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摘要

微流道中的無電鍍製程是一項在工業中具有發展潛力的技術。從物理角

度來看，這是一個多重物理耦合問題：需要考慮流體力學、質傳、化學反

應、相變態等等，特別是在微小尺度下需要考慮更多細膩的物理行為。本

論文主要從數學建模與數值分析的角度研究無電鍍問題，並將它們寫成三

個章節：第一章將簡介無電鍍製程並回顧其相關文獻；第二章將討論無電

鍍問題在單相流中的數學模型以及數值分析；第三章則是連無電鍍生成氣

泡的狀況也一起討論，並探討如何模擬以及一些數值分析。

• 在第二章中，我們不考慮無電鍍反應中氣泡產生的效應，因此我們

只考慮單相不可壓縮流與質傳的耦合問題，此外我們利用蒸發逼近

的技巧來模擬物質上鍍造成的小幅度邊界移動。因此簡化的模型方

程為 Navier-Stokes 方程以及擴散散對流方程的耦合並考慮非線性且

非典型的邊界條件。我們將證明其中濃度方程解之存在性與唯一性

並利用數值分析證明我們提出的數值方法與演算法之可行性。

• 氣體產生與氣相流體的移動問題在第三章中會被探討。由於氣泡會

在整個物理空間中隨機地產生，因此我們採用平均形式的二相流方

vii
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程以及擴散對流方程與通量邊界條件耦合作為模型方程，此外上鍍

造成的邊界移動也有考慮。在數值方法方面，時間離散採用一階特

徵線法；空間離散採用有限算法，且我們證明了數值方法的適定性。

數值驗證方面我們將比較一、二維問題並與微流道實驗進行比較。

• 在附錄中，我們研究更加簡化的二相流模型。在這個模型中，我們

忽略對流項的效應。我們考慮三條濃度方程：其中兩條代表參與無

電鍍反應的化學物質傳輸以及一條代表溶解於水中的氣體傳輸，並

與一條描述液體體積分率的常微分方程耦合。為了描述表面反應，

我們考慮滿足電荷平衡的通量邊界條件。我們證明了此模型方程的

解之存在性與唯一性，此證明將兩種化學物質推廣至 N 種化學物質

也適用。
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Résumé

Le dépôt autocatalytique dans les microcanaux est une technologie en plein

essor dans l’industrie. D’un point de vue physique, il s’agit d’un problème

multiphysique incluant la dynamique des fluides, le transfert de masse, la

réaction chimique, le changement de phase, etc. Surtout à l’échelle mi-

crométrique, des phénomènes physiques plus subtils sont intéressants. Dans

cette thèse, le problème du dépôt autocatalytique est principalement traité

par la modélisation mathématique et l’analyse numérique. Il y a trois chapitres

dans cette thèse: Un examen rapide et une introduction du dépôt autocat-

alytique sont donnés dans le chapitre 1. L’analyse d’un problème de dépôt

autocatalytique dans un écoulement de liquide monophasique est présentée

au chapitre 2. La simulation numérique du problème de dépôt électrolytique

avec la production de gaz est abordée au chapitre 3.

• Dans le chapitre 2, la génération de gaz due au dépôt autocataly-

tique est négligée. Au lieu de cela, un écoulement incompressible

monophasé couplé à un transfert de masse est considéré. Le petit mou-

vement de frontière dû aux espèces chimiques déposées est modélisé

ix
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par une approximation de la transpiration. Avec cette simplification,

le modèle mathématique se compose d’un écoulement Navier-Stokes et

d’une équation pour la concentration du produit chimique de dépôt

couplée par des conditions aux limites non standard et non linéaires.

L’existence et l’unicité sont prouvées pour l’équation de concentration.

Une analyse numérique est réalisée qui justifie les schémas numériques

et l’algorithme non linéaire proposés.

• Dans le chapitre 3, la génération de gaz et le mouvement de la phase

gazeuse sont pris en compte. Étant donné que les bulles sont générées

de manière aléatoire et partout, un modèle d’écoulement à deux phases

moyennées en volume est appliqué. Cette simplification est couplée à

des équations de convection-diffusion soumises à des conditions aux lim-

ites de flux satisfaisant l’équilibre électronique. Une méthode conserva-

trice de volume de phase du premier ordre et une méthode d’éléments

finis sont effectuées pour la simulation numérique et le bien-fondé du

schéma numérique est prouvé. Des études numériques dans des cas uni

et bidimensionnels avec comparaison à l’expérience sont réalisées pour

justifier le modèle proposé.

• Dans l’annexe B, un autre modèle simplifié pour le transport d’espèces

chimiques dans un écoulement à deux phases est considéré. Dans ce

cas, les termes de convection sont négligés de sorte que la fraction vo-

lumique de phase liquide ne dépend que de la concentration en gaz de
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dissolution dans l’électrolyte. On considère trois équations de concen-

tration pour le transport de deux espèces chimiques et le couplage du

gaz de dissolution avec une ODE pour la fraction volumique de la phase

liquide. La condition aux limites de flux sur la surface de réaction avec

équilibre électronique est prise en compte. L’existence et l’unicité sont

prouvées pour les équations de couplage. On montre que le cas des

deux espèces peut être généralisé au cas des N -espèces.
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Abstract

Electroless plating process in microchannel is a rising technology in industry.

From a physical point of view, it is a multiphysics problem including fluid

dynamics, mass transfer, chemical reaction, phase change, etc.. Especially

in micrometer scale, more subtle physical phenomena are of interest. In

this thesis, electroless plating problem is mostly taken care by mathematical

modeling and numerical analysis. There are three chapters in this thesis:

A quick review and introduction of electroless plating process are given in

Chapter 1. Analysis of an electroless plating problem in a single phase liquid

flow is presented Chapter 2. The numerical simulation on the electrolss

plating plating problem with gas generation is discussed in Chapter 3.

• In Chapter 2, the gas generation due to the electroless plating is ne-

glected. Instead, single phase incompressible flow coupled with mass

transfer is considered. The small boundary motion owing to the de-

posited chemical species is modeled by a transpiration approximation.

With this simplification, the mathematical model, consists of a Navier-

Stokes flow and an equation for the concentration of the plating chem-

xiii
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ical coupled by non-standard and nonlinear boundary conditions. Ex-

istence and uniqueness are proven for the concentration equation. Nu-

merical analysis is carried out and justifies the proposed numerical

schemes and nonlinear algorithm.

• In Chapter 3, the gas generation and motion of gaseous phase are

taken into account. Since the bubbles are generated randomly and ev-

erywhere, a volume averaged two phase flow model is applied. This

simplification is coupled with convection-diffusion equations subject

to flux boundary conditions satisfying electron balance. A first-order

phase volume conservative method and finite element method are car-

ried out for numerical simulation and the well-posedness of numerical

scheme is proved. Numerical studies in one and two-dimensional cases

with comparison to experiment are performed to justify the proposed

model.

• In Appendix B, a further simplified model for chemical species trans-

port in two phase flow is considered. In this case, the convection terms

are neglected so that the volume fraction of liquid phase depends only

on the concentration of dissolving gas in the electrolyte. Three concen-

tration equations for two chemical species transport and dissolving gas

coupling with an ODE for volume fraction of liquid phase are consid-

ered. The flux boundary condition on the reacting surface with electron

balance is taken care. The existence and uniqueness are proven for the
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coupling equations. It is shown that the two species case can be gener-

alized to N -species case.
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Chapter 1

Introduction and state of the

art

1.1 Electroless plating process

1.1.1 Overview

Electroless plating is a class of industrial chemical reaction process aimed

at forming a film or layer on a base substrate by reducing complex metal

cations in a liquid solution [2, 3, 4]. In contrast to electroplating processes,

the reduction of matal cations can be achieved without the external current

during electroless plating process. The metal coatings is created by autocat-

alytic chemical reduction of metal cations in a liquid bath. This technique

has been widely applied in various industries. For instance, surface decora-

tion, hard-wearing coating, manufacture of hard-disc drive, printed circuit

1
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boards, etc.[4, 5].

Recently, electroless process in microfluidic channels has been regarded

as a promising micro or nano meter technology. Applications range from

chemical etching process for electronic devices, to electrical packaging for

food [6, 7]. Compared to the large-scale electroless process, the change of

geometry to the micro- or nano-meter scale raises a critical issue for the

deposition as the thickness becomes comparable to the dimension of flow

channel. For instance, in the copper interconnecting process [8] by electroless

plating, the thickness of the deposition layer of copper is large enough to risk

a connection of the pillars.

1.1.2 Mechanism

In general, the chemical reaction of electroless plating can be expressed as

M z+
(aq) +Xz−

(aq) →M0
(s) + Z,

where M is the metal, Xz− is the reducing agent, and Z is its oxidized by

product.

In order to deposit the metal uniformly on a reaction surface, an initiator

that is either an additional catalyst or the substrate itself shall be added

in advance. Moreover, the reaction must be autocatylic so that it continues

after the reaction surface has been covered by the metal. For the setting of

the electroless plating process, see also Figure 1.1.
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Figure 1.1: Schematic of electroless plating setup.

1.1.3 Mixed potential theory

Two assumption is made when the mixed potential theory is applied for the

electroless plating process: (i) The overall chemical reaction can be divided

into several partial reactions. Each partial reaction belongs to either anodic

part or cathodic part. Here, the anodic reaction is the decomposition of the

reducing agent

R0 → Rz+ + ze−, (1.1)

and the cathodic reaction the reduction of the metal comples cations

M z+ + ze− →M0. (1.2)

(ii) The reaction must satisfy electron balance at all time. Therefore, the

sum of the anodic current density and the cathodic current density is zero.

That is,

∑
j∈anodic

Ij +
∑

j∈cathodic
Ij = 0. (1.3)
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We denote the equilirium potential for species j by Ej, the Butler-Volmer

equation (see for example [9]) suggest that the current density Ij can be

expressed as

Ij = ijc
γj

j := Aj

[
exp

(
αjzjFξj

Rθ

)
− exp

(
−βjzjFξj

Rθ

) ]
c

γj

j , (1.4)

where Aj is the ratio of the reference current density and the correspond-

ing reference species concentration, αj the anodic transfer coefficient, βj the

cathodic transfer coefficient, zj the number of electrons, F the Faraday con-

stant, R the gas constant, θ the temperature, cj the species concentration,

and γj the concentration dependency. In the above, ζj is the overpotential

which can be expressed as

ζj = Emix − Ej, (1.5)

where Emix is the mixed potential (see also Figure 1.2).

1.1.4 Electroless plating in a microchannel

As the size of channel becomes smaller, more subtle issues influencing the

deposition quality shall be taken into account. Those effects that do not

play crucial roles in a large size problem become main characters in micro-

or nano-scale. Some issues which are worthy of further consideration for

electroless plating in a microchannel are listed below.
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Figure 1.2: Current-potential curves for the system satisfying the hypotheses

of the mixed potential theory.
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Figure 1.3: A microchannel of cross section 8 mm × 1 mm with a copper

plate where the electroless copper plating process occurs.

Gas generation

In a large scale problem, the gas generation in the electroless plating process

is not important becuase it takes only slight space in comparison with the

size of bath. In contrast, the effect that bubbles prevent the substrate from

being plated is serious when the flow channel is of smaller size. Indeed,

conducting a electroless copper plating in a microchannel with cross section

of size 8 mm× 1 mm for 2 minutes, the bubbles will have been taken over a

large portion of the channel (see Figure 1.3).

Whether the gas generation occurs is determined by the electroless plat-

ing system being employed. Electroless nickel and copper plating systems

generate hydrogen gas. On the other hand, electroless gold does not gener-

ate gas. Given this fact, both single phase and two-phase flow problems for

the fluid motion in a electroless plating process play crucial roles.
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(a) Flap-topped microbumps. (b) Dome shape microbumps.

Figure 1.4: Comparison between flat-topped bump and dome shape mi-

crobumps.

Seams and voids between microbumbs

Microbump bonding is one of the important applications of electroless plating

in microchannels. The geometry effect arising from the shape of microbumps

is significant for the plating quality. For example, if two microbumps to be

plated are flat-topped (see Figure 1.4a), then seams or voids may appear in

the jointed bumps [8, 10]. This is owing to the fact that the region between

two bumps is always of the lowest ionic concentration. The deposition rate of

the outer region is always higher than the inner region between tp bumpes.

Once the innter region is closed by the deposited metal of outer region, the

seam or void remains due to the shortage of fresh electrolyte. On the other

hand, if the dome-shaped microbumps (see Figure 1.4b) are adopted for

electroless plating process, The bumbs can be jointed perfectly.
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Bridging

For a circuit pattern, It is essential to control precisely where to be plated

and not to be plated. Let us take the bonding of face-to-face microbump

array as an illustration. In most cases, the desired region to be plated is the

gap between face-to-face bumps. Conversely, the plane within the bumbs

installed on the same substrate are not desired to be deposited since the short

circuit will be caused by the connection between to bumbs on the same plane.

Such undesired phenomenon is called bridging [11, 12]. Bridging is due to

the instability of the electrolyte which causes a homogeneous decomposition

so that the metal particles accumulate everywhere. Indeed, this phenomenon

is observed in the low flow velocity region where the ionic concentration is

sufficient but the metal particles cannot be moved away.

Uniformity

For many circuit board, there always exists period structure so that the uni-

formity of plating quality is important. However, many physical conditions

in such periodic space may not be uniform. For example, the bubble dis-

tribution is in general far from uniform even in a microchannel with simple

geometry (see Figure. 1.3)

To see another uniformity issue, we take the bonding of face-to-face mi-

crobump arrays as an example again. Considering an face-to-face array of

microbumps is placed in a microchannel, we observed that the plating condi-
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tion is highly nonuniform [12]. The most interesting observation is that the

bumps near the flow entrance, which were in the region of higher ionic con-

centration, were not deposited. A hypothesis is that the metal particles near

the entrance was washed away by the fluid flow but deposit behind. Indeed,

when the entrance velocity is sufficiently high, None of the microbumps can

be plated.

1.2 Mathematical model for electroless plat-

ing problem

Electroless plating problem can be regarded as a multiphysics problem which

consists of surface reaction, fluid dynamics, heat transfer, chemical potential

distribution, etc.. In a large scale deposition, simplified models would be ade-

quate for describing the occuring physical phenomena, especially in a simple

geometry case. In what follows, we review two kinds of one-dimensional mod-

els which well described the electroless plating process in the special cases.

1.2.1 One-dimensional steady state advection-diffusion

equations

Kim and Sohn proposed a model describing the concentration profile of chem-

ical species in the diffusion layer of a plated rotating disk with constant an-

gular velocity [1]. In this situation, the fluid flow near the surface of rotating
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disk can be approximated by a uniformly disbributed flow directing to the

surface. In addition, the thickness of diffusion layer is approximately uni-

form on the surface. Consequently, the physical domain for modeling can

be reduced to be one-dimensional (see Chapter II, Section 11 in [13] for the

derivation).

The modeling problem is given as follows: Let cj be the concentration

profile of the j-th species. The governing equations for steady state problem

is

−Dj
∂2cj

∂z2 + v
∂cj

∂z
= 0, (1.6)

where Dj is the diffusion coefficient, v the velocity field given by

v = −az2ω3/2ν−1/2, (1.7)

where a = 0.51023, ω is the angular velocity of the rotating disk, and ν the

kinematic viscosity of the electrolyte. The boundary conditions are given by

cj = cb,j, z2 + r2 →∞, −Dj
∂cj

∂z
=
∑

j∈Rj

|Ij|
zjF

, z = 0, (1.8)

where cb,j is the bulk concentration of species j, Rj the set collecting those

species j participating in the reaction related to cj, zj the number of electrons,

F the Faraday constant, and Ij the current density. We recall that Ij can be

expressed by (1.4) with the overpotential (1.5).

For numerical simulation, the Dirichlet boundary condition cj = cb,j shall

be set at the diffusion layer-bulk interface. The diffusion layer thickness δj
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at steady state for a rotating disk can be expressed as

δj = 1.61D1/3
j ω−1/2ν1/6. (1.9)

Finally, the system of equations can be closed by the electron balance condi-

tion (1.3).

1.2.2 One-dimensional time-dependent diffusion-migration

equations

To simulate electroless copper plating on a planar substrate, Ramasubra-

manian et. al. [14] applied a system of time-dependent diffusion-migration

equations for solving the concentration profile of each species participating

in the electroless process.

Let cj, j = 1, . . . N be the concentration profile of the j-th species. In

the diffusion layer, the mass balance implies that

∂cj

∂t
= −∂Jj

∂z
+ Yj, (1.10)

where Yj is the rate of homogeneous production or consumption of species j

and the flux Jj is contributed by diffusion and migration:

Jj = −zjDjFcj

Rθ

∂Φ
∂z
−Dj

∂cj

∂z
. (1.11)

In the above Φ is the solution potential. In the electrolyte, water equilibrium

holds at all times and therefore we have

∑
j

zjcj = 0, (1.12)
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which closes the system with unknowns (c1, . . . , cN ,Φ).

The boundary conditions are similar to those proposed by Kim and Sohn

[1]. At the diffusion layer-bulk interface, we let

cj = cb,j

At the electrode surface, the Neumann boundary conditions are given simi-

larly the second equation of (1.8) but the current densities take the form

Ia = Aa

 ∏
k∈Ra

cγk
k

(
exp

(
αaF

Rθ
[V − Φ− U0

j

)
− exp

(
−βaF

Rθ
[V − Φ− U0

j ]
)) ,

Ic = Ac

 ∏
k∈Rc

cγk
k

(
exp

(
αcF

Rθ
[V − Φ− U0

j ]
)
− exp

(
−βcF

Rθ
[V − Φ− U0

j ]
)) ,

(1.13)

where Ra and Rc are the set of species j involving in anodic reaction and

cathodic reaction, respectively, V is the electrode potential, and U0
j is the

open-circuit potential for the j-th species. Here, V plays a similar role as the

mixed potential Emix in (1.5). The full system can be closed by the electron

balance on the reacting surface:

Ia + Ic = 0. (1.14)
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1.3 Governing equations of interest in an elec-

troless plating problem

1.3.1 Navier-Stokes equations

To derive the Navier-Stokes equations, we assume that the fluid is a contin-

uum and all the fields of interest, such as density, flow velocity, pressure,

and temperature are differentiable.

Material derivative

Changes of a physical quantity can be measured in two different ways depend-

ing on where the observer is: One can measure a physical quantity either (i)

on a fixed point (Eulerian), or (ii) by following a parcel of fluid along its

streamine (Lagragian). The derivative of a physical quantity with respect to

a fixed position in space is called a Eulerian derivatve, while the derivative

following the flow velocity is called a Lagragian derivative. Based on the

relation between Eulerian and Lagragian derivatve, we define the material

derivative which connects these two concept:

D

Dt
:= ∂tu + u · ∇, (1.15)

where u is the flow velocity.
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Continuity equation

Let φ be any physical quantity defined over a control volume Ω, and Γ its

boundary. The mass conservation can be expressed as

d

dt

∫
Ω
φdx =

∫
Γ
φu · ndS =

∫
Ω
sdx, (1.16)

where u is the flow velocity of teh field, n is the outward unit normal, and s

is the sink or source in the flow. By the divergence theorem, we have

d

dt

∫
Ω
φdx = −

∫
Ω
∇ · (φu)dx−

∫
Ω
sdx. (1.17)

Applating the Reynolds transport theorem, we have

∫
Ω
∂tφdx = −

∫
Ω
∇ · (φu)dx−

∫
Ω
sdx. (1.18)

The above equation must hold for any control volume. Therefore,

∂tφ+∇ · (φu) + s = 0 (1.19)

Conservation of mass

Replacing φ by the density ρ in (1.19), and assuming that there is no source

or sink of mass, we have

∂tρ+∇ · (ρu) = 0. (1.20)

Conservation of momentum

Let φ = ρu in (1.19), we have

∂t(ρu) +∇ · (ρu⊗ u) = s, (1.21)



doi:10.6342/NTU202200609

1.3. Governing equations of interest in an electroless plating problem 15

where s is a vector function. The above equation can be split as

(∂tρ)u + ρ∂tu + (u · ∇ρ)u + ρ(u · ∇)u + ρ(∇ · u)u = s. (1.22)

The rearrangement gives

(∂tρ+ u · ∇ρ+ ρ∇ · u)u + ρ(∂tu + (u · ∇)u)

= (∂tρ+∇ · (ρu))u + ρ(∂tu + (u · ∇)u) = s
(1.23)

By (1.15) and (1.20), we get

ρ
Du
Dt

= ρ(∂tu + (u · ∇)u) = s (1.24)

Cauchy momentum equation

The momentum source s can be split into two terms: one term for internal

stresses and another for external forces. The momentum equation can be

expressed as

ρ
Du
Dt

= ∇ · σ + f, (1.25)

where σ is the Cauchy stress tensor and f is the body force.

