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Abstract

Vital signs are a group of the most important medical signs, including respiration,
heart rate, and blood pressure. During the Covid-19 pandemic, the demand for remote
telemedicine has increased. It would be helpful if vital signs such as heart rate or respira-
tion rate can be detected from the patients’ videos. Previous researches show that detecting
heart rate and respiration rate is feasible. In recent years, deep learning approaches have
improved the performance of this task. However, there are still some limitations to this
task. To train such a deep learning model, recording vital signs signals is needed, while
most devices do not support this function. Most devices such as oximeters can only record
the average heart rate or respiration rate. Besides, training such a video processing model
costs a lot of computational resources and makes the cost of computational resources high.
This research tends to solve these limitations and improve performance. The proposed
weakly-supervised training methods make training a vital signs detection network more

easily. Only an average heart or respiration rate label for a video is sufficient. Also, the
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proposed work combines traditional computer vision algorithms and deep learning. It

makes the deep learning model extremely lightweight compared with current end-to-end

models. The proposed channel attention architecture can wisely select a proper signal for

detecting vital signs. The models are trained on a private dataset recorded by National

Taiwan University Hospital and tested on a public dataset. This research has reached a

better performance than current state-of-the-art works on the public dataset.

Keywords: Vital signs, Remote photoplethysmography, Respiration rate detection, Com-

puter vision, Deep learning, Weakly-supervised learning, Attention
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Chapter 1 Introduction

Contact devices are widely used to measure vital signs like pulse or respiration rate.
Electrocardiogram machines record heart electrical activity using electrodes placed on the
skin. Oximeters record changes in light absorption from the skin which is caused by blood
volume changes. The contact devices can provide precise and reliable vital sign signals.
However, wearing and taking off those devices are inconvenient. The Sars-CoV-2(Covid-
19) pandemic has changed the lifestyle of humans recently. People are asked to keep social
distance to avoid infection. Thus, the demand for remote telemedicine increased. Video-
based non-contact physiological signals monitoring methods became more significant to
remote telemedicine. It would be helpful if the vital signs such as heart rate or respiration
rate can be detected from the patients’ videos. Previous research has shown that it is
possible to detect heart rate from human face video with small intensity variation caused
by the blood volume changes. Detecting respiration rate is also possible because of the

motion caused by breathing.

In recent years, deep learning-based approaches have improved the performance and
robustness of video-based vital signs detection. However, there are some constraints in
training such a deep learning model. First, to train a vital sign extractor network, we need
the videos as the input and vital signs recorded by contact sensors as the ground truth, but
there are only a few datasets that provide videos and corresponding signals. Moreover,

1 doi:10.6342/NTU202204210



most of those datasets are not freely available. Collecting the dataset by ourselves is not
easy work, either. Most vital signs measuring devices are not able to save the signals
recorded from the sensors. They provide only calculated values like heartbeats per minute
or breaths per minute. The devices whose sensor signals are available are not cheap.
Designing a training method that can train a model only with average frequency may be
helpful for data collection. Another problem is that the current deep learning approaches
are based on an end-to-end model architecture. Those models take a sequence of frames as
their input and need huge GPU resources for training. This work is trying to find a method
that is able to avoid the huge cost of GPU resources and remain the robustness of deep
learning. Our work provides a video-based vital signs detecting framework, which is able
to detect heart rate and respiration rate from video. The combination of non-learning-based
feature extraction and deep-learning-based algorithms lets our neural network model be
very lightweight and trainable with normal personal computers. The weakly-supervised
learning method makes the vital signs model trainable with only heart rate or respiration
rate labels, without a vital sign signal ground truth. Also, our channel attention method
can choose a proper region from different ROIs, and improve the robustness of vital sign

detection.

The experiments and model training is run on a dataset recorded by National Taiwan
University Hospital. A public dataset called Cohface with pulse and respiration wave
ground truth is used to evaluate the performance and compare our result with current state-

of-the-art works and compare our predicted vital signs with ground truth.

o) doi:10.6342/NTU202204210
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Figure 1.1: Overview of the proposed work
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Chapter 2 Related Work

The previous works about video-based heart rate and respiration rate detection are
reviewed in this chapter. Both algorithm-based methods and deep-learning-based methods

are mentioned along with some constraints about the current state-of-the-art works.

