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摘要

本研究旨在使用結合患者胸腔 X光片和電子健康紀錄的多模態深度學習模型

於急診室進行急性心臟衰竭之篩檢。如果病人 N端前腦利鈉肽的血液濃度高於

300ng/L，則被定義為陽性。對於每張胸腔 X光片，肺心遮罩生成器最初通過肺心

分割模型識別肺和心臟區域。然後通過預定義的演算法手動提取三個估計心臟大

小的比例值和 306個放射組學特徵。最終，多模態深度學習模型融合來自電子健

康紀錄和胸腔 X光片的資訊並輸出最終預測。研究群體是從公開資料集 Medical

Information Mart for Intensive Care (MIMIC) IV中所提取。研究群體包括 1,432名患

者和 1,833對胸腔 X光片和電子健康紀錄。其中，71%的樣本為陽性。53%的患

者為男性，47%為女性。研究群體的年齡分佈最小為 20歲最大為 91歲，年齡平

均為 65歲。此回溯性實驗在此資料集上顯示，當多模態深度學習模型整合來自每

個單模態模型的預測結果時，模型預測表性最高可達 AUROC值 0.89。

關鍵字：多模態、深度學習、急性心臟衰竭、胸腔 X光、電子健康紀錄
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Abstract

This study aims to screen suspected acute heart failure (AHF) in the emergency

department using a multimodal deep learning model combining patients＇chest X-rays

(CXRs) and electronic health records (EHRs). The binary label for AHF is defined as

positive if a patient’s value of N terminal pro B type natriuretic peptide (NT-proBNP) is

higher than 300 ng/L. For each CXR, the lung-heart mask generator initially identified the

lung and heart region by the lung-heart segmentation model. Then three heart-size ratios

and 306 radiomic features were extracted manually by predefined formulas. Eventually,

the information from EHRs and CXRs was fused to output the final prediction. The study

population was extracted from the Medical Information Mart for Intensive Care (MIMIC)

IV open-source dataset. The study population includes 1,432 patients and 1,833 pairs of

CXR and EHR. 71% of the samples are positive. 53% of the patient are male, and 47%

are female. The age of the study population range from 20 to 91, with a mean of 65.

The retrospective experiments illustrated that the proposed method achieved the highest
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AUROC of 0.89 when fusing all predictions from every single-modality model.

Keywords: acute heart failure, chest X-ray, deep learning, electronic health record, mul-

timodality
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Chapter 1 Introduction

1.1 Background

Acute heart failure (AHF) is defined as a rapid change in the signs and symptoms

of heart failure (HF) that result in the need for urgent treatment [1]. Diagnoses of AHF

account for approximately one million emergency department (ED) visits in the United

States [2]. Despite its high prevalence in the ED setting, diagnosing AHF in ED patients

with undifferentiated dyspnea can be challenging, especially in patients with advanced

age and comorbid disease [3]. Currently, no single examination can on its own reliably

diagnose or rule out AHF [3]. On the other hand, several studies have shown that com-

bining routine history, clinical tests, medical images (for example, chest radiography),

and measurement of plasma natriuretic peptide levels improves diagnostic accuracy. The

improvement makes the biomarkers recommended in international guidelines for diag-

nosing and managing AHF. As shown in Fig. 1.1, the current diagnosis workflow of AHF

requires several processes. Once patients enter ED with suspected AHF, they will take an

initial workup such as medical history, physical examination, electrocardiogram (ECG), or

chest X-ray (CXR). If the patient’s condition remains uncertain, a B-type natriuretic pep-

tide (BNP) or N terminal pro B type natriuretic peptide (NT-proBNP) test will be taken.

Patients with BNP < 100 ng/L or NT-proBNP < 300 ng/L are AHF unlikely and should

1
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consider other diagnoses. Patients with abnormal levels of BNP or NT-proBNP should

take further examinations like echocardiography to confirm the disease.

Figure 1.1: Diagnosis of acute heart failure in an urgent care setting.

At the recommended thresholds of 100 ng/L for BNP and 300 ng/L for NT-proBNP,

the biomarkers have sensitivities of 0.95 (95% confidence interval 0.93∼0.96) and 0.99

(0.97∼1.00) and negative predictive values of 0.94 (0.90∼0.96) and 0.98 (0.89∼1.0), re-

spectively, for a diagnosis of AHF [4]. In addition, according to the 2022 AHA/ACC/

HFSA Guideline [5], BNP or NT-proBNP is recommended as a valuable biomarker to

rule out AHF.

Despite the remarkable effectiveness of the NT-proBNP test, the average time be-

tween taking samples and obtaining results is around 1∼2 hours. In acute care settings,

2
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taking an NT-proBNP test is expensive and time-consuming, which may cause a process

bottleneck in ED. By contrast, CXR and electronic health records (EHR) such as gender,

age, temperature, heart rate, etc., are inexpensive, immediate, and routinely taken after pa-

tients enter to ED. In this sense, a deep learning (DL) model that can predict NT-proBNP

levels using CXR and EHR can release the burden due to its high-speed performance.

Therefore, this study aims to develop a multimodal deep learning model to predict whether

the patients’ NT-proBNP > 300 ng/L or not using their CXR and EHR in ED.

1.1.1 Choosing NT-proBNP as an acute heart failure indicator

Several studies have used the DL technique and CXR to predict HF but with differ-

ent ground truths. Seah et al. [6] defined HF as BNP>100 ng/L. Their work used frontal

radiographs to develop a generative DL model and visualized neural network learning of

chest radiograph features in congestive HF using generative visual rationales. The result

illustrated the possibility of generating medical images given various levels of BNP. Mat-

sumoto et al. [7] utilized CXR findings ”cardiomegaly or congestion” as the ground truth

of HF. The ground truths were verified and relabeled by two cardiologists. Their classifi-

cation model extracted image features from CXR using pre-trained VGG16 and predicted

the final results with a trainable multi-layer perceptron. Jabbour et al. [8] predicted HF

using frontal CXR and patients’ EHR, including NT-proBNP. The ground truth of HF in

their setting was defined by the International Classification of Diseases 10th (ICD-10).

Studies above show the success of predicting HF by different indicators while us-

ing clinical measurements such as NT-proBNP as predictive targets have extra advan-

tages. Training supervised deep learning models in hospitals typically requires a large

amount of labeled data manually annotated by physicians. This process may be time and

3
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labor-consuming and bring extra loading to the clinical system. Therefore using routine

biomarkers as training labels provides a sustainable way to collect labeled data without

additional manual annotation. Moreover, the diagnosis of AHF is inherently uncertain,

and the results may vary among physicians based on their backgrounds or experiences.

Human biases may exist using CXR findings from reports or ICD codes as targets in this

case. NT-proBNP is an examination executed in a laboratory, and the test results are more

consistent even from different hospitals. In this study, NT-proBNP was used as the pre-

diction target and categorized patients into AHF likely and AHF unlikely by a cut-off at

300 ng/L.

1.2 Contributions

To the best of my knowledge, this is the first study that predicts the level of NT-

proBNP using CXR and EHR in the acute care setting, showing the possibility of im-

plementing the DL model in real-world clinical situations. I also proposed a novel post-

processing algorithm, which approximates the lung masks even when the contours of the

lungs are undetectable. Utilizing lung-heart masks, both domain-based (heart-size ratios,

radiomic features) and data-driven features were extracted from CXR to boost the per-

formance. Using the human-recognizable features, I interpreted the relationship between

image features and the risk of AHF, which numerically verifies the clinical understanding

of AHF. Intensive comparisons also were conducted to demonstrate the contributions of

different input combinations and the effectiveness of fusion strategies. The comparison

results can be considered as a benchmark for future research. The best model achieves an

AUROC of 0.8861 for predicting NT-proBNP>300 ng/L for ED patients using PA view

CXR and EHR. The target scenario is the most common use scenario for NT-proBNP,

4
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and our proposed AI model can be embedded in the current AHF diagnosis workflow,

as shown in Fig. 1.1. As a rule-out marker, the AI model can help physicians to make

decisions in urgent situations.

5
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Chapter 2 Literature Review

2.1 Predicting Thoracic Diseases Using DL and CXR

CheXNet [9], created by Rajpurkar et al., is a 121-layer convolutional neural network

trained on ChestX-ray14, which contains over 100,000 frontal-view X-ray images with 14

diseases. CheXNet correctly diagnosed all 14 illnesses in ChestX-ray14, with an overall

average AUROC of 0.841.