In three dimensional space, σ is a rank two symmetric tensor which can

be explicitly represented as a 3× 3 matrix

σ =



σxx τxy τxz

τyx σyy τyz

τzx τzy σzz


(1.26)

In the above, σ can be further split into isotropic part standing for the normal
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stresses and anisotropic part for shear stresses:

σ =



σxx τxy τxz

τyx σyy τyz

τzx τzy σzz


= −



p 0 0

0 p 0

0 0 p


+



σxx + p τxy τxz

τyx σyy + p τyz

τzx τzy σzz + p


= −pI + τ ,

(1.27)

where I is the identity matrix, and τ is the deviatoric stress tenor. Since the

tensor τ should be zero when the fluid is motionless, we define the mechanical

pressure p by

p = −1
3

(σxx + σyy + σzz). (1.28)

Finally, the Cauchy equation can be expressed as

ρ
Du
Dt

= −∇p+∇ · τ + f. (1.29)

1.3.2 Compressible and incompressible flow

Compressible flow

We assume that the Cauchy stress tensor τ in (1.29) satisfying the following

assumptions

1. τ is Galilean invariant: it depends only on the spatial derivatives of

the flow velocity. That is, τ is a function of ∇u.

2. The stress τ is linear in the variable τ(∇u) = C : ∇u for some fourth-

order constant tensor.
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3. The fluid is isotropic. By Helmholtz decompositionm τ can be ex-

pressed in terms of two scalar Lamé parameters: the bulk viscosity λ

and the dynamic viscosity µ, i.e.

τ = λ(∇ · u)I + 2µε, (1.30)

where I is the identity tensor and ε(∇u) = 1
2∇u + 1

2(∇u)T .

In three-dimension, given that tr(ε) = ∇·u and tr(τ ) = (3λ+2µ)∇u, τ can

be split into isotropic and deviatoric parts:

τ = (λ+ 2
3
µ)(∇ · u)I + µ(∇u + (∇u)T − 2

3
(∇ · u)I). (1.31)

Introducing the second viscosity ζ := λ + 2
3µ, the linear stress constitutive

equation can be expressed as

τ = ζ(∇ · u)I + µ(∇u + (∇u)T − 2
3

(∇ · u)I). (1.32)

Let p := p− ζ∇u, we obtain the Navier-Stokes momentum equation

ρ (∂tu + (u · ∇)u) = −∇p+∇ ·
(
µ(∇u + (∇u)T − 2

3
(∇ · u)I

)
+ f. (1.33)

Applying the relation ∇ · (∇u)T = ∇(∇ · u), we finally get

ρ(∂tu + (u · ∇)u) = −∇p+ µ∆u + 1
3
µ∇(∇ · u) + f. (1.34)

Remark 1.3.1 In two dimension, we have

ρ(∂tu + (u · ∇)u) = −∇p+ µ∆u + f. (1.35)
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Incompressible flow

The incompressiblity implies that the mateiral derivative of the density is

zero, i.e.,
Dρ

Dt
= 0. (1.36)

Combining the above equation with the continuity equation (1.20), we have

∇ · u = 0. (1.37)

Therefore, the linear stress constitutive equation for the incompressible flow

can be written as

τ = µ(∇u + (∇u)T ). (1.38)

If µ is constant, divergence of the deviatoric stress is given by

∇ · τ = ∇ · (∇u + (∇u)T ) = µ∆u. (1.39)

Furthermore, if ρ is constant, the incompressible Navier-Stokes equation can

be expressed as

∂tu + (u · ∇)u− ν∆u = −∇p̃+ f̃, (1.40)

where ν = µ/ρ, p̃ = p/ρ, f̃ = 1
ρ

f.

1.3.3 Gas-liquid two phase flow

In electroless copper and nickel plating system, hydrogen gas generation is a

crucial issue, especially in a microchannel, since the volume of gas is compa-

rable to the size of the physical domain. Therefore, the governing equations

for gas-liquid two phase flow should be considered.
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There are several versions of models describing the two phase flow. They

can be roughly divided into two classes: (i) The interfaces of heterogeneous

phases can be explicitly captured; (ii) The distribution of phases is somehow

stochastic so that the problem can only be described in an average sense. For

electroless plating process with gaseous phase generation, the problem at the

beginning before a serious aggregation of bubbles is of class (ii). Once some

large bubbles has accumulated in the microchannel, the problem becomes

class (i) in a sense of approximation. Now we are in a position to introduce

some governing equations in the aspect of these two classes.

Diffuse interface models

To formulate the thermodynamics and transport phenomena of multiphase

systems, Reyleigh [15] and van der Waals [16] proposed a so-called diffuse

interface model which assumes that the heterogeneous interfaces have a non-

zero thickness. Based on this idea, several Navier-Stokes/Cahn-Hilliard sys-

tem were proposed for modeling the multiphase flow [17, 18, 19]. For exam-

ple, the model H for incompressible two phase flow proposed by Hohenberg
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and Halperin [18] can be read as

ρ∂tu + ρ(u · ∇)u−∇ · (η(c)(∇u + (∇u)T )) +∇p = σ̂ε∇ · (∇c⊗ c),

∇ · u = 0,

∂tc+ u · ∇c = ∇ · (m∇µ),

µ = σ̂ε−1Ψ′(c)− σ̂ε∆c.
(1.41)

In the above, ρ is the density, u is the mean velocity of fluids, ρ is the pressure

and c is an order parameter corresponding to the concnetration of the fluids

(e.g. concentration of one component or concentration difference between

two components), η(c) is the viscosity of the mixture, σ̂ is the surface energy

density ε is a parameter related to the thickness of the interface, Ψ is a

homogeneous free energy density and µ is the chemical potential.

Another example proposed by Abels [17] is a thermodynaically consis-

tent generalization of (1.41) to the case of non-matched densities based on

a divergence-free velocity field u. The governing equations can be expressed

as

∂t(ρu) +∇ · (ρu⊗ u) +∇ · (u⊗ ρ̃1 − ρ̃2

2
m(ϕ)∇µ)

−∇ · (η(ϕ)(∇u + (∇u)T ) +∇p = −σ̂ε∇ · (∇ϕ⊗∇ϕ),

∇ · u = 0,

∂tϕ+ u · ∇ϕ = ∇ · (m(ϕ)∇µ)

µ = σ̂ε−1Ψ′(ϕ)− σ̂ε∆ϕ,

(1.42)

where ϕ = ϕ2 − ϕ1 is the difference of the volume fracions and ρ̃2 − ρ̃1 is
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the difference of the densities. The above model has been widely used for

numerical simulation (e.g. [20, 21, 22]).

Level set model

Unlike the diffuse interface model, the interface between two phases formu-

lated by the level set model is sharp, i.e., the thickness of the interface

between two phases is zero. In this case, the equation of motion for incom-

pressible two phase flow is described by [23]

∂tu + (u · ∇)u = 1
ρ

(
∇ · (µ(∇u + (∇u)T ))−∇p+ σκδ(d)n

)
+ f̃,

∇ · u = 0,
(1.43)

where u = u(x, t) is the fluid velocity, ρ = ρ(x, t) is the fluid density, µ =

µ(x, t) is the fluid viscosity, and f̃ is the body force. The surface tension is

assumed to be a force exerting only on the interface. We denote by σ the

surface tension, κ the curvature of the interface, d the normal distance to the

interface, δ the Dirac delta function, and n the unit outward normal at the

interface.

For immiscible fluids, the density and viscosity are constant along the

path of velocity field. Therefore, we have

∂tρ+ (u · ∇)ρ = 0

∂tµ+ (u · ∇)µ = 0.
(1.44)

Let ρ1, µ1 denote the density and viscosity of the gaseous phase fluid, respec-

tively, and for liquid phase, ρ2, µ2. The level set φ is defined to discriminate
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the phases. For example, φ satisfies the following properties

ρ =



ρ2, if φ > 0

ρ1, if φ < 0

ρ1 + ρ2

2
, if φ = 0

(1.45)

and

µ =



µ2, if φ > 0

µ1, if φ < 0

µ1 + µ2

2
, if φ = 0.

(1.46)

Moreover, φ is carried by the velocity field

∂tφ+ (u · ∇)φ = 0. (1.47)

If we initialize φ to be the signed distance function from the interface, φ is

smooth, unlike ρ and µ. This shows the advantage to solve φ numerically.

To avoid the instability caused by the sharp changing of density and

viscosity at the interface, a smoothing procedure on these two quantities

is often applied to modify the governing equation, which leads to a similar

idea as the diffuse interface model. Here is a common example of smoothing

on the density: the density ρ can be smoothed by acting with a smoothed

Heaviside function Hα defined by

Hα(φ) :=



1, if φ > α,

0, if φ < −α,

1
2

(1 + φ

α
+ 1
π

sin(πφ
α

)), otherwise.

(1.48)
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Now the smoothed density can be defined by

ρ(φ) = ρ2Hα(φ) + ρ1(1−Hα(φ)). (1.49)

It is worth noting that the smoothing in the diffuse interface model is by

hypothesis but it is artificially made in the level set model.

Averaged two phase flow model

When the distribution of dispersive phases in a physical domain is stochastic,

we may describe it in terms of the volume fraction of each phase at each point

of the physical domain. The volume fraction of a phase can be regarded as

the expectation that the phase occurs at a given point. This macroscopic

aspect to the phase distribution is called volume averaging.

We review the derivation of volume averaging formulae introduced in

[24, 25]. Let V0 be an elementary volume to be observed in and Vk the

volume in V0 occupied by a single phase k and bounded by the interface Ak,

which is assumed to be oriented. Let nk be a outer normal to Ak and wk the

normal velocity of Ak.

The volume average of some quantity Ψ in phase k is

〈Ψ〉k = 1
V0

∫
V0
χkΨdx, (1.50)

where χk is the indicator function that is 1 of Vk. The intrinsic volume

average is defined by

〈Ψ〉(k)
k = 1

Vk

〈Ψ〉k where Vk =
∫

V0
χkdx (1.51)
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We define the volume fraction rk = Vk

V0
with the properties

∑
k

rk = 1 and

〈Ψ〉k = rk 〈Ψ〉(k)
k . (1.52)

Some useful formulae in terms of the averaging are listed below[26, 27]:
〈
∂Ψ
∂t

〉
k

= ∂ 〈Ψ〉k
∂t

− 1
V0

∫
Ak

Ψkwk · nkdA, (1.53)

〈∇Ψ〉k = ∇〈Ψ〉k + 1
V0

∫
Ak

ΨknkdA. (1.54)

If Ψ is a vector, we also have

〈∇ ·Ψ〉k = ∇ · 〈Ψ〉k + 1
V0

∫
Ak

Ψ · nkdA. (1.55)

Remark 1.3.2 If Ψ = 0 outside Vk then we have

− 1
V0

∫
Ak

Ψ · nkdA = − 1
V0

∫
Vk

∇ ·ΨdV = − 1
V0

∫
V0
χk∇ ·ΨdV = −〈∇ ·Ψ〉k .

(1.56)

This implies that ∇ · 〈Ψ〉k = 0.

By taking the volume averaging to (1.20), we have

∂t(rkρk) +∇ · (rkρk〈uk〉(k)
k ) = Γk, (1.57)

where

Γk = − 1
V0

∫
Ak

ρk(uk −wk) · nkdA.

The interfacial terms Γk satisfy the conservation

∑
k

Γk = 0. (1.58)
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For averaged equations of motion, we have

∂t(rkρk〈uk〉(k)
k ) +∇ · (rkρk〈uk〉(k)

k ⊗ 〈uk〉(k)
k ) = −∇(rk〈pk〉(k)

k )

+∇ · (〈τk〉k + 〈τ T
k 〉k) + Mk + rk〈fk〉(k)

k ,

(1.59)

where

Mk = − 1
V0

∫
Ak

ρkuk(uk −wk) · nkdA+ 1
V0

∫
Ak

(τk − pI) · nkdA

and

〈τ T
k 〉 = −〈ρkûk ⊗ ûk〉, ûk = (uk − 〈uk〉(k)

k )χk.

Since the sum of internal forces is zero, we have the interfacial balance con-

dition
∑

k

Mk + Mi = 0. (1.60)

In the above, Mi is the surfacial force such that

Mi = 1
V0

∫
Ai

σκnidA,

where Ai the collection of all the interfaces, σ the surface tension, κ the

curvature, and ni the outer normal on the interface.

Remark 1.3.3 If there are only two phases (say phase 1 and phase 2) in

the physical domain of interest, then we have

Mi = 1
V0

∫
Ai

σκn1dA = −σκ∇r1, (1.61)

where κ is the mean curvature. The above relation can be obtained by the

constitutive relation

r1 + r2 = 1, A1 = A2 = Ai (1.62)
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1.3.4 Advection-diffusion in an electrolyte

The species transport is the core issue for studying the electroless plating

process. We recall that for a concentration profile cj of species j, the general

mass conservation equation can be expressed as

∂tcj +∇ · Jj = Rj, (1.63)

where Jj is the overall flux and Rj is the source or sink of cj. If advection

and diffusion are considered in the system, then there are two sources for Jj.

First, the advective flux can be expressed as

Jj,adv = ucj, (1.64)

where u is the velocity field. Second, the diffusive flux can be approximated

by the Fick’s first law

Jj,diff = −Dj∇cj, (1.65)

where Dj is the diffusion coefficient. Given that the total sum is the summa-

tion of these sources, we have

Jj = Jj,adv + Jj,diff = ucj −Dj∇cj. (1.66)

Therefore, the advection-diffusion equation can be expressed as

∂tcj +∇ · (ucj)−∇ · (Dj∇cj) = Rj. (1.67)
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Chapter 2

Single phase problem

2.1 Introduction

In this chapter, the mathematical analysis of the two or three-dimensional

electroless plating problem neglecting the gas gneration is investigated. For

numerical simulation, multi-dimensional electroless processes in geometri-

cally varying micro- or nano-fluidic channels remain computationally expen-

sive so we have investigated on bidimensional cases.

We consider a single chemical species in the electrolyte. The flux of the

chemical species on the reacting surface is described in terms of the exchange

current. In our case, the exchange current I0 is given by the Butler-Volmer

equation (see for example [13, 28]); it is a linear function of the electrolyte

concentration c

I0 = i0c := A
[

exp
(
α0zFξ

Rθ

)
− exp

(
−β0zFξ

Rθ

) ]
c, (2.1)

27



doi:10.6342/NTU202200609

28 2. Single phase problem

where A,α0, β0 are physical constants, R is the perfect gas constant, F the

Faraday constant and z the atomic number of the electrolyte; θ is the tem-

perature, and ξ is the excess potential related to the interaction with other

chemical species which, for our purpose is constant [1, 14]. The temperature

is also assumed uniform and constant.

The plating occurs on a boundary S(t) of the electrolyte, causing this

interface to move inward the fluid domain but this motion is small because it

is only due to plating. The plating being proportional to the concentration

c, the velocity of S(t) is normal to itself and given by a linear law

u = −αi0cn

and α is small. On the other hand the flux of metal ion through S(t) is

proportional to c

D
∂c

∂n = −i0c

where D is a diffusion constant.

The concentration of the chemical species c satisfies a convection diffu-

sion equation while the electrolyte flow is modelled by the Navier-Stokes

equations.

In order to analyse this coupled problem, we approximate the small dis-

placement of the reaction surface S(t) by a transpiration approximation

[29, 30] on a fixed mean surface S. It leads to an integro-differential con-
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dition on S:

−D ∂c

∂n
+ i0c

(
1 + αi20

D

∫ t

0
c(s)ds

)
= 0. (2.2)

The mathematical analysis of the Navier-Stokes equations coupled with a

convection-diffusion equation for c is somewhat problematic because of the

non-homogenous condition on S for the velocity. So we restrict the study to

the existence of the weak solution to the convection-diffusion equation with

a given fluid velocity u and even this study is not straightforward. First

a time-discretized approximation is shown to have a unique solution using

a version of Minty-Browder’s theorem and the maximum principle to prove

that 0 ≤ c ≤ 1. The solution of the time continuous problem is obtained as

the weak limit of the of the solution of the time-discretized solutions. Some

numerical tests are given to justify the transpiration approximation and the

convergence of the backward Euler nonlinear scheme.

2.2 Modeling of the Physical System

The plating chemicals flow in a thin channel between a top and a bottom

plate. Due to an electro-potential applied between the two plates the chemi-

cals will deposit on the top plate. Hence the depth of the channel varies with

time. A vertical cross section of the 3D system is depicted in Figure 2.1.
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Figure 2.1: The physical domain is the domain occupied by the flow Ω(t);

the chemical deposit is above the free boundary S(t). The chemicals flow

from the left boundary, Γin, to the right Γout. The bottom Γwall is a solid

wall.

2.2.1 The Fluid Flow

The geometry of the fluid part is a two or three-dimensional domain Ω(t)

bounded on the left by an inflow boundary Γin, on the right by an out-

flow boundary Γout, on the bottom by a flat wall Γwall and on the top by a

time dependent boundary S(t). In the three-dimensional case, the remaining

boundaries are assumed to be walls. The fluid is viscous, Newtonian and in-

compressible, so the flow is governed by the Navier-Stokes equations for the

velocity u(x, t) and pressure p(x, t):

∂tu+ u · ∇u− ν∆u+∇p = 0, ∇ · u = 0, ∀x ∈ Ω(t), ∀t ∈ [0, T ], (2.3)

where ν is the (constant) kinematic viscosity of the fluid. The initial velocity

is given and denoted by u0; the inflow velocity uin is also given on Γin; a no

slip condition holds on Γwall ∪ S(t), and we impose a traction-free outflow
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condition at Γout. So at all t ∈ [0, T ] we have:

u = uin on Γin, u = 0 on Γwall, − ν ∂u
∂n

+ pn = 0 on Γout. (2.4)

We assume that there is no back-flow on Γout: u · n ≥ 0.

Remark 2.2.1 In general, the traction-free boundary condition on Γout,

−ν ∂u
∂n

+ pn = 0 does not imply u · n ≥ 0. However, for electroless plat-

ing process, the fluid velocity field near the outlet is near to a Poiseuille

flow. We note that the Poiseuille flow in a fixed cross section domain sat-

isfies u · n ≥ 0 on Γout and the traction-free condition. For mathematical

convenience, the assumption: u · n ≥ 0 on Γout is made.

2.2.2 The Metal Ion Concentration

The metal ion concentration c(x, t) solves a convection-diffusion equation

∂tc+ u · ∇c−D∆c = 0, ∀x ∈ Ω(t), ∀t ∈ [0, T ] (2.5)

with given initial concentration c0; D is the diffusion constant. The con-

centration is given on Γin and a no-flux condition holds on Γwall and Γout

:

c = cin on Γin,
∂c

∂n
= 0 on Γwall ∪ Γout. (2.6)

On S(t) a reaction condition is written as suggested in [1, 14],

−D ∂c

∂n
= i0c, u = −αi0cn, ∀x ∈ S(t), (2.7)

where i0 and α are constants. Most important for our study: α is small.
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It is also important to remember that c, being a concentration it must

be non-negative and less or equal to one. In particular c0 and cin must be

chosen in [0, 1].

2.2.3 The case α = 0

When α = 0, there is no free boundary; consider the case Ω = (0, L)× (0, 1).

With appropriate initial and inflow conditions, the fluid velocity is

u = (u1, u2)T , u1 = y(1− y), u2 = 0

Similarly, with appropriate initial and inflow conditions, the concentration

depends only on time t and y := x2 and solves

∂tc−D∂yyc = 0, −D∂yc = i0c at y = 1, ∂yc = 0 at y = 0.

It has a closed solution c = e−Dλ2t cos(λy) provided λ satisfies: λ tan λ = i0
D

.

When 0 < α << 1,uin = (y(1− y), 0)T , cin = e−Dλ2t cos(λy), u0 = uin,

c0 = cin|t=0, the solution will be a linear perturbation of the above.

2.2.4 Transpiration Approximation

Experimental observation show that the evolution of S(t) is small. Following

[29, 30], we approximate (2.7) with a transpiration approximation as follows.

Let S be the initial position of S(t) and let η be the distance between

S(t) and S normally to S, i.e.

S(t) = {x + η(x, t)n(x) : x ∈ S}, η(0) = 0
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where η(0) = 0 is short for η(x, 0) = 0 for all x ∈ S. If the radius of curvature

of S(t) and the derivative of η along S are not large it can be shown that the

difference between the normals of S and S(t) is second order in η (see [29]).

By definition of u and by the second equation in (2.7),

dη

dt
= u · n = −αi0c, η(0) = 0, ⇒ η(t) = −αi0

∫ t

0
c(s)ds. (2.8)

By a Taylor expansion, the first equation in (2.7) can be written on S rather

than S(t):

−D ∂c

∂n
(x + η(x, t)n(x), t) = −D

(
∂c

∂n
(x, t) + η(x, t) ∂

2c

∂n2 (x, t)
)

+ o(η)

= i0c(x + η(x, t)n(x), t) = i0

(
c(x, t) + η(x, t) ∂c

∂n
(x, t)

)
+ o(η). (2.9)

By (2.8), it is rewritten as

−D
(

1− α i
2
0
D

∫ t

0
c(s)ds

)
∂c

∂n
(x, t)−i0c(x, t) = η(x, t)D ∂2c

∂n2 (x, t)+o(η) = O(η).

(2.10)

A first order in α approximation of this condition is

−D ∂c

∂n
(x, t)− i0c(x, t) = 0 (2.11)

Neglecting o(η) and using 1
1− y

≈ 1 + y and neglecting D ∂2c

∂n2 leads to

D
∂c

∂n
+ i0c

(
1 + αi20

D

∫ t

0
c(s)ds

)
= 0 on S. (2.12)

In the discussion below we argue in favor of this approximation where ηD ∂2c

∂n2

is neglected.
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The second equation of (2.7) is simply written on S instead of S(t).

