
doi:10.6342/NTU202203481

國立臺灣大學電機資訊學院資訊工程學系

碩士論文

Department of Computer Science and Informational Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

三個導出子圖演算法——完美圖、最短奇洞、非最短路徑

Improved Algorithms for Recognizing Perfect Graphs and
Finding Shortest Odd Holes and Non-shortest Induced Paths

邱允中

Yung-Chung Chiu

指導教授：呂學一博士

Advisor: Hsueh-I Lu, Ph.D.

中華民國 111年 7月

July 2022

doi:10.6342/NTU202203481

Acknowledgement

首先非常非常非常感謝指導教授呂學一老師用心的指導。兩年前我完全是個演算法領

域的門外漢，也絕對不是天賦最高的學生，但老師總是非常快速又耐心的回答我的每個

非常基本的問題，也不吝惜花費大量的時間與我討論，有時直到深夜。印象深刻的是去

年八月研究本篇論文第三個結果時，卡關在其中一個地方，不停的鬼打牆。老師就這樣

用 messenger陪我討論了一個小時，我非常感謝！在兩年前我加入 406實驗室時，希望能
夠磨練出自己未來需要的能力，而這兩年間，很感謝老師嚴格但實在的要求，我想我得到

的比我曾經想像的更多：研究上大膽、進攻的假設、TOP-DOWN的研究思維、如何給出
一個有趣的 talk…我深信這些能力在研究之外、在我未來的人生中也將會帶給我很大的幫
助。因此，對於能接受老師的指導，我感到非常幸運，再次感謝老師！也感謝開元學長在

我對研究有所疑問時，提供我一些過來人的建議，獲益匪淺！

很感謝我的家人，我想能在一個可以專注於研究而不必為生活煩心的環境絕不該被視

為理所當然。特別是疫情期間，長時間待在家中，在生活起居上受到父母深深的守護。也

很感謝媽媽在去年夏天疫情期間，我處於低潮的時候，要我每天陪伴去公園散步，多了母

子相處時間的同時，也舒緩了我的情緒，更常常帶給我研究上的靈感。

最後我想感謝我擁有的信仰，研究之路常常是孤獨、辛苦、更是充滿不確定性的，若

內心不存在真實的信念，就不會有勇氣去超越自身的軟弱、怯懦、怠惰、逃避與絕望。因

為有信仰，我才能夠確信自己正在往正確的方向前進，也能夠時時刻刻提醒自己讀研究所

的原因，以及究竟想在這兩年內留下什麼。每當研究一籌莫展的時候，這樣的提醒總是能

讓我又有力量走下去。也因為有這樣的信仰，我認識了一群能夠互相鼓勵的好夥伴！感謝

台大大學會、內湖區還有和光弦樂團的大家。這兩年與大家的共戰絕對是我進行研究很大

的動力。謝謝群越低潮時的電話以及談心。也謝謝搭檔圓融在我最近半年忙碌口試時互相

cover大學部。特別想感謝思筠在我對研究感到徬徨時和我說「你一定可以的」，我深受鼓
勵！

回想起這兩年充實的奮戰，我感到非常的幸運，能夠受到如此多人事物的守護，謝謝！

i

doi:10.6342/NTU202203481

摘要

判斷一張圖中是否包含某種導出子圖，在圖論以及演算法領域的許多重要成果都扮

演了重要角色。其中一個具有高度代表性的例子是「完美圖的辨識問題」，也就是判定一

張圖是否符合「每個導出子圖中，最大團的頂點數都等於該導出子圖的著色數。」2006年
Chudnovsky、Robertson、Seymour以及 Thomas證明了「強完美圖定理」這個獲得 2009年
Fulkerson Prize殊榮的成果，解決 Berge在 1960年留下的猜想，確認「一張圖是完美圖若
且唯若它和它的補圖都不包含任何奇洞」，其中一張圖的奇洞是該圖的一個長度至少五且

為奇數的導出環。根據這個定理，Chudnovsky、Cornuéjols、Liu、Seymour以及 Vušković
提出了一個時間複雜度為 O(n9)的演算法來辨認完美圖，其中 n表示圖的節點數。在此篇

論文中，我們改進了三個偵測/尋找一張有 n個節點的圖 G中的導出子圖的演算法。分別

說明如下：

1. 是否存在一個多項式時間演算法來偵測「G是否包含奇洞」在長達數十年期間一直是無

人能解的懸案。Chudnovsky、Scott、Seymour以及 Spirkl終於在 Journal of the ACM 2020
年提出了第一個多項式時間偵測 G中的奇洞的演算法，時間複雜度為 O(n9)。Lai、Lu
以及 Thorup之後在 ACM STOC 2020改進到 O(n8)，我們則進一步改進到 O(n7)，從而

也把辨識完美圖的的時間複雜度改進到 O(n7)。

2. Chudnovsky、Scott以及 Seymour在 ACM Transactions on Algorithms 2021年提出了第一
個多項式時間尋找 G 中最短奇洞的演算法，時間複雜度為 O(n14)。我們將其改進到

O(n13)。

3. Berger、Seymour以及 Spirkl在 Discrete Mathematics 2021年提出了第一個尋找 G中給

定兩點之間非最短導出路徑的演算法，時間複雜度為 O(n18)。我們將其大幅度改進

到 O(n4.75)。這第三個成果已經發表在 Proceedings of the 39th International Symposium on
Theoretical Aspects of Computer Science (STACS 2022)。

關鍵字：完美圖、導出子圖、奇洞、導出路徑、非最短路徑、動態資料結構

ii

doi:10.6342/NTU202203481

Abstract

An induced subgraph of an n-vertex graph G is a graph that can be obtained by deleting a set

of vertices together with its incident edges from G. A hole of G is an induced cycle of G with

length at least four. A hole is odd (respectively, even) if its number of edges is odd (respectively,

even). Various classes of induced subgraphs are involved in the deepest results of graph theory and

graph algorithms. A prominent example concerns the perfection of G that the chromatic number

of each induced subgraph H of G equals the clique number of H . The seminal Strong Perfect

Graph Theorem proved in 2006 by Chudnovsky, Robertson, Seymour, and Thomas, conjectured

by Berge in 1960, confirms that the perfection ofG can be determined by detecting odd holes inG

and its complement. Based on the theorem, Chudnovsky, Cornuéjols, Liu, Seymour, and Vušković

show in 2005 an O(n9)-time algorithm for recognizing perfect graphs, which can be implemented

to run in O(n6+ω) time for the exponent ω < 2.373 of square-matrix multiplication. We show the

following improved algorithms for detecting or finding induced subgraphs in G.

1. The tractability of detecting odd holes in G was open for decades until the major breakthrough

of Chudnovsky, Scott, Seymour, and Spirkl in 2020. Their O(n9)-time algorithm is later im-

plemented by Lai, Lu, and Thorup to run in O(n8) time, leading to the best formerly known

algorithm for recognizing perfect graphs. Our first result is anO(n7)-time algorithm for detect-

ing odd holes, immediately implying a state-of-the-art O(n7)-time algorithm for recognizing

perfect graphs. Finding an odd hole based on Lai et al.’s O(n8)-time algorithm for detecting

odd holes takes O(n9) time.

iii

doi:10.6342/NTU202203481

2. Chudnovsky, Scott, and Seymour extend in 2021 the O(n9)-time algorithms for detecting odd

holes (2020) and recognizing perfect graphs (2005) into the first polynomial-time algorithm for

obtaining a shortest odd hole in G, which runs in O(n14) time. Our second result is an O(n13)-

time algorithm for finding a shortest odd hole in G.

3. For vertices u and v of an n-vertex graph G, a uv-trail of G is an induced uv-path of G that

is not a shortest uv-path of G. In 2021, Berger, Seymour, and Spirkl gave the previously only

known polynomial-time algorithm, running in O(n18) time, to find a uv-trail. We reduce the

complexity to Õ(n2ω) time, where the Õ notation hides poly-logarithmic factors, leading to a

largely improved O(n4.75)-time algorithm. This third result has appeared in Proceedings of the

39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022).

Keywords: Perfect graph, Induced subgraph, Odd hole, Induced path, Non-shortest path, Dynamic
data structure.

iv

doi:10.6342/NTU202203481

簡介

圖論與演算法 一張圖 G都藉由他的邊集 E(G)所描述其節點集 V (G)成員之間的相鄰關

係。「圖論」(graph theory)最早起源於尤拉 (Euler)在 1736年為解決七橋問題而寫的一篇文

章 (可參考例如 [10])，在往後將近三百年的時間裡，學者們不斷探索各種圖類別的各樣性

質。這學問在資工眾多領域中一直扮演極為關鍵的基礎角色，不管是理論上還是應用的離

散組合問題，往往可以化約成圖論的問題來處理。其中演算法的研究則與圖論有著最密切

的互動。因此圖論演算法在資訊科學的理論研究中歷久不衰。

圖運算 「透過一些運算由一張圖得到另一張圖」的概念淺顯易懂，卻蘊涵圖論最深

奧的智慧。例如圖 H 是圖 G的「子圖」(subgraph)是指 G可以透過拔點 (vertex deletion)

與拔邊 (edge deletion) 的運算得到 H , 也就是同時滿足 V (H) ⊆ V (G) 與 E(H) ⊆ E(G).

圖 H 是圖 G的「次圖」(minor)是指 G可以透過拔點、拔邊以及縮邊 (edge contraction)

的運算得到 H . 學界公認最深奧的圖論成果之一，當屬 Robertson 與 Seymour 兩位圖

論大師，歷經二十多年，用 22篇 Journal of Combinatorial Theory, Series B (JCTB)加上 1

篇 Journal of Algorithms, ，以「連載」的方式所證明完成的「次圖定理」(Graph Minor

Theorem) [75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97]，

解決 1970年代Wagner所留下的懸案。這個被 2021年數學界最高榮譽 Abel Prize得主的

Lovász推崇為 “a monumental project in graph theory” [69]的偉大成就，正是以是否存在「次

圖」的方式來刻劃非常重要的圖類別。

v

doi:10.6342/NTU202203481

導出子圖 H 是 G的「導出子圖」(induced subgraph)是指 G能夠只透過拔點這個運算獲

得 H ,所以導出子圖是一種特別的次圖。導出子圖這個概念與圖論中的諸多重要議題相

關，其中最著名的例子是「完美圖」(perfect graph)，也就是該圖中所有導出子圖都符合

著色數 (chromatic number)等於最大團的頂點數 (clique number)的圖類別。完美圖的概念

在 1960年代由 Berge提出 [4, 5]，他當時就猜測完美圖與導出環 (induced cycle)有著非常

直接的關聯：這個被稱為 Berge conjecture的猜測就是說「G是完美圖若且為 G與補圖 Ḡ

中都沒有奇數長度的『洞』(hole,也就是長度至少為 5的導出環」。這個猜測懸宕將近半

個世紀才被 Chudnovsky, Robertson, Seymour與 Thomas四位圖論巨擘在數學界最頂尖的期

刊 Annals of Mathematics以一百七十頁的篇幅證出。這個猜測也被改稱為「強完美圖定理」

(Strong Perfect Graph Theorem) [20]。這四位作者因此獲得 2009年 Fulkerson Prize的殊榮，

其中最年輕的 Chudnovsky，是 Seymour的得意門生，也因為這個傑出成就，在 2012年獲

得俗稱「天才獎」(Genius Grant)的MacArthur Award的肯定。根據強完美圖定理，第一個

在多項式時間內判別 n個節點的圖是否為完美圖的演算法在 2003年被提出，時間複雜度

為 O(n18) [39]，不久被改進到 O(n9) [17]。本篇論文的三個結果，皆是圍繞並改進圖論大

師 Seymour的演算法作品。Seymour曾長期同時擔任圖論最頂尖的三個期刊 (1) Journal of

Combinatorial, Series B (JCTB), (2) Journal of Graph Theory,與 (3) Combinatorica的主編. 他

光是發表在 JCTB的論文就已經有 114篇。

在給定的圖中偵測符合某些透過各種圖運算所得獲得的圖類別，是所謂的圖偵測 (graph

detection)問題，既然子圖與次圖是圖論中最基礎卻深奧的概念，偵測子圖與次圖的自

然是演算法領域中極其重要的研究主題。而其中導出子圖的偵測演算法，跟相對應

的一般子圖的偵測演算法比起來難度往往高出非常多。例如剛出爐的 Dalirrooyfard 和

Vassilevska Williams在 IEEE FOCS 2022發表的最新論文 [42]，標題就叫做 “Induced cycles

and paths are harder than you think”，她們證明要偵測圖中是否存在一個有 k個節點的導出

路徑或導出環的難度至少和偵測 3k/4− O(1)個節點的團一樣難。接下來我們也進一步以

三個最基本的圖類別：路徑、樹以及環來舉例，比較一般版與導出版的難度差別:

vi

doi:10.6342/NTU202203481

路徑 比如要判斷 n個節點的圖上三個節點 u, v, w之間是否存在一條路徑 (path)相接，是

不難的演算法問題 [62]，但若額外要求連接三個節點的必須是導出路徑 (induced path)，難

度立刻升高到 NP完備的 three-in-a-path問題 [54]。而要判斷兩個節點 u與 v之間是否存在

一條非最短路徑也不難。一條第 k短的路徑可以在近線性時間內被找到 [44]。但若要求此

非最短路徑必須是導出路徑，目前文獻中最快的方法也是 Seymour的作品，複雜度高達

O(n18) [7]，而此篇論文的第三個結果就把時間大幅度地改進到 O(log2 n)次 n2階方陣所需

的時間，例如引用剛剛發表在 SODA 2021的矩陣乘法演算法 [2]就能夠在 O(n4.75)時間內

解決，改進的幅度超過 Θ(n13)。此結果也已經發表於 STACS 2022 [16]。

樹 要判斷 n個節點的圖上是否存在一棵樹連結一個任意的節點集合中的所有節點，我們

知道這其實就是判定這些節點是否在同一個連通元件 (connected component)中，可以很輕

易的被找出來。但是若要求此樹必須是導出樹，則立刻變成 NP完備的問題 [52]。

環 要判斷 n個節點的圖上是否存在一個環通過兩個節點 u與 v 能夠在 O(n2)時間內解

掉 [62]。但若要求此環必須為洞，那難度就立刻變為 NP完備的 two-in-a-cycle問題 [8]。

而如果不要求通過任何節點，只判斷圖上是否存在一個環或洞，那兩者都可以在 O(n2)

時間內被找出。但若更進一步要求這些環或洞長度的奇偶性，那狀況就不同了。要判斷

圖上是否存在一個偶環 (even cycle)，經過學者們不斷地競爭，早在 1997 (SIAM J. Discrete

Math)就已經有 O(n2)時間的演算法 [105]，而且在同樣時間內還能找出最短的偶環。但是

判斷圖上是否有偶洞 (even hole)也就是導出偶環卻是直到 1997年才在 IEEE FOCS出現第

一個多項式時間的演算法，複雜度高達 O(n40) [29]。Chudnovsky, Kawarabayashi, Seymour

三人在 2005年 (Journal of Graph Theory) [18]將複雜度壓低到 O(n31)的同時，也明列找出

最短的偶洞是個 open problem。同年 ACM Transactions on Algorithms創刊號 Johnson [60]

在他那著名的 NP-complete column中也把尋找最短偶洞的 open problem列在當中，直到

Cheong and Lu發表在 Journal of Graph Theory 2022年的論文 [15]才在 O(n31)時間內解決

這個問題。至於偶洞偵測的問題，da Silva等人 (JCTB 2013 [40])壓到 O(n19)，然後 Chang

vii

doi:10.6342/NTU202203481

and Lu (JCTB 2015 [13])將複雜度壓到 O(n11)。Lai, Lu, and Thorup (STOC 2020 [65])則更

壓低到目前最快的 O(n9)。更有趣的是奇環 (odd cycle)的偵測，也是數十年前就有快速

演算法，但奇洞 (odd hole)的偵測卻懸案到 2020才被 Chudnovsky, Scott, Seymour, Spirkl四

人 (JACM 2020 [24])花 O(n9)時間解掉。同年 Lai, Lu, and Thorup的 STOC 2020論文 [65]

也立即接著將這個問題的複雜度壓低到 O(n8)。而本篇論文的第一個結果則更進一步的

把複雜度壓低到 O(n7)。根據強完美圖定理，這同時也把完美圖判別的時間複雜度壓低

到O(n7)。找出最短的奇洞則是 2021年才由 Chudnovsky, Scott, Seymour (ACM Transactions

on Algorithms 2021 [23])花 O(n14)時間解決。本篇論文的第二個結果把這個時間壓低到

O(n13)。

viii

doi:10.6342/NTU202203481

Contents

Acknowledgement i

摘要 ii

Abstract iii

中文簡介 v

Contents ix

1 Introduction 1

2 Recognizing Perfect Graphs via Detecting Odd Holes 7

2.1 Technical Overview . 8

2.2 Proving Theorem 1 . 10

2.3 Proving Lemma 2.2 . 12

2.4 Proving Lemma 2.3 . 12

2.4.1 Proving Lemma 2.5 . 15

2.4.2 Proving Lemma 2.6 . 15

2.5 Proving Lemma 2.4 . 16

2.5.1 Proving Lemma 2.9 . 20

ix

doi:10.6342/NTU202203481

2.5.2 Proving Lemma 2.10 . 20

3 Finding a Shortest Odd Hole 23

3.1 Technical Overview . 23

3.2 Proving Theorem 2 . 24

3.3 Proving Lemma 3.1 . 24

4 Finding a Non-shortest Induced Path 31

4.1 Technical Overview . 31

4.2 A simpler algorithm . 33

4.3 Proof of Theorem 3 . 40

5 Conclusion 48

References 50

x

doi:10.6342/NTU202203481

Chapter 1

Introduction

Induced subgraphs are important Let G be an n-vertex undirected and unweighted graph. Let

V (G) consist of the vertices of G. For any graph H , let G[H] be the subgraph of G induced by

V (H). A subgraph H of G is induced if G[H] = H . That is, an induced subgraph of G is a graph

that can be obtained fromG by deleting a set of vertices in tandemwith its incident edges. To detect

an (induced) graph H in G is to determine whether H is isomorphic to an (induced) subgraph of

G. To find an (induced) graph H in G is to report an (induced) subgraph of G that is isomorphic

to H , if there is one. Various classes of induced subgraphs are involved in the deepest results of

graph theory and graph algorithms. One of the most prominent examples concerns the perfection

of G that the chromatic number of each induced subgraph H of G equals the clique number of H .