2.1 Video based heart rate detection

Remote photoplethysmography (rPPG) is a non-contact method for video-based heart
rate detection. The reflected light from skin changes due to the variation of blood vol-
ume, and photoplethysmography (PPG) is a method that detects such variation[3][1].
Verkruysse et al.” s works showed that it is possible to detect pulse signals from an RGB
facial video and the signal is called remote PPG (rPPG). The green channel intensity can
be used to extract rPPG[18]. Some early works for video-based heart rate detection are

based on recording the changes of color on facial skin[20][6][ 14][12].

4 doi:10.6342/NTU202204210



2.2 Video based respiration rate detection

The motion caused by breathing is recognizable by human vision. Thus, motion-
based signals can be used to detect respiration rates. Tveit et al. [4] record the changes
in each frame’ s local phase as their motion signal and computes the respiration rate
with Fourier transform. There is another way to detect respiration rate. Chen et al.[17]
mentioned that the human heart rate becomes faster when inhaling, and becomes slower
when exhaling. Their work detects the rPPG signal first and computes respiration rate

from heart rate variation.

2.3 Deep learning approaches

Inrecent years, some deep learning approaches for vital sign detection were proposed.
Early works are simple but the signals can be corrupted by noises easily. Deep learning
methods improved the performance by learning the relation between video and label[].
Deepphys[5] predicts each frame” s signal value with 2D-CNN and the spatial attention
method helps the model find important regions. Nowara et al.” s work[13] is based on the
model proposed by Deepphys. The signal extracted from the background region is useful
for denoising because it may contain some information about noises. PhysNet[2 ] detects
rPPG with an end-to-end model. A 3D-CNN and a model which consists of 2D-CNN and
LSTM are proposed in PhysNet. Although the deep learning methods have reached the
state-of-the-art and shown the robustness of noises, they need the ground truth signal that
is hard to collect. Gideon et.al proposed a self-supervised training method[8]. With their

training tips, The vital sign detecting model can be trained with unlabeled videos.

5 doi:10.6342/NTU202204210



In video-based vital sign detection, there are still some problems that can be improved.
First, the supervised training methods need expansive vital sign ground truth. However, a
lot of devices like oximeters can record average heart rate and respiration rate. Although
labeling a video with a vital sign wave is difficult, labeling a video with an average number
like “The heart rate of the person in this video is 70 per minute” is much easier. Recording
such kinds of ground truth does not need an expansive device. It would be helpful if there
exists a weakly-supervised training method that only needs the average numbers as ground
truth. This weakly-supervised method may reach a balance point between supervised and

self-supervised methods.

Another problem is that training video-based deep learning models cost a lot of usage
of GPU resources. The length of the videos for training can not be too long due to the
constraints of GPU memory. In PhysNet-3DCNN, the length of training clips is about
32 to 256 frames. It is shorter than 10 seconds. The question is: Do we really need to
use a lot of GPU resources to train an end-to-end model? There are 2 main tasks for the
deep learning models, One is compressing a frame to a feature vector or a single value,
and the other is denoising the features with temporal information. If an algorithm-based
method or a pre-trained model is sufficient for compressing the frames, we can compress
the frames with the method first and train a model just for denoising. The denoising model

can be trained with low GPU memory usage, and the model can also see a longer time.
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Chapter 3 Method

The proposed works are described in this chapter. The method of heart rate and
respiration rate detection will be described separately. To further improve the performance
of the above methods, a lightweight neural network model is proposed. The architecture

and training strategy of the neural network model will be described later.

3.1 Vital Sign Detection

3.1.1 Heart rate

A framework shown in Figure 3.1 for video heart rate detection is proposed. First,
we detect and select certain regions on face as our ROIs. Then we calculate the average

pixel value within the ROIs in each frame as our rPPG signal.

e ROI selection

In previous works, the cheek region is popular for ROI selection. The average color
of pixels in the cheek region can be used to extract rPPG signals and predict heart
rate[ 1 2][1&][17]. In Convolution Neural Network (CNN) based approaches, ROI
selection is not needed. The models detect important parts of the face and extract

rPPG signals automatically. Recent research shows that spatial attention is useful

7 doi:10.6342/NTU202204210



Input Video Facial Landmarks
Facial Landmark ROl Average
Detection Color
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Figure 3.1: Proposed framework for heart rate detection

for CNN based rPPG extraction. Observing the spatial attention masks, we can find
that the models tend to assign the cheek and forehead region higher attention score
as the images shown in figure 3.2.(b)[5] [13]. We can speculate that after training
with face videos and heartbeat signals, the models “think” that cheek and forehead

region is more important for rPPG extraction.