Indeed a similar Taylor expansion shows that

u+ η
∂u
∂n

= −αi0
(
c+ η

∂c

∂n

)
n + o(ηα), (2.13)

The second equation in (2.7) implies that u is O(α); so when all normal

derivatives are bounded

u = −αi0cn +O(ηα), on S (2.14)

2.2.5 The Final Problem (P)

The domain and the top boundary are now fixed and denoted by Ω and S;

the boundary of Ω is

Γ := ∂Ω = Γin ∪ Γwall ∪ Γout ∪ S.

We propose to solve (2.3) and (2.5) in Ω× (0, T ) subject to initial conditions

and boundary conditions (2.4) and (2.6) and

D
∂c

∂n
+
(

1 + αi20
D

∫ t

0
c(s)ds

)
i0c = 0 on S, (2.15)

u = −αi0cn on S. (2.16)

2.2.6 Discussion:

If we had kept the term η(x, t)D ∂2c

∂n2 (x, t) in (2.12), this condition would

have been second order. But even without it we expect it to be near second
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order when c varies slowly and Ω is elongated, because (2.5) will not be far

from −D ∂2c

∂n2 ≈ 0.

One of the purpose of this article is to analyse the additional nonlinear

term in (2.15). In the numerical section , it will be compared to the first

order condition obtained by setting α = 0 in (2.15).

A third condition can be obtained as follows. If s denotes arc length on

S, the PDE which governs c tells us that near S

∂tc+ u · n ∂c
∂n

= D
∂2c

∂n2 +D
∂2c

∂s2

Assuming that the variations in s are much smaller than those in n, we obtain

D
∂2c

∂n2 = ∂tc− αi0c
∂c

∂n
= ∂tc+O(α). (2.17)

Inserting the above equation into (2.10), we get

−D
(

1− α i
2
0
D

∫ t

0
c(s)ds

)
∂c

∂n
(x, t)−i0c(x, t) = −

(
αi0

∫ t

0
c(s)ds

)
(∂tc+O(α)).

(2.18)

As for getting (2.12), by a first order approximation ( 1
1− y

≈ 1 + y) and a

discard of the term of order O(α2), leads to

D
∂c

∂n
+ i0c+ αi0

(
i20
D
c− ∂tc

)∫ t

0
c(s)ds = 0 on S. (2.19)

2.2.7 Plan

If it wasn’t for the boundary conditions, the mathematical analysis of (2.3),

(2.5,and (2.11),(2.16) is somewhat classical, so we shall focus on the problem
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raised by the nonlinear boundary conditions (2.3),(2.5,(2.15),(2.16). Then,

at the end we shall argue that there is no essential new difficulty if the term

∂tc is added, namely problem (2.3),(2.5,(2.19),(2.16).

Once more, existence of c will be shown for a given flow u, p. The coupled

problem is analysed only in the numerical section.

2.3 Variational formulation

2.3.1 Notations

For convenience, C, C ′ and Ci, i = 1, 2, 3, . . ., denote generic constants inde-

pendent of u and c. We denote d = 2, 3 the dimension.

We use the standard notations: f+ = max{f, 0} and f− = −min{f, 0}.

We denote by ‖ · ‖s the norm of Hs(Ω) and by ‖ · ‖s,Γ the norm of Hs(Γ)

for Γ ⊂ ∂Ω.

If B is a Banach space, B′ denotes its dual space. The L2(Ω) inner

product is (·, ·) and the duality product between B and B
′ is 〈·, ·〉B,B′ .

We define

W =
{
w ∈ H1(Ω) : w|Γin

= 0
}

;

since W is closed in H1(Ω) and H1(Ω) is a Hilbert space, then so is W .

We assume that u ∈ L2(0, T ;Vdiv) ∩ L∞(0, T ;L2(Ω)d) is given, where

Vdiv := {v ∈ H1(Ω)d : ∇ · v = 0}.
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In view of (2.16) with nonnegative concentration c and assuming that there

is no back-flow on Γout, we make the following assumptions for u:

(U1) u · n ≤ 0 on S,

(U2) u · n ≥ 0 on Γout.
(2.20)

In variational form (2.5), (2.6), (2.15) is: Let w(x, t) be a sufficiently smooth

function defined in Ω× [0, T ] and vanishing on Γin. Multiplying w(x, t) with

(2.5), integrating over Ω, and using (2.6), (2.15), (2.16), we have∫
Ω
(∂tc+ u · ∇c−D∆c)wdx

=
∫

Ω
(∂tc)wdx+ 1

2

∫
Ω
(u · ∇c)wdx− 1

2

∫
Ω
(u · ∇w)cdx+ 1

2

∫
∂Ω

(u · n)cw

+
∫

Ω
D∇c · ∇wdx−

∫
∂Ω
D
∂c

∂n
w

=
∫

Ω
(∂tc)wdx+ 1

2

∫
Ω
[(u · ∇c)w − (u · ∇w)c]dx+

∫
Ω
D∇c · ∇wdx

+ 1
2

∫
Γout

(u · n)cw +
∫

S

(
1− αc

2
+ αi20

D

∫ t

0
c(s)ds

)
i0cw.

(2.21)

The resulting variational formulation reads:

Problem (P)

Given c0 ∈ H1(Ω), c0(x) ∈ [0, 1], cin ∈ H1/2(Γin), cin(x) ∈ [0, 1], and

u ∈ L2(0, T ;Vdiv) satisfying (U1), (U2), find c ∈ L2(0, T ;H1(Ω)) ∂tc ∈

L2(0, T ;W ′), such that, c(0) = c0, c|Γin
= cin and, for all w ∈ W ,

〈∂tc, w〉W ′ ,W +
∫

Ω
D∇c · ∇wdx+ 1

2

∫
Ω
[(u · ∇c)w − (u · ∇w)c]dx

+1
2

∫
Γout

(u · n)cw +
∫

S

(
1− αc

2
+ αi20

D

∫ t

0
c(s)ds

)
i0cw = 0.

(2.22)

The following result, central to this chapter, shows existence of the concen-

tration profile c when the velocity field u, is known:
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Theorem 2.3.1 Given c0 ∈ H1(Ω), c0(x) ∈ [0, 1], cin ∈ H1/2(Γin), cin(x) ∈

[0, 1], and u ∈ L2(0, T ;Vdiv) satisfying (U1) and (U2), there exists a unique

c ∈ L2(0, T ;H1(Ω)) with ∂tc ∈ L2(0, T ;W ′) such that

∫ T

0
〈∂tc, w〉W ′ ,Wdt+ 1

2

(∫ T

0

∫
Ω
[(u · ∇c)w − (u · ∇w)c]dxdt

)

+D
∫ T

0

∫
Ω
∇c · ∇wdxdt+

∫ T

0

∫
S

(
1− αc

2
+ αi20

D

∫ t

0
c(s)ds

)
i0cwdt

+
∫ T

0

∫
S

αi30
D
c
(∫ t

0
c(s)ds

)
wdt+ 1

2

∫ T

0

∫
Γout

(u · n)cwdt

= 0.

(2.23)

for all w ∈ L2(0, T ;W ), and c(0) = c0 ∈ H1(Ω), and c|Γin
= cin ∈ H1/2(Γin).

Remark 2.3.1 The existence and regularity of the coupled problem {u, c}

will not be studied. Mostly because it would require minute and perhaps hard

to obtain estimates due to the corners in the domain as in [31, 32, 33], the

traction-free boundary condition, etc, but also because, u is merely weakly

coupled with c only through the boundary condition on S. Furthermore, due

to the numerical values of the physical constants, u is small on Γin. Therefore,

we focus on the solution to the convection-diffusion equation (2.22), for which,

as we shall see, the functional setting is not so simple.

2.3.2 Convexification

The term c− αc2

2
in the integral on S is problematic because it is not mono-

tone so it makes the problem non-coercive. Indeed its primitive ψ(c) :=

c2

2
− αc3

6
is nonconvex beyond c > 1

α
. But the physics require that c ∈ [0, 1]
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Figure 2.2: Graphic showing the modification of the nonconvex function

c 7→ c2

2
− αc3

6
into a convex one.

and the maximum principle will insure it. So any modification of ψ outside

(0, 1) will not affect the solution; hence to work with a convex potential let

us replace ψ by (see Figure 2.2).

Ψ(c) =


c2

2
− αc3

6
if c < 1

α
,

c

2α
− 1

6α2 otherwise.

(2.24)

Let ρ be any time dependent function defined on [0, T ]. We define

(φ(ρ))(t) = i0Ψ̇(ρ(t)) + αi30
D
ρ(t)

∫ t

0
|ρ(s)|ds, t ∈ [0, T ], (2.25)

where Ψ̇(c) is the derivative of Ψ with respect to c:

Ψ̇(c) =


c− αc2

2
if c < 1

α
,

1
2α

otherwise.

(2.26)

Naturally Ψ̇ is monotone increasing. Note that Ψ is strictly convex and Ψ̇ is

strictly increasing in [0, 1
α
].
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The convexified variational formulation replacing (2.22) is

Problem (Pc)

Given c0 ∈ H1(Ω), c0(x) ∈ [0, 1], cin ∈ H1/2(Γin), cin(x) ∈ [0, 1], and

u ∈ L2(0, T ;Vdiv) satisfying (U1), (U2), find c ∈ L2(0, T ;H1(Ω)) satisfying

c|Γin
= cin ∈ H1/2(Γin), ∂tc ∈ L2(0, T ;W ′), φ(c) ∈ L2(0, T ;L2(S)), and

〈∂tc, w〉W ′ ,W +
∫

Ω
D∇c · ∇wdx+ 1

2

∫
Ω
[(u · ∇c)w − (u · ∇w)c]dx

+1
2

∫
Γout

(u · n)cw +
∫

S
φ(c)w = 0, ∀w ∈ W.

(2.27)

Note that when 0 ≤ c ≤ 1, then both c and φ(c) ∈ L∞(Ω× (0, T )).

The proof of existence goes by steps. We assume that u ∈ L2(0, T ;Vdiv)∩

L∞(0, T ;L2(Ω)d), so as to focus on the equation for c with u given. We will

first discretize in time, show existence for the time discretized problem and

then let the time step tend to zero.

2.4 Existence for the Time-discretized Prob-

lem

Let N ∈ N+ and let δt = T

N
be the time step.

Discrete velocity field u

Since functions in a Bochner space Lp(0, T ;X) for all Banach space (X, ‖·

‖) can be approximated by step functions on a uniform discretization of (0, T )

(see for instance [34, 35]), we define uδ : (0, T ]→ Vdiv by

uδ(t) =
N−1∑
m=0

um+1χ(mδt,(m+1)δt](t), (2.28)
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where uj = 1
δt

∫ (j+1)δt

jδt
u(s)ds for j = 0, . . . N − 1. For convenience, we

further define u0 = u(0) ∈ Vdiv. Obviously, uj ∈ Vdiv for all 0 ≤ j ≤ N . To

show that uδ converges to u strongly in L2(0, T ;H1(Ω)d), we need a lemma:

Lemma 2.4.1 Let f ∈ L2([a, b]) for a, b ∈ R, a < b, and N > 0 be an

integer. Defining δt = b−a
N

, we have

δt
N−1∑
j=0

∫ a+(j+1)δt

a+jδt

∫ a+(j+1)δt

a+jδt

|f(s)− f(t)|2

δt2
dsdt→ 0, as δt→ 0 (2.29)

Proof. Given ε1 > 0, there exists g ∈ C([a, b]) such that

∫ b

a
|f − g|2dt < ε1

We note that choice of g is independent to δt. With given g in hand, for

every ε2 > 0, there exists δ > 0 such that for every s, t ∈ [a, b], we have

|g(s)− g(t)| < ε2, whenever |s− t| < δ.

Choosing δt < δ, we have the estimate:
N−1∑
j=0

∫ a+(j+1)δt

a+jδt

∫ a+(j+1)δt

a+jδt
|f(s)− f(t)|2dsdt

≤ 3
N−1∑
j=0

∫ a+(j+1)δt

a+jδt

∫ a+(j+1)δt

a+jδt
(|f(s)− g(s)|2 + |g(s)− g(t)|2 + |f(t)− g(t)|2)dsdt

≤ 6
N∑

j=0
δt

(∫ a+(j+1)δt

a+jδt

∫ a+(j+1)δt

a+jδt
|f(s)− g(s)|2ds

)
+ 3

N−1∑
j=0

∫ a+(j+1)δt

a+jδt

∫ a+(j+1)δt

a+jδt
|g(s)− g(t)|2dsdt

≤ 6δtε1 + 3(b− a)δtε2

(2.30)

Therefore,

δt
N−1∑
j=0

∫ a+(j+1)δt

a+jδt

∫ a+(j+1)δt

a+jδt

|f(s)− f(t)|2

δt2
dsdt ≤ 6ε1 + 3(b− a)ε2. (2.31)
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By the arbitrariness of ε1 and ε2, the proof is completed. Q.E.D.

Proposition 2.4.1 Let uδ be defined by (2.28), we have the following:

‖u− uδ‖L2(0,T ;H1(Ω)) → 0 as δt→ 0. (2.32)

Proof. ∫ T

0
‖uδ(t)− u(t)‖2

1dt

=
N−1∑
j=0

∫ (j+1)δt

jδt
‖uj+1 − u(t)‖2

1dt

=
N−1∑
j=0

∫ (j+1)δt

jδt

∥∥∥∥∥ 1
δt

∫ (j+1)δt

jδt
(u(s)− u(t))ds

∥∥∥∥∥
2

1
dt

≤
N−1∑
j=0

∫ (j+1)δt

jδt

(
1
δt

∫ (j+1)δt

jδt
‖u(s)− u(t)‖2

1ds

)
dt

= δt
N−1∑
j=0

∫ (j+1)δt

jδt

∫ (j+1)δt

jδt

‖u(s)− u(t)‖2
1

δt2
dsdt

(2.33)

Defining the function f : [0, T ] → R by s 7→ ‖u(s)‖2
1 and applying Lemma

2.4.1, the proof is completed. Q.E.D.

We observe that uδ is strongly convergent to u in L2(0, T ;H1(Ω)d). Thus,

Corollary 2.4.1 There exists a constant C depending only on Ω, T,u so

that

‖uδ‖L2(0,T ;H1(Ω)d) ≤ C ∀δt ≥ 0. (2.34)

Problem (Pm
c )

For each integer m ∈ (0, N − 1), given cm ∈ H1(Ω), and um+1 = uδ((m+
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1)δt) satisfying (U1), (U2), find cm+1 ∈ H1(Ω) such that for all w ∈ W ,

∫
Ω

cm+1 − cm

δt
wdx+D

∫
Ω
∇cm+1 · ∇wdx

+ 1
2

∫
Ω
[(um+1 · ∇cm+1)w − (um+1 · ∇w)cm+1]dx

+
∫

S
φm(cm+1)w + 1

2

∫
Γout

(um+1 · n)cm+1w = 0

(2.35)

with cm+1|Γin
= cin ∈ H1/2(Γout), where φm(cm+1) is the following time ap-

proximation of φ(c),

φm(cm+1) = i0Ψ̇(cm+1) + αi30
D

 m∑
j=0

cjδt

 cm+1.

The boundary condition is given by c|Γin
= cin ∈ H1/2(Γin), 0 ≤ cin ≤ 1. The

initial value is c0 = c0 with c0 ∈ H1(Ω), c0|Γin
= cin ∈ H1/2(Γin), 0 ≤ c0 ≤ 1.

2.4.1 Existence of the Solution to the Time-discretized

Problem (Pm
c )

To prove the existence, the Minty-Browder Theorem (see Theorem 9.14.1 in

[36] and a series of works by Minty and Browder[37, 38, 39]) will be used.

Theorem 2.4.1 (Minty-Browder) Let B be a reflexive Banach space and

‖ · ‖ its norm. Let A : B → B
′ a continuous mapping such that

(i) 〈Au− Av, u− v〉 > 0 ∀u, v ∈ B, u 6= v

(ii) lim
‖u‖→∞

‖u‖−1〈Au, u〉 = +∞.

Then, for any b ∈ B′ , there is a unique u such that Au = b.
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Remark 2.4.1 The continuity of A in Theorem 2.4.1 can be generalized to

hemicontinuity, or demicontinuity.

The theorem will be applied to cm − c̃in where c̃in ∈ H1(Ω) is a lift of the

boundary conditions defined as the unique solution of

∫
Ω
D∇c̃in · ∇wdx = 0, ∀w ∈ W (2.36)

such that c̃in = cin on Γin. With cin ∈ H1/2(Γin), the existence and unique-

ness of c̃in can be guaranteed (see Section 7 in [40]).

Lemma 2.4.2 If 0 ≤ cin ≤ 1, then c̃in satisfies 0 ≤ c̃in ≤ 1 a.e.

Proof. The argument is classical; let us recall it for the reader’s conve-

nience. Note that (c̃in − 1)+ and (c̃in)− belong to W . Choosing w = (c̃in)−

in (2.36), gives ‖∇(c̃in)−‖2
0 = 0. Hence (c̃in)− = 0 i.e. c̃in ≥ 0.

Now choosing w = (c̃in−1)+ in (2.36) implies ‖∇(c̃in−1)+‖2
0 = 0. Hence

(c̃in − 1)+ = 0, i.e. c̃in ≤ 1 a.e. in Ω. Q.E.D.

Proposition 2.4.2 Let m ≥ 0. If 0 ≤ cj ≤ 1 a.e. in Ω, cj ∈ H1(Ω) for all

j ≤ m, then cm+1 ∈ H1(Ω) and 0 ≤ cm+1 ≤ 1 a.e. in Ω.

Proof. Letting w = (cm+1)− in (2.35), gives

− 1
δt
‖(cm+1)−‖2

0 −D‖∇(cm+1)−‖2
0 −

1
2

∫
Γout

(um+1 · n)(cm+1)−2

+
∫

S
i0Ψ̇(cm+1)(cm+1)− − αi30

D

m∑
j=0

cjδt(cm+1)−2 = 1
δt

∫
Ω
cm(cm+1)− ≥ 0

(2.37)

All terms on the left are obviously negative except Ψ̇(cm+1)(cm+1)−. Two

cases: if c ≥ 1
α

then c− = 0 and Ψ̇(c)c− = 0; if c < 1
α

then Ψ̇(c)c− =
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(c− α
2 c

2)c− = −(c−)2 − α
2 c

2c− ≤ 0. Hence Ψ̇(cm+1)(cm+1)− ≤ 0 always; thus

(2.37) leads to ‖(cm+1)−‖2
0 = 0.

Define cm+1 = cm+1 − 1. It satisfies

∫
Ω

cm+1 − cm

δt
w +

∫
Ω
D∇cm+1 · ∇wdx

+ 1
2

∫
Ω
[(um+1 · ∇cm+1)w − (um+1 · ∇w)cm+1]dx

− 1
2

∫
S∪Γout

(um+1 · n)w +
∫

S
i0Ψ̇(cm+1)w +

∫
S

αi30
D

m∑
j=0

cjδtcm+1w

+ 1
2

∫
Γout

(um+1 · n)(cm+1 + 1)w = 0

(2.38)

Testing with w = (cm+1)+, gives

1
δt
‖(cm+1)+‖2

0 −
1
δt

∫
Ω
cm(cm+1)+ +D‖∇(cm+1)+‖2

0 −
1
2

∫
S
(um+1 · n)(cm+1)+

∫
S
i0Ψ̇(cm+1)(cm+1)+ + αi30

D

∫
S

m∑
j=0

cjδtcm+1(cm+1)+

+ 1
2

∫
Γout

(um+1 · n)((cm+1)+ + 1)(cm+1)+ = 0.
(2.39)

By the induction hypothesis, cm is negative; observe that um+1 ·n ≤ 0 on S

by (U1), um+1 · n ≥ 0 on Γout by (U2) and Ψ̇(cm+1) ≥ 0 because cm+1 ≥ 0.

So we have that ‖(cm+1)+‖2
0 = 0. Q.E.D.

Let us define.

c̃m := cm − c̃in ∈ W, m = 0, 1, . . . , N.

Remark 2.4.2 As c̃m ∈ [−1, 1] and Ψ̇(cm) ∈ [0, 1], therefore |Ψ̇(cm)c̃m| ≤ 1.
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By construction, (2.35), which defines Problem Pm
c , can be rewritten as

Problem (P̃m
c )

For each integer m ∈ (0, N−1), given c̃m ∈ H1(Ω), c̃in ∈ H1(Ω), c̃in(x) ∈

[0, 1], and um+1 = uδ((m + 1)δt) satisfying (U1), (U2), find c̃m+1 ∈ W such

that for all w ∈ W ,

1
δt

∫
Ω

c̃m+1wdx + 1
2

∫
Ω

[(um+1 · ∇c̃m+1)w − (um+1 · ∇w)c̃m+1]dx

+ D

∫
Ω
∇c̃m+1 · ∇wdx +

∫
S

φm(cm+1)w + 1
2

∫
Γout

(um+1 · n)c̃m+1w

= −1
2

∫
Ω

[(um+1 · ∇c̃in)w − (um+1 · ∇w)c̃in]dx + 1
δt

∫
Ω

c̃mwdx− 1
2

∫
Γout

(um+1 · n)c̃inw

(2.40)

Now define the mapping A : W → W
′ by

〈Aρ,w〉 = 1
δt

∫
Ω
ρwdx+ 1

2

∫
Ω
[(um+1 · ∇ρ)w − (um+1 · ∇w)ρ]dx

+D
∫

Ω
∇ρ · ∇wdx+

∫
S
φm(ρ+ c̃in)w + 1

2

∫
Γout

(um+1 · n)ρw
(2.41)

Since W is closed in H1(Ω) and H1(Ω) is a Hilbert space, then so is W .