A graph is odd (respectively, even) if it has an odd (respectively, even) number of edges. A hole of

G is an induced cycle of G having at least four edges. The seminal Strong Perfect Graph Theorem

of Chudnovsky, Robertson, Seymour, and Thomas [20, 26], conjectured by Berge in 1960 [4, 5, 6],

confirms that the perfection of a graph G can be determined by detecting odd holes in G and its

complement.

Based on the theorem, the first known polynomial-time algorithms for recognizing perfect graphs

1

doi:10.6342/NTU202203481

take O(n18) [39] and O(n9) [17] time. The O(n9)-time version can be implemented to run in

O(n6+ω) time [65, §6.2] via efficient algorithms for the three-in-a-tree problem [25] that detects

induced subtrees ofG spanning three prespecified vertices, where ω < 2.373 [2, 38, 66, 103] is the

exponent of square-matrix multiplication.

Detecting induced subgraphs is challenging Detecting induced subgraphs, even the most basic

ones like paths, trees, and cycles, is usually more challenging than detecting their counterparts

that need not be induced [42]. For instance, detecting a path spanning three prespecified vertices is

tractable (via, e. g., [62, 87]), but the three-in-a-path problem that detects an induced path spanning

three prespecified vertices is NP-hard (see, e. g., [54, 65]).

Detecting trees spanning a given set of vertices is easy via the connected components, but detecting

induced trees spanning a set of prespecified vertices is NP-hard [52]. The three-in-a-tree problem

is shown to be solvable first in O(n4) time [25] and then in Õ(n2) time [65] via involved structural

theorems and dynamic data structures. The tractability of the corresponding k-in-a-tree problem

for any fixed k ≥ 4 is still unknown, although the problem can be solved in O(n4) time on a graph

of girth at least k [67].

Detecting odd holes Cycle detection has a similar situation. Detecting cycles of length three,

which have to be induced, is the classical triangle detection problem that can be solved efficiently

by matrix multiplications (see, e. g., [104]). It is tractable to detect cycles of length at least four

spanning two prespecified vertices (via, e. g., [62, 87]), but the two-in-a-cycle problem that detects

holes spanning two prespecified vertices is NP-hard (and so are the corresponding one-in-an-even-

cycle and one-in-an-odd-cycle problems) [8, 9]. See, e. g., [73, §3.1] for graph classes on which

the two-in-a-cycle problem is tractable.

Detecting cycles without the requirement of spanning prespecified vertices is straightforward. Even

and odd cycles are also long known to be efficiently detectable (see, e. g., [3, 41, 105]). It takes

2

doi:10.6342/NTU202203481

an O(n2)-time depth-first search to detect odd cycles even if the graph is directed (see, e. g., [11,

Table 1]). While detecting holes (i. e., recognizing chordal graphs) is solvable in O(n2) time [99,

100, 101], detecting odd (respectively, even) holes is more difficult. There are early O(n3)-time

algorithms for detecting odd and even holes in planar graphs [57, 72], but the tractability of detect-

ing odd holes was open for decades (see, e. g., [27, 30, 33]) until the recent major breakthrough of

Chudnovsky, Scott, Seymour, and Spirkl [24]. Their O(n9)-time algorithm is later implemented

to run in O(n8) time [65], immediately implying the best formerly known algorithm for recogniz-

ing perfect graphs based on the Strong Perfect Graph Theorem. Finding an odd hole based on Lai

et al.’s O(n8)-time algorithm for detecting odd holes takes O(n9) time. We improve the time of

detecting and finding odd holes and recognizing perfect graphs to O(n7).

Theorem 1. For an n-vertexm-edge graph G,

(1) it takes O(mn5) time to either obtain an odd hole of G or ensure that G is odd-hole-free and,

hence,

(2) it takes O(n7) time to determine whether G is perfect.

Finding a shortest odd hole A shortest cycle of G can be found in Õ(nω) time (even if G is

directed) [58]. The time becomes O(n) when G is planar [12]. A shortest odd cycle of G can

be found in O(n3) time even if G is directed (see, e. g., [11, §1]). However, the previously only

known polynomial-time algorithm to find a shortest odd hole of G takes O(n14) time [23]. We

further reduce the required time to O(n13).

Theorem 2. For an n-vertexm-edge graph, it takes O(m3n7) time to either obtain a shortest odd

hole of G or ensure that G is odd-hole-free.

Detecting even holes As for detecting even holes, the first polynomial-time algorithm, running

in about O(n40) time, appeared in 1997 [29, 31, 32]. It takes a line of intensive efforts to bring

down the complexity to O(n31) [18], O(n19) [40], O(n11) [13], and finally O(n9) [65]. A shortest

3

doi:10.6342/NTU202203481

even cycle of G is long known to be computable in O(n2) time [105]. Very recently, a shortest

even cycle of a directed G is shown to be obtainable in Õ(n4+ω) time with high probability via an

algebraic approach [11]. On the other hand, the tractability of finding a shortest even hole, open for

16 years [18, 60], is resolved by a newly announced O(n31)-time algorithm [15]. See [22] (respec-

tively, [37] for detecting an odd (respectively, even) hole with a prespecified length lower bound.

See [1, 19] for the first polynomial-time algorithm for finding an independent set of maximum

weight in a graph having no hole of length at least five. See [43] for upper and lower bounds on

the complexity of detecting an O(1)-vertex induced subgraph.

Detecting non-shortest induced paths The two-in-a-path problem that detects induced paths

spanning two prespecified vertices is equivalent to determining whether the two vertices are con-

nected. Nonetheless, the corresponding two-in-an-odd-path and two-in-an-even-path problems

are NP-hard [8, 9], whose state-of-the-art algorithms on a planar graph take O(n7) time [61].

See [45, 47, 71] for how an induced even uv-path of G affects the perfection of G. See [64] for a

conjecture by Erdős on how an induced uv-path of G affects the connectivity between u and v in

G. Finding a longest uv-path in G that has to (respectively, need not) be induced is NP-hard [49,

GT23] (respectively, [49, ND29]). See [51, 59] for longest or long induced paths in special graphs.

The presence of long induced paths in G affects the tractability of coloring G [50]. See also [1]

for the first polynomial-time algorithm for finding a minimum feedback vertex set of a graph hav-

ing no induced path of length at least five. Detecting a non-shortest uv-path in G is easy. A k-th

shortest uv-path in G can also be found in near linear time [44]. See [55] for listing induced paths

and holes. See [14, §4] for the parameterized complexity of detecting an induced path with a pre-

specified length. Detecting an induced uv-path in a directed graph G is NP-complete (even if G is

planar) [46] andW [1]-complete [54]. However, the tractability of detecting a non-shortest induced

uv-path in an undirected graph G was unknown until the recent result of Berger, Seymour, and

Spirkl [7].

4

doi:10.6342/NTU202203481

Let ∥G∥ denote the number of edges in G. A path with end-vertices u and v is a uv-path. A uv-

path P of G is shortest if G admits no uv-path Q with ∥Q∥ < ∥P∥, so each shortest uv-path of G

is induced. We call an induced uv-path of G that is not a shortest uv-path of G a uv-trail of G.

A graph admitting no uv-trail is uv-trailless. Berger, Seymour, and Spirkl [7] gave the formerly

only known polynomial-time algorithm, running in O(n18) time, to either output a uv-trail of G

or ensure that G is uv-trailless. Their result leads to an O(n21)-time algorithm [36] to determine

whether all holes of G have the same length. We improve the time of finding a uv-trail to O(n4.75)

as summarized in the following theorem, where the Õ notation hides poly-logarithmic factors.

Theorem 3. For any two vertices u and v of an n-vertex graph G, it takes Õ(n2ω) time to either

obtain a uv-trail of G or ensure that G is uv-trailless.

Theorem 3 immediately reduces the O(n21) time of recognizing a graph with all holes the same

length to O(n7.75). Theorem 3 has appeared in STACS 2022 [16].

General approach Our three algorithms to find induced subgraphs ofG are based on the follow-

ing “guess-and-verify” approach, which has been extensively applied in the literature of algorithms

for induced subgraphs (see, e. g., [7, 17, 23, 24, 65]): For each choice of guessed ℓ vertices, run an

O(f(n))-time subroutine on the vertex ℓ-tuple. If a target induced subgraphH of G is found, then

reportH . Otherwise, if allO(nℓ) vertex ℓ-tuples are tested and nothing is reported, then report that

G does not contain any such induced subgraphs. This is an O(nℓ · f(n))-time algorithm to find an

induced subgraph of G.

1. Our proof of Theorem 1 includes an O(n7)-time bottleneck task that runs an O(n2)-time sub-

routine for each choice of 5 guessed vertices.

2. Our proof of Theorem 2 includes an O(n13)-time bottleneck task that runs an O(n2)-time sub-

routine for each choice of 11 guessed vertices.

3. Our proof of Theorem 3 includes an O(n4 logn)-time task that runs an O(n2 logn)-time sub-

5

doi:10.6342/NTU202203481

routine for each choice of 2 guessed vertices.

Preliminaries and roadmap For integers i and k, let [i, k] consist of the integers j with i ≤ j ≤ k

and let [k] = [1, k]. Let |S| denote the cardinality of a set S. Let R \ S for sets R and S consist

of the elements of R that are not in S. Let E(G) for a graph G consist of the edges of G and thus

|E(G)| = ∥G∥. A k-graph (e. g., 2-path or 5-hole) is a graph having k edges. A triangle is a

3-cycle. The length of a path or a cycle is its number of edges. Let H ⊆ G for a graph H denote

V (H) ⊆ V (G) and E(H) ⊆ E(G). Let G − V for a set V of vertices denote G[V (G) \ V]. Let

G− v for a vertex v be G−{v}. Let G \E for a set E of edges denote the graph obtained from G

by deleting its edges in E. For any u ∈ V (G), let NG(u) consist of the vertices v with uv ∈ E(G)

and NG[u] = {u} ∪ NG(u). A leaf of a graph G is a degree-1 vertex of G. Let int(P) consist of

the interior vertices of a path P . A UV -path for vertex sets U and V is a uv-path with u ∈ U and

v ∈ V . Let T [u, v] with {u, v} ⊆ V (T) for a tree T denote the simple uv-path of T . If vertices

u and v of G are connected in G, then let dG(u, v) denote the length of a shortest uv-path of G.

Otherwise, let dG(u, v) = ∞. For any graph H , let NG(H) consist of the vertices v /∈ V (H) with

uv ∈ E(G) for some u ∈ V (H) and NG[H] = V (H) ∪ NG(H). For any graphs D and H , let

NG(u,D) = NG(u) ∩ V (D) and NG(H,D) = NG(H) ∩ V (D). Graphs H and D are adjacent

(respectively, anticomplete) in G if NG(H,D) ̸= ∅ (respectively, NG[H] ∩ V (D) = ∅).

It is convenient to assume that the n-vertexm-edge graphG of Theorems 1, 2, and 3 are connected

for the rest of the thesis , which is organized as follows. Chapter 2 proves Theorem 1. Chapter 3

proves Theorem 2. Chapter 4 proves Theorem 3. Chapter 5 concludes the thesis.

6

doi:10.6342/NTU202203481

Chapter 2

Recognizing Perfect Graphs via Detecting

Odd Holes

Perfect graphs are important objects for graph theory. See [102] for a survey. Although the graph

coloring problem, maximum clique problem, and maximum independent set problem are all NP-

complete in general graphs, they are all tractable in perfect graphs [53] via the ellipsoid algo-

rithm [63]. In 1960, Berge first introduced the concept of perfect graphs. He also proposed two

conjectures:

(1) A graph G is perfect if and only if its complement Ḡ is perfect.

(2) A graph G is perfect if and only if both G and Ḡ are odd-hole-free.

Since (2) implies (1), (1) is called the (weak) perfect graph conjecture and (1) is called the strong

perfect graph conjecture. (1) was proved by Lovász in 1972 [68] and thus called the perfect graph

theorem. (2) had been extensively studied over 4 decades and remained open until proved by

Chudnovsky et al. in 2006. Thus, (2) is called the strong perfect graph theorem. We give a brief

overview of the history of proving the strong perfect graph theorem. Since a perfect graph is Berge

(see, e. g., [102]), it remains to prove the converse to show (2). Most of the work on (2) falls into

7

doi:10.6342/NTU202203481

3 groups:

1. Proving that (2) holds for graphs with some induced subgraphs excluded (see, e. g., [28]),

2. Investigating the structure of minimum imperfect graphs, which is graphs that is not perfect with

minimum vertices (see, e. g., [21]), and

3. Showing that every Berge graph either belongs to some ”basic” classes of perfect graphs or

admits some feature that an imperfect graph can not admit.

Chudnovsky et al.’s proof adopts the third idea. Their proof was mainly inspired by a conjec-

ture [35] of Conforti, Cornuéjols, and Vušković in 2004, which also adopts the third idea. Specif-

ically, Chudnovsky et al.’s proof idea is showing that every Berge graph either belongs to 5 basic

classes of perfect graphs or admits one of 4 kinds of decomposition into simpler subgraphs. These

kinds of decomposition are designed so that a minimum imperfect graph can not admit any kinds

of such decomposition. Similar ideas also appeared in other work on perfect graphs and inspired

Chudnovsky et al. (see, e. g., [34, 74]). The idea of “some graphs either fall into one of a few

basic classes or admit a decomposition＂is also used in the proof of other theorems in graph theory

(see, e. g., [28, 70, 98]). Based on the strong perfect graph threorem, the perfection of G can be

determined by detecting odd holes in G and its complement. We first give a technical overview of

the proof of Theorem 1 in §2.1 and prove it in the rest of the chapter.

2.1 Technical Overview

The first known polynomial-time algorithm of Chudnovsky, Scott, Seymour, and Spirkl [24] for

detecting odd holes consists of four subroutines:

(1) Detecting “jewels” in O(n6) time [17, 3.1].

(2) Detecting “pyramids” in O(n9) time [17, 2.2].

(3) Detecting “heavy-cleanable” shortest odd holes in a graph having no jewel and pyramid in

8

doi:10.6342/NTU202203481

O(n8) time [24, Theorem 2.4].

(4) Detecting odd holes in a graph having no jewel, pyramid, and heavy-cleanable shortest odd

hole in O(n9) time [24, Theorem 4.7].

Lai, Lu, and Thorup [65] improve the complexity toO(n8) by reducing the time of (2), (3), and (4)

to Õ(n5) [65, Theorem 1.3], O(n5) [65, Lemma 6.8(2)], and O(n8) [65, Proof of Theorem 1.4],

respectively. Finding odd holes based on Chudnovsky et al.’sO(n9)-time (respectively, Lai et al.’s

O(n8)-time) algorithm for detecting odd holes takesO(n10) (respectively,O(n9)) time. We further

improve the time of detecting and finding odd holes to O(n7) by the following arrangement.

• Extending the concept of a graph containing jewels (respectively, heavy-cleanable shortest holes

and pyramids) to that of a shallow (respectively, medium and deep) graph (defined in §2.2).

• Generalizing

– (1) to anO(n7)-time subroutine for finding a shortest odd hole in a shallow graph (Lemma 2.2),

– (2) to an Õ(n6)-time subroutine for finding an odd hole in a deep graph (Lemma 2.1), and

– (3) to an O(n5)-time subroutine for finding a shortest odd hole in a non-shallow, medium, and

non-deep graph (Lemma 2.3).

• Specializing

– (4) to anO(n7)-time subroutine for finding a shortest odd hole in a non-shallow, non-medium,

and non-deep graph (Lemma 2.4).

Chudnovsky et al.’sO(n9)-time subroutine for (4) has six procedures. The i-th procedures with i ∈

{1, 2} (respectively, i ∈ {3, . . . , 6}) enumerate allO(n6) six-tuples x = (x0, . . . , x5) (respectively,

O(n7) seven-tuples x = (x0, . . . , x6)) of vertices and spend O(n3) (respectively, O(n2)) time for

each x to examine whether there is an odd hole of the i-th type that contains all vertices of x other

than x0. Lai et al.’s O(n8)-time subroutine for (4) achieves the improvement by

(a) reducing the number of enumerated vertices to five and keeping the examination time inO(n3)

for the i-th procedures with i ∈ {1, 3, 5} and

9

doi:10.6342/NTU202203481

(b) keeping the number of enumerated vertices in six and reducing the examination time toO(n2)

for the i-th procedures with i ∈ {2, 4, 6}.

Our specialized O(n7)-time subroutine for (4) is based on a new observation that at most five

of the vertices in x suffice for each of the six procedures to pin down an odd hole. Skipping a

vertex (i.e., x1 or x2 in the proof of Lemma 2.4) to reduce the number of rounds from O(n6) to

O(n5) complicates the task of examining the existence of an odd hole containing the remaining

five vertices other than x0. We manage to complete the task within the sameO(n2) time bound via

some data structures.

2.2 Proving Theorem 1

The rest of the chapter assumes without loss of generality that G contains no 5- or 7-hole, which

can be listed in O(mn5) time. A D ⊆ V (G) with |D| ≤ 5 is a spade for a shortest odd hole C of

G if

• C[D] is a uv-path,

• G[D] contains an induced uv-path with length ∥C[D]∥+ 1 or ∥C[D]∥ − 1, and

• C − B with B = NG[D \ {u, v}] \ {u, v} is a shortest uv-path of G− B.

