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Abstract

An induced subgraph of an n-vertex graph G is a graph that can be obtained by deleting a set
of vertices together with its incident edges from G. A hole of GG is an induced cycle of G with
length at least four. A hole is odd (respectively, even) if its number of edges is odd (respectively,
even). Various classes of induced subgraphs are involved in the deepest results of graph theory and
graph algorithms. A prominent example concerns the perfection of G that the chromatic number
of each induced subgraph H of G equals the clique number of H. The seminal Strong Perfect
Graph Theorem proved in 2006 by Chudnovsky, Robertson, Seymour, and Thomas, conjectured
by Berge in 1960, confirms that the perfection of GG can be determined by detecting odd holes in G
and its complement. Based on the theorem, Chudnovsky, Cornuéjols, Liu, Seymour, and Vuskovi¢
show in 2005 an O(n®)-time algorithm for recognizing perfect graphs, which can be implemented
to run in O(n®") time for the exponent w < 2.373 of square-matrix multiplication. We show the

following improved algorithms for detecting or finding induced subgraphs in G.

1. The tractability of detecting odd holes in G’ was open for decades until the major breakthrough
of Chudnovsky, Scott, Seymour, and Spirkl in 2020. Their O(n?)-time algorithm is later im-
plemented by Lai, Lu, and Thorup to run in O(n®) time, leading to the best formerly known
algorithm for recognizing perfect graphs. Our first result is an O(n")-time algorithm for detect-
ing odd holes, immediately implying a state-of-the-art O(n")-time algorithm for recognizing
perfect graphs. Finding an odd hole based on Lai et al.’s O(n®)-time algorithm for detecting

odd holes takes O(n?) time.
il
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2. Chudnovsky, Scott, and Seymour extend in 2021 the O(n?)-time algorithms for detecting odd
holes (2020) and recognizing perfect graphs (2005) into the first polynomial-time algorithm for
obtaining a shortest odd hole in G, which runs in O(n'?) time. Our second result is an O(n'?)-
time algorithm for finding a shortest odd hole in G.

3. For vertices u and v of an n-vertex graph G, a uv-trail of GG is an induced uwv-path of G that
is not a shortest uv-path of G. In 2021, Berger, Seymour, and Spirkl gave the previously only
known polynomial-time algorithm, running in O(n'®) time, to find a uv-trail. We reduce the
complexity to O(an) time, where the O notation hides poly-logarithmic factors, leading to a

largely improved O(n

4.75)_time algorithm. This third result has appeared in Proceedings of the

39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022).

Keywords: Perfect graph, Induced subgraph, Odd hole, Induced path, Non-shortest path, Dynamic
data structure.
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Chapter 1

Introduction

Induced subgraphs are important Let GG be an n-vertex undirected and unweighted graph. Let
V(G) consist of the vertices of G. For any graph H, let G[H] be the subgraph of G induced by
V(H). A subgraph H of G is induced if G|H| = H. That is, an induced subgraph of G is a graph
that can be obtained from G by deleting a set of vertices in tandem with its incident edges. To detect
an (induced) graph H in G is to determine whether H is isomorphic to an (induced) subgraph of
G. To find an (induced) graph H in G is to report an (induced) subgraph of G that is isomorphic
to H, if there is one. Various classes of induced subgraphs are involved in the deepest results of
graph theory and graph algorithms. One of the most prominent examples concerns the perfection
of GG that the chromatic number of each induced subgraph H of G equals the clique number of H.
A graph is odd (respectively, even) if it has an odd (respectively, even) number of edges. A hole of
G 1s an induced cycle of GG having at least four edges. The seminal Strong Perfect Graph Theorem
of Chudnovsky, Robertson, Seymour, and Thomas [20, 26], conjectured by Berge in 1960 [4, 5, 6],
confirms that the perfection of a graph GG can be determined by detecting odd holes in G and its

complement.

Based on the theorem, the first known polynomial-time algorithms for recognizing perfect graphs
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take O(n'®) [39] and O(n?) [17] time. The O(n?)-time version can be implemented to run in
O(n®v) time [65, §6.2] via efficient algorithms for the three-in-a-tree problem [25] that detects
induced subtrees of GG spanning three prespecified vertices, where w < 2.373 [2, 38, 66, 103] is the

exponent of square-matrix multiplication.

Detecting induced subgraphs is challenging Detecting induced subgraphs, even the most basic
ones like paths, trees, and cycles, is usually more challenging than detecting their counterparts
that need not be induced [42]. For instance, detecting a path spanning three prespecified vertices is
tractable (via, e. g., [62, 87]), but the three-in-a-path problem that detects an induced path spanning

three prespecified vertices is NP-hard (see, €. g., [54, 65]).

Detecting trees spanning a given set of vertices is easy via the connected components, but detecting
induced trees spanning a set of prespecified vertices is NP-hard [52]. The three-in-a-tree problem
is shown to be solvable first in O(n*) time [25] and then in O(n?) time [65] via involved structural
theorems and dynamic data structures. The tractability of the corresponding k-in-a-tree problem
for any fixed & > 4 is still unknown, although the problem can be solved in O(n?) time on a graph

of girth at least & [67].

Detecting odd holes Cycle detection has a similar situation. Detecting cycles of length three,
which have to be induced, is the classical triangle detection problem that can be solved efficiently
by matrix multiplications (see, e. g., [104]). It is tractable to detect cycles of length at least four
spanning two prespecified vertices (via, e. g., [62, 87]), but the two-in-a-cycle problem that detects
holes spanning two prespecified vertices is NP-hard (and so are the corresponding one-in-an-even-
cycle and one-in-an-odd-cycle problems) [8, 9]. See, e.g., [73, §3.1] for graph classes on which

the two-in-a-cycle problem is tractable.

Detecting cycles without the requirement of spanning prespecified vertices is straightforward. Even

and odd cycles are also long known to be efficiently detectable (see, e. g., [3, 41, 105]). It takes
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an O(n?)-time depth-first search to detect odd cycles even if the graph is directed (see, €. g., [11,
Table 1]). While detecting holes (i. e., recognizing chordal graphs) is solvable in O(n?) time [99,
100, 101], detecting odd (respectively, even) holes is more difficult. There are early O(n?)-time
algorithms for detecting odd and even holes in planar graphs [57, 72], but the tractability of detect-
ing odd holes was open for decades (see, €. g., [27, 30, 33]) until the recent major breakthrough of
Chudnovsky, Scott, Seymour, and Spirkl [24]. Their O(n”)-time algorithm is later implemented
to run in O(n®) time [65], immediately implying the best formerly known algorithm for recogniz-
ing perfect graphs based on the Strong Perfect Graph Theorem. Finding an odd hole based on Lai
et al.’s O(n®)-time algorithm for detecting odd holes takes O(n”) time. We improve the time of

detecting and finding odd holes and recognizing perfect graphs to O(n”).
Theorem 1. For an n-vertex m-edge graph G,

(1) it takes O(mn®) time to either obtain an odd hole of G or ensure that G is odd-hole-free and,
hence,

(2) it takes O(n") time to determine whether G is perfect.

Finding a shortest odd hole A shortest cycle of G can be found in O(n®) time (even if G is
directed) [58]. The time becomes O(n) when G is planar [12]. A shortest odd cycle of G can
be found in O(n?) time even if G is directed (see, e.g., [11, §1]). However, the previously only
known polynomial-time algorithm to find a shortest odd hole of G takes O(n'?) time [23]. We

further reduce the required time to O(n'3).

Theorem 2. For an n-vertex m-edge graph, it takes O(m?>n”) time to either obtain a shortest odd

hole of G or ensure that G is odd-hole-free.

Detecting even holes As for detecting even holes, the first polynomial-time algorithm, running
in about O(n'?) time, appeared in 1997 [29, 31, 32]. It takes a line of intensive efforts to bring

down the complexity to O(n3') [18], O(n'?) [40], O(n'!) [13], and finally O(n?) [65]. A shortest

3
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even cycle of G is long known to be computable in O(n?) time [105]. Very recently, a shortest
even cycle of a directed G is shown to be obtainable in O(n*+) time with high probability via an
algebraic approach [11]. On the other hand, the tractability of finding a shortest even hole, open for
16 years [18, 60], is resolved by a newly announced O(n3!)-time algorithm [15]. See [22] (respec-
tively, [37] for detecting an odd (respectively, even) hole with a prespecified length lower bound.
See [1, 19] for the first polynomial-time algorithm for finding an independent set of maximum
weight in a graph having no hole of length at least five. See [43] for upper and lower bounds on

the complexity of detecting an O(1)-vertex induced subgraph.

Detecting non-shortest induced paths The two-in-a-path problem that detects induced paths
spanning two prespecified vertices is equivalent to determining whether the two vertices are con-
nected. Nonetheless, the corresponding two-in-an-odd-path and two-in-an-even-path problems
are NP-hard [8, 9], whose state-of-the-art algorithms on a planar graph take O(n") time [61].
See [45, 47, 71] for how an induced even uv-path of GG affects the perfection of G. See [64] for a
conjecture by Erdés on how an induced uv-path of G affects the connectivity between v and v in
G. Finding a longest uv-path in G that has to (respectively, need not) be induced is NP-hard [49,
GT23] (respectively, [49, ND29]). See [51, 59] for longest or long induced paths in special graphs.
The presence of long induced paths in G affects the tractability of coloring G' [50]. See also [1]
for the first polynomial-time algorithm for finding a minimum feedback vertex set of a graph hav-
ing no induced path of length at least five. Detecting a non-shortest uv-path in G is easy. A k-th
shortest uv-path in GG can also be found in near linear time [44]. See [55] for listing induced paths
and holes. See [14, §4] for the parameterized complexity of detecting an induced path with a pre-
specified length. Detecting an induced uv-path in a directed graph G is NP-complete (even if G is
planar) [46] and W [1]-complete [54]. However, the tractability of detecting a non-shortest induced
uv-path in an undirected graph G was unknown until the recent result of Berger, Seymour, and

Spirkl [7].
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Let ||G|| denote the number of edges in G. A path with end-vertices v and v is a uv-path. A uv-
path P of G is shortest if G admits no uv-path @ with ||Q]| < || P]|, so each shortest uv-path of G
is induced. We call an induced uv-path of GG that is not a shortest uv-path of G a uv-trail of G.
A graph admitting no uv-trail is uv-trailless. Berger, Seymour, and Spirkl [7] gave the formerly
only known polynomial-time algorithm, running in O(n'®) time, to either output a uv-trail of G
or ensure that G is uv-trailless. Their result leads to an O(n?!')-time algorithm [36] to determine
whether all holes of G have the same length. We improve the time of finding a uv-trail to O(n* ™)

as summarized in the following theorem, where the O notation hides poly-logarithmic factors.

Theorem 3. For any two vertices w and v of an n-vertex graph G, it takes O~(n2°’) time to either

obtain a uv-trail of G or ensure that G is uv-trailless.

Theorem 3 immediately reduces the O(n?!) time of recognizing a graph with all holes the same

length to O(n™"). Theorem 3 has appeared in STACS 2022 [16].

General approach Our three algorithms to find induced subgraphs of GG are based on the follow-
ing “guess-and-verify” approach, which has been extensively applied in the literature of algorithms
for induced subgraphs (see, €. g., [7, 17, 23, 24, 65]): For each choice of guessed ¢ vertices, run an
O(f(n))-time subroutine on the vertex /-tuple. If a target induced subgraph H of GG is found, then
report H. Otherwise, if all O(n*) vertex (-tuples are tested and nothing is reported, then report that
G does not contain any such induced subgraphs. This is an O(n’ - f(n))-time algorithm to find an

induced subgraph of G.

1. Our proof of Theorem 1 includes an O(n')-time bottleneck task that runs an O(n?)-time sub-
routine for each choice of 5 guessed vertices.