Lemma 2.4.3 Let m ≥ 0. We suppose that cj ∈ H1(Ω) for all j ≤ m, then

A : W → W
′ defined by (2.41) is locally Lipschitz continuous.

The proof is fairly straightforward but long, so it is postponed to Ap-

pendix A so as not to break the thread of the proof of existence of (P̃m
c ).

From the definition of A by (2.41), there is no essential difficulty to arrive,

via a sequence of inequalities, at

|〈Aρ1 − Aρ2, w〉|

≤

C1 + C2‖um+1‖1 + C3(‖ρ1‖1 + ‖ρ2‖1) + C4δt
m∑

j=0
‖cj‖1

 ‖ρ1 − ρ2‖1‖w‖1,

(2.42)
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Lemma 2.4.4 Let ρ1, ρ2, ρ ∈ W and m ≥ 0. We suppose that 0 ≤ cj ≤ 1

a.e. in Ω for all j ≤ m. A : W → W
′ defined by (2.41) satisfies

(i) 〈Aρ1 − Aρ2, ρ1 − ρ2〉 > 0 if ρ1 6= ρ2

(ii) lim
‖ρ‖1→+∞

‖ρ‖−1
1 〈Aρ, ρ〉 = +∞.

Proof. To show (i), we use (2.41) with ρ1, ρ2 ∈ W ,

〈Aρ1 −Aρ2, w〉 = 1
δt

∫
Ω

(ρ1 − ρ2)wdx

+ 1
2

∫
Ω

[(um+1 · ∇(ρ1 − ρ2))w − (um+1 · ∇w)(ρ1 − ρ2)]dx + D

∫
Ω
∇(ρ1 − ρ2) · ∇wdx

+
∫

S
(φm(ρ1 + c̃in)− φm(ρ2 + c̃in))w + 1

2

∫
Γout

(um+1 · n)(ρ1 − ρ2)w.

(2.43)

By the definition of φm, cj are given for j ≤ m irrespectively of ρ. Let

w = ρ1 − ρ2 in the above equation, one obtain

〈Aρ1 − Aρ2, ρ1 − ρ2〉 =∫
Ω

1
δt

(ρ1 − ρ2)2dx+D
∫

Ω
|∇(ρ1 − ρ2)|2dx+ 1

2

∫
Γout

(um+1 · n)(ρ1 − ρ2)2

∫
S

αi30
D

m∑
j=0

cjδt(ρ1 − ρ2)2 +
∫

S
(Ψ̇(ρ1 + c̃in)− Ψ̇(ρ2 + c̃in))(ρ1 − ρ2).

(2.44)

Recall that um+1 · n ≥ 0 on Γout. All the terms on the right are obviously

positive, except the last one. Without loss of generality, we assume that ρ2 >

ρ1; we know that Ψ̇ is strictly increasing. That is, Ψ̇(ρ2 + c̃in) > Ψ̇(ρ1 + c̃in).

Hence (Ψ̇(ρ2 + c̃in)− Ψ̇(ρ1 + c̃in))(ρ2 − ρ1) > 0. Hence

〈Aρ1 − Aρ2, ρ1 − ρ2〉 >
1
δt
‖ρ1 − ρ2‖2

0 +D‖∇(ρ1 − ρ2)‖2
0.

Finally (ii) can be proved by taking ρ1 = 0 in (i). Q.E.D.
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By Theorem 2.4.1 and Lemmas 2.4.3, 2.4.4, we have

Corollary 2.4.2 There exists a unique solution to Problem (P̃m
c ) and hence

also to (Pm
c ) defined by (2.35).

2.5 Stability of the Time-discretized Problem

Pm
c

Proposition 2.5.1 Let c̃m+1 be the solution of (2.40) for each integer m ∈

(0, N − 1) with given c̃j ∈ H1(Ω), c̃j(x) ∈ [−1, 1] for j = 0, . . . ,m, c̃in ∈

H1(Ω), c̃in(x) ∈ [0, 1], and um+1 ∈ H1(Ω)d satisfying (U1), (U2). We have

‖c̃m+1‖2
0+ ‖c̃m+1 − c̃m‖2

0 +Dδt‖∇c̃m+1‖2
0 + δt

∫
Γout

(um+1 · n)(c̃m+1)2

≤ ‖c̃m‖2
0 + C1δt+ C2δt‖um+1‖2

1 + C3δt‖∇c̃in‖2
0 (2.45)

Proof. By (2.40) with w = c̃m+1 we have

1
2δt
‖c̃m+1‖2

0 + 1
2δt
‖c̃m+1 − c̃m‖2

0 +D‖∇c̃m+1‖2
0 + 1

2

∫
Γout

(um+1 · n)(c̃m+1)2

= −
∫

S
i0Ψ̇(cm+1)c̃m+1 −

∫
S

αi30
D

m∑
j=0

cjδtcm+1c̃m+1 − 1
2

∫
Γout

(um+1 · n)c̃inc̃
m+1

− 1
2

∫
Ω
(um+1 · ∇c̃m+1)c̃indx+ 1

2

∫
Ω
(um+1 · ∇c̃in)c̃m+1dx+ 1

2δt
‖c̃m‖2

0

(2.46)
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We estimate each term of the right hand side

−
∫

S
i0Ψ̇(cm+1)c̃m+1 ≤ i0

∫
S
|Ψ̇(cm+1)c̃m+1| ≤ i0|S|.

−
∫

S

αi3
0

D

 m∑
j=0

cjδt

 cm+1c̃m+1 ≤ αi3
0

D

∫
S

 m∑
j=0

cjδt

 cm+1|c̃m+1| ≤ αi3
0

D

∫
S

mδt ≤ αi3
0T

D
|S|.

−
∫

Γout

(um+1 · n)c̃inc̃m+1 ≤ |Γout|
1
2

(∫
Γout

|um+1|2
) 1

2
≤ C‖um+1‖21.

−
∫

Ω
(um+1 · ∇c̃m+1)c̃indx ≤

∫
Ω
|um+1 · ∇c̃m+1|dx ≤ 1

2D
‖um+1‖20 + D

2
‖∇c̃m+1‖20.∫

Ω
(um+1 · ∇c̃in)c̃m+1dx ≤

∫
Ω
|um+1 · ∇c̃in|dx ≤ 1

2D
‖um+1‖20 + D

2
‖∇c̃in‖20.

Collecting all terms leads to

1
2δt
‖c̃m+1‖2

0 + 1
2δt
‖c̃m+1 − c̃m‖2

0 + D

2
‖∇c̃m+1‖2

0 + 1
2

∫
Γout

(um+1 · n)(c̃m+1)2

≤ 1
2δt
‖c̃m‖2 + C1 + C2‖um+1‖2

1 + C3‖∇c̃in‖2
0

(2.47)

Multiplying both sides by 2δt completes the proof. Q.E.D.

Summing (2.45) from 0 to m, leasds to the following:

Corollary 2.5.1 Let uj+1 ∈ H1(Ω)d be given satisfying (U1), (U2) for all

j = 0, . . . , N − 1. If c̃0 ∈ H1(Ω), c̃0(x) ∈ [−1, 1], c̃in ∈ H1(Ω), c̃in(x) ∈ [0, 1],

then (2.40) implies that

‖c̃m+1‖2
0 +

m∑
j=0
‖c̃j+1 − c̃j‖2

0 +Dδt
m∑

j=0
‖∇c̃j+1‖2

0 +
m∑

j=0
δt
∫

Γout

(uj+1 · n)(c̃j+1)2

≤ ‖c̃0‖2
0 + C1T + C2δt

m∑
j=0
‖uj+1‖2

1 + C3T‖∇c̃in‖2
0.

(2.48)

Proposition 2.5.2 Let uj+1 ∈ H1(Ω)d be given satisfying (U1), (U2) for all

j = 0, . . . , N − 1. If c̃0 ∈ H1(Ω), c̃0(x) ∈ [−1, 1], c̃in ∈ H1(Ω), c̃in(x) ∈ [0, 1],
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then (2.40) implies that

δt
m∑

j=1

∥∥∥∥∥ c̃j+1 − c̃j

δt

∥∥∥∥∥
2

W ′
is uniformly bounded. (2.49)

Proof. By definition

∥∥∥∥∥ c̃m+1 − c̃m

δt

∥∥∥∥∥
W ′

= sup
w0∈W

1
‖w0‖1

〈
c̃m+1 − c̃m

δt
, w0

〉
. (2.50)

By (2.40), with w = w0

‖w0‖1
∈ W ,

∥∥∥∥∥ c̃m+1 − c̃m

δt

∥∥∥∥∥
W ′

= sup
w∈W,‖w‖=1

{
−
∫

Ω
D∇c̃m+1 · ∇wdx

− 1
2

∫
Ω
[(um+1 · ∇c̃m+1)w − (um+1 · ∇w)c̃m+1]dx− i0

∫
S

Ψ̇(cm+1)w

−
∫

S

αi30
D

 m∑
j=0

cjδt

 cm+1w − 1
2

∫
Γout

(um+1 · n)cm+1w

− 1
2

∫
Ω
[(um+1 · ∇c̃in)w − (um+1 · ∇w)c̃in]dx

}
.

(2.51)

We estimate all terms on the right hand side of (2.51)

−D
∫

Ω
∇c̃m+1 · ∇wdx ≤ D‖∇c̃m+1‖0‖∇w‖0 ≤ D‖c̃m+1‖1‖w‖1 = D‖c̃m+1‖1,

(2.52)∫
Ω
(um+1 · ∇w)c̃m+1dx ≤

∫
Ω
|um+1 · ∇w| ≤ ‖um+1‖0, (2.53)

−
∫

Ω
(um+1 · ∇c̃m+1)wdx =

∫
Ω
(um+1 · ∇w)c̃m+1dx−

∫
∂Ω

(um+1 · n)c̃m+1w

≤ ‖um+1‖0 + ‖um+1‖∂Ω‖w‖∂Ω ≤ C‖um+1‖1,

(2.54)

−
∫

S
Ψ̇(cm+1)w ≤ C|S|

1
2‖w‖1 = C|S|

1
2 , (2.55)

−
∫

S

 m∑
j=0

cjδt

 cm+1w ≤
∫

S
T |w| ≤ CT |S|

1
2‖w‖1 = CT |S|

1
2 , (2.56)
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−
∫

Γout

(um+1·n)cm+1w ≤ ‖um+1‖Γout‖w‖Γout ≤ C‖um+1‖1‖w‖1 = C‖um+1‖1,

(2.57)∫
Ω
(um+1 · ∇w)c̃indx ≤

∫
Ω
|um+1 · ∇w| ≤ ‖um+1‖0‖w‖1 = ‖um+1‖0, (2.58)

−
∫

Ω
(um+1 · ∇c̃in)wdx ≤ C‖um+1‖1 (see (2.54)). (2.59)

Collecting (2.52)-(2.59) with (2.51), all multiplied by δt, gives

δt

∥∥∥∥∥ c̃m+1 − c̃m

δt

∥∥∥∥∥
2

W ′
≤ Cδt(1 + ‖c̃m+1‖2

1 + ‖um+1‖2
1). (2.60)

By summing (2.60) from 0 to N − 1 and the boundedness given by Corollary

2.4.1 and Corollary 2.5.1, the proof is completed. Q.E.D.

2.6 Passage to the Limit δt→ 0

Let us define

cδ : [0, T ]→ H1(Ω), cδ(t) = cj if t ∈ ((j − 1)δt, jδt], (2.61)

ch : [0, T ]→ H1(Ω), ch(t) = t− (j − 1)δt
δt

cj+jδt− t
δt

cj−1 if t ∈ ((j−1)δt, jδt],

(2.62)

cδ− : [0, T ]→ H1(Ω), cδ−(t) = cj−1 if t ∈ [(j − 1)δt, jδt), (2.63)

Cδ− : [0, T ]→ H1(Ω), Cδ−(t) =
j∑

k=1
ck−1δt if t ∈ [(j − 1)δt, jδt), (2.64)

for j = 1, . . . , N . Note that cδ, ch, and cδ− are in L2(0, T ;H1(Ω)) and

L∞(Ω× (0, T )). With these notations, problem (Pm
c ) reads

(∂tch, w) + 1
2

[(uδ · ∇cδ, w)− (uδ · ∇w, cδ)]

+D(∇cδ,∇w) +
∫

S
i0Ψ̇(cδ)w +

∫
S

αi30
D
cδCδ−w + 1

2

∫
Γout

(uδ · n)cδw = 0.
(2.65)
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Lemma 2.6.1 Cδ− is in L2(0, T ;H1(Ω)).

Proof.

∫
T

∫
Ω
|∂xi

Cδ−(t)|2dxdt ≤
∫ T

0

∫
Ω

(
δt

N∑
k=1
|∂xi

ck−1|
)2

dxdt

=
∫ T

0

∫
Ω
δt2

(
N∑

k=1
|∂xic

k−1|
)2

dxdt ≤
∫ T

0
δt2 · T

δt

N∑
k=1
|∂xi

ck−1|2dx

= T 2δt
N∑

k=1

∫
Ω
|∂xi

ck−1|2dx ≤ C

The last inequality is due to Corollary 2.5.1.

Lemma 2.6.2

‖cδ − ch‖L2((0,T )×Ω) ≤
√
δt

3

 N∑
j=1
‖cj+1 − cj‖2

0

 1
2

(2.66)

Proof.

cδ(t)− ch(t) = t− jδt
δt

(cj − cj−1) for (j − 1)δt < t ≤ jδt,∫ jδt

(j−1)δt
‖cδ(t)− ch(t)‖2

0dt = δt

3
‖cj − cj−1‖2

0.

The proof can be completed by taking summation from j = 1 to N .

Corollary 2.6.1

cδ − ch → 0 in L2((0, T )× Ω) as δt→ 0. (2.67)

By the boundedness given by Proposition 2.4.2, 2.5.2, and Corollary 2.5.1,

there are subsequences of cδ and ch (still denoted by cδ and ch), respectively
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such that

cδ → c in L2(0, T ;H1(Ω)) weakly, (2.68)

ch → c∗ in L2(0, T ;H1(Ω)) weakly, (2.69)

ch → c∗ in L∞(Ω× (0, T )) weak star, (2.70)

∂tch → g in L2(0, T ;W ′) weakly. (2.71)

By Corollary 2.6.1, we have c = c∗.

By a classical argument, see for instance [41], we have

g = ∂tc. (2.72)

Let

Y =
{
w ∈ L2(0, T ;H1(Ω)), ∂tw ∈ L2(0, T ;W ′)

}
.

By the Aubin-Lions Lemma, Y is compactly embedded in L2(0, T ;Lq(Ω))

with q < 6 when d = 3 and q < ∞ when d = 2. Therefore, we have in

particular

ch → c in L2((0, T )× Ω) strongly. (2.73)

Using Corollary 2.6.1 again, we get

cδ → c in L2((0, T )× Ω) strongly. (2.74)

To see the convergence of the boundary term, we need the following lemma:

Lemma 2.6.3 Let X be a normed linear space, D a dense subset of X ′ ,

xn, n = 1, 2, . . . a uniform bounded sequence in X. If g(xn) → g(x) for all
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g ∈ D, then xn → x weakly in X.

The above Lemma can be found in Theorem 10.1 of [42].

Lemma 2.6.4 Given cδ defined by (2.61), there exists a subsequence (still

denoted by cδ) satisfying (2.68) and the followings:

Ψ̇(cδ)→ Ψ̇(c) in L2(0, T ;H
1
2 (S)) weakly, (2.75)

cδ

∫ t

0
cδ(s)ds→ c

∫ t

0
c(s)ds in L2(0, T ;H

1
2 (S)) weakly. (2.76)

Proof. Let us prove that Ψ̇(cδ) tends to Ψ̇(c) weakly in L2(0, T ;H1(Ω)). First,

we know that Ψ̇(cδ) is bounded in Ω× [0, T ] and we have Ψ̇(cδ) = cδ −
αc2

δ

2

a.e. since cδ ≤ 1 a.e.. Moreover, since α < 1, we have∫ T

0

∫
Ω
|∂xi

Ψ̇(cδ)|2dxdt =
∫ T

0
|∂xi

cδ − αcδ∂xi
cδ|2dxdt

=
∫ T

0

∫
Ω
|(1− αcδ)∂xi

cδ|2dxdt =
∫ T

0

∫
Ω
|1− αcδ|2|∂xi

cδ|2dxdt

≤
∫ T

0

∫
Ω
|∂xi

cδ|2dxdt <∞.

Therefore, Ψ̇ converges weakly in L2(0, T ;H1(Ω)). To identify its limit, let

w ∈ C([0, T ]× Ω). Then (2.74) implies that

∫ T

0

∫
Ω

Ψ̇(cδ)wdxdt→
∫ T

0

∫
Ω

Ψ̇(c)wdxdt

and (2.74) and (2.68) imply that

∫ T

0

∫
Ω
∂xi

Ψ̇(cδ)wdxdt→
∫ T

0

∫
Ω
∂xi

Ψ̇(c)wdxdt.

This gives the desired convergence. By the continuity of the trace mapping

φ 7→ φ|∂Ω
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for the weak topology, we deduce that

Ψ̇(cδ)→ Ψ̇(c) weakly in L2(0, T ;H
1
2 (S)). (2.77)

For (2.76), we define r(t, cδ) := cδ

∫ t

0
cδ(s)ds in (0, T )×Ω. To begin with,

we observe that
∫ t

0
cδ(s)ds→

∫ t

0
c(s)ds strongly in L2((0, T )×Ω). This can

be checked by the estimate:

∫ T

0

∫
Ω

∣∣∣∣∫ t

0
(cδ(s)− c(s))ds

∣∣∣∣2 dxdt ≤ ∫ T

0

∫
Ω
t
∫ t

0
|cδ(s)− c(s)|2dsdxdt

≤
∫ T

0
t
∫ T

0

∫
Ω
|cδ(s)− c(s)|2dxdsdt = 1

2
T 2
∫ T

0

∫
Ω
|cδ(s)− c(s)|2dxds

→ 0 as δt→ 0.

Let w ∈ C([0, T ]×Ω). Since cδ strongly converges to c in L2((0, T )×Ω), we

have ∫ T

0

∫
Ω
r(t, cδ)wdxdt→

∫ T

0

∫
Ω
r(t, c)wdxdt. (2.78)

We differentiate r(t, cδ):

∂xi
r(t, cδ) = ∂xi

cδ

∫ t

0
cδ(s)ds+ cδ

∫ t

0
∂xi
cδ(s)ds. (2.79)

We have the boundedness for the first term on the right hand side:

∫ T

0

∫
Ω
|∂xi

cδ|2
∣∣∣∣∫ t

0
cδ(s)ds

∣∣∣∣2 dxdt ≤ ∫ T

0

∫
Ω
t|∂xi

cδ|2dxdt

≤ T
∫ T

0

∫
Ω
|∂xi

cδ|2dxdt <∞
(2.80)

Using the fact that both ∂xi
cδ → ∂xi

c weakly in L2((0, T )×Ω) and
∫ t

0
cδ(s)ds→∫ t

0
c(s)ds strongly in L2((0, T )× Ω), we have

∫ T

0

∫
Ω
∂xi
cδ

(∫ t

0
cδ(s)ds

)
wdxdt→

∫ T

0

∫
Ω
∂xi
c
(∫ t

0
c(s)ds

)
wdxdt. (2.81)
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The second term is bounded as well:∫ T

0

∫
Ω

∣∣∣∣∫ t

0
∂xi
cδ(s)ds

∣∣∣∣2 dxdt ≤ ∫ T

0

∫
Ω
t
∫ t

0
|∂xi

cδ(s)|2dsdxdt

=
∫ T

0
t
∫ t

0

∫
Ω
|∂xi

cδ(s)|2dxdsdt ≤
∫ T

0
t
∫ T

0

∫
Ω
|∂xi

cδ(s)|2dxdsdt

= 1
2
T 2
∫ T

0

∫
Ω
|∂xi

cδ(s)|2dxdt <∞

(2.82)

And we observe that∫ T

0

∫
Ω

(∫ t

0
∂xi
cδ(s)ds

)
wdxdt

=
∫ T

0

∫ t

0

(∫
Ω
∂xi
cδ(s)wdx

)
dsdt→

∫ T

0

(∫ t

0

∫
Ω
∂xi
c(s)wdxds

)
dt

because w(t) for fixed t is continuous in Ω. Now, we have cδ → c in L2((0, T )×

Ω) strongly and
∫ t

0
∂xi
cδ(s)ds→

∫ t

0
∂xi
c(s)ds weakly in L2((0, T )×Ω). This

implies that

∫ T

0

∫
Ω
cδ

(∫ t

0
∂xi
cδ(s)ds

)
w(t)dxdt→

∫ T

0

∫
Ω
c
(∫ t

0
∂xi
c(s)ds

)
wdxdt

By (2.82) and Lemma A.3.3 below, we have cδ

∫ t

0
∂xi
cδ(s)ds→ c

∫ t

0
∂xi
c(s)ds

weakly in L2((0, T )× Ω).