For instance, if C[NG(x)] is a 3-path for an x ∈ V (G), then NG(x,C) ∪ {x} is a spade for C. A

hole C of G is shallow if C is a shortest odd hole of G that admits a spade. We comment that a

jewelled [23] shortest odd hole of G need not be a shallow hole of G but implies a shallow hole of

G. Let MG(C) consist of the (major [18]) vertices x of G such that NG(x,C) is not contained by

any 2-path of C. A hole C of G is medium if C is a shortest odd hole of G and MG(C) ⊆ NG(e)

holds for an e ∈ E(C). Thus, 5-holes are medium. A medium hole is a heavy-cleanable shortest

odd hole in [23]. A triple T = (T1, T2, T3) of abi-paths Ti for i ∈ [3] with ∥T1∥ < ∥T2∥ ≤ ∥T3∥ is

a tripod of G if ∥T1∥ is minimized over all triples T satisfying the following Conditions Z:

10

doi:10.6342/NTU202203481

(1) (2) (3)

b1

b2b3

a

T1

T2T3

Figure 2.1: (1) The black circle denotes a shallow hole C of the graph. The blue vertices denote a
spadeD for C. (2) The black circle denotes a medium hole C of the graph. The red vertices denote
the vertices in MG(C). The red edge is adjacent to each vertex in MG(C). (3) The black circle
denotes a deep hole C of the graph. T = (T1, T2, T3) is a tripod of the graph with C = C(T).

Z1: B(T) = {b1, b2, b3} induces a triangle of G.

Z2: U(T) = T1 ∪ T2 ∪ T3 is an induced tree of G \ E(G[B(T)]) with the leaf set B(T).

Z3: a(T) = a is the only degree-3 vertex of U(T).

Z4: C(T) = G[T2 ∪ T3] is a shortest odd hole of G.

A hole of G is deep if it is C(T) for a tripod T of G. Such a G[U(T)] is called an optimal great

pyramid of G with apex a(T) and base B(T) in [23]. A graph is shallow (respectively, medium

and deep) if it contains a shallow (respectively, medium and deep) hole. The depth δG of a deep

graph G is ∥T1∥ for a tripod T of G. See Figure 2.1 for an illustration.

Lemma 2.1 (Lai, Lu, and Thorup [65, Theorem 1.3]). It takes O(mn4 log2 n) time to obtain a

C ⊆ G such that (1) C is an odd hole of G or (2) G is non-deep.

Lemma 2.2. It takes O(mn5) time to obtain a C ⊆ G such that (1) C is a shortest odd hole of G

or (2) G is non-shallow.

Lemma 2.3. It takes O(mn3) time to obtain a C ⊆ G such that (1) C is a shortest odd hole of G

or (2) G is shallow, deep, or non-medium.

11

doi:10.6342/NTU202203481

Lemma 2.4. It takes O(mn5) time to obtain a C ⊆ G such that (1) C is a shortest odd hole of G

or (2) G is shallow, medium, deep, or odd-hole-free.

Lemma 2.2 corresponds to the algorithm for jewelled shortest odd holes in [23, 2.1]. Lemma 2.3

improves on the O(m2n4)-time algorithm of [23, 6.2]. Lemma 2.4 improves on the O(m2n5)-time

algorithm of [23, 6.3] and the O(m2n4)-time algorithm in [65, Proof of Theorem 1.4]. We reduce

Theorem 1 to Lemmas 2.2, 2.3, and 2.4 via Lemma 2.1. Lemmas 2.2, 2.3, and 2.4 are proved in

§2.3, §2.4, and §2.5.

Proof of Theorem 1. It suffices to prove (1). It takes O(m) time to determine if one of the four

C is an odd hole of G. If there is one, then (1) holds. Otherwise, G is non-deep by Lemma 2.1,

non-shallow by Lemma 2.2, and non-medium by Lemma 2.3, implying that G is odd-hole-free by

Lemma 2.4.

2.3 Proving Lemma 2.2

Proof of Lemma 2.2. It takes O(m) time to determine for each D ⊆ V (G) with |D| ≤ 5 whether

G contains odd holes for whichD is a spade. IfG contains such odd holes, then letCD be a shortest

of them. Otherwise, let CD = ∅. If all CD are empty, then let the O(mn5)-time obtainable C be

empty. Otherwise, let C be a non-empty CD with minimum ∥CD∥. If G contains a shallow hole

C∗, then 0 < ∥C∥ ≤ ∥CD∥ ≤ ∥C∗∥ holds for a spade D for C∗, implying that C is a shortest odd

hole of G.

2.4 Proving Lemma 2.3

A clean hole of G is a medium hole C of G withMG(C) = ∅.

Lemma 2.5. If G is a non-deep (respectively, non-shallow) graph, then so is an induced subgraph

12

doi:10.6342/NTU202203481

of G that contains a shortest odd hole of G.

Lemma 2.6 (Chudnovsky, Scott, and Seymour [23, Proof of Lemma 6.1]). If u and v are vertices

of a clean hole C of a non-shallow and non-deep graph H , then the graph obtained from C by

replacing the shortest uv-path of C with a shortest uv-path of H remains a clean hole of H .

We first reduce Lemma 2.3 to Lemma 2.5 via Lemma 2.6 and then prove Lemma 2.5 in §2.4.1. We

also include a proof of Lemma 2.6 in §2.4.2 to ensure that it is implicit in [23, Proof of Lemma 6.1].

Lemma 2.6 is stronger than [17, Theorem 4.1(2)] in thatG is allowed to contain jewels or pyramids.

As a matter of fact, the original proof of [17, Theorem 4.1(2)] already works for Lemma 2.6: Their

careful case analysis shows that if the resulting subgraph is not a clean hole of G, then G contains

a jewel or pyramid. It is not difficult to further infer that each such jewel (respectively, pyramid)

in G contains a shallow (respectively, deep) hole of G.

Proof of Lemma 2.3. (Inspired by [65, Proof of Lemma 6.8(2)].) For each e ∈ E(G) and u ∈

V (G), spend O(m) time to obtain a shortest-path tree ofG−NG(e) \ {u} rooted at u, from which

spend O(n) time for each v ∈ V (G) to obtain a shortest uv-path Pe(v, u), if any, of Ge(u, v) =

G− (NG(e) \ {u, v}). Let Pe(u, v) = Pe(v, u) for each {u, v} ⊆ V (G) without loss of generality.

Thus, it takes overall O(mn3) time to obtain for all edges e and distinct vertices u and v of G

with defined Pe(u, v) (i) pe(u, v) = ∥Pe(u, v)∥ and (ii) the neighbor τe(u, v) of u in Pe(u, v). Let

pe(u, v) = ∞ for undefined Pe(u, v). Spend O(mn3) time to determine if the next equation holds

for any edge e and distinct vertices b, c, and d of G:

pe(c, d) = 3

pe(c, τe(d, b)) > 3

pe(d, τe(c, b)) > 3

pe(c, b) = pe(d, b) = pe(c, τe(b, d))− 1 = pe(d, τe(b, c))− 1.

(2.1)

13

doi:10.6342/NTU202203481

If Equation (2.1) holds for some (e, b, c, d), then let C = Pe(b, c) ∪ Pe(b, d) ∪ Pe(c, d) for such an

(e, b, c, d) that minimizes pe(b, c) + pe(b, d) + pe(c, d). Otherwise, let C = ∅.

We show that if a non-shallow and non-deep graph G contains a medium hole C∗, then the above

reported graph C is a shortest odd hole of G. Let e be an edge of C∗ with MG(C
∗) ⊆ NG(e). C∗

is a clean hole of the non-shallow and non-deep graph H = Ge(c, d) with {c, d} = NC∗(e) by

Lemma 2.5. For each {u, v} ⊆ V (C∗) such that {c, d} is disjoint from the interior of the shortest

uv-path of C∗, Pe(u, v) is a shortest uv-path of H . Therefore, for the vertex b ∈ V (C∗) with

dC∗(b, c) = dC∗(b, d), Lemma 2.6 implies that Pe(b, c) ∪ Pe(b, d) ∪ Pe(c, d) is a clean hole of H

and hence a shortest odd hole of G. One can verify from ∥C∗∥ ≥ 9 that Equation (2.1) holds for

this (e, b, c, d). Thus, C ̸= ∅. It remains to show that Equation (2.1) for any choice of (e, b, c, d)

implies that Pe(b, c)∪Pe(b, d)∪Pe(c, d) is an odd hole ofGwith length pe(b, c)+pe(b, d)+pe(c, d):

Both Pe(b, c) and Pe(b, d) are induced paths. By

pe(c, b) = pe(d, b) = pe(c, τe(b, d))− 1 = pe(d, τe(b, c))− 1,

paths Pe(b, c)−b and Pe(b, d)−b are anticomplete inG. We know that int(Pe(c, d)) is anticomplete

to (Pe(c, b) − c) ∪ (Pe(d, b) − d), since otherwise Equation (2.1) is violated by at least one of the

following conditions:

pe(c, τe(d, b)) ≤ 3

pe(d, τe(c, b)) ≤ 3

pe(c, τe(b, d)) ≤ pe(c, b)

pe(d, τe(b, c)) ≤ pe(d, b).

14

doi:10.6342/NTU202203481

2.4.1 Proving Lemma 2.5

Proof of Lemma 2.5. Let H be an induced subgraph of G that contains a shortest odd hole of G.

Consider first the case that H is deep, implying that C(T) is a shortest odd hole of G for a tripod

T of G. All Conditions Z of T also hold in G, since H is an induced subgraph of G. If T is also a

tripod of G, then G is deep. Otherwise, we have δG < ∥T1∥, also implying that G is deep (so that

δG is defined).

Consider now the case thatH contains a shallow hole C for whichD is a spade, implying that C is

a shortest odd hole of G. Let C[D] be a uv-path. H[D] contains an induced uv-path R with length

∥C[D]∥ + 1 or ∥C[D]∥ − 1. Hence, G[D] = H[D] contains an induced uv-path Q ∈ {C[D], R}

such that the union C∗ ofQ = C∗[D] and a shortest uv-path P ofG−NG[D \{u, v}]\{u, v} is an

odd hole ofG. SinceG[D] contains an induced uv-path, i.e., C[D] orRwith length ∥C∗[D]∥+1 or

∥C∗[D]∥− 1,D is a spade for C∗ inG. SinceH −NH [D \ {u, v}] \ {u, v} is an induced subgraph

of G−NG[D \ {u, v}] \ {u, v}, we have ∥P∥ ≤ ∥C∥ − ∥C[D]∥. By ∥C∗[D]∥ ≤ ∥C[D]∥+ 1, C∗

is a shortest odd hole of G. Thus, C is a shallow hole of G.

2.4.2 Proving Lemma 2.6

Let M∗
G(C) = {x ∈ MG(C) : |NG(x,C)| ≥ 4}, whose members are called the big major vertices

for C in [23]. A path P of a graphG is C-clean for a shortest odd hole C ofG ifM∗
G(C)∩V (P) =

∅.

Lemma 2.7 (Chudnovsky, Scott, and Seymour [23, 4.1]). Let {u, v} ⊆ V (C) for a shortest odd

hole C of a non-shallow graphH . If P is a C-clean uv-path ofH with ∥P∥ < dC(u, v), thenH is

deep with δH < ∥P∥.

Lemma 2.8 (Chudnovsky, Scott, and Seymour [23, 4.2 and 4.3]). Let {u, v} ⊆ V (C) for a shortest

odd hole C of a non-shallow non-deep graph H . If P is a C-clean uv-path of H with ∥P∥ =

15

doi:10.6342/NTU202203481

dC(u, v), then the graph C∗ obtained from C by replacing the shortest uv-path of C with P is a

shortest odd hole of H withMH(C
∗) = MH(C).

Proof of Lemma 2.6. (Included to ensure that the lemma is implicit in [23].) By MH(C) = ∅,

P is C-clean. Since H contains the shortest uv-path Q of C, ∥P∥ ≤ ∥Q∥. Lemma 2.7 implies

∥P∥ = ∥Q∥, since H is non-deep. By Lemma 2.8, the graph C∗ obtained from C by replacing Q

with P is a shortest odd hole of H withMH(C
∗) = ∅.

2.5 Proving Lemma 2.4

Lemma 2.9. A shortest odd holeC ofGwithM∗
G(C) ̸= MG(C) implies thatG is deep with δG = 1.

Lemma 2.10. If C is a non-shallow shortest odd hole of G, then each x ∈ M∗
G(C) admits an

e ∈ E(C) withM∗
G(C) ⊆ NG(e) ∪NG(x).

Lemma 2.10 is stronger than [23, Theorem 5.3] in thatG can be shallow. We first reduce Lemma 2.4

to Lemmas 2.9 and 2.10 via Lemmas 2.5 and 2.6. We then prove Lemmas 2.9 and 2.10 in §2.5.1

and §2.5.2.

Proof of Lemma 2.4. We first show an O(n2)-time two-case subroutine that obtains a graph for

each

{x0, xj, x3, x4, x5} ⊆ V (G)

with j ∈ [2] and x4x5 ∈ E(G) and each k ∈ [3, 5]. If all O(mn3) of them are empty, then let the

O(mn5)-time obtainable graph C be empty. Otherwise, let C be a shortest of the nonempty ones.

We then prove that C is a shortest odd hole of a non-shallow, non-medium, and non-deep G.

Case 1: j = 1. Let P be a shortest x1xk-path of the graph

H = G− (NG[{x0, x4, x5}] \ {x1, x3, x4, x5}),

16

doi:10.6342/NTU202203481

(1)

x0

x2

x1 x3 x4

x5

(2)

x0

y

x2

x1

x5

x4

x3

Figure 2.2: (1) An example for the proof of Lemma 2.4 with j = 1 and k = 5. The red arc is
the shortest x1xk-path P of H . The blue arc is P1(x2) and the green arc is Pk(x2). C1(x2) =
P ∪ P1(x2) ∪ Pk(x2) is a shortest odd hole of (1). (2) An example for the proof of Lemma 2.4
with j = 2 and k = 4. The red arc is the shortest x2xk-path P of H . The red vertices denote the
vertices in X1. Although y /∈ V (H1) and y /∈ I1, we have y ∈ X1. Although y ∈ V (G1), we have
y /∈ V (G0(x1)). The blue arc is P2(x1) and the green arc is Pk(x1). C2(x1) = P ∪P2(x1)∪Pk(x1)
is a shortest odd hole of (2).

as illustrated by Figure 2.2(1). Let I consist of the interior vertices of all shortest x1xk-paths ofH .

Let

G0 = G− ((NG(x1) ∩NG(xk)) ∪ (NG[I] \ {x1, xk})).

Spend overall O(n2) time to obtain for each i ∈ {1, k} and v ∈ V (G0) an arbitrary, if any, shortest

xiv-path Pi(v) of G0 and Ri(v) = NG0 [Pi(v) − v]. For each v ∈ V (G), it takes O(n) time to

determine if

C1(v) = P ∪ P1(v) ∪ Pk(v)

is an odd hole of G via ∥P∥+ ∥P1(v)∥+ ∥Pk(v)∥ ≡ 1 (mod 2) and R1(v) ∩ V (Pk(v)) = {v}. If

none of the O(n) graphs C1(v) is an odd hole ofG, then report the empty graph. Otherwise, report

a shortest one of the graphs C1(v) that are odd holes.

17

doi:10.6342/NTU202203481

Case 2: j = 2. Let P be a shortest x2xk-path of the graph

H = G− (NG[{x0, x4, x5}] \ {x3, x4, x5}),

as illustrated by Figure 2.2(2). Let I consist of the interior vertices of all shortest x2xk-paths ofH .

With

H1 = G− (NG[{x0, x4, x5} ∪ I] \ {x2}),

let I1 consist of the vertices v with dH1(v, x2) ≤ ∥P∥ − 3. With X1 = NG(I1) and

G1 = G− ((NG(X1) ∩NG(xk)) ∪ (NG(I1 ∪ I) \ (X1 ∪ {x2, x3, x4, x5}))),

let each Pi(v) with i ∈ {2, k} and v ∈ V (G) be a shortest xiv-path of the graph

G0(v) = G1 − (X1 \ {v}).

It takes overall O(n2) time to determine whether C2(v) = P ∪ P2(v) ∪ Pk(v) is an odd hole of G

for any v ∈ V (G) using similar data structures in Case 1. If none of the O(n) graphs C2(v) is an

odd hole of G, then report the empty graph. Otherwise, report a shortest one of the graphs C2(v)

that are odd holes.

The rest of the proof shows that the next choice of j ∈ [2], k ∈ [3, 5], x0 ∈ MG(C
∗), and

{x1, . . . , x5} ⊆ V (C∗) with x4x5 ∈ E(C∗) for a shortest odd hole C∗ of G yields a shortest

odd hole Cj(x3−j) of G: MG(C
∗) is non-empty or else C∗ is medium in G. Let B be a longest

induced cycle of G[C∗ ∪MG(C
∗)] with |V (B) ∩MG(C

∗)| = 1. Let B∗ = B − x0 for the vertex

x0 ∈ V (B)∩MG(C
∗). ByMG(C

∗) ̸⊆ NG(e) for any e ∈ E(C∗) (or else C∗ is medium in G), we

18

doi:10.6342/NTU202203481

have ∥B∗∥ ≥ 3. Lemmas 2.9 and 2.10 imply an x4x5 ∈ E(C∗) with

MG(C
∗) ⊆ NG[{x0, x4, x5}]. (2.2)

Let k = |V (B∗)∩{x4, x5}|+3. LetB∗ (respectively,B∗−{x4, x5} be an x1xk-path (respectively,

x1x3-path) such that an x1x5-path of C∗ contains x3 and x4. Thus,NG(x4x5)∩V (B∗) ⊆ {x3} and

x1, x3, x4, and x5 are in order in C∗. By maximality of ∥B∥, we have

MG(C
∗) ⊆ (NG(x1) ∩NG(xk)) ∪NG(int(B∗)). (2.3)

Let C∗(u, v) be the shortest uv-path of C∗ for each {u, v} ⊆ V (C∗). Let j ∈ [2] such that j = 1 if

and only if ∥B∗∥ = ∥C∗(x1, xk)∥. B is a hole of G shorter than C∗ by x0 ∈ MG(C
∗), so ∥B∗∥ is

even. Let x2 be the interior vertex of the non-shortest x1xk-path of C∗ with

∥C∗(x1, x2)∥ = ∥C∗(x2, xk)∥ − j. (2.4)

Thus, C∗(xj, xk) ⊆ H . By x0 ∈ MG(C
∗) and ∥B∗∥ ≥ 3, we have ∥C∗(x1, xk)∥ ≥ 3. By

Equation (2.4),

C∗ = C∗(x1, xk) ∪ C∗(x2, xk) ∪ C∗(x1, x2).

