),s,u), then € CL+!

|
for €,u small, and since .

ol yl(T(O,‘Ll),O,,LL)—y1<(DQ,0,0)

—(0,0) = lim
8u( ) Jim, T
2mo(p) 2mo
) L+1y _ o7y
i © +Oo(u~"") —e
u—0 H
o' (0)
=2r 0.
w(0) 7

By the implicit function theorem, we have u = u(e), u € CE*! for € € [0,%) such that
I(e,u(€)) =1, so we got a family of periodic solutions for each € € (0,%’) that satisfies
the system X = F(X, i) with initial condition X (0) = (¢,0)”. This completes the prove

of the existence of periodic solutions for the Poincaré normal form.



Part1(B) Bifurcation Formula

In Part(A) we have proved the existence of periodic solutions. In this part, we are going

to prove the following lemma

Lemma. Ifthe Poincaré normal form of (1) is

C+Zc, I +0(g11S M) @)

=H(,C,u)

where H({, L, 1) is C¥2 jointly in §, {, W in a neighborhood of 0 € C x C x R!, then

the periodic solution of period T (&) such that £ (0,ft).= € of (4) has the form

G geT© 4+ O(ekHR) Q)
where | :5.,“ |
2n & i L+1
T(e) = —LR1 + Ylge'|+ ofeh Ty, (6)
| < |
and E | &
; il
(e) =Y we +0(e"th), (7

Proof. From Part(A), we see that T(€) and p(¢&) are in C-*! with T(0) = wo’ w(0)=0.
So T(€) and p(€) can be written as (6) and (7). We use the change of variables (7,1)

with
T=—r and ¢ =ee™™™y.

ag _ . DT dT 2mitdn dt dr 1 .
Then because > = €2mie™™"" N + e~ 74 and = T(e)> SO put 7, 1 in (4) we have

. .dn
27rzn+E: +Zc, (nf) e¥]+0(ek™). (8)

By the smoothness of H (&, &, 1) we can write the solution 17 with initial condition 17(0) =



1 as
Zn, 7)e' + 0(eF™), with no(0) = 1, m;(0) =0 (1<i<L). (9)

We want to show that no(7) = 1, and 1;(t) = 0 for 1 <i < L, which means (5) is true.

We put (6) and (9) into (8). Then at O(g"), (8) have the relations
. d .
2mino + % = 2TiNo,

SO ‘ZLO = 0 and we know that 1(0) = 1. This implies 19 = 1.

At O(g"), (8) have the relations
; d -
2711+ di; =2%in -+

where vi = TNy + 28 o Enoy is a constan u_mdependent of €. Thus N1 = v1T+ v, where

vy is a constant. But since 1(T)is a perlo‘iﬁz’ solutlon with period 1, so does 1;. Hence
M

vi = 0. On the other hand, we know nf( 0)=0. Hence, v» 0 which implies 1, =

I 1

At O(&?),
y s
2zin, + % = 2min, +-vs,

where vs = 2% (@ (0) +i6/(0)) Tyt + 271 + 25[(@ (0) +i00/(0) o + 052" ©

wy uglis

a constant. Thus 1, = v3T + v4. Notice that 1, has period 1 as well. Therefore, v3 =0

and v4 = 0. By 12(0) = 0, we obtain 1, = 0. Using the same argument, we have
ni= 0 (1 <i< L).

O]

Next we want to derive the coefficients in the expansions of u(€) and 7'(¢). To do

this, we put (5) into (4). Then we get

L
[f] 2t 2mt

T8 = A(u)eeT® + Y cj(w)eeT® |eeT 2 +0(...),




which implies

2mi A 3] 2j
Inferring from (10), we have
(L]
T ImA(u i Ime;()e¥ +ImO(...) (11)
T(s) = P2 i( o),
%
0=ReA(u Z n)e* +Re0(...) (,12)

where O(...) is a term with order at least e-!. Next, we want to derive the coefficients of
the expansions of T (&) and (&) with order smaller then 5!, Tn what follows, we omit
the high order term in (11), (12), and«6), (7) 1n the discussion. Moreover, we assume
o' (0) £0.

We use (12) to calculateth¢ coefficients of u(e). Expanding (12) in i, and noting that

ReA(u) = a(u), we h r..-- e
eA(u) (1), we have =
[ | ."'
//( i .
a(0)+ o/ (O)u '+ —5—=hi+ +Rec1(0)82+Rec’1(O)u82+...
& )
+Rec2(0)8 TREC (Ve ... 20, (13)

Plugging (7) into (13), by a(0) = 0, we have

L ' OC”(O) L .
(0)() i)+ =5 (Y wje!) + ...+ Reci (0)e”+
j=1 J=1
L .
Rec (0)( Y mjel)et +...+Recz(0)e* +... = 0. (14)
j=1

By the above equation, at O(g'), (14) implies

a'(0)u; =0.

Since o’(0) # 0, we obtain

I
e

M1



At O(€?), (14) and u; = 0 imply

We therefore obtain

i —Recl (0)
H2 @(0)
At O(€?), (14) and u; = 0 imply
OC/(O)‘LL3 =0
Hence,
U3 =0
At O(e*), (14) and y; = gy =0 imply
/ PO Npe Ao
o (O)pta + 7——HyatReci (Q) k> +Recs (0) = 0.
—
| ’ 'fﬂ’—'" | |
Thus _i 11_ 1
_1 " O
Ha = k )Hz FRecz(0)),

where U, is given as above. Contmumg'the same process, we get 4; = 0, when i is odd.

We therefore obtain the formula stated in the Theorem property (a)

L
7
Z 2182l+0 L—H)

2 2—”1'0, we see Tgp = 1.

By the same argument on (11), and noting that 7'(0) = & = &

Thus, the L.H.S of (11) can be written as

2n .y [0y
T(S) ZiLzo 7€l 1+ ZiLzl T;€l

L L
=+ ap(— Y ne)+ap(— Y ne)+....,
i=1 i=1

and the terms ImA (i) = w(u) and Imcj(u) of R.H.S of (11) can be expended in terms



of u. Hence,

L L
@ + o (— Zr, + ap(— Zr, oo =g+ @' (0)u+
@"(0)u? + ... +Ime; (0)e? +Imc| (0) e + ..+ (15)

Imc,(0)e*+Imcy (0)ue* + ... .

Plugging the formula of u into (15), we can write (15) as an equation in € as

L L
— Z ’L','Sl) + (1)()(— Z TiEl)z +....= 0)/(0)([,1282 +[,L4£4 + )-l-
i=1 i=1

" (0)(u2€* + Hﬁiﬁ@éﬂﬁn +Imc1(0)£ + (16)

é‘ia)-{u4e‘“f% ey +I?r’@%0)

Imc’} (0) (12

Applying the same arg

Since @y # 0, we see

At O(€?),

—wpT = o' (0)up +Imcy (0),

SO

&= %(w’(O)uZ—i-Imcl(O)).

At 0(83), we have

—wp73 =0.

Hence,

|
e

T3



At 0(84), we get

o” (0
— T4+ wpTs = @' (0) g + 2( ),Ltzz +Imc (0) o +Imc,(0).
Thus,
-1 o” (0
7= L/ O+ 25 +Imel 0)ps-+1mes(0) — ],

Comparing the terms in R.H.S of (16) have even order with respect to €, we get 7; = 0 if

i is odd. This proved property (b) in Theorem
2z
T(e) === 1+Zr2, o(ekh.

Part1(C) Stability

We have already proved property(a) and (b) it Theorem_ in this part, we are going to
prove the stability about the periodic solut‘rgns Wthh is quite important. The approach

we use is Floquet theory, which 18 stat{ed aéﬁfollow and can-be found in [2, 4, 6]

|

Theorem. If A(1) is a continuous, T-periodie matr"i)'c,r_then for all t € R any fundamental

matrix solution for the nonautonomous-linear system
x=A(t)x 17)

can be written in the form

where Q(t) is a nonsingular, differentiable, T-periodic matrix and B is a constant matrix.

Furthermore, if (0) =1 then Q(0) =

The eigenvalues A;, i = 1,....,n of the matrix B are called characteristic exponents,
the eigenvalues eMT of BT are called characteristic multi pliers.
If P(r) is a nonconstant periodic solution of below equation (17), then P(t) is asymptotically,

orbitally stable with asymptotic phase if and only if there exists an € > 0 such that if ¢(¢)

10



is any solution of (17) for which |¢(f9) — P(fp)| < € at some fo, then there exists a constant

c, called the asymptotic phase, that satisfies
1ina|(p(t) —P(t+c)|=0.
—

The proof is based on the following Theorem,

Theorem. If

(1) P(t) is a nonconstant T-periodic solution of
X = f(x) (f € CH(R",R™)) (17)

(2) The characteristic multiplier 1 of the first variation of (17) with respect to the periodic

solution P, namely of
Ay~ S B
dt Ma=d) [

—
; 1_;7’-__‘, |

is simple, | ,]
(3) All other characteristie multipliefs (E)f ( 17):-have- modulii leSs than 1, then P(t) is asymp-

totically, orbitally stable with asymiptoticphase:

We shall use this theorem to prove the stability if the 2 x 2 system (2). By Part(B),
p(e) is CH*1. Hence, the nonconstant periodic solution of (2), Pe(t) = €y(t, €, u(€)) is
CLH1 jointly in ¢ and € with period T'(€), and Pe(t) is a nontrivial T (&) period solution
of the variational system y = A(z;€)y. This is because Pe(t) = F(Pg(t),u(€)). Thus
P:(t) = DxF (Pe(t),u(€))Pe(t), where DxF (P:(t),1t(€)) = A(t; €). By Floquet’s theory,
if ®(¢) is a fundamental matrix solution of the variational system, then it can be written as
®(t) = Q(t)eP". Thus P;(t) can be written as Q(t)e5’ ¢ for some constant vector c. Since
O(1+T(e)) =), Q(t+T(€)) = O(r), we have Q(t + T (£))eP T e = Q(1)eB+T) e =

BT

Q(t)eBt ¢, which means €87 ¢ = ¢, thus €7 has characteristic multiplier 1. Thus character-

istic exponent 0. If the other characteristic exponent is (&), we use the following theory.

11



If Ai (i=1,...,n) are the characteristic exponents of (17), then

f = / " rA(s)ds

l:

where trA(s) = Y11 Ai(s).
We define

T(¢g)
B(e) :% /0 (rA(s: €)ds.

Since T (&) is CEH1, A(t;€) is CEF! jointly in 7 and €, B(€) is CT! in €. The system (2)

1s written as

Note that

Hence,

oF

tro (P(t,11(€))) = 2a(u(€)) +4[Recy (u())]e” +O(e?),

where p1(g) = O(€?), and > = €2+ O(&’). Hence,

1 T(e) 2 3
W/o trA(s:€)ds = 20(1()) + 4[Rec; (11 (¢))]€> + O(e?).

a(u(e)) = o/ (0)ure? + ... = —Rec; (0)e? + ...,
we have

B(g) = 2Rec; (0)e? + O(&%).

12



Thus B(€) < 0 for sufficient small € if Rec; (0) < 0.

Part2 Reduction of Two-dimensional Systems to Poincare Normal Form

In previous part, we have shown the Hopf bifurcation in the Poincare normal form. In
this part, we shall show how general autonomous systems satisfying the hypotheses of the
Hopf bifurcation can be transformed into Poincare normal form. We use single complex

equation to replace 2 x 2 real system in the following proof. Consider

:=Az+g(z, 1), (18)
where .
4 w17/ L+l
gzil) = ¥ g Ol (19)
2Kt <L Ak
and

Il MW
Here z = y; +iy,, and (18) is equivalent to tllie 2 X 2 system'

|

y1 =11, y2su),

y2 = fHysn),

with an isolated stationary point at origin and

o) —o(u)
Dyf(()?()nu) =
o(u) o)
We use the transformation
2=C+x(8, )
7
=0+ ) xu<u>€,—c.,, (20)

2<itj<L J:

13



where x;; = 0 for i = j+ 1 to transform (18) into the Poincar¢ normal form

, 4] |
E=2()s+ Y c;CIC1¥ + oI, m) -t 21)
L

J

=A(W)E+ (8, C5m).

Formally, transformation (19) can take (18) into (20). We then compute the coeffi-
cients in the expansion of ¢. After all, our computation validate the above transformation.

First, we take derivative of (19) with respect to ¢,

t= {28+ a6 (22)

By (18)-(20), we rewrite (21) as

M+ +e(6+ 1. T M) 44 % 2 (WS 0y 2, (AT +9).
| To=2
or l | '1

AL+ ATHe Fh = 80+ TR (600 + 2£0). 23)

. . Iil—j 3 . li‘l . . 7 .
Since Xr =Yo<it j<riXi J% Cxe=Fo<itj<r i ]% Similarly, 27 = Yo<it j<1J%i ]%
The L.H.S of (22) can be written as

e

2= (24)
ilj!

Y A+ A - Q)

2<itj<L

By (19) and (24), to express J;; in terms of g;;. We do the following comparison of |{|?

terms of (23). L.H.S of (23) is

G T F (T Ay B
Ax0~5 +Ax1168+ (24 —l)ﬂng, (25)
and the R.H.S of (23) is
- -2
%CZ‘F&@C#L% : (26)

14



Hence,

820

11
X20 == X1 = % Yoz = o= (27)
For the {2 term, the L.H.S of (23) is 0. Since ¥»; = 0, we have
0= gzo%n+g11%11+g11%+g02)(§2+%—Cl(l~l)~ (28)
Plugging (27) into (28), we have
820811 , 811811 , 811820 802802 821
c =—++ + — + —
= aiimh 20a-7) 2
2% +4) 7 2
_ 82081 e lgirl” | “lgel” | s (29)
2 Ay JRA=A) 2

If u =0, we have
| === | | b
20
(gﬂofll_fmglﬂz \g3| )53
18

g1

c1(0) = 5

2ap

Since the possible of transformation into Peincaré:normal form is assumed apriori,
we have to prove that transformation is-valid. More precisely, we use the smoothness,

existence of ¢, and assume the expansion of ¢ in (21) apriori. To prove this. We define

10T

A&, Csp) = THT

2<itj<L

where the coefficient x;;(1t) are expressed as in above discussion. Note that the difference
between function A and ¥ in (20) is that A has better smoothness, and has only finite order
terms. Thus, to calculate the normal form, we can replace ¥ by A in (23). Since A is a
function of £, £, and u, (23) can be viewed as a function of Rel, Im{, Re¢, and Im¢.
Express it in the form

F(Re{,Im,Re¢, Im@; 1) =0,
where F is at least C! and F(0,0,0,0;0) = 0. Since ReF = c + Re¢ + ReAsRe¢ —

15



ImA¢Im¢ +ReAzRe¢) —|—ImAZIm¢, where c is independent of ¢, thus oRer _ | +ReAs—

odRe¢
ImA¢, and g%ﬁg = —ImA, -l-ImAz. In the same way, g{{gg = ImA; +ImAz, and
g{ﬁg = 1 +ReA¢ —|—ReAz. Evaluating
JRer oJRer
dRep olme
dlmr JlmF
dRe¢ odImg

at (0,0,0,0;0), we get
1 0
01

Thus, by the implicit function theorem; there exists aunique ¢ = ¢ (£, {; i) with ¢(0,0;0) =

0 and for fixed u both g and A are.C*%. Thus ¢ can be written in Taylor expansion as

s@ T F\WyT Noe)

2 < ek o &
T
By direct computation, we have i
9ij (1) = O(|u "S5 2 for-1 74 12 <i+j<L+1,
and
- 1o L—2j+1 . L
9jr1i() = (G +Djlej(u) +O(|u| ): for 1<j<[7].

Thus, (18) can be transformed into (21) by means of (20) with the function A.

Part3 Reduce the n-dimensional System to the Two-dimensional Sys-

tem by Center Manifold Theorem

For the n-dimensional system

X =F(X;p), (30)

16



where (X, 1) € R" x R. We consider the suspended system

X =F(X;u), a1

p=0,

and apply the center manifold theorem to (31) at (X,u) = (0,0). The center manifold

theorem is stated as

Theorem. (The Center Manifold Theorem) For the system
i= f(x). ()

Let feC"T(E), where E is an open subset of R ¢ontaining the origin and r>1. Suppose
that f(0) = 0 and that Df(0) has eteigenvalues With zero real parts and s eigenvalues

with negative real parts, where/'c + s*="n. The system then'can be written in diagonal

form :5",.7
Il m
HeB
Ly =PIRGE)

where (x,y) € R x R%, C is a square matrix with c eigenvalues having zero real parts,
P is a square matrix with s eigenvalues with negative real parts, and F(0) = G(0) =0,
DF (0) = DG(0) = O, furthermore, there exist a neighborhood V of 0 in R" and a C"
submanifold M of V of dimension c, passing through 0 and tangent to the generalized
eigenspace of C at 0, such that

(a) (Local Invariance ): If to each x in M the solution x(t) of the system (*) with initial
condition x(0) = x remains in M for some interval 0 <t < T, where T = t(x) > 0.

(b) (Local Attractivity): If x(t) € V for all t > 0, x(t) approaches M as t — oo.

17



Since the linear part of (31) at (0,0) is

Fx(0;0) 0
0 0

has eigenvalues 0, iy, —iwy and other eigenvalues with negative real part by the hy-
potheses. Thus by the center manifold theorem, system (31) has locally invariant, locally
attractive, three-dimension center manifold % in R” x R with 0 € ¥ and |u| < . Note
that, we apply the center manifold theorem on the suspended system (31) instead of (30)
because we got a center manifold with || < o in (31). If we apply center manifold
theorem in (30), we need to assume ¢ = 0 which is more restricted.

Let g(u) be the eigenvectorof

Aw) = Fx (0, 1),

and g* (1) be the eigenvector forA”, corfeﬁ?gﬁding to the simple eigenvalues
| | i

Aty =a(p) Lio(u)and A(H).
We normalize ¢g* with respect to g, that is

(g ,9)=1,

where (.,.) denotes the Hermitian product

(u,v) = i i;v;.

i=1

Let Py = (Req(0), —Img(0),ey,...,e,—2) be the n x n real matrix where e, j=1,...,n—2,

satisfies the condition (g*(0),e;) =0, j =1,...,n— 2. Use the change of variables X =
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PyY the system (31) can be transformed into the canonical form

0 -
Y= @ 0 : [|+G{¥;n),

Dy

a=0,

where - - - and : are all zero, Dy is real (n—2) X (n—2) matrix with eigenvalues A3(0), ..., 4,(0),
and G(Y; 1) = O(|(Y, u)|?) is C¥*2 jointly in Y and . The canonical system has a center

manifold

€ = {(V, )|V, )= (1,75 W (013300, 15| (1,32, )| < 83,

where & is sufficient small, and ‘ '
W[ RS R P
| :ﬂf’,,”"" ‘

- .'

is CL*2 jointly in yq, yo, i, and W(yf,j(z, ,u)]’: O(|(¥1,y2, )}?). In the X-coordinates,

|
n=2

= {(X, )]0, 1) = (1Re4{0) —alma() X0 &M, 1), [(1,72,10)] < 5}.

Jj=1

To discuss the system (30), we restrict % for fixed , and write it as
G = {X|(X,n) € CY}.

Since ¢ is C-*2 in X and p, thus 6, is Ct™2 in X.
We define a new coordinate related to the system (31). The system (31) can be written

as

X=AWX+f(X,u), (32)

where f(X,u) =F(X,u) —A(u)X. If x(¢) is a solution of (32), we define

2(1) = (q" (1), x(1)), (33)



and regard z and 7 as local coordinate in the direction g and g. Next, we define

w(t) = x(t) —z(1)g(p) — 2()g (k). (34)

In the variables z and w, we can relate the system (32) with z and w. Since z = (¢*, x),
(q",Ax) = (A*q" . x) = (Aq",x) = A {¢",x) = Az. We have z = (¢",x) = (¢",Ax+ f) =

(q",Ax) + (¢*, f). We can get a differential equation in z, in the same manner in w, we

have
z=A(u)z+G(z,z,w; )
(35)
w=A(uw)w+H(z,zZ,w; 1),
where
G(z,Z,wilt) = (¢S f (w+2Re[zglip))
: (36)

H(5,2,w; ) =(w + 2Re |2} 2RelgG].

Note that, since {g*,w):= 0, the orthogonalit reiations imply two components of w are
q, gonality ply p
o

linear combinations of the other comp(‘aneﬁ';rj",l
| ] " | :
From the center manifold-theorem, kthe ﬂel:s_trlcted manifolds %), where |u| < 6 may be

locally represented as a real Vector-vhl_ued functioﬁ ; /
Wi (27505
where w is CEtlin z, Z, and W, and satisfies
w,(0,0; ) = wz(0,0;4) =0, and (¢*,w) = 0.

Since the information about the periodic solutions we care about is all included in the

center manifold, thus we restrict (35) to ), by setting

w(t) =w(z(t),z(t); 1),
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and the system on ¢, is expressed as
z=2Az+g(z, 1), 37

where

8z, 1) = G(z,Z,w(z, Zs 1)s 1),

and for w(z,Z; 1), w = woz+wsz =w,(Az+g) +ws(AZ+3). Using (35), we can determine

w(z,Z: 1) by
W=wy(Az+g) +wz(AZ+8) = A(W)w+ H(z,Z,w; ). (38)

Note that the right hand side‘of (37) is €**! in'z, , and W and g is CLt1 in 7 and z, for
fixed u, and satisfies

gz(O,O;u)iﬁ-QO,O;u) =\

=

Thus (37) is the desired form forthe pvyo dﬁ?é:nsibn case.

To complete the prove, we need LtoE show the sFability in R” 1s the same with the sta-
bility in the R? case as we WS part2 and 1. ’i"o do this, we show that (&) which
we discuss the stability in two dimensional case is also a characteristic exponent for the
n-dimensional system (31). The verification 1s as follows.

Let xo denote a point on the orbit of the n-dimensional solution Pe(z), write it as
xo = Pe(tp). We want to use the Poincaré map about the periodic solution P (¢). To define
the Poincaré map. Let e, denote the unit vector in the direction of p¢(t9) = F (xo; L(€)),

and denote A the hyperplane
A = {x|(x—xp) -e, = 0}.

The hyperplane A has n — 1 dimension, thus we can find a set of orthogonal unit vector
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{e1,ea,...,e,_1} with the properties

ej-e,=0; forj=1,...n—1,
n—1
A={x=xo+ ) mjej, Ne R" 1Y,
j=1
Using Poincaré map [6], for x € A closed enough to xy, we have a solution x(z) for t =
7(n) nearest to 7'(¢) and the solution x(7(1)) € A. If we let y = y/(n) be the vector such

that

n—1
x(t(n)) =x0+ Zl wi(n)e;.

j=
Then y : 1 — R"*! is the corresponding/Poincaré map. It has been show that [6] the
eigenvalues of the matrix g—%’(O) are precisely n— 1 of the characteristic multiplier asso-
ciated with the periodic selution. |

For the system x = F(x;)) Pe(t) isia perigdi¢ solution-ties on the two dimensional

invariant manifold ¢),. Thus the manifol.d‘:%;ﬂintersects the hyperplane A, and the inter-
section describes a curve I*in- R". Siﬁc%;e I t{')t;}ongs to A, it can be parametrized as

|
1

n—l1

I ={x, £+ Y 08, Tifs| <o},
1

J=

where ;(0) =0 for j=1,...,n—1, 6 > 0 is sufficiently small, where s denote the ar-

clength. For each x; € €, there are points z; € C and {; € C such that

Xy = ZsCI‘f‘Zs‘?“f’W(ZsaZs;.u)

zs = G+ (&, gs;.u)-

Define the tangent vector

dn
v=—(0).
5, (0)
We claim this vector is an eigenvector of the Jacobian matrix %’(O) with eigenvalue

eBET(e) To prove this, we denote 7j(s) = w(1(s)), and let %, Z,, &, correspond to 7 (s).
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Since by the above discussion about B(€) in Part2, we have

&= %l pere
lim =e .
s—0 ‘Cs - C0|

Using the Taylor expansion for w(z,Z; i), we have
i O =2l 1S — ol preyre)
s=0N(s)] - s=0]zs— 20 5—0[&s — Col

If we write 7 (s) = n(5(s)) for some § = §(s),

Thus, use Taylor expansion of the Poincaré ma[; i[/, we-have
&< yin(sps 2loin(s) 60153

7
f"ff) _3_;/1/@ @ﬁbu )

Thus, let s approach 0, we see’

7 81[}
e V= 51‘[ (())v.

Hence ¢P(€)T(€) is an eigenvalue of %(0) as claimed.
The stability about the periodic solution P¢(7) is determined by its characteristic mul-
an

tipliers, and we know that the characteristic multipliers are the eigenvalues of a—l”(O)
£). The remaining n — 2

One of these is 1, and from above we know another is ePET(

multipliers are

for € is small, this is due to the continuity at € = 0. Thus, by the Hopf hypotheses, p;

have moduli strictly less than 1. The proof is now complete.
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4 Examples

The proof we gave in the above has the advantage which tells us how to calculate the
parameter U (€), the period T'(¢€), and the characteristic exponent 3(€) i.e., the stability
about the periodic solution. Moreover, the periodic solution can also be approximated.
Recall that since the coefficient

—Rec(0)

W = oc’(O) )

T = _a}(a)'(())uz +Imcy (0)),

B = 2Rec1 (0):

Hence, to calculate the above coefficients, we onlyneed to evaluate ¢ (0). By Part2,

l | 820 821
c1(0) = m(gzognfflgn |2 ‘Ti) +5-
: ],:-r,
| &

To get ¢1(0), we have to khow the| ctoefﬁ‘e'i'énts of g(z,z;it) in Taylor expansion with

older 2, and g21. By 37) ¢z /,Lﬁ & G@zw(e )5 i)y and Glz,2,w(z,Zp); ) =
G(z,7,0; )+ Gyy(z,7,0; u)w+O(|w|? - Note thatw(z, ;i) = O(z?). Thus g29 = G.(0,0,0; 1) =
Gao(M), 802 = Gz(0,0,0; 1) = Gz (1), g11=G11(1t), and g21 = Ga1 (1) + %(0»070#)2%1 (1) +

%(O, 0,0; w)wyo (). To calculate wij and wyg, inferring from (38) we have

Lw = H(z,Z,w; k) — gw, — §wz, (39)
where
Jd - _0
L= (7Lza—Z +AZ8_Z —A).

Considering the expansion w(z,Z; i) = Z,-ijlzz W%E.‘!‘)z"zf + 0(|z|F+2), the L.H.S of (39)

can be written as

L ¥ Ait AN —Alw;; Z—izj O(|z|F+2 40
w= Y [(Ai+21)) ]Wu(u)i,].,+ (Iz177). (40)
i+j=2 A
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To obtain wy, and wyg, we just write the R.H.S of (39) into the Taylor expansion, and find
the corresponding coefficient. For the convenience, we will only show how to compute

w11, and w20.

Example 4.1. van der Pol’s equation

The linear part of the system has eigenvaliﬁéil -

: > Y/

)

If u < —2, the eigenvalues are real and negative. While —2 < 1 < 0, the eigenvalues are
complex conjugate number with negative real part. In case 0 < u < 2, the eigenvalues are
complex conjugate number with positive real part, and for u > 2, the eigenvalues are real

and positive. As u is increased past 4 = 0, the stationary solution lose stability. Write

Ao =a(p)*io(w),

where a(u) =5, o(u) = “22_4. Since a(0) = 0 and &’(0) = § # 0, we can apply the

Hopf’s theorem to obtain the existence of periodic solutions bifurcating from (0,0).
From the above, if we want to know L, T», B, we need to evaluate ¢;(0). For the

sake of convenience, we translate the stationary point and the bifurcating point to 0, and

use the change of variables to put the Jacobian matrix of the system which evaluate at

the stationary point into the canonical form. In this example, the Jacobian matrix of the
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system is already in real canonical form. We let
Fl(x,y;O):—y—x3, FZ(X,y;O):X.

From the above we know g11(0) = G.;(0,0;0). Sincea% = %(% — ia%), and a% = %(% +

. d
za—y),we get

1

1 82F1+82F1 _ 82F2+82F2
S ) dy? ox? o2 )|

In a similar way we can get go2, g20, and g21. In this example we get
g1 =802 =820=0, g =--, c1(0)=—=

thus we have

The following example is 4 thret oy
o, L5 & 6
e, 7 SR Ve =
= - 3‘-' i _?-'[.'

Example 4.2. Langford’s syster"fi"—l’-:}.@: =

G T S oy 15 | o

X = ([.L — 1)X1 — X2 +X1X3,
X =X1+ (u — 1)X2 + x0x3,

X3 = px3 — (X7 4+ x5 4 x3).
This system has the following two stationary points

x) =(0,0,0)" and x}=(0,0,u)".
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Linearized the system about x?, the coefficients matrix of the linear part is

u—1 -1 0
1 u—1 0 |,
0 0 u

and the corresponding eigenvalues are

A= p, 133:/,L—1ii.

Thus, for u < 0, x¥ is stable; while for p > 0, 20 is unstable.

Linearized about x! we have

budl 1 YR

Y 2uT™\0 s
q ",;';l -u
Ll ¥ |

the eigenvalues are f - e

111;2 =2 ddi, MC Y

So x! is linearly stable for 0 < < %, and. is unstable for u < 0 or u > % For u = %,
we have a pair of eigenvalues with zero real part 11172(%) = 4 and an eigenvalue with
negative real part A} (%) = —% . Thus, the Hopf bifurcation theorem can be applied to this
case.

Let x = x! +y, the system becomes

yi=02u—y -y +yys =F',
Y2 =y1+2u— )y, +y2y3 = F2,

¥3=—wy3— (i +y3+y3) = F°.

At y = 0. The system is in real canonical form. To get u,, 7, and B,. We apply the
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formulae as in Example3.1. Since 2 Inidy; a =0aty=0,u=1 5 fori,j,k = 1,2. We have
g11 =802 = g20 = G21 =0.
Next we need to calculate wi; and wyq. By (40), we obtain
—Awy; = Hyy, (2icpl — A)wopog = Hyo. 41)

Since w1 = (0,0,w11)T and Hyy = (0,0,F3)7, by (41), 3wi; = —1 and (—15)wao = 0.
Therefore, we get

wil1 = —2, Wao = 0.

By £°6.(0,0,0,1) = ai(%biyl—zw))(ﬂﬂﬂ) =1, wesee G,z = 0 and

'glz‘1> = 4.

Il K
1
| 1

1@, %> N 1 |
e1(5) 2 sy =l gp=0.cand fy = —

To sum up, we obtain

Since yp = 1 > 0, the periodic solution P(f; L) exist for u > %, and is asymptotically

orbitally stable.
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