Collecting all the weak convergence results above, we conclude that r(t, cδ)→

r(t, c) in L2(0, T ;H1(Ω)) weakly. By the continuity of the trace for the weak

topology, we have r(t, cδ)→ r(t, c) in L2(0, T ;H 1
2 (S)) weakly. Q.E.D.

Lemma 2.6.5 Cδ− defined in (2.64) satisfies
∥∥∥∥Cδ− −

∫ t

0
cδ(s)ds

∥∥∥∥
L2(0,T ;H1(Ω))

≤ Cδt (2.83)

Proof. For all t ∈ [(j − 1)δt, jδt),

Cδ−(t)−
∫ t

0
cδ(s)ds =

j∑
k=1

ck−1δt−
j−1∑
k=1

ckδt− cj(t− (j − 1)δt)

= c0δt− cj(t− (j − 1)δt).



doi:10.6342/NTU202200609

2.6. Passage to the Limit δt→ 0 57

But for t ∈ [(j − 1)δt, jδt), we have 0 ≤ t− (j − 1)δt ≤ δt. Therefore
∣∣∣∣Cδ−(t)−

∫ t

0
cδ(s)ds

∣∣∣∣ ≤ δt|c0 + cj|.

On the other hand,

∂xi
Cδ−(t)− ∂xi

∫ t

0
cδ(s)ds = ∂xi

Cδ−(t)−
∫ t

0
∂xi
cδ(s)ds

= ∂xi
c0δt− ∂xi

cj(t− (j − 1)δt).

Hence, we have
∣∣∣∣∂xi

(
Cδ−(t)−

∫ t

0
cδ(s)ds

)∣∣∣∣ ≤ δt|∂xi
(c0 + cj)|.

Therefore,∥∥∥∥Cδ− −
∫ t

0
cδ(s)ds

∥∥∥∥2

L2(0,T ;H1(Ω))
=
∫ T

0

∥∥∥∥Cδt−(t)−
∫ t

0
cδ(s)ds

∥∥∥∥2

1

≤
N∑

j=1

∫ jδt

(j−1)δt
(δt)2‖c0 + cj‖2

1

≤ 2
N∑

j=1

∫ jδt

(j−1)δt
(δt)2

(
‖c0‖2

1 + ‖cj‖2
1

)

≤ 2‖c0‖2
1(δt)2 + 2(δt)2

N∑
j=1

δt‖cj‖2
1

≤ C(δt)2

Q.E.D.

Proof of Theorem 2.3.1.

Now, we are in a position to pass to the limit in (2.65). Take any w =

v(x)λ(t), where v ∈ W ∩W 1,∞(Ω) and λ ∈ W 1,∞
0 (0, T ). Then

−
∫ T

0
(ch, v)λ′(t)dt+ 1

2

∫ T

0
[(uδ · ∇cδ, v)− (uδ · ∇v, cδ)]λdt

+
∫ T

0
D(∇cδ,∇v)λdt+

∫ T

0

∫
S
i0Ψ̇(cδ)vλ(t)dt+

∫ T

0

∫
S

αi30
D
cδCδ−vλ(t)dt

+ 1
2

∫ T

0

∫
Γout

(uδ · n)cδvλ(t)dt = 0.
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Since uδ → u strongly in L2(Ω × (0, T )) and ∇cδ → ∇c weakly in L2(Ω ×

(0, T )), the regularity of v and λ implies that

−
∫ T

0
(ch, v)λ′(t)dt→ −

∫ T

0
(c, v)λ′(t)dt =

∫ T

0
〈∂tc, v〉W ′ ,Wλdt, (2.84)

1
2

∫ T

0
[(uδ · ∇cδ, v)− (uδ · ∇v, cδ)]λdt→

1
2

∫ T

0
[(u · ∇c, v)− (u · ∇v, c)]λdt,

(2.85)∫ T

0
D(∇cδ,∇c)λdt→

∫ T

0
D(∇c,∇v)λdt. (2.86)

Similarly, the weak convergence of Ψ̇(cδ) to Ψ̇(c) in L2(0, T ;H 1
2 (S)) implies

that ∫ T

0

∫
S
i0Ψ̇(cδ)vλ(t)dt→

∫ T

0

∫
S

Ψ̇(c)vλ(t)dt, (2.87)

and the weak convergence of cδCδ− to c
∫ t

0 c in L2(0, T ;H 1
2 (S)) implies that

∫ T

0

∫
S
cδCδ−vλ(t)dt→

∫ T

0

∫
S
c
(∫ t

0
c(s)ds

)
vλ(t)dt. (2.88)

Finally, we consider the last term 1
2

∫ T

0

∫
Γout

(uδ · n)cδvλ(t). Given the con-

struction of uδ in Section 2.4, we have: uδ → u weakly in L2(0, T ;H1(Ω)d)

and uδ → u strongly in L2(0, T ;L4(Ω)d) (thanks to the strong convergence of

uδ by (2.32), H1(Ω)d can be replaced by any space X so that H1(Ω) ⊂⊂ X.

Here we take X = L4(Ω)d, which is compatible with d = 3; the exponent has

to be less than 6). We use Green’s formula:

∫ T

0

∫
Γout

(uδ · n)cδvλ =
∫ T

0

∫
Ω
∇ · (uδcδ)vλ+

∫ T

0

∫
Ω
(cδuδ · ∇v)λ (2.89)

for all λ ∈ L∞(0, T ) and for all smooth v that vanish on ∂Ω \ Γout. It is

suffices to prove the convergence of each term to the desired limit.
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1) For all v ∈ L4(Ω) and for all λ ∈ L∞(0, T ):∫ T

0

∫
Ω
∇ · (uδcδ)vλ =

∫ T

0

∫
Ω
uδ · ∇cδvλ

=
∫ T

0

∫
Ω
(uδ − u) · ∇cδvλ+

∫ T

0

∫
Ω
u · ∇cδvλ

≤ ‖uδ − u‖L2(0,T ;L4(Ω))‖∇cδ‖L2(Ω×(0,T ))‖λ‖L∞(0,T )‖v‖L4(Ω) +
∫ T

0

∫
Ω
u · ∇cδvλ.

It is noted that uvλ ∈ L2(0, T ;L2(Ω)d) and∇cδ → ∇c weakly in L2(0, T ;L2(Ω)d),

we have
∫ T

0

∫
Ω
∇ · (uδcδ)vλ→

∫ T

0

∫
Ω
(u · ∇c)vλ =

∫ T

0

∫
Ω
∇ · (uc)vλ. (2.90)

2) For all v ∈ H1(Ω), λ ∈ L∞(Ω)∫ T

0

∫
Ω
(cδuδ · ∇v)λ =

∫ T

0

∫
Ω
cδ(uδ − u) · ∇vλ+

∫ T

0

∫
Ω
u(cδ − c) · ∇cλ+

∫ T

0

∫
Ω
c(u · ∇v)λ

≤ ‖uδ − u‖L2(0,T ;L2(Ω)d)‖cδ‖L∞(Ω×(0,T ))‖∇v‖0‖λ‖L∞(Ω)

+ ‖u‖L2(0,T ;L4(Ω)d)‖cδ − c‖L2(0,T ;L4(Ω)d)‖∇v‖0‖λ‖L∞(Ω) +
∫ T

0

∫
Ω
c(u · ∇v)λ.

Therefore∫ T

0
〈∂tc, v〉W ′ ,Wλdt+ 1

2

∫ T

0
((u · ∇c, v)− (u · ∇v, c))λdt

+
∫ T

0
D(∇c,∇v)λdt+

∫ T

0

∫
S
i0Ψ̇(c)vλdt+

∫ T

0

∫
S

αi30
D
c
(∫ t

0
c(s)ds

)
vλdt

+ 1
2

∫ T

0

∫
Γout

(u · n)cvλdt = 0
(2.91)

for all λ ∈ W 1,∞
0 (0, T ) and for all v ∈ W 1,∞(Ω). This gives the equations a.e.

in (0, T ).

To recover the initial condition, we take λ ∈ W 1,∞(0, T ), λ(T ) = 0,

λ(0) 6= 0, and v ∈ W 1,∞(Ω). We consider (2.65) such that all terms are

identical except the first:
∫ T

0
(∂tch, v)λdt =

∫ T

0
∂t(ch, v)λdt = −

∫ T

0
(ch, v)λ′(t)− (c0, v)λ(0). (2.92)
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When passing to the limit, we obtain

∫ T

0
〈∂tc, v〉W ′ ,Wλdt = −

∫ T

0
(c, v)λ′(t)− (c0, v)λ(0)

=
∫ T

0

d

dt
(c, v)λ+ (c(0), v)λ(0)− (c0.v)λ(0)

=
∫ T

0
〈∂tc, v〉W ′ ,Wλdt+ (c(0), v)λ(0)− (c0, v)λ(0).

(2.93)

Therefore

(c(0), v) = (c0, v), ∀v ∈ W ∩W 1,∞(Ω).

This implies that c(0) = c0.

The above shows that Problem (Pc) has a unique solution, which satisfies

0 ≤ c ≤ 1; it is also the solution of (P ). Q.E.D.

2.6.1 On the boundary condition (2.19) which contains

∂tc

To prove existence a similar strategy is taken: ∂tc is replaced by (cm+1 −

cm)/δt, existence is shown and then convergence when δt→ 0.

The proof of existence of the time-discretized problem is exactly the same

but with φ redefined as

φm(cm+1) = i0Ψ̇(cm+1) + αi0(
i20
D
− 1
δt

)

 m∑
j=0

cjδt

 cm+1.

Convergence with δt → 0 requires more regularity, which can be obtained

from the PDE differentiated in time.



doi:10.6342/NTU202200609

2.7. Numerical Simulations 61

2.7 Numerical Simulations

The rectangular domain of size 0.025 mm× 0.005 mm is the initial physical

domain. The electroprocess is simulated up to time T = 5000.

2.7.1 Scalings

The simulation will be done with dimensionless variables. Let L,C and U

be representative length, concentration and velocity of the physical system.

Then it is easy to see that the dimensionless equation for c is the same as

the original equation but with D̃/(LU) instead of D, where D̃ is the physical

molecular diffusion. Similarly because (2.7) becomes

−D ∂c

∂n
= i0
U
c, u = −αC i0

U
cn,

the original form holds but with i0/U redefined as i0 and αC redefined as α.

It is well known that the dimensionalized Navier-Stokes equation has the

inverse Reynolds number ν̃/(UL) redefined as ν, where ν̃ being the kinematic

viscosity.

The parameters of nickel ion given in [1] are i0 = ĩ0/(zF ) with ĩ0 =

0.001 A ·mm−2, the number of electrons involves in the reaction z = 2 and

the Faraday constant F = 96487 s · A ·mol−1, C = 3× 10−7 mol ·mm−3.

For electrodeless plating we may take U = 1 mm · s−1, L = 0.005 mm,

D̃ = 1× 10−4 mm2 · s−1, α = 6590 mm3 ·mol−1, and ν̃ = 1.2 mm2 · s−1.

So in the end the numerical tests are done on a rescaled domain Ω =
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(0, 5)× (0, 1) with

α = 0.002085, i0 = 0.017273, D = 0.02, ν = 240,

2.7.2 Numerical algorithm

The finite element method is used for spacial discretization. Let Th be a

triangulation consisting of K traingles {Tk}K
k=1 with the standard conformity

hypothesis. We define the finite element space which will be used in this

section:

Wh := {w ∈ C0(Ω) : w|Tk
∈ P 1 ∀Tk ∈ Th, w|Γin

= 0},

Ch := {w ∈ C0(Ω) : w|Tk
∈ P 1, ∀Tk ∈ Th},

Vh := {v ∈ C0(Ω)2 : v|Tk
∈ (P 2)2, ∀Tk ∈ Th},

Jh := {v ∈ C0(Ω)2 : v|Tk
∈ (P 2)2 ∀Tk ∈ Th, v|∂Ω\Γout = 0},

Qh := Ch.

(2.94)

Solving concentration profile cm+1
h with known velocity field um+1

h

We use the P 1 finite element method for Problem (Pm
c ) to define {cm

h }m>0.

Given um+1
h ∈ Vh, one must solve the finite dimensional problem (Pm

h ) de-

fined to be (Pm
c ) with Wh instead of W in (2.35): find cm+1

h ∈ Ch satisfying,
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for all wh ∈ Wh,
∫

Ω

cm+1
h − cm

h

δt
whdx+

∫
Ω
[(um+1

h · ∇cm+1
h )wh

+D
∫

Ω
∇cm+1

h · ∇whdx+
∫

S

1 + αi20
D

 m∑
j=1

cj
hδt

 i0cm+1
h wh = 0,

cm+1
h |Γin

= cinh

(2.95)

In the above, cinh is the piecewise linear interpolate of cin.

Since um+1
h and {cj

h}j≤m are given, (2.95) leads to a linear system by

assigning wh to be the P1 hat functions in a standard way. We apply UMF-

PACK[43] for solving the linear system at each time step.

Solving velocity field um+1
h with known concentration profile cm+1

h

For the Navier-Stokes equation we use the P 2/P 1 triangular Taylor-Hood

element [44] and we denote by um
h , pm

h the finite element solution and by Vh,

Qh the corresponding finite element space. The variational formulation is:

Find um+1
h ∈ Vh and pm+1

h ∈ Qh satisfying
∫

Ω

um+1
h − um

h

δt
· vhdx+

∫
Ω
[(um

h · ∇)um+1
h ] · vhdx+ ν

∫
Ω
∇um+1

h : ∇vhdx

−
∫

Ω
(pm+1

h ∇ · vh + qh∇ · um+1
h + εphqh)dx = 0,

um+1
h = uinh on Γin, um+1

h = 0 on Γwall, um+1
h = −αi0cm+1

h n on S

(2.96)

for all vh ∈ Jh and qh ∈ Qh; ε is a small regularization parameter which is

taken to be 10−12 in our computer implementation. In the above, uinh is the

P 2 interpolation of uin.

With known um
h and cm+1

h , (2.96) leads to a linear system for the degrees
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of freedom of um+1
h and pm+1

h which is solved with the numerical library

UMFPACK[43], at each m.

Remark 2.7.1 If mass-lumping is used and the triangulation has no obtuse

angle, the positivity of (2.95) can be guaranteed by the same argument in the

proof of Proposition 2.4.2. Therefore, the assumption (U1) holds for um+1
h .

Again, (U2) does not hold for the system (2.96) in general. In practical

numerical implementation, the natural outflow boundary condition

−ν ∂u
m+1
h

∂n
+ pm+1

h n = 0

does no harm to (U2) when the velocity field is closed to a Poiseuille flow

(for instance, the numerical tests conducted in Sections 7.3 and 7.4).

Iteration algorithm

The coupled system (2.95)-(2.96) is solved iteratively. We replace cm+1
h by c∗

in (2.95) and solve (2.96). We denote the solution by u∗. Then we replace

um+1
h by u∗ in order to get the new c∗, until ‖u∗

new − u∗
old‖0 + ‖c∗

new − c∗
old‖0

is sufficiently small.

To validate the method we need to compare with the original free bound-

ary problem. It is solved with a similar iterative fixed point like process but

the mesh needs to be rebuilt when the free boundary is updated. It is done

by a scaling on y-coordinate at each time step tj: y 7→ (1− αi0cj
hδt)y.
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Data: um
h , pm

h , cm
h , and y

1 Set initial data u0, c0;

2 for m do

3 c∗ = cm
h ;

4 while ‖u∗
new − u∗

old‖0 + ‖c∗
new − c∗

old‖0 ≥ tolerance do

5 Solve (2.95) to get c∗
new;

6 Solve (2.96) to get u∗
new and p∗

new;

7 end

8 cm+1
h = c∗

new;

9 um+1
h = u∗

new;

10 For the free boundary case change the mesh by

y ← (1− αi0cm+1
h δt)y;

11 end

2.7.3 Numerical results at low Reynolds number

The initial and inflow values are

c0 = cos(λy), u0 = y(1− y); cin = c0|Γin
exp(−Dλ2t), uin = u0|Γin

.

A uniform triangular mesh 150 × 30 for the initial domain for each test

so that the time-discrete error can be emphasized.

We compare the results obtained using a time dependent domain (Figure

2.3a) with the results using a fixed domain and the linear condition (2.7)

(see Figure 2.3b) and finally with the nonlinear condition (2.12) (see Figure
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2.3c).

On Figure 2.4 the free boundary and the reconstructed free boundaries

are displayed using η given by (2.8).

The convergence with respect to time step size is shown on Table 2.1,

computed at an intermediate time T = 100. Since no exact solution is

available, the numerical solution with time step δt = 0.01 is taken as the

reference solution. The numerical results in Table 2.1 show a first order

convergence in L2 error conformed with the estimates given in Appendix B

(see Figure 2.5).The weak first order convergence of H1 error is also proved

in Appendix B. However the numerical results show strong first order H1

convergence for this test problem (see Figure 2.6).

2.7.4 Numerical results at larger Reynolds number

In the previous example, where the values of the parameters correspond to the

physical design of [45], we could have neglected the inertial terms and work

with the Stokes approximation. In order to validate the algorithm at higher

Reynolds number, which may be the case for other plating problems, we

keep all parameters given in the end of Section 7.1 but change the Reynolds

number to the inverse of ν = 0.01. The same experiments are conducted as

in Section 7.3. The numerical results obtained for the low Reynolds number

and the larger Reynolds number are very similar; no visible changes can be

seen (see the right side of Figure 2.4 ) so we do not display the plots of Figure
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(a) Intensity map of c computed with a free boundary on a moving mesh.

(b) Intensity map of c computed by the linear transpiration approximation.

(c) Intensity map of c computed by nonlinear transpiration approximation.

Figure 2.3: The solution profiles of numerical experiments with ν = 240.
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Figure 2.4: S(T ) calculated by 3 experiments at T = 5000. The red curve is

the height of S(T ) computed by moving mesh. The blue curve is computed

by the displacement η(T ) with linear condition. The green dash curve is

computed by the displacement η(T ) with nonlinear condition. If the curve

of moving mesh is regarded as the reference solution, it is easy to see that

the nonlinear approximation does better than the linear approximation. Left

figure corresponds to with ν = 240 and Right figure to ν = 0.01.
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1E-6

1E-5
 L2 error

R.O.C = 1.29431

L2  e
rro

r
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Figure 2.5: L2 relative error versus

δt at T = 100
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 H1 error
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H
1  e

rro
r

dt

Figure 2.6: H1 relative error ver-

sus δt at T = 100.
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δt L2 error

0.16 1.01723× 10−5

0.08 4.74704× 10−6

0.04 2.03444× 10−6

0.02 6.78147× 10−7

δt H1 error

0.16 1.03365× 10−5

0.08 4.82368× 10−6

0.04 2.06729× 10−6

0.02 6.89107× 10−7

δt L2 error

0.16 1.01722× 10−5

0.08 4.74701× 10−6

0.04 2.03443× 10−6

0.02 6.78142× 10−7

δt H1 error

0.16 1.03365× 10−5

0.08 4.82367× 10−6

0.04 2.06729× 10−6

0.02 6.89103× 10−7

Table 2.1: Convergence when δt → 0: L2 and H1 relative error at T = 100

for the scheme with the nonlinear transpiration approximation and ν = 240

(left columns) and ν = 0.01 (right columns). A uniform triangular mesh

150× 30 is used.; cδt=0.01 is used as reference solution.
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2.3 for the high Reynolds number case.

Furthermore, several numerical experiments show no visible change by

choosing the Reynolds number between the inverse of 240 and the inverse of

0.01.

2.7.5 Influence of the term ∂tc in (2.19)

For the geometry considered in these numerical test no visible difference

could be observed between (2.12) and (2.19) .

2.8 Conclusion

We have proposed a simplified model which approximates the Electroless

process of [45] by replacing the time dependent domain occupied by the

reacting chemical by a fixed domain using a transpiration approximation. We

have validated the approximation numerically with a finite element method

in space and a fully implicit in time approximation. We have constructed an

existence proof by using variational convex analysis or fixed point arguments.

The proof is technical and long because the nonlinearity is on the boundary

condition and because it required a convexification of the energy potential

and the maximum principle. However it was worth the effort because it

gives a stable ground for the numerical studies and it may be useful for other

similar problems. We plan to extend this study to two phase flows to take



doi:10.6342/NTU202200609

2.A. Proof of Lemma 2.4.3. 71

into account the formation of bubbles.

2.A Proof of Lemma 2.4.3.