Deep convolutional neural networks are used in the segmentation-based deep fusion

network (SDFN) [10] to automatically detect thoracic illnesses shown in the CXR pic-

tures. The higher-resolution data of specific local lung areas and domain knowledge were

combined to propose a unique approach by Liu et al. The lung region generator specifi-

cally detected and cropped the local lung areas. The features of the whole CXR pictures

and the cropped lung area images were then extracted using two CNN-based classification

models. Finally, the feature fusion module for disease classification fuses the collected

features. On the ChestX-ray14 Dataset, evaluated by the NIH benchmark split, SDFN

obtained an average AUROC of 0.815.

A three-branch attention-guided convolution neural network (AG-CNN) [11] was

proposed by Guan et al. In order to reduce noise and enhance alignment, AG-CNN learns

7
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from disease-specific areas. It also incorporates a global branch to make up for the dis-

criminative information that the local branch lost. Particularly, global images were used

to train the global CNN branch initially. Then a mask was inferred to crop a discrimina-

tive zone from the global picture using the attention heat map created by the global branch

as guidance. A local CNN branch was trained using the local images. In order to fine-

tune the fusion branch, the last pooling layers of both the global and local branches were

concatenated. AG-CNN was evaluated using the ChestX-ray14 dataset and produced an

average AUROC of 0.871 when DenseNet-121 was applied as the backbone.

2.2 Predicting HF Using DL and CXR

Seah et al. [6] investigated generative visual rationales (GVRs) as a technique for

visualizing neural network learning of chest radiograph characteristics in congestive HF.

A total of 103,489 frontal chest radiographs from 46,712 individuals were separated into

two groups: labeled (with BNP as a marker of congestive HF) and unlabeled. To estimate

BNP, a generative model was trained on the unlabeled data set, and a neural network was

trained on the encoded representations of the labeled data set. The model was used to

depict how a radiograph with a high estimated BNP might seem in the absence of illness

(a ”healthy” radiograph). The model produced an AUC of 0.82 at a cutoff BNP of 100 ng/

L as a marker of congestive HF.

Matsumoto Matsumoto et al. [7] studied the performance of a deep learning algo-

rithm in detecting heart failure using CXR. The researchers used 952 CXR images from a

labeled collection provided by the National Institutes of Health. A total of 260 ”normal”

and 378 ”HF” pictures were validated and relabeled by two cardiologists. The ground

8
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truth of HF is characterized as CXR findings of ”cardiomegaly or congestion.” Using

CXR, data augmentation and transfer learning were employed to achieve an accuracy of

82% in detecting heart failure.

Jabbour Jabbour et al. [8] showed that machine learning models incorporating CXR

and EHR data can distinguish HF effectively. Machine learning models were trained to

predict HF using CXR and clinical data from the EHR. Based on a physician chart analysis,

363 (22%) of the 1,618 patients in their research had HF. A model that included CXR

and EHR data outperformed the model using only one modality. The models performed

similarly or better when compared to a randomly selected physician reviewer. The average

AUROC for the combination model, image-only model, and EHR-only model was 0.83,

0.80, and 0.79, respectively.

Table 2.1summarizes the related works of predicting HF using DL and CXR.

2.3 MultimodalDLCombiningMedical Imaging andEHR

Kawahara et al. [12] proposed a multitask deep convolutional neural network to di-

agnose skin lesions and categorize the 7-point melanoma checklist criteria. The network

was trained on multimodal data (clinical and dermoscopic images and patient informa-

tion). The neural network was trained using various multitask loss functions, each of

which takes various combinations of the input modalities. This made the model resistant

to missing data at the moment of inference. The final model categorized the skin dis-

ease diagnosis and the seven-point checklist, created multimodal feature vectors suited

for image retrieval, and localized clinically discriminant regions.

Yap et al. [13] proposed a strategy for improving the performance of automated skin

9
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lesion identification by combining different imaging modalities with patient metadata.

The authors tested their model on a binary classification task for comparison with earlier

studies and a five-class classification challenge typical of a real-world clinical setting.

The results revealed that the multimodal classifier outperformed a baseline classifier that

merely used a single macroscopic picture.
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Chapter 3 Materials and Methods

3.1 Data Description

Three open-source datasets, Medical Information Mart for Intensive Care (MIMIC)-

IV [14, 15], MIMIC-CXR [16], and the Japanese Society of Radiological Technology

(JSRT) dataset [17], were used in this study.

3.1.1 MIMIC-IV

MIMIC-IV serves as the main dataset in our study. MIMIC-IV consists of six mod-

ules, Core, Hosp, ICU, ED, CXR, and Note module, which contains all the information of

382,278 patients admitted to an academic medical center in Boston, MA, USA, between

2008 and 2019. The NT-proBNP values for all examinations are stored in labevents.csv in

theHospmodule. The itemid ofNT-proBNP is 50963, which can be found in d_labitems.csv

in the Hosp module. The patient’s age and gender are stored in patients.csv in the Core

module. The six vital signs (temperature, heart rate, respiration rate, o2 saturation, systolic

blood pressure, and diastolic blood pressure) are stored in vitalsign.csv and triage.csv in

the ED module. All age and subject_id in MIMIC-IV had been de-identified.

13
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3.1.2 MIMIC-CXR

MIMIC-CXR is the core image dataset for our study. MIMIC-CXR contains 377,110

images in JPG format and 227,835 imaging studies for 64,588 patients. Each imaging

study includes one or more images, a frontal view or a lateral view. Besides images,

metadata including subject_id, study_id, dicom_id, CXR views, study date, study time,

etc, are also provided for all CXRs in MIMIC-CXR. dicom_id, study date, and study time

were used to connect the information in MIMIC-IV andMIMIC-CXR datasets. The demo

images in MIMIC-CXR are shown in Fig. 3.1

Figure 3.1: Examples of images in MIMIC-CXR

14
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3.1.3 JSRT

JSRT dataset was used to develop two segmentation models for image processing

purposes in this study. Before this study, the JSRT database has been used by many re-

searchers in the world for various research purposes such as image processing, image com-

pression, evaluation of image display, computer-aided diagnosis (CAD), picture archiv-

ing and communication system (PACS), and for training and testing. The JSRT dataset

includes 247 frontal views CXR (154 nodule and 93 non-nodule images) with the size of

2048×2048 in 12-bit, 4096 grayscale. Each image in JSRT has its corresponding heart,

left lung, right lung, left clavicle, and right clavicle masks. A lung-heart and clavicle seg-

mentation model is trained using the JSRT dataset. The training procedures of the two

segmentation models will be described in Sec. 3.4.1. The example images in the JSRT

dataset and their corresponding masks are shown in Fig. 3.2. The images in odd columns

are the original images from the JSRT dataset, and the images in even columns are the

corresponding lung-heart masks. Every two images are a pair in each row, from left to

right.

3.1.4 Manually labeled lung-heart masks for images inMIMIC-CXR

Visually, the images in the JSRT dataset are different from the ones in MIMIC-CXR.

Although several operations can be applied to make the images more homogeneous from

the MIMIC-IV and JSRT datasets, there are some non-neglectable differences between

them. For example, there are no support devices in JSRT images but are in MIMIC-CXR

ones. A few images in MIMIC-CXR have undetectable contours of the lung and heart,

but the images in JSRT are relatively clean. 200 PA view CXR from MIMIC-CXR were

15
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Figure 3.2: Examples of images in JSRT

manually labeled to overcome the divergence. The 200 PA view CXR were randomly

selected. Six of them were discarded. Three of the six images are lateral views due to

the labeling flaw of MIMIC-CXR, and the other three images have undetectable heart

contours. The lung-heart masks were annotated following the same criterion in JSRT by

four graduate students in the project using the open-source software CVAT [18]. The

final mask annotations were revised and verified by a certified cardiologist in National

Taiwan University Hospital Hsin-Chu Branch. The examples of manually labeled lung-

heart masks and their corresponding images are shown in Fig. 3.3. The images in odd

columns are the original images, and the images in even columns are the manually labeled

lung-heart masks. Every two images are a pair in each row, from left to right. Obtaining

more pairs of CXR and lung-heart mask makes training data distribution more similar to

the distribution of MIMIC-CXR when training the lung-heart segmentation model.

