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摘要

外爾半金屬因為能帶中有被視為貝里曲率磁單極的特殊交錯而在近

幾年受到注意。過渡金屬矽化物，包括一矽化鈷、一矽化銠、一鍺化

鈷和一鍺化銠，是一組缺少鏡面對稱性質的掌性外爾半金屬。因此，

這些材料的外爾結點坐落於不同的能階上。多重簡併並且擁有較大陳

數的外爾結點被預言存在於這些材料中。因此，這些材料成為一個研

究外爾結點跟物理性質關係的好平台。在這個論文中，我們系統性地

透過第一原理計算研究以上材料的自旋霍爾效應，自旋能斯特效應還

有非線性光學性質。在我們的研究中，我們展示了一鍺化銠在所有材

料中擁有最高的自旋霍爾電導率-139 (ℏ/e)(S/cm)，並且在室溫下一矽

化鈷和一鍺化鈷擁有大的自旋能斯特電導率，分別為-1.00 (ℏ/e)(A/m

K)和 -1.25 (ℏ/e) (A/m K)。非線性光學的部分，我們計算了二次階波

產生還有體光伏效應。我們發現偏移電流會在低能量的區域產生峰值，

而這個峰值並沒有出現在線性光學上。並且，透過我們的計算我們揭

露透過調整費米能量，有可能得到被預測會發生在這個材料上的量子

體光伏效應。

關鍵字: 外爾半金屬，自旋霍爾效應，自旋能斯特效應，光生伏打

效應，二階非線性光學，第一原理計算。
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Abstract

Weyl semimetals have received a lot of attention in recent years because

of the unique band crossing which can be seen as a monopole of Berry cur-

vature. Among them, transition metal silicides, including CoSi, RhSi, CoGe,

and RhGe, form a group of chiral Weyl semimetals with no mirror symmetry.

Hence, the pairs of Weyl nodes in these materials are located at different en-

ergy levels. Also, multifold Weyl nodes with a large Chern number were

predicted in these materials. Therefore, these materials should be a good

platform to study the relation between these Weyl nodes and novel physi-

cal phenomena. In this thesis, we systematically study the spin Hall effect

(SHE), spin Nernst effect (SNE), and nonlinear optical (NLO) effects for the

above-mentioned materials by first-principles calculation. We show that the

highest spin Hall conductivity (SHC) value among these materials is RhGe

with -139 (ℏ/e)(S/cm). Also, spin Nernst conductivity (SNC) at room tem-

perature is large for both CoSi and CoGe, with the value of -1.00 (ℏ/e)(A/m

K) and -1.25 (ℏ/e)(A/m K), respectively. For NLO, second harmonic gen-

eration (SHG) and bulk photovoltaic effect (BPVE) are calculated. We find

that linear shift current shows a peak in the low energy region which doesn’t

appear in the optical conductivity. Also, through our calculation, we reveal

that by tuning Fermi energy, it is possible to get quantized circular injection

current which was predicted to happen in chiral Weyl semimetals.

Keywords : Weyl semimetal, spin Hall effect, spin Nernst effect, bulk

photovoltaic effect, second order nonlinear optics, first principle calculation.
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Chapter 1

Introduction

1.1 Multifold chiralWeyl semimetals XY (X=Co, Rh;Y=Si,

Ge)

In the past few years, topological materials, including Dirac semimetals (DSMs) andWeyl

semimetals (WSMs), have attracted a lot of attention due to their unique electronic struc-

ture. To be more specific, linear band crossing appear in these materials which are called

Weyl nodes or Dirac nodes. For DSMs, the band structure hosts a linear crossing point

which can be described by 4×4 Dirac Hamiltonian [1]. On the other hand, for WSMs,

because either time-reversal symmetry or inversion symmetry is broken the Dirac node

splits and two Weyl nodes appear in the band structure simultaneously, which can be de-

scribed by 2×2 Weyl Hamiltonian[1]. This pair of Weyl nodes is seen as source (positive

Chern number) or sink (negative Chern number) of Berry curvature in the materials. As

a result, tons of studies were carried out to investigate the physics behind the materials

[2, 3, 4, 5, 6, 7, 8, 9, 53, 11].

Recently, CoSi [12] and RhSi [13] were predicted to host unconventional Weyl nodes

in their band structure. Instead of a double degenerate linear crossing with Chern num-

ber ±1, semimetals XY (X=Co, Rh; Y=Si, Ge) have a threefold degenerate spin-1 chiral

fermion node [see Fig. 1.1(b)] with Chern number +2 at Γ and a fourfold degenerate dou-

ble Weyl node [see Fig. 1.1(d)] at R with Chern number -2 without spin-orbit coupling

1
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(SOC). The nodes will further split into a fourfold degenerate spin-3/2 Rarita-Schwinger-

Weyl (RSW) chiral fermion node atΓ [see Fig. 1.1(c)] with Chern number +4 and a sixfold

degenerate double spin-1 chiral fermion node at R with Chern number -4 after consider-

ing SOC. Unlike traditional Weyl nodes, the spin-1 and spin-3/2 fermion nodes can only

be realized under the symmetry restriction of crystal and are not allowed in high energy

physics [12]. Also, since the materials lack mirror symmetry, the Weyl nodes are located

at different energy levels which can lead to some interesting phenomena such as quantized

circular photogalvanic effect (CPGE) [6, 8, 14, 15]. Fig. 1.1 shows the band structure for

different types of Weyl nodes.

2
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Figure 1.1: Band structure of different kinds of chiral fermion nodes. (a) The traditional
Weyl fermion node with S=1/2, (b) spin-1 chiral fermion node, (c) spin 3/2 RSW chiral
fermion node, and (d) double Weyl fermion node. [12]

3
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1.2 Spin Hall effect and spin Nernst effect

The ordinary Hall effect [see Fig. 1.2(a)] is a well-known phenomenon that, when current

goes through a material under a perpendicular magnetic field, electrons accumulate at one

side due to Lorentz force and hence induce Hall voltage. On the other hand, the spin

Hall effect (SHE) was proposed by Dyakonov and Perel in 1971 [16]. In a non-magnetic

material even without any external magnetic field, spin-up and spin-down electrons still

move to the different sides because of SOC, and thus form pure spin current [see Fig.