Based upon Lemma 2.6, we prove for either case of j ∈ [2] that

Cj(x3−j) = P ∪ Pj(x3−j) ∪ Pk(x3−j)

is a shortest odd hole of G by ensuring the two statements below via the following immediate

corollary of Lemmas 2.5 and 2.6: If the shortest uv-path C∗(u, v) of a shortest odd hole C∗ of G

is contained by a subgraph H of the non-shallow and non-deep G∗ = G − MG(C
∗), then each

shortest uv-path P of H is a shortest path of G∗ and we call H a witness for P . See Figure 2.2.

19

doi:10.6342/NTU202203481

1. P is a shortest xjxk-path of G∗: By Equation (2.2), we have C∗(xj, xk) ⊆ H ⊆ G∗. H is a

witness for P .

2. Each Pi(x3−j) with i ∈ {j, k} is a shortest xix3−j-path of G∗: When j = 1, we have B∗ =

C∗(x1, xk). By int(B∗) ⊆ I and Equation (2.3), we have C∗(xi, x2) ⊆ G0 ⊆ G∗ for each i ∈

{1, k}. G0 is a witness forP1(x2) andPk(x2). When j = 2, we haveB∗ = C∗(x1, x2)∪C∗(x2, xk).

By V (C∗(x1, x2)− x1) ⊆ I1 and int(C∗(x2, xk)) ⊆ I , we have x1 ∈ X1 and int(B∗) ⊆ I1 ∪ I . By

Equation (2.3), we have B∗ ⊆ G1 and V (G1) ∩MG(C
∗) ⊆ X1, implying C∗(x1, xi) ⊆ G0(x1) ⊆

G∗ for each i ∈ {2, k}. G0(x1) is a witness for P2(x1) and Pk(x1).

2.5.1 Proving Lemma 2.9

A path P of a shortest odd hole C ofG is an x-gap (see, e. g., [24]) with x ∈ MG(C) ifG[P ∪{x}]

is a hole of G (and thus ∥P∥ ≥ 2). The shortestness of C implies that each x-gap is even.

Proof of Lemma 2.9. Let x ∈ MG(C) \ M∗
G(C), implying that |NG(x,C)| ≤ 3. Since ∥C∥ is

odd, there is an edge of C that is not contained by any x-gap, implying that C[NG(x,C)] contains

exactly one edge of C. Since x ∈ MG(C), we have |NG(x,C)| = 3 and thus C = C(T) for a

tripod T of G with ∥T1∥ = 1.

2.5.2 Proving Lemma 2.10

An X ⊆ V (G) is stable if E(G[X]) = ∅. A v ∈ V (G) (respectively, uv ∈ E(G)) is X-complete

with X ⊆ V (G) if v ∈ NG(x) (respectively, {u, v} ⊆ NG(x)) holds for each x ∈ X .

Lemma 2.11. For any stableX ⊆ M∗
G(C) for a non-shallow shortest odd holeC ofG, the number

of X-complete edges of C is odd.

Lemma 2.11 is stronger than [23, 5.1] in thatG is allowed to be shallow. We first reduce Lemma 2.10

to Lemma 2.11 and then prove Lemma 2.11.

20

doi:10.6342/NTU202203481

Proof of Lemma 2.10. Assume for contradiction a G with minimum |V (G)| violating the lemma.

We have M∗
G(C) = V (G) \ V (C). Let x0 ∈ M∗

G(C) with M∗
G(C) ̸⊆ NG(e) ∪ NG(x0) for each

e ∈ E(C), which has to be anticomplete toM∗
G(C) \ {x0} by minimality of |V (G)|. Lemma 2.11

implies an edge x1x2 of G[M∗
G(C)]. The minimality of |V (G)| implies for each i ∈ [2] an edge

ei ∈ E(C) that is adjacent to each vertex of M∗
G(C) \ {x3−i}. Since Lemma 2.11 implies an

{x0, xi}-complete edge f of C, G[{x0, xi} ∪ ei] is not an induced x0xi-path P (with ∥P∥ = 3)

or else G[P ∪ f] contains a 5-hole of G. Thus, each i ∈ [2] admits an {x0, xi}-complete end vi

of ei. By definition of x0, each xi with i ∈ [2] is anticomplete to e3−i. Hence, we have v1 ̸= v2,

implying v1v2 ∈ E(C) or else G[{x1, v1, x0, v2, x2}] is a 5-hole. However, e = v1v2 is adjacent

to each member of M∗
G(C): if a z ∈ M∗

G(C) is anticomplete to e, then z /∈ {x0, x1, x2} and z is

{e1 − v1, e2 − v2}-complete. Thus, G[e1 ∪ e2 ∪ {z}] is a 5-hole, contradiction.

Proof of Lemma 2.11. Assume for contradiction that anX with minimum |X| violates the lemma,

implying |X| ≥ 2. A path P of C is an xy-gap with {x, y} ⊆ X and x ̸= y if (i) P is an

{x, y}-complete vertex (and thus ∥P∥ = 0) or (ii) P is a uv-path with NG(x, P) = {u} and

NG(y, P) = {v} (and thus ∥P∥ ≥ 1).

Claim A: There are vertices x and y ofX such thatC contains an odd xy-gap P and an even xy-gap

Q.

We first reduce the lemma to Claim A and then prove Claim A. Observe that P and Q are disjoint

or else P ∪ Q contains an odd x-gap, violating the shortestness of C. Thus, |NG(x, P ∪ Q)| =

|NG(y, P ∪Q)| = 2. If P andQ are not adjacent, thenG[P ∪Q∪{x, y}] is an odd hole with length

∥C∥ by shortestness of C. By {x, y} ⊆ X , the two vertices in C−V (P ∪Q) are {x, y}-complete.

We have ∥Q∥ ̸= 0 or else C[NG(x)] is a 3-path, violating that G is non-shallow. Hence, ∥Q∥ ≥ 2,

implying an odd x-gap in C[NC [Q]], contradiction. Thus, P andQ are adjacent inC, implying that

R = C − V (P ∪Q) is an odd uv-path of C with min(|NG(x,R)|, |NG(y,R)|) ≥ 2.

21

doi:10.6342/NTU202203481

• If ∥R∥ = 1, then R is an {x, y}-complete edge of C. We have ∥Q∥ ̸= 0 or else C[NG(x)] is a

3-path. By ∥Q∥ ≥ 2, C[NC [Q]]− V (P) is an odd x-gap or y-gap, contradiction.

• If ∥R∥ ≥ 3, then S = R−{u, v} is a path of C disjoint and nonadjacent to P ∪Q. By the above

observation, S contains no xy-gap, implyingNG(x, S) = ∅ orNG(y, S) = ∅. IfNG(x, S) = ∅

(respectively, NG(y, S) = ∅), then R is an odd x-gap (respectively, y-gap), contradiction.

Claim B: If each EY with Y ∈ X = 2X \ {∅} consists of the Y -complete edges of C, then there

are an even number of edges in the set F =
∪

Y ∈X EY .

We reduce Claim A to Claim B. To see that P exists, let U = NG(X,C). Let P consist of the

paths P with int(P) ∩ U = ∅ and distinct ends in U . The paths in P are pairwise edge-disjoint.

The union of the paths in P is C. By Claim B, there is an odd uv-path P ∈ P that is not an edge

in F . There is an {x, y} ⊆ X with {ux, vy} ⊆ E(G). We have x ̸= y or else P is an odd x-gap of

C, violating the shortestness of C. Thus, P is an odd xy-gap of C. To see thatQ exists, assume for

contradiction that all xy-gaps are odd. Thus, C contains no {x, y}-complete edge, since an {x, y}-

complete vertex of C is an even xy-gap. Hence, C contains an even number of {x}-complete or

{y}-complete edges. The number of edges of C contained by x-gaps or y-gaps is also even. Since

an edge of C not contained by any xy-gaps has to be an {x}-complete or {y}-complete edge or

contained by an x-gap or a y-gap, the number of edges in Q = C − int(P) that are contained by

xy-gaps is even. Therefore, the number of xy-gaps in Q is even, implying an {x, y}-complete end

of Q, contradicting no even xy-gap in C. Claim A is proved.

It remains to prove Claim B. Observe that the minimality of |X| implies that |EX | is even and |EY |

is odd for each Y ∈ X \ {X}. Since |X \ {X}| is even, so is
∑

Y ∈X |EY |. Let each X(e) ⊆ X

with e ∈ E(C) consist of the V (e)-complete vertices of X . For each e ∈ E(C) and Y ∈ X , we

have e ∈ EY if and only if Y ⊆ X(e). Thus, each edge e ∈ F belongs to exactly 2|X(e)| − 1 sets

EY with Y ∈ X . Therefore,
∑

e∈F
(
2|X(e)| − 1

)
=

∑
Y ∈X |EY | is even. Claim B is proved and

so is the lemma.

22

doi:10.6342/NTU202203481

Chapter 3

Finding a Shortest Odd Hole

3.1 Technical Overview

OurO(n7)-time algorithm to find an odd hole is almost one for finding a shortest odd hole. Among

the four subroutines, only the one for (2) may find a non-shortest odd hole. Indeed, ourO(n13)-time

algorithm for finding a shortest odd hole is obtained by replacing our subroutine for (2) above with

an O(n13)-time one for finding a shortest odd hole in a deep and non-shallow graph (Lemma 3.1),

which improves upon Chudnovsky, Scott, and Seymour’s O(n14)-time subroutine [23, 3.2] for

finding a shortest odd hole in a graph containing “great pyramids”, no “jewelled” shortest odd

hole, and no 5-hole. Chudnovsky et al.’s subroutine enumerates all O(n12) twelve-tuples y =

(y0, . . . , y11) of vertices and finds for each y in O(n2) time with the assistance of (y0, . . . , y4) a

great pyramidH containing {y5, . . . , y11}. Specifically, y5 is the “apex” ofH , {y6, y7, y8} forms the

“base” of H (see §2.2), and {y9, y10, y11} consists of the interior marker (defined in §3.3) vertices

of a path of H between its apex and base. Our improved O(n13)-time subroutine is based on a

new observation (Claim 1 in the proof of Lemma 3.1, which strengthens [23, 7.2]) that a vertex in

the base {y6, y7, y8} of H can be omitted in the enumeration, reducing the number of rounds from

23

doi:10.6342/NTU202203481

O(n12) to O(n11), without increasing the time O(n2) to pin down a shortest odd hole.

3.2 Proving Theorem 2

By Theorem 1, the rest of the chapter assumes without loss of generality thatG contains odd holes

and each odd hole of G has length at least 15, since all odd holes shorter than 15 can be listed in

O(m3n7) time.

Lemma 3.1. It takes O(m3n7) time to obtain a C ⊆ G such that (1) C is a shortest odd hole of G

or (2) G contains a shallow hole or no deep hole.

Lemma 3.1 improves upon the O(m3n8)-time algorithm of [23, Lemma 3.2]. We first reduce

Theorem 2 to Lemma 3.1 via Lemmas 2.2, 2.3, and 2.4 and then prove Lemma 3.1 in §3.3.

Proof of Theorem 2. Assume for contradiction that none of the four C ⊆ G ensured by Lem-

mas 3.1, 2.2, 2.3, and 2.4 is a shortest odd hole of G. By Lemma 2.2, G is non-shallow. By

Lemma 3.1, G is non-deep. By Lemma 2.3, G is non-medium, contradicting Lemma 2.4. Thus, it

takes O(m) time to obtain a shortest odd hole of G from the four C.

3.3 Proving Lemma 3.1

A c-trail of a graph G for a c = (c0, . . . , ck) with {c0, . . . , ck} ⊆ V (G) is the union of one shortest

ci−1ci-path of G per i ∈ [k]. We call c = (c0, . . . , c4) with {c0, . . . , c4} ⊆ V (P) a marker of a

c0c4-path P of a deep graph G if dP (c0, c2) = ⌈∥P∥/2⌉, dP (c0, c1) = min(δG, dP (c0, c2)), and

dP (c3, c4) = min(δG, dP (c2, c4)).

Lemma 3.2 (Chudnovsky, Scott, and Seymour [23, 7.1]). If |NG(x) ∩ B(T)| ≤ 1 with x ∈

M∗
G(C(T)) holds for a tripod T of a deepG, thenG[NG(x, T1∪Ti)] is an edge for an {i, j} = {2, 3}

with ∥Tj∥ ≥ 3.

24

doi:10.6342/NTU202203481

Lemma 3.3 (Chudnovsky, Scott, and Seymour [23, 8.3, 8.4, and 8.5]). Let T be a tripod of a

deep and non-shallow G. Let (a, b2, b3) = (a(T), T2[B(T)], T3[B(T)]). For any marker c =

(a, c1, c2, c3, bi) of Ti with {i, j} = {2, 3}, the triple obtained from T by replacing Ti with a c-trail

of the graph

G− ((M∗
G(C(T)) ∪NG[T1 − a] ∪NG[bj]) \ {a, c1, c2, c3, bi})

remains a tripod of G.

We are ready to prove Lemma 3.1 by Lemmas 2.7, 2.9, 2.10, 2.11, 3.2, and 3.3.

Proof of Lemma 3.1. For any c = (c0, . . . , ck) with {c0, . . . , ck} ⊆ V (H) for a graph H , let

PH(c0, . . . , ck) be an arbitrary fixed c-trail, if any, of H . For each of the O(m2n7) choices of

{x, a, c1, c2, c3, d1, d2} ⊆ V (G), {i, j} = {2, 3}, and {b, e} ⊆ E(G) with b = b2b3, spend O(m)

time to determine whether G[P2 ∪ P3] is an odd hole of G with

Y = (NG(x) ∪NG(e)) \ (V (e) ∪ {d1, d2})

G1 = G− ((Y ∪ (NG[b] \ (NG(b2) ∩NG(b3)))) \ {a, bj})

P1 = PG1(a, bj)− bj

Gi = G− ((Y ∪NG[P1 − a] ∪NG[bj]) \ {a, c1, c2, c3, bi})

Pi = PGi
(a, c1, c2, c3, bi)

Gj = G− (NG[(P1 ∪ Pi)− a] \ {a, bj})

Pj = PGj
(a, bj).

If there are such odd holes of G, then report a shortest of them as the O(m3n7)-time obtainable

subgraph of G. Otherwise, report the empty graph. We prove that if G is deep and non-shallow,

then the reported subgraph is a shortest odd hole ofG by ensuring that (P1, P2, P3) is a tripod ofG

for the following choice of {x, a, c1, c2, c3, d1, d2} ⊆ V (G), {b, e} ⊆ E(G), and {i, j} = {2, 3}:

25

doi:10.6342/NTU202203481

e

x

c3

b2 b3

a

d1 = c1

d2 = c2

Figure 3.1: A choice of {x, a, c1, c2, c3, d1, d2} ⊆ V (G) and {b, e} ⊆ E(C) with (i, j) = (2, 3)
in the proof of Lemma 3.1. The circle is a deep hole C with ∥C∥ = 9 of the deep graph G with
δG = 1. The orange vertices form a marker (a, c1, c2, c3, b2) of P2. The edge e2 in the proof of
Claim 1 is c1c2. I = {c1, c2}.

Let T be a tripod of G. Let C = C(T). For each k ∈ {2, 3}, let bk = Tk[B(T)] and Ck =

G[T1∪Tk]. Let (a, b) = (a(T), b2b3). Thus, a /∈ NG(b). We claim a choice of {x, d1, d2} ⊆ V (G),

{i, j} = {2, 3}, and e ∈ E(C) satisfying the next two statements and choose {c1, c2, c3} ⊆ V (Ti)

such that c = (a, c1, c2, c3, bi) is a marker of Ti. See Figure 3.1.

Claim 1: M∗
G(C) ⊆ Y (and hence P1 is C-clean) and Y ∩ V (Ci − {a, bi}) = ∅.

Claim 2: Each Dk = G[P1 ∪ Tk] with k ∈ {2, 3} is a hole of G with ∥Dk∥ ≤ ∥Ck∥.

G[V (T1) ∪ {bj}] ⊆ G1 by Claim 1 with T1 ⊆ Ci and V (T1) ∩ (NG[b] \ (NG(b2) ∩NG(b3))) = ∅.

Thus,

1 ≤ ∥P1∥ ≤ δG (3.1)

by a /∈ NG(b). Let b1 be the end of P1 with b1bj ⊆ PG1(a, bj). G[{b1, b2, b3}] is a triangle or else

b1 ∈ NG[b] contradicts b1 ∈ V (G1). By Claim 2 and Equation (3.1), (P1, T2, T3) is a tripod of G,

implying int(Ti)∩NG[P1−a] = ∅. Thus, Ti ⊆ Gi and ∥Pi∥ ≤ ∥Ti∥. By Lemma 3.3, Ti is a c-trail

26

doi:10.6342/NTU202203481

of

G′
i = G− ((M∗

G(C) ∪NG[P1 − a] ∪NG[bj]) \ {a, c1, c2, c3, bi}).

By Claim 1, we have Ti ⊆ Gi ⊆ G′
i, implying that Pi is a c-trail of G′

i. By Lemma 3.3, the triple

obtained from (P1, T2, T3) by replacing Ti with Pi is a tripod of G, implying int(Tj) ∩ NG[(P1 ∪

Pi) − a] = ∅. Hence, we have Tj ⊆ Gj , implying ∥Pj∥ ≤ ∥Tj∥. The definition of Gj implies

int(Pj)∩NG[(P1∪Pi)−a] = ∅. By a /∈ NG(b),D = G[Pi∪Pj] is a hole ofG with ∥D∥ ≤ ∥C∥.

If ∥D∥ < ∥C∥, then aG[P1∪P2∪P3]−V (Pk−a) with k ∈ [3] is an odd hole ofG shorter than C

by 1 ≤ ∥Pk∥ ≤ ∥Tk∥ for each k ∈ [3], contradiction. Thus,D is a shortest odd hole ofG, implying

that (P1, P2, P3) is a tripod of G.