16
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Figure 3.3: Examples of manually labeled images

3.2 Data Pre-processing

3.2.1 EHR from MIMIC-IV

First, patients who entered ED and took CXR were selected to obtain the target pa-

tient ID. Next, according to the unique patient ID, I extracted their gender and age from the

patients.csv in the Core module. The patient’s vital signs (temperature, heart rate, respira-

tory rate, O2 saturation, systolic blood pressure, diastolic blood pressure) were extracted

and integrated from vitalsign.csv and triage.csv in the EDmodule. All NT-proBNP values

were extracted from labevents.csv in the HOSP module using itemid 50963. The itemid

of NT-proBNP was found in d_items.csv in the HOSP module. It is worth noting that

only PA-view CXR is included in this study since heart size is a crucial factor of heart

failure, and heart size is amplified in AP-view CXR. I paired the NT-proBNP value with

17
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the closest CXR for each patient to combine the information. The time interval between

two examinations is limited to at most three days. Likewise, NT-proBNP and vital signs

are merged with the same time tolerance. Missing values in each patient’s vital signs

data frame are filled using the recent value based on the sample time. The data selection,

extraction, and merging processes are demonstrated in Fig. 3.4.

Figure 3.4: Data extraction, data selection, and data merging of MIMIC-IV

3.2.2 CXR from MIMIC-CXR

The chest X-ray images were downloaded from the MIMIC-CXR dataset according

to the DICOM ID in the study population. The height and width of the images range from

1628∼ 3056 and 1561∼ 3056, respectively. As shown in Fig. 3.5, the image dimensions

vary across the dataset, thus directly resizing all images to a specified size will distort some

images. To maintain the aspect ratio of the original images, each image was first padded

to square along the short side and then resized to 512 × 512. Contrast limited adaptive

histogram equalization (CLAHE) was applied [19] with two sets of parameters, {clip limit

18



doi:10.6342/NTU202202103

= 2, tile grid size = (8, 8)} and {clip limit = 4, tile grid size = (20, 20)}, to enhance the

details in the second and the third channel, respectively. The effect of CLAHE is shown in

Fig. 3.6. The images in the first row are the original CXRs, and the images in the second

row and the last row were processed by CLAHE with parameter sets, {clip limit = 2, tile

grid size = (8, 8)} and {clip limit = 4, tile grid size = (20, 20)}, respectively.

Figure 3.5: Scatter plot of image dimensions

3.2.3 CXR from JSRT

The images and masks in JSRT were directly resized to 512 x 512 since they were by

default square. As shown in Fig. 3.7, the images are inverted types ofMIMIC-CXR, which

means the air is white, and the other tissues are dark. To match the pixel distribution of the

two datasets, all pixels in JSRT images were inverted, and a histogrammatching algorithm

was applied to match the image histogram of JSRT to that of the reference image. The

reference image was an averaged image of 100 random CXR from MIMIC-CXR. I also

used CLAHE with the same parameters as above to enhance the details of the second and

19
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Figure 3.6: Examples of images enhanced by CLAHE

third channels.

3.3 Frontal-lateral Classifier

This study merely focuses on PA-view CXRs. Thus only images labeled with PA-

view were selected during the data selection stage. However, some lateral-view CXRs

were mislabeled as frontal-view in metadata.csv of MIMIC-CXR. Therefore, a frontal-

lateral classifier was trained to automatically filter out the miscategorized lateral-view

CXRs. The frontal-lateral classifier extracts image information by a pre-trainedDenseNet121

[20], and the output dimension of the last linear layer was changed from 1,000 to 1. A total

of 1,000 frontal (500 PA-view and 500 AP-view) and 1,000 lateral CXRs were randomly

sampled from theMIMIC-CXR dataset. All 2,000 CXRs were randomly split into training

20
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Figure 3.7: Image processing for JSRT

and testing sets of 1,600 and 400 CXRs. Each output from the FC layer was normalized

to [0, 1] using the sigmoid activation function, defined by Eq. (3.1)

p̂ =
1

1 + e−s
, (3.1)

where p̂ is the predicted probability and s is the output from the FC layer.

3.4 Lung-heart Mask Generator

The lung-heart mask generator comprises a lung-heart segmentation model and a

series of post-processing algorithms. For each CXR, the lung-heart segmentation model

outputs the initial lung-heart mask. And two post-processing algorithms were applied to

ensure the anatomical characteristics of the lung-heart mask.
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3.4.1 Segmentation models

Amulti-class semantic segmentationmodel was trained to generate lung-heart masks.

U-Net [21] is usually the benchmark model for semantic segmentation tasks in medical

imaging. U-Net consists of an encoder and a decoder. The encoder reduces feature maps

and learns image representations, and the decoder recovers the spatial information and

outputs a mask with the same dimension as the input image. U-Net also introduces skip

connections from the encoder to the decoder, which allows the network to obtain sharp

mask boundaries. Despite the success of U-Net, it falls short of capturing contextual infor-

mation across thewhole image. DeepLabv3+ [22] combines the encoder-decoder structure

and the spatial pyramid pooling module and is inherently able to capture sharper object

boundaries and learn multi-scale contextual information. In our lung-heart segmentation

task, precise boundaries lead to reliable features later on, and contextual information is

necessary due to the anatomical characteristics of CXR. A pre-trained encoder enables

the network to extract better features. Therefore, I chose DeepLabv3+ as the network and

ResNet50 [23] pre-trained on ImageNet as the backbone. Every location of the output

maps was normalized along channels by the softmax function defined as:

softmax(pi) =
epi∑
j e

pj
. (3.2)

As defined by Eq. (3.3), the dice loss function was minimized to obtain optimal seg-

mentation performances.

Ldice(P̂ , Y ) = 1− 2|P̂ ∩ Y |
|P̂ |+ |Y |

, (3.3)
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where P̂ is the segmentation confidence map and Y is the ground truth.

Figure 3.8: Examples of lung-heart masks

The examples of images and the predicted lung-heart masks are shown in Fig. 3.8.

The background images are the original CXRs. The blue and red masks are the predicted

lung and heart masks, respectively.

3.4.2 Mask post-processing

I found two types of problems among the output lung-heart masks. One problem was

the false-positive regions, and the other was undetectable lung or heart contours. Without

a doubt, a normal human has one heart and two lungs. Utilizing the anatomical character-

istics, only the largest connected component in the heart mask will be kept, and at most

two largest connected components in the lung mask will be saved. The second large re-

gion in the lung mask also is deleted if its size is smaller than one-third of the size of the

largest part. The pixels in deleted regions are replaced by the most frequent value on the

dilated border of the region.
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Algorithm 1Mask post-processing (I): delete fragments
Input: Target maskM , number of components to keep k, threshold t
Output: Post-processed maskM∗

1: Find all connected components c1, c2, ..., cn inM
2: Sort all connected components descendingly by their sizes, denoted as

c(1), c(2), ..., c(n).
3: for i = 2 to n do
4: if (i > k) or (c(i) < t ∗ c(1)) then
5: replace all values in c(i) with the most frequent value on its dilate border.
6: end if
7: end for
8: return M∗

Fig. 3.9 demonstrates the results of Alg. 1. The top row displays the original images.

The masks in the middle row exist false positive regions. There are fragments of heart

masks around or in the right lung regions in the first two images and fragments of lung

masks in the other four images. The air in the intestines is more likely to be identified

as the lung mask. The bottom row shows that the false-positive regions can be correctly

eliminated by the algorithm.

Figure 3.9: Examples of false-positive lung-heart masks

After false-positive regions were deleted, I found that the algorithm also deleted the

lung with a large area of whiteness. Since lung-heart masks were used to generate multi-
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ple features, it would cause tremendous bias if undetectable lungs or hearts were simply

ignored. An algorithm was developed to recover the lost lung based on the property of

human symmetric clavicles and lungs. A clavicle segmentation model was trained follow-

ing the same procedure when training the lung-heart segmentation model. After localizing

the left and right clavicles, I computed each clavicle’s center and the line segment’s slope

connecting the two centers. Then the image was rotated and shifted to make the clavicle

vertically symmetrical to the center of the image. Last, the lung mask was horizontally

flipped to approximate two lungs.

Algorithm 2Mask post-processing (II): align and flip
Input: Lung-heart maskMLH , clavicle maskMcla

Output: Post-processed lung-heart maskM∗
LH

1: Find the centers of the left and right clavicle (xlc, ylc) and (xrc, yrc), respectively.
2: θ ← arctan( ylc−yrc

xlc−xrc
)

3: xc ← xlc+xrc

2

4: M∗
LH ← apply affine transformation onMLH with affine matrix

A =

[
cos θ sin θ xc − x cos θ − y sin θ
− sin θ cos θ 0

]
5: return M∗

LH

The images in the first row of Fig. 3.10 show the original CXRs with undetectable

lung or heart borders. The blue, red, and white masks indicate the lung, heart, and clav-

icle regions, respectively. The three red dots from left to right are the center of the right

clavicle, the center of two centers of the left and right clavicles, and the center of the left

clavicle, respectively. The blue dashed line in each image is the vertical center line of that

image. All images and masks are affine transformed in the middle row by matrix A men-

tioned in Alg. 2. The green masks are the flipped lung masks, and the orange rectangles

are the bounding boxes of the lung-heart regions, which will be introduced in Sec. 3.5.3.