According to previous works’ ROI selection and attention map for CNN based
method, we take 3 regions as our ROIs: left cheek, right cheek, and forehead. We
calculate the average color of each ROI as rPPG signals. To obtain the ROI posi-
tions, we use a pretrained facial landmark predicting model[2]. Each frame will be

input to the model and the output of it is the position of 68 facial landmarks. Then
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(b) An visualization of DeepPhys’s attention mask| 5]

Figure 3.2: The ROIs for heart rate detection

the boundary of ROIs is calculated based on those facial landmarks as the image

shown in figure 3.2.(a).

¢ rPPG signal
For each frame in the input video sequence, the average RGB color of each pixel in
ROI will be calculated. The green channel intensity of the average color is what we
want for rPPG signals. Since we can obtain a single value from a frame, an intensity-
time signal can be generated from a video sequence. We call this intensity-time

signal rPPG and it will be used to estimate heart rate.

e Heart Rate Calculation
Given a rPPG signal, we perform Fast Fourier Transform (FFT) on the signal to

obtain the frequency domain of the PPG signal. Then we find the frequency with

9 doi:10.6342/NTU202204210



maximum magnitude within the frequency range of human heart rate.

3.1.2 Respiration rate

Input Video Optical Flow
Frame T Frame T+1
. ROI Average
=| Optical Flow |= =
Q ?

Respiration signal

Frequency Spectrum Respiration Rate
: JE\\A 15 breath/min
) v ]

Figure 3.3: Proposed framework for respiration rate detection

)]

Fourier
Transform

The proposed framework for respiration rate detection is shown in Figure 3.3. The

method is similar to heart rate detection since the respiration wave is also a periodic signal.

ROI selection
Watching the videos with breathing humans, we can easily observe that there ex-
ists some motion near the chest region and those motions are caused by breathing.

We speculate that motion or interframe information can provide useful features for

10 doi:10.6342/NTU202204210



|

Figure 3.4: ROIs for respiration rate detection

video-based respiration detection.

Previous works show that motion near the chest can be used to predict respiration
rate[ | 7][16]. To obtain the region of the chest, we use the Haar feature-based cas-
cade classifier. Haar cascade is a popular algorithm for object detection[19]. It is
widely used for face or body detection because of its precision and low complex-
ity. The Haar feature-based cascade classifier we use is provided by OpenCV. We
detect the chest bounding box first, then the bounding box is splitted into 5 ROIs as
shown in Figure 3.4. The 5 ROIs are left shoulder, neck, right shoulder, chest and

the bounding box from head to upper body.

e Motion signal
To obtain the motion of each frame for respiration rate analysis, an optical flow
algorithm is applied. Optical flow is a computer vision that estimates the motion
between the pixels of 2 images. For each frame and its next frame in a video, the
optical flow is predicted with an algorithm provided by OpenCV|[7]. The summation

1 doi:10.6342/NTU202204210



within the ROI on the vertical flow map is the motion signal for respiration rate

prediction.

e Respiration rate calculation
The Respiration rate is also calculated from the frequency domain of the motion
signal, while it is slightly different from heart rate. Because the respiration rate
changes more frequently than the heart rate, a 12-second-long sliding window is
applied to calculate local respiration rate. Then the average of all local respiration

rates is computed as the average respiration rate of the input video.