The rest of the proof ensures Claims 1 and 2 in order. To see Claim 1, assume an x ∈ M∗
G(C)\NG(b)

or else the claim holds with (x, e) = (b2, b), d1 = T1[B], {d2} = NT2(b2), and (i, j) = (2, 3).

Lemma 2.10 implies an e ∈ E(C) with minimum φ(e) = |V (e) ∩ {a, b2, b3}| such that M∗
G(C) is

contained by the set

N = (NG(x) ∪NG(e)) \ V (e).

Thus, x ∈ NG(e). By x /∈ NG(b), we have |NG(x) ∩ B(T)| ≤ 1. Lemma 3.2 implies an {i, j} =

{2, 3} with ∥Tj∥ ≥ 3 such that G[NG(x,Ci)] is an edge ei. Assume for contradiction at least three

vertices in the set

I = N ∩ (V (Ci) \ {a, bi}) = (V (ei) ∪NG(e, Ci)) \ {a, bi}.

We have e /∈ E(Ti) or else x ∈ NG(e) implies |I| ≤ 2. By x ∈ NG(e) \ NG(b), we have e ̸= b,

implying e ∈ E(Tj). We have V (e) ̸⊆ int(Tj) or else NG(e, Ci) ⊆ {a} implies |I| ≤ 2. Thus,

e = uv with u ∈ int(Tj) and v ∈ {a, bj}. If v = a, then v /∈ NG(x) or else |I| = |NCi
(a)| = 2. If

v = bj , then v /∈ NG(x) by x /∈ NG(b). By ∥Tj∥ ≥ 3, the neighbor w of u in Tj − v is in int(Tj).

27

doi:10.6342/NTU202203481

The minimality of φ(e) implies a

y ∈ M∗
G(C) \ ((NG(x) ∪NG(uw)) \ {u,w}).

Thus, P = xuvy is an induced 3-path of G. Lemma 2.11 implies an {x, y}-complete edge f of C.

ThusG[f ∪P] contains a 5-hole ofG, contradiction. Hence, Claim 1 holds with {d1, d2} = I . See

Figure 3.1.

It remains to prove Claim 2 by Equation (3.1) and Lemmas 2.7 and 2.9. We first ready Equa-

tions (3.2), (3.3), and (3.4) below and ensure that V (P1−a) and V (C) are disjoint. By Claim 1 and

Lemma 2.7, an arbitrary (unnecessarily induced) uv-path P ofH = G[P1∪C]with {u, v} ⊆ V (C)

and ∥P∥ ≤ δG implies

dC(u, v) ≤ ∥P∥. (3.2)

Thus, ∥P∥ ≤ δG and {u, v} ⊆ V (Tk − a) with {k, ℓ} ∈ {2, 3} imply dC(u, v) = Tk[u, v] by

dC(u, v) ≤ δG < ∥Tℓ∥. Observe that ∥P1∥ < δG implies contradiction from ∥T2∥ ≤ ∥P1∥ + 1 ≤

δG < ∥T2∥ by Equation (3.2) via the ab2-path P1∪ b1b2 ofH with length at most δG. Therefore, by

Equation (3.1), we have

∥P1∥ = δG. (3.3)

Hence, each ∥P1∥+ ∥Tk∥ with k ∈ {2, 3} is odd. Also, V (P1 − a) and V (C) are disjoint or else a

vertex v ∈ V (P1 − a) ∩ V (Tk) with {k, ℓ} = {2, 3} leads to contradiction from

∥Tk∥+1 = ∥Tk∪bkbℓ∥ = dC(a, v)+dC(v, bℓ) ≤ ∥P1[a, v]∥+∥P1[v, b1]∪b1bℓ∥ = ∥P1∥+1 ≤ ∥Tk∥

by Equations (3.1) and (3.2) via the av-path P1[a, v] and the vbℓ-path P1[v, b1] ∪ b1bℓ of H . As a

result, if Dk with k ∈ {2, 3} is not a hole of G, then there is an edge u1uk ∈ E(Dk) \ {b1bk} with

u1 ∈ V (P1 − a) and uk ∈ V (Tk − a). Moreover, each edge u1uk ∈ E(Dk) with u1 ∈ int(P1) and

28

doi:10.6342/NTU202203481

(1)

b1

u1

z

b2 b3

a

(2)

u1

b1

b2 b3

u3

a

Figure 3.2: Illustrating Claim 3.2 in the proof of Lemma 3.1. The circle in each example is a deep
hole C with ∥C∥ = 9 of the graph G. (1) An illustration with k = 2 and δG = 2 showing that b1 is
anticomplete to C − {a, b2, b3}. The blue path denotes the path ∥P1∥. The graph obtained from C
by replacing the green path with the red path is a shortest odd hole C∗ of G. G[NG(u1, C

∗)] is the
3-path Tk[a, z]∪zb1. (2) An illustration with k = 3 and δG = 3 for the case P [a, u1]+1 = Tk[a, uk]
in the proof of Lemma 3.1. The orange, red, and blue paths denote Q1, Q2, and Q3, respectively.
(Q1, Q2, Q3) satisfies Conditions Z.

uk ∈ V (Tk − a) satisfies

∥P1[a, u1]∥ ≤ ∥Tk[a, uk]∥ ≤ ∥P1[a, u1]∥+ 1 : (3.4)

If au1 ∈ E(P1), then ∥P1[a, u1]∥ = 1 ≤ ∥Tk[a, uk]∥. Otherwise, Equation (3.2) via the ukbℓ-path

uku1 ∪ P1[u1, b1] ∪ b1bℓ of H implies ∥Tk[uk, bk]∥+ 1 ≤ ∥P1[u1, b1]∥+ 2. Hence,

∥P1[a, u1]∥ = ∥P1∥ − ∥P1[u1, b1]∥ ≤ ∥Tk∥ − 1− ∥Tk[uk, bk]∥+ 1 = ∥Tk[a, uk]∥.

Equation (3.2) via the auk-path P1[a, u1] ∪ u1uk of H implies ∥Tk[a, uk]∥ ≤ ∥P1[a, u1]∥+ 1.

To prove Claim 2 by contradiction, assume that D2 or D3 is not a hole of G. We first show that

b1 is anticomplete to C − {a, b2, b3}. Suppose that b1 is adjacent to an int(Tk) with k ∈ {2, 3}.

29

doi:10.6342/NTU202203481

Since δG = 1 implies b1 ∈ M∗
G(C) (violating Claim 1 for P1 being C-clean), we have δG ≥ 2.

Lemma 2.9 with δG ≥ 2 implies M∗
G(C) = MG(C). Thus, b1 is adjacent to exactly one vertex

z ∈ int(Tk) and C[{z} ∪ b2b3] is the 2-path zbkbℓ, implying that C∗ = G[(C − bk) ∪ {b1}] is

also a shortest odd hole of G. By Lemma 2.7 via the ab1-path P1 with length δG < dC∗(a, b1),

the C-clean path P1 is not C∗-clean. Thus, the neighbor u1 of b1 in P1 is a vertex of M∗
G(C

∗).

Equation (3.4) implies |NG(u1, Tk−a)| ≤ 2, so P1 is the 2-path au1b1 and the vertex uk of Tk with

∥P1[a, u1]∥ + 1 = ∥Tk[a, uk]∥ is a neighbor of u1. Since ∥P1∥ + ∥Tk∥ is odd by Equation (3.3),

we have ∥Tk∥ = ∥P1∥ + 1 (implying uk = z) or else G[u1b1 ∪ Tk[uk, z]] is an odd hole of G

shorter than C. As a result, G[NG(u1, C
∗)] is the 3-path Tk[a, z] ∪ zb1, contradicting that G is

non-shallow. See Figure 3.2(1). Having shown that b1 is anticomplete to C − {a, b2, b3}, we

know a u1uk ∈ E(Dk) with {k, ℓ} = {2, 3}, u1 ∈ int(P1), and uk ∈ V (Tk − a) that minimizes

ϕ(u1, uk) = n · dP1(u1, b1) + dTk
(uk, bk). Since ∥P1∥ + ∥Tk∥ is odd by Equation (3.3), we have

∥Tk[a, uk]∥ = ∥P1[a, u1]∥ + 1 by Equation (3.4) or else G[P1[u1, b1] ∪ Tk[uk, bk]] is an odd hole

of G shorter than C. Let (Q1, Q2) = (P1[u1, b1], u1uk ∪ Tk[uk, bk]). We have 1 ≤ ∥Q1∥ < ∥Q2∥.

Let Q3 be a shortest u1bℓ-path of G[P1[u1, a] ∪ Tℓ]. Equation (3.4) implies ∥Q1∥ < ∥Q3∥ and

that Q2 − uk is anticomplete to int(Q3). By minimality of ϕ(u1, uk), Q1 − u1 is anticomplete to

int(Q3). Conditions Z hold for (Q1, Q2, Q3) or (Q1, Q3, Q2). Thus, ∥T1∥ > ∥Q1∥ ≥ δG = ∥T1∥,

contradiction. See Figure 3.2(2).

30

doi:10.6342/NTU202203481

Chapter 4

Finding a Non-shortest Induced Path

4.1 Technical Overview

A subroutineB taking an ℓ-tuple of V (G) as the only argument is a uv-trailblazer of degree ℓ forG

if running B on all ℓ-tuples of V (G) always reports a uv-trail of G unless G is uv-trailless. We

call an ℓ-tuple of V (G) on which B reports a uv-trail of G a trail marker for B. An O(f(n))-time

uv-trailblazer of degree ℓ for G immediately implies the following O(nℓ · f(n))-time trailblazing

algorithm for G: Run B on each ℓ-tuple (a1, . . . , aℓ) of V (G) to either obtain a uv-trail of G or

Figure 4.1: The red uv-path P is the only uv-trail of the uv-straight graph G. The twist pair of P
is (c, b). The twist of P is 6. P [a∗, c] and P [b, d∗] form a pair of wings for the quadruple (a, b, c, d)
of V (G) in G.

31

doi:10.6342/NTU202203481

ensure that (a1, . . . , aℓ) is not a trail marker forB. If none of theO(nℓ) iterations produces a uv-trail

of G, then report that G is uv-trailless.

A graph H is uv-straight [7] if {u, v} ⊆ V (H) and each vertex of H belongs to at least one

shortest uv-path ofH . For instance, the graph in Figure 4.1 is uv-straight. Berger et al.’s algorithm

starts with an O(n3)-time preprocessing step (see Lemma 4.1) that either reports a uv-trail of G or

obtains a uv-straight graph H with V (H) ⊆ V (G) such that (a) a uv-trail of G can be obtained

from a uv-trail ofH inO(n2) time and (b) ifH is uv-trailless, then so isG. If no uv-trail is reported

by the preprocessing, then the main procedure runs an O(n18)-time trailblazing algorithm on the

uv-straight graphH based on anO(n4)-time degree-14 uv-trailblazer forH . As for postprocessing,

if a uv-trail ofH is obtained by the main procedure, then report a uv-trail ofG obtainable inO(n2)

time as ensured by the preprocessing. Otherwise, report that G is uv-trailless.

Our O(n4.75)-time algorithm adopts the preprocessing and postprocessing steps of Berger et al.,

while reducing the preprocessing time from O(n3) to O(nω) (see Lemma 4.5). For the benefit of

the main procedure, we run a second preprocessing step, takingO(n4.75) time via the witness matrix

of Galil and Margalit [48], to compute a static data structure from which a pair of “wings” that are

some disjoint paths in H , if any, for each quadruple of V (H) can be obtained in O(n) time (see

Lemma 4.6). Our main procedure is also a trailblazing algorithm, based on a faster uv-trailblazer

of a much lower degree for H: We reduce the time from O(n4) to O(n2 log2 n) and largely bring

down the degree from 14 to 2. Thus, the main procedure runs in O(n4 · log2 n) time, even faster

than the second preprocessing step.

The key to our improved uv-trailblazer is a new observation, described by Lemma 4.4, on any

shortest uv-trail P of a uv-straight graph G. Specifically, Berger et al.’s algorithm looks for a

uv-trail in G that consists of (1) a shortest us-path S of G containing 7 guessed vertices and a

shortest tv-path T of G containing another 7 guessed vertices such that S and T are anticomplete

in G and (2) a shortest st-path Q of GS,T = G − (NG[S ∪ T − {s, t}] \ {s, t}). Lemma 4.4

32

doi:10.6342/NTU202203481

ensures that much fewer guessed vertices on S and T suffice to guarantee that Q stays intact in

GS,T . To illustrate the usefulness of Lemma 4.4, we show in §4.2 that three lemmas of Berger et

al. [7] (i. e., Lemmas 4.1, 4.2, and 4.3) together with Lemma 4.4 already yield an O(n2)-time uv-

trailblazer of degree 4 for G, leading to a simple O(n6)-time trailblazing algorithm on G. More

precisely, if a and b (respectively, c and d) are the vertices that are farthest apart from each other in

P having the minimum identical distance to u (respectively, v) inG, then (a, b, c, d) is a trail marker

for an O(n2)-time uv-trailblazer for G: Due to the symmetry between u and v in G, Lemma 4.4

guarantees an O(n2)-time obtainable uv-trail of G that contains the precomputed pair of “wings”

for this (a, b, c, d).

Our proof of Theorem 3 in §4.3 further displays the usefulness of Lemma 4.4. We show that the

aforementioned vertices a and b inP actually form a trail marker (a, b) for anO(n2 log2 n)-time uv-

trailblazer forG. Dropping both c and d from the trail marker (a, b, c, d) of §4.2 inevitably increases

the time of the uv-trailblazer for G. We manage to keep the time of a degree-two uv-trailblazer

as low as O(n2 log2 n) via the dynamic data structure of Holm, de Lichtenberg, and Thorup [56]

supporting efficient edge updates and connectivity queries for G (see Lemma 4.7). To make our

proof of Theorem 3 in §4 self-contained, a simplified proof of Lemma 4.3 is included in §4.2. Since

Lemmas 4.1 and 4.2 are implied by Lemmas 4.5 and 4.6, which are proved in §4.3, our proof for

the O(n6)-time algorithm in §4.2 is also self-contained.

4.2 A simpler algorithm

Let {u, v} ⊆ V (G). Let h(x) = dG(u, x) be the height of a vertex x in G. If xy is an edge of G,

then |h(x)− h(y)| ≤ 1.

Lemma 4.1 (Berger et al. [7, Lemma 2.2]). For any vertices u and v of an n-vertex connected graph

G, it takesO(n3) time to obtain (1) a uv-trail ofG or (2) a uv-straight graphH with V (H) ⊆ V (G)

33

doi:10.6342/NTU202203481

such that (a) a uv-trail of G is O(n2)-time obtainable from that of H and (b) if H is uv-trailless,

then so is G.

A path of G is monotone [7] if all of its vertices have distinct heights in G. A monotone xy-

path of G is a shortest xy-path of G. The converse may not hold. A shortest xy-path of G with

{x, y} ∩ {u, v} ̸= ∅ is monotone. A monotone a∗c-path W1 of G containing a vertex a and a

monotone bd∗-pathW2 of G containing a vertex d with

h(a∗) + 1 = h(a) = h(b) ≤ h(c) = h(d) = h(d∗)− 1

form a pair (W1,W2) of wings for the quadruple (a, b, c, d) of V (G) in G if

dG[W1∪W2](a
∗, d∗) > ∥W1∥+ ∥W2∥,

that is,W1−c (respectively,W1) andW2 (respectively,W2−b) are anticomplete inG. An (a, b, c, d)

is winged in G if G admits a pair of wings for (a, b, c, d). See also Figure 4.1 for an example.

Lemma 4.2 (Berger et al. [7, Lemma 2.1]). It takes O(n6) time to compute a data structure from

which the following statements hold for any quadruple (a, b, c, d) of V (G) for an n-vertex graph

G:

1. It takes O(1) time to determine whether (a, b, c, d) is winged in G.

2. If (a, b, c, d) is winged in G, then it takes O(n) time to obtain a pair of wings for (a, b, c, d) in

G.

We comment that Lemma 2.1 of Berger et al. [7] is slightly different from Lemma 4.2, but their

proof is easily adjustable into one for Lemma 4.2. See also §4.3 for a proof of Lemma 4.6, which

implies and improves upon Lemma 4.2.

Let G be a uv-straight graph. If h(s)− h(t) is maximized by the vertices s and t of a uv-path P of

34

doi:10.6342/NTU202203481

G such that P [u, s] is a shortest us-path ofG and P [t, v] is a shortest tv-path ofG, then the twist [7]

of P is h(s) − h(t) and we call (s, t) the twist pair of P . See also Figure 4.1 for an example. If

(s, t) is the twist pair of a uv-path P of G, then P [u, s] and P [t, v] are disjoint if and only if P is a

non-shortest uv-path ofG. The next lemma is also needed in §4.3. To make our proof of Theorem 3

in §4.3 self-contained, we include a proof of Lemma 4.3 simplified from that of Berger et al. [7,

Lemma 2.3].

Lemma 4.3 (Berger et al. [7, Lemma 2.3]). If (s, t) is the twist pair of a shortest uv-trail P of a

uv-straight graph G, then h(s) ≥ h(x) ≥ h(t) holds for each vertex x of P [s, t].

Proof. Let I = V (P [s, t]) \ {s, t}. Let s∗ (respectively, t∗) be the neighbor of s (respectively, t) in

P [s, t]. By definition of (s, t), we have h(s∗) ≤ h(s) and h(t∗) ≥ h(t). If I = ∅, then (s∗, t∗) =

(t, s) implies the lemma. Otherwise, it suffices to prove h(s) ≥ h(x) ≥ h(t) for each x ∈ I .

If h(x) > h(s)were true for the x ∈ I maximizing the lexicographical order of (h(x), dP [s,t](x, t)),

then the concatenation of P [u, x] and a shortest xv-path of G is a uv-trail (containing s∗) of G

shorter than P . If h(x) < h(t) were true for the x ∈ I minimizing the lexicographical order

of (h(x), dP [s,t](x, t)), then the concatenation of a shortest ux-path of G and P [x, v] is a uv-trail

(containing t∗) of G shorter than P .