The last row shows the cropped images using the orange bounding boxes.
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Figure 3.10: False negative lung-heart mask

3.5 Feature Extraction from Lung-Heart Masks

3.5.1 Heart-size ratios

Patients with AHF typically come together with enlarged heart size or cardiomegaly.

Heart size is most commonly measured by the cardiothoracic ratio (CTR), the ratio of

maximum horizontal cardiac diameter to maximum horizontal thoracic diameter. Car-

diomegaly is defined as CTR > 0.50, and the normal range of CTR is from 0.42 to 0.50.

Although CTR is simple and widely used, it is an alternative to estimating real heart size.

Since heart sizes are important features to predict AHF, instead of using CTR as the only

feature to measure heart size, we further derived the height and area ratios from the lung-

heart masks to make the measurement more reliable. The three heart size ratios (HSR)

are illustrated in Fig. 3.11 and defined in Eq. 3.4. The analysis of the three HSRs will be

described in Sec. 4.8.
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Figure 3.11: Demonstration of heart-size ratios

width ratio =
wh

wl

height ratio =
hh

hl

area ratio =
ah

ah + al1 + al2

(3.4)

3.5.2 Radiomic features

Chest X-ray findings in AHF patients include alveolar edema, Kerley B lines, di-

lated upper lobe vessels, and pleural effusion. These findings visually result in abnormal

patterns or opacities in chest regions. Radiomic features (RF) were used to quantify the

shape and textual differences in CXR. Radiomic features are features extracted from med-

ical images by data-characterization algorithms. Radiomic features provide information

about image intensity, size, and shape, and the relationship between image pixels. A total

of 306 (102 features of the heart region, 102 features of the lung region, and 102 features

of the union region of the lung and heart regions) are extracted using the Python open

source library, Pyradiomics [24]. The analysis of the radiomic features is described in

Sec. 4.9.
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3.5.3 Thoracic region of interest

In the image processing pipeline, all images were padded to square and downsampled

to 512× 512 due to the variety of image dimensions and hardware restrictions. However,

these image operations inevitably added redundant information on the margins and caused

information loss in details. The subtle differences in image details may affect model per-

formances. Inspired by Liu et al. [10], I utilized lung-heart masks to construct bounding

boxes for the thoracic regions of interest (ROI). A bounding box is the smallest square

containing the lung-heart masks. Each bounding box was then expanded to match the size

of the padded CXR. In addition, each bounding box was further expanded 3% larger based

on the size of the original image. Lastly, the ROI was cropped using the expanded bound-

ing box and downsampled to 512 × 512. Downsampling from high-resolution images

loses less information than upsampling from low-resolution images if the final image size

is the same. The ROIs excluded noises outside the chest and helped the model focus on

the crucial region. The examples of ROI are shown in Fig. 3.12. The top row shows the

original CXRs. The orange rectangles in the middle row are the bounding boxes of the

thoracic regions. And the bottom row demonstrates the ROI images.

3.6 NT-proBNP Prediction Models

The proposed multimodal NT-proBNP prediction models consist of two types of

single-modality models, numerical models, and image models. Each single-modality

model includes an encoder and a classifier. The Encoders extract, transform and project

features into a more complex vector space, and then the classifiers learn to predict the true

binary label y∗, where
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Figure 3.12: Examples of ROI

y∗ =


1, if NT-proBNP ≥ 300 ng/L

0, otherwise.

All models were trained to minimize the binary cross-entropy (BCE) loss function.

LBCE(p̂, y∗) = −
1

N

N∑
i=1

[y∗i log(p̂i) + (1− y∗i ) log(1− p̂i)], (3.5)

using Adam optimizer [25], where N is the batch size, p̂i is the predicted probability and

y∗i is the ground truth. To combat overfitting, regularization techniques such as weight

decay and dropout were applied to all models. When training the models, the dataset was

split into a training set and a preserved testing set at the patient level with a proportion

of 8:2. The training dataset was further evenly split into five folds. In each iteration, the

model was trained using four folds of data, validated by the last fold, and so on. Ran-

dom sampling with weights was implemented to address data imbalance. Positive and

negative data sampling weights are the inverse ratio of the two classes. The area under
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the receiver operating characteristic (AUROC), sensitivity, specificity, positive predictive

value (PPV), and negative predictive value (NPV) was used to evaluate the classification

performance of the models.

3.6.1 Numerical models

A total of 317 numerical features were used in this study. xEHR is the eight EHR

every patient initially has. xHSR and xRF respectively represent the three HSRs and 306

RFs extracted during the image processing pipeline for each CXR. Three numerical cate-

gories can be combined to seven input combinations (xEHR, xHSR, xRF , (xEHR, xHSR),

(xEHR, xRF ), (xHSR, xRF ) and (xEHR, xHSR, xRF )). The vectors in the input combina-

tion set were concatenated for each input combination. The concatenated vectors are then

passed into the encoder, a fully-connected layer (FC) with 1,024 hidden sizes. The hid-

den size was set to 1,024 to match the output size of the image encoder, which will be

described in the next subsection. The FC with an input size of 1,024 and an output size of

1 is the classifier for the numerical models. ReLU was added after every hidden layer as

an activation function.

3.6.2 Image models

Two image models were developed to predict the target using CXR (xCXR) and ROI

(xROI), respectively. Each encoder of the image model is a DenseNet121 with pre-trained

weights on ImageNet. The original classifier from DenseNet121 was discarded. Since

DenseNet121 is a powerful model with high flexibility, all model parameters were fixed

except the ones from the last dense layer to prevent severe overfitting. I also added a global
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average pooling layer following the image encoder. The image models output vectors with

1,024 dimensions. The classifier of the image models is an FC layer with an output size

of 1.

3.6.3 Multimodal models

Multimodal models fuse information from different modalities to gain a better abil-

ity to learn the underlying function. Six input combinations were designed to demonstrate

the significance of different input modalities. Taking xCXR image model as the bench-

mark. (xEHR, xCXR) shows the benefit of simply adding patient background information.

(xHSR, xRF , xCXR) shows the benefit of the manually extracted features. Inspired by

[10], (xCXR, xROI) verifies the benefit of combining global and local images. Inspired by

[13], (xEHR, xCXR, xROI) verifies the benefit of combining patients’ information global

images and local images. (xHSR, xRF , xCXR, xROI) shows the benefit of combining all

the features extracted from CXR. (xEHR, xHSR, xRF , xCXR, xROI) shows the benefit of

combining all features.

3.6.4 Fusion strategy

After well training single-modality models, early fusion, joint fusion, and late fusion

strategies were used to develop multi-modality models. According to the definitions in-

troduced in [26], early fusion is a method to fuse (concatenate or pool) raw features or

extracted features and only backpropagate the gradient to the final classifier while train-

ing. Joint fusion is similar to early fusion, but all parameters, including ones of feature

encoders and classifiers, are trainable during the learning process. Late fusion is a pro-
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cess that leverages predictions from single-modality models and makes the final decision

using an aggregation function such as averaging or voting. The architectures of multi-

modal models with early, joint, and late fusion are illustrated in Fig. 3.14, Fig. 3.15, and

Fig. 3.16, respectively. The rectangles with solid and dashed border lines represent fixed

and trainable components during the training process.
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Figure 3.13: Image processing pipeline

33



doi:10.6342/NTU202202103

Figure 3.14: Model architecture – early fusion

Figure 3.15: Model architecture – joint fusion
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Figure 3.16: Model architecture – late fusion
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Chapter 4 Results and Discussions

4.1 Demographics of Study Population

A total of 1,833 pairs of samples from 1,432 patients were included. Overall, 71% of

the sample are NTproBNP > 300 ng/L. The proportion of men (53%) is higher than that

of women (47%), and most patients are elderly in the study population. The demographic

characteristics of the study population are reasonable since high-risk patients commonly

take chest radiography and NT-proBNP examinations in a short time interval. The mean

and median time differences between the NT-proBNP and CXR examinations are 4.82 and

2.7 hours, respectively.