1.2(c)]. Because Weyl nodes are the source or sink of Berry curvature in the material and

spin Hall conductivity (SHC) is the interplay between spin operator and Berry curvature,

we can expect that WSMs may host large SHC. For example, WSMs TaAs was predicted

to have large SHC by first principle calculations [2], and large SHC was also observed in

WSMs WTe2 [57, 58, 11].

Besides driving the electrons with the electric field, the other choice is applying a

temperature gradient to the material. Similarly, the above mention features will also show

up in this case, which would be called the Nernst effect [see Fig. 1.2(d)] and spin Nernst

effect (SNE) [see Fig. 1.2(f)] [17], respectively. In fact, since the origin of SHE and

SNE is all coming from SOC, we can expect that material with large SHE would also

present large SNE. The detailed formalism of evaluating the value of SHE and SNE will

be introduced explicitly in chapter 2.

4
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Figure 1.2: Schematic plot for SHE and SNE.

1.3 Second order nonlinear optics

Optical effects are another topic that has been studied a lot for a long period. The optical

response relation between material’s polarization P and electric field E can be writen

down as[18]

P = ϵ0[χ
(1)Ea + χ(2)EaEb + χ(3)EaEbEc + · · · ], (1.1)

where χ represents the susceptibility. In the first term of the formula χ(1) is the traditional

linear susceptibility, and the following terms are nonlinear susceptibilities. In a system

under inversion symmetry, the even-order terms of optical effects vanish due to P (r⃗) =

−P (−r⃗) and E(r⃗) = −E(r⃗), which implies that susceptibilities of even terms should

be zero. As a result, to produce second order nonlinear effects, it’s necessary to find a

material with inversion symmetry breaking.

In this thesis, we will focus on two kinds of second order nonlinear optical effect,

which is the second harmonic generation (SHG) and bulk photovoltaic effect (BPVE).

For SHG [18], it is an effect that when two photons with energy ℏω hit the materials,

they will be absorbed and then the materials will emit photons with double frequency 2ℏω

[see Fig. 1.3]. And BPVE is a nonlinear optical effect that generates photocurrent after

5
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absorbing the light. We will have a deeper discussion of the formula and mechanism of

these effects in chapter 2.

Figure 1.3: Schematic plot for SHG.

6
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Chapter 2

Theoretical Background

2.1 Density functional theory

In quantum mechanics, it’s simple to solve a single particle Schödinger equation and get

the wavefunction to predict the behavior of the system. However, in condensed matter

physics, things become more tricky because it’s difficult to explicitly solve Schödinger

equation if not impossible for a many-body system. As a result, density functional theory

(DFT) is a method that can help us simplify the equation and get an approximation answer.

Here we start from the normal Schödinger equation of a many-body system.

HΨ = [
N∑
i=1

(− ℏ2

2me

▽⃗i2) +
M∑
I=1

(− ℏ2

2mI

▽⃗i2)−
N∑
i=1

M∑
I=1

(
ZIe

2

|r⃗i − R⃗I |
) +

N∑
i,j=1,i<j

(
e2

|r⃗i − r⃗j|
)

+
M∑

I,J=1,I<J

(
ZIZJe

2

|R⃗I − R⃗J |
)]Ψ.

(2.1)

The first two terms in the formula are kinetic energy of electrons and nuclei, and the last

three terms are interaction terms between electrons and nuclei, between electrons and elec-

trons,and also between nuclei and nuclei. Here we use Born-Oppenheimer approximation,

which assumes that nuclei are heavy and their positions are fixed. The kinetic term of nu-

clei should become zero and the nuclei-nuclei interaction term become a constant. Thus

7
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we can simplify the formula as

Hψ = [
N∑
i=1

(− ℏ2

2me

▽⃗
2

i ) +
N∑
i=1

Vext(r⃗i) +
N∑

i,j=1,i<j

U(r⃗i, r⃗j)]Ψ = [T + V + U ]Ψ. (2.2)

Only terms that involve electrons are left, T is the kinetic energy term, V is the electron-

nuclei interaction term, and U is the electron-electron interaction energy term. The dif-

ficult part of solving this equation is the electron-electron interaction term which can be

really complicated in real systems. To simplify it, we further define electron density dis-

tribution as [19]

n(r⃗1) =

∫
dr⃗2

3

∫
dr⃗3

3 · · ·
∫
dr⃗N

3|ψ(r⃗1r⃗2 · · · r⃗N)|2. (2.3)

In 1964 Hohenberg and Kohn established two theorems that are important for DFT [19].

The first one is that the ground state energy of a system should be a unique functional of

electron density n(r⃗), and the second one is that the electron density that minimizes the

energy of the system should be the real electron density of it. With this information now

we can simplify the equation as

[T + V +

∫
n(r⃗′)

|r⃗ − r⃗′|
dr⃗′

3
+ Vxc(r⃗)]ψi(r⃗) = ϵiψi(r⃗). (2.4)

This is called Kohn-Sham equation [20], Vxc is the exchange-correlation potential which

is the only unknown part of the equation.

2.2 Exchange-correlation potential

After simplifying the formula [Eq. (2.4)], the last thing that we need to solve is finding

exchange-correlation potential. To date, there are several successful approximations to

deal with the problem. Two of them are local density approximation (LDA) [21] and gen-

eralized gradient approximations (GGA) [22]. For LDAmethod, the exchange-correlation

8
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energy is

Exc[n] =

∫
ϵxc[n]n(r⃗)d

3r⃗, (2.5)

where

ϵxc[n] = ϵxc(n(r⃗)) (2.6)

is exchange-correlation energy per particle of homogeneous electron gas with density

(n(r⃗)). And the exchange-correlation potential Vxc can be calculated by using relation

Vxc =
∂Exc[n]

∂n
. (2.7)

However, LDA is kind of a simple approximation to solve the problem. As a result, GGA

method improves the accuracy by expanding the electron density to gradient term.

ϵxc[n] = ϵxc(n(r⃗), ▽⃗n(r⃗)). (2.8)

One famous example showcasing the difference between these two methods is the cal-

culation of Iron [23, 24, 25]. LDA predicts that Iron has non-magnetic ground state and

has FCC structure, which is wrong. However, GGA successfully gets magnetic ground

state and BCC structure, which is correct. Nowadays, there are several versions of GGA

provided to the users. In this thesis, we use Perdew-Burke-Ernzerhof (PBE) [22] version

to do the calculations.