Let ρ1, ρ2 ∈ W . Formula (2.41) gives

〈Aρ1 − Aρ2, w〉 = 1
δt

∫
Ω
(ρ1 − ρ2)wdx

+ 1
2

∫
Ω
[(um+1 · ∇(ρ1 − ρ2))w − (um+1 · ∇w)(ρ1 − ρ2)]dx+D

∫
Ω
∇(ρ1 − ρ2) · ∇wdx

+
∫

S
(φm(ρ1 + c̃in)− φm(ρ2 + c̃in))w + 1

2

∫
Γout

(um+1 · n)(ρ1 − ρ2)w
(2.97)

We estimate each term on the right hand side of (2.97):

1
δt

∫
Ω
(ρ1 − ρ2)wdx ≤

1
δt
‖ρ1 − ρ2‖0‖w‖0 ≤

1
δt
‖ρ1 − ρ2‖1‖w‖1 (2.98)

∫
Ω
(um+1 · ∇(ρ1 − ρ2))wdx ≤ ‖um+1‖L4(Ω)‖∇(ρ1 − ρ2)‖0‖w‖L4(Ω)

≤ C‖um+1‖1‖ρ1 − ρ2‖1‖w‖1

(2.99)

∫
Ω
(um+1 · ∇w)(ρ1 − ρ2)dx ≤ ‖um+1‖L4(Ω)‖∇w‖0‖ρ1 − ρ2‖L4(Ω)

≤ C‖um+1‖1‖ρ1 − ρ2‖1‖w‖1

(2.100)

∫
Ω
∇(ρ1 − ρ2) · ∇wdx ≤ ‖∇(ρ1 − ρ2)‖0‖∇w‖0 ≤ ‖ρ1 − ρ2‖1‖w‖1 (2.101)

Let x1, x2 ∈ R. If x1+c̃in, and x2+c̃in >
1

2α
, then |ψ,c(x1+c̃in)−ψ,c(x2+c̃in)| =

0. If x1 + c̃in ≤
1

2α
and x2 + c̃in >

1
2α

, then

|ψ,c(x1 + c̃in)− ψ,c(x2 + c̃in)| ≤ |ψ,cc(x1 + c̃in)||x1 − x2|

≤ |1− α(x1 + c̃in)||x1 − x2| ≤ (1 + α + α|x1|)|x1 − x2|.
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If x1 + c̃in, and x2 + c̃in ≤ 1
2α

, then

|ψ,c(x1 + c̃in)− ψ,c(x2 + c̃in)| = |x1 + c̃in −
α

2
(x1 + c̃in)2 − (x2 + c̃in) + α

2
(x2 + c̃in)2|

= |x1 − x2 −
α

2
(x1 + c̃in)2 + α

2
(x2 + c̃in)2|

= |x1 − x2 −
α

2
(x1 + x2)(x1 − x2)− αc̃in(x1 − x2)|

≤ (1 + α + α

2
|x1|+

α

2
|x2|)|x1 − x2|.

Now we can conclude that

∫
S
(ψ,c(ρ1 + c̃in)− ψ,c(ρ2 + c̃in))w ≤

∫
S
(1 + α + α

2
|ρ1|+

α

2
|ρ2|)|ρ1 − ρ2||w|

≤ (1 + α)‖ρ1 − ρ2‖S‖w‖S + α

2
(‖ρ1‖L3(S) + ‖ρ2‖L3(S))‖ρ1 − ρ2‖L3(S)‖w‖L3(S)

≤ C1‖ρ1 − ρ2‖1‖w‖1 + C2(‖ρ1‖1 + ‖ρ2‖1)‖ρ1 − ρ2‖1‖w‖1.

(2.102)

Now,

∫
S

m∑
j=0

cjδt((ρ1 + c̃in)− (ρ2 + c̃in))w

=
∫

S

m∑
j=0

cjδt(ρ1 − ρ2)w ≤ δt
∫

S

m∑
j=0
|cj||ρ1 − ρ2||w|

≤ δt
m∑

j=0
‖cj‖L3(S)‖ρ1 − ρ2‖L3(S)‖w‖L3(S) ≤ Cδt

m∑
j=0
‖cj‖1‖ρ1 − ρ2‖1‖w‖1

(2.103)

And finally,

∫
Γout

(um+1 · n)(ρ1 − ρ2)w ≤
∫

Γout

|um+1 · n||ρ1 − ρ2||w|

≤ ‖um+1‖L3(Γout)‖ρ1 − ρ2‖L3(Γout)‖w‖L3(Γout) ≤ C‖um+1‖1‖ρ1 − ρ2‖1‖w‖1

(2.104)
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Combining (2.98)-(2.104), we have

|〈Aρ1 − Aρ2, w〉|

≤

C1 + C2‖um+1‖1 + C3(‖ρ1‖1 + ‖ρ2‖1) + C4δt
m∑

j=0
‖cj‖1

 ‖ρ1 − ρ2‖1‖w‖1

(2.105)

This completes the proof. Q.E.D.

2.B Error estimates

In this section, we further assume that

(A1)
∫ T

0
‖∂ttc‖2

−1dt ≤M1 for some constant M1 and

(A2) sup
t∈[0,T ]

‖∂tc‖H1(Ω)′ < M2 for some constant M2.
(2.106)

For convenience, we define

B(u, v) :=
(

1 + αi20
D
u

)
i0v,

b(u, v, w) :=
∫

S

(
1 + αi20

D
u

)
i0vw,

G(u, v, w) :=
∫

S

αi30
D
uvw.

(2.107)

The difference equation for the exact solution of c defined by (2.5) can

be expressed as:

c(tm+1)− c(tm)
δt

+ um+1 · ∇c(tm+1)−D∆c(tm+1) = Rm, (2.108)

where

Rm = 1
δt

∫ tm+1

tm
(t− tm)∂ttc(t)dt (2.109)
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Defining εj = c(tj)− cj, the error equation can be expressed by

εm+1 − εm

δt
+ um+1 · ∇εm+1 −D∆εm+1 = Rm (2.110)

subject to the boundary condition

εm+1 = 0 on Γin,
∂εm+1

∂n
= 0 on Γwall ∪ Γout

D
∂εm+1

∂n
+B(

∫ tm+1

0
c(s)ds, c(tm+1))−B(

m∑
j=0

cjδt, c
m+1) = 0 on S.

(2.111)

The symmetrized weak formulation to (2.108) is

∫
Ω

c(tm+1)− c(tm)
δt

w +D
∫

Ω
∇c(tm+1) · ∇w

+ 1
2

∫
Ω
[(um+1 · ∇c(tm+1))w − (um+1 · ∇w)c(tm+1)]dx+

∫
Γout

(um+1 · n)cm+1w

+
∫

S

1− αcm+1

2
+ αi20

D

m∑
j=0

cj

 i0cm+1w =
∫

Ω
Rmwdx

(2.112)

Subtracting (2.112) by (2.35), we have

∫
Ω

εm+1 − εm

δt
wdx+D

∫
Ω
∇εm+1 · ∇wdx

+ 1
2

∫
Ω
[(um+1 · ∇εm+1)w − (um+1 · ∇w)εm+1]dx+

∫
Γout

(um+1 · n)εm+1w

−
∫

S

αi0
2

(c(tm+1) + cm+1)εm+1w + b(
∫ tm+1

0
c(s)ds, c(tm+1), w)

− b(
m∑

j=0
cjδt, cm+1, w) =

∫
Ω
Rmwdx

(2.113)

Before investigating the error estimate, some auxiliary results are needed.

We collect them in the Remark below:
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Remark 2.B.1 We have

B(
∫ tm+1

0
c(s)ds, c(tm+1))−B(

m∑
j=0

cjδt, cm+1)

=

1 + αi20
D

m∑
j=0

cjδt

 i0εm+1 + αi30
D

∫ tm+1

0
c(s)ds−

m∑
j=0

cjδt

 c(tm+1)

(2.114)

Defining

ξm =
∫ tm+1

0
c(s)ds−

m∑
j=0

cjδt (2.115)

we have

ξm =
m∑

j=0
εjδt+ φm, (2.116)

where φm =
m∑

j=0
∂tc(θj)δt2 for some θj ∈ (tj, tj+1). By (2.114), (2.115), (2.116)

and letting w = εm+1 in (2.113), we have

1
δt
‖εm+1‖2 − 1

δt

∫
Ω
εm+1εmdx+D‖∇εm+1‖2 + b(

m∑
j=0

cjδt, εm+1, εm+1)

+G(c(tm+1),
m∑

j=0
εjδt, εm+1) +G(c(tm+1), φm, εm+1) +

∫
Γout

(um+1 · n)(εm+1)2

−
∫

S

αi0
2

(c(tm+1) + cm+1)(εm+1)2 =
∫

Ω
Rmwdx

(2.117)

Multiplying the both sides by δt, we get

‖εm+1‖2 +Dδt‖∇εm+1‖2 + δtb(
m∑

j=0
cjδt, εm+1, εm+1)

+ δtG(c(tm+1),
m∑

j=0
εjδt, εm+1) + δtG(c(tm+1), φm, εm+1) + δt

∫
Γout

(um+1 · n)(εm+1)2

− δt
∫

S

αi0
2

(c(tm+1) + cm+1)(εm+1)2 = δt
∫

Ω
Rmwdx+

∫
Ω
εm+1εmdx

(2.118)

Q.E.D.
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Theorem 2.B.1 There is a generic constant C such that

‖εm+1‖ ≤ Cδt ∀ 0 ≤ m ≤ T

δt
− 1 (2.119)

and

‖εm+1‖1 ≤ Cδt
1
2 ∀ 0 ≤ m ≤ T

δt
− 1. (2.120)

Proof. By a recurrence argument, we are going to show that if the statements

(2.119) and (2.120) hold simultaneously for all εj and for all j ≤ m, then they

hold as well for εm+1. Notice that it is true when m = 0.

DefiningG1 = |G(c(tm+1),∑m
j=0 ε

jδt, εm+1)| andG2 = |G(c(tm+1), φm, εm+1)|,

we have the estimates:

G1 ≤
αi30
D

m∑
j=0

∫
S
|c(tm+1)εjεm+1δt|

≤ αi30
D

m∑
j=0

∫
S
|δtεjεm+1| ≤ αi30

D

 m∑
j=0
‖εj‖Sδt

 ‖εm+1‖S

≤ C

 m∑
j=0
‖εj‖1δt

 ‖εm+1‖1 ≤ C(m+ 1)δt
3
2‖εm+1‖1 ≤ C‖εm+1‖δt

1
2 .

(2.121)

Using (A2), we have

G2 ≤
αi30
D

∫
S
|c(tm+1)φmεm+1| ≤ αi30

D

∫
S
|φmεm+1|

≤ αi30
D
‖φm‖S‖εm+1‖S ≤ C‖φm‖1‖εm+1‖1 ≤ Cδt2‖εm+1‖1.

(2.122)
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By (A1), we have

δt

∣∣∣∣∫
Ω
Rmεm+1dx

∣∣∣∣
≤ D

4
δt‖εm+1‖2

1 + Cδt−1‖Rm‖2
H1(Ω)′

= D

4
‖εm+1‖2

1 + Cδt−1
∥∥∥∥∥
∫ tm+1

tm
(t− tm)∂ttcdt

∥∥∥∥∥
2

H1(Ω)′

≤ D

4
‖εm+1‖2

1 + Cδt−1
∫ tm+1

tm
‖∂ttc‖2

H1(Ω)′dt
∫ tm+1

tm
(t− tm)2dt

≤ D

4
‖εm+1‖2

1 + Cδt2
∫ tm+1

tm
‖∂ttc‖2

H1(Ω)′dt

≤ D

4
‖εm+1‖2

1 + Cδt2

(2.123)

b(
m∑

j=0
cjδt, εm+1, εm+1)−

∫
S

αi0
2

(c(tm+1) + cm+1)(εm+1)2

≥
∫

S

1 + αi20
D

m∑
j=0

cjδt

 i0(εm+1)2 −
∫

S
αi0(εm+1)2

≥
∫

S

(1− α) + αi20
D

m∑
j=0

cjδt

 i0(εm+1)2 ≥ 0.

(2.124)

∫
Ω
εm+1εmdx ≤ 1

2
‖εm‖2 + 1

2
‖εm+1‖2. (2.125)

Combining (2.118), (2.121)-(2.125), and since the boundary term of Γout in

(2.118) is nonnegative, we have

(1
2
− 1

4
Dδt)‖εm+1‖2 + 3

4
Dδt‖εm+1‖2

1 ≤ C‖εm+1‖1δt
3
2 + Cδt2. (2.126)

This implies (2.120). Now using (2.126) and (2.120), we get (2.119). Q.E.D.

Theorem 2.B.2 (Improved estimate) For 0 ≤ m ≤ T

δt
− 1, we have

δt
m∑

j=0
‖εj+1‖2

1 ≤ Cδt2 (2.127)
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Proof. Putting w = 2εm+1 in (2.118) and using the estimates in Theorem

2.B.1, we have

‖εm+1‖2 + 2Dδt‖∇εm+1‖2 ≤ 2δtC1‖εm+1‖1

 m∑
j=0
‖εj‖1δt


+2C2δt

3‖εm+1‖1 + D

4
δt‖εm+1‖2

1 + C3δt
2
∫ tm+1

tm
‖∂ttc‖2

H1(Ω)′dt+ ‖εm‖2

(2.128)

Note that

‖εm+1‖2 + 2Dδt‖εm+1‖2
1 = (1− 2Dδt)‖εm+1‖2 + 2Dδt‖εm+1‖2

1.

Taking the sum of (2.128) from 0 to m and using (A1), we have

(1− 9
4
Dδt)‖εm+1‖2 + 7

4

m∑
j=0

Dδt‖εj+1‖2
1 ≤

m∑
j=0

2δtC1‖εj+1‖1

 j∑
k=0
‖εk‖1δt


+

m∑
j=0

2C2δt
3‖εj+1‖1 + C3δt

2.

(2.129)

The first term on the right hand side of (2.129) can be estimated by

m∑
j=0

2δtC‖εm+1‖1

(
k∑

k=0
‖εk‖1δt

)

≤
m∑

j=0

D

4
δt‖εj+1‖2

1 + Cδt2
m∑

j=0

j∑
k=0
‖εk‖2

1

≤ D

4
δt‖εm+1‖2

1 + Cδt
m∑

j=0
‖εj‖2

1.

(2.130)

Similarly, the second term can be estimated by

m∑
j=0

2C2δt
3‖εm+1‖1 ≤

m∑
j=0

2Cδt3
( 1

2ν
‖εm+1‖2

1 + ν

2
|Ω|
)

≤ νCT |Ω|δt2 + C

ν
δt2

m∑
j=0
‖εm+1‖2

1

≤ Cδt2 + D

4
δt

m∑
j=0
‖εj‖2

1 + D

4
δt‖εm+1‖2

1

(2.131)
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for every ν > 0.

Finally, employing (2.129)-(2.131), we have

(
1− 11

4
Dδt

)
‖εm+1‖2 + 5

4
Dδt

m∑
j=0
‖εj+1‖2

1 ≤ C1δt
2 + C2δt

m∑
j=0
‖εj‖2

1. (2.132)

By induction on m, we can easily show that

5
4
Dδt

m∑
j=0
‖εj+1‖2

1 ≤ Cδt2. (2.133)

Q.E.D.
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Chapter 3

Simulation on electroless

plating problem with gas

generation

3.1 Introduction

When emphasizing on micro-scale electroless plating problem, gas genera-

tion will be a serious issue. The existence of relatively large bubbles in a mi-

crochannel has been an important issue in the study of microfluid[46, 47, 48].

In electroless plating process, the bubbles may prevent electrolyte from going

into the region needed to be plated. In view of the trouble caused by bubble

generation, we are motivated to understand the mechanism of bubble mo-

tion and bubble generation in electroless process. From a theoretical point

81
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of view, the physical phenomena for describing electroless process are very

complicated. In practical simulation, not all the physical phenomena are of

interest. Therefore, for the simulation, we chose a system which includes:

gas-liquid two phase flow, chemical species transport, surface reaction, and

moving boundary caused by deposition.

Numerous papers about modeling and simulation of gas-liquid two phase

flow have been published [49, 50, 51, 52, 53]. In terms of how we resolve the

motion of the gaseous phase flows, the working models in most of these papers

can be sorted into two classes: (i) phase field or level set models where the

gas-liquid interface is tracted[17, 20, 23, 54]; (ii) averaged models [55, 56, 25].

Several reasons support our choice for an averaged model: (i) The bubble

generation is random, we only know that there is a higher chance of gas

generation occurring in regions of higher concentration of dissolving gas; (ii)

Even if the bubble generation can be well predicted, vast amounts of bubbles

are generated in a short moment for electroless process; furthermore, the

computational cost for capturing each bubble is prohibitive; (iii) Interfacial

terms (e.g. terms caused by phase change) can be easily estimated if the

averaged model is applied (see Appendix A); (iv) it simplifies substantially

the modeling.

Experimentally, the bubbles are seen to get stuck somewhere in the mi-

crochannel. This indicates that the velocities of two phases are quite differ-

ent. To allow a disparity of motion between the liquid phase and gaseous
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phase, a two velocities model will be used. To our knowledge, such approach

is new for incompressible two phase flows in thin microchannels.

A system of linear convection-diffusion equations with additional phase

change terms is applied for depicting the concentration profiles of chemi-

cal species. We use the mixed potential theory (see for instance [13]) to

model the reaction boundary condition describing the electroless process,

which is a Robin boundary condition subject to electron balance constraints.

We further consider the boundary motion induced by the chemical species

deposition on reaction surface. Combining all with the average model for

gas-liquid two phase flow, we propose a set of coupled equations for a system

which includes gas-liquid fluid motion, chemical species transport and mov-

ing boundary to simulate an electroless plating process. Note that, in absence

of bubbles, the proposed model reduces to the usual single phase model (i.e.

neglecting the existence of gas) which is compatible with previous studies on

electroless process such as [57].

For numerical simulations, the Galerkin characteristic method[58] is ap-

plied for time discretization. The Finite element method of degree one is

used for space discretization. The well-posedness of the numerical scheme

for the coupling system is proved. We reproduce a one-dimensional numeri-

cal simulation on electroless nickel plating problem to compare with [1]. The

numerical code for the full system is implemented as well and we compare the

numerical results with a real-world experiment done by one of the authors
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for this purpose. Unfortunately the numerical experiment is very difficult

to make and it gave only qualitative results. So the numerical results are

compared qualitatively only with the experiment.

So the numerical simulations seems more reliable than experiment and

they give detail information on the free boundary and on the speeds and

concentrations of the chemical, highly important for the design of commercial

systems.

3.2 Modeling equations for liquid-gas flow

Let Ω(t) be the time-dependent physical domain which is a thin channel

between a top and a bottom plate. The boundary of Ω consists of the inlet

Γin, the outlet Γout, the solid wall Γwall and the reacting surface S(t) (see

Figure 3.1).

3.2.1 Volume averaging

We review the derivation proposed by Ni and Beckermann [24].

Let Ω0(x, t) be an small open set to be observed in Ω(t) and Ωk ⊂ Ω0 the

set occupied by phase k and bounded by the interface ∂Ωk, which is assumed

to be oriented. Assume that ∪kΩk = Ω0 and Ωk ∩ Ωj = 0, k 6= j. Let nk be

a outer normal to ∂Ωk and wk the normal velocity of ∂Ωk.

Let Ψ be a function of a slow variable x and a fast variable y due to
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Figure 3.1: The computational domain Ω(t) for the test problem in Section

3.5.2 is initially a rectangle of size 10mm× 1mm. We assume a fixed inflow

velocity and given chemical concentrations from the left on Γin, a solid wall

on the top side with a no-slip condition for the velocity, and a traction-

free outflow on Γout. On the bottom side, S(t) is a free boundary and its

motion is given by (3.23). However as the reaction site is active mostly for

x ∈ (1.5mm, 5.5mm), we may block the chemical reactions for x < 1mm to

avoid a corner singularity at the entrance and also for x > 6mm because

experiments show that almost no plating occurs there. In the regions x ∈

(1.0mm, 1.5mm) ∪ (5.5mm, 6.0mm) the numerical simulations may not be

accurate due to the singularity caused by the discontinuity in the boundary

conditions (see figure 3.17 for details).
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the phase change. The volume average of Ψ in phase k is 〈Ψ〉k (x, t) =

1
V0

∫
Ω0(x,t) χk(y)Ψ(x, y)dy, where χk is the indicator function of the domain of

phase k and V0 =
∫

Ω0
dx, assumed constant. The intrinsic volume average is

defined as

〈Ψ〉(k)
k = V0

Vk

〈Ψ〉k where Vk =
∫

Ω0
χkdy (3.1)

The volume fraction rk = Vk

V0
has the properties

∑
k

rk = 1 and 〈Ψ〉k =

rk 〈Ψ〉(k)
k . Some useful formulas in terms of the averaging are listed below[26,

27]:

〈
∂Ψ
∂t

〉
k

= ∂ 〈Ψ〉k
∂t
− 1
V0

∫
∂Ωk

Ψkwk·nkdA, 〈∇Ψ〉k = ∇〈Ψ〉k+ 1
V0

∫
∂Ωk

ΨknkdA.

(3.2)

In principle one should introduce also fast and slow time variables but it is

assumed that spatially averaged functions are no longer varying fast in time.

3.2.2 Mass conservation

We consider a gas and a liquid phase. Let ρg be the density of gas, ρl the

density of liquid. We have the mass conservation for both phases (l for liquid

and g for gas):

∂t(rjρj) +∇ · (rjρjuj) = Ṡj, l = l, g (3.3)

where Ṡg is the mass gained owing to the precipitation of dissolved gas, Ṡl

is the mass loss when liquid is replaced by the gas, and ug(x, t), ul(x, t) are

the volume averaged fluid flow of gas and liquid, respectively. Since the mass
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gained in gas balances the mass loss in liquid, we have

Ṡg = −Ṡl. (3.4)

For chemical species, we assume that the ions are transported only by the

liquid electrolyte. Let cs be the volume averaged concentration of metallic

ions destined to be deposited on the reacting surface, cg the volume averaged

concentration of dissolved gas and ck, k = k1, . . . , kM the volume averaged

concentration of other chemical species participating to the chemical reaction.