3.2 Vital Sign Detection via Deep Learning

Signals from Weighted
each RO Signals

ROI'1 ROI'1

Channel . Predicted
. Denoise . .
ROI 2 Attention ROI 2 vital signs
Network

Module

ROl n

Figure 3.5: An overview of the deep learning model architecture

Although the algorithm-based methods that we proposed above can detect vital signs
easily under well controlled recording environments, the vital sign signal can be corrupted
easily by noises such as illumination variations, extreme light and shadow, or subject’s
moving. The corruption on signals may make us choose the wrong frequency in the fre-
quency domain and predict the wrong heart rate or respiration rate. To improve the robust-
ness of video vital sign detection, we proposed some 1D-CNN based models. The aim of

the CNN models is to extract the “real” vital sign signals from noisy signals. The model’

12 doi:10.6342/NTU202204210



s input is the 1D signals obtained from each ROIs. Then the model will combine those
signals and output a 1D signal as the denoised result. The architecture of the proposed
deep learning model is shown in Figure 3.5. The model is consist of two modules. The
channel attention module attempts to assign each signal an attention weight. The signal
with higher attention weight is assumed to have higher discriminating power. The denoise

network attempts to extract the “real” vital signs from the noisy input signals.

e Denoise model

The model architecture is shown in Figure 3.6. The input of the model is the signals

Signals from each ROI Predicted vital sign

Al b Al od W Sl N e Al Denoise /\/\/\/\/\/\/\/\/\J
network

[ VTR . TR W IO T Y TP

(MyPa i nybyeyhan ity [ |

Frequency Spectrum

Ground truth .

62 bpm X

Denoise network

ConviD, 3 layers
Inputsignals}—»
ConviD, 3 layers

Convi1D, 3 layers

_.Q —- el Vital Signs
¥

Figure 3.6: The proposed fusion model

output from each ROIs and the signal from the background region. Those signals

13 doi:10.6342/NTU202204210



are concatenated as a C x L array. The C denotes the number of the input sig-
nals and the L denotes the length of the input signals. The reason why we use the
background signal is that the background signal may contain some global noise like
camera moving or illumination variations. Such global noises may be useful for
denoising[ | 3]. The input is fed into three convolution blocks with different kernel
sizes and added. Those three convolution blocks have different receptive fields, and
we hope that they can process the signals on different scales[ | |]. The output of the
model is a 1D vital sign signal that is denoised. The heart rate or respiration rate

will be calculated by the method mentioned in 3.1 or 3.2.

e Channel Attention Module
Aloughth the denoise model generated a cleaner signal and reached better perfor-
mance than the original ROI signal, we noticed some problems with this model. For
example, in respiration rate detection, there are a lot of videos in our training data
that have cleaner signals in certain regions. In other regions, the respiration waves
are not obvious. It would let our model tend to choose the signals from the former
regions, and ignore the signals from the latter. To avoid such an overfitting prob-
lem, a method based on channel attention is proposed to solve it. Channel attention
is a technique that multiplies each channel by attention weights, and improves the
performance of a deep learning model[ 1 0]. In our channel attention method, each
channel is fed into a score predictor independently. The score predictor is consist
of convolution layers, global max pooling layer, and fully connected layers. The
output of the score predictor is a single value called “attention weight” . The val-
ues are transformed between 0 and 1 with the Softmax function. Each channel is

multiplied by its “attention weight” first and processed by the denoise model. In
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Figure 3.7: The proposed channel attention module

another word, the proposed attention method will choose an ROI automatically.

e Loss functions
We use several loss functions to train the deep learning models. All of them are
weekly or self-supervised. That is, we don’ t need a pulse or respiration wave
signal to train our models. Only a single number (BPM) is needed for the input

video sequence.

e Irrelevant Power Ratio
This self-supervised loss function was proposed by John et.al[8], we assume

thata “clean” signal should have more energy distributed between a certain
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frequency range. For example, a heartbeat signal should not contain too much
energy that does not belong to the human heart rate. We divide the frequency
into relevant (40-180 BPM for heart rate, 4-30 for respiration rate) and irrele-
vant (other frequency) ranges. The ratio between the total energy in irrelevant
frequency range and the whole frequency spectrum is the loss.

Given a vital sign signal x ,the power spectral density (PSD) X can be ob-
tained by taking fast Fourier transform (FFT) of « . This loss can be computed

by the equation :

I _ ZfeF+\FX(f)
IPR ZfeFX(f)

3.1)

Where F'+ means the relevant heart rate or respiration rate frequency range

and F' means all frequency of X .

e Frequency Power Ratio Loss
To train a model with a frequency label value, this weakly supervised loss
function is proposed. It is similar to the Irrelevant Power Ratio. The relevant
frequency range is a small window centered at the ground truth frequency.
We set the width of the window 10Hz for heart rate, 6Hz for respiration rate

detection model.This loss can be computed by the equation :
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2 jernr X (f)

Lrpr = (3.2)
ZfeF X(f)
The F in this loss means the frequencies within the window.
Vie FH|f — Al < " 3.3)

Where A means half width of the window and f¢” means the ground truth

frequency.