2.3 Bloch theory and reciprocal lattice

Bloch theory [26] is one of the key concepts in solid-state physics. Because of the peri-

odic nature of crystal, we can easily claim that the wavefunction of Schödinger equation

should also obey this feature, which we call translation symmetry. Let’s start with a nor-

mal translation operator

T̂ (R⃗n)|r⃗⟩ = |R⃗n + r⃗⟩. (2.9)

9
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The above formula means that the operator makes the position shift from r⃗ to R⃗n + r⃗. In

the crystal, if R⃗n is equal to n1a⃗1 + n2a⃗2 + n3a⃗3, where n1, n2, n3 are integer and a⃗1 , a⃗2,

a⃗3 are primitive lattice vectors, respectively. The wavefunction should be the same as the

original due to periodic nature we mention before. Hence we can write down the solution

to Schödinger equation in crystal as

ψ(r⃗) = eik⃗·r⃗u(r⃗), (2.10)

where u(r⃗) is a periodic function that u(r⃗) = u(r⃗+ n · a⃗), and eik⃗·r⃗ is a plane wave. Also

notice that k⃗ is crystal momentum where k⃗ = x1⃗b1 + x2⃗b2 + x3⃗b3 and x1, x2, x3 < 0.

Here b⃗1, b⃗2 and b⃗3 are called primitive reciprocal lattice vectors, and they are related to the

primitive lattice vectors as

a⃗i · b⃗j = 2πδij. (2.11)

With primitive reciprocal lattice vectors, we can thus define the first Brillion zone. By

plotting eigenvalue energy in the first Brillion zone, we can get the band structure of the

material.

2.4 Berry-phase formalism for calculating intrinsic spin

Hall conductivity

For the intrinsic SHC, it can be calculated quite straightforwardly by using Berry-phase

formalism [27, 28]. First, SHC is a third-rank tensor that

σs
ij = Js

i /Ej, (2.12)

where i, j ∈ (x, y, z) but i ≠ j. In this equation, the upper index s denotes the spin direc-

tion, Js
i is the ith component of spin current density with spin polarize along s direction

and Ej is the jth component of an electric field. With the Berry-phase formalism, we can

10



doi:10.6342/NTU202203620

calculate SHC by integrating spin Berry curvature of all occupied bands [27].

σs
ij = e

∑
n

∫
BZ

dk

(2π)3fkn
Ωn,s

ij (k), (2.13)

Ωn,s
ij (k) =

∑
n′ ̸=n

2Im[⟨kn|{τs, vi}/4|kn′⟩⟨kn′|vj|kn⟩]
(ϵkn − ϵkn′)2 + (η)2

, (2.14)

where fkn is Fermi-Dirac distribution, Ωn,s
ij (k) is spin Berry curvature for the nth band, τs

is Pauli matrix, vi is velocity operator and η is fixed smearing parameter. Similar to SHC

tensor, SNC tensor is also a thrid-rank tensor that

αs
ij = −Js

i /▽jT . (2.15)

Just replacing electric fieldEj with temperature gradient▽jT . In this thesis, we calculate

SNC directly through energy integration of SHC [29]

αs
ij =

1

e

∫ ∞

−∞
dε
∂f

∂ε
σs
ij(ε)

ε− µ

T
. (2.16)

2.5 Formula for bulk photovoltaic effect and second har-

monic generation

For the NLO properties, we use the length-gauge formulism derived by Aversa and Sipe

[30]. In the thesis, we will mainly focus on SHG and BPVE. SHG can be written down as

P (2)
a (ω) = χ

(2)
(abc)(−2ω;ω, ω)εb(ω)εc(ω), (2.17)

where χ(2)
(abc)(−2ω;ω, ω) is SHG susceptibility, and it can be further divided into two parts

χ
(2)
(abc)(−2ω;ω, ω) = χ

(2)
(abc),e(−2ω;ω, ω) + χ

(2)
(abc),i(−2ω;ω, ω), (2.18)

χ
(2)
(abc),e(−2ω;ω, ω) =

e3

εℏ2Vc

∑
n,m,l

∑
k

ramn

ωmn − 2ω
(
rbmlr

a
lnfnl

ωln − ω
− rcmlr

b
lnflm

ωml − ω
), (2.19)

11
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χ
(2)
(abc),i(−2ω;ω, ω) =

ie3

εℏ2Vc

∑
n,m

∑
k

[
fnmr

a
nm

ωmn − 2ω
(
rcmn;b

ωmn − ω
− rcmn△b

mn

ωmn − ω
)

− fnmr
c
mn

2(ωmn − ω)
(
rbnm;a

ωmn + ω
− rnm△a

mn

(ωml − ω)2
)],

(2.20)

where χ(abc),i and χ(abc),e is pure interband contribution and inter-intraband contribution

for SHG susceptibility, respectively. Subscribe n,m, l denote the nth, mth, and lth band.

The BPVE [31, 32] is an effect that materials generate photocurrent after absorbing light.

In the clean limit, we can write down

jcdc = σc;ab
dc (ω)Ea(ω)Eb(−ω), (2.21)

σc;ab
dc (ω) = σc;ab

shift(ω) + σc;ab
inj (ω). (2.22)

There are two categories of BPVE [32], one is shift current and the other is injection

current. The mechanism of shift current is the shift of electron while doing interband

transition, and injection current can be seen as velocity difference for excited electrons.

Both of them have a real part and an imaginary part. The real part which is triggered

by linearly polarized light is called linear shift current or linear injection current, and the

imaginary part due to circularly polarized light is called circular shift current or circular

injection current. These quantities can be calculated with formula [32]

σc;ab
shift(ω) = −πe

3

ℏ2

∫
k

∑
n,m

fFD
nm (Rc,a

mn −Rc,b
nm)r

b
nmr

a
mnδ(ωmn − ω), (2.23)

σc;ab
inj (ω) = −τ 2πe

3

ℏ2

∫
k

∑
n,m

fFD
nm △c

mn r
b
nmr

a
mnδ(ωmn − ω), (2.24)

where fFD
nm is Fermi-Dirac distribution. Rc,a

mn is called shift vector which is the crucial part

of shift current, its defenition isRc,a
mn = rcmm−rcnn+ i∂clog(ramn), and△c

mn = vcmm−vcnn.

12
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Chapter 3

Electronic structure of XY (X=Co, Rh;

Y=Si, Ge)

3.1 Crystal structure

The structure of the CoSi family is a simple cubic crystal with P213 space group [33, 34].