The equations for the concentrations are

∂t(rlρlcj) +∇ · (rlρlcjul)−∇ · (rlρlDj∇cj)−Gj = 0, j = s, g, k. (3.5)

where Gj, j = s, k are interfacial terms due to the phase change. By (3.3) ,

we can rewrite the above equation by

rlρl(∂tcj + ul · ∇cj)−∇ · (rlρlDj∇cj)−Gj + Ṡlcj = 0, j = s, g, k. (3.6)

where Dj are the diffusion coefficients. In particular, since the gas is

consumed by the phase change, we have

Gg = − 1
V0

∫
∂Ωl

ρlcg(ul −wl) · nldA− ρlMgKrl(cg − csat)+ (3.7)

by assuming the gas precipitation is linearly dependent on the dissolving gas

concentration[59, 60].
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In the above, wl is the interface velocity of ∂Ωl and where K is a constant

independent of rg, rl and csat is the saturated concentration of the gas, Mg

is the reciprocal of the molar mass of the gas,

Ṡg = Krl(cg − csat)+. (3.8)

Moreover, Gj, j = s, k, g can be estimated by (see Appendix A)

Gj ≈ Ṡlcj, j = s, k, Gg ≈ Ṡlcg − ρlMgKrl(cg − csat)+. (3.9)

For incompressible fluids, a volume conservation is derived from (3.3):

∑
α=g,l

1
ρα

[
∂t(rαρα) +∇ · (rαραuα)− Ṡα

]
= 0. (3.10)

By (3.4), the above reduces to

∇ · (rgug + rlul) = Ṡg

(
1
ρg

− 1
ρl

)
. (3.11)

Recall that the physical domain is occupied either by gas or liquid, therefore

rg(t) + rl(t) = 1 at all times.

3.2.3 Equations of motion

Let µg, µl be the viscosity of the gas and the liquid, respectively. The volume

averaged Navier-Stokes equations are used for momentum balance (see [24]):

∂t(rjρjuj)+∇·(rjρjuj⊗uj)+rj∇pj−µj∇·(rjD(uj))+MD,j = Fj, j = g, l

(3.12)
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where pj, MD,j, Fj, j = l, g are pressure, drag force terms[25, 24]

MD,g = CDrg|ug − ul|(ug − ul)

MD,l = CDrg|ug − ul|(ul − ug),
(3.13)

where CD is drag coefficient, and interfacial terms F
j

= − 1
V0

∫
∂Ωj

ρ
j
u

j
(u

j
−

w
j
) ·n

j
dA, j = l, g, D(v) = ∇v+ (∇v)T is the viscous stress tensor for any

vector-valued function v; Fj, j = l, g can be estimated by (see Appendix A)

Fg ≈ Ṡgug, Fl ≈ Ṡlul, (3.14)

In view of (3.11), following [61, 62], we assume a constitutive relation p =

pl = pg in order to close the system of equations. The velocity fields of both

phases are assumed to be 0 outside their own single phase region, respectively.

Consequently, and by (3.3), (3.12), the momentum equations simplify to

rjρj(∂tuj + (uj · ∇)uj) + rj∇p− µj∇ · (rjD(uj)) + γjCDrg|ug − ul|(ug − ul) = 0,

j = g, l, with γg = 1 and γl = −1
(3.15)

3.2.4 Boundary conditions

We consider a fluid flow from an input boundary Γin to an output boundary

Γout with a solid wall at the bottom, Γwall:

uj = uin on Γin, uj = 0 on Γwall,

− µjD(uj) · n+ pn = 0 on Γout, j = l, g.

(3.16)
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The boundary conditions for rj, j = g, l are

rg = ε, rl = 1− ε on Γin,

∂rg

∂n
= ∂rl

∂n
= 0 on ∂Ω \ Γin,

(3.17)

where ε is a fixed positive small constant.

The boundary conditions for the concentrations of chemical species are,

with cj,in given:

cj = cj,in on Γin,
∂cj

∂n
= 0 on Γwall ∪ Γout, j = s, g, k (3.18)

With F the Faraday constant, and z the atomic number of the material.

Referring to Figure 3.2, if S(t) is the reaction surface , we denote Sl(t) ⊂

S(t) the region occupied by the liquid and Sg(t) := S(t) \ Sl(t) the region

occupied by gas. Choosing an arbitrary subset W ⊂ S(t), the surface re-

action takes place only on W ∩ Sl(t). Assuming that the concentration

profile is uniform near the small region W , we have: −
∫

W
ρlDj

∂cj

∂n
dA =∫

W ∩Sl(t)
ρl
|Ij|
zjF

dA. Therefore by dividing both sides by
∫

W 1dA:

−Dj
∂cj

∂n
= |Ij|
zjF

, j = s, k, −Dg
∂cg

∂n
= −β|Is|

zsF
(3.19)

for a positive number β indicating the chemical equivalence for gaseous molec-

ular generation.

In the above, Ij is the current density satisfying the Butler-Volmer equa-

tion

Ij = ij(Emix)cκj

j := Lj

[
exp

(
αjzjF (Emix − Ej)

Rθ

)
−exp

(
−βjzjF (Emix − Ej)

Rθ

) ]
c

κj

j , j = s, k,

(3.20)
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Figure 3.2: The reaction surface.

where R is the gas constant, Ej are the chemical potentials of species j,

θ is the temperature, αj, βj,Lj, κj are constants, Emix is given by writing

electrical neutrality :

Is +
∑

k

Ik = 0. (3.21)

On S(t), the fluid velocity induced by the deposition is

ug = ul = rlVs|Is|
zsF

n. (3.22)

where Vs is a constant. Hence S(t) moves according to

ẋ(t) = (ug · n)n|x(t), x(t) ∈ S(t) (3.23)

3.2.5 Single phase flow

If there is no gaseous phase in the system and no dissolved gas in liquid,

i.e. rg = cg = 0, then u = ul and Ṡg = 0 and mass conservation reduces to

∇ · u = 0. The convection-diffusion of chemicals become,

∂tcj + u · ∇cj −Dj∆cj = 0, j = s, k, (3.24)

and the fluid system reduce to the Navier-Stokes equations:

ρl(∂tu+ (u · ∇)u)− µl∆u+∇p = 0, ∇ · u = 0. (3.25)
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The above system of equations exactly describes the chemical species trans-

ported by the fluid flow satisfying the incompressible Navier-Stokes equation.

3.3 Numerical method

3.3.1 Notations

If f ∈ R, we denote by f+ := max(f, 0) and by f− := −min(f, 0). We

denote by ‖ · ‖Lp := ‖ · ‖Lp(Ω(t)) the Lp norm on Ω(t), ‖ · ‖W k,p := ‖ · ‖W k,p(Ω(t))

the W k,p norm on Ω(t), and ‖ · ‖Hk = ‖ · ‖W k,2 , 0 ≤ k ≤ +∞, 1 ≤ p ≤ +∞.

Remembering that ck(x, t) is a vector, let us denote C = (cs, c
T
k , cg)T .

We assume the densities ρj constant and denote αj = rjρj and the kine-

matic viscosities νj = µj/ρj. The system is

∂tαj + uj · ∇αj + αj∇ · uj − αl
γjK

ρl

(cg − csat)+ = 0, j = l, g (3.26)

αj

(
∂tuj + uj · ∇uj + ρ−1

j ∇p
)
−νj∇·(αjD(uj))+γjCDrg|ug−ul|(ug−ul) = 0, j = g, l

(3.27)

αl(∂tC +ul ·∇C)−∇· (αlD ·∇C) + (0, 0,MgKαl(cg− csat)+)T = 0, (3.28)

where D is the appropriate diffusion matrix compatible with (3.15). In addi-

tion as Ṡg = −Ṡl = Kαl(cg − csat)+/ρl, we may use the redundant equation

(3.11):

∇ · (αg

ρg

ug + αl

ρl

ul) = Ṡg

(
1
ρg

− 1
ρl

)
. (3.29)
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3.3.2 Semi-discrete schemes

Let T be the final time and δt a time step. We denote by φm, m =

0, 1, . . . , N := T/δt the numerical solution of any physical quantity φ at

time mδt. Convection terms are approximated in time by the method of

characteristics. Let Xm
j (x) ≈ x− um

j (x)δt. Then

(∂tαj + uj · ∇αj)|x,t=tm+1 ≈ 1
δt

(
αm+1

j (x)− αm(Xm
j (x))

)
.

Consider the following scheme

1
δt

(αm+1
l − αm

l ◦Xm
l ) + αm+1

l

(
∇ · um

l + 1
ρl

K(cm
g − csat)+

)
= 0,(3.30)

rm+1
l = αm+1

l /ρl, rm+1
g = 1− rm+1

l , αm+1
g = ρgr

m+1
g (3.31)

1
δt
αm+1

j (um+1
j − um

j ◦Xm
j ) + ρ−1

j αm+1
j ∇pm+1 − νj∇ · (αm+1

j D(um+1
j ))

+γjρ
−1
g CDα

m+1
g |um+1

g − um+1
l |(um+1

g − um+1
l ) = 0, j = g, l,

(3.32)

∇·(ρ−1
g αm+1

g um+1
g +ρ−1

l αm+1
l um+1

l ) = ρl
−1Kαm+1

l (cm+1
g −csat)+

(
ρ−1

g − ρ−1
l

)
,

(3.33)
1
δt
αm+1

l (Cm+1−Cm◦Xm
j )−∇·(αm+1

l D·∇Cm+1)+(0, 0,MgKα
m
l (cm

g −csat)+)T = 0,

(3.34)

For electroless plating the domain is Ωm = {(x, y) : 0 < y < ym(x), x ∈

(0, L)}, so it is updated by

ym+1(x) = ym(x) + δtug
m+1
2 (x), x ∈ (0, L)
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Remark 3.3.1 Because of the asymmetrical treatment of αg and αl the

scheme (3.30) does not imply that

1
δt

(αm+1
g − αm ◦Xm

g ) + αm+1
g ∇ · um

g = ρ−1
l αm+1

l K(cm
g − csat)+. (3.35)

However, by (3.30),(3.31), (3.33), we have

1
δt

(αm+1
g − αm

g ◦Xm
g ) + αm+1

g ∇ · um
g + ρg

ρl

(αm+1
l − αm

l )∇ · (um
l − um

g )

+ 1
δt

(αm
g ◦Xm

g − αm
g ◦Xm

l ) + (um
g − um

l ) · ∇αm
g

= ρ−1
l αm+1

l K(cm
g − csat)+ + ρ−1

l (ρg

ρl

− 1)(αm+1
l − αm

l )K(cm
g − csat)+.

(3.36)

By a Taylor expansion at x, we obtain

αm
g (Xm

l (x))− αm
g (Xm

g (x)) = δt(um
g − um

l ) · ∇αm
g (x) +O(δt2), (3.37)

and

αm+1
l −αm

l = −δt(ul · ∇αm
l +αm+1

l ∇ ·um
l )− δtKαm+1

l (cm
g − csat)+ +O(δt2).

(3.38)

Plugging (3.37) and (3.38) into (3.36), we have

1
δt

(αm+1
g −αm

g ◦Xm
g )+αm+1

g ∇·um
g = ρ−1

l αm+1
l K(cm

g −csat)+ +O(δt). (3.39)

So the scheme is consistent with the equation for αg.

3.3.3 Positivity

Positivity of αm+1
l holds only if δt is small enough. When positivity is re-

quired absolutely, an O(δt) modification of (3.30) forces the positivity of
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αl:

1
δt

(
αm+1

l (x)− αm
l (Xm

l (x))
)

+ αm+1
l

(
∇ · um

l + 1
ρl

K(cm
g − csat)+

)+

= αm
l

(
∇ · um

l + 1
ρl

K(cm
g − csat)+

)−

.

(3.40)

Indeed assume that αm
l is strictly positive, or more precisely that αm

l ≥ ε > 0

for all x; then we have

αm+1
l

[
1 + δt(∇ · um

l + 1
ρl

K(cm
g − csat)+)+

]
= αm

l (Xm
l ) + δtαm

l

[
∇ · um

l + 1
ρl

K(cm
g − csat)+

]−

≥ ε(1 + δt(∇ · um
l + 1

ρl
K(cm

g − csat)+)−).

(3.41)

1. Let us show first that (3.30) generates a bounded sequence {αm
l }m=1..N .

For clarity we assume homogeneous data at the boundaries. With

simplified notations

1
δt

(αm+1 − αm ◦Xm) + αm+1 (∇ · um + φm) = 0

A multiplication by αm+1 and an integration on Ωm+1 leads to

‖αm+1‖2
L2 =

∫
Ωm+1

[
αm+1

(
αm ◦Xm − δt

(
αm+1∇ · um + φm

))]
dx

By the Cauchy Schwarz inequality and the positivity of φm,

‖αm+1‖2
L2 ≤ ‖αm+1‖L2

(∫
Ωm+1

[
αm ◦Xm − δtαm+1∇ · um

]2
dx
) 1

2
.

The inverse of the determinant of the Jacobian of the transformation

x 7→ Xm(x) is 1 + δt∇ · u+O(δt2); therefore, for any smooth function

f , in particular with f = αm ◦ Xm − δtαm+1∇ · um = αm ◦ Xm(1 −



doi:10.6342/NTU202200609

96 3. Simulation on electroless plating problem with gas generation

δt∇ · um ◦Xm +O(δt2)),
∫

Ωm+1
fm ◦Xm =

∫
Ωm

fm(1 + δt∇ · um +O(δt2))dx

⇒ ‖αm+1‖L2 ≤ ‖αm‖L2(1 + C(‖∇2um‖L∞)δt2).

where C() is a generic constant bounded by the Hessian of um. Thus

{αm
l }m=1..N is bounded.

2. Stability of the scheme for C is shown by the same argument.

3. Stability of the scheme for ug and ul is a consequence of a similar argu-

ment combined with the Ladhyzenskaya-Babuska-Brezzi saddle point

theory (LBB) [63].

We denote by (·, ·) the L2 inner product. For tensor-valued functions

such that f , g ∈ L2(Ω(t))mn, m,n ∈ N+, (f , g) = ∑m
i=1

∑n
j=1 (fij, gij).

With self explanatory notations, the equations for the velocities (3.32),(3.33)

are written in variational form as:

Find ug,ul and p satisfying the Dirichlet conditions and such that,

∀v̂g, v̂l ∈ V m+1
0 := (H1

0 (Ωm+1))2 and ∀q̂ ∈ Pm+1 := L2(Ωm+1)/R,

(βgug, v̂g) + (βlul, v̂l) + 1
2

(αgD(ug), D(v̂g)) + 1
2

(αlD(ul), D(v̂l))

−
(
p,∇ · (αg

ρg

v̂g + αl

ρl

v̂l)
)

+
(
q̂,∇ · (αg

ρg

ug + αl

ρl

ul)
)

= (Lg, v̂g) + (Ll, v̂l) + (q̂, f) .

(3.42)

where, for j = g, l, αj := αm+1
j , βj := 1

δt
αj + CD

ρg

αg|um
g − um

l |,

Lj := 1
δt
αju

m
l ◦Xm

j +CD

ρg

αg|um
g −um

l |um
!j , f := ρl

−1Kαl(cm+1
g −csat)+

(
ρ−1

g − ρ−1
l

)
.

(3.43)
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and where !g = l, !l = g.

Note that the above is a semi-linearization of (3.32),(3.33). However

in algorithm 1 below, the nonlinear problem is solved by an iterative

fixed point which uses (3.42)-(3.43).

The LBB theorem says that the solution of (3.42) exists and is unique

because, for every p ∈ Pm+1 there is a (non-unique) w ∈ V m+1
0 with

(∇ ·w, q̂) = (f, q̂), ∀q̂ ∈ Pm+1,

provided that
∫

Γin
uin · n =

∫
Ωm+1 fdx. Let us show stability in the

special case f = 0 because one can always subtract w from αg

ρg
ug + αl

ρl
ul

so as to work with ug,in = ul,in = 0 and f = 0.

Thus, setting v̂g = ug, v̂l = ul and q̂ = p leads to

1
δt

∥∥√αgug

∥∥2
L2+1

2
∥∥√αgD(ug)

∥∥2
L2+ 1

δt
‖
√

αlul‖2L2+1
2
‖
√

αlD(ul)‖2L2 ≤ (Lg,ug)+(Ll,ul) .

(3.44)

By the same argument used above, it implies that uj, j = g, l is

bounded. Indeed, assuming αm ≥ 0,

δt (Lj,uj) =
∫

Ωm+1
αju

m
j ◦Xm

j · ujdx ≤
∥∥∥√αjuj

∥∥∥
L2

(∫
Ωm+1

αj

∣∣∣um
j ◦Xm

j

∣∣∣2 dx)1
2

=
∥∥∥√αjuj

∥∥∥
L2

(∫
Ωm+1

(
αm

j ◦Xm
j − αδt(∇ · um

l + 1
ρl

K(cm
g − csat)+)

) ∣∣∣um
j ◦Xm

j

∣∣∣2 dx)
1
2

≤
∥∥∥√αjuj

∥∥∥
L2

(∫
Ωm+1

(
αm

j ◦Xm
j − αδt∇ · um

l

) ∣∣∣um
j ◦Xm

j

∣∣∣2 dx)1
2

≤
∥∥∥√αjuj

∥∥∥
L2

(∫
Ωm+1

αm
j ◦Xm

j

(
1− δt∇ · um

l +O(δt2)
) ∣∣∣um

j ◦Xm
j

∣∣∣2 dx)1
2

=
∥∥∥√αjuj

∥∥∥
L2

(∫
Ωm

(
αm

j (1 +O(δt2))
) ∣∣∣um

j

∣∣∣2 dx)1
2
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≤
∥∥∥√αjuj

∥∥∥
L2

(1 + δt2C(‖cm
g ‖L∞ , ‖∇2um

l ‖L∞))
∥∥∥√αm

j u
m
j

∥∥∥
L2

(3.45)

for some generic constant C depending on ‖cm
g ‖L∞ and ‖∇2um

l ‖L∞ .

Finally, we obtain

|||um+1
g ,um+1

l |||m+1 ≤ (1+Cδt2)|||um
g ,u

m
l |||m+δtCD

ρg

‖ αg

αm
j

(um
g −um

l )‖L∞|||um
g ,u

m
l |||m

(3.46)

where

|||ug,ul|||2m :=
∑

j=g,l

∥∥∥√αm
j,huj

∥∥∥2

L2
+ 1

2δt
∥∥∥√αm

l,hD(uj)
∥∥∥2

L2
, m = 0, . . . , N.

This estimate is optimal, but for the constant C which is the drawback

of the characteristic method and for the L∞ norm which is consequence

of the unsophisticated treatment of the nonlinearity. Nevertheless,

would these two be bounded, the scheme would be H1 stable.

4. Note that we have swept under the rug the fact that at level m the

domain of definition of the functions is Ωm and at level m + 1 it is

Ωm+1. The problem can be solved but at the cost of difficult notations

and iterations between ym+1 and um+1; for details see [64].

3.4 Finite element implementation

For simplicity, the physical domain Ω(t) is assumed to be a two-dimensional

polygonal domain.
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3.4.1 Mesh

Let {Kh(t)}h>0 be an affine, shape regular (in the sense of Ciarlet[65]) family

of mesh conforming to Ω(t). The conforming Lagrange finite element space

of degree p on Ω(t) is

Xp
h,t = {v ∈ C0(Ω(t)) : v|K ∈ P p, ∀K ∈ Kh(t)}, (3.47)

where P p is the space of polynomials of degree p of R2.

Let {φ1, . . . φNq} be the nodal Lagrange basis of X1
h,t. If the vertices

are denoted by {qi}Nq

1 , then φi(qj) = δij. Let Si be the support of φi

and let Sij := Si ∩ Sj. If E is a union of triangles, define I(E) := {i ∈

{1, . . . , Nq} : |Si ∩ E| 6= 0}. Finally, the local minimum mesh size of

K ∈ Kh(t) is hK(t) := 1/maxi∈I(K) ‖∇φi‖L∞(K), and the global minimum

mesh size is h(t) := minK∈Kh
hK(t).

We assume that the connectivity of the mesh Kh(t) never changes with

time.

3.4.2 Spatial discretization

We use the Hood-Taylor element: the velocities are in Vh(t) := (X2
h,t)2 and

the pressure is in Ph(t) := X1
h,t. For the volume fractions and the concentra-

tions we use also Ph(t).

Recall that the nodes of X2
h,t are the vertices and the middle of the edges.

Denote by {ψ1, . . . , ψNa} the nodal Lagrange basis of associated with the
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nodes {a1, . . . ,aNa} for X2
h,t. For convenience, we define Ωm := Ω(tm), Pm

h =

X1
h,tm and V m

h = (X2
h,tm)2.

On the boundaries where Dirichlet conditions are set, the functions are

known. We denote Pm
0h and V m

0h , the corresponding spaces where basis

functions attached to a Dirichlet node are removed.

Volume fractions

Given αm
l,h, c

m
g,h ∈ Pm

h and um
l,h ∈ V m

h , find αm+1
l,h ∈ Pm+1

h satisfying the

Dirichlet boundary conditions and such that

1
δt

(
αm+1

l,h − αm
l,h ◦Xm

l,h, q̂h

)
+
(
αm+1

l,h (∇ · um
l,h + ρ−1

l K(cm
g,h − csat)+), q̂h

)
= 0, ∀q̂h ∈ Pm+1

0h ,

(3.48)

where Xm
j,h(x) = x − δtum

j,h(x) for x ∈ Ωm, j = g, l. Then we let αm+1
g,h =

ρg(1− ρ−1
l αm+1

l,h ).