The weighted sum of those two losses is the final loss function for training the neural

network.

Larr, = alipr+ BLppr (3.4)

The weights o and 3 are set at 0.1 and 1 during the experiment.
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Chapter 4 Experiment and result

The dataset we used will be introduced and the result will be shown in this chapter.
For each video, a heart rate and a respiration rate value are predicted. To compare the
performance of different experiments, the mean absolute error (MAE), root mean square
error (RMSE), mean absolute percentage error (MAPE) and Pearson correlation (PC) of

the predicted rate and the ground truth rate are calculated.

4.1 Experiment Environment

The experiments are run on a personal computer with normal equipment. It' s a PC
with Ryzen 5800x CPU and Nvidia Geforce RTX3080 GPU. During training, a batch size

of 8 examples is used. The model is trained for 30 epoches with Adam optimizer.

4.2 Dataset

Cohface [9]

Cohface is a public dataset provided by Idiap Research Institute. It consists of 160
videos from 60 subjects. Each data consists of a 1 minute video, a blood volume

pulse (BVP) sensor signal and a respiration belt signal. We think that it is a chal-

18 doi:10.6342/NTU202204210



lenging dataset because the videos are highly compressed and the framerate of the
videos are low (20FPS). This dataset is a freely-available dataset containing ground

truth signals. We will compare the performance on this dataset with previous works.

(a) Well controlled conditions (b) Natural conditions

o | F
SR
| (c) Pulse " “' &
6 ) 2lo(d) Respaihration ) 51] )

Figure 4.1: Cohface Dataset

NTUH-21 This dataset is our private dataset recorded by National Taiwan University
Hospital. 111 videos with vital signs labels are recorded. During recording the
videos, the vital signs are recorded by the Masimo oximeter. The average heart
rate and respiration is recorded every 3 seconds. The oximeter does not provide a
waveform signal of pulse or breathing, but the average number is enough for our

weekly-supervised training method.
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» Date '5p02 % PRbpm FI PVI RREp rpm
12021432 93 71l 35 27 14
| 2021802 95 71 37 27 14
| 2021032 93 71 45 27 15
12021432 93 71l 53 27 15
(a) Videos (b) Ground truth recorded by Masimo oximeter
Figure 4.2: NTUH-21 Dataset
4.3 Heart Rate
Heart Rate
NTUH-21 Cohface
Region MAE RMSE MAPE PC | MAE RMSE MAPE PC
Left Cheek 2.21 6.06 0.026 0.89 | 1591 24.15 0.2 -0.2
Right Cheek | 3.41 10,66 0.036 0.64 | 16.94 23.45 022 -0.07
Forehead 7.27 15.9 0.08 0.34 | 19.58 2541 0.26 -0.08
Not face 15.4 22.1 0.18 0.17 | 287 31.14 0.39 -0.02

Table 4.1: Heart rate result from each ROI

Different ROI performance The result of heart rate prediction on each ROI is shown

in Table 4.1. In NTUH-21, the predicted heart rates from the cheek are already

close to the ground truth, and the heart beat is easily seen from the rPPG signal. In

Cohface, the performance is not as good as our dataset. The predictions of heart rate

are wrong in a lot of cases, and the heart beats are not obvious in the rPPG signal.

The reason the performance of those two datasets are different is the resolution of

the videos. In NTUH-21 dataset, the videos have over 2k resolution and 30 or 60

frames per minute. However, in Cohface dataset, the videos are highly compressed

20
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Heart Rate

NTUH-21 (Test set) Cohface
Region MAE RMSE MAPE PC | MAE RMSE MAPE PC
Left Cheek 3.64 8.76 0.04 0.81 | 1591 24.15 0.2 -0.2
Right Cheek 6.24 15.79 0.07 0.39 | 16.94 2345 0.22 -0.07
Forehead 7.06 16.68 0.08 0.37 | 19.58 2541 0.26 -0.08
Denoise model 2.26 6.44 0.03 0.89 \ 489 10.19 0.07 0.61

channel attention | 527 1423 0.05 0.51]1559 2295 0.2 -0.02

Denoise model with attention | 2.27 6.43 0.03 0.64 ‘ 1.69 3.9 0.02 0.94
Table 4.2: Heart rate result with models

and have only 20 frames per minute. Those reasons may increase the difficulty of

heart rate detection.