Interestingly, they are structurally chiral. There are two kinds of handedness, right-handed

crystal (RHC) or left-handed crystal (LHC) [34], based on the view along the [111] axis

shown in Fig. 3.1. However, whether it is RHC or LHC is decided by the nature of the

crystal and the growing method. Based on the experiment, we only find that CoSi has

successfully grown in both RHC [33] and LHC [34]. For the other materials, they are all

RHC [35, 36, 37]. This makes CoSi a good platform to study how the structural chirality

affects the physical properties. The experimental lattice constants are used in the present

calculations and are listed in Table 3.1 and Table 3.2.
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Figure 3.1: Simple cubic chiral crystal structure of CoSi family. (a) The primitive unit
cell of CoSi family. In the primitive unit cell there are four Co/Rh and four Si/Ge atoms,
respectively. (b) The view of crystal along [111] axis with 2 × 2 × 2 supercell. The
transparency of atoms represent the depth of them. The red and blue arrows show the
helicity (chirality) of atoms. Since Co/Rh atoms predominate the energy band aroundEF ,
we use the Co/Rh to define the chirality of the system. (c) First Brillouin zone of the CoSi
family.

Left-handed crystal (LHC) Right-handed crystal (RHC)
atom x y z x y z
Co 0.3934 0.3934 0.3934 0.1400 0.1400 0.1400
Co 0.1066 0.6066 0.8934 0.3600 0.8600 0.6400
Co 0.6066 0.8934 0.1066 0.8600 0.6400 0.3600
Co 0.8934 0.1066 0.6066 0.6400 0.3600 0.8600
Si 0.0935 0.0935 0.0935 0.8430 0.8430 0.8430
Si 0.4065 0.9065 0.5935 0.6570 0.1570 0.3430
Si 0.9065 0.5935 0.4065 0.1570 0.3430 0.6570
Si 0.5935 0.4065 0.9065 0.3430 0.6570 0.1570

Table 3.1: Atom positions of RHC [33] and LHC [34] of CoSi. The lattice constant of
both RHC and LHC is 4.45Å.

Structure a(Å)
CoSi [33] 4.450
CoGe [35] 4.631
RhSi [36] 4.674
RhGe [37] 4.862

Table 3.2: Experiment lattice constants of the CoSi family that we use in our calculations
in this thesis.
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3.2 Computational details

In this thesis, we use Vienna ab initio package (VASP) [38, 39] to do the electronic struc-

ture calculations, including band structure and density of state (DOS). The calculations are

based on the density functional theory with the generalized gradient approximation (GGA)

[22]. A large energy cutoff 400 eV was used in these calculations. The valence electronic

configurations of the pseudopotentials for Co, Rh, Si, and Ge are 3d84s1, 4d85s1, 3s23p2,

and 3d104s24p2, respectively. In the self-consistent band structure calculation we use Γ-

centered k-mesh of 16 × 16 × 16 in the Brillouin zone, and k-mesh of 24 × 24 × 24 for

DOS to get a more accurate result. After that, Wannier90 package [40, 41, 42] is used

to construct tight-binding Hamiltonian with dxy orbitals of transition metal from -0.5 eV

below Fermi level (Ef ) to 0.5 eV aboveEf and is further used to calculate SHC and NLO.

For SHC, k-mesh of 200 × 200 × 200 with 5 × 5 × 5 refinement is used with adaptive

smearing. For NLO, k-mesh of 200× 200× 200 is used.

3.3 Electronic structure

All XY crystals in this thesis have a non-magnetic ground state. Calculated DOS and

band structure for both with and without SOC are plotted in Figs. 3.2-3.10 below. From

DOS [see Figs. 3.2 and 3.3] we can see that all four materials have a pretty low value

of DOS around Ef , which indicate that they are all semimetals. Also around the Ef ,

the d orbitals of Co or Rh dominate the contribution. Due to the symmetry of the crystal,

multifold degenerate nodes are guaranteed atΓ point andR point. Whenwe don’t consider

SOC [see Fig. 3.6], three-fold degenerate spin-1 fermion node with Chern number +2

appears at Γ, and four-fold degenerate double Weyl fermion node with Chern number -2

appears at R. However, when SOC is added [see Fig. 3.4], these bands split into higher

degeneracies with a higher Chern number. To be specific, the spin-1 fermion node atΓwill

split into a four-fold degenerate spin-3/2 RSW fermion node (W1) with Chern number +4

and a normal Weyl node (W3) with Chern number +1. The four-fold degenerate double

Weyl fermion node at R split into a six-fold degeneracte spin-1 double Weyl fermion
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node (W2) with Chern number -4. Notice that spin-3/2 RSW fermion and spin-1 fermion

have no counterpart in high-energy physics, and thus they are called unconventional chiral

fermions. These unconventional chiral fermions, especially the one at Γ, are located near

Ef , which make it a good platform to study novel physics effects related to chiral fermions

with doping electrons or holes.

Another interesting thing is that we also calculate band structure for LHCCoSi, and we

find that the band structure is almost the same as the RHC [see Fig. 3.11]. Nevertheless,

the signs of the Chern numbers of these Weyl nodes are all reversed, which means that for

RHC Chern numbers ofW1,W2, andW3 are -4, +4, and -1, respectively.
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Figure 3.11: Band structure for RHC and LHC structure of CoSi.
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Chapter 4

Spin Hall effect and spin Nernst effect

in XY (X=Co, Rh; Y=Si, Ge)

4.1 Spin Hall effect

As mentioned in section 2.4, SHC is a third-tank tensor (σk
ij; i, j, k = x, y, z). Thus, there

are 27 possible nonzero tensor elements. However, because of the symmetry of the crys-

tal, some of them would be prohibited or be the same as the other tensor elements. After

checking the symmetry of space group P213, we figure out that there are only two in-

dependent tensor elements, σz
xy and σz

yx [44] for the material. The relation of the tensor

elements is σz
xy = σx

yz = σy
zx and σz

yx = σy
xz = σx

zy, all the other tensor elements should be

zero. Interestingly, for nonchiral cubic material Pt [27], there is only one independent ten-

sor element σz
xy, and σz

xy = −σz
yx. This implies that due to the absence of chiral symmetry,

σz
yx become an independent tensor element that doesn’t have relation with σz

xy.