4.2 PA, AP, and Frontal Views

In this study, only PA-view CXRs were selected for the study population because

PA-view CXRs are the most common view of CXR and do not amplify the size of the

heart. Table 4.2 summarizes the demographic characteristics of populations with PA, AP,

and frontal (PA + AP) views. According to clinical knowledge, patients with more severe

conditions could only take AP-view CXRs since merely standing is challenging. Based

on the data, patients in the AP population have higher NT-proBNP values, heart rates, and

37



doi:10.6342/NTU202202103

Table 4.1: Demographic characteristics of the study population
Characteristic Training Testing All
No. of CXR 1464 369 1833
No. of CXR with NT-proBNP<300 ng/L 417 (28.48%) 116 (31.44%) 533 (29.08%)
Median NT-proBNP (ng/L)* 1147 (245-4147) 1164 (219-4054) 1158 (240-4130)
No. of patients 1145 287 1432
No. of female patients 541 (47.25%) 131 (45.64%) 672 (46.93%)
No. of male patients 604 (52.75%) 156 (54.36%) 760 (53.07%)
Age range 20-91 26-91 20-91
Mean age† 65 (15) 66 (14) 65 (15)
Mean temperature (◦F)† 98.16 (0.79) 98.03 (0.79) 98.14 (0.79)
Mean heart rate (bpm)† 82.28 (18.21) 79.69 (18.16) 81.76 (18.23)
Mean respiratory rate (bpm)† 18.86 (3.47) 18.52 (3.48) 18.80 (3.48)
Mean O2 saturation (%)† 97.43 (2.48) 97.58 (2.30) 97.46 (2.44)
Mean SBP (mmHg)† 134.51 (24.94) 136.93 (25.29) 135.00 (25.02)
Mean DBP (mmHg)† 72.77 (15.29) 73.72 (15.78) 72.96 (15.39)

* Data in parentheses are interquartile ranges
† Data in parentheses are standard deviations

respiratory rates, which reflect their bad health conditions.

I trained threemodels using the CXR images of three populations (PA, AP, and frontal

view), and the results are shown in Table 4.3. The model trained by all frontal CXRs

performs the best, and the model trained by AP-view CXR has the worst performance. As

shown in Fig. 4.1, AP-view CXRs have larger diversity and therefore are more difficult

to learn using a small dataset. On the other hand, because the frontal-view population

includes more data, the model trained by all frontal CXRs performs the best. The results

show that the number of data plays a great role in model development, and the proposed

multimodal model could achieve a higher AUROC if the lung-heart segmentation model

can well identify the lung-heart masks in AP-view CXRs and trained with all available

frontal CXRs. Fig. 4.2 displays the AUROC of CXR models trained by populations of

different views.
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Table 4.2: Demographic characteristics of populations
Characteristic PA AP Frontal
No. of CXR 1833 2287 4120
No. of CXR with NT-proBNP<300 ng/L 533 (29.08%) 324 (14.17%) 857 (20.80%)
Median NT-proBNP (ng/L)* 1158 (240-4130) 2427 (679-7237) 1789 (404-5686)
No. of patients 1432 1789 3021
No. of female patients 672 (46.93%) 970 (54.22%) 1551 (51.34%)
No. of male patients 760 (53.07%) 819 (45.78%) 1470 (48.66%)
Age range 20-91 18-91 18-91
Mean age† 65 (15) 72 (14) 69 (15)
Mean temperature (◦F)† 98.14 (0.79) 98.25 (1.05) 98.20 (0.95)
Mean heart rate (bpm)† 81.76 (18.23) 86.81 (21.86) 84.54 (20.46)
Mean respiratory rate (bpm)† 18.80 (3.48) 20.62 (4.92) 19.80 (4.43)
Mean O2 saturation (%)† 97.46 (2.44) 97.02 (3.12) 97.22 (2.84)
Mean SBP (mmHg)† 135.00 (25.02) 128.73 (27.03) 131.54 (26.33)
Mean DBP (mmHg)† 72.96 (15.39) 69.21 (17.09) 70.89 (16.45)

* Data in parentheses are interquartile ranges
† Data in parentheses are standard deviations

Table 4.3: Model performances of different views of CXR

PA view AP view Frontal view

CXR 0.8248 (0.0150) 0.7931 (0.0221) 0.8426 (0.0070)

Data in parentheses are standard deviations.

4.3 Evaluation of Mask Post-processing

In this section, I will demonstrate how mask post-processing algorithms affect final

results. Since only HSR, RF, and ROI are affected by the mask post-processing algo-

rithms, only the results of the three are reported. From left to right in Fig. 4.3 shows

the original mask generated by the lung-heart segmentation model, the mask deleted frag-

ments by Alg. 1, and the mask applied both Alg. 1 and Alg. 2. Table 4.4 shows that the

models constantly perform best when both post-processing algorithms were implemented

and perform worst when only post-processing (I) was applied. The post-processing al-

gorithms maintain the anatomical characteristics of the lung-heart mask and output more

appropriate masks.
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Figure 4.1: Examples of PA-view and AP-view CXRs

Based on the results, I conclude that the proposed mask post-processing algorithms

can improve model performance and should be applied together. Fig. 4.4 displays the

AUROC of HSR, RF, and ROI with different post-processing algorithms.

Table 4.4: AUROC of models using different mask post-processing

No Post-processing Post-processing (I) Post-processing (I) & (II)

HSR 0.7512 (0.0055) 0.7468 (0.0023) 0.7591 (0.0151)
RF 0.8626 (0.0051) 0.8603 (0.0027) 0.8645 (0.0060)
ROI 0.8186 (0.0118) 0.8170 (0.0129) 0.8494 (0.0063)

Note: Data in parentheses are standard deviations.

4.4 Performance Based on Input Combination

Table 4.5 summarizes the five-fold cross-validation results. The numerical model

input EHRs achieves an average AUROC of 0.7146, meaning that the basic vital signs

could help predict the result. The manually extracted features, HSRs and RFs, provide

useful information, which can build up a model with an average AUROC of 0.7582 and

0.8634, respectively. The numerical model combining EHRs, HSRs, and RFs achieved

great performance with an average AUROC of 0.8650. The average AUROC increased

from 0.7146 to 0.7582 after adding three HSRs and jumped to 0.8650 when 306 radiomic
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Figure 4.2: Box plots of AUROC of different CXR views

features joined in.

The AUROC of CXR and ROI image models are 0.8241 and 0.8490, respectively.

Since the ROI images exclude redundant parts and focus on the crucial region of the orig-

inal CXRs, the ROI model is expected to perform better than the CXR model.

Surprisingly, the RF numerical model outperforms the CXR and ROI image models.

In our opinion, training a convolutional deep learning network requires a large dataset,

and the number of data in our study population may not satisfy the demand for deep learn-

ing models. On the contrary, RFs are pre-defined complex features designed by domain

experts and, therefore, can produce specific information in medical imaging tasks without

learning the data.

The multimodal models outperform every modality model with the highest mean
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Figure 4.3: Mask post-processing

AUROC of 0.8861. The trend in Fig. 4.5 from left to right visualizes the incremental

improvements when more information is provided to the model.

4.5 Performance Based on Fusion Strategy

Fig. 4.6 visualizes the performance of multimodal models stratified by three different

fusion strategies. Overall, models trained with late fusion have better prediction perfor-

mance. The late fusion strategy takes average on all predictions from each single-modality

model. This strategy combines the outcomes without further training, which is more likely

to prevent overfitting and produce more robust results. On the other hand, the feature ex-

tractor or the final classifiers are continuously trained when using early and joint fusion.

These fusion strategies enable multimodal models to better capture task-specific features.