2. Our proof of Theorem 2 includes an O(n'?)-time bottleneck task that runs an O(n?)-time sub-
routine for each choice of 11 guessed vertices.

3. Our proof of Theorem 3 includes an O(n* log n)-time task that runs an O(n? log n)-time sub-
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routine for each choice of 2 guessed vertices.

Preliminaries and roadmap Forintegers i and k, let [7, k] consist of the integers j withi < j < k
and let [k] = [1, k]. Let |S| denote the cardinality of a set S. Let R \ S for sets R and S consist
of the elements of R that are not in S. Let £(G) for a graph G consist of the edges of GG and thus
|E(G)| = ||G]|. A k-graph (e.g., 2-path or 5-hole) is a graph having k edges. A triangle is a
3-cycle. The length of a path or a cycle is its number of edges. Let H C G for a graph H denote
V(H) CV(G)and E(H) C E(G). Let G — V for a set V of vertices denote G[V(G) \ V]. Let
G — v foravertex v be G — {v}. Let G\ E for aset E of edges denote the graph obtained from G
by deleting its edges in £. For any u € V(G), let Ng(u) consist of the vertices v with uv € E(G)
and Ng[u] = {u} U Ng(u). A leaf of a graph G is a degree-1 vertex of G. Let int(P) consist of
the interior vertices of a path P. A UV -path for vertex sets U and V' is a uv-path with v € U and
v € V. Let T'[u,v] with {u,v} C V(T) for a tree T" denote the simple uv-path of 1. If vertices
u and v of G are connected in G, then let dg;(u, v) denote the length of a shortest uv-path of G.
Otherwise, let d(u,v) = co. For any graph H, let N (H) consist of the vertices v ¢ V (H) with
ww € E(QG) for some u € V(H) and Ng[H] = V(H) U Ng(H). For any graphs D and H, let
Ne(u, D) = Ng(u) N V(D) and Ng(H, D) = Ng(H) NV(D). Graphs H and D are adjacent
(respectively, anticomplete) in G if No(H, D) # @ (respectively, No|H] NV (D) = ©).

It is convenient to assume that the n-vertex m-edge graph G of Theorems 1, 2, and 3 are connected
for the rest of the thesis , which is organized as follows. Chapter 2 proves Theorem 1. Chapter 3

proves Theorem 2. Chapter 4 proves Theorem 3. Chapter 5 concludes the thesis.
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Chapter 2

Recognizing Perfect Graphs via Detecting

Odd Holes

Perfect graphs are important objects for graph theory. See [102] for a survey. Although the graph
coloring problem, maximum clique problem, and maximum independent set problem are all NP-
complete in general graphs, they are all tractable in perfect graphs [53] via the ellipsoid algo-
rithm [63]. In 1960, Berge first introduced the concept of perfect graphs. He also proposed two

conjectures:

(1) A graph G is perfect if and only if its complement G is perfect.
(2) A graph G is perfect if and only if both G and G are odd-hole-free.

Since (2) implies (1), (1) is called the (weak) perfect graph conjecture and (1) is called the strong
perfect graph conjecture. (1) was proved by Lovasz in 1972 [68] and thus called the perfect graph
theorem. (2) had been extensively studied over 4 decades and remained open until proved by
Chudnovsky et al. in 2006. Thus, (2) is called the strong perfect graph theorem. We give a brief
overview of the history of proving the strong perfect graph theorem. Since a perfect graph is Berge

(see, e. g., [102]), it remains to prove the converse to show (2). Most of the work on (2) falls into

7
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3 groups:

1. Proving that (2) holds for graphs with some induced subgraphs excluded (see, e. g., [28]),

2. Investigating the structure of minimum imperfect graphs, which is graphs that is not perfect with
minimum vertices (see, e. g., [21]), and

3. Showing that every Berge graph either belongs to some “basic” classes of perfect graphs or

admits some feature that an imperfect graph can not admit.

Chudnovsky et al.’s proof adopts the third idea. Their proof was mainly inspired by a conjec-
ture [35] of Conforti, Cornuéjols, and Vuskovi¢ in 2004, which also adopts the third idea. Specif-
ically, Chudnovsky et al.’s proof idea is showing that every Berge graph either belongs to 5 basic
classes of perfect graphs or admits one of 4 kinds of decomposition into simpler subgraphs. These
kinds of decomposition are designed so that a minimum imperfect graph can not admit any kinds
of such decomposition. Similar ideas also appeared in other work on perfect graphs and inspired
Chudnovsky et al. (see, e.g., [34, 74]). The idea of “some graphs either fall into one of a few
basic classes or admit a decomposition” is also used in the proof of other theorems in graph theory
(see, e. g., [28, 70, 98]). Based on the strong perfect graph threorem, the perfection of GG can be
determined by detecting odd holes in GG and its complement. We first give a technical overview of

the proof of Theorem 1 in §2.1 and prove it in the rest of the chapter.

2.1 Technical Overview
The first known polynomial-time algorithm of Chudnovsky, Scott, Seymour, and Spirkl [24] for
detecting odd holes consists of four subroutines:

(1) Detecting “jewels” in O(n®) time [17, 3.1].
(2) Detecting “pyramids” in O(n?) time [17, 2.2].

(3) Detecting “heavy-cleanable” shortest odd holes in a graph having no jewel and pyramid in
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O(n®) time [24, Theorem 2.4].
(4) Detecting odd holes in a graph having no jewel, pyramid, and heavy-cleanable shortest odd

hole in O(n?) time [24, Theorem 4.7].

Lai, Lu, and Thorup [65] improve the complexity to O(n®) by reducing the time of (2), (3), and (4)
to O(n%) [65, Theorem 1.3], O(n®) [65, Lemma 6.8(2)], and O(n®) [65, Proof of Theorem 1.4],
respectively. Finding odd holes based on Chudnovsky et al.’s O(n?)-time (respectively, Lai et al.’s
O(n®)-time) algorithm for detecting odd holes takes O(n'?) (respectively, O(n?)) time. We further

improve the time of detecting and finding odd holes to O(n") by the following arrangement.

+ Extending the concept of a graph containing jewels (respectively, heavy-cleanable shortest holes
and pyramids) to that of a shallow (respectively, medium and deep) graph (defined in §2.2).

* Generalizing
— (1) to an O(n")-time subroutine for finding a shortest odd hole in a shallow graph (Lemma 2.2),
— (2)toan O(nG)-time subroutine for finding an odd hole in a deep graph (Lemma 2.1), and
— (3) to an O(n®)-time subroutine for finding a shortest odd hole in a non-shallow, medium, and

non-deep graph (Lemma 2.3).

* Specializing

— (4) to an O(n")-time subroutine for finding a shortest odd hole in a non-shallow, non-medium,

and non-deep graph (Lemma 2.4).

Chudnovsky et al.’s O(n?)-time subroutine for (4) has six procedures. The i-th procedures with i €
{1, 2} (respectively, i € {3,...,6}) enumerate all O(n®) six-tuples = = (zo, . . ., z5) (respectively,
O(n") seven-tuples x = (xy, ..., xs)) of vertices and spend O(n?) (respectively, O(n?)) time for
each z to examine whether there is an odd hole of the i-th type that contains all vertices of x other

than z,. Lai et al.’s O(n®)-time subroutine for (4) achieves the improvement by

(a) reducing the number of enumerated vertices to five and keeping the examination time in O(n?)

for the i-th procedures with i € {1,3,5} and
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(b) keeping the number of enumerated vertices in six and reducing the examination time to O(n?)

for the i-th procedures with i € {2,4,6}.

Our specialized O(n')-time subroutine for (4) is based on a new observation that at most five
of the vertices in z suffice for each of the six procedures to pin down an odd hole. Skipping a
vertex (i.e., 1 OF To in the proof of Lemma 2.4) to reduce the number of rounds from O(n®) to
O(n®) complicates the task of examining the existence of an odd hole containing the remaining
five vertices other than z,. We manage to complete the task within the same O(n?) time bound via

some data structures.

2.2 Proving Theorem 1

The rest of the chapter assumes without loss of generality that G contains no 5- or 7-hole, which
can be listed in O(mn®) time. A D C V(G) with | D| < 5 is a spade for a shortest odd hole C' of
Gif

« C[D] is a uv-path,

* G[D] contains an induced uv-path with length ||C[D]|| + 1 or ||C[D]|| — 1, and

« C' — Bwith B = Ng[D \ {u,v}]\ {u, v} is a shortest uv-path of G — B.

For instance, if C[N¢g(x)] is a 3-path for an x € V(G), then Ng(z,C) U {z} is a spade for C. A
hole C' of G is shallow if C' is a shortest odd hole of G that admits a spade. We comment that a
jewelled [23] shortest odd hole of G need not be a shallow hole of GG but implies a shallow hole of
G. Let Mg(C') consist of the (major [18]) vertices x of G such that Ng(x, C) is not contained by
any 2-path of C. A hole C of G is medium if C is a shortest odd hole of G and M(C') C Ng(e)
holds for an e € E(C'). Thus, 5-holes are medium. A medium hole is a heavy-cleanable shortest
odd hole in [23]. A triple T = (T}, Ts, T3) of ab;-paths T; for i € [3] with ||T1| < | T2]] < ||T3]| is

a tripod of G if ||T1|| is minimized over all triples 7" satisfying the following Conditions Z:

10
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[\

b- b
(1) ) ) N

Figure 2.1: (1) The black circle denotes a shallow hole C' of the graph. The blue vertices denote a
spade D for C'. (2) The black circle denotes a medium hole C' of the graph. The red vertices denote
the vertices in M (C'). The red edge is adjacent to each vertex in M (C'). (3) The black circle
denotes a deep hole C of the graph. T' = (T}, T3, T3) is a tripod of the graph with C' = C(T).

Z1:
Z2:
Z3:
Z4:

B(T) = {by, be, b3} induces a triangle of G.

U(T) =T, UT,UT;is an induced tree of G \ E(G[B(T)]) with the leaf set B(T').
a(T') = a is the only degree-3 vertex of U(T).

C(T') = G[T> U T3] is a shortest odd hole of G.

A hole of G is deep if it is C'(T') for a tripod T" of G. Such a G[U(T)] is called an optimal great

pyramid of G with apex a(7") and base B(T") in [23]. A graph is shallow (respectively, medium

and deep) if it contains a shallow (respectively, medium and deep) hole. The depth ég of a deep

graph G is ||T} || for a tripod 7" of G. See Figure 2.1 for an illustration.

Lemma 2.1 (Lai, Lu, and Thorup [65, Theorem 1.3]). It takes O(mn*log®n) time to obtain a

C C G such that (1) C'is an odd hole of G or (2) G is non-deep.

Lemma 2.2. It takes O(mn®) time to obtain a C C G such that (1) C is a shortest odd hole of G

or (2) G is non-shallow.

Lemma 2.3. It takes O(mn?) time to obtain a C C G such that (1) C is a shortest odd hole of G

or (2) G is shallow, deep, or non-medium.

11
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Lemma 2.4. It takes O(mn®) time to obtain a C C G such that (1) C'is a shortest odd hole of G

or (2) G is shallow, medium, deep, or odd-hole-free.

Lemma 2.2 corresponds to the algorithm for jewelled shortest odd holes in [23, 2.1]. Lemma 2.3
improves on the O(m?n*)-time algorithm of [23, 6.2]. Lemma 2.4 improves on the O(m?n°)-time
algorithm of [23, 6.3] and the O(m?n?)-time algorithm in [65, Proof of Theorem 1.4]. We reduce
Theorem 1 to Lemmas 2.2, 2.3, and 2.4 via Lemma 2.1. Lemmas 2.2, 2.3, and 2.4 are proved in

§2.3, §2.4, and §2.5.