Denoise network 68 cases in the NTUH-21 dataset are split as our training set for the
neural network approach. The results of different deep learning models are shown
in Table 4.2. The performance on the Cohface test set improved a lot. The model

seems to be able to deal with the noises caused by the compression algorithms.

Channel attention In heart rate detection, the performance does not improve after only
applying the channel attention method. Denoising is still important after choosing

a proper ROI.

Denoise network and channel attention After applying the channel attention method
and the denoise network, the performance on Cohface improved from only using
the denoise model. Although the channel attention did not improve the performance
without applying the denoise model, choosing a proper ROI helps the denoise model

work better.
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Figure 4.3: The respiration wave from different subjects

4.4 Respiration Rate

Different ROI performance The result of respiration rate prediction on each ROI is

shown in Table 4.3. Observing the signal from each ROI, we can notice an in-

teresting thing. As the respiration signals shown in Figure 4.3, in some cases, the

motion signals from the shoulder region can provide us with the correct respiration

rate, while the other regions can’ t. In some cases, the motion signals from the chest

region perform better than those from the shoulder region. If we focus on only a
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(a) Respiration signals of a subject

o 10 20 30 40 50 0

(b) Result only using denoise network

0 10 20 30 Pt 50 60
(c) Result with channel attention and denoise network

20

0 10 20 30 40 0 60

(d)Ground truth signal

Figure 4.4: The improvement of channel attention

certain region, we will get wrong respiration rates in some cases. However, the cor-
rect answer may be available from another region. That is the reason we proposed

some deep learning models to fusion those signals.

Denoise network The result of respiration rate prediction with different models is shown

in Table 4.4.The MAE and RMSE decreased after applying the denoise network.
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Also, in NTUH-21, the signal became cleaner after using the model. However, in
the Cohface dataset, the model outputs wrong signals in some cases despite the chest
signals being similar to breathing waves. The model is trained with the NTUH-21
dataset. In this dataset, the shoulder ROIs perform better than the chest ROIs. After

training, the model tends to choose the shoulder region and ignore the chest region.

Channel attention After applying the channel attention method, the MAE and RMSE
decreased on the NTUH-21 dataset, and the MAE decreased on the Cohface dataset.
In figure 4.3.(a), the left shoulder region (channel 1) gets the max attention score; in
figure 4.3.(b), the chest region (channel 4) gets the max score. The attention scores

shows the ability of this architecture for choosing the proper ROI automatically.

Denoise network and channel attention After applying the channel attention method
and the Denoise network, it reached the best performance on the Cohface dataset.
The performance is better than all ROIs and applying the denoise network only. Fig-
ure 4.4 shows the improvement of channel attention. The respiration signal from
the fourth ROI (chest) is similar to the ground truth signal, while the signal from the
first and third ROIs (shoulder) are not. With the channel attention module,the model
can judge each channel independently, and choose the best channel automatically.
As long as there exists a channel that is similar to a breathing wave, the model will

be able to choose it.

4.5 Comparison

The performance of our channel attention model on the Cohface dataset is compared

with other works that also used this dataset. In heart rate detection, our heart rate detection
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Respiration Rate

NTUH-21 Cohface
Region MAE RMSE MAPE PC | MAE RMSE MAPE PC
Left Shoulder 1.68 2.52 0.11 0.71 1.97 3.97 0.22 047
Neck 2.3 2.92 0.14 054 | 2.06 2.98 0.19 0.75
Right Shoulder | 1.66 2.42 0.11 0.74 1.9 3.74 0.21 0.53
Chest 2.26 3.52 0.14 053] 0.71 1.18 0.07 0.95
Upper body 2 2.63 0.13 0.64 1.2 2.08 0.13 0.84