However, the extra flexibility also causes overfitting or makes the models overly pay at-

tention to a single modality, resulting in inferior performance. Despite the detailed discus-

sion about fusion strategies, the difference between the strategies is minor, and the result

may differ from dataset to dataset. Therefore, researchers and practitioners should explore

different fusion strategies and search for the best method for their problem.
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Figure 4.4: Box plots of AUROC of different mask post-processing algorithms

4.6 Analysis of Image Data

CAM [27] is a technique to visualize what CNN models see. It is a weighted linear

combination of the learned parameters and the corresponding feature maps. By simply

upsampling the weighted sum of feature maps to the input image size, the image regions

most relevant to the target classes can be identified. The heatmap of the global and the local

branch is displayed in Fig. 4.8. The models put their attention on the heart region. This

result is consistent with the clinical knowledge since NT-proBNP is a biomarker indicating

the condition of the heart. Additionally, it is reasonable that the models also focus on

pacemakers because patients equipped with pacemakers are usually in more challenging

situations.
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Figure 4.5: Box plots of AUROC of different input combinations

4.7 Analysis of Numerical Data

A total of 317 numerical features were used in this study, including eight EHR fea-

tures, three HSRs, and 306 RFs. Compares to deep learning features, human-recognizable

numerical features provide more interpretability and help humans understand how ma-

chine learning models make decisions. I utilized the XGBoost [28] algorithm to explain

the relationship between 317 numerical features and the level of NTproBNP. XGBoost,

eXtreme Gradient Boosting, is a famous tree-based algorithm that extends to gradient

boosted decision trees (GBM) and is specially designed to improve speed and perfor-

mance. Like other tree-based models, feature importance can be calculated after training

anXGBoostmodel. Feature importance gives us a quantifiedmeasure of a certain feature’s

importance during the training procedure. The definition of feature importance varies;
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Figure 4.6: Box plots of AUROC of different fusion strategies

gain is the most commonly used and intuitive. The Gain implies the relative contribution

of the corresponding feature to the model calculated by taking each feature’s contribution

for each tree in the model. A higher value of gain, when compared to another feature,

implies it is more important for generating a prediction. Because the randomness of data

splitting and model training differ in the results of feature importance, I trained XGBoost

for 100 iterations and average the feature importance to obtain more robust results. For

each iteration, the dataset was randomly split into training and testing datasets with a pro-

portion of 8:2 by patient level. Fig. 4.9 shows the top 20 important variables including

area_ratio, ngtdm_Coarseness_heart, firstorder_10Percentile_heart, width_ratio, age, etc.

It is worth noting that both patient information (age) and image information (area_ratio,

width_ratio) are at the top of the rank, implying that multimodal prediction is beneficial

to developing a better model. Although the feature importance from XGBoost reveals the

black box of the model itself, the biggest shortage is that it only provides the magnitude of
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Table 4.5: Model performances
Modality AUC Sensitivity Specificity PPV NPV Accuracy

Numerical Models

EHR 0.7146 (0.0144) 0.6875 (0.0138) 0.6577 (0.0382) 0.8356 (0.0171) 0.4541 (0.0223) 0.6790 (0.0183)
HSR 0.7582 (0.0151) 0.6228 (0.1224) 0.7500 (0.0739) 0.8652 (0.0172) 0.4501 (0.0586) 0.6589 (0.0681)
RF 0.8634 (0.0060) 0.7445 (0.0284) 0.8481 (0.0299) 0.9257 (0.0121) 0.5685 (0.0201) 0.7738 (0.0147)
EHR_HSR 0.8064 (0.0018) 0.7186 (0.0145) 0.7788 (0.0136) 0.8916 (0.0047) 0.5228 (0.0103) 0.7357 (0.0082)
EHR_RF 0.8660 (0.0057) 0.7224 (0.0320) 0.8500 (0.0161) 0.9241 (0.0074) 0.5489 (0.0286) 0.7586 (0.0220)
HSR_RF 0.8639 (0.0018) 0.7407 (0.0189) 0.8423 (0.0110) 0.9224 (0.0042) 0.5627 (0.0169) 0.7695 (0.0120)
EHR_HSR_RF 0.8650 (0.0043) 0.7475 (0.0180) 0.8346 (0.0267) 0.9198 (0.0106) 0.5669 (0.0110) 0.7722 (0.0071)

Image Models

CXR 0.8241 (0.0150) 0.8076 (0.1696) 0.5885 (0.2688) 0.8468 (0.0669) 0.6204 (0.1522) 0.7455 (0.0581)
ROI 0.8490 (0.0063) 0.7643 (0.1225) 0.7500 (0.1493) 0.8932 (0.0472) 0.5817 (0.0932) 0.7602 (0.0472)

Early Fusion

EHR_CXR 0.8320 (0.0088) 0.8456 (0.0330) 0.6308 (0.0675) 0.8535 (0.0185) 0.6208 (0.0342) 0.7847 (0.0132)
HSR_RF_CXR 0.8615 (0.0048) 0.8190 (0.0333) 0.7385 (0.0570) 0.8887 (0.0180) 0.6197 (0.0247) 0.7962 (0.0083)
CXR_ROI 0.8398 (0.0081) 0.8365 (0.0409) 0.6308 (0.0622) 0.8521 (0.0163) 0.6080 (0.0371) 0.7782 (0.0176)
EHR_CXR_ROI 0.8487 (0.0089) 0.8304 (0.0232) 0.6923 (0.0366) 0.8725 (0.0102) 0.6189 (0.0224) 0.7913 (0.0079)
HSR_RF_CXR_ROI 0.8724 (0.0108) 0.8312 (0.0525) 0.7365 (0.0422) 0.8890 (0.0111) 0.6407 (0.0679) 0.8044 (0.0295)
EHR_HSR_RF_CXR_ROI 0.8733 (0.0081) 0.8274 (0.0517) 0.7404 (0.0739) 0.8911 (0.0238) 0.6354 (0.0507) 0.8027 (0.0197)

Joint Fusion

EHR_CXR 0.8270 (0.0042) 0.8768 (0.0681) 0.5404 (0.1391) 0.8312 (0.0317) 0.6578 (0.0807) 0.7815 (0.0130)
HSR_RF_CXR 0.8542 (0.0080) 0.8076 (0.0606) 0.7173 (0.0939) 0.8806 (0.0268) 0.6035 (0.0471) 0.7820 (0.0190)
CXR_ROI 0.8504 (0.0117) 0.8540 (0.0449) 0.5865 (0.0905) 0.8405 (0.0228) 0.6210 (0.0526) 0.7782 (0.0175)
EHR_CXR_ROI 0.8560 (0.0070) 0.8920 (0.0586) 0.5462 (0.1515) 0.8358 (0.0392) 0.6814 (0.0666) 0.7940 (0.0179)
HSR_RF_CXR_ROI 0.8612 (0.0071) 0.8700 (0.0603) 0.6231 (0.1136) 0.8564 (0.0333) 0.6657 (0.0519) 0.8000 (0.0136)
EHR_HSR_RF_CXR_ROI 0.8689 (0.0109) 0.8669 (0.0490) 0.6788 (0.1206) 0.8746 (0.0353) 0.6752 (0.0500) 0.8136 (0.0235)

Late Fusion

EHR_CXR 0.8199 (0.0158) 0.8190 (0.1135) 0.6173 (0.2223) 0.8532 (0.0576) 0.6092 (0.0992) 0.7619 (0.0296)
HSR_RF_CXR 0.8764 (0.0061) 0.8068 (0.1169) 0.7788 (0.1281) 0.9076 (0.0384) 0.6437 (0.1114) 0.7989 (0.0524)
CXR_ROI 0.8606 (0.0100) 0.8068 (0.1318) 0.6808 (0.2188) 0.8770 (0.0662) 0.6231 (0.1125) 0.7711 (0.0345)
EHR_CXR_ROI 0.8603 (0.0100) 0.8160 (0.1072) 0.6923 (0.1874) 0.8787 (0.0554) 0.6262 (0.0910) 0.7809 (0.0266)
HSR_RF_CXR_ROI 0.8861 (0.0069) 0.8038 (0.0993) 0.7731 (0.1396) 0.9053 (0.0444) 0.6284 (0.0830) 0.7951 (0.0394)
EHR_HSR_RF_CXR_ROI 0.8851 (0.0068) 0.8091 (0.0928) 0.7846 (0.1304) 0.9097 (0.0414) 0.6367 (0.0810) 0.8022 (0.0374)

Model performance on the held-out test set using a probability threshold of 0.5.
Data in parentheses are standard deviations.

the feature without directions. Take the top 5 features. For example, a person with a little

medical background can understand that people with advanced age or enlarged heart size

are more likely to have AHF. Hover, it is more difficult to identify the direction of how

ngtdm_Coarseness_heart and firstorder_10Percentile_heart affect the prediction results.

To overcome this shortage, I implemented SHAP analysis.

SHAP (SHapley Additive exPlanations) [29] is a model-agnostic method based on

the optimal Shapley values from game theory to explain individual predictions. SHAP

uses a linear sum of feature contributions to explain the difference between the overall out-

come and a specific prediction. Besides the interpretation of a single sample, the general

feature importance can also be measured by summing all the absolute values of Shapley
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Figure 4.7: Box plots of different modality combinations and fusion strategies

values for each feature and instance. I used SHAP to explain the 317 numerical features.