A monotone uc-path S of G with h(c) = h(s) is a sidetrack for a uv-trail P of G with twist pair

(s, t) if satisfying the following Conditions T.

T1: dG[S∪T](u, v) > ∥S∥+ ∥T∥ holds for a monotone tv-path T of G.

T2: The vertex a of S with h(a) = h(t) is on the monotone subpath P [u, s].

The inequality of Condition T1 is equivalent to the statement that S − c (respectively, S) and

T (respectively, T − t) are anticomplete in G. Thus, S[a∗, c] and T [t, d∗] form a pair of wings

for (a, t, c, d) in G, where a∗ is the vertex of S with h(a∗) = h(a) − 1 and dd∗ is the edge of T

with h(s) = h(d) = h(d∗)−1. See Figure 4.2 for an example. The key to our largely improved uv-

35

doi:10.6342/NTU202203481

Figure 4.2: The blue uc-path is a sidetrack S for the red uv-trail P of the uv-straight graphG. Each
of P [t, v] and the green tv-path can be a monotone tv-path T satisfying Condition T1.

trailblazers in §4.2 and §4.3 is the following lemma, whose proof is illustrated in Figure 4.3.

Lemma 4.4. If S is a sidetrack for a shortest uv-trail P of a uv-straight graph G with twist pair

(s, t), then

dG[S∪P [s,t]](u, t) ≥ dP (u, t).

Proof. Condition T1 implies a monotone tv-path T of G with dG[S∪T](u, v) > ∥S∥ + ∥T∥. As-

sume for contradiction a shortest ut-path Q of G[S ∪ P [s, t]] with ∥Q∥ < dP (u, t), implying

dG[Q∪T](u, v) < ∥P∥. By t /∈ V (S), Q contains an edge xy with x ∈ V (S) and y ∈ V (P [s, t])

that minimizes dP [s,t](y, t). Let R be a shortest uv-path of G[Q ∪ T]. If x were not in V (R), then

NG(S[u, x]− x) ∩ V (T) ̸= ∅, violating Condition T1. Hence, R contains x and, thus, y. Since R

is an induced uv-path of G with ∥R∥ < ∥P∥, we have ∥R∥ = h(v), implying that R is monotone.

By dR(u, x) < dR(u, y),

h(x) + 1 = h(y). (4.1)

By ∥Q∥ + ∥P [t, v]∥ < ∥P∥, the concatenation of Q and P [t, v] is a non-induced uv-path of G,

implying that G[Q ∪ P [t, v]] contains a monotone uv-path R′. Let x′y′ be the edge of R′ with

36

doi:10.6342/NTU202203481

Figure 4.3: An illustration for the proof of Lemma 4.4. The red path denotes a shortest uv-trail P
of the uv-straight graph G. The blue monotone path denotes a sidetrack S for P . The green path
denotes a monotone path T satisfying Condition T1.

x′ ∈ V (S) ∩ V (Q) and y′ ∈ V (P [t, v]) that maximizes h(y′). By dR′(u, x′) < dR′(u, y′),

h(x′) + 1 = h(y′). (4.2)

We know h(x′) ̸= h(t) − 1 or else y′ = t violates Condition T1. We know h(x′) ̸= h(t) or else

Condition T2 violates that P is induced. By h(x′) ≥ h(t) + 1 and Equation (4.2), y′ and t are

anticomplete in G. Let t′ be the vertex closest to y in P [y, t] with h(t′) = h(t), implying that y′

and t′ are anticomplete in G no matter whether t′ = t or not. By h(x) ≥ h(x′) ≥ h(t) + 1 and

Lemma 4.3, the concatenation P ′ of a shortest ut′-path of G, P [t′, y], the edge yx, and a shortest

xv-path of G[S[x′, x] ∪ P [y′, v]] is an induced uv-path of G shorter than P . By Equation (4.1)

and dP ′(u, x′) < dP ′(u, y′), we have that P ′ is a uv-trail ofG, contradicting the definition of P .

We are ready to describe and justify an O(n6)-time algorithm that either reports a uv-trail of G or

ensures that G is uv-trailless.

37

doi:10.6342/NTU202203481

Our O(n6)-time algorithm Apply Lemma 4.1 in O(n3) time to either report a uv-trail of G

as stated in Lemma 4.1(1) or make G a uv-straight graph satisfying Conditions (a) and (b) of

Lemma 4.1(2) with respect to the original G. If no uv-trail is reported in the previous step, then

apply Lemma 4.2 to obtain the data structureD for the winged quadruples ofG inO(n6) time. With

the standardO(n2)-time postprocessing readied by the preprocessing, it remains to show anO(n2)-

time degree-4 uv-trailblazer for the uv-straight graphG, which immediately leads to anO(n6)-time

trailblazing algorithm that either reports a uv-trail of G or ensures that G is uv-trailless.

Let B be the following O(n2)-time subroutine, taking a quadruple (a, b, c, d) of V (G) as the argu-

ment: Determine in O(1) time from the data structureD whether (a, b, c, d) is winged in G. If not,

then exit. Otherwise, obtain in O(n) time from D a pair (W1,W2) of wings for (a, b, c, d) in G.

SinceG is uv-straight, it takesO(n2) time to obtain a monotone uc-path S ofG containingW1 and

a monotone bv-path T of G containing W2. Obtain in O(n2) time the subgraph Gc,b of G induced

by

{x ∈ V (G) : h(b) ≤ h(x) ≤ h(c)} \ ((NG[S − c] ∪NG[T − b]) \ {c, b}).

If c and b are not connected inGc,b, then exit. Otherwise, report the concatenation Pc,b of (i) the uc-

path S, (ii) a shortest cb-path of Gc,b, and (iii) the bv-path T .

By definition of S, T , and Gc,b, the uv-path Pc,b of G reported by B(a, b, c, d) is induced in G,

which is not monotone by h(b) ≤ h(c). Thus, Pc,b is a uv-trail of G.

Let P be an arbitrary unknown shortest uv-trail of G with twist pair (s, t). Let a (respectively, d)

be the vertex of the monotone P [u, s] (respectively, P [t, v]) with h(a) = h(t) (respectively, h(d) =

h(s)). See Figure 4.4 for an illustration. The rest of the section shows that (a, t, s, d) is a trail

marker for B.

Observe that P [a∗, s] and P [t, d∗] with the neighbor a∗ of a in P [u, a] and the neighbor d∗ of d

in P [d, v] form a pair of wings for (a, t, s, d) in G. Thus, the quadruple (a, t, s, d) is winged in

38

doi:10.6342/NTU202203481

Figure 4.4: An illustration for the proof that B is a uv-trailblazer of degree four. The red path
denotes a shortest uv-trail of the uv-straight graph G. The blue and green paths denote a mono-
tone us-path and a monotone tv-path of G containing a precomputed pair of wings for (a, t, s, d)
that need not coincide with P except at a, t, s, and d.

G. The monotone us-path S of G containing W1 is a sidetrack for P , since the monotone tv-path

T of G containing W2 satisfies Conditions T1 and T2 for S. Due to the symmetry between u

and v in G, the monotone vt-path T of the vu-straight graph G is also a sidetrack for the shortest

vu-trail P of G with twist pair (t, s), since the monotone su-path S of G satisfies Conditions T1

and T2 for T . Lemma 4.3 guarantees h(t) ≤ h(x) ≤ h(s) for each vertex x of P [s, t]. By

Lemma 4.4, P [s, t]−{s, t} is anticomplete to both S − s and T − t, implying that P [s, t] is a path

of Gs,t. Since s and t are connected in Gs,t, the subroutine call B(a, t, s, d) outputs a uv-trail Ps,t

of G in O(n2) time. Hence, (a, t, s, d) is indeed a trail marker of B.

As a matter of fact, Ps,t is a shortest uv-trail ofG due to ∥Ps,t∥ = ∥P∥. Since the preprocessing and

postprocessing may ruin the shortestness of the reported uv-trail, we have anO(n6)-time algorithm

on an n-vertex general (respectively, uv-straight) graphG that either reports a general (respectively,

shortest) uv-trail of G or ensures that G is uv-trailless.

39

doi:10.6342/NTU202203481

4.3 Proof of Theorem 3

This section gives a self-contained proof of Theorem 3. The product ofm×m Boolean matricesA

and B is the m×m Boolean matrix C such that C(i, k) = true if and only if A(i, j) = B(j, k) =

true holds for an index j. The following lemma implies and improves upon Lemma 4.1, which

takes O(n3) time to obtain a uv-trail of G from a uv-trail of H .

Lemma 4.5. For any vertices u and v of an n-vertex connected graph G, it takes O(nω) time to

obtain (1) a uv-trail ofG or (2) a uv-straight graphH with V (H) ⊆ V (G) such that (a) a uv-trail

of G can be obtained from a uv-trail of H in O(n2) time and (b) if H is uv-trailless, then so is G.

Proof. We adopt the proof of Berger et al. [7, Lemma 2.2] with slight simplification and improve-

ment. It takes O(n2) time to obtain the maximal set F ⊆ V (G) such that G[F] is uv-straight.

If F = V (G), then the lemma is proved by returning H = G. The rest of the proof assumes

F ⊊ V (G). It takes O(nω) time to determine whether some connected component K of G − F

admits nonadjacent vertices x and y ofNG(K) ⊆ F with h(x) < h(y). If there is such a (K, x, y),

then a shortest uv-path of G[Px ∪ K ∪ Py] for any shortest ux-path Px and yv-path Py of G is

a uv-trail of G obtainable in O(n2) time, proving the lemma. Otherwise, let H be the union of

the uv-straight G[F] and the O(nω)-time obtainable graph H ′ with V (H ′) = F (via contracting

each connected component of G− F into a single vertex and then squaring the adjacency matrix)

such that distinct vertices x and y are adjacent inH ′ if and only if {x, y} ⊆ NG(K) holds for a con-

nected componentK ofG−F . Observe that each edge xy ofH ′ with h(x) ̸= h(y) is also an edge

ofG[F]. By |h(x)−h(y)| ≤ 1 for all edges xy ofH ′,H remains uv-straight and dH(u, x) = h(x)

holds for each x ∈ F . To see Condition (a), for any given uv-trail Q of H , let P be an O(n2)-

time obtainable non-monotone uv-path of G obtained from Q by replacing each edge xy of Q not

in G[F] with a shortest xy-path Pxy of G − (F \ {x, y}). If P were not induced, then there is

an edge zz′ of G[P] not in P with z ∈ V (Pxy) and z′ ∈ V (Px′y′) for distinct edges xy and x′y′

40

doi:10.6342/NTU202203481

of Q that are not in G[F]. Thus, {x, y, x′, y′} ⊆ NG(K) holds for some connected component K

ofG−F . By definition ofH ′,H[{x, y, x′, y′}] is complete, contradicting thatQ is an induced path

of H . Thus, P is a uv-trail of G, proving Condition (a). As for Condition (b), let P be a uv-trail

of G. For any distinct vertices x and y of P such that P [x, y] is a maximal subpath of P contained

by G[{x, y} ∪ K] for some connected component K of G − F , P [x, y] is an induced xy-path of

G[{x, y}∪K]. The pathQ obtained from P by replacing each such P [x, y] by the edge xy ofH ′ is

an induced uv-path ofH . IfQ were a shortest uv-path ofH , then |h(x)−h(y)| = 1 holds for each

edge xy of Q, implying that each edge xy of Q is an edge of P , contradicting that P is a uv-trail

of G.

The bottleneck of our algorithm for Theorem 3 comes from the following lemma, which implies

and improves upon Lemma 4.2 that takes O(n6) time.

Lemma 4.6. It takes Õ(n2ω) time to compute a data structure from which the following statements

hold for any quadruple (a, b, c, d) of V (G) for an n-vertex graph G:

1. It takes O(1) time to determine whether (a, b, c, d) is winged in G.

2. If (a, b, c, d) is winged in G, then it takes O(n) time to obtain a pair of wings for (a, b, c, d) in

G.

Proof. The lemma holds clearly for the quadruples (a, b, c, d) of V (G) with h(c) ≤ h(a) + 1.

The rest of the proof handles those with h(a) + 2 ≤ h(c). A pair of wings for such an (a, b, c, d)

must be anticomplete in G. It takes O(n4) time to obtain the n2 × n2 Boolean matrix A such

that A((a, b), (c, d)) = true if and only if (i) h(a) = h(b) ≤ h(c) = h(d) ≤ h(a) + 1 and (ii)

G admits a pair of anticomplete wings for (a, b, c, d). The transitive closure C = An of A can be

obtained in O(n2ω · logn) time via obtaining A2i in the i-th iteration. That is, for each (a, b, c, d),

we have C((a, b), (c, d)) = true if and only if (i) h(a) = h(b) ≤ h(c) = h(d) and (ii) G admits a

pair of anticomplete wings for (a, b, c, d) in G. Statement 1 is proved. Statement 2 is immediate

41

doi:10.6342/NTU202203481

from the Õ(n2ω)-time obtainable n2×n2 witness matrixW for C by, e. g., Galil and Margalit [48]:

if C((a, b), (c, d)) = true and h(a) + 2 ≤ h(c), then W ((a, b), (c, d)) is a vertex pair (x, y) with

h(a) < h(x) < h(c) and C((a, b), (x, y)) = C((x, y), (c, d)) = true.

The following dynamic data structure for a graph supports efficient edge updates and connectivity

queries.

Lemma 4.7 (Holm, de Lichtenberg, and Thorup [56]). There is a data structure for an initially

empty n-vertex graph that supports each edge insertion and edge deletion in amortized O(log2 n)

time and answers whether two vertices are connected in O(logn/ log logn) time.

We are ready to prove Theorem 3.

OurO(n4.75)-time algorithm Apply Lemma 4.5 inO(nω) time to either report a uv-trail ofG as

in Lemma 4.5(1) or makeG a uv-straight graph satisfying Conditions (a) and (b) of Lemma 4.5(2)

with respect to the originalG. If no uv-trail is reported in the previous step, then apply Lemma 4.6

in Õ(n2ω) time to obtain the data structure D for the winged quadruples of V (G) in G. It remains

to show an O(n2 log2 n)-time degree-two uv-trailblazer for the uv-straight graph G based on the

precomputed D which already spends O(n4.75) time. We proceed in two phases. Phase 1 shows

that we already have anO(n3)-time degree-two uv-trailblazer forG. Phase 2 then reduces the time

to O(n2 log2 n) via Lemma 4.7.

Phase 1 Let B1 be the O(n3)-time subroutine, taking a pair (a, b) of V (G) as the only argument,

that runs the following O(n2)-time procedure for each vertex c of G: Determine from D in O(n)

time whether G admits a winged quadruple (a, b, c, dc) of V (G) for some dc. If not, then exit.

Otherwise, obtain fromD inO(n) time a pair (W1,W2) ofwings for an arbitrarywinged (a, b, c, dc).

SinceG is uv-straight, it takesO(n2) time to obtain a monotone uc-path Sc ofG containingW1 and

a monotone bv-path Tc of G containing W2. Obtain in O(n2) time the subgraph Gc of G induced

42

doi:10.6342/NTU202203481

Figure 4.5: An illustration for the proof that B1 is a uv-trailblazer of degree two. The red path
denotes a shortest uv-trail P of the uv-straight graph G. The blue and green paths denote a
monotone uc-path Sc and a monotone tv-path Tc of G containing a precomputed pair of wings
for (a, t, c, dc) that need not coincide with P except at a and t.

by

({x ∈ V (G) : h(b) ≤ h(x) ≤ h(c)} \ (NG[Sc − c] \ {c})) ∪ V (Tc).

If the vertices c and b are not connected in Gc, then exit. Otherwise, report the O(n2)-time obtain-

able concatenation Pc of the uc-path Sc of G and a shortest cv-path of Gc.

By definition of Sc, Tc, and Gc, the uv-path Pc of G reported by B1(a, b) for any c is induced in

G. Since the height of each neighbor of c in Gc is at most h(c), Pc is not monotone. Thus, Pc is

a uv-trail of G. Let P be an arbitrary unknown shortest uv-trail of G with twist pair (s, t). Let a

(respectively, e) be the vertex of the monotone P [u, s] (respectively, P [t, v]) with h(a) = h(t)

(respectively, h(e) = h(s)). See Figure 4.5 for an illustration. To ensure that B1 is an O(n3)-time

uv-trailblazer of degree 2 for G, the rest of the phase proves that (a, t) is a trail marker for B1 by

showing that the iteration with c = s reports a uv-trail Ps of G.

Let a∗ be the neighbor of a in the monotone P [u, a], implying h(a∗) = h(t) − 1. Let e∗ be the

neighbor of e in the monotone P [e, v], implying h(e∗) = h(s)+1. Since P [a∗, s] and P [t, e∗] form

43

doi:10.6342/NTU202203481

a pair of wings for (a, t, s, e) in G, there is a ds such that (a, t, s, ds) is winged in G. Let (W1,W2)

be the pair of wings for (a, t, s, ds) in G obtained from D. The monotone us-path Ss of G con-

taining W1 is a sidetrack for P , since the monotone tv-path Ts of G containing W2 satisfies Con-

ditions T1 and T2 for Ss. By Lemma 4.3, each vertex x of P [s, t] satisfies h(t) ≤ h(x) ≤ h(s).

By Lemma 4.4, Ss − s and P [s, t]− s are anticomplete in G, implying that P [s, t] is a path of Gs.

Since s and t are connected in Gs, the subroutine call B1(a, t) outputs a uv-trail Ps of G in the

iteration with c = s. Hence, (a, t) is indeed a trail marker of B. One can verify that Ps is also

a shortest uv-trail of the uv-straight G, although ds need not be e. Thus, we have an O(n5)-time

algorithm on an n-vertex general (respectively, uv-straight) graph G that either reports a general

(respectively, shortest) uv-trail of G or ensures that G is uv-trailless.

Phase 2 Since many prefixes of a long sidetrack for a shortest uv-trail P of G remain sidetracks

for P , an edge can be deleted and then inserted back Ω(n) times in Phase 1. Phase 2 avoids the

redundancy by processing the sidetracks in the decreasing order of their lengths. Let B2 be the

following subroutine that takes a pair (a, b) of V (G) as the only argument. Obtain in overallO(n2)

time from D each set Ci with 0 ≤ i ≤ h(v) that consists of the vertices c of G with h(c) = i

such thatG admits a winged quadruple (a, b, c, dc) for some vertex dc. Let C be the union of all Ci

with 0 ≤ i ≤ h(v). Obtain in overall O(n2) time fromD for each vertex c ∈ C (i) a monotone uc-

path Sc of G containing a and (ii) a monotone bv-path Tc with

dG[Sc∪Tc](u, v) > ∥Sc∥+ ∥Tc∥.

Obtain the subgraph H of G induced by the vertices with heights at least h(a) in O(n2 log2 n)

time by the dynamic data structure of Lemma 4.7. Iteratively perform the following steps in the

decreasing order of the indices i with h(a) ≤ i < h(v):

1. Delete from H the incident edges of NG[Sc − c] \ {c} in G for all c ∈ Ci.

44

doi:10.6342/NTU202203481

2. Insert to H the incident edges of Ci in G.

3. Delete from H all edges xy of G with h(x) = i and h(y) = i+ 1.

4. If b is not connected to any c ∈ Ci in H , then proceed to the next iteration. Otherwise, let c be

an arbitrary vertex of Ci that is connected to b in H . Exit the loop and report the O(n2)-time

obtainable concatenation Pc of Sc and a shortest cv-path of G[H ∪ Tc].

Since Sc − c and Tc − b are anticomplete in G and the height of each neighbor of c inH is at most

h(c), any arbitrary reported uv-path Pc of G is a uv-trail of G.

Throughout all iterations, the incident edges of each vertex of G is deleted O(1) times by Step 1,

each edge of G is updated O(1) times by Steps 2 and 3, and each vertex c ∈ C is queried O(1)

times by Step 4. Thus, each subroutine call B2(a, b) runs in O(n2 log2 n) time.

LetP be an arbitrary shortest uv-trail ofGwith twist pair (s, t). As in Phase 1, let a (respectively, e)

be the vertex of the monotone P [u, s] (respectively, P [t, v]) with h(a) = h(t) (respectively, h(e) =

h(s)). The rest of the phase proves that (a, t) is a trail marker for B2 by showing that an iteration

with i ≥ h(s) in the loop of the subroutine call B2(a, t) reports a uv-trail Pc of G. See Figures 4.6

and 4.7 for an illustration.

If an iteration of B2(a, t) with i ≥ h(s) + 1 reports a uv-trail of G (that need not be shortest), then

we are done. Otherwise, we show that the iteration with i = h(s) has to report a uv-trail of G. For

each c ∈ C with h(c) ≥ i, let sc be the unknown vertex of Sc with h(sc) = i. Sc[u, sc] remains

a sidetrack for P , since Tc still satisfies Conditions T1 and T2 for Sc[u, sc]. Thus, sc ∈ Ci. By

Lemma 4.4, Sc[u, sc] − sc and P [s, t] − s are anticomplete in G even if Sc[u, sc] need not be Ssc .

As a result, P [s, t] − s is a path of the H at the completion of Step 1 in the i-th iteration. s ∈ Ci

and Lemma 4.3, P [s, t] is a path of the graph H at the completion of Step 3 in the i-th iteration.

Therefore, s is a c ∈ Ci that is connected to t in H . Step 4 in the i-th iteration has to output a

(shortest) uv-trail Pc of G for some c ∈ Ci that need not be s. Thus, we have an O(n4.75)-time

algorithm that either obtains a uv-trail of G or ensures that G is uv-trailless. A reported uv-trail

45

doi:10.6342/NTU202203481

Figure 4.6: An illustration for the proof that B2 is a uv-trailblazer of degree two. The red path
denotes a shortest uv-trail P of the uv-straight graph G. The blue and green paths denote a
monotone uc-path Sc and a monotone tv-path Tc of G containing a precomputed pair of wings
for (a, t, c, dc) that need not coincide with P except at a and t. Sc[u, sc] remains a sidetrack for P .

of G by this O(n4.75)-time algorithm need not be a shortest uv-trail of G, since we cannot afford

to spend O(n2) time, as in Phase 1, for each c ∈ C that is connected to t in the H at the h(c)-th

iteration to obtain a shortest cv-path of G[H ∪ Tc].

46

doi:10.6342/NTU202203481

c1

a s

c2

t v

Sc1

Sc2

T

(a)

c1

a s

c2

t v

T

(b)
c1

a s

c2

t v

T

(c)

c1

a s

c2

t v

(d)
c1

u a s

c2

t v

(e)

Figure 4.7: An illustration for running B2(a, t) on Figure 4.6. (a) The initial H . (b) The H after
Step 1. (c) The H after Step 2. (d) The H after Step 3 in which c2 and t are connected. (e) The H
after Step 4. The red path is a non-shortest uv-trail of G reported by B2(a, t).

47

doi:10.6342/NTU202203481

Chapter 5

Conclusion

Algorithms for induced subgraphs are important and challenging. We give improved algorithms

for (1) recognizing perfect graphs via detecting odd holes, (2) finding a shortest odd hole, and (3)

finding a trail between two given vertices. It is of interest to further reduce the required time of

these three problems.

We achieve the improvement of algorithm for (1) by showing that guessing at most 5 vertices

suffices for the bottleneck subroutine of the odd-hole detection algorithm of [65] to pin down an

odd hole of G.

As for the algorithm for (2), we achieve the improvement by a new observation described byClaim 1

in the proof of Lemma 3.1 that guessing 11 vertices suffices for the bottleneck subroutine of the

shortest-odd-hole detection algorithm of [23] to pin down a shortest odd hole of G. It is of interest

to know whether some vertices of a marker of Ti for a tripod T of G can be removed from the list

of guessed vertices so that a further improved algorithm might be feasible.

The key to our improved algorithm for (3) is the observation regarding an arbitrary shortest uv-trail

of a uv-straight graph G described by Lemma 4.4. The inequality of Lemma 4.4 is stronger than

48

doi:10.6342/NTU202203481

the condition that S− c and P [s, t]−s are anticomplete inG. As a matter of fact, the latter suffices

for our uv-trailblazers in §4.2 and §4.3. Thus, a further improved uv-trailblazer might be possible

if the wings for a winged quadruple can be obtained more efficiently. As mentioned in Phase 1

of §4.3, a shortest uv-trail, if any, of a uv-straight G can be obtained by our B1-based trailblazing

algorithm in O(n5) time. Detecting a uv-trail with length at least 2dG(u, v) is NP-complete [7,

Theorem 1.6]. It would be of interest to see if a shortest uv-trail or a uv-trail having length at least

dG(u, v)+k for a positive k = O(1) in a generalG can be obtained in polynomial time. It is also of

interest to see whether the one-to-all (respectively, all-pairs) version of the problem can be solved

in time much lower than O(n5.75) (respectively, O(n6.75)).

49

doi:10.6342/NTU202203481

References

[1] T. Abrishami, M. Chudnovsky, M. Pilipczuk, P. Rzazewski, and P. D. Seymour. Induced

subgraphs of bounded treewidth and the container method. In D. Marx, editor, Proceed-

ings of the 32nd ACM-SIAM Symposium on Discrete Algorithms, pages 1948–1964, 2021.

doi:10.1137/1.9781611976465.116.

[2] J. Alman and V. Vassilevska Williams. A refined laser method and faster matrix multipli-

cation. In D. Marx, editor, Proceedings of the 32nd ACM-SIAM Symposium on Discrete

Algorithms, pages 522–539, 2021. doi:10.1137/1.9781611976465.32.

[3] N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM, 42(4):844–856, 1995.

doi:10.1145/210332.210337.

[4] C. Berge. Les problèmes de coloration en théorie des graphes. Publications de l’Institut de

statistique de l’Université de Paris, 9:123–160, 1960.

[5] C. Berge. Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr

sind (Zusammenfassung). Wissenschaftliche Zeitschrift, Martin Luther Universität Halle-

Wittenberg, Mathematisch-Naturwissenschaftliche Reihe, 10:114–115, 1961.

[6] C. Berge. Graphs. North-Holland, Amsterdam, New York, 1985.

[7] E. Berger, P. D. Seymour, and S. Spirkl. Finding an induced path that is not a shortest path.

Discrete Mathematics, 344(7):112398.1–112398.6, 2021. doi:10.1016/j.disc.2021.112398.

50

https://doi.org/10.1137/1.9781611976465.116
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1145/210332.210337
https://doi.org/10.1016/j.disc.2021.112398

doi:10.6342/NTU202203481

[8] D. Bienstock. On the complexity of testing for odd holes and induced odd paths. Discrete

Mathematics, 90(1):85–92, 1991. doi:10.1016/0012-365X(91)90098-M, see [9] for corri-

gendum.

[9] D. Bienstock. Corrigendum to: D. Bienstock, “On the complexity of testing for odd holes

and induced odd paths” Discrete Mathematics 90 (1991) 85–92. Discrete Mathematics,

102(1):109, 1992. doi:10.1016/0012-365X(92)90357-L.

[10] N. Biggs, E. K. Lloyd, and R. J. Wilson. Graph Theory, 1736-1936. Oxford University

Press, 1986.

[11] A. Björklund, T. Husfeldt, and P. Kaski. The shortest even cycle problem is tractable. In

S. Leonardi and A. Gupta, editors, Proceedings of the 54th Annual Symposium on Theory of

Computing, pages 117–130, 2022. doi:10.1145/3519935.3520030.

[12] H.-C. Chang and H.-I. Lu. Computing the girth of a planar graph in linear time. SIAM

Journal on Computing, 42(3):1077–1094, 2013. doi:10.1137/110832033.

[13] H.-C. Chang and H.-I. Lu. A faster algorithm to recognize even-hole-free graphs. Journal

of Combinatorial Theory, Series B, 113:141–161, 2015. doi:10.1016/j.jctb.2015.02.001.

[14] Y. Chen and J. Flum. On parameterized path and chordless path problems. In Proceedings

of the 22nd Annual IEEE Conference on Computational Complexity, pages 250–263, 2007.

doi:10.1109/CCC.2007.21.

[15] H.-T. Cheong and H.-I. Lu. Finding a shortest even hole in polynomial time. Journal of

Graph Theory, 99(3):425–434, 2022. doi:10.1002/jgt.22748.

[16] Y.-C. Chiu and H.-I. Lu. Blazing a trail via matrix multiplications: A faster algorithm for

non-shortest induced paths. In P. Berenbrink and B. Monmege, editors, Proceedings of the

51

https://doi.org/10.1016/0012-365X(91)90098-M
https://doi.org/10.1016/0012-365X(92)90357-L
https://doi.org/10.1145/3519935.3520030
https://doi.org/10.1137/110832033
https://doi.org/10.1016/j.jctb.2015.02.001
https://doi.org/10.1109/CCC.2007.21
https://doi.org/10.1002/jgt.22748

doi:10.6342/NTU202203481

39th International Symposium on Theoretical Aspects of Computer Science, LIPIcs 219,

pages 23:1–23:16, 2022. doi:10.4230/LIPIcs.STACS.2022.23.

[17] M. Chudnovsky, G. Cornuéjols, X. Liu, P. D. Seymour, and K. Vušković. Recognizing Berge

graphs. Combinatorica, 25(2):143–186, 2005. doi:10.1007/s00493-005-0012-8.

[18] M. Chudnovsky, K.-i. Kawarabayashi, and P. Seymour. Detecting even holes. Journal of

Graph Theory, 48(2):85–111, 2005. doi:10.1002/jgt.20040.

[19] M. Chudnovsky, M. Pilipczuk, M. Pilipczuk, and S. Thomassé. On the maximum weight

independent set problem in graphs without induced cycles of length at least five. SIAM

Journal on Discrete Mathematics, 34(2):1472–1483, 2020. doi:10.1137/19M1249473.

[20] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect graph the-

orem. Annals of Mathematics, 164(1):51–229, 2006. doi:10.4007/annals.2006.164.51.

[21] M. Chudnovsky, N. Robertson, P. D. Seymour, and R. Thomas. Progress on perfect graphs.

Mathematical Programming, 97(1-2):405–422, 2003. doi:10.1007/s10107-003-0449-8.

[22] M. Chudnovsky, A. Scott, and P. Seymour. Detecting a long odd hole. Combinatorica,

41(1):1–30, 2021. doi:10.1007/s00493-020-4301-z.

[23] M. Chudnovsky, A. Scott, and P. Seymour. Finding a shortest odd hole. ACM Transactions

on Algorithms, 17(2):13.1–13.21, 2021. doi:10.1145/3447869.

[24] M. Chudnovsky, A. Scott, P. Seymour, and S. Spirkl. Detecting an odd hole. Journal of the

ACM, 67(1):5.1–5.12, 2020. doi:10.1145/3375720.

[25] M. Chudnovsky and P. Seymour. The three-in-a-tree problem. Combinatorica, 30(4):387–

417, 2010. doi:10.1007/s00493-010-2334-4.

[26] M. Chudnovsky and P. D. Seymour. Even pairs in Berge graphs. Journal of Combinatorial

Theory, Series B, 99(2):370–377, 2009. doi:10.1016/j.jctb.2008.08.002.

52

https://doi.org/10.4230/LIPIcs.STACS.2022.23
https://doi.org/10.1007/s00493-005-0012-8
https://doi.org/10.1002/jgt.20040
https://doi.org/10.1137/19M1249473
https://doi.org/10.4007/annals.2006.164.51
https://doi.org/10.1007/s10107-003-0449-8
https://doi.org/10.1007/s00493-020-4301-z
https://doi.org/10.1145/3447869
https://doi.org/10.1145/3375720
https://doi.org/10.1007/s00493-010-2334-4
https://doi.org/10.1016/j.jctb.2008.08.002

doi:10.6342/NTU202203481

[27] M. Chudnovsky and V. Sivaraman. Odd holes in bull-free graphs. SIAM Journal on Discrete

Mathematics, 32(2):951–955, 2018. doi:10.1137/17M1131301.

[28] V. Chvátal and N. Sbihi. Bull-free berge graphs are perfect. Graphs and Combinatorics,

3(1):127–139, 1987. doi:10.1007/BF01788536.

[29] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković. Finding an even hole in a graph. In

Proceedings of the 38th Symposium on Foundations of Computer Science, pages 480–485,

1997. doi:10.1109/SFCS.1997.646136.

[30] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković. Even and odd holes in cap-

free graphs. Journal of Graph Theory, 30(4):289–308, 1999. doi:10.1002/(SICI)1097-

0118(199904)30:4<289::AID-JGT4>3.0.CO;2-3.

[31] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković. Even-hole-free graphs Part I: De-

composition theorem. Journal of Graph Theory, 39(1):6–49, 2002. doi:10.1002/jgt.10006.

[32] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković. Even-hole-free graphs

Part II: Recognition algorithm. Journal of Graph Theory, 40(4):238–266, 2002.

doi:10.1002/jgt.10045.

[33] M. Conforti, G. Cornuéjols, X. Liu, K. Vušković, and G. Zambelli. Odd hole recognition in

graphs of bounded clique size. SIAM Journal on Discrete Mathematics, 20(1):42–48, 2006.

doi:10.1137/S089548010444540X.

[34] M. Conforti, G. Cornuéjols, and M. R. Rao. Decomposition of balanced matrices. Journal

of Combinatorial Theory, Series B, 77(2):292–406, 1999. doi:10.1006/jctb.1999.1932.

[35] M. Conforti, G. Cornuéjols, and K. Vušković. Square-free perfect graphs. Journal of Com-

binatorial Theory, Series B, 90(2):257–307, 2004. doi:10.1016/j.jctb.2003.08.003.

53

https://doi.org/10.1137/17M1131301
https://doi.org/10.1007/BF01788536
https://doi.org/10.1109/SFCS.1997.646136
https://doi.org/10.1002/(SICI)1097-0118(199904)30:4%3C289::AID-JGT4%3E3.0.CO;2-3
https://doi.org/10.1002/(SICI)1097-0118(199904)30:4%3C289::AID-JGT4%3E3.0.CO;2-3
https://doi.org/10.1002/jgt.10006
https://doi.org/10.1002/jgt.10045
https://doi.org/10.1137/S089548010444540X
https://doi.org/10.1006/jctb.1999.1932
https://doi.org/10.1016/j.jctb.2003.08.003

doi:10.6342/NTU202203481

[36] L. Cook, J. Horsfield, M. Preissmann, C. Robin, P. Seymour, N. L. D. Sintiari,

N. Trotignon, and K. Vušković. Graphs with all holes the same length. arXiv, 2021.

doi:10.48550/arxiv.2110.09970.

[37] L. Cook and P. D. Seymour. Detecting a long even hole. European Journal of Combinatorics,

104:103537, 2022. doi:10.1016/j.ejc.2022.103537.

[38] D. Coppersmith and S.Winograd. Matrixmultiplication via arithmetic progressions. Journal

of Symbolic Computation, 9(3):251–280, 1990. doi:10.1016/S0747-7171(08)80013-2.

[39] G. Cornuéjols, X. Liu, and K. Vušković. A polynomial algorithm for recognizing perfect

graphs. In Proceedings of the 44th Symposium on Foundations of Computer Science, pages

20–27, 2003. doi:10.1109/SFCS.2003.1238177.

[40] M. V. G. da Silva and K. Vušković. Decomposition of even-hole-free graphs with star

cutsets and 2-joins. Journal of Combinatorial Theory, Series B, 103(1):144–183, 2013.

doi:10.1016/j.jctb.2012.10.001.

[41] S. Dahlgaard, M. B. T. Knudsen, and M. Stöckel. Finding even cycles faster via

capped k-walks. In H. Hatami, P. McKenzie, and V. King, editors, Proceedings of the

49th Annual ACM Symposium on Theory of Computing, pages 112–120. ACM, 2017.

doi:10.1145/3055399.3055459.