Moreover, since there are LHC and RHC for the chiral material, it’s also important to

know the SHC relation of both handedness. Because CoSi has experimental data for both

RHC [33] and LHC [34] structures, we calculate the SHC for both structures in Fig. 4.1

and come to conclution that σz
xy(LHC) ≈ −σx

yz(RHC) and σy
xz(LHC) ≈ −σz

xy(RHC).

The explicit relation is listed in Table 4.1. There are small differences between two results

which are caused by atomic position difference of the experimental data. As a result, SHC
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Figure 4.1: Calculated SHC (σz
xy and σy

xz) for both RHC and LHC of CoSi.

can be used to identify the chirality of the structure, and this is also an interesting topic

recently. However, the other three materials have only RHC structure. We’ll focus on

SHC of RHC structure in this thesis.

The SHC of the four compounds is listed in Table 4.2 with increasing order of SOC

strength. For σz
xy, the value of CoSi is the smallest and RhGe is the largest which follows

the strength order of SOC. However, the other tensor element σy
xz doesn’t follow this trend.

Also, the signs of σy
xz for RhSi and RhGe are different from CoSi and CoGe. Among these

materials, the σz
xy of RhGe shows the largest SHC which is -139 (ℏ/e)(S/cm). Compared

with other representative materials, it’s much smaller thanWeyl semimetal TaAs [2] which

has SHC of -781 (ℏ/e)(S/cm) and it’s about 15 times smaller than Ptmetal [27] whose SHC

of -781 (ℏ/e)(S/cm).

FromTable 4.2 we can see that SHC of thesematerials show strong anisotropy. That is,

after exchanging the electric field direction and the spin polarization direction SHC value

can be pretty different. Take RhSi for example, σz
xy, which is under an electric field at y

direction and spin polarize at z dirrection, is -122 (ℏ/e)(S/cm). However, after changing

electric field to z direction and spin polarize direction to y direction, σy
xz becomes 11

(ℏ/e)(S/cm), which is much smaller and the sign of SHC also changes.
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SHC (RHC) SHC (LHC)
σx σy σz σx σy σz

 0 0 0
0 0 σz

xy

0 σy
xz 0

  0 0 σy
xz

0 0 0
σz
xy 0 0

  0 σz
xy 0

σy
xz 0 0
0 0 0

  0 0 0
0 0 −σy

xz

0 −σz
xy 0

  0 0 −σz
xy

0 0 0
−σy

xz 0 0

  0 −σy
xz 0

−σz
xy 0 0

0 0 0



Table 4.1: Tensor shape of SHC for P213 space group with RHC and LHC, there are
only two independent nonzero tensor elements σz

xy and σy
xz. Note that SNC has the same

independent elements as SHC.

System σc
xx Sxx σz

xy Θz
sH σy

xz Θy
sH αz

xy Θz
sN αy

xz Θy
sN

(S/cm) (µV/K) (ℏ/e)(S/cm) (%) (ℏ/e)(S/cm) (%) (ℏ/e)(A/mK) (%) (ℏ/e)(A/mK) (%)
CoSi 5200c -81c -63, 52j -2.4 -66 -2.5 0.42 -2.0 -1.00 4.7
CoGe 4589d -82d -131 -5.7 -21 -0.9 0.06 -0.3 -1.25 6.6
RhSi 3571e -25h -122 -6.8 11 0.6 0.14 -3.1 -0.65 -14.6
RhGe 4130f -25f -139 -6.7 103 5.0 0.64 -12.4 -0.19 -3.7
TaAsa – – -781 – -382 – – – – –
ZrSiSb – – -79 – -611 – 0.60 – 1.51 –
Pt 208333g -3.7i 2139m 10g – – -1.09 (-0.91)k,-1.57i -20i – –
aAb initio calculation [2]; bAb initio calculation [4]; cTransport experiment [45];

dTransport experiment [46]; eTransport experiment [47]; fTransport experiment [48];
gTransport experiment [49]; hAssumed the same value as RhGe from [48]; i Experiment

at 255 K [52]; jAb initio calculation [51]; mAb initio calculation [27].

Table 4.2: Calculated SHC and SNC at T = 300K for all four CoSi family materials.
SHC and SNC from previously studied Weyl semimetal TaAs, Dirac semimetal ZrSiS,
and transition metal Pt are also in the list. We also show the experimental measurement
of electrical conductivity σc

xx and Seeback coefficient Sxx used for calculating spin Hall
angle ΘsH and spin Nernst angle ΘsN .
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System E (W1) E (W2) E (W3) σz
xy σy

xz αz
xy αy

xz

(eV) (eV) (eV) (ℏ/e)(S/cm) (ℏ/e)(S/cm) (ℏ/e)(A/mK) (ℏ/e)(A/mK)

CoSi 0.028 -0.180 -0.026 -83 (-54) 93 (-166) 0.39 (-1.35) -1.07 (1.05)

CoGe -0.002 -0.154 -0.062 -139 (-130) -38 (-98) 0.07 (-1.12) -1.24 (0.74)

RhSi 0.062 -0.410 -0.053 -89 (-92) 114 (-179) -0.02 (-0.88) -0.52 (1.24)

RhGe -0.096 -0.294 -0.212 -198 (-118) 103 (-24) 0.22 (-0.70) -0.26 (0.20)

Table 4.3: Energy levels of Weyl fermion nodesW1,W2, andW3 for each materials. SHC
(σz

xy and σy
xz) and SNC (αz

xy and αy
xz) at T = 300K after shifting µ toW1 andW2 are also

listed in the table. Note that the values in the parentheses mean µ = W2.

Since the multifold fermion nodesW1 andW2 are not located exactly at EF , we also

calculate SHC as a function of EF with rigid-band approximation which assumes that

changing the chemical potential µ won’t change the band structure. The results are shown

in Figs. 4.2 and 4.3, and the exact SHC values of shifting µ toW1 andW2 are also listed

in Table 4.3. From the spectrum of SHC, it’s obvious that SHC has a strong dependence

on µ, especially nearW1 for both CoSi and CoGe. The value of σy
xz of CoSi changes dra-

matically between EF andW1. When it is at EF σ
y
xz is -63 (ℏ/e)(S/cm). However, when

µ is shifted to above EF , σy
xz keeps increasing and changing sign, and finally reaching 93

(ℏ/e)(S/cm) when µ is shifted toW1, which is only 0.0028 eV above EF . Similarly, σy
xz

also changes rapidly between EF andW1. Moreover, the feature of rapid changing SHC

can also be found when µ is shifted further toW2. Nonetheless, this feature seems to only

exist in σy
xz. The other component σz

xy is smoother compared to σy
xz.