The SHAP bar plot (Fig. 4.10) shows the top 20 features based on the SHAP value. More-

over, the SHAP summary plot provides the magnitude and direction of how a feature

affects the result. As shown in Fig. 4.11, the x-axis represents the SHAP value, the y-axis

represents feature names descendingly ranked by their sum of absolute SHAP values, and

the color shows the relative magnitude within a feature (the redder, the higher). For exam-

ple, age is the most crucial feature since it’s at the top. And the color implies that the older

patient has a higher risk of anomaly NT-proBNP. The area and width ratios are the second

and third critical features reflecting that large heart size relates to a bad heart condition.

Since AHF is a cardio-related disease, it is reasonable that most top-ranked radiomic fea-

tures are derived from the heart ROI. All the findings from the SHAP analysis are aligned
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Figure 4.8: Examples of heatmaps

with clinical knowledge. And further analysis of HSR and RF will be demonstrated in

Sec. 4.8 and Sec. 4.9, respectively.

4.8 Analysis of Heart-size Ratios

Three HSRs (width, height, and area ratio) were extracted in Sec 3.5.1 using patients’

CXRs and the corresponding lung-heart masks. The histograms of the three ratios are

displayed in Fig. 4.12. The top row shows the overall distributions, and the bottom row

shows the distributions stratified by the labels. The width ratio, or the CT ratio, is the

most common indicator to estimate heart size in CXR. The mean and median width ratios

in our dataset are 0.5616 and 0.5593, respectively. These two numbers are larger than 0.5,

meaning the patients in the study population mostly have cardiomegaly. Since patients

with AHF tend to have larger heart sizes, this result also aligns with the fact that the

number of AHF likely patients is more than AHF unlikely patients in the study population.

Visually, the distributions of AHF likely patients and AHF unlikely patients in width ratio

and area ratio aremore separate than the ones in height ratio. When a feature’s distributions

stratified by the label are apart, the feature is a good predictor and has more ability to

classify the target. As shown in Fig. 4.9 and Fig. 4.10, area ratio and width ratio are the
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Figure 4.9: Feature importance (gain)

second and third important features among all numerical features, but height ratio is not

included in the top 20s. The findings from the distributions of HSRs agree with the results

of feature important analysis, showing that width ratio and area ratio are indeed more

crucial than height ratio, and the size of the heart does play a big role in diagnosing AHF.

4.9 Analysis of Radiomic Features

A total of 306 RFs were extracted in Sec. 3.5.2, 102 features from the heart region,

102 features from the lung region, and 102 features from the union region of the heart and

lung. Fig. 4.13 demonstrates how RFs reflect on images. The five most important RFs
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Figure 4.10: SHAP bar plot

(ngtdm_

Coarseness_heart, glrlm_LongRunHighGrayLevelEmphasis_lung, shape2D_Sphericity_

heart, shape2D_PerimeterSurfaceRatio_heart, and firstorder_Energy_heart) were selected

according to the rank from SHAP analysis in Fig. 4.10, and then for each important RF, I

displayed the images with 10%, 25%, 50%, 75%, and 90% percentile of that given RF.

According to PyRadiomics documentation [24], “coarseness is a measure of the av-

erage difference between the center voxel and its neighborhood and indicates the spatial

rate of change. A higher value indicates a lower spatial change rate and a locally more

uniform texture”. “Long run high gray level emphasis measures the joint distribution of

long-run lengths with higher gray-level values”. “Sphericity is the ratio of the perimeter
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Figure 4.11: SHAP summary plot

of the tumor region to the perimeter of a circle with the same surface area as the tumor

region and, therefore, a measure of the roundness of the shape of the tumor region rela-

tive to a circle. A value of 1 indicates a perfect circle”. “Perimeter-to-Surface ratio of a

lower value indicates a more compact (circle-like) shape”. And “Energy is a measure of

the magnitude of voxel values in an image. A larger value implies a greater sum of the

squares of these values”.

Patients with AHF usually have higher intracardiac pressure. The extra pressure in

the left and right atriums makes the heart look more circular than normal. Therefore,

higher sphericity and lower perimeter-to-surface ratio are related to a higher risk of having

AHF. Alveolar edema results in a large white area in the lung region, and it is a common
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Figure 4.12: Distributions of heart-size ratios

CXR finding among AHF patients. Namely, the CXRs of AHF patients have less con-

centration of long-run lengths of whiter pixels. The lower the long-run high gray level

emphasis, the higher the risk of having AHF reflects this clinical understanding.

The visual change according to RFs is mostly consistent with clinical understand-

ing, and these findings provide a quantitative fashion to explain the behavior of machine

learning models and make the model more human-reliable.
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Figure 4.13: Examples of radiomic features. The rows represents the five most important
RFs. The columns, from left to right, are 10%, 25%, 50%, 75%, and 90% percentile of
the corresponding RF of the row
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Chapter 5 Limitations

This study proposed a multimodal deep learning model to predict the NT-proBNP

level in ED using patients’ EHR and CXR. Although the proposed model achieved re-

markable classification performance, some limitations were found that require careful

consideration.

5.1 Label Uncertainty

After analyzing failure cases, I noticed that some misclassified cases were peculiar

and were almost inevitable to avoid. As shown in Fig. 5.1, both images visually contain

strong characteristics implying high NT-proBNP levels. For example, there are abnor-

mally large hearts in CXR, and the patient in the left image wears a pacemaker. However,

their NT-proBNP values are below 300 ng/L, 240, and 218 ng/L, respectively. In our

opinion, two potential possibilities lead to the conflict outcomes of predictors and ground

truths. First, since chest radiography and NT-proBNP data were merged with the small-

est time difference, some unlearnable biases may exist if the patient’s health condition

changed dramatically between the two examinations. Second, the health condition itself

is inherently uncertain. The same cause may lead to different results for different people.

Collecting more features about patients’ health conditions may be able to address this

55



doi:10.6342/NTU202202103

type of problem. Assume that there is a missing but important confounder heavily causing

the label uncertainty. If one can input that missing feature into the proposed multimodal

model, the model may learn the relationship between the missing feature and the true

label. However, the eight EHR (age, gender, temperature, heart rate, respiratory rate, O2

saturation, systolic blood pressure, diastolic blood pressure) and CXR were chosen as the

inputmodality because of their accessibility in ED. Therefore, if obtaining the hypothetical

missing feature costs too much, it is unsuitable for our AHF screening scenario.

Figure 5.1: Demonstration of label uncertainty

5.2 Segmentation Models

For some CXRs, their lung-heart masks are challenging to be accurately segmented.

As demonstrated in Fig. 3.12, the bottom corners of the CXR were barely detectable, and

the lung region’s whiteness tends to be misclassified as the heart region. And since lung-

heart masks are one of the most significant components in our modeling pipeline, any

subtle difference matters.
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There are twomain reasons causing the limitation. First, MIMIC-CXRwas published

with weak labels for classifying 14 common thoracic diseases. To overcome this problem,

I utilize 247 pairs of CXRs and lung-heart masks from the JSRT dataset. 194 pairs of CXRs

and lung-heart masks were manually labeled following the same criteria of JSRT to fill

the gap of the domain shift between the MIMIC-CXR and the JSRT dataset. The lung-

heart segmentation model performed surprisingly well, but since manually annotating the

semantic segmentation task is both labor and time-consuming, not all the lung-heart masks

in the study population could be annotated. Therefore, some edge cases can not be handled

well enough. Second, image quality and health conditions themselves are tremendously

diverse. Unlike JSRT,MIMIC-CXR collected CXRs from the real clinical fields for years,

so the image quality and patients’ health conditions have width distributions. For example,

SomeCXRs have clear borders, and someCXRs have blur edges. SomeCXRs are straight,

and some CXRs are tilted. Some CXRs are in high resolution, and some CXRs are in

low resolution. Due to the variety of CXRs, developing a well generalizable lung-heart

segmentation training from the small dataset is hard.

I believe that a high-quality lung-heart segmentation model provides great benefits.

The benefits come from their derived features. Combining patients’ CXRs and the cor-

responding lung-heart masks, clinically meaningful features such as three HSRs and 306

RFs were extracted for each pair of CXR and mask. These extracted numerical features

are human-recognizable and open the black box of machine learning models. The mag-

nitude and the direction of how a feature affects the prediction can be quantified using

XGboost and SHAP analysis. Moreover, the lung-heart masks even localized the thoracic

region (ROI) and let the image models focus on the important region instead of the AHF

irrelevant area.

57



doi:10.6342/NTU202202103

A potential way to generate high-quality lung-heart masks in the future is to build

up a system that continuously updates the segmentation model and introduces the idea of

active learning. When updating the models, the images requiring manual annotation have

the most incorrect or visual differences. However, the potential update is not in the scope

of this study.

5.3 Mask Post-processing Algorithms

In Sec. 3.4.2, I developed twomask post-processing algorithms tomaintain the anatom-

ical characteristics of the heart and lungs. The main purposes of the two algorithms are

to recover and approximate the undetectable lung-heart mask due to the limitation of the

segmentation model. In this section, I will discuss the cases in which the two algorithms

may not be accurate enough.

The first mask post-processing algorithm deletes fragments by replacing the original

value with the most frequent value in their edges. When a heart fragment occurs between

lung masks and background masks, the algorithm may replace the wrong value since the

number of wrong pixels may outnumber the correct ones and become the mode of the

edge.

The second mask post-processing algorithm was developed assuming that human

chests are bilateral symmetry. Utilizing the property, the algorithm identifies left and right

clavicles and then rotates, shifts, and mirrors the image according to the centers of the two

clavicles. As shown in Fig. 3.10, if the patient’s body was tilted when taking CXR, the

assumption of bilateral symmetry is violated, resulting in a bad approximation of the lung

mask. Another failure case is when the entire heart mask is undetectable or is deleted by
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the first algorithm. In this case, the heart mask can not be recovered.

5.4 Generalization

In this study, MIMIC-IV serves as the core dataset. The data in MIMIC-IV were

collected by the patients admitted to an academic medical center in Boston, MA, USA,

between 2008 and 2019. Although MIMIC-IV is currently the largest open-source dataset

containing 377,110 CXRs from 64,588 patients, it is still a local uni-centered dataset with

little diversity in terms of ethnicity. Thus, our trained multimodal deep learning model

may fail to perform as well as the performance in the study population. The performance

drop will depend on the divergence between MIMIC-IV and the target dataset. The more

the divergence, the worse I expect the model to perform. Our study has demonstrated the

benefits of combining EHR and CXR when screening AHF in ED using open-source data.

In the future, I plan to cooperate with National Taiwan University Hospital (NTUH) and

retrained the model using the data from NTUH. I hope to implement our model into a

prospective scenario and maximize the value of medical data.

Currently, our study focus on predicting AHF in ED for patients with EHR and CXR.

This scenario is where NT-proBNP is most commonly used. However, in our opinion,

the application of predicting NT-proBNP can be more than that. There are two possible

situations that can be benefited from the NT-proBNP prediction model. One situation is in

the hospital without the ability to execute the NT-proBNP test. As shown in Fig. 1.1, our

model can be embedded into the current AHF diagnosis workflow. Even if a patient could

not take NT-proBNP testing in a hospital, the patient’s probability of having AHF can still

be approximated by our model. The other scenario is in a remote area. Since the eight
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EHRs in our study and CXR are cheap data sources within easy reach, a patrol medical

vehicle with an X-ray device can carry out a community screening. The application in a

remote area is inexecutable even though the model is retrained using a dataset from a local

hospital because the data from MIMIC-IV were collected in hospitals, and there exists a

huge difference between the distribution of patients and the distribution of the general

population. Therefore, the data from general health examinations are necessary to fulfill

the great picture of the application of NT-proBNP prediction.
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Chapter 6 Conclusion

In this paper, I proposed a multimodal deep learning model that combined the CXR

and EHR to screen AHF in ED. The prediction target is a binary label indicating whether

the value of NT-proBNP is greater than 300 ng/L. The model aims to be integrated into

the current AHF diagnosis workflow and release the potential bottleneck as no single ex-

amination can independently reliably diagnose or rule out AHF in the workflow.

The input modalities are eight EHRs and frontal CXRs, which are the most common

data in ED. Once images are input into the modeling pipeline, the lung-heart mask gen-

erator initially identified the lung and heart region by the lung-heart segmentation model

and remained the anatomical characteristics of the heart and lungs by two mask post-

processing algorithms. After obtaining the lung-heart masks, three heart-size ratios and

306 radiomic features were extracted by predefined formulas. These manually extracted

features provide interpretability and clinical meanings. Moreover, ROIs were also ex-

tracted to eliminate noises in original CXRs and make the image model focus on the im-

portant regions. Eventually, all elements above, including 317 numerical features and two

images, were fused to output the final prediction.

The ablation study illustrates that EHRs improve model performance from AUROC

0.8241 to 08320. Adding HSRs and RFs to the model also boosts prediction performance
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from AUC 0.8241 to 0.8615. The results verify that multimodal features help the model

learn the underlying relationship between input modalities and AHF. The overall perfor-

mance of late fusion outperformed early and joint fusion, showing that ensembling all

single-modal models outputs a more robust and accurate prediction.

The heatmap analysis shows that the two image models make decisions that mostly

depend on heart regions or the pacemakers if exist. The importance of the XGBoost fea-

tures and SHAP analysis highlighted the most significant features, including age, width

and area ratios, and RFs related to heart size and lung texture. These findings are aligned

with our clinical background knowledge.

Using theMIMIC-IV andMIMIC-CXR, this study illustrated that the proposedmethod

achieved the highest classification performance when combining all modalities.
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Appendix A — Figures

A.1 Flowchart of Inclusion and Exclusion

Figure A.1: Flowchart of inclusion and exclusion
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Appendix B — Tables

B.1 Radiomic Features
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Feature Classes Feature Names
First Order Features Maximum, Median, Minimum, Mean Energy, Entropy, Vari-

ance, Kurtosis, Root Mean Square, Skewness, 10th Percentile,
90th Percentile, Mean Absolute Deviation, Uniformity, Range,
Robust Mean Absolute Deviation, Total Energy, Interquartile
Range

Shape Features (2D) Volume, Elongation, Surface Area, Max 2D Diameter, Mesh
Volume, Major Axis Length, Max 2D Diameter Row, Max 2D
Diameter Column, Surface Volume Ratio, Sphericity, Minor
Axis Length

GLCM Features Contrast, Correlation, Autocorrelation, Cluster Tendency, Sum
Average, Sum Entropy, Sum Squares, Difference Average,
Difference Variance, Difference Entropy, Cluster Prominence,
Cluster Shade, Maximum Probability, Inverse Difference Mo-
ment, Informational Measure of Correlation 1/2, Inverse Dif-
ference Moment Normalized, Inverse Difference Normalized,
Inverse Difference, Inverse Variance, Maximal Correlation Co-
efficient, Joint Average, Joint Energy, Joint Entropy

GLSZM Features Gray-Level Non-Uniformity, Gray-Level Non-Uniformity Nor-
malized, Gray-Level Non-Uniformity Normalized, High Gray-
Level Zone Emphasis, Large Area Emphasis, Large Area High
Gray-Level Emphasis, Large Area Low Gray-Level Emphasis,
Low Gray-Level Zone Emphasis, Size Zone Non-Uniformity,
Size Zone Non-Uniformity Normalized, Small Area Emphasis,
Small Area High Gray-Level Emphasis, Small Area Low Gray-
Level Emphasis, Zone Entropy, Zone Percentage, Zone Vari-
ance

GLRLM Features Gray-Level Non-uniformity, Gray-Level Non-uniformity Nor-
malized, Gray-Level Variance, High Gray-Level Run Empha-
sis, Long Run Emphasis, Long Run High Gray-Level Empha-
sis, Long Run Low Gray-Level Emphasis, Low Gray-Level
Run Emphasis, Run Entropy, Run Length Non-Uniformity,
Run Length Non-Uniformity Normalized, Run Percentage, Run
Variance, Short Run Emphasis, Short RunHighGray-Level Em-
phasis, Short Run Low Gray-Level Emphasis

NGTDM Features Coarseness, Contrast, Busyness, Complexity, Strength
GLDM Features Dependence Entropy, Dependence Non-Uniformity, Depen-

dence Non-Uniformity Normalized, Dependence Variance,
Gray-Level Non-Uniformity, Gray-Level Variance, High Gray-
Level Emphasis, Large Dependence Emphasis, Large Depen-
dence High Gray-Level Emphasis, Large Dependence Low
Gray-Level Emphasis, Low Gray-Level Emphasis, Small De-
pendence Emphasis, Small Dependence High Gray-Level Em-
phasis, Small Dependence Low Gray-Level Emphasis
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