Proof of Theorem 1. 1t suffices to prove (1). It takes O(m) time to determine if one of the four
C is an odd hole of G. If there is one, then (1) holds. Otherwise, G is non-deep by Lemma 2.1,
non-shallow by Lemma 2.2, and non-medium by Lemma 2.3, implying that GG is odd-hole-free by

Lemma 2.4. [

2.3 Proving Lemma 2.2

Proof of Lemma 2.2. Tt takes O(m) time to determine for each D C V(G) with |D| < 5 whether
(G contains odd holes for which D is a spade. If GG contains such odd holes, then let C', be a shortest
of them. Otherwise, let Cp = @. If all Cp are empty, then let the O(mn?)-time obtainable C' be
empty. Otherwise, let C' be a non-empty C'p with minimum ||Cp||. If G contains a shallow hole
C*,then 0 < ||C|| < ||Cp]| < ||C*]| holds for a spade D for C*, implying that C' is a shortest odd
hole of G. H

2.4 Proving Lemma 2.3

A clean hole of G is a medium hole C' of G with M (C) = @.

Lemma 2.5. If G is a non-deep (respectively, non-shallow) graph, then so is an induced subgraph

12

doi:10.6342/NTU202203481



of G that contains a shortest odd hole of G.

Lemma 2.6 (Chudnovsky, Scott, and Seymour [23, Proof of Lemma 6.1]). If u and v are vertices
of a clean hole C of a non-shallow and non-deep graph H, then the graph obtained from C' by

replacing the shortest uv-path of C' with a shortest uwv-path of H remains a clean hole of H.

We first reduce Lemma 2.3 to Lemma 2.5 via Lemma 2.6 and then prove Lemma 2.5 in §2.4.1. We
also include a proof of Lemma 2.6 in §2.4.2 to ensure that it is implicit in [23, Proof of Lemma 6.1].
Lemma 2.6 is stronger than [17, Theorem 4.1(2)] in that G is allowed to contain jewels or pyramids.
As a matter of fact, the original proof of [17, Theorem 4.1(2)] already works for Lemma 2.6: Their
careful case analysis shows that if the resulting subgraph is not a clean hole of Gz, then G contains
a jewel or pyramid. It is not difficult to further infer that each such jewel (respectively, pyramid)

in G contains a shallow (respectively, deep) hole of G.

Proof of Lemma 2.3. (Inspired by [65, Proof of Lemma 6.8(2)].) For each e € F(G) and u €
V(G), spend O(m) time to obtain a shortest-path tree of G — Ng(e) \ {u} rooted at u, from which
spend O(n) time for each v € V(G) to obtain a shortest uv-path P,.(v,w), if any, of G¢(u,v) =
G — (Ng(e) \ {u,v}). Let P.(u,v) = P.(v,u) for each {u,v} C V(G) without loss of generality.
Thus, it takes overall O(mn?) time to obtain for all edges e and distinct vertices u and v of G
with defined P.(u,v) (i) pe(u,v) = || P.(u,v)|| and (ii) the neighbor 7. (u, v) of w in P.(u,v). Let
Pe(u,v) = oo for undefined P.(u, v). Spend O(mn?) time to determine if the next equation holds

for any edge e and distinct vertices b, ¢, and d of G:

pe(c,d) =3

pe(c, Te(d, b)) > 3
.1)

Pe(d, Te(c, b)) > 3

Pe(C,0) = pe(d,b) = pe(c, Te(b,d)) — 1 = pe(d, 7(b, c)) — 1.

13
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If Equation (2.1) holds for some (e, b, ¢, d), then let C' = P.(b,c) U P.(b,d) U P.(e¢, d) for such an

(e,b, c,d) that minimizes p (b, ¢) + p.(b, d) + pe(c, d). Otherwise, let C' = @.

We show that if a non-shallow and non-deep graph G contains a medium hole C*, then the above
reported graph C' is a shortest odd hole of G. Let e be an edge of C* with Mq(C*) € Ng(e). C*
is a clean hole of the non-shallow and non-deep graph H = G.(c,d) with {¢,d} = N¢-(e) by
Lemma 2.5. For each {u,v} C V(C*) such that {c, d} is disjoint from the interior of the shortest
uv-path of C*, P,(u,v) is a shortest uv-path of H. Therefore, for the vertex b € V(C*) with
des(b,¢) = de+(b,d), Lemma 2.6 implies that P,(b,¢) U P.(b,d) U P,.(c,d) is a clean hole of H
and hence a shortest odd hole of G. One can verify from ||C*|| > 9 that Equation (2.1) holds for
this (e, b, ¢, d). Thus, C' # &. It remains to show that Equation (2.1) for any choice of (e, b, ¢, d)
implies that P, (b, ¢)U P.(b,d)UP,(c,d) is an odd hole of G with length p, (b, ¢) +p.(b, d) +pe(c, d):
Both P.(b, ¢) and P.(b, d) are induced paths. By

p€<c7 b) :pe(d7 b) :pe(c7 Te(b7 d)) - ]' :pe(d7 Te(b’ C)) - ]"

paths P, (b, ¢)—band P, (b, d) — b are anticomplete in G. We know that int( P, (c, d)) is anticomplete
to (P.(¢,b) — ¢) U (P.(d,b) — d), since otherwise Equation (2.1) is violated by at least one of the

following conditions:

pe(c, Te(d, b)) < 3
pe(d, Te(c,b)) < 3
Pe(C, Te(b,d)) < pelc,b)

Pe(d, 7e(b, ¢)) < pe(d; b). O

14

doi:10.6342/NTU202203481



2.4.1 Proving Lemma 2.5

Proof of Lemma 2.5. Let H be an induced subgraph of G that contains a shortest odd hole of G.
Consider first the case that H is deep, implying that C'(T') is a shortest odd hole of G for a tripod
T of GG. All Conditions Z of T" also hold in G, since H is an induced subgraph of G. If T is also a
tripod of G, then G is deep. Otherwise, we have dg < ||T1]|, also implying that GG is deep (so that
0¢ 1s defined).

Consider now the case that / contains a shallow hole C' for which D is a spade, implying that C' is
a shortest odd hole of G. Let C'[D] be a uv-path. H[D] contains an induced uv-path R with length
|C[D]|| + 1 or ||C[D]|| — 1. Hence, G[D] = H[D] contains an induced uv-path Q € {C[D], R}
such that the union C* of Q = C*[D] and a shortest uv-path P of G — Ng[D \ {u, v}]\ {u, v} is an
odd hole of G. Since G[D)] contains an induced uv-path, i.e., C[D] or R with length ||C*[D]||+1 or
|C*[D]|| — 1, D is a spade for C* in G. Since H — Ny [D \ {u, v}]\ {u, v} is an induced subgraph
of G — Na[D\ {u, v}]\ {u, v}, we have || P|| < [|C]| — |C[D]||. By [C*[D]|| < |C[D]|| + 1, C*
is a shortest odd hole of GG. Thus, C is a shallow hole of G. O

2.4.2 Proving Lemma 2.6

Let M} (C) = {x € Mg(C) : |[Ng(z,C)| > 4}, whose members are called the big major vertices
for C'in [23]. A path P of a graph G is C-clean for a shortest odd hole C' of G if M,(C)NV (P) =

.

Lemma 2.7 (Chudnovsky, Scott, and Seymour [23, 4.1]). Let {u,v} C V(C) for a shortest odd
hole C' of a non-shallow graph H. If P is a C-clean wv-path of H with | P|| < d¢(u,v), then H is

deep with éy < || P||.

Lemma 2.8 (Chudnovsky, Scott, and Seymour [23, 4.2 and 4.3]). Let {u,v} C V(C') for a shortest

odd hole C' of a non-shallow non-deep graph H. If P is a C-clean uv-path of H with ||P|| =

15
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dc(u,v), then the graph C* obtained from C by replacing the shortest uwv-path of C with P is a
shortest odd hole of H with My (C*) = My(C).

Proof of Lemma 2.6. (Included to ensure that the lemma is implicit in [23].) By My(C) = &,
P is C-clean. Since H contains the shortest uv-path @ of C, |P|| < ||Q||. Lemma 2.7 implies
|P|| = ||Q]|, since H is non-deep. By Lemma 2.8, the graph C* obtained from C' by replacing )
with P is a shortest odd hole of H with My (C*) = @. O

2.5 Proving Lemma 2.4

Lemma 2.9. 4 shortest odd hole C of G with M}.(C) # Mq(C') implies that G is deep with d¢ = 1.

Lemma 2.10. [f C is a non-shallow shortest odd hole of G, then each x € M (C') admits an
e € E(C) with M{,(C) C Ng(e) U Ng(z).

Lemma 2.10 is stronger than [23, Theorem 5.3] in that G can be shallow. We first reduce Lemma 2.4
to Lemmas 2.9 and 2.10 via Lemmas 2.5 and 2.6. We then prove Lemmas 2.9 and 2.10 in §2.5.1
and §2.5.2.

Proof of Lemma 2.4. We first show an O(n?)-time two-case subroutine that obtains a graph for
each

{x07 Zj,X3,T4, 1’5} g V(G)

with j € [2] and 2425 € E(G) and each k € [3,5]. If all O(mn?) of them are empty, then let the
O(mn?)-time obtainable graph C' be empty. Otherwise, let C' be a shortest of the nonempty ones.

We then prove that (' is a shortest odd hole of a non-shallow, non-medium, and non-deep G.

Case 1: j = 1. Let P be a shortest z;x-path of the graph

H =G — (Ng[{zo, x4, 25} \ {x1, 73, 14, 75}),

16
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Figure 2.2: (1) An example for the proof of Lemma 2.4 with 7 = 1 and £ = 5. The red arc is
the shortest xyz,-path P of H. The blue arc is P;(x2) and the green arc is Py(z2). Ci(z3) =
P U Pi(z3) U Py(z2) is a shortest odd hole of (1). (2) An example for the proof of Lemma 2.4
with j = 2 and & = 4. The red arc is the shortest zox,-path P of H. The red vertices denote the
vertices in X;. Althoughy ¢ V(H,) and y ¢ I, we have y € X;. Although y € V(G,), we have
y ¢ V(Go(x1)). The blue arc is Py(z1) and the green arc is Py (xy). Co(z1) = PU Pa(21) U Py(x1)
is a shortest odd hole of (2).

as illustrated by Figure 2.2(1). Let I consist of the interior vertices of all shortest x;z-paths of .

Let

Go = G — ((Na(x1) N Ne (k) U (Na[I]\ {21, 24}))-

Spend overall O(n?) time to obtain for each i € {1, %k} and v € V(Gy) an arbitrary, if any, shortest
x;v-path P;(v) of Gy and R;(v) = Ng,[Pi(v) — v]. For each v € V(G), it takes O(n) time to
determine if

Ci(v) = PU Py (v) U Py(v)

is an odd hole of G via || P|| + || Pi(v)|| + || Px(v)|| = 1 (mod 2) and R;(v) NV (Py(v)) = {v}. If
none of the O(n) graphs C;(v) is an odd hole of GG, then report the empty graph. Otherwise, report

a shortest one of the graphs C'; (v) that are odd holes.

17
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Case 2: j = 2. Let P be a shortest zox-path of the graph

H=0d—- (NG[{ZE07I'4,$5}] \ {173,1'4,1‘5}),

as illustrated by Figure 2.2(2). Let I consist of the interior vertices of all shortest xox-paths of H.
With

Hy = G — (Ne[{wo, 4, x5} U I] \ {22}),

let I; consist of the vertices v with dy, (v, z5) < ||P|| — 3. With X; = Ng(I;) and

Gy = G — ((Ne(X1) N Ne(2x)) U (Ne(L UT) \ (X1 U {29, 73, 24, 75}))),

let each P;(v) with i € {2,k} and v € V(G) be a shortest x;v-path of the graph

Go(v) = Gy — (X1 \ {v}).