Remark 3.4.1 A modification similar to (3.40) will insure the positivity of

αm+1
l,h .

Concentration profiles

Given αm+1
l,h ∈ Pm+1

h , αm
l,h ∈ Pm

h , um
l,h ∈ V m

h , Cm
h ∈ (Pm+1

h )2+kM , find Cm+1
h ∈

(Pm+1
h )2+kM such that

1
δt

(
αm+1

l,h (Cm+1
h − Cm

h ◦Xm
l ), ŵh

)
+
(
αm+1

l,h D∇Cm+1
h ,∇ŵh

)
+
(
MgKαm

l,h(cm
g,h − csat)+, ŵg,h

)
+
(
I(Em+1

mix,h)(Cm+1
h )κ, ŵh

)
L2(S(tm+1))

= 0 ∀ŵh ∈ (P m+1
0h )2+kM ,

(3.49)
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subject to

∑
j=s,k

ij(Em+1
mix,h)(cm+1

j,h )κj (qi) = 0, for each nodal point qi on Sm (3.50)

where ŵg,h is the last component of ŵh and

I(Em+1
mix,h) = diag

(
|is(Em+1

mix,h)|
zsF

,
|ik(Em+1

mix,h)|
zkF

,−
β|is(Em+1

mix,h)|
zsF

)
,

(Cm+1
h )κ =

(
(cm+1

s,h )κs , (cm+1
k,h )κk , (cm+1

s,h )κs

)T

for is, ik defined by (3.20).

Two phase flow

Given αm+1
j,h ∈ Pm+1

h , j = g, l, cm+1
g,h ∈ Pm+1

h , and um
j,h ∈ V m

h , find um+1
j,h ∈

V m+1
h , j = g, l and pm+1

h ∈ Pm+1
h /R such that

∑
j=g,l

{ 1
δt

(
αm+1

j,h (um+1
j,h − um

j ◦Xm
j,h), v̂j,h

)
+ 1

2
νj

(
αm+1

j D(um+1
j,h ), D(vj,h)

)

+ γjρ−1
g CD

(
αm+1

g,h |u
m+1
g,h − um+1

l,h |(u
m+1
g,h − um+1

l,h ), v̂j,h

)
−
(
pm+1

h ,∇ · (ρ−1
j αm+1

j,h v̂j,h)
)}

= 0
(3.51)

(
q̂h,∇ · (ρ−1

g αm+1
g,h um+1

g,h + ρ−1
l αm+1

l,h um+1
l,h )

)
=
(
q̂h,

K

ρl

αm+1
l,h (cm+1

g,h − csat)+
(
ρ−1

g − ρ−1
l

))
(3.52)

for all v̂j,h ∈ V m+1
0h , j = g, l and q̂h ∈ Pm+1

h /R.

3.4.3 Fixed point iterative solution of (3.51), (3.52)

The system (3.51)-(3.52) is nonlinear. An iterative algorithm is described in

Algorithm 1.
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Algorithm 1: A semi-lineariazation for solving (3.51)-(3.52).

1 Let Lg, Ll, f be defined by (3.43).

Data: Set uj = um
j,h, j = g, l.

2 for n = 1 . . . N do

3 Set βj =
(

1
δt

αm+1
j,h + CD

ρg
αm+1

g,h |ug − ul|
)

,

4 Find ug,ul and p sastifying the Dirichlet conditions and such that,

∀v̂g, v̂l ∈ V m+1
0h and ∀q̂ ∈ P m+1

h /R

(βgug, v̂g) + (βlul, v̂l) + 1
2

(
αm+1

g,h D(ug), D(v̂g)
)

+ 1
2

(
αm+1

l,h D(ul), D(v̂l)
)

−
(

p,∇ · (
αm+1

g,h

ρg
v̂g +

αm+1
l,h

ρl
v̂l)
)

+
(

q̂,∇ · (
αm+1

g,h

ρg
ug +

αm+1
l,h

ρl
ul)
)

= (Lg, v̂g) + (Ll, v̂l) + (q̂, f) . (3.53)

5 end

6 Set un+1
j = uj , j = g, l.
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3.4.4 Consistence and Stability

Variational formulations discretized by finite element methods inherit the sta-

bility and consistency of the continuous equations. The LBB theorem applies

also to the Hood-Taylor element for velocity pressure problems. Therefore,

as in the continuous case, the H1 norms of αm+1
j ,um+1

j , Cm+1
j are less than

(1 +C(‖∇2um
l ‖L∞)δt) times the H1 norms of αm

j ,u
m
j , C

m
j . If we could show

that C( ) is bounded, then it would imply that the scheme converges when

δt→ 0.

3.4.5 Solvability of the linear system in matrix form

Let ζ = (ζg, ζl) ∈ (V m+1
h )2, αm+1

j,h ∈ Pm+1
h , αj,h ≥ ε for some constant ε > 0,

j = g, l.

To study the solvability of (3.51)-(3.52), we consider a simpler case with

ug = ul = 0 on ∂Ωm+1 \ Γout, and take the linearized approximation on

the drag force terms. The problem reads: Find um+1
h := (um+1

g,h ,um+1
l,h ) ∈

(V m+1
0h )2 and pm+1

h ∈ Pm+1
h /R satisfying

aζ(um+1
h , v̂h) + b(pm+1

h , v̂h) = F (v̂h), b(q̂h,u
m+1
h ) = G(q̂h), (3.54)
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where, for u = (ug,ul),v = (vg,vl) ∈ (vm+1
0h )2, q ∈ Pm+1

h ,

aζ(u,v) =
∑

j=g,l

[ 1
δt

(
αm+1

j,h uj,vj

)
+ 1

2
νj

(
αm+1

j,h D(uj), D(vj)
)]

+ ρ−1
g CD

(
αm+1

g,h |ζg − ζl|(ug − ul),vg − vl

)
b(q,v) = −

(
q,∇ · (ρ−1

g αm+1
g,h vg + ρ−1

l αm+1
l,h vl)

)
F (v) =

∑
j=l,g

1
δt

(
αm+1

j,h um
j,h(Xm

j,h(x)),vj

)
G(q) =

(
q, ρ−1

l Kαm+1
l,h (cm+1

g,h − csat)+(ρ−1
g − ρ−1

l )
)
.

(3.55)

On the basis of V m+1
h and Pm+1

h , we can write

um+1
g,h =

2Na∑
i=1

um+1
g,i ψi, u

m+1
l,h =

2Na∑
i=1

um+1
l,i ψi, pm+1

h =
Nq∑
i=1

pm+1
i φi, (3.56)

More precisely {ψ1, . . . ,ψ2Na} is {ψ1e1, . . . , ψNae1, ψ1e2, . . . , ψNae2} for e1 =

(1, 0)T and e2 = (0, 1)T .

Problem (3.54) can be formally expressed as a system of linear equations:

ΦUm+1 = Fm, (3.57)

where Φ is a (4Na +Nq)× (4Na +Nq) matrix, Um+1 and Fm are (4Na +Nq)

vectors. Note that Φ has the form

Φ =

 A B

BT O

 , with A =

 Ag Amix

Amix Al

 . (3.58)

In the above,

Ak =
( 1
δt

(
αm+1

k,h ψi,ψj

)
+ 1

2
νk

(
αm+1

k,h D(ψi), D(ψj)
)

+ ρ−1
g CD

(
αm+1

g,h |ζg − ζl|ψi,ψj

))
i,j=1,...,2Na

, k = g, l,

Amix =
(
−ρ−1

g CD

(
αm+1

g,h |ζg − ζl|ψi,ψj

))
i,j=1,...,2Na

,

B =

−
(
φj,∇ · (ρ−1

g αm+1
g,h ψi)

)
−
(
φj,∇ · (ρ−1

l αm+1
l,h ψi)

)


i=1,...,4Na;j=1,...,Nq

.
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Proposition 3.4.1 The linear system (3.57) is uniquely solvable.

Proof. According to the Ladyzhenskaya-Babuska-Brezzi theorem [63] the

saddle point problem (3.53) is well posed when for p ∈ Pm+1
h /R, there exists

v ∈ V m+1
0h such that

(p,∇ · v)
‖v‖H1

≥ c‖p‖L2/R for some c > 0. (3.59)

Therefore Φ has full rank and is non singular.

3.4.6 Iterative process

At each time step, (3.48), is solved first, then (3.49)-(3.50) is solved itera-

tively by using a semi-linearization of the nonlinear boundary terms. Then

(3.51),(3.52) is solved iteratively by a semi-linearization of the nonlinear

terms; each block involves the solution of a well posed symmetric linear

system. Finally Sm is updated by (3.23). Algorithm 2 summarises the pro-

cedure.

Note that the computational domain is Ωm = {(x, y), 0 < x < L, 0 <

y < ym(x)}.
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Algorithm 2: Algorithm for solving the full system of equations.
Data: αm

g,h, αm
l,h, um

g,h, um
l,h, pm

h , cm
s,h, cm

k,h, cm
g,h, Em

mix,h, and ym

1 Set initial data α0
g,h, α0

l,h, u0
g,h, u0

l,h, c0
s,h, c0

k,h, c0
g,h, E0

mix,h;

2 for m do

3 Solve (3.48) to get αm+1
g,h , αm+1

l,h ;

4 Initial guess: Em+1,0
mix,h = Em

mix,h, Cm+1,0
h = solution to (3.49) when

mixed potential is Em+1,0
mix,h ;

5 while ‖Cm+1,k+1
h − Cm+1,k

h ‖ ≥ tolerance do

6 Initial guess: Em+1,k+1,0
mix,h = Em+1,k

mix,h ;

7 while ‖Em+1,k+1,l+1
mix,h − Em+1,k+1,l

mix,h ‖L2(Sm) ≥ tolerance do

8 Solve (3.49) to get cm+1,k+1,l+1
s,h , cm+1,k+1,l+1

k,h , cm+1,k+1,l+1
g,h ;

9 Solve (3.50) to get Em+1,k+1,l∗

mix,h ;

10 Em+1,k+1,l+1
mix,h = ξEm+1,k+1,l∗

mix,h + (1− ξ)Em+1,k+1,l
mix,h , 0 < ξ < 1;

11 end

12 end

13 Solve (3.51)-(3.52) to get, um+1
g,h , um+1

l,h , pm+1
h (Using Algorithm 1);

14 For the free boundary case change the mesh by ym+1 = ym + δtu2
m+1
g,h ;

15 end
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3.5 Numerical simulation

3.5.1 One-dimensional electroless nickel plating prob-

lem

Here we reproduce, with a two dimensional computation, the one-dimensional

study by Kim and Sohn [1]. In their work, the electroless nickel plating pro-

cess on a rotating disk with constant angular velocity is considered. In this

situation, the velocity field near the surface of the rotating disk can be ap-

proximated by a uniformly distributed flow towards the plating surface. In

addition, the thickness of diffusion layer is assumed uniform on the surface.

Consequently, for the modeling, the domain becomes one-dimensional. Given

that the gas generation is not considered and only the steady state is com-

puted in [1], a single phase recovery rl = 1, cg = 0 is applied. Finally, four

partial reactions in the electroless nickel plating process are considered:

H2PO
−
2 +H2O = H2PO

−
3 + 2H+ + 2e− (anodic) (3.60a)

H2PO
−
2 + 2H+ + e− = P + 2H2O (cathodic) (3.60b)

Ni2+ + 2e− = Ni (cathodic) (3.60c)

2H+ + 2e− = H2 (cathodic) (3.60d)

All chemical species are labeled as follows: c1 is the concentration of the

anodic hypophosphite (H2PO
−
2 ), c2 the concentration of the cathodic hy-

pophosphite, c3 the concentration of the nickel ion (Ni2+), and c4 the con-
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Table 3.1: Physical parameters used in the simulation by Kim and Sohn [1],

which are valid for pH = 4.5 and the concentration of H2PO
−
2 = 0.3 M

H+ Ni2+ H2PO−
2 (cathodic) H2PO−

2 (anodic)

i0 (A/cm2) 1.5× 10−4 a 1.5× 10−7 b 6.0× 10−4 8.9× 10−3

D (cm2/s) 4.5× 10−5 a 0.5× 10−6 c 1.7× 10−5 1.7× 10−5

α 0.79 a 0.79 c 0.2 0.9

β 0.21 a 0.21 c 0.8 0.1

z 1 2 1 4

γ 1.0 a 1.0 c 0.3 1.0

E0 (V ) d −0.101 −0.147 −0.806 −0.878

c0 (M) 3.162× 10−5 e 0.1 0.3 0.3

subscript j 4 3 2 1

a Estimated from the literature [66]. b Assumed in this study. c Taken from

the literature [67] . d Calculated based on the literature [68]. all values except

E03 (Ni2+) depend on pH (see (3.66)). e If pH = x, then c04 = 10−x (M). i0:

Exchange current density, D: Diffusion coefficient. α: Anodic transfer coefficient,

β Cathodic transfer coefficient. z: Number of electron transport, γ: Reaction

order, E0: Equilibrium potential (90oC) c0 inlet and initial concentration
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Table 3.2: Conditions assumed in [1] for performing our simulations

Experimental conditions

Angular velocity ω 400 rpm

Kinematic viscosity ν 1.2× 10−2 cm2/s

Temperature θ 90 oC

Composition of electrolytes

NiSO4 (nickel sulfate) 0.1 M

NaH2PO2 (sodium hypophosphite) 0.3 M

pH 4.0− 5.3

centration of the hydrogen ion (H+). Now the two-dimensional analogue can

be formulated: Let Ω = (0, δ3)× (0, ε), where δ3 is the thickness of the diffu-

sion layer for nickel and ε << δ3 is a small positive number. The thickness

of the diffusion layer for species j is given in [13]:

δj = 1.61D1/3
j ω−1/2ν1/6. (3.61)

The governing equation for the concentration profile is given by

∂tcj + u · ∇cj −Dj∆cj = 0 in Ω, (3.62)
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subject to the boundary conditions

cj = c0j at x = δ3, −Dj
∂cj

∂n
= 0 at y = 0, ε,

−Dj
∂cj

∂n
= |i1(Emix)|

z1F

(
(1− r)c1

c01

)γ1

+ |i2(Emix)|
z2F

(
rc2

c02

)γ2

j = 1, 2,

−Dj
∂cj

∂n
= |ij(Emix)|

zjF

(
c1

c01

)γj

j = 3, 4 at x = 0.

(3.63)

with the electron balance constraint

4∑
j=1

ij(Emix)
zjF

(
cj

c0j

)γj

= 0. (3.64)

The velocity field can be expressed as in [13]:

u = (−ax2ω3/2ν−1/2, 0)T (3.65)

where a = 0.51023 is an experimental constant, r = 0.995 is the ratio be-

tween the hypophosphite anodic part and the cathodic part on the reacting

surface. The equilibrium potential E0j for species j can be approximated by

the Nernst equation, with pH = log(c04):

E01 = −0.878 + 0.25Rθ
F

log
(
104.5c04

)
, E02 = −0.806 + 0.3Rθ

F
log

(
104.5c04

)
,

E03 = −0.147, E04 = −0.101 + Rθ

F
log

(
104.5c04

)
.

(3.66)

By simulating system (3.62), (3.63), and (3.64), with the physical constants

given in Table 3.1, until a steady state is reached, the numerical tests show

that the present model agrees well with the previous 1D studies of Kim and

Sohn [1]: see Figures 3.3 and 3.4.
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Figure 3.3: In red, the mixed potential Emix computed by the one dimen-

sional system (3.63) versus pH= log c04. In black, the same but computed

with the full two dimensional system.

Regarding (3.60), atomic nickel and phosphorus are deposited on the sur-

face during the electroless process. The deposition thickness can be estimated

in terms of the current densities:

(
i2(Emix) (c2|x=0/c02)VP

z2F
+ i3(Emix) (c3|x=0/c03)VNi

z3F

)
t, (3.67)

where VP , VNi are molar volumes of phosphorus and nickel, respectively, and

t is the deposition time.

3.5.2 Two species in a gas-liquid two phase flow

Let the initial domain Ω be a rectangular of size 0.01×0.001 (in meters). We

consider complexed (by tartrate, denoted by L) copper ions, formaldehyde,

and hydrogen dissolved in water, which are denoted by the subscriptions

s, k, g, respectively, for the chemical species transport equations.

The chemical reaction can be expressed as the following two partial reac-
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Figure 3.4: Concentration profiles of three chemical species versus x com-

puted by the one dimensional system (3.63) and compared with the results

of the full two dimensional system.

tions:

Cu(OH)2L
−4
2 = Cu+ 2OH− + 2L−2 (3.68a)

2HCHO + 4OH− = 2HCOO− +H2 + 2H2O + 2e− (3.68b)

Given the above equations, we also use the subscriptions s and k to represent

the quantities corresponding to (3.68a) and (3.68b), respectively.

The values of the physical constants are listed in Table 3.3.
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physical quantity value physical quantiy value

ρl (kg/m3) 995.65 ρg (kg/m3) 1.161

ρ0 (kg/m3) 1.161 µg (kg/m · s) 1.86× 10−5

µl (kg/m · s) 7.977× 10−4 d0 (m) 0.001

u0 (m/s) 0.001 csat (mol/m3) 0

ig (A/m2) 1.0× 10−2 is (A/m2) 1.0× 10−2

ik (A/m2) 10 R (J/K ·mol) 8.314

K (kg/mol · s) 3.87× 10−4 Mg (mol/kg) 500

cg,0 (mol/m3) 1 cs,0 (mol/m3) 39.34

ck,0 (mol/m3) 77.58 Dg (m2/s) 2× 10−8

Ds (m2/s) 7× 10−10 Dk (m2/s) 1.2× 10−9

zs (1) 2 zk (1) 4

αs (1) 0.67 αk (1) 0.37

βs (1) 0.33 βk (1) 0.63

θ (K) 363.15 Es (V ) −0.266

Ek (V ) 1.5 CD (1) 242220

α (1) 0.0005

Table 3.3: Parameters used in Section 3.5.2.
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For convenience, the following scalings are applied:

L→ L

d0
(L is any length), ρl →

ρl

ρ0
, ρg →

ρg

ρ0
,

µl →
µl

ρ0d0u0
, µg →

µg

ρ0d0u0
, cg →

cg

cg0
, ck →

ck

ck0
, cs →

cs

cs0
, K → d0cg0

ρ0u0
K,

Lg →
Lg

u0cg0zsF
, Ls →

Ls

u0cs0zsF
, Lk →

Lk

u0ck0zkF
, Dg →

Dg

u0d0
, Ds →

Ds

u0d0
, Dk →

Dk

u0dk
,

ig →
ig

u0cg0zsF
, is →

is

u0cs0zsF
, ik →

ik

u0ck0zkF
.

(3.69)

The initial conditions are set to: constant phase ratio and Poiseuille flow:

r0
g = ε, r0

l = 1− ε, u0
g = u0

l = (0.69y(1− y), 0)T , (3.70)

with ε = 0.0001. Also, let C0 = (c0
s, c

0
k, c

0
g)T satisfies

−∇ · (r0
lD∇C0) = 0, C0|Γin

= (1, 1, 0)T ,
∂C0

∂n
|Γout∪Γwall

= 0 (3.71)

plus the first equation in (3.73) subject to (3.21). The inflow values are

um+1
g |Γin

= um+1
l |Γin

= (y(1−y), 0)T , cg|Γin
= 0, cs|Γin

= ck|Γin
= 1, rl|Γin

= 1−ε.

(3.72)

The boundary conditions on S(tm+1) are

−Dp

∂cm+1
p

∂n
= χrm+1

l |im+1
p |cm+1

p , p = s, g, k, um+1
g = um+1

l = αχrm+1
l |im+1

s |cm+1
s ,

(3.73)
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where α = 0.0005 and

χ(x, y) =



x− 3
4 + 1

4 sin
(
2π(x− 1

4)
)
, 1 ≤ x < 1.5,

1, 1.5 ≤ x < 5.5,

17
4 − x−

1
4 sin

(
2π(x− 19

4 )
)
, 5.5 ≤ x < 6,

0, 0 ≤ x < 1 or 6 ≤ x ≤ 10.

(3.74)

Boundary conditions on Γout and Γwall are as in Section 3.2.4. See also Figure

3.1.

Remark 3.5.1 We note that α = 0.0005 is much larger than the experimen-

tal values; the numerical simulations produce ug2 (and ul2) of magnitude in

the order O(10−4). On the other hand, the deposition rate in a typical ex-

periment is of order 1 µm per hours [69], which is not larger than O(10−6).

Yet the numerical test is conducted to validate the numerical method when

the evolution of the domain is larger than real life values.

Convergence

First, we conduct the convergence test for different time step with a fixed

mesh. To obtain a “reference solution”, the system (3.48)-(3.52) is solved

with a 50 × 10 uniform mesh and a small time step δt = 0.01 and T = 10.

The convergence with respect to δt is studied without changing the mesh;

results are given in Table 3.4 and the rate of convergence for each variable is

presented in Figure 3.5. Numerical tests for solving two phase flow problem
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and volume fraction problem present a linear decay of L2 error with respect to

the time step. However, the convergence for solving the concentration profiles

does not reach the expectation due to extremely low diffusion coefficients and

large current densities.

Second, