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Abstract

With the development of deep learning, convolutional neural network has achieved
outstanding performance in the field of image detection. In recent years, the academia
and industry have been committed to introducing convolutional neural network
technology into the production line of automatic optical inspection. However, due to the
differences of data characteristics and image acquisition methods, it is ineffective to
recognize defects on new target data with a former model trained by similar data. Thus,
engineers usually manually label the new target data and train a new defect recognition
model, which brings a lot of labor costs.

In view of the above, in this research, the defect recognition model is built by using
domain adaptation, which is able to train a neural network on a labeled similar source
dataset and secure a good accuracy on the unlabeled new target dataset. Wood and textile
defect images gathered from actual production lines and an open dataset of metal surface
defect images, NEU-CLS, are used as the verification data. Different kinds of domain
adaptation models are compared. Also, feature extraction layers are analyzed to optimize
the model. Finally, a general process to train a defect recognition model using domain
adaptation is organized.

According to the results, a classification model trained by the DANN (Domain-
Adversarial Neural Network) domain adaptation method with a ResNet50 backbone and
entropy conditioning algorithms is effective to recognize unlabeled defect images. In
addition, the accuracy is further increased by choosing proper feature extraction layers.
For the wood defect dataset, the accuracy increases to 90.86%. For the textile defect
dataset, the accuracy increases to 75.68%. For the metal surface defect dataset, the
accuracy increases to 96.22%. By following this process, an effective defect recognition

model can be built without labeling new data. In other words, time and labor costs on

v
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labeling new data can be significantly reduced.

Keywords: Smart Manufacturing, Artificial Intelligence, Deep Learning, Domain

Adaptation, Defect Inspection
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AlexNet thih @f 4o is  4pE 517 16 & (VGGL6) 2 3 19k (VGG1Y)» %
TR e e iR ek e o RS R FERMR o Tt Al S o) (B P oRB R
CEHP R EA S AR o L VGGI6 % &) > B % 4o ] 2-6 #7770 %
AlexNet & * i 7x 7 < ] EHFFRZ 3B Ix3 5 EfHfiafpse - S5x5+] %
PRS2 B3x3 A L KA 85 BEAP 205 3x3 AL hir b

PRI ol R CEE R B ek o

224 x224x3 224 x224x64

112x 112 x 128

56|x 56 x 256

x 28 *
X X 1x1x4096 1x1x 1000

=) convolution+ReLU
{ max pooling
fully nected+RelLU
softmax

Bl 2-6 VGG16 B % #

doi:10.6342/NTU202203562



fp# & 2014 & ih< F 4 df e 5 F P 5 Szegedy ¥ 4 # 4 1 GoogLeNet [13]

* % InceptionV1 > H g x FFBEEFP 7 & B S BT A - TARER N dide
FRER 0 S T LR ZUIE R NS iR i ek 0 B £]33 Inception Module 4 (] 2-
7) SIS B A A f S AL AR L R R S8 AR R
P E 8 243 st 0 2015 # loffe & 4 x i2— 4 3% 1! InceptionV2 [14] ﬂ% =4
VGGNet /] &/ B~ « £ +% > ;4% 41 7 Batch Normalization (&) 2-8) » 3+ 3

PFHHE NS EfoRE L KR TR I R0 > 2 @ X7 Internal Covariate Shift <
FURE o P 4o BT atid B o {8 S BFR X #& ! InceptionV3-~InceptionV4: 5 * ResNet

[15]eris 418 3 { B { Frachpisioc sk o

Filter Concat

Batch Norm

3x3

1
3x3 3x3 1x1 : ‘

1 i i J |
1x1 1x1 Pool x . RIS

Base normalization
8 2-7 Inception Module & 2-8 Batch Normalization

M 16 2015 # ihx - E d He & 4 4 & chResNet[15] £7 o § ®EIFREF
PFo I g3 2 FR T (Degradation) (IR % o - & A ¢ nzbau it S F
FREE T A - BRGSO Y - 26 R v BT R ES AT
BITE S PR AR £k (3T 0 Bo¥ @ FFERs T % o ResNet ¥
DAL E Y (Residual Learning)’ i#% i Shortcut Connection #£ 4 3% 3+ 7 Residual
Block (B 2-9) & 7 o R A3 > 73} A& iﬁ*u%’jrﬁ? Yo e £ BE > Residual Block v
AR R ARG Y B e ZIERE Y 0 RS g:m@%l NEHC X Arw 3 Aot

- kTHALLF 4 3O G RBAETBET T2 0 L RNRFEE
10
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(Bottleneck) » #& * 1x1 eh¥ 4! G Rpas K SlicE - R PRT LB AR FE
LI R e 4 o B ¢ RIp K #Kc? Bx 4~ 5 ResNet50 ~ ResNetl01 ~

ResNetl52 & » @ AF7 7 ¢ i * 51 ResNet50 2. % *}ﬁ&r%} 2-10 #7177 ¢

64-d 256-d

Bl 2-9 Residual Block [15]

X3 x4 x6 x3
hput 77, 64 ;x;'gj ;xg,gg ;x;,g:g ;xggg B o (T
224x224x3 Xy Ko X2 Ay X3y _\/ (1 x nClasses)
1x1,256 1x1,512 1x1,1024 1x1,2048
Layer Name Convl Conv2 Conv3 Conv4 Conv5s
(Output Size) (112x112) (56x56) (28x28) (14x14) (7x7)

Bl 2-10 Resnet50 e f2 28 T{;

2. =i B (Object Detection)

Pt @Rl p e i )T 5] Boife ¢ 70975 PRz =8 28w 4R 2-5(b)>
ﬁfﬁ?‘]"é?%%fﬂ? v = VR AT W R R R A W ﬁi?J A BlY R 8
WD B TS B AR Y o R4 chde i BRI EL < IRV 4 5 - IF (OneStage) F i

2 - 1% (Two Stage) 7 # -

- E A e A R B AP R BN F LR
2016 # Redmon ¥ * # 1 57 YOLO[16]+ 8 P2 & 3 ¥ » B H+ T3 £ £
AR A NEEERETLAL BB FRFA S BRPREM E P E PR
FHCE 5 e ik Rpp B g% H o~ iRELL WPIE R RE- R A 48k

11
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AL PARFIERATE S F R R R R S A o 20 MG
frgris S B ® H BB s 0 40 2018 £ 112 YOLOV3 > i * ResNet ¢n% 851 »

RAEY > bl PEBREFEEORF L P MERD o

SxS gnd on |nput b ] - Final detections

Class probability map

Bl 2-11 YOLO 428 [16]

SRR ARG AN B BN REE > LR R Y

-

foF A PRI P BT 0 F L S Edo 2013 # Girshick % 4 48 1 s R-CNN[17] > #

2 11 Selective Search éj%l B E B B P i R (Region Proposal) »
R EfFeprH PBRGERBAPE AR LELES EH (Support
Vector Machine, SVM) #4872 5135 11 p % - R-CNN —FT Bv 3 % 7
EHREREY FHo R EP R ERACRYPEF LG AEFEF NP A
BFART I EiE o @ {8 Girshick * 2015 & #% ) FastR-CNN [18] » ¥4 picie

7RI 0 Softmax & B~ SVM & (7 s 57 > — 4o H Lt d 7 LR AR 2 2016

# Ren & 4 % #% ) Faster R-CNN [19] » ¢ * Region Proposal Network (RPN) B~
SelectiveSearch EF P iz E R A S A P EHFBPIREFEERS > {B-H &

FEEPRER > A 2T G SRR (£ 2-1)

12
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# 2-1 R-CNN ~ Fast R-CNN -~ Faster R-CNN :# & ‘* $iz [17, 18, 19]

R-CNN Fast R-CNN Faster R-CNN
Test Time per Image 50 Seconds 2 Seconds 0.2 Seconds
Speed Up 1x 25x 250x

3. ¥ {4 3] (Image Segmentation)

A B np L prul i~ B iR LR B P R 4B 2-5(0) F B
»FEERPGRE 0 - IR A R s BIHCRI R R A A “v'Hi%J s BlP R R~ vgeh
A e AEEEE] o @ B s B 4~ 5 3F L4 2] (Semantic Segmentation) 2 F £+ 4
2| (Instance Segmentation) » 35 & 4 & X i #HR @ 975 G F BT A HIW R
B2 e ifcE B HE IR R gk e Wo AT A 2 A FER R R P R
AR A RIR e ~ 0 B HORIERR G 0 R 0 SRR R TR AT B R e R T
EFEF- PRI YT REROA D RS BRIt eR ﬁ;‘r"%‘%‘ﬁi% e

A E] 2-12 #7o1 o

W2-12 FLAHERFAHLE [20]

BB ERSYEAALRE L Long % 43 2014 & 512 FCN [21] # #
VGGNet #x % > % 4 g (Fully Convolutional Networks) > F] s 5 > %4 >

REHN- AFNAZLIRNL RED DL RARE M B el S L
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b Softmax e BB NI F e L 2 M AT 5o @ BT G R S
ZER o R £k B4 (Deconvolution) #-4F T & & (Upsampling) * 3z
Al A > T{FCNRE T AR AR R EHRE LH 0 PEET AR
H? ehA b 2 B o0 3t E_2015 £ Ronneberger ¥ 4 4% 4} 7 U-Net [22] 2z gt B
WA Bp R FOSHEY o kA L@ 4% (Skip Connection) » H 125 £ 45
i) %\ﬁa?l » ﬂfrﬁ?} » - PREUE RS DA b o TR R D RS~ 3R

HiEfE > e BT {5 PR EE T () 2-13)

64 64
128 64 64 2
input
output
image |w|a > segﬁnentation
tile EE
& & map
1
oof oo
g 2
d 3

256 128

=]
=]

256 256 . '
I —I"'I’I =» conv 3x3, ReLU

copy and crop

ol ©f
ofl o
—

' 512 512 1024
& g max pool 2x2
s~ }-—- ¥ max p
€ ¥ qm | S 4 up-conv 2x2
[ - -
o & 5 = conv 1x1

] 2-13 U-Net % . 545 [22]

Bpa e aFE LNARE 2017 & He % 4 % % ¢ Mask R-CNN [23] > H
Y24 12 0 p) e B Faster R-CNN e28 5 5 ZA #1713 225 2 RoiAlign P~ #* Rol Pooling>
PRI R N R e L Y AEEIERIE S8 & FCN
PR FARRIEE RS PR GRTA B Y 0 TRV RER Y hp iR A
BoFPEFA R HANI RS EDEE TG 5 BGFEET R BAEL RS

*FiE

14
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22 PR

A e P > BB E Y (Transfer Learning) » c4E38 p if B AT 1 * 30K

S TECENE Y = PESE L ER
221 BHBEFY

A EE Y Pt o K F €88 AL 0 ehlIE A A B4R Y

- HA R R S E TR R B TR B s 488 A (Domain Shift) - 4= 7] 5 4z

»

SUA RS E ARG EPTRLT AR 4]0 FH0 23R TR RS
% F]% F]+ (Casual Factor) £ *+ 3£ F]+ (Confounding Factor) » % — ‘e #icdy ™ #-7]
Y Iy it B EE R FlF Bena el fF oot BT 3V - iR
V- mddp et B §RRERAFR R FARET o b EREY 4 00
WERBBEYOFIAABTRE L > HE A R aeh L £ G P ER

YHOA R Tl B K FRAVREE SR T RA L L 0 E

’z‘x

FFZ 3% AP ”zﬁ";i&}%/”\
F BT otk S LS F S R bl B3 g R

] e E AR ] I R e R AT KR g F e

S AL 1T R E AR B PER A P R SRR R B Al doR] 2-
14 -

Knowledgg

Transfer

Knowledge Knowledge
ﬁ ot
/ Transfer Transfer

B 2-14 B4 8V o) [25]

15
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RS EY DAY > R4 T AAA S REF (Source Domain) 0 @ #xiB 45 i

%

2 cdp i FRAE S P AR (Target Domain) o @ B H F Y 03 2 ¥ ik R &3,

S
'ﬁ

A RSB E PR THETE G IRRAS S8 ol 2-15 0 § R E P R ST

7

S R ok PR RRAT AN S EREATVATT ok 1 BT

BT 2 5> P uBe 'R 2 ABHAEE T2 P BB 3R E D4
(Initial guess) » ¥+ 7 & PP F3BF FTHRB BE R > & E Mg LR RBFTH
BRE TS - AR > R B 1F R B chpRion g o

C 1 > Self-taught
/ apani< Learning

H = 2 :
i No labeled data in a source domain }

Inductive Transfer
Learning

T abeled daiaare avalable i Labeled data are available in a source domain i

in a target domain \(:!» SR .
Case 2 target tasks are > ;
| learnt Learning

simultaneously
Transfer :
N Ija.lic:)id dmla’(jre Assumption:
Learning a\:;:c:;;in)ﬁl:a Transductive ~ ——f  diffrent > Domain
Transfer Learning <—; domainsbut £ Adaptation
single task

No labeled data in
both source and
target domain

Assumption: single
domain and single task

\ Unsupervised Sample Selection Bias
Transfer Learning /Covariance Shift

B 2-15 B8 F Y hfziysz [26]

R AT S ERRRRIPF R A TR R A TR A
PAEHRAT Y B R BRTORY AR SREEY SRS EY S 2 - (A
IR B AR AR P R e R B R R ST B R R
BOARSS cABpA F i Bl - BACT G ) ol g o PR (Align) » 4o 2-16
S A RIS R hoB] 2-17(b) 0 dedt WAL AR A DR R
R FALYIR A s T H P RS TS (77 o B> (Feature Extractor)

FOUEE S AR A SR 0 8 SIS AU BT 5 247 ResNetS0
16
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I 5 AP B DR Riorci T v R B> 2 s fg i 5 0 o4t g He
“%ﬁﬁwﬁ%?ﬁﬁ%ﬁﬁﬁﬁ%ﬂﬂmmmO#ﬁﬁﬁﬁﬁﬁﬂﬁﬁ%ma
4o d 3t 2021 & = 7 ¢ [27] > ResNet50 42 VGG19 4v InceptionV3 it =+ # £ 4=

B LB A MERES o FP AFTY 4 8 % ResNet50 17 5 4 ks Bie 7 A

KSR XM e B K b L h AR o T IR G 2 R T AR

X

B RS L LBRA %, (Discrepancy-based methods) £2 %3] & §&
(Adversarial methods) » Afs Fer | &7 Ro W AT T ¢ €@ %k BHA RA

AR o

Source r
I

Minimize classification
error Source ! Target

Maximize domain
confusion

Target

B 2-16 i p s TALEA [28]

t,,‘,.§ : %,’\;g:,;wf

P 2 ® Y
A ek
) Non-adapted (b) Adapted

B 2-17 (a) # $93 %4 (b) #53 & [29]

ERAVEAER A G RFEEE S ¥ RY office3] FTHREHEF A

(Amazon) ~ D (Digital single-lens reflex camera) ~ W (Webcam) = 3 #* F#L & 31 &7 »

17
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RBL PR 6 B eE A g 6 AT s TEREF T
PR S RX F 5 AF feen office-home FALE - # 5 Ar (Art) ~ Cl (Clipart) ~ Pr
(Product) ~ Rw (Real-world) + 4 #2# FH 2 654 » hs & p g i 3 12 A7
Eo T 12fatrlet 2 TR EKIFL N RAR FRPFEN T ) BELLT
AT e B LRE S PR L PR T ASW AT RE S ABTH

PiRs s WEFH -

222 ZRApR

1. DAN (Deep Adaptation Network)
DAN [30] #_#** DDC (Deep Domain Confusion) [28] & % 7. 2014 # Tzeng
A& 00 DDC[28] > B it 7 Hh4c Bl 2-18 #7771 » H & Blig * — i AlexNet 4 4
PRERE TP R TR EF B0 “,f TEE A REREE L EE S EROY
7R ﬁiaa] T Hc R e MMD (Maximum Mean Discrepancy) [31] » MMD £3* & & 38 3
ALpx &3 Hilbertspace {5 enf B fr § B Ed | P 273 B TR LR 5| >
PR A SR BRI L RS B TR SFA F R ST
PR A fpenp e o B F R office-31 ¢ sh A-W ~D->W WDt 354
1FTEEBE Bl2% T R By o §FH TG RP 6 ALttt is

BrREF o 19516 K DAN [30] #H < e it » DDC 4 6 fd 47 2 & ch-T 328 5

18
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classification domain
loss loss

..... ()

[

fCT FETT fCT
e || [

Jo | e

Unlabeled
Images

I
i

Labeled Images

1 2-18 DDC B % 4 [28]

2015 # Long & * | &+ DDC ek #_+ #& ) DAN[30]> H € % & P i (7 424
£ R85 2 12 MK-MMD (Multi-Kernel Maximum Mean Discrepancy) 2~ MMD:
I -pk &+ 3 Hilbert space P# 3 & chf 4 +% (Reproducing kernel) > d & & chH - %
LA SR ARt o S H R RS R ko & ooffice-31 eh 6 fEA 7

&1 B8 T2.9%:NT oy b o

—

6 _\ _\ | ) _‘ learn O learn O learn O learn
o 9] [9] 1O [9] [0 A&I1&” b
O frozen O frozen O frozen o fine- O fine- O source
O > : . : > : fune : tupe : MK K M:{( output
O 151 1ol 1ol ol I Y
ol 0| [O] [O] [O] [O] (o )

: S xalF
8 input O convl 9 oyl O convd O convd 9 convs O 6 O fe7 O

] 2-19 DAN # i % 1 [30]

2. DEEPCORAL (Correlation Alignment for Deep Domain Adaptation)

2015 # Sun % % 3% 1 7 CORAL (Correlation Alignment) [32] » H L % B~ jic
B A" SRR S B AR RS SUMPRA R Rl HaER &
19
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B F AL 4 o R B A ~ 3 & DEEPCORAL[33] > #-2 % 48 & AlexNet > 4
Bv ZRAIRR- X ZRBE DRSS THEVRE DR > TR SR 2
M Sfed K3 d CORAL loss » 4o 58 2-1 0 3428 & B 4 pieens > A pRg s 41 #
Foro@igt e {378 L REDR3BEMBI A F RGP 5 2%
CORAL £2i% R £ ¥ £ i 458 & > 2 74RF 04 HEFF > b office-31 £ 6

Artrle s P B0 A% apetmsy > ¥ 29 9 A-D >~ A—>W it DAN

L

-

ot B

SRE 2 Ao ) 2-20 1T o

Leorar = W ICs — CT”IZ? (2-1)

P> classification
loss
(1 1]
Source Data
CORAL
loss

Target Data

] 2-20 DEEPCORAL #e % 7% H [33]

3. DSAN (Deep Sub-domain Adaptation Network)

2020 # Zhu & 4 ¥ % 7 DSAN [34] > H & w|#-mit & p #ﬁlrfépﬁ‘}—'ﬁ%] 3 BT
#P~E4e ResNet » ¥ £ % & » ¥ 12 LMMD (Local Maximum Mean Discrepancy)
D50 22) FEHAEY B KA B E L B FF loss LMMD ¥ 115 A ITE (S
MMD & $Heerte 4 o § ¢F > H 4 3 4p 3¢ (Subdomain) & {74 4787 % 0 4o B 2-21
TARFOTE FHRRE B P AR TR IS o AR 0 A dek g R R

SR DR RS ATE B RRE S B AT B A D BB R KL
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PE A A E loss PR R BB K AT R L 0 KB REE AR

2-22 #751 > fooffice-31 e 6 fam 473 & B 18 7 88.4% T Iy X o

2
sc N tc t
dy (P, 0) ——Z 2, eiotd = ) of‘esf) @)
c=1 X7 ?€D x.ED
s t H
Before Adaptation Adapted Before Adaptation Adapted
Source

Global Domain Adaptation farget Relevant Subdomain Adaptation

= & Target = ® Source

Bl 221 3458l [34]

>—

(@) / \
O PSS e Y
VGGNet, & ! I
ResNet... s i </M@<> i
( : —> 2 I\ 2" i
© W /

B 2-22 DSAN 8 5 H [34]

21
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223 AT PR

1. DANN (Domain-Adversarial Neural Network)

2015 & > Ganin % %~ % % 7 DANN [29] > H &5 * 7 4 = ¥ (Generative
Adversarial Network, GAN) [35]6P2 & » B B B B2 78 40 B] 2-23 #77n - Bl 5 ¢ &t
HIA T ARG - RO D] § P Y R Y R AlexNet o & ¥ © AT

G R TR R R 0 © b i 2R (Negative log-likelihood, NLL) Eai N
loss Ly » @ Hx dgepn? 5- K mﬁ‘i%] = e S i ) @J > T @) 2-23 T X IR
Vo mEES S AEEODARLE A Bl F R R TR R
WA PR TR T3 loss Lo A A keI s S R
(Discriminator) » @ 4 & % 3R AL 5 4 & B (Generator) © ¥ JL k3 > loss 4%]
A - AR E A STk ARYF > Y B _Ganin £ 4 R RL,F B0 AR RRER

BRSSO A R LR RS TREA D N R R

““‘&&

S B AP RS PR L& A2 k> Ganin ¥ A R A B B loss K & 1 min(Ly, — Lg)°

g
B AT B R TR R TR

o

&R

L

738

=
s;
m
S
*”)&
-_\.,

U T RS B I B S AR T ATE AS P ALe PE

R RETEVRN AL FERDRBTHEESG 4 AR TR

PR}

—'-F‘.‘\l

A4F Py 0 120 £ Bk E MNIST $492 ¢ £ 8 548 8 MNIST-M B~

B9 76.66% e L X o

AL, OLy

o, <

E> E> @ Z[> ] E> ﬂ [> Er-lrm label ¥
DD

.Y -~ \
abel predictor G, (- 6,)

domain classifier Gy(-;04)

feature ext r:{'hn‘ Gl ) *f‘yl_f(?\'i,‘;o“
' : R |:> |:> © domain label d
oL,

3 0 9Lq Coss LD

forwardprop  backprop (and produced derivatives) 06'(;

] 2-23 DANN #§ % 4§ [29]
22
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2. CDAN (Conditional Domain Adversarial Network)
WA AR AR PO R R AR R B R A R AT
A g g LAY § RS SRR AR ER Y S R R
TR A Bk 2 i o 302017 & Long % 4 #1171 CDAN [36] > H g2 4
4o 2-24 (a) #7or 0 B RGE Bk endF ko ok (8 548 softmax & Hcid e HEFE
PSS R 0 A ﬁ;f] » discriminator > # % 2 discriminator § & 4< F| 4 #f - 4p B
i &0 Fobo iEg < ig - 9 F A F (Entropy Conditioning) » K3 7 - B &
e R SR PR Ao TR S 4R g 0 27 o] 224 (b) n R 2 L& Lk
B R IR F LA PR R L S - B - TRA L R
P A Pl R0 B office-31 cH 6 fEA 47 0 & F BoiB 1 87. 7% T soyp By % o
hisR ahe ? o 3 @ WA FE R AR e CDANTE » = ¥ g% Bl H 5 gt

4o DANN F > zz it DANNHE °

@ @ @
o e}
DNN: o DNN: o
AlexNet |[|O AlexNet |[[O
ResNet E ResNet E
o o :
o o (R} :
o o :
O—o] () O—lo] o ()
(a) Multilinear Conditioning (b) Randomized Multilinear Conditioning

] 2-24 CDAN 3§75 H [36]

3. DAAN (Dynamic Adversarial Adaptation Network)

e ety 5 &t g K (Marginal Adaptation) o ¥ pEE B AT @
Fehe B EFE SR 0 MBI R IVEA (Conditional Adaptation) » T & # %] cHE
ERCH™Z R B ANA PG B A €7 7 ok o 4o 2-250 30 £.2019
£ Yu ¥ 442 DAAN [37] 0 # B2 4o 226 477 0 0 - BB EE Y
discriminator » H & 4o 8 BiA 3t R IMK R SFT T 0 H L AFHLR BT E - B

discriminator > ¥ #% 11 7 # f§ ¥ 4%+ (Dynamic Adversarial Factor) » i% & * 8 %
23
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A b ¥ % on discriminator F loss 0B (25N 0 AT

e g chd re iR

YR RERRLE & SR Sl S RRED - B LR 0 o8 U5 - £ ek R S Rl S

BARE R > F 2 AR RS HAREL A AORFT

17k & P18 61.8% T soyias iy

#L & office-home 5912 f& 4

A8 33 2 I3 DANN g 9 5] 60 57.6%

BrrFaz F o #Am @& * i % ohdiscriminator ¢ ERIVRPEFF L gL L Yu £

A u{ﬁyﬁ%&—r £ (SGD) s U ?#—'I;&%ﬁé‘-

I R R T

B SRR IR 0 AR 4T IR

Target 11

B R RTAAF g

An Unknown Target

B3

+ H+t

feo

®
®
ove
p(x,yj Marginal Adaptation Conditional Adaplahnn Marginal or Conditional?

Bl 2-25 84 A g

BN [37]

Label Classifier G,

~

S

Feature Extractor G AN
f ¢ Global Domain Discriminator

] 2-26 DAAN 3§ % 1§ [37]

24
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4.  GVB (Domain Adaptation with Gradually Vanishing Bridge)

2020 # Cui & % & 1 GVB[38] » H3u 5 E R #pEdis & cnifs & 1R iEd
Bl it 2 BFE o o ERBS A ERNEE TR 51)}%3"@: (Bridge
Layer) fv® @3 (Intermediate Domain) #£% ° f generator } » ¥ )4 wé;:@#]% 5 B o
MUARBE TR BIER R E KRB A B ISR E 2P B 4B 2-27 0 i
FREMRY BFEY R rP BB L OEAREHROREE e 2 s AR Bk
ﬁ_‘é:f%é’%f&&i}aéﬁﬁ? H #3557 Fad 2Rt 8 generator 9 loss > ¥
f’F—fg# * Ap LA 3% 3 7 discriminator rm}@ S0 #c > A F)E_discriminator i ¥ - B
R AEVREA LR WA AT A F E A BI%E ] E (Local
Minimum) » 4=t ¥ 2 4% i B discriminator e3%5]ic 4 > BEAEHCR) 28 40 B 2-28
57 0 H 4] GVB-GD = # % office-home 7 12 f&4 47 2 & + B~ {7 70.4%:-L 35

FrRE S o

Before Adaptation After Adaptation
> Iyl
% Class1
] Minimize |y i
| Class2 [¥l é { Class2
k .""
O Source Domain O Intermediate Domain — Task Classifier
Target Domain 4: __+ Candidate Intermediate Domain

B 2-27 7 BEfg [38]
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Source Domain

() Classification

G1 8 i )
Feature :
Extractor (@)

O l

9 Advle;:rhl
Target Domain )

0 —
<>< m 61 _ 8 Discriminator
Ao ~# Feature H
wrwy (@)

@)

Loss

Bl 2-28 GVB i % 1 [38]

AP Cul & 4220 — B A AMEFA LR P i R3] 3e (7 Baseline # 2 %
>4 DANN: @ 4% 12 5 727 4 [36][39][40] &+ F 5 ¢ %22 % GVB-
Hepfglieiz #-0 R Cui ¥ 4 3R] > £ 4 GVB <0 generator i * #f 3 # > 32 5
GVB-G: # #t GVB ehdiscriminator i * i 3% 35 5 GVB-D; % #f GVB ¢ generator
4v discriminator ‘¥ & * ;}@&.@: » 3% GVB-GD e ¥ ¢t » Cui & 4~ 3 &3] ﬁésx.&

i B FIHE B EHFAAE R p g B Y o CDAN-G~CDAN-D~CDAN-GD % -

26
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23 E3 eV FEAH

GRS PR A RRCAG 0 AR SRR A AR THE )

=k

TP R RARRR foehyrr RS o d 303F 5 CNN AR B che 5L 7 A7 8 4R
AL EBRKRLY BT OSF R AP B EAR D BRI E R

BIiTA R tRe > AL

AR R FRF Y N TR SRR E B 0 2 TR P RPN
Gt F R F R T8 2 ATA R S EROR R AR A 0 g A R o
R 2t AT RE R ARE RPN RS R S AR AL F T

Bl 5 bl 0 A AT A R oy o
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$=3% Ay

AFHRFH B 127 AR T L H I AL F T AR ARG

]

BB AL B BT 2 0B R R h A SRR R IR 2
Fo CNN fe R B3] ~ 7 AR S B FRiE] ~ 5 4 173 e il se R 2 B ores
22 BT UFHGETEVARMIEPDREEFIR 2 FERFEL VT

SNE F %% sa;2 22 Grad-CAM o

3. FHpE>

AR R FRARY AL EF TR AT E BB T
FLen o @ AP SRR NG S EROR R AR P R
Apom i * ¢ WA~ e KechenSong e B £ B4 5 T E (NEU-
CLS)[41] &i7§ 5 » FIH 42 ¢ FmRE2 P ijdhd » &#D 3313 ] &8P o

300 kEBi

kBB VA B A L5 4% (Area Scan) 2 A HF 5 ;4 (Line Scan) © &
Fh A B €10 - % BT Pl 7 RFH A5 B0 g T H -
£ Reh- BRER o BEAPBE PG ForipshiEe o L SRR S R
BTG i —%" ik Bhhe 4 3-1 #7on

2031 S AR B ol

B 4 4 3 AR N
[ J B"fm [ ) 14,\71%\&\"""'_§r§ y 3 g‘%
e 21 S %‘/‘ ;B
%%L o TIEV/L:{:‘;’ \‘ﬁ’a‘._;;jzﬂ
® FIRERUKGHF T | @ G HR IR
5% ® it
o ] BMZJRJ’?%%],;W ® UM T HE %]:g;
L 'g‘\%ﬁ?ﬁ&w
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@ AL 558 ¥4 7 P eho K Mgy 28 Dl i pr
FEZAFR SARE AP TERERY 6 Fh SRS A N RS2 R
LR A T ot S & edF R R R AR B TR e R
AR 4o 0 P ARE fRIT R AR € AR > R A EF o A BALEF TR R
EARSE PR ATR Y i R EHERETY o AT E Y c4F 5 Teledyne FLIR
5 BFLY-PGE-50S5C-C %% ¢ & 1p1% (B 3-1) > H 347 A § 2K» Efgfffii L & #

IR B B ek 322 4T F o

8] 3-1 BFLY-PGE-50S5C-C

%32 & AP [42]

wp Foth
ha i Teledyne FLIR
A5 BFLY-PGE-50S5C-C
347 & 2448 x 2048
P ifd A2 Color
LS ) 3.45um
i 22FPS
AL 0~45°C
S| 29 mm x 29 mm x 30 mm

REPGEMERS - TR oo ARRATERY S 2 Ry BhER
FoRFETRY PR EFSS PRP RO F Y kBRI R
29
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P ST E- BRI LR YR ARG L OETRR R R e

Bl 3-2 #7 o

B 3-2 % 8 e Gk i)

R RFPR ARSI QREF A F T IRBR SR i AL
RAFER L AT ER T G B et PR TR B BRI - 2
AFPRR R Ao AT A B At A L BOR R A PR Y - 2 e AL
Fle bl dd BRI 9 Foh L Apfd DA @ o AR EAPHIFES A
B A BRIt A iR AL B R BRCAE B GEEA RS
e aP@ i s g FE BEOCE L RRE ML R )k LR AR
THFNRFERIAT R FF T OER TS ER T RREFAL R R
XHURS BB F o LA - AR TR RS T FHEIHE LS
PR RN - BTN B e 55 F kG FE T AN A
EHrG 9 T o S Ap IS (7 I R R ke & 3-3 47om o BTt & 2448 %2048 pixels:
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AT HiE B GET AR BRI BRIk ﬂ“ﬁ"ﬁ‘é%‘gt} PR
RGNS EFT > XY g TR > EREF TR AT BT AT o

F 3-3 otk AR g
¢ A P A FdF(RF) | BRI F(EF)
Bl R (3R) 141 312 93 107

3.1.2 B gt B

A BBREdmE R L Afh - EAB L AFLE PRGOS R A il
¥ ¢ ARkt F - BB 83 Y Sl L TER R A T4 A
PR ERAML RS AWUS R ASERF IR AST AT
G AR FIACBF S IR 5D AR AR FRNP B F LG

ALTE S > §RPE T AR SRR R & E TR AP

gAY R YIURIBR AR THREPN FRBGE ¢ F - BB IE
PR e F T R AL SRR TR 5 R A e S R
Python #£8 f§ 3 cn® (3 B~1 £ » 4% OpenCV &\ BB e 7B~ 25 %
B (%> f|* EasyGUI &y Bw @ R =8 T3 FH A5 4B 33477 > T & &
PET T AR EOR R R BB T E A I H BT A
oo R AR RREE AR - T AR L P RASP g 2 T RFVR

PR~ 25N o @ AFT Y BRI R L ] 3K 5 400x 400 pixels » 3 B FpliR s A
WE M REEE §H - ARBR PR > HARBOR 2 Bt P kot 2 Ak

R 2T oo
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B33 B4 45

Fobo 1 FBORKRIF DA FSORE RIS Sl TR AN AL
fof T PR AR F TR - SR e B R 2 1 & R BOR S b B

o8B R Boche & 3-4 87 & 355w o
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£ 34 b L 1S R B i

5 ok
SRRy -
A 84
h 3t 308
A IR 118 1
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£ 3-5 F T4 R iR & 8 I

2% i
ARy
#E (%) # 6 1 E (58) # 6
B 169 187 :
L5 299 289
B 159 174
1R 157 179
g = 147 200
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313 #HiERFTLELE
B SRR VRS - SR E s g S %
PR TR R AN R 2 A R R AR e B F o)
T @ISR mT o RO R 24237 FHFERDL R AL 2T EL
FA PR T - SEF L AL R F TRRRL PR FAT G B
Python #% ;% e random & ;% ST 44 3 di 5 B2 1h2 df B N a2 oo BRAR IV BE (S 2 4w
FGEE A p AR 0 2 AEEC 5 > © 1395 Google Developers s B & i 5
FHARERE[A3] REVRN s A RS AE > AT T TR A
AR EARY AR T oL o BNA PRE AT R E AL ERP o RE
d AP TRFEVRBICONN B s v T &2 - DREE - PREE VY
HA R Er Sy > L R I 81 2 At BIMgS A TR E B RIE R 0 R A
Fl & TR R FIAR R 2 A B L TR BB G R R e
DA HEER GBS O HPEA - AF AR R TS (Data
augmentation) 7> ;U3 e Bl o FTAH B A DA KRR P B TR
S S RS ’%ﬁd WA~ T8~ AR i E s ME AT
AAFTOR oo AETHAL ~F T ARIREZRREE L p N E 907 R e
Lo FIfodLi T 7 ¢33 S~ BOR AF R R L R A4 TR B e
FERARNER S {0 BT LANBRE Y N BB L TR hEHho 3-6

8k 3-7 #7951 o

35
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436 AL TR BB R g

v Hh (oak) # F¢ & (walnut)
H i (3R) HIE §:3 PR B HIE §:3 RlFE R
(oak_train) (oak _test) (wal_train) (wal_test)
A (crack) 544 128 360 88
2 % (good) 712 160 448 104
*zx (knot) 760 184 424 104
37 T TR R
2 # (black) v # (white)
H o=t (3E) HIE §:3 iRl B K ¥4 Bl
(black train) (black_test) (white_train) (white_test)
8 (crease) 1088 264 1200 296
2 5 (good) 1024 248 1120 272
B (hole) 1008 248 1152 280
7 7 (hook) 944 232 1280 320
¢ /= (stain) 1024 256 1240 304

AR R A

NEU-CLS

pixels 71> feB i ® 1 ¥ 5 64 x 64 pixels 1>~ W%
AT g A BAR R R
Biep B k@ o

2 2 (Patches, PA)~ &

7oA ARARIT R T g o B

FERBELE S

# - %@ s F’{j\,};ﬁ

2 FEIBR > A 4

4 E 2 N5 s200 £ 564 -

Mg = TAE RS

Gk Bt e RSB FEE (NEU-CLS) & 7% %ipl -

LR A wlE R 5 200x200

¥Rk

£_2 2 (Rolled-in scale, RS) ~

% (Crazing, CR)~3' 4 (Pitted surface, PS)~ & 24 (Inclusion,

IN) ~ #17& (Scratches, SC) »

36
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z

rolled-in scale patches crazing pitted surface inclusion scratches

B 3-4 NEU-CLS #.g # & [41]

OB TR ALK KechenSong F f [41] 2 A EHw B R ¢ 4
AEF S BT RRDFRT IR BT B LR R 2 B AT
TP EHIEEFFTR I FoRFE€ 5415 EP - 2B BFT %R
G #8200 2 s64 FALE T HRBARIZ AL EF TP ARG 2 LA 812
OB A R ERIERE o ¥ o d iR R LA PR IR A D R

A pF PR T R4 > DA BT RFREF S T\ BB R LA Tn B -

A Tn o AHCAI R R AN L2 744 0 & EREAR RN ZERE
oAy AH RIBORAE L GE Y NELH X L e Floe LB ITAR 4 BT

B4 TRk g IR B R Bl N 5Lde R 3-8 A1 o

# 3-8 £ m BERFTHER IR

s200 s64
H o (5R) PR B I S S iRl
(s200_train) (s200_test) (s64 train) (s64 test)

2 2L (ccrs) 240 60 1272 317

2 o7 (ccpa) 240 60 919 229

# % (ccer) 240 60 968 242

it 4 (ccps) 240 60 638 159
%34 (ccin) 240 60 620 155
#7& (ccse) 240 60 619 154
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3.2 AEudlE
EFEPEZ ARERDOTREL > AL B SRR < F
AEEFFEIEPIRBE ST AT RIF G AT T2 2 AR GRS 20 53

R AR B RNBOEY -
321 #Z2I'REB

AYIRRR VIR LS 2 PSR 0 ¢ 3 R R R SUR R Sl

GPU £ 5 2.5 7 4vig 3D Hm 2 g2 B > 5 < B/ A 3B 8
frs 02012 # AlexNet % ImageNet 2 oy~ FF B & A wkfd » GPU I{ & 3 7
FUFRREVY AL R 0 FHDREFH GReRTE A EoELEL K Y
WA 28 GPUEE F P {H T (FEE 2934 amped e 2% CPUF 737 5o
iT5 GPU & % ek 1 2 7 ' NVIDIA = #F 4§ 7 #7142 8 GPU &% &3 % ¥
#® 2R 7irig 7 CUDA T {718 5 2% f#fr cuDNN ( CUDA Deep Neural Network
library ) 4ri Bk L EFRE Y $EEF Y - GPU i =z (Random Access
Memory, RAM) i 4% 8 3582550 3 RHA P it e P el e lic 8 2 @0 i~ o)
A~ 7 & * 9 GPU 5 GeForce GTX 1080 Ti (B 3-5) » H RAa{r B T "ot 4r 2

3-9 ¢ 4 3-10 #F7% o

8] 3-5 GeForce GTX 1080 Ti [44]
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%39 R AL B AL [44]

I P FH
i NVIDIA
A5 GeForce GTX 1080 Ti
CUDA® # 3584 i@
ok PR 1582 MHz
TR pF e 11 Gbps
iR~ ] 11 GB
R TR 352-bit
TR R 484 GB/s

# 3-10 7 Pak & R A

P e ge R Intel® Core™ i7-8700
B9 &2 % | NVIDIA GeForce GTX 1080 Ti
ERECY) X ) DDR4 3200 16GB x2
F A ADATA SX8200 Pro 512G
- Windows 10

AANFEDT DR > AF T EHE N Python 8 o Python 1M H & BLegd iz = 5
VRFREVRBROLGET CCEFFREY A *J'F‘]’ F ETAT R TR R AR BE S 5N
B[ R RARAT S Kl s X dEHE AR % chP o { 4 ® 7 Python GIE A
EY AP e todet GRS e TR ¥ b AFT Y LR L * ¢ Python
Byt 2T 5 Anaconda £ B #EER > At T KL BEELAF L T HE
Pytorch i% % i® & & % 22 o Pytorch #_Facebook B /R ernE R £ % 1228 » i #4p'L
# 5% E (Tensor)» 2 GPU 1 i# % > FIHZ 2B F > m A7 2 LudEE 7k

WIS REEFRROE R L TIR LR Y o FmdrR A e B dod 311 H7
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Z 3-11 I EE

o

P LS
Anaconda 4.6.14
CUDA 10.1.105
cuDNN 7.6.5
Python 3.7.7
Pytorch 1.10.1

3.2.2 "3 ResNet50 #-7)

T Aek
NERE Y

FT

IS

T A 5
13 &5 50 oak_train

TR AR Tt

£ - wal _test F
ResNet50 % & * i3]

& layer p 2 %5 3-4-6~3

3k

uu ‘

Block £ 48 K o R

P3P B R FERsLE Gt iR AT A
» T ) @ e CNN A &4

AL E 2 CNN A A 5o » sg 03] -

s 4o [f] 3-6 # 7

#r pwERF T
B SRR 2 SR 0 Blde

i

2

T E 18 wal test

B m A A RS o AL

By%-K5-LfFk maittdd 4B layer

i# bottleneck % # 9 Residual Block - & i# Residual

- L35 it K (Average pool) > f £

50 &

#iEre e torchvisionmodels &3 B ¥ % & > B {8 L 13458 & 55 g B E 4o }

- % 2@ 4% (Fully Connected Layer) ¥ i &} & 47 /5 % «
layer name | output size 18-layer | 34-layer | 50-layer | 101-layer | 152-layer
convl 112112 77, 64, stride 2
333 max pool, stride 2
1x1,64 1x1,64 ] 1x1,64 ]
2 | s EARIEANIE
comZx | 56x36 { ?f'ij }xz { ':X':'z }x_? 33,64 | X3 33,64 | X3 3x3,64 | x3
S A lel.zssj lel.zse_ [lxl.zsa_
- ; - 1 11, 128 1x1,128 | 1x1, 128 |
3x3, 12
conv3x | 28x28 ;’;2:;: x2 %i'{:,: xd | | 3x3,128 | x4 3%3,128 | x4 3x3,128 | %8
L2n 1es ] L 22 1e8 ) 11,512 11,512 | 11,512 |
- ; - 1 11,256 1%1,256 | 1x1,256 |
5 3%3,25
convdx | 14x14 ;’;:;2 %2 %i’s, »-—,2 %6 | | 3%3,256 |%6 || 3x3,256 |23 3%3,256 | %36
L 2n22on ] L 252 en ] 1x1, 1024 11, 1024 | 1x1,1024 |
- ; - 1x1,512 11,512 1x1,512
5 3x3.512
comvSx | 7xT ;i:s:g %2 %;’5:7 %3 || 3x3,512 |3 | | 3x3.,512 |x3 3%3,512 | x3
L 2na2te L2s2ie 1x1,2048 %1, 2048 11,2048
1=l average pool, 1000-d fc, softmax
FLOPs 1.8x10° [ 36x10° | 3.8x10° | 7.6%10° | 11.3x10°

8] 3-6 Pytorch ¥+ 7 I¢ % #ic ResNet 177 3 [45]
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¥ ¢k 3% 1§ torch.utils.data 3 ;% & p ¢ DataLoader & 3% » it 8% BoR &2 (faf » o
Tiafp B RGFTA L LA AR B é_ﬁ%] A o Ty Rt g 1 F
torchvision.transforms & 3% & 33 £ = 256 x 256 pixels 1% ~f » 3 ¥ H A4 45 ¢ & #

¥+ ImageNet s 3 B E » L L F 5 Jeac SR s € IR AR R
B g - B o

AEE A B FENF AN R 0 SV B 5L ONN B3] s Feah B r 5 0 (53E
BE ORI ALF TR RPE GRS R LN RL R RS TS
I ABRRRE MR THEDERE
i * Albumentations J ;% & 57 RandomBrightnessContrast v RGBshift ;% > & 754 i®

B ARG 0.5 il

BREAMP R TR AR

PR RREFAPT > AFLTRL 05 AL TEE

F AR RGB et FF B I I40.2 B fo20 g 4 -

3.2.3 VHAER P AR

SR CERT RIS CETE P Y=y AR S

eyfassc %k o ¢ 7 DAN ~ DeepCoral ~ DSAN » DANN ~ CDAN ~ DAAN ~ GVB >

* 3 B GitHub R 4o/8 T 5 F B 95U R A~ 7] » — £ Jindong Wang

transferlearning & % [46]» ¥ - RIE_ GVB %< B Rfe G » & * B2 & ﬁ%l ~ &

FAMAod 3-12 #9770 ¥ eb o — B g RfceEk T 325 S o

2
% 3-12 ¥ R 3 B TR
JE P #
AT R ey
PR TR BT B

*
A 'm ﬁ’é"f B
ResNet50 ~ VGG16 %

B g 8
6% AT G RHCA DAN ~ DANN *
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He DANN & 283 % 5 » A= 37 E& Y GVB %~ R haNB T R
P IR AR B i B BCA] 0k & discriminator 3 3 fr GVB % ¢ O R AR
- R (B 3-7) 0 RS AEP- B ResNet50 (5:B 7 & 5 - & bottleneck A

% 1x13%% > 4 ¢ » discriminator -

Linear
v

Relu

v

Dropout
v

Linear
v

Relu

v

Dropout

v
Fully Connected
Layer

B 3-7 GVB &% <= e 425" 78 F 4k & discriminator

Frflr - 2 RNBAAL T T LR A BERTAEE L DA AT
% F\ ’ ’éulﬁﬁ%’?féé ﬁz@’}’i T' L ﬁiif)& ih?”—f";p }ﬁ‘_f\ ) U|J—£(\j' Il )3 ’f}:—_é«_ﬁ\gmoak traln F

HEfrm e wal test TRED RS G A A BRAFHEI P HaERH

% o

A
14

wal_test T4 & & 2 FEpHRH > B fo wal test T iR S TR B 8

324 PG EWRAES P AREA

o

BEREFT &R RERE AP THF T E- BRI FRAGE P AR

A it fi o & DAN[30] 02 fed > #2457 DDC 4Bl & i b i &

B AlexNet 1 6~7~8 & #3871 AT R > 3 H R B FERERES > A

B84 17 DANN s 5 ek S0 e 5 e 50 5 04 27 3 30 B DANN
Jf%:. g it ¥ DANN 9F 3> kL DANN i discriminator #% %

ResNet50 =8 {5 e 2234 it & {5 e bottleneck & {6 > 7% &4+ % » B ~ layer (%] 3-
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6 1 convs X) BR{SIEFFAGAILE P R AT T PR &Y b= B layer

{62 % 24 - K T3 b k& bottleneck & > ¥ & p i » — {# discriminator»

.3\

- F R B P R (B 3-8) 0 ¥ B AR ¢ ik oh layer "B A

S|
~

SARMREA Lo AR WL A AT R b ST R A ol e )
7 B discriminator ‘¥ & * &R 5 5] 0 i DANN #% ~ ¥ discriminator % i» £17 loss
ﬁ%‘u ¢ #_z i discriminator 77 loss «-T =g -

wmwmcﬁcﬁwﬁ:ﬁ

ﬁc>ﬂ
ﬁc>ﬂ
ﬁ@ﬂ

Closs L,
ﬂ [> E(Jlms label y

labe] predictor Gy (- 8,)