Table 4.3: Respiration result from each ROI

Respiration Rate

NTUH-21 (Test set) Cohface
Region MAE RMSE MAPE PC | MAE RMSE MAPE PC
Left Shoulder 1.97 2.94 0.14 0.72 | 1.97 3.97 022 047
Neck 2.98 3.86 0.21 0.53 | 2.06 2.98 0.19 0.75
Right Shoulder 2.08 3.24 0.16 0.65 1.9 3.74 0.21 0.53
Chest 2.54 3.47 0.18 0.63 | 0.71 1.18 0.07 0.95

Denoise model 1.41 1.88 0.1 0.87‘ 0.8 1.35 0.07 0.93

channel attention 1.71 2.69 0.11 0.72‘ 0.69 1.2 0.07 0.95

Denoise model with attention | 1.44  2.02  0.09 0.85| 0.53 0.9  0.05 0.97

Table 4.4: Respiration rate result with models
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performance has less MAE, RMSE, and higher Pearson correlation than Gideon etal.” s
supervised and unsupervised results[13]. In respiration rate detection, we compare our
result with MT-TS-DAN][15]. The model they proposed is modified from Deepphys. Our
MAE is less, too.

We also compare the parameter numbers and the GPU memory usage with previous works
while training with batch size 2, 128 frames of 128x128 video sequence. The memory
usage is shown in Table 4.6. Our model has the least parameter numbers and costs the
least GPU resources. Note that CAN does not need too much GPU resource for training
because its input is a single frame. Table 4.7 shows the performance of heart rate detection
on the Cohface dataset with different models. The result of the 3D-CNN is provided by
Gideon etal.” s work and the result of the CAN is reproduced by ourselves. The proposed

work has a light-weight deep learning model without sacrificing accuracy.

Cohface
HR RR
Region MAE RMSE MAPE PC |MAE RMSE MAPE PC
Gideon[ | 3] (supervised) 2.5 7.8 0.84
Gideon (unsupervised) 1.8 5.5 0.37
MT-TS-DAN[ 5] | | 5.72
Ours | 1.69 3.9 0.02 094 053 0.9  0.05 097

Table 4.5: Result compare with SOTA works

Model weight
Model ‘ Parameters GPU memory
CAN[5] 795811 15306KB
2DCNN+LSTM[21] 264149 4220MB
3D-CNNJ[21][13] 858497 7119 MB
Ours 2614 979 KB

Table 4.6: Model parameter numbers and GPU usage
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Cohface-HR

Model | MAE RMSE MAPE PC
CAN[5] 946 1033 0.15 0.68
3D-CNN[13] | 1.8 5.5 0.37
Ours | 1.69 3.9 0.02 0.94

Table 4.7: Performance of different models

4.6 Discussion

In most videos in the NTUH-21 dataset, the quality of the signals extracted from the
ROIs is good enough to predict a correct heart rate or respiration rate. However, in the
Cohface dataset, the noises caused by video compression and the recording environment
make the heart rate prediction fail. The proposed denoise network successfully solved this
problem by learning to eliminate the noise with weakly-supervised training methods. The
performance of heart rate detection in the Cohface dataset increased a lot after adopting the
denoise network. The performance of respiration rate detection did not increase obviously
since the compression did not corrupt the motion signals too much like the rPPG signals.
The proposed channel attention method further improved the performance of both heart
and respiration rate detection. Like the signals shown in figure 4.3 and figure 4.4, choosing
a proper ROI first can make the denoise network work better. The denoise network and the
channel attention network make the vital sign detection system more robust in different
recording situations. The performance of the proposed work is better than the current state-
of-the-art works in the Cohface dataset. Furthermore, compared to the end-to-end deep
learning models, the parameter numbers and the memory usage for training are extremely
low without sacrificing accuracy. Such a lightweight model makes training a video-based

vital sign detection model on a personal device possible.
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Chapter S Conclusion

Although Deep learning models have improved the performance of video-based vital
sign detection, collecting the ground truth signals is not easy. Most devices can only record
the average heart rate or respiration rate. The proposed weakly supervised method makes
training a model only with an average rate label possible. The proposed method extracts
signals from video with handcraft algorithms and denoises the signals with deep learning
models. The combination of traditional computer vision methods and deep learning makes
the model need fewer parameters and cost less computational resources than an end-to-
end model. Despite the model is lightweight, the performance of the proposed method is
still better than the current end-to-end models. The proposed channel attention module
can choose a proper region in video where a usable vital sign signal can be extracted and

improve the performance of the denoise model.
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