[42] M. Dalirrooyfard and V. VassilevskaWilliams. Induced cycles and paths are harder than you

think. In Proceedings of the 63rd Annual Symposium on Foundations of Computer Science,

2022, to appear. doi:10.48550/arXiv.2209.01873.

[43] M. Dalirrooyfard, T. D. Vuong, and V. Vassilevska Williams. Graph pattern detection: hard-

ness for all induced patterns and faster non-induced cycles. In Proceedings of the 51st Sym-

posium on Theory of Computing, pages 1167–1178, 2019. doi:10.1145/3313276.3316329.

54

https://doi.org/10.48550/arxiv.2110.09970
https://doi.org/10.1016/j.ejc.2022.103537
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1109/SFCS.2003.1238177
https://doi.org/10.1016/j.jctb.2012.10.001
https://doi.org/10.1145/3055399.3055459
https://doi.org/10.48550/arXiv.2209.01873
https://doi.org/10.1145/3313276.3316329

doi:10.6342/NTU202203481

[44] D. Eppstein. Finding the k shortest paths. SIAM Journal on Computing, 28(2):652–673,

1998. doi:10.1137/S0097539795290477.

[45] H. Everett, C. M. H. de Figueiredo, C. L. Sales, F. Maffray, O. Porto, and B. A. Reed. Path

parity and perfection. Discrete Mathematics, 165-166:233–252, 1997. doi:10.1016/S0012-

365X(96)00174-4.

[46] M. R. Fellows, J. Kratochvíl, M.Middendorf, and F. Pfeiffer. The complexity of induced mi-

nors and related problems. Algorithmica, 13(3):266–282, 1995. doi:10.1007/BF01190507.

[47] J. Fonlupt and J. Uhry. Transformations which preserve perfectness and H-perfectness of

graphs. In A. Bachem, M. Grötschel, and B. Korte, editors, Bonn Workshop on Combinato-

rial Optimization, volume 66 of North-Holland Mathematics Studies, pages 83–95. North-

Holland, 1982. doi:10.1016/S0304-0208(08)72445-9.

[48] Z. Galil and O. Margalit. Witnesses for boolean matrix multiplication and for transitive

closure. Journal of Complexity, 9(2):201–221, 1993. doi:10.1006/jcom.1993.1014.

[49] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. Freeman, 1979.

[50] S. Gaspers, S. Huang, and D. Paulusma. Colouring square-free graphs without long in-

duced paths. In R. Niedermeier and B. Vallée, editors, Proceedings of the 35th Sympo-

sium on Theoretical Aspects of Computer Science, LIPIcs 96, pages 35.1–35.15, 2018.

doi:10.4230/LIPIcs.STACS.2018.35.

[51] E. D. Giacomo, G. Liotta, and T. Mchedlidze. Lower and upper bounds for long in-

duced paths in 3-connected planar graphs. Theoretical Computer Science, 636:47–55, 2016.

doi:10.1016/j.tcs.2016.04.034.

[52] P. A. Golovach, D. Paulusma, and E. J. van Leeuwen. Induced disjoint paths in AT-free

55

https://doi.org/10.1137/S0097539795290477
https://doi.org/10.1016/S0012-365X(96)00174-4
https://doi.org/10.1016/S0012-365X(96)00174-4
https://doi.org/10.1007/BF01190507
https://doi.org/10.1016/S0304-0208(08)72445-9
https://doi.org/10.1006/jcom.1993.1014
https://doi.org/10.4230/LIPIcs.STACS.2018.35
https://doi.org/10.1016/j.tcs.2016.04.034

doi:10.6342/NTU202203481

graphs. In F. V. Fomin and P. Kaski, editors, Proceedings of the 13th Scandinavian Sympo-

sium and Workshops on Algorithm Theory, Lecture Notes in Computer Science 7357, pages

153–164, 2012. doi:10.1007/978-3-642-31155-0_14.

[53] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Opti-

mization, volume 2 of Algorithms and Combinatorics. Springer, 1988.

[54] R. Haas and M. Hoffmann. Chordless paths through three vertices. Theoretical Computer

Science, 351(3):360–371, 2006. doi:10.1016/j.tcs.2005.10.021.

[55] C. T. Hoàng, M. Kaminski, J. Sawada, and R. Sritharan. Finding and listing in-

duced paths and cycles. Discrete Applied Mathematics, 161(4-5):633–641, 2013.

doi:10.1016/j.dam.2012.01.024.

[56] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-dynamic

algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Journal of

the ACM, 48(4):723–760, July 2001. doi:10.1145/502090.502095.

[57] W.-L. Hsu. Recognizing planar perfect graphs. Journal of the ACM, 34(2):255–288, 1987.

doi:10.1145/23005.31330.

[58] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. SIAM Journal on Computing,

7(4):413–423, 1978. doi:10.1137/0207033.

[59] L. Jaffke, O.-j. Kwon, and J. A. Telle. Mim-width I. induced path problems. Discrete Applied

Mathematics, 278:153–168, 2020. doi:10.1016/j.dam.2019.06.026.

[60] D. S. Johnson. The NP-completeness column. ACM Transactions on Algorithms, 1(1):160–

176, 2005. doi:10.1145/1077464.1077476.

[61] M. Kaminski and N. Nishimura. Finding an induced path of given parity in planar graphs in

polynomial time. In Y. Rabani, editor, Proceedings of the 23rd Annual ACM-SIAM Sympo-

56

https://doi.org/10.1007/978-3-642-31155-0_14
https://doi.org/10.1016/j.tcs.2005.10.021
https://doi.org/10.1016/j.dam.2012.01.024
https://doi.org/10.1145/502090.502095
https://doi.org/10.1145/23005.31330
https://doi.org/10.1137/0207033
https://doi.org/10.1016/j.dam.2019.06.026
https://doi.org/10.1145/1077464.1077476

doi:10.6342/NTU202203481

sium on Discrete Algorithms, pages 656–670, 2012. doi:10.1137/1.9781611973099.55.

[62] K. Kawarabayashi, Y. Kobayashi, and B. A. Reed. The disjoint paths problem in

quadratic time. Journal of Combinatorial Theory, Series B, 102(2):424–435, 2012.

doi:10.1016/j.jctb.2011.07.004.

[63] L. G. Khachiyan. A polynomial algorithm in linear programming. In Doklady Akademii

Nauk, volume 244, pages 1093–1096. Russian Academy of Sciences, 1979.

[64] M. Kriesell. Induced paths in 5-connected graphs. Journal of Graph Theory, 36(1):52–58,

2001. doi:10.1002/1097-0118(200101)36:1<52::AID-JGT5>3.0.CO;2-N.

[65] K.-Y. Lai, H.-I. Lu, and M. Thorup. Three-in-a-tree in near linear time. In Proccedings

of the 52nd Annual ACM Symposium on Theory of Computing, pages 1279–1292, 2020.

doi:10.1145/3357713.3384235.

[66] F. Le Gall. Powers of tensors and fast matrix multiplication. In K. Nabeshima, K. Nagasaka,

F. Winkler, and Á. Szántó, editors, Proceedings of the International Symposium on Symbolic

and Algebraic Computation, pages 296–303, 2014. doi:10.1145/2608628.2608664.

[67] W. Liu and N. Trotignon. The k-in-a-tree problem for graphs of girth at least k. Discrete

Applied Mathematics, 158(15):1644–1649, 2010. doi:10.1016/j.dam.2010.06.005.

[68] L. Lovász. A characterization of perfect graphs. Journal of Combinatorial Theory, Series

B, 13(2):95–98, 1972. doi:10.1016/0095-8956(72)90045-7.

[69] L. Lovász. Graph minor theory. American Mathematical Society. Bulletin. New Series,

43(1):75–86, 2006. doi:10.1090/S0273-0979-05-01088-8.

[70] W. McCuaig. Pólya’s permanent problem. Electronic Journal of Combinatorics, 11(1),

2004. doi:10.37236/1832.

57

https://doi.org/10.1137/1.9781611973099.55
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1002/1097-0118(200101)36:1%3C52::AID-JGT5%3E3.0.CO;2-N
https://doi.org/10.1145/3357713.3384235
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1016/j.dam.2010.06.005
https://doi.org/10.1016/0095-8956(72)90045-7
https://doi.org/10.1090/S0273-0979-05-01088-8
https://doi.org/10.37236/1832

doi:10.6342/NTU202203481

[71] H. Meyniel. A new property of critical imperfect graphs and some consequences. European

Journal of Combinatorics, 8(3):313–316, 1987. doi:10.1016/S0195-6698(87)80037-9.

[72] O. Porto. Even induced cycles in planar graphs. In Proceedings of the 1st Latin American

Symposium on Theoretical Informatics, pages 417–429, 1992. doi:10.1007/BFb0023845.

[73] M. Radovanovic, N. Trotignon, and K. Vušković. The (theta, wheel)-free graphs part IV:

induced paths and cycles. Journal of Combinatorial Theory, Series B, 146:495–531, 2021.

doi:10.1016/j.jctb.2020.06.002.

[74] B. A. Reed. A semi-strong perfect graph theorem. Journal of Combinatorial Theory, Series

B, 43(2):223–240, 1987. doi:10.1016/0095-8956(87)90022-0.

[75] N. Robertson and P. D. Seymour. Graph minors. I. Excluding a forest. Journal of Combi-

natorial Theory, Series B, 35(1):39–61, 1983. doi:10.1016/0095-8956(83)90079-5.

[76] N. Robertson and P. D. Seymour. Graph minors. III. Planar tree-width. Journal of Combi-

natorial Theory, Series B, 36(1):49–64, 1984. doi:10.1016/0095-8956(84)90013-3.

[77] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. Jour-

nal of Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

[78] N. Robertson and P. D. Seymour. Graph minors. V. Excluding a planar graph. Journal of

Combinatorial Theory, Series B, 41(1):92–114, 1986. doi:10.1016/0095-8956(86)90030-4.

[79] N. Robertson and P. D. Seymour. Graph minors. VI. Disjoint paths across a disc. Journal of

Combinatorial Theory, Series B, 41(1):115–138, 1986. doi:10.1016/0095-8956(86)90031-6.

[80] N. Robertson and P. D. Seymour. Graph minors. VII. Disjoint paths on a surface. Journal of

Combinatorial Theory, Series B, 45(2):212–254, 1988. doi:10.1016/0095-8956(88)90070-6.

[81] N. Robertson and P. D. Seymour. Graph minors. IV. Tree-width and well-quasi-ordering.

Journal of Combinatorial Theory, Series B, 48(2):227–254, 1990. doi:10.1016/0095-

58

https://doi.org/10.1016/S0195-6698(87)80037-9
https://doi.org/10.1007/BFb0023845
https://doi.org/10.1016/j.jctb.2020.06.002
https://doi.org/10.1016/0095-8956(87)90022-0
https://doi.org/10.1016/0095-8956(83)90079-5
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1016/0095-8956(86)90030-4
https://doi.org/10.1016/0095-8956(86)90031-6
https://doi.org/10.1016/0095-8956(88)90070-6
https://doi.org/10.1016/0095-8956(90)90120-O
https://doi.org/10.1016/0095-8956(90)90120-O

doi:10.6342/NTU202203481

8956(90)90120-O.

[82] N. Robertson and P. D. Seymour. Graph minors. IX. Disjoint crossed paths. Journal of

Combinatorial Theory, Series B, 49(1):40–77, 1990. doi:10.1016/0095-8956(90)90063-6.

[83] N. Robertson and P. D. Seymour. Graphminors. VIII. A Kuratowski theorem for general sur-

faces. Journal of Combinatorial Theory, Series B, 48(2):255–288, 1990. doi:10.1016/0095-

8956(90)90121-F.

[84] N. Robertson and P. D. Seymour. Graph minors. X. Obstructions to tree-decomposition.

Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991. doi:10.1016/0095-

8956(91)90061-N.

[85] N. Robertson and P. D. Seymour. Graph minors. XI. Circuits on a surface. Journal of

Combinatorial Theory, Series B, 60(1):72–106, 1994. doi:10.1006/jctb.1994.1007.

[86] N. Robertson and P. D. Seymour. Graph minors. XII. Distance on a surface. Journal of

Combinatorial Theory, Series B, 64(2):240–272, 1995. doi:10.1006/jctb.1995.1034.

[87] N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem. Journal

of Combinatorial Theory, Series B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.

[88] N. Robertson and P. D. Seymour. Graph minors. XIV. Extending an embedding. Journal of

Combinatorial Theory, Series B, 65(1):23–50, 1995. doi:10.1006/jctb.1995.1042.

[89] N. Robertson and P. D. Seymour. Graph minors: XV. Giant steps. Journal of Combinatorial

Theory, Series B, 68(1):112–148, 1996. doi:10.1006/jctb.1996.0059.

[90] N. Robertson and P. D. Seymour. Graph minors: XVII. Taming a vortex. Journal of Com-

binatorial Theory, Series B, 77(1):162–210, 1999. doi:10.1006/jctb.1999.1919.

[91] N. Robertson and P. D. Seymour. Graphminors. XVI. Excluding a non-planar graph. Journal

of Combinatorial Theory, Series B, 89(1):43–76, 2003. doi:10.1016/S0095-8956(03)00042-

59

https://doi.org/10.1016/0095-8956(90)90120-O
https://doi.org/10.1016/0095-8956(90)90063-6
https://doi.org/10.1016/0095-8956(90)90121-F
https://doi.org/10.1016/0095-8956(90)90121-F
https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/10.1006/jctb.1994.1007
https://doi.org/10.1006/jctb.1995.1034
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1006/jctb.1995.1042
https://doi.org/10.1006/jctb.1996.0059
https://doi.org/10.1006/jctb.1999.1919
https://doi.org/10.1016/S0095-8956(03)00042-X
https://doi.org/10.1016/S0095-8956(03)00042-X

doi:10.6342/NTU202203481

X.

[92] N. Robertson and P. D. Seymour. Graph minors. XVIII. Tree-decompositions and

well-quasi-ordering. Journal of Combinatorial Theory, Series B, 89(1):77–108, 2003.

doi:10.1016/S0095-8956(03)00067-4.

[93] N. Robertson and P. D. Seymour. Graph minors. XIX. Well-quasi-ordering on

a surface. Journal of Combinatorial Theory, Series B, 90(2):325–385, 2004.

doi:10.1016/j.jctb.2003.08.005.

[94] N. Robertson and P. D. Seymour. Graph minors. XX. Wagner’s conjecture. Journal of

Combinatorial Theory, Series B, 92(2):325–357, 2004. doi:10.1016/j.jctb.2004.08.001.

[95] N. Robertson and P. D. Seymour. Graph minors. XXI. Graphs with unique linkages. Journal

of Combinatorial Theory, Series B, 99(3):583–616, 2009. doi:10.1016/j.jctb.2008.08.003.

[96] N. Robertson and P. D. Seymour. Graph minors XXIII. Nash-Williams’ immer-

sion conjecture. Journal of Combinatorial Theory, Series B, 100(2):181–205, 2010.

doi:10.1016/j.jctb.2009.07.003.

[97] N. Robertson and P. D. Seymour. Graph minors. XXII. Irrelevant vertices in link-

age problems. Journal of Combinatorial Theory, Series B, 102(2):530–563, 2012.

doi:10.1016/j.jctb.2007.12.007.

[98] N. Robertson, P. D. Seymour, and R. Thomas. Permanents, Pfaffian orientations, and even

directed circuits. Annals of Mathematics, 150(3):929–975, 1999. doi:10.2307/121059.

[99] D. Rose, R. Tarjan, and G. Lueker. Algorithmic aspects of vertex elimination on graphs.

SIAM Journal on Computing, 5(2):266–283, 1976. doi:10.1137/0205021.

[100] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs,

test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal on

60

https://doi.org/10.1016/S0095-8956(03)00042-X
https://doi.org/10.1016/S0095-8956(03)00067-4
https://doi.org/10.1016/j.jctb.2003.08.005
https://doi.org/10.1016/j.jctb.2004.08.001
https://doi.org/10.1016/j.jctb.2008.08.003
https://doi.org/10.1016/j.jctb.2009.07.003
https://doi.org/10.1016/j.jctb.2007.12.007
https://doi.org/10.2307/121059
https://doi.org/10.1137/0205021

doi:10.6342/NTU202203481

Computing, 13(3):566–579, 1984. doi:10.1137/0213035, see [101] for addendum.

[101] R. E. Tarjan andM.Yannakakis. Addendum: Simple linear-time algorithms to test chordality

of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM

Journal on Computing, 14(1):254–255, 1985. doi:10.1137/0214020.

[102] N. Trotignon. Perfect graphs, page 137–160. Encyclopedia of Mathematics and its Appli-

cations. Cambridge University Press, 2015.

[103] V. Vassilevska Williams. Multiplying matrices faster than Coppersmith–Winograd. In Pro-

ceedings of the 44th Annual ACM Symposium on Theory of Computing, pages 887–898,

2012. doi:10.1145/2213977.2214056.

[104] V. V.Williams and R. R.Williams. Subcubic equivalences between path, matrix, and triangle

problems. Journal of the ACM, 65(5):27:1–27:38, 2018. doi:10.1145/3186893.

[105] R. Yuster and U. Zwick. Finding even cycles even faster. SIAM Journal on Discrete Math-

ematics, 10(2):209–222, 1997. doi:10.1137/S0895480194274133.

61

https://doi.org/10.1137/0213035
https://doi.org/10.1137/0214020
https://doi.org/10.1145/2213977.2214056
https://doi.org/10.1145/3186893
https://doi.org/10.1137/S0895480194274133

	Acknowledgement
	摘要
	Abstract
	中文簡介
	Contents
	Introduction
	Recognizing Perfect Graphs via Detecting Odd Holes
	Technical Overview
	Proving Theorem 1
	Proving Lemma 2.2
	Proving Lemma 2.3
	Proving Lemma 2.5
	Proving Lemma 2.6

	Proving Lemma 2.4
	Proving Lemma 2.9
	Proving Lemma 2.10

	Finding a Shortest Odd Hole
	Technical Overview
	Proving Theorem 2
	Proving Lemma 3.1

	Finding a Non-shortest Induced Path
	Technical Overview
	A simpler algorithm
	Proof of Theorem 3

	Conclusion
	References