[ domain classifier G4(-;64)
I—H

|:> n [> ® domain label
Toss L

_’ amue}
| m—

2,
K
+

S amue}

domain classifier
—A
[ E> ﬂ [> B domain label
., domain classifier

|:> ] ® @ domain label

domain classifier
™
E> [:> @ domain label

samue}

soanjeoy

Bl 3-8 % W FAEE P BRI
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3.2.5 RFER T

Cp e A R B S A Sl e B B RER Y
AR RE & A Sl B R LU AT I o
1. Learning rate

EXLATRL TIFR MEERVAPFFEL R FEERELET
B IRE FRHIT R ATE R fTac e MY - & 5 0.001 -
2.  Epoch

BDTVRF A 2 - A S Lepoch o AFF 7 bi- 3K % 100 o
3. Batch size

= 3“'3513?%] e Rl MR TN RRE S oAl KRR 6
REA A 4 Rt 3 & (Out of Memory, OOM) er4h:% o 273 si- &K 5 16 °
4. TIterations (per epoch)

# A % §3 = 1 epoch % & ¢ Batch #c& - - Batchsize # Epoch 3 B > = —“F‘]' |24

EXEHP AP "'_’,Egj\lgﬂ—i]aio
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3.3 RS FFY
A < 7"13 himi ,F»——m]; ;?IJ\E%%F%% % gRTH 1 E .

331 AFEL

EWEFVASY A ELL - ¥ LR B HUapRS R R D F A

A A - ;%d HERedes v U gE I ®R (Precision) ~ 2 w % (Recall »
A 1% Sensitivity) ~ # &5 (Accuracy) % (i€ 0 & i3
BN AFET AL AT MBS (F L AR hE R B R

SRR Y 2 E R SR E LR 1= C LS L
Pk PfEREY o AP TR e S FLFHER A SRR RFIELR B A
B &g~ 844 T R@ N AMABR > REFAREF 52304 L4 Hpt

KFERA ST T RBRR PR B 2 r BB AL - A 5 oA

K T HERF WAL 2 REFLET A
B S e ATRR ALY TR R R RS Y R R R
PO ERR KR CARLE S v F o FRE S § MG (Overkil)

f w35 fﬂ‘{f‘ﬂ 100% » #c» a0 F prod TR e R A meux’v,g_\‘ .

Predicted Class
" -
Positive Negative
. . False Negative (FN) pensitivity
Positive True Positive (TP) - e TP
ype I'TON (TTFN)
Actual Class
. False Positive (FP) . Specificity
Negative 2 e True Negative (TN) TN
ype rror TN +FP)
. Negative Predictive Accuracy
Precision
Value TP+ TN
L ™ (TP+TN +FP + FN)
(TP + FP) S
(TN + FN)

B 3-9 =4 e [47]

doi:10.6342/NTU202203562



3.3.2 t-SNE (t-Distributed Stochastic Neighbor Em

o T ORATE PO ] i AT AR iR
frE o PO X A 247 (PCA) " %2> t-SNE { a2 &

£ By MNIST & 6 »

* 5% PCA> ¥ reg A * t-SNE "% & { ¢ P

H RISk L B4R 3-10 1 0 L

bedding)
¥ ¢ % t-SNE &7 #
S Cedagrey:idl B Rl

% L 4% t-SNE> +

-

N7 AR PE R A F o t-SNE

FIE S B BA T AT AP EF AT RN AT RO A £ 2 KL g

A& (Kullback-Leibler divergence, KLD) #&fet- /A& T "5/ £fz > E 3" 8P che &A%

FFE L AFT A% sklearn &R ¢ ¢ TSNE &3S 9 5 0 # ;

FEREFIRA
50 2 > FFIERE
2o FFRERER

PCA (24

(Perplexity) » # & 5 »cafiTghlic® » A ¥ FIRARER A S I
Mo R U RREFTHREE Vi R A OERITE R
PR BT R EZ RS AFETOFRARKETS 100

Bl 3-10 MNIST Fifla # e 41 [48]
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3.3.3 Grad-CAM (Gradient-weighted Class Activation Mapping)
EOT B RO FR AP 3 FRAEVIREE VAL EE 5
Mg EETR Flm R A G 2 £ o F]et > Zhou ® A 3t 2015 #4117 CAM (Class
Activation Mapping) [49] > # & » L ¥ #3352 8 F ol F 2 N B Ed o
softmax @38 % iR E o o RFHEBOE B IR KT i 0 d 3 @
AX X AT E A MR S MR AR X > B 2 PIARC] s de gt BT A 35 PR R L
B o KA ERAGRRETE RS- K EHA LT GAP K (Global average
pooling) 71 € 7 HHHEEL o Flet i€ * I 5 #7iH'T > ¢z Selvaraju & 4t 2016 & 3%
3 Grad-CAM[50]» B 41 * F o @43 B H R > U RBAH CAHELE - FEHE D
AR A 0 BB A R EIBAREE 0o &t {FEEF GAP 4 i
A M AARR S R B HIETHCR A S ek gy o g Bl Aol 3-11 1 e

tAFY ¢ &% grad-cam I B ¢ GradCAM § R o

Original Image ResNet Grad-CAM ‘Dog’

B 3-11 12 Grad-CAM & # 2 M i % 244 B [50]
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o
i

AR F R B REFAUAL R T AL EEAL F T £ G B
T B L F I MG E 2 SRR 2 > @ 3518 ke ResNet50 4
SRCA S 5 BATHE A RHCA > 5 s DANN 0] 9 50 en 5 gl SATE G 4
BB > * a7 Bk B R PR S B R AR AR R ey e 3
WmAREFEFE T DOFR TR E > ¢ FER A EL - t-SNE ~ Grad-CAM » 1 2

Lpefe g mc oo
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Frd RHREFEHG

AFREE AT T ISR I ey 0 X R TALL S ERARAEE R
SRSy b 3/ SEZERR T O S S . S0 S 3 Y R
FER BRI .
4.1 ResNet50 ~ 3 5% %

AR RER BB RRIF O BT B AR R RIATA R
A~F 7T 2 REAdBREFTREP DI ERTHRI ZABED R &7
ResNet50 fA)] i (7 e 2 8FH 3] 2R > B RIS F4rdk 4-1~ % 42~ 4 4-3 9557 o

% 4-1 ResNet50 4 3§ ~ A B k&

B 2 oy =S skl
RS 0 SIS
oak train wal_train
ol oak_train 100.00 58.70
= oak_test 94.92 49.15
7 wal_train 58.44 97.40
i wal test 56.76 94.59

# 4-2 ResNet50 4 #5 # ™ B & %

’ ) 2 R
S R 5 (%) ki,
black train white_train
B black train 97.01 19.81
s black test 94.23 21.79
7 white_train 24.43 98.80
Fid white test 23.37 92.39
49
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4. 4-3 ResNet50 4 #f & B &

, Bl
R (%) -
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