Besides the rapidly changing SHC feature mentioned above, there are still some other

noticeable features for SHC. σy
xz of RhSi increases from 11 (ℏ/e)(S/cm) to 114 (ℏ/e)(S/cm)

by raising µ a little bit toW1 at 0.06 meV above EF , which can be realized with electron

doping of 0.02 e/f.u. σy
xz of CoGe also change from -21 (ℏ/e)(S/cm) to -98 (ℏ/e)(S/cm)

through shifting µ toW2 at -0.15 eV below EF with -0.27 e/f.u. hole doping. Both σz
xy of

CoGe and RhGe has a large value of -260 (ℏ/e)(S/cm) and -202 (ℏ/e)(S/cm) by shifting to

-0.19 eV and -0.07 eV belowEF with 0.38 e/f.u. and 0.04 e/f.u. hole doping, respectively.

The results suggest that SHC value can increase dramatically with electron or hole doping.

Until now, the only material among the CoSi family that has been studied for SHC
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is CoSi by Tang et al. [12]. They measure SHC of CoSi with CoSi/CoFeB/MgO het-

erostructure and came out the damping like (σDL) SHC for film with thickness tCoSi=7.2

mm was 45 (ℏ/e)(S/cm), and fieldlike (σFL) is 95 (ℏ/e)(S/cm). They also performed DFT

calculation and got σz
xy=52 (ℏ/e)(S/cm). These results are close to our calculation listed

in Table 4.2. However, the spectrum of their paper seems to be more similar to σy
xz of Fig.

4.2(b) except for the sign difference. That is, σz
xy[12] ≈ −σy

xz [this work], which implies

that they should have a LHC structure. Also notice that they only studied one component

which was σz
xy. σy

xz was not considered in their paper.

Another important quantity that needs to take into account in the application of SHE

is the spin Hall angle (ΘsH). ΘsH can be easily calculated by ΘsH = (2e/ℏ)Js/J c =

2σs/σc, where J c and σc represent longitudinal charge current density as well as conduc-

tivity. Even though Pt metal has the largest SHC among all transition metals, its metallic

nature makes it also have a large conductivity, which reduces its ΘsH . On the other hand,

Weyl semimetals have a much smaller conductivity so that even with smaller SHC they

might have a larger ΘsH . We list all the ΘsH of the CoSi family in Table 4.2, and we find

that Θz
sH of RhGe and RhSi are almost -7% which are close to 10% of Pt metal.
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Figure 4.2: (a, d, g)Band structure with SOC, (b, e, h) SHC (σz
xy and σy

xz) as a function of
µ, and (c, f, i) SNC (αz

xy and αy
xz) as a function of µ for CoSi (a, b, c), CoGe (d, e, f) and

RhSi (i, j, k), respectively.EF is at zero energy.
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4.2 Spin Nernst effect

Similar to SHC, SNC tensor (αk
ij; i, j, k = x, y, z) is also a third-rank tensor with 27

elements. However, by considering symmetry they reduce to only two independent tensor
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elements αz
xy and αy

xz [44]. The calculated SNC at T = 300K of the CoSi family also

listed in Table 4.2. Interestingly, among four materials, αy
xz of CoSi and CoGe are large

with values -1.00 (ℏ/e)(A/m K) and -1.25 (ℏ/e)(A/m K), respectively. It’s comparable

to αz
xy of Pt metal in Table 4.2 and recently reported Dirac-semimetal ZrSiS [4]. Even

having a much smaller SHC compared to Pt and ZrSiS, the CoSi family seems to have a

good SNC value and can potentially be used in spin caloritronics.

SNC tensor elements of the CoSi family have a strong anisotropic feature as well. Take

CoGe as an example, when having the electric field in the y direction and spin polarization

in the z direction, αy
xz is only 0.06 (ℏ/e)(A/m K), which is way smaller than αy

xz=-1.25

(ℏ/e)(A/mK) mentioned above and the sign of it also becomes different. A similar feature

can also be found in the other three materials.

To get more insight into SNC, we also do the calculation as a function of EF for SNC

at T = 300K [See Figs. 4.2 and 4.3]. The values after shifting µ toW1 andW2 are also

listed in Table 4.3. Just like the SHC spectrum, SNC also changes a lot by shifting µ,

especially shifting it toW2. For example, αy
xz of CoGe becomes -1.12 (ℏ/e)(A/mK) after

shifting µ to W2 which is -0.15 eV below EF and can be realized by hole doping 0.27

e/f.u. αz
xy of CoSi also enhances from 0.42 (ℏ/e)(A/m K) to -1.35 (ℏ/e)(A/m K) aftering

shifting to W2 located at -0.18 eV with 0.25 eV hole doping. Besides shifting µ to W2,

αz
xy of RhGe also increases from -0.19 (ℏ/e)(A/mK) to -0.26 (ℏ/e)(A/mK) after shifting

µ toW1 with 0.06 e/f.u. electron doping.

For SNC in low temperature limit, there’s an equation called Mott [29] relation that

can help us understand the relation between SHC and SNC quite well. That is

αs
ij(EF ) = −π

2

3

k2BT

e
σs
ij(EF )

′. (4.1)

From the Mott relation, we can easily conclude that SNC is proportional to the deriva-

tive of SHC in the low temperature limit at a certain energy µ. This can explain why αy
xz

of CoSi and CoGe are large around EF since σy
xz for both of them show a steep slope

between EF andW1. And the enhanced SNC aroundW2 can also be explained by rapid

change of the SHC aroundW2 for the CoSi family.
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On the other hand, we also do the calculation of SNC as a function of temperature with

the chemical potential being at EF ,W1, andW2, respectively, and plot it in Figs. 4.4-4.6.

When µ=EF and the temperature is higher than 60 K, αy
xz of both CoSi and RhSi have a

positive SNC. αz
xy keeps increasing as the temperature increases, and finally reaching 0.48

(ℏ/e)(A/m K) and 0.20 (ℏ/e)(A/m K) at 400 K, respectively. In contrast, αz
xy of RhGe is

always negative. For αy
xz, it seems that all materials have a negative SNC and increase

their values as the temperature increases. αy
xz of CoSi, RhSi, CoGe, and RhGe finally

reach -1.12, -1.30, -0.73 and -0.24 (ℏ/e)(A/mK) at 400K, respectively.

In the end, the spin Nernst angle (ΘsN ) which is important for the application of spin

caloritronics is also listed in Table 4.2. The definition of it is ΘsN = (2e/ℏ)Js/Jh =

2αs/αL, where Js is heat current density and αL is Nernst coefficient [50]. We use the

data of Seebeck coefficient (Sxx) to estimate αL with the relation that αL = Sxxσxx.

Among them,Θz
sN of RhGe andΘy

sN of RhSi are -12.4% and -14.6%, respectively, which

is comparable to 20% [50] of Pt metal. Up to now, there isn’t any study about the SNE

of the CoSi family. With the large ΘsN of RhSi and RhGe, hopefully, there will be more

studies about this topic in the near future.
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Figure 4.4: SNC of CoSi family (a) αz
xy and (b) αy

xz as a function of temperature T when
µ = EF .
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Figure 4.5: SNC of CoSi family (a) αz
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xz as a function of temperature T when
µ = W1.
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4.3 Spin Berry curvature analysis

FromEqs. (2.12) and (2.13) for the SHC, it’s easy to know that SBC is one of the dominant

contributions to SHC. As a result, it’s important to look at the SBC of the materials to

know the origin of SHC. Since RhGe has the largest SHC among the materials, we take

it as an example to show how SBC works in the CoSi family. We plot the SBC alone

high-symmetry lines for µ equal to EF ,W1 and,W2, respectively [see Fig. 4.3]. Also, to

make it clearer we make contour plots as well in Figs. 4.7 and 4.8. Panels (a), (b) and (c)

are on the kxky plane with kz = 0 when µ = EF , µ = W1, and µ = W2, respectively.

And panel (d) is on the kxkz plane with ky = 0.5 to include the contribution fromR point.

For µ = EF , σz
xy, and σy

xz of RhGe are positive and negative, respectively. From Fig.

4.3, we can figure out this is mainly due to the large positive peak ofΩz
xy and negative peak

of Ωy
xz along the X − Γ line. From previous studies [27] we know that when degenerate

bands are splitted by SOC, they produce large SBC around that region with opposite signs.

If both bands are occupied, the large peaks of the opposite signs will cancel each other.

Nonetheless, whenEF is located between these two bands, only the lower one contributes

to the SBC and thus generates SHC. This may be the reason why there’s a peak along the

X − Γ line. Moreover, with the contour plots [see Figs. 4.7 and 4.8] we further confirm

that besides along X − Γ, Γ−R also contributes to the SHC.

When lowering µ to W1, we can see that there is an asymmetric peak around the Γ

point in Fig. 4.3. This asymmetric peak also appears at the R point when shifting µ to

W2. Consequently, perhaps it’s the trait of the multifoldWeyl node. The peak ofΩz
xy along

Γ−R seems to be more predominant than the one alongX−Γ and thus leads to negative

SHC. A similar claim can be made for Ωy
xz, in which the peak mainly comes from Γ− R

and M − Γ line. For µ = W2, the predominant peak is along the R −M line for both

Ωz
xy and Ωy

xz, and also a little bit comes from kxky plane. Therefore, this leads to negative

SHC for both Ωz
xy and Ωy

xz.
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Figure 4.7: SBC Ωz
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Chapter 5

Nonlinear optical effects in XY (X=Co,

Rh; Y=Si, Ge)

5.1 Bulk photovoltaic effect

Asmentioned earlier in section 2.5, BPVE includes linear part and circular part of the shift

and injection current. However, we can simplify it with the symmetry of the crystal [32].

In our cases, the CoSi family has time-reversal symmetry and lacks PT symmetry. As a

result, both circular shift current and linear injection current should vanish. In this section,

we calculate the linear shift current and circular injection current for the CoSi family in low

frequency region using different smearing factors η, which is 10 meV (normal smearing

factor for Weyl semimetal), 38 meV (smearing factor reported for CoSi [14]), 100 meV

(smearing factor reported for RhSi [14]). And the optical conductivity is calculated with

the smearing factor 10 meV. The smearing factor is related to material hot-carrier lifetime

(τ ) with relation ℏ/τ = η.

For the linear shift current, the only independent conductivity tensor element for CoSi

family is σxyz = σyzx = σzxy [44]. The calculated results are shown in the Figs. 5.1-5.4

below with (a), (b) and (c) displaying the results for µ = EF , µ = W1, and µ = W2,

respectively. When the photon energy is smaller than 100 meV, there are peaks for all

materials with a 10 meV smearing factor which doesn’t show with the other two smearing
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factors. However, these peaks can’t be explained by the joint density of state (JDOS) since

it’s suppressed in the lower frequency region. Instead, the reason behind these peaks might

be the transition of the Weyl band, which had also been found in several Weyl semimetals

such as TaAs [54] and PrGeAl [32]. Among them, RhGe has the largest peak atEF which

is -488 µA/V 2 at 0.012 eV. It’s about half of TaAs σz
xx value. When µ is shifted to W1

or W2, the peak seems to reduce except for µ being shifted to W2 of CoGe. Moreover,

with the larger smearing factor of 38 meV or 100 meV, the low energy peaks disappear.

However, the higher energy region looks similar for every smearing factor. Maybe it’s

because that a larger smearing factor can’t show the feature of linear dispersion of the

Weyl node properly. Recently, there’s a study on the shift current of RhSi [53] and they

also predicted the low energy peak.
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Figure 5.2: Left hand side of the plot is the calculated linear shift current of CoGe σxyz
with (a) µ = EF , (b) µ = W1, and (c) µ = W2. On the right hand side is (d) real part of
optical conductivity and (e) JDOS for CoGe.
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Figure 5.3: Left hand side of the plot is the calculated linear shift current of RhSi σxyz
with (a) µ = EF , (b) µ = W1, and (c) µ = W2. On the right hand side is (d) real part of
optical conductivity and (e) JDOS for RhSi.

47



doi:10.6342/NTU202203620

-500

-400

-300

-200

-100

0

100

200

R
e 

(σ
xy

z) 
(µ

A
/V

2 )

η = 10meV
η = 38meV
η = 100meV

-200

-150

-100

-50

0

50

R
e 

(σ
xy

z) 
(µ

A
/V

2 )

0 0.2 0.4 0.6 0.8 1
Energy (eV)

-200

-150

-100

-50

0

50

R
e 

(σ
xy

z) 
(µ

A
/V

2 )

0

1

2

3

4

5

6

R
e 

(σ
xx

) 
(1

03  S
/c

m
)

µ = E
F

µ = W
1

µ = W
2

0 0.2 0.4 0.6 0.8 1
Energy (eV)

0

5

10

15

JD
O

S 
(s

ta
te

/e
v/

ce
ll)

(a) µ = E
F

(b) µ = W
1

(c) µ = W
2

RhGe

(d)

(e)

Figure 5.4: Left hand side of the plot is the calculated linear shift current of RhGe σxyz
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optical conductivity and (e) JDOS for RhGe.
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For circular injection current, we will focus on the interesting feature, quantized CPGE

[6], that might exist in chiralWeyl semimetals. Due to a lack of mirror symmetry, theWeyl

nodes of chiral semimetal aren’t located at the same energy level. It’s possible to observe

quantized CPGE when only one of the Weyl nodes is occupied and responds to optical

transition. Tensor trace of CPGE β can be written as

β = iCβ0, (5.1)

where β0 = πe3

h2 and C is the Chern number of the Weyl node. In CoSi family, there is no

mirror symmetry in our system and the multifold Weyl nodes at Γ and R are separated to

different energy. Also the large Chern numbers ±4 make them a good platform to look

for this effect.

CoSi family has only one independent tensor element βxx (βxx=βyy=βzz) [44], β is

simply 3βxx. For all materials we calculate the susceptibility of injection current and

divide by β0 in Figs. 5.5-5.8 below with (a), (b), and (c) displaying the results of µ = EF ,

µ = W1, and µ = W2, respectively. When we look at charge neutral point µ = EF , the

injection current susceptibility has positive peak at around 0 eV to 0.2 eV region. However,

all of them are smaller than ±4β0, which is the quantized value that we are looking for.

After we shift the chemical potential to µ = W1, CoSi shows a small plateau of 4β0 around

0.2 eV with 10 meV smearing and RhSi show a broad plateau of 4β0 between 0.3 eV to 0.6

eV with both 10 meV and 38 meV smearing, and this value is what we expect getting from

Weyl nodeW1. Nonetheless, CoGe and RhGe doesn’t show any signal of quantized CPGE

when µ is shifted to W1. The reason of absence of quantized CPGE for them might be

that there are more trivial bands located atW1. On the other hand, if we shift the chemical

potential toW2, all four materials show peaks or plateaus of -4β0 for 10 meV and 38 meV

smearing. Among them, 0.3 eV to 0.6 eV of CoSi and 0.2 eV to 0.4 eV of CoGe seem to

have the most steady quantized signal compared to RhSi and RhGe.
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5.2 Second harmonic generation

Same as shift current, there is also only one independent tensor element for SHG, i.e.,

χ
(2)
xyz = χ

(2)
yzx = χ

(2)
zxy. We plot the result of SHG with the 10 meV smearing factor in Figs.

5.9-5.12 below. The SHG for all four materials at µ = EF , µ = W1 and µ = W2 at

low frequency show divergence peaks as phonon frequency ω approaches to zero. This

divergent feature can’t be explained from JDOS and might be the trait of Weyl semimetal.

Recently the study of SHG of RhSi [56] also showed a similar shape. However, when they

added the scissor correction, the divergences at low frequency disappear. A recent study

on SHG of TaAs [55] also mentioned that the SHG χ(2) ofWeyl semimetals would diverge

as 1/ω as ω goes to zero. Even the SHG of four materials have this divergence, they seem

to behavior differently when we shift the chemical potential. For CoSi and RhGe, the

value of SHG after shifting the chemical potential to µ = W2 is much larger than µ = W1

and µ = EF . As for CoGe and RhSi, however, the value of SHG after shifting to µ = W1

is much larger than µ = W2 and µ = EF . Moreover, the value of this larger SHG still

maintains an extremely huge value even going to the higher energy region. Take CoSi for

example, even with 1 eV photon energy, the SHG is still around 2.7*104 (pm/V), which

is large compared to the χ(2)
zzz of 7200 (pm/V) under 800 nm incident light reported for

TaAs [55]. It would be interesting to calculate SHG for higher energy regions to further

see the change. However, we only fitted the Wannier orbital around the Fermi level in this

project, and thus we can only show the SHG result below 1 eV.
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Figure 5.9: Real, imaginary, and absolute value of SHG of CoSi with (a) µ = EF , (b)
µ = W1, and (c) µ = W2.
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Figure 5.12: Real, imaginary, and absolute value of SHG of RhGe with (a) µ = EF , (b)
µ = W1, and (c) µ = W2.
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Chapter 6

Conclusion

In this thesis we systematically study spin transports and nonlinear optics of CoSi family.

From the band structure we verify the multifoldWeyl nodes with Chern number±4. There

are two kind of chirality for the structures, LHC and RHC. In CoSi family, only CoSi were

experimentally synthesised for both LHC and RHC. Since the CoSi family break chiral

symmetry, there are two independent tensor elements σz
xy and σy

xz for SHC. We calculate

both tensor elements for CoSi family and find out the relation of SHC between LHC and

RHC, suggesting that measuring SHC can be a way to check the chirality of the material.

From SHC and SNC calculations, we find that RhGe has the largest SHC value with -139

(ℏ/e)(S/cm) and CoGe has the largest SNC value with -1.25 (ℏ/e)(A/m K). Even though

the SHC is quite small compared to Pt, the spin Hall angle of RhSi and RhGe is around

7% and can be comparable to Pt due to their semimetalic nature. Moreover, by changing

µ to eitherW1 orW2 with hole doping or electron doping, the SHC and SNC can have a

dramatically change.

For BPVE, we show that linear shift current has a peak at low frequency region, which

is the trait of Weyl semimetals. Also, due to lack of mirror symmetry for CoSi family, it

is possilble to observe quantized circular injection current. We show that by shifting µ to

W1 for CoSi and RhSi there’s clear plateau, and shifting to W2 for all materials we can

get quantized CPGE signal. Also we show that the CPGE is quite sensitive to the change

of hot-carrier lifetime τ of the material. If the material has a longer hot-carrier lifetime it

is more possible to observe these effect. Finally, we show that in low energy region the
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SHG will diverge as 1/ω when ω → 0.
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