It takes overall O(n?) time to determine whether Cy(v) = P U Py(v) U Py(v) is an odd hole of G
for any v € V(G) using similar data structures in Case 1. If none of the O(n) graphs Cs(v) is an
odd hole of G, then report the empty graph. Otherwise, report a shortest one of the graphs Cs(v)

that are odd holes.

The rest of the proof shows that the next choice of j € [2],k € [3,5],20 € Mg(C*), and
{z1,...,25} C V(C*) with z425 € E(C*) for a shortest odd hole C* of G yields a shortest
odd hole C;(z3_;) of G: Mg(C*) is non-empty or else C* is medium in G. Let B be a longest
induced cycle of G[C* U Mg(C*)] with |V(B) N Mg (C*)| = 1. Let B* = B — x for the vertex
xo € V(B)N Mg(C*). By Mg(C*) € Ng(e) forany e € E(C*) (or else C* is medium in G), we

18

doi:10.6342/NTU202203481



have ||B*|| > 3. Lemmas 2.9 and 2.10 imply an z425 € E(C*) with

Mg(c*) Q Ng[{$0,$4,$5}]. (22)

Letk = |V(B*)N{x4, x5}| + 3. Let B* (respectively, B* —{x4, x5} be an x2,-path (respectively,
x1x3-path) such that an 1 x5-path of C* contains x3 and z4. Thus, Ng(z425) NV (B*) C {23} and

x1,x3, T4, and x5 are in order in C*. By maximality of || B||, we have

Me(C*) € (Ng(1) N Ng(zx)) U Ne(int(B¥)). (2.3)

Let C*(u, v) be the shortest uv-path of C* for each {u, v} C V(C*). Let j € [2] such that j = 1 if
and only if || B*|| = ||C*(z1, x)||. B is a hole of G shorter than C* by xy € M (C*), so || B*|| is

even. Let x5 be the interior vertex of the non-shortest x;x-path of C* with

1C* (@1, 2o)[| = |C (22, 20) | = 5. (2.4)

Thus, C*(z;,zx) € H. By 9 € Mg(C*) and ||B*|| > 3, we have ||C*(z1,xy)| > 3. By
Equation (2.4),
C* = C*(xy, zx) U C*(xg, 1) U C* (1, x2).

Based upon Lemma 2.6, we prove for either case of j € [2] that

Ci(w3—j) = PU Pj(x3-;) U Pp(3-5)

is a shortest odd hole of G by ensuring the two statements below via the following immediate
corollary of Lemmas 2.5 and 2.6: If the shortest uv-path C*(u, v) of a shortest odd hole C* of G
is contained by a subgraph H of the non-shallow and non-deep G* = G — Mg(C*), then each

shortest uv-path P of H is a shortest path of G* and we call H a witness for P. See Figure 2.2.
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1. P is a shortest z;x;-path of G*: By Equation (2.2), we have C*(x;,z,) C H C G*. Hisa

witness for P.

2. Each P;(z3—;) with i € {j, k} is a shortest x;x5_;-path of G*: When j = 1, we have B* =
C*(x1,xr). By int(B*) C [ and Equation (2.3), we have C*(z;,22) C Gy C G* for each i €
{1, k}. Gy is awitness for P, (x2) and Py(z2). When j = 2, we have B* = C* (x4, x2) UC* (22, x1).
By V(C*(x1,x9) — x1) C I and int(C*(xe, zx)) C I, we have x1 € X; and int(B*) C [; UI. By
Equation (2.3), we have B* C G, and V(G1) N Mg(C*) C X, implying C*(z1,z;) € Go(z1) C
G* foreachi € {2,k}. Go(xy) is a witness for Py(z) and Py(xy). O

2.5.1 Proving Lemma 2.9
A path P of a shortest odd hole C' of G is an x-gap (see, e. g., [24]) withx € Mq(C) if G[PU{z}]

is a hole of G (and thus || P|| > 2). The shortestness of C' implies that each x-gap is even.

Proof of Lemma 2.9. Let v € Mg(C) \ M{(C), implying that |[Ng(z,C)| < 3. Since ||C]| is
odd, there is an edge of C' that is not contained by any z-gap, implying that C[N¢(z, C')] contains
exactly one edge of C. Since x € Mg(C), we have |Ng(z,C)| = 3 and thus C' = C(T) for a
tripod 7" of G with || T3 || = 1. O

2.5.2 Proving Lemma 2.10

An X C V(@) is stable if E(G[X]) = @. Av € V(G) (respectively, uv € E(Q)) is X-complete
with X C V(G) ifv € Ng(z) (respectively, {u,v} C Ng(x)) holds for each z € X.

Lemma 2.11. For any stable X C M (C') for a non-shallow shortest odd hole C of G, the number
of X-complete edges of C'is odd.

Lemma 2.11 is stronger than [23, 5.1] in that G is allowed to be shallow. We first reduce Lemma 2.10

to Lemma 2.11 and then prove Lemma 2.11.

20

doi:10.6342/NTU202203481



Proof of Lemma 2.10. Assume for contradiction a G with minimum |V (G)| violating the lemma.
We have M} (C) = V(G) \ V(C). Let zg € M (C) with M5 (C) € Ng(e) U Ng(ag) for each
e € E(C), which has to be anticomplete to M (C) \ {zo} by minimality of |V (G)|. Lemma 2.11
implies an edge z1x2 of G[M((C)]. The minimality of |V (G)| implies for each ¢+ € [2] an edge
e; € E(C) that is adjacent to each vertex of M/ (C') \ {x3_;}. Since Lemma 2.11 implies an
{z0, z;}-complete edge f of C, G[{x,z;} U ¢;] is not an induced zz;-path P (with || P|| = 3)
or else G[P U f] contains a 5-hole of G. Thus, each ¢ € [2] admits an {z, z; }-complete end v;
of e;. By definition of z, each x; with i € [2] is anticomplete to e3_;. Hence, we have v; # vs,
implying vivy € E(C) or else G[{z1,v1, xo, v9, x2}] is a 5-hole. However, e = vjv, is adjacent
to each member of M (C): ifa z € M (C) is anticomplete to e, then z ¢ {zg,z1, 22} and z is

{e1 — vy, €2 — v9}-complete. Thus, Gle; U e U {z}] is a 5-hole, contradiction. O

Proof of Lemma 2.11. Assume for contradiction that an X with minimum | X | violates the lemma,
implying | X| > 2. A path P of C is an zy-gap with {z,y} C X and x # y if (i) P is an
{z, y}-complete vertex (and thus ||P|| = 0) or (ii) P is a uv-path with Ng(z, P) = {u} and
Ne(y, P) = {v} (and thus || P| > 1).

Claim A: There are vertices x and y of X such that C' contains an odd xy-gap P and an even zy-gap
Q.

We first reduce the lemma to Claim A and then prove Claim A. Observe that P and () are disjoint
or else P U () contains an odd z-gap, violating the shortestness of C. Thus, |[Ng(z, P U Q)| =
|Ne(y, PUQ)| = 2. If P and @ are not adjacent, then G[PUQ U {x, y}] is an odd hole with length
|C'|| by shortestness of C'. By {z,y} C X, the two vertices in C' — V(P U Q) are {z, y}-complete.
We have ||Q|| # 0 or else C[Ng(x)] is a 3-path, violating that G is non-shallow. Hence, ||Q|| > 2,
implying an odd z-gap in C[N¢[Q)]], contradiction. Thus, P and () are adjacent in C', implying that
R=C -V (PUQ) is an odd uv-path of C' with min(|Ng(z, R)|, |Na(y, R)|) > 2.
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« If ||R|| = 1, then R is an {z, y }-complete edge of C. We have ||Q|| # 0 or else C[Ng(x)] is a
3-path. By ||Q|| > 2, C[N¢[Q]] — V(P) is an odd z-gap or y-gap, contradiction.

« If|R|| > 3,then S = R — {u, v} is a path of C' disjoint and nonadjacent to P U (). By the above
observation, S contains no xy-gap, implying Ng(x,S) = & or Ng(y, S) = @. If Ng(x,5) = &

(respectively, Ng(y, S) = @), then R is an odd z-gap (respectively, y-gap), contradiction.

Claim B: If each Ey with Y € 2 = 2% \ {&} consists of the Y -complete edges of C, then there

are an even number of edges in the set F' = (J,,.,- Ey.

We reduce Claim A to Claim B. To see that P exists, let U = Ng(X,C). Let & consist of the
paths P with int(P) N U = @ and distinct ends in U. The paths in & are pairwise edge-disjoint.
The union of the paths in & is C. By Claim B, there is an odd wv-path P € & that is not an edge
in . Thereis an {x,y} C X with {uz,vy} C E(G). We have x # y or else P is an odd z-gap of
C, violating the shortestness of C'. Thus, P is an odd xy-gap of C'. To see that () exists, assume for
contradiction that all xy-gaps are odd. Thus, C' contains no {z, y }-complete edge, since an {x, y }-
complete vertex of C' is an even zy-gap. Hence, C' contains an even number of {z }-complete or
{y}-complete edges. The number of edges of C' contained by x-gaps or y-gaps is also even. Since
an edge of C' not contained by any zy-gaps has to be an {x}-complete or {y}-complete edge or
contained by an x-gap or a y-gap, the number of edges in () = C' — int(P) that are contained by
xy-gaps is even. Therefore, the number of zy-gaps in @) is even, implying an {x, y }-complete end

of (), contradicting no even xy-gap in C'. Claim A is proved.

It remains to prove Claim B. Observe that the minimality of | X'| implies that | Ex| is even and | Ey |
is odd foreach Y € 2"\ {X}. Since | 2"\ {X}|iseven,sois ), ., |Ey|. Leteach X(e) C X
with e € E(C') consist of the V' (e)-complete vertices of X. Foreache € F(C)andY € 27, we
have e € Ey if and only if Y C X(e). Thus, each edge e € F belongs to exactly 2!X(®) — 1 sets
Ey with Y € 2. Therefore, ., (2% —1) = 3", _, |Ey| is even. Claim B is proved and

so is the lemma. ]
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Chapter 3

Finding a Shortest Odd Hole

3.1 Technical Overview

Our O(n")-time algorithm to find an odd hole is almost one for finding a shortest odd hole. Among
the four subroutines, only the one for (2) may find a non-shortest odd hole. Indeed, our O(n'?)-time
algorithm for finding a shortest odd hole is obtained by replacing our subroutine for (2) above with
an O(n'3)-time one for finding a shortest odd hole in a deep and non-shallow graph (Lemma 3.1),
which improves upon Chudnovsky, Scott, and Seymour’s O(n'*)-time subroutine [23, 3.2] for
finding a shortest odd hole in a graph containing “great pyramids”, no “jewelled” shortest odd
hole, and no 5-hole. Chudnovsky et al.’s subroutine enumerates all O(n'?) twelve-tuples y =
(Yo, - - -, y11) of vertices and finds for each y in O(n?) time with the assistance of (yo,...,y4) a
great pyramid H containing {ys, . .., y11}. Specifically, ys is the “apex” of H, {ys, y7, ys } forms the
“base” of H (see §2.2), and {9, Y10, y11} consists of the interior marker (defined in §3.3) vertices
of a path of H between its apex and base. Our improved O(n'3)-time subroutine is based on a
new observation (Claim 1 in the proof of Lemma 3.1, which strengthens [23, 7.2]) that a vertex in

the base {ys, y7, ys} of H can be omitted in the enumeration, reducing the number of rounds from
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O(n'?) to O(n''), without increasing the time O(n?) to pin down a shortest odd hole.

3.2 Proving Theorem 2

By Theorem 1, the rest of the chapter assumes without loss of generality that G contains odd holes
and each odd hole of GG has length at least 15, since all odd holes shorter than 15 can be listed in

O(m?n7) time.

Lemma 3.1. It takes O(m?3n") time to obtain a C C G such that (1) C'is a shortest odd hole of G

or (2) G contains a shallow hole or no deep hole.

Lemma 3.1 improves upon the O(m?3n®)-time algorithm of [23, Lemma 3.2]. We first reduce

Theorem 2 to Lemma 3.1 via Lemmas 2.2, 2.3, and 2.4 and then prove Lemma 3.1 in §3.3.

Proof of Theorem 2. Assume for contradiction that none of the four C' C G ensured by Lem-
mas 3.1, 2.2, 2.3, and 2.4 is a shortest odd hole of G. By Lemma 2.2, G is non-shallow. By
Lemma 3.1, GG is non-deep. By Lemma 2.3, G is non-medium, contradicting Lemma 2.4. Thus, it

takes O(m) time to obtain a shortest odd hole of G from the four C. O

3.3 Proving Lemma 3.1

A c-trail of a graph G fora c = (co, ..., cx) with {co, ..., cx} C V(G) is the union of one shortest
¢i—1¢i-path of G peri € [k]. We call ¢ = (cy,...,cq) With {cg,...,ca} C V(P) a marker of a
cocy-path P of a deep graph G if dp(co,c2) = [||P||/2], dp(co,c1) = min(dg, dp(co, c2)), and

dp(Cg, 04) = min(ég, dp(Cg, 04)).

Lemma 3.2 (Chudnovsky, Scott, and Seymour [23, 7.1]). If |[Ng(x) N B(T)| < 1 with x €
ME(C(T)) holds for a tripod T of a deep G, then G[N¢(x, TyUT;)] is an edge foran {i, j} = {2, 3}
with ||T;]| > 3.
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Lemma 3.3 (Chudnovsky, Scott, and Seymour [23, 8.3, 8.4, and 8.5]). Let T be a tripod of a
deep and non-shallow G. Let (a,bs,b3) = (a(T),T2|B(T)], T5[B(T)]). For any marker ¢ =
(a,cy,c9,c3,b;) of T; with {i, j} = {2, 3}, the triple obtained from T by replacing T} with a c-trail
of the graph

G — (Mg(C(T)) U Ne[Th — a] U Ng[bs]) \ {a, c1, ¢, ¢3,bi})

remains a tripod of G.

We are ready to prove Lemma 3.1 by Lemmas 2.7, 2.9, 2.10, 2.11, 3.2, and 3.3.

Proof of Lemma 3.1. For any ¢ = (co,...,c) with {co,...,cx} € V(H) for a graph H, let
Pg(co, ..., cx) be an arbitrary fixed c-trail, if any, of H. For each of the O(m?nT) choices of
{z,a,c1,¢9,¢3,dy1,d2} CV(G), {i,5} = {2,3}, and {b,e} C E(G) with b = bybs, spend O(m)

time to determine whether G[P, U P3] is an odd hole of G with

Y = (Ne(@) U Na(e) \ (V(e) U {dy, do})

Gy = G — (Y U (Nalt]\ (Na(b2) N Na(bs) \ {a.b,})
Py = Pg,(a,b;) —b;

G =G — (Y UNGP, — a] UNG[b,)) \ {a, 1, ca, ¢5.b:))
P, = Pg,(a,cy,c9,c3,b;)

Gy =G~ (Nal(PyUP) —a]\ {a,b;})

Pj = PGj(a,bj).

If there are such odd holes of G, then report a shortest of them as the O(m?n")-time obtainable
subgraph of GG. Otherwise, report the empty graph. We prove that if GG is deep and non-shallow,
then the reported subgraph is a shortest odd hole of G by ensuring that (P;, P», P3) is a tripod of G
for the following choice of {z, a, c1, c2,c3,dy,do} C V(G), {b,e} C E(G),and {i,j} = {2,3}:
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dy = /'

\ x
AN

b2 b3

C3

Figure 3.1: A choice of {z,a,c1,ca,c3,d1,ds} C V(G) and {b,e} C E(C) with (i,j) = (2,3)
in the proof of Lemma 3.1. The circle is a deep hole C' with ||C|| = 9 of the deep graph G with
dg = 1. The orange vertices form a marker (a, ¢y, co, c3,by) of P». The edge e, in the proof of
Claim 1 is cico. I = {c1, 2}

Let T be a tripod of G. Let C = C(T). For each k € {2,3}, let by = T}[B(T)] and C, =
G[Ty UTy]. Let (a,b) = (a(T), babs). Thus, a ¢ Ng(b). We claim a choice of {z,dy,ds} C V(G),
{i,7} ={2,3}, and e € E(C) satisfying the next two statements and choose {c1, c2,c3} C V(T5)

such that ¢ = (a, ¢1, ca, c3, b;) is a marker of 7;. See Figure 3.1.

Claim 1: M} (C) CY (and hence P, is C-clean) and Y NV (C; — {a,b;}) = 2.
Claim 2: Each Dy, = G[P, U T}] with k € {2, 3} is a hole of G with || D[ < [|Cy]|.

G[V(Tl) U {b]}] Q Gl by Claim 1 with T1 g OZ and V(Tl) N (Ng[b] \ (Ng(bg) N Ng(b3))) = .
Thus,

1< ||~ < (3.1)

by a ¢ Ng(b). Let by be the end of P, with b1b; C Pg, (a,b;). G[{b1, b2, bs}] is a triangle or else
by € Ng[b] contradicts b; € V(G4). By Claim 2 and Equation (3.1), (P, T»,T3) is a tripod of G,

implying int(7;) N Ng| P, —a|] = @. Thus, T; C GG; and || B;|| < ||T;]|. By Lemma 3.3, T} is a c-trail
plymng y
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of
G =G — ((ME(C) U Ng[Pr — a] U Ng[b;]) \ {a, c1, ca, 3, bi}).

By Claim 1, we have T; C G; C G’, implying that P, is a c-trail of G;. By Lemma 3.3, the triple
obtained from (P, 15, T3) by replacing 7; with P, is a tripod of G, implying int(7}) N Ng[(FP; U
P,) —a] = @. Hence, we have 7; C G;, implying || P;|| < ||T;||. The definition of G; implies
int(P;)) N Ng[(PLUP,)) —a] = @. Bya ¢ Ng(b), D = G[P;U P;] is ahole of G with || D|| < ||C]].
If | D|| < ||C||, thena G[P, U P,U P3] — V(P — a) with k € [3] is an odd hole of G shorter than C
by 1 < ||P|| < ||Tk|| for each k € [3], contradiction. Thus, D is a shortest odd hole of GG, implying
that (Py, P», P3) is a tripod of G.

The rest of the proof ensures Claims 1 and 2 in order. To see Claim 1, assumeanz € M (C)\ Ng(b)
or else the claim holds with (z,e) = (bs,b), dy = T1[B], {d2} = Np,(b2), and (i,7) = (2,3).
Lemma 2.10 implies an e € E(C) with minimum ¢(e) = |V (e) N {a, b2, bs}| such that M (C) is
contained by the set

N = (Ng(z) U Na(e)) \ V(e).

Thus, x € Ng(e). By x ¢ Ng(b), we have | Ng(z) N B(T')| < 1. Lemma 3.2 implies an {i,j} =
{2, 3} with || ;]| > 3 such that G[N¢(z, C;)] is an edge e;. Assume for contradiction at least three

vertices in the set

I=NnWV(CG)\{a,bi}) = (V(e:) UNale,Ci) \ {a, bi}-

We have e ¢ E(T;) orelse © € Ng(e) implies |I| < 2. By x € Ng(e) \ Ng(b), we have e # b,
implying e € E(T;). We have V(e) Z int(T;) or else Ng (e, C;) € {a} implies |I| < 2. Thus,
e = uv withu € int(7;) and v € {a,b;}. If v = a, thenv ¢ Ng(z) orelse |I| = |N¢,(a)| = 2. If

v ="b;,thenv ¢ Ng(x) by x ¢ Ng(b). By ||7}|| > 3, the neighbor w of w in T; — v is in int(7}).
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The minimality of ¢(e) implies a

y € Mg(C)\ (Na(z) U No(uw)) \ {u, w}).

Thus, P = zuwvy is an induced 3-path of G. Lemma 2.11 implies an {z, y }-complete edge f of C'.
Thus G[f U P] contains a 5-hole of G, contradiction. Hence, Claim 1 holds with {d;,d>} = I. See

Figure 3.1.

It remains to prove Claim 2 by Equation (3.1) and Lemmas 2.7 and 2.9. We first ready Equa-
tions (3.2), (3.3), and (3.4) below and ensure that V' (P; —a) and V' (C) are disjoint. By Claim 1 and
Lemma 2.7, an arbitrary (unnecessarily induced) uv-path P of H = G[P,UC] with {u,v} C V(C)
and || P|| < d¢ implies

do(u,v) < | P (32)

Thus, ||P|| < é¢ and {u,v} C V(T — a) with {k, £} € {2,3} imply dc(u,v) = Ty[u,v] by
do(u,v) < 0 < ||Ty]]. Observe that || Py|| < d¢ implies contradiction from || Ts|| < ||P]| +1 <
da < ||Tz|| by Equation (3.2) via the aby-path P; U byby of H with length at most dg. Therefore, by
Equation (3.1), we have

| Pl = dc- (3.3)

Hence, each || Py|| + || 7% || with & € {2, 3} is odd. Also, V(P; — a) and V (C) are disjoint or else a

vertex v € V (P, — a) N V(T}) with {k, ¢} = {2, 3} leads to contradiction from

1Tl +1 = Tk Ubkbel| = de(a, v)+do(v, be) < || Prfa, o] 4[| Prfv, bi]Ubibe|| = || Pl +1 < [[ 7]

by Equations (3.1) and (3.2) via the av-path P, [a,v] and the vb,-path Py[v,b;] U bib, of H. As a
result, if Dy, with & € {2, 3} is not a hole of G, then there is an edge uyu, € E(Dg) \ {b1by} with

uy € V(P, —a) and uy € V(T — a). Moreover, each edge uju, € E(Dy) with u; € int(P;) and
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(1 2)

Figure 3.2: Illustrating Claim 3.2 in the proof of Lemma 3.1. The circle in each example is a deep
hole C with ||C|| = 9 of the graph G. (1) An illustration with k¥ = 2 and §; = 2 showing that b; is
anticomplete to C' — {a, bo, b3}. The blue path denotes the path || P,||. The graph obtained from C'
by replacing the green path with the red path is a shortest odd hole C* of G. G[Ng(uy,C*)] is the
3-path Ty[a, z2]Uzb;. (2) An illustration with & = 3 and ¢ = 3 for the case Pla, u]|+1 = Tj[a, u]
in the proof of Lemma 3.1. The orange, red, and blue paths denote ()1, ()2, and ()3, respectively.
(@1, Q2, Q3) satisfies Conditions Z.

ug € V(T — a) satisfies

1Pr[a, ur || < | Tkla, we]l| < || Prla, ualll + 1 (3.4

If auy; € E(Py), then || Py[a,uq]|| = 1 < ||Tk[a, ug]||. Otherwise, Equation (3.2) via the uzby-path

uguy U Pylug, by] U bibe of H implies || Ty [ug, bg]|| + 1 < || Pi[ug, b1]|| + 2. Hence,

[Pr[a, wlll = [1P] = ([ Pafw, [l S I Toll =1 = ([T [un, be]l] + 1 = [ Ti[a, un]-

Equation (3.2) via the auy-path Py[a, u;] Uwuyug of H implies ||Ty[a, ug]|| < || Pi[a,ui]|| + 1.

To prove Claim 2 by contradiction, assume that D, or D3 is not a hole of G. We first show that

by is anticomplete to C' — {a, by, b3}. Suppose that b, is adjacent to an int(7}) with & € {2,3}.
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Since d¢ = 1 implies b; € M (C) (violating Claim 1 for P, being C-clean), we have 6 > 2.
Lemma 2.9 with ¢ > 2 implies M} (C) = Mg(C). Thus, b; is adjacent to exactly one vertex
z € int(Ty) and C[{z} U bybs] is the 2-path zbiby, implying that C* = G[(C' — by) U {by}] is
also a shortest odd hole of G. By Lemma 2.7 via the ab;-path P; with length d¢ < de+(a, by),
the C'-clean path P, is not C*-clean. Thus, the neighbor u; of by in P is a vertex of M} (C™*).
Equation (3.4) implies | Ng(u1, Ty — a)| < 2, so P is the 2-path au,b; and the vertex uy, of T, with
| Pi[a,u1]|| + 1 = ||Tk[a, uy]|| is a neighbor of uy. Since ||P1|| + ||7%| is odd by Equation (3.3),
we have ||Ty|| = ||P1]| + 1 (implying ux = z) or else G[u1b; U Ty[uy, 2]] is an odd hole of G
shorter than C. As a result, G[Ng(uy, C*)] is the 3-path Ty[a, z] U zby, contradicting that G is
non-shallow. See Figure 3.2(1). Having shown that b, is anticomplete to C' — {a, bs, b3}, we
know a ujuy, € E(Dy) with {k, ¢} = {2,3}, wy € int(P,), and uy, € V (I}, — a) that minimizes
o(ur,ux) = n - dp, (uy,by) + dp, (ug, by). Since || Py|| + || Tk|| is odd by Equation (3.3), we have
| Tkla, u]|| = ||Pi]a, u1]|| + 1 by Equation (3.4) or else G[P;[ug, b1] U Ty[uy, b]] is an odd hole
of G shorter than C'. Let (Q1,Q2) = (Pi[uq, b1], ugur U Ti[ug, b]). We have 1 < ||Q1]| < [|Q2]|-
Let )5 be a shortest u;by-path of G[P;[uy,a] U T;]. Equation (3.4) implies ||Q:|| < [|@s]| and
that Q2 — uy, is anticomplete to int(()3). By minimality of ¢(uq, uy), Q1 — uq is anticomplete to
int(@3). Conditions Z hold for (Q1, @2, Q3) or (Q1, @3, Qo). Thus, | 11| > ||Q1] = dc¢ = |11,

contradiction. See Figure 3.2(2). [
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Chapter 4

Finding a Non-shortest Induced Path

4.1 Technical Overview

A subroutine B taking an ¢-tuple of V' (G) as the only argument is a uv-trailblazer of degree { for G
if running B on all /-tuples of V() always reports a uv-trail of G unless G is uv-trailless. We
call an ¢-tuple of V(G) on which B reports a uv-trail of G a trail marker for B. An O(f(n))-time
uv-trailblazer of degree ¢ for G immediately implies the following O(n’ - f(n))-time trailblazing

algorithm for G: Run B on each (-tuple (a4, ...,a,) of V(G) to either obtain a uv-trail of G or

Figure 4.1: The red uv-path P is the only uv-trail of the uv-straight graph GG. The twist pair of P
is (¢, b). The twist of P is 6. P[a*, ¢] and P[b, d*] form a pair of wings for the quadruple (a, b, ¢, d)
of V(G) inG.
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ensure that (ay, . . ., a,) is not a trail marker for B. If none of the O(n*) iterations produces a uwv-trail

of GG, then report that G is uv-trailless.

A graph H is wv-straight [7] if {u,v} C V(H) and each vertex of H belongs to at least one
shortest uv-path of H. For instance, the graph in Figure 4.1 is uv-straight. Berger et al.’s algorithm
starts with an O(n?)-time preprocessing step (see Lemma 4.1) that either reports a uv-trail of G or
obtains a uv-straight graph H with V/(H) C V(@) such that (a) a uv-trail of G can be obtained
from a uv-trail of H in O(n?) time and (b) if H is uv-trailless, then so is G. If no uv-trail is reported
by the preprocessing, then the main procedure runs an O(n'®)-time trailblazing algorithm on the
uv-straight graph H based on an O (n*)-time degree-14 uv-trailblazer for H. As for postprocessing,
if a uv-trail of H is obtained by the main procedure, then report a uv-trail of G obtainable in O(n?)

time as ensured by the preprocessing. Otherwise, report that G is uv-trailless.

Our O(n*™)-time algorithm adopts the preprocessing and postprocessing steps of Berger et al.,
while reducing the preprocessing time from O(n?) to O(n*) (see Lemma 4.5). For the benefit of
the main procedure, we run a second preprocessing step, taking O(n*7°) time via the witness matrix
of Galil and Margalit [48], to compute a static data structure from which a pair of “wings” that are
some disjoint paths in H, if any, for each quadruple of V(H) can be obtained in O(n) time (see
Lemma 4.6). Our main procedure is also a trailblazing algorithm, based on a faster uv-trailblazer
of a much lower degree for H: We reduce the time from O(n*) to O(n?log®n) and largely bring
down the degree from 14 to 2. Thus, the main procedure runs in O(n? - log® n) time, even faster

than the second preprocessing step.

The key to our improved uv-trailblazer is a new observation, described by Lemma 4.4, on any
shortest uv-trail P of a wv-straight graph GG. Specifically, Berger et al.’s algorithm looks for a
uv-trail in G that consists of (1) a shortest us-path .S of GG containing 7 guessed vertices and a
shortest tv-path T' of G containing another 7 guessed vertices such that .S and 7" are anticomplete

in G and (2) a shortest st-path Q of Gg7 = G — (Ng[S UT — {s,t}] \ {s,t}). Lemma 4.4
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ensures that much fewer guessed vertices on S and 7" suffice to guarantee that () stays intact in
Ggr. To illustrate the usefulness of Lemma 4.4, we show in §4.2 that three lemmas of Berger et
al. [7] (i.e., Lemmas 4.1, 4.2, and 4.3) together with Lemma 4.4 already yield an O(n?)-time uv-
trailblazer of degree 4 for G, leading to a simple O(n%)-time trailblazing algorithm on G. More
precisely, if a and b (respectively, c and d) are the vertices that are farthest apart from each other in
P having the minimum identical distance to u (respectively, v) in G, then (a, b, ¢, d) is a trail marker
for an O(n?)-time uv-trailblazer for G: Due to the symmetry between v and v in G, Lemma 4.4
guarantees an O(n?)-time obtainable uv-trail of G that contains the precomputed pair of “wings”

for this (a, b, ¢, d).

Our proof of Theorem 3 in §4.3 further displays the usefulness of Lemma 4.4. We show that the
aforementioned vertices a and b in P actually form a trail marker (a, b) for an O(n? log® n)-time uv-
trailblazer for G. Dropping both ¢ and d from the trail marker (a, b, ¢, d) of §4.2 inevitably increases
the time of the uv-trailblazer for G. We manage to keep the time of a degree-two uwv-trailblazer
as low as O(n?log®n) via the dynamic data structure of Holm, de Lichtenberg, and Thorup [56]
supporting efficient edge updates and connectivity queries for G (see Lemma 4.7). To make our
proof of Theorem 3 in §4 self-contained, a simplified proof of Lemma 4.3 is included in §4.2. Since
Lemmas 4.1 and 4.2 are implied by Lemmas 4.5 and 4.6, which are proved in §4.3, our proof for

the O(n®)-time algorithm in §4.2 is also self-contained.

4.2 A simpler algorithm

Let {u,v} C V(G). Let h(z) = dg(u, z) be the height of a vertex = in G. If xy is an edge of G,
then |h(z) — h(y)| < 1.

Lemma 4.1 (Berger etal. [7, Lemma 2.2]). For any vertices u and v of an n-vertex connected graph

G, it takes O(n?) time to obtain (1) a uv-trail of G or (2) a uwv-straight graph H with V (H) C V(G)
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such that (a) a uv-trail of G is O(n?)-time obtainable from that of H and (b) if H is uv-trailless,

then so is G.

A path of GG is monotone [7] if all of its vertices have distinct heights in G.- A monotone xy-
path of GG is a shortest xy-path of G. The converse may not hold. A shortest zy-path of G with
{z,y} N {u,v} # & is monotone. A monotone a*c-path W, of G containing a vertex a and a

monotone bd*-path W5 of G containing a vertex d with

h(a*) + 1 = h(a) = h(b) < h(c) = h(d) = h(d") — 1

form a pair (W;, Ws) of wings for the quadruple (a, b, ¢, d) of V(G) in G if

dauws)(a®, d) > [|[Wh || + ||[Wa]|,

that is, W) —c (respectively, W;) and W5 (respectively, W, —b) are anticomplete in G. An (a, b, ¢, d)

is winged in G if G admits a pair of wings for (a, b, ¢, d). See also Figure 4.1 for an example.

Lemma 4.2 (Berger et al. [7, Lemma 2.1]). It takes O(n®) time to compute a data structure from
which the following statements hold for any quadruple (a, b, c,d) of V(G) for an n-vertex graph
G:

1. It takes O(1) time to determine whether (a,b, c, d) is winged in G.
2. If (a,b,c,d) is winged in G, then it takes O(n) time to obtain a pair of wings for (a,b,c,d) in
G.

We comment that Lemma 2.1 of Berger et al. [7] is slightly different from Lemma 4.2, but their
proof is easily adjustable into one for Lemma 4.2. See also §4.3 for a proof of Lemma 4.6, which

implies and improves upon Lemma 4.2.

Let G be a uv-straight graph. If h(s) — h(t) is maximized by the vertices s and ¢ of a uv-path P of
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G such that P|u, s] is a shortest us-path of G and P[t, v] is a shortest tv-path of G, then the twist [7]
of Pis h(s) — h(t) and we call (s, t) the twist pair of P. See also Figure 4.1 for an example. If
(s,t) is the twist pair of a uv-path P of G, then P[u, s] and P[t, v] are disjoint if and only if P is a
non-shortest uv-path of G. The next lemma is also needed in §4.3. To make our proof of Theorem 3
in §4.3 self-contained, we include a proof of Lemma 4.3 simplified from that of Berger et al. [7,

Lemma 2.3].

Lemma 4.3 (Berger et al. [7, Lemma 2.3]). If (s,t) is the twist pair of a shortest uv-trail P of a

uv-straight graph G, then h(s) > h(x) > h(t) holds for each vertex x of P|s,t].

Proof. LetI =V (PJs,t])\ {s,t}. Let s* (respectively, t*) be the neighbor of s (respectively, t) in
P[s, t]. By definition of (s, ), we have h(s*) < h(s) and h(t*) > h(t). If I = &, then (s*,t*) =
(t,s) implies the lemma. Otherwise, it suffices to prove h(s) > h(x) > h(t) for each z € I.
If h(x) > h(s) were true for the 2 € I maximizing the lexicographical order of (h(x), dps (2, 1)),
then the concatenation of P[u, x] and a shortest xv-path of G is a uv-trail (containing s*) of G
shorter than P. If h(z) < h(t) were true for the x € [ minimizing the lexicographical order

of (h(x),dpjsq(x,t)), then the concatenation of a shortest ux-path of G and P[z,v] is a uv-trail

(containing t*) of G shorter than P. Il
A monotone uc-path S of G with h(c) = h(s) is a sidetrack for a uv-trail P of G with twist pair
(s,t) if satisfying the following Conditions T.

T1: deisur)(u,v) > ||S|| + || T'|| holds for a monotone tv-path 7" of G.

T2: The vertex a of S with h(a) = h(t) is on the monotone subpath P|u, s].

The inequality of Condition T1 is equivalent to the statement that S — ¢ (respectively, S) and
T (respectively, 7" — t) are anticomplete in G. Thus, S[a*, ] and T[t,d*] form a pair of wings
for (a,t,c,d) in G, where a* is the vertex of S with h(a*) = h(a) — 1 and dd* is the edge of T

with h(s) = h(d) = h(d*) —1. See Figure 4.2 for an example. The key to our largely improved uv-
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Figure 4.2: The blue uc-path is a sidetrack S for the red uv-trail P of the uv-straight graph GG. Each
of P[t,v] and the green tv-path can be a monotone tv-path T satisfying Condition T1.

trailblazers in §4.2 and §4.3 is the following lemma, whose proof is illustrated in Figure 4.3.

Lemma 4.4. [f S is a sidetrack for a shortest uv-trail P of a uv-straight graph G with twist pair
(s,t), then

daisuplsg)(u,t) > dp(u,t).

Proof. Condition T1 implies a monotone tv-path 7" of G' with dgsur(u,v) > ||S]| + ||T]|. As-
sume for contradiction a shortest ut-path @@ of G[S U P[s,t]] with ||Q| < dp(u,t), implying
darour (u,v) < [|P||. Byt ¢ V(S), Q contains an edge xy with z € V(S) andy € V(P[s, )
that minimizes dpjs 4 (y,t). Let R be a shortest uv-path of G[Q) U T'|. If x were not in V' (R), then
N (S[u,xz] —2) N V(T) # @, violating Condition T1. Hence, R contains x and, thus, y. Since R
is an induced uwv-path of G with || R|| < || P||, we have || R|| = h(v), implying that R is monotone.
By dr(u,z) < dg(u,y),

h(z) +1 = h(y). 4.1)

By ||Q]| + || P[t,v]|| < ||P]|, the concatenation of @) and P[t,v] is a non-induced uv-path of G,

implying that G[QQ U P[t,v]| contains a monotone uv-path R'. Let 'y’ be the edge of R’ with
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Figure 4.3: An illustration for the proof of Lemma 4.4. The red path denotes a shortest uv-trail P
of the uv-straight graph GG. The blue monotone path denotes a sidetrack S for P. The green path
denotes a monotone path 7" satisfying Condition T1.

eV (S)NV(Q)and y € V(P[t,v]) that maximizes h(y'). By dr (u, 2") < dg/(u,y'),

h(z') +1 = h(y). 4.2)

We know h(x’) # h(t) — 1 orelse y/ = t violates Condition T1. We know h(x’) # h(t) or else
Condition T2 violates that P is induced. By h(z’) > h(t) + 1 and Equation (4.2), ¢’ and ¢ are
anticomplete in G. Let t' be the vertex closest to y in P[y, t] with h(t') = h(t), implying that ¢/’
and t' are anticomplete in G no matter whether ¢ = ¢ or not. By h(x) > h(z’) > h(t) + 1 and
Lemma 4.3, the concatenation P’ of a shortest ut’-path of G, P[t', y|, the edge yx, and a shortest
xv-path of G[S[2’, z] U P[y/,v]] is an induced wwv-path of G shorter than P. By Equation (4.1)

and dp/(u, 2') < dp(u,y'), we have that P’ is a uv-trail of GG, contradicting the definition of P. [

We are ready to describe and justify an O(n%)-time algorithm that either reports a uv-trail of G or

ensures that G is wv-trailless.
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Our O(n®)-time algorithm Apply Lemma 4.1 in O(n?) time to either report a uv-trail of G
as stated in Lemma 4.1(1) or make G a uw-straight graph satisfying Conditions (a) and (b) of
Lemma 4.1(2) with respect to the original G. If no wwv-trail is reported in the previous step, then
apply Lemma 4.2 to obtain the data structure D for the winged quadruples of G in O(n®) time. With
the standard O(n?)-time postprocessing readied by the preprocessing, it remains to show an O(n?)-
time degree-4 uv-trailblazer for the uv-straight graph G, which immediately leads to an O(n%)-time

trailblazing algorithm that either reports a uv-trail of G or ensures that GG is uv-trailless.

Let B be the following O(n?)-time subroutine, taking a quadruple (a, b, ¢, d) of V(G) as the argu-
ment: Determine in O(1) time from the data structure D whether (a, b, ¢, d) is winged in G. If not,
then exit. Otherwise, obtain in O(n) time from D a pair (W, Ws) of wings for (a, b, ¢,d) in G.
Since G is uv-straight, it takes O(n?) time to obtain a monotone uc-path S of G containing W, and
a monotone bv-path T of G containing W. Obtain in O(n?) time the subgraph G, ; of G induced
by

{2 € V(G) : hb) < hiz) < h(&)}\ (N6lS — ] U Na[T — b)) \ {e, b}).

If c and b are not connected in G, then exit. Otherwise, report the concatenation F, , of (i) the uc-

path .S, (i1) a shortest cb-path of G, and (iii) the bv-path T'.

By definition of S, T', and G, the uv-path P., of G reported by B(a, b, c,d) is induced in G,

which is not monotone by h(b) < h(c). Thus, P.; is a uv-trail of G.

Let P be an arbitrary unknown shortest uv-trail of G with twist pair (s, t). Let a (respectively, d)
be the vertex of the monotone Plu, s| (respectively, Pt, v]) with h(a) = h(t) (respectively, h(d) =
h(s)). See Figure 4.4 for an illustration. The rest of the section shows that (a,t, s, d) is a trail

marker for B.

Observe that Pla*, s| and P[t,d*| with the neighbor a* of a in P[u, a| and the neighbor d* of d

in P[d,v] form a pair of wings for (a,t,s,d) in G. Thus, the quadruple (a,t, s,d) is winged in
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Figure 4.4: An illustration for the proof that B is a uv-trailblazer of degree four. The red path
denotes a shortest uv-trail of the uv-straight graph G. The blue and green paths denote a mono-
tone us-path and a monotone tv-path of GG containing a precomputed pair of wings for (a, t, s, d)
that need not coincide with P except at a, ¢, s, and d.

G. The monotone us-path S of G containing W is a sidetrack for P, since the monotone tv-path
T of G containing W5 satisfies Conditions T1 and T2 for S. Due to the symmetry between u
and v in GG, the monotone vit-path 7' of the vu-straight graph G is also a sidetrack for the shortest
vu-trail P of G with twist pair (¢, s), since the monotone su-path S of GG satisfies Conditions T1
and T2 for 7. Lemma 4.3 guarantees h(t) < h(x) < h(s) for each vertex x of P[s,t]. By
Lemma 4.4, P[s, t| — {s,t} is anticomplete to both S — s and 7" — ¢, implying that P[s, ¢] is a path
of Gs;. Since s and t are connected in G, the subroutine call B(a, t, s, d) outputs a uv-trail P;,

of G in O(n?) time. Hence, (a, t, s, d) is indeed a trail marker of B.

As amatter of fact, P, is a shortest uv-trail of G due to || Ps ;|| = || P||. Since the preprocessing and
postprocessing may ruin the shortestness of the reported uv-trail, we have an O(n®)-time algorithm
on an n-vertex general (respectively, uv-straight) graph G that either reports a general (respectively,

shortest) uv-trail of G or ensures that G is uv-trailless.
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4.3 Proof of Theorem 3

This section gives a self-contained proof of Theorem 3. The product of m x m Boolean matrices A
and B is the m x m Boolean matrix C' such that C'(i, k) = true if and only if A(¢,j) = B(j, k) =
true holds for an index j. The following lemma implies and improves upon Lemma 4.1, which

takes O(n?) time to obtain a uv-trail of G from a uv-trail of H.

Lemma 4.5. For any vertices u and v of an n-vertex connected graph G, it takes O(n*) time to
obtain (1) a uv-trail of G or (2) a uwv-straight graph H with V(H) C V (G) such that (a) a uv-trail

of G can be obtained from a uv-trail of H in O(n?) time and (b) if H is uv-trailless, then so is G.

Proof. We adopt the proof of Berger et al. [7, Lemma 2.2] with slight simplification and improve-
ment. It takes O(n?) time to obtain the maximal set I C V(@) such that G[F] is uv-straight.
If F = V(G), then the lemma is proved by returning H = G. The rest of the proof assumes
F C V(G). Tt takes O(n*) time to determine whether some connected component X of G — F
admits nonadjacent vertices x and y of Ng(K') C F with h(x) < h(y). Ifthere is such a (K, z,y),
then a shortest uv-path of G[P, U K U P,] for any shortest uz-path P, and yv-path P, of G is
a uv-trail of G obtainable in O(n?) time, proving the lemma. Otherwise, let H be the union of
the uv-straight G[F'] and the O(n*)-time obtainable graph H' with V/(H’') = F' (via contracting
each connected component of G — F' into a single vertex and then squaring the adjacency matrix)
such that distinct vertices x and y are adjacent in H’ if and only if {z, y} C Ng(K) holds for a con-
nected component K of G — F'. Observe that each edge xy of H' with h(z) # h(y) is also an edge
of G[F). By |h(x) — h(y)| < 1 for all edges xy of H’', H remains uv-straight and dy (u, ) = h(z)
holds for each # € F. To see Condition (a), for any given uv-trail Q of H, let P be an O(n?)-
time obtainable non-monotone uwv-path of G obtained from () by replacing each edge xy of () not
in G[F] with a shortest zy-path P,, of G — (F'\ {z,y}). If P were not induced, then there is

an edge 22’ of G[P] not in P with z € V(P,,) and 2’ € V(P,,,) for distinct edges zy and z'y’
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of ) that are not in G[F|. Thus, {z,y,2’,3'} C Ng(K) holds for some connected component K
of G — F'. By definition of H', H[{x,y, 2’ y'}] is complete, contradicting that ) is an induced path
of H. Thus, P is a uv-trail of GG, proving Condition (a). As for Condition (b), let P be a uv-trail
of G. For any distinct vertices = and y of P such that Pz, y] is a maximal subpath of P contained
by G[{z,y} U K] for some connected component K of G — F', P|x,y] is an induced zy-path of
G[{z,y} UK]. The path @ obtained from P by replacing each such P[z, y] by the edge zy of H' is
an induced uv-path of H. If () were a shortest uv-path of H, then |h(x) — h(y)| = 1 holds for each
edge xy of (), implying that each edge zy of () is an edge of P, contradicting that P is a uv-trail
of G. O

The bottleneck of our algorithm for Theorem 3 comes from the following lemma, which implies

and improves upon Lemma 4.2 that takes O(n®) time.

Lemma 4.6. It takes O(nzw) time to compute a data structure from which the following statements

hold for any quadruple (a,b, c,d) of V(G) for an n-vertex graph G:

1. It takes O(1) time to determine whether (a,b, ¢, d) is winged in G.
2. If (a,b, c,d) is winged in G, then it takes O(n) time to obtain a pair of wings for (a,b,c,d) in
G.

Proof. The lemma holds clearly for the quadruples (a, b, c,d) of V(G) with h(c) < h(a) + 1.
The rest of the proof handles those with h(a) + 2 < h(c). A pair of wings for such an (a, b, ¢, d)
must be anticomplete in G. It takes O(n?) time to obtain the n? x n? Boolean matrix A such
that A((a,b), (¢,d)) = true if and only if (i) h(a) = h(b) < h(c) = h(d) < h(a) + 1 and (ii)
G admits a pair of anticomplete wings for (a, b, ¢,d). The transitive closure C' = A™ of A can be
obtained in O(n?” - logn) time via obtaining A?" in the i-th iteration. That is, for each (a, b, ¢, d),
we have C((a,b), (¢,d)) = true if and only if (i) h(a) = h(b) < h(c) = h(d) and (ii) G admits a

pair of anticomplete wings for (a,b,c,d) in G. Statement 1 is proved. Statement 2 is immediate
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from the O(n?¥)-time obtainable n? x n? witness matrix IV for C' by, e. g., Galil and Margalit [48]:
if C((a,b),(c,d)) = true and h(a) + 2 < h(c), then W((a,b), (c,d)) is a vertex pair (z,y) with
h(a) < h(z) < h(c) and C((a,b), (z,y)) = C((z,y), (c,d)) = true. B

The following dynamic data structure for a graph supports efficient edge updates and connectivity

queries.

Lemma 4.7 (Holm, de Lichtenberg, and Thorup [56]). There is a data structure for an initially
empty n-vertex graph that supports each edge insertion and edge deletion in amortized O(log® n)

time and answers whether two vertices are connected in O(logn/loglogn) time.

We are ready to prove Theorem 3.

Our O(n*75)-time algorithm Apply Lemma4.5 in O(n*) time to either report a uv-trail of G as
in Lemma 4.5(1) or make GG a uv-straight graph satisfying Conditions (a) and (b) of Lemma 4.5(2)
with respect to the original G. If no wv-trail is reported in the previous step, then apply Lemma 4.6
in O(n?¥) time to obtain the data structure D for the winged quadruples of V (G) in G. It remains
to show an O(n? log” n)-time degree-two uv-trailblazer for the uv-straight graph G based on the

precomputed D which already spends O(n*™)

time. We proceed in two phases. Phase 1 shows
that we already have an O(n?)-time degree-two uv-trailblazer for G. Phase 2 then reduces the time

to O(n?log® n) via Lemma 4.7.

Phase 1 Let B; be the O(n?)-time subroutine, taking a pair (a, b) of V(G) as the only argument,
that runs the following O(n?)-time procedure for each vertex ¢ of G: Determine from D in O(n)
time whether G admits a winged quadruple (a, b, ¢, d.) of V(G) for some d.. If not, then exit.
Otherwise, obtain from D in O(n) time a pair (W;, W5) of wings for an arbitrary winged (a, b, ¢, d..).
Since G is uv-straight, it takes O(n?) time to obtain a monotone uc-path S, of G containing W; and

a monotone bv-path T, of G containing W,. Obtain in O(n?) time the subgraph G.. of G induced
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Figure 4.5: An illustration for the proof that B, is a uv-trailblazer of degree two. The red path
denotes a shortest uv-trail P of the wv-straight graph . The blue and green paths denote a
monotone uc-path S, and a monotone tv-path 7. of GG containing a precomputed pair of wings
for (a,t,c,d.) that need not coincide with P except at a and ¢.

by
({z € V(G) : h(b) < h(z) < h(c)} \ (Na[Se — ]\ {c})) UV(T0).

If the vertices ¢ and b are not connected in GG, then exit. Otherwise, report the O(n2)-time obtain-

able concatenation P, of the uc-path S, of GG and a shortest cv-path of Gz...

By definition of S., T., and G, the uv-path P, of G reported by Bj(a,b) for any c is induced in
G. Since the height of each neighbor of ¢ in G. is at most h(c), P. is not monotone. Thus, P, is
a uv-trail of G. Let P be an arbitrary unknown shortest uv-trail of G with twist pair (s,t). Let a
(respectively, €) be the vertex of the monotone Plu, s] (respectively, P[t,v]) with h(a) = h(t)
(respectively, h(e) = h(s)). See Figure 4.5 for an illustration. To ensure that B; is an O(n?)-time
uv-trailblazer of degree 2 for G, the rest of the phase proves that (a, ) is a trail marker for B; by

showing that the iteration with ¢ = s reports a uv-trail P; of G.

Let a* be the neighbor of a in the monotone Plu, al, implying h(a*) = h(t) — 1. Let e* be the

neighbor of e in the monotone Ple, v], implying h(e*) = h(s) + 1. Since P[a*, s] and P[t, e*] form
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a pair of wings for (a, t, s, €) in G, there is a d; such that (a, t, s, d,) is winged in G. Let (W7, W)
be the pair of wings for (a,t, s,d;) in G obtained from D. The monotone us-path S of G con-
taining W is a sidetrack for P, since the monotone tv-path T of GG containing W, satisfies Con-
ditions T1 and T2 for S;. By Lemma 4.3, each vertex = of P[s, t] satisfies h(t) < h(z) < h(s).
By Lemma 4.4, Sy — s and P[s, t] — s are anticomplete in G, implying that P[s, ¢] is a path of G.
Since s and ¢ are connected in G, the subroutine call B;(a,t) outputs a uv-trail P; of GG in the
iteration with ¢ = s. Hence, (a,t) is indeed a trail marker of B. One can verify that P is also
a shortest uv-trail of the uv-straight G, although d, need not be e. Thus, we have an O(n®)-time
algorithm on an n-vertex general (respectively, uv-straight) graph G that either reports a general

(respectively, shortest) uv-trail of G or ensures that GG is uv-trailless.

Phase 2 Since many prefixes of a long sidetrack for a shortest uv-trail P of G remain sidetracks
for P, an edge can be deleted and then inserted back €2(n) times in Phase 1. Phase 2 avoids the
redundancy by processing the sidetracks in the decreasing order of their lengths. Let B, be the
following subroutine that takes a pair (a, b) of V(G) as the only argument. Obtain in overall O(n?)
time from D each set C; with 0 < ¢ < h(v) that consists of the vertices ¢ of G with h(c) = i
such that G admits a winged quadruple (a, b, ¢, d..) for some vertex d.. Let C be the union of all C;
with 0 <4 < h(v). Obtain in overall O(n?) time from D for each vertex ¢ € C' (i) a monotone uc-

path S, of G containing a and (ii) a monotone bv-path 7, with

darsoor (u,v) > [1Sell + [T

Obtain the subgraph H of G induced by the vertices with heights at least h(a) in O(n?log®n)
time by the dynamic data structure of Lemma 4.7. Iteratively perform the following steps in the

decreasing order of the indices ¢ with h(a) < i < h(v):

1. Delete from H the incident edges of Ng[S. — ¢ \ {c¢} in G forall ¢ € C,.
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2. Insert to H the incident edges of C; in G.

3. Delete from H all edges zy of G with h(z) =i and h(y) =i + 1.

4. If b is not connected to any ¢ € C; in H, then proceed to the next iteration. Otherwise, let c be
an arbitrary vertex of C; that is connected to b in H. Exit the loop and report the O(n?)-time

obtainable concatenation P, of S, and a shortest cv-path of G[H U T].

Since S. — cand T, — b are anticomplete in GG and the height of each neighbor of c in H is at most

h(c), any arbitrary reported uv-path P. of G is a uv-trail of G.

Throughout all iterations, the incident edges of each vertex of G is deleted O(1) times by Step 1,
each edge of G is updated O(1) times by Steps 2 and 3, and each vertex ¢ € C'is queried O(1)

times by Step 4. Thus, each subroutine call By(a, b) runs in O(n? log® n) time.

Let P be an arbitrary shortest uv-trail of G with twist pair (s, t). As in Phase 1, let a (respectively, €)
be the vertex of the monotone Pu, s| (respectively, P[t, v]) with h(a) = h(t) (respectively, h(e) =
h(s)). The rest of the phase proves that (a, t) is a trail marker for B, by showing that an iteration
with ¢ > h(s) in the loop of the subroutine call Bs(a, t) reports a uv-trail P. of G. See Figures 4.6

and 4.7 for an illustration.

If an iteration of By (a, t) with i > h(s) + 1 reports a uv-trail of G (that need not be shortest), then
we are done. Otherwise, we show that the iteration with ¢ = h(s) has to report a uv-trail of G. For
each ¢ € C with h(c) > i, let s. be the unknown vertex of S, with h(s.) = i. S.[u, s.] remains
a sidetrack for P, since 7, still satisfies Conditions T1 and T2 for S.|u, s.]. Thus, s. € C;. By
Lemma 4.4, S.[u, s.] — s. and P|s, t| — s are anticomplete in G even if S.[u, s.| need not be S, .
As aresult, P[s,t] — s is a path of the H at the completion of Step 1 in the i-th iteration. s € C;
and Lemma 4.3, P[s,t] is a path of the graph H at the completion of Step 3 in the i-th iteration.
Therefore, s is a ¢ € C; that is connected to ¢ in H. Step 4 in the ¢-th iteration has to output a
(shortest) uv-trail P, of G for some ¢ € C; that need not be s. Thus, we have an O(n*)-time

algorithm that either obtains a uv-trail of G or ensures that GG is uv-trailless. A reported uv-trail
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Figure 4.6: An illustration for the proof that B, is a uwv-trailblazer of degree two. The red path
denotes a shortest uv-trail P of the wv-straight graph . The blue and green paths denote a
monotone uc-path S, and a monotone tv-path 7. of G containing a precomputed pair of wings
for (a,t,c,d.) that need not coincide with P except at a and t. S.[u, s.] remains a sidetrack for P.

of G by this O(n*™)-time algorithm need not be a shortest uv-trail of G, since we cannot afford
to spend O(n?) time, as in Phase 1, for each ¢ € C' that is connected to ¢ in the H at the h(c)-th

iteration to obtain a shortest cv-path of G[H U T].
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C1

o0 0 0 0 0 ¢

a S
o000 000 ¢

(e)

Figure 4.7: An illustration for running Bs(a,t) on Figure 4.6. (a) The initial H. (b) The H after
Step 1. (c) The H after Step 2. (d) The H after Step 3 in which ¢ and ¢ are connected. (¢) The H
after Step 4. The red path is a non-shortest uv-trail of G reported by Bz (a,t).
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Chapter 5

Conclusion

Algorithms for induced subgraphs are important and challenging. We give improved algorithms
for (1) recognizing perfect graphs via detecting odd holes, (2) finding a shortest odd hole, and (3)
finding a trail between two given vertices. It is of interest to further reduce the required time of

these three problems.

We achieve the improvement of algorithm for (1) by showing that guessing at most 5 vertices
suffices for the bottleneck subroutine of the odd-hole detection algorithm of [65] to pin down an

odd hole of GG.

As for the algorithm for (2), we achieve the improvement by a new observation described by Claim 1
in the proof of Lemma 3.1 that guessing 11 vertices suffices for the bottleneck subroutine of the
shortest-odd-hole detection algorithm of [23] to pin down a shortest odd hole of G. It is of interest
to know whether some vertices of a marker of 7; for a tripod 7" of G can be removed from the list

of guessed vertices so that a further improved algorithm might be feasible.

The key to our improved algorithm for (3) is the observation regarding an arbitrary shortest uwv-trail

of a uv-straight graph G described by Lemma 4.4. The inequality of Lemma 4.4 is stronger than

48

doi:10.6342/NTU202203481



the condition that S — c and P[s, t| — s are anticomplete in G. As a matter of fact, the latter suffices
for our uv-trailblazers in §4.2 and §4.3. Thus, a further improved wv-trailblazer might be possible
if the wings for a winged quadruple can be obtained more efficiently. As mentioned in Phase 1
of §4.3, a shortest uv-trail, if any, of a uv-straight G can be obtained by our B;-based trailblazing
algorithm in O(n®) time. Detecting a uv-trail with length at least 2dg(u,v) is NP-complete [7,
Theorem 1.6]. It would be of interest to see if a shortest wv-trail or a uv-trail having length at least
de(u,v)+k for apositive k = O(1) in a general G can be obtained in polynomial time. It is also of
interest to see whether the one-to-all (respectively, all-pairs) version of the problem can be solved

5.75)

in time much lower than O(n®") (respectively, O(n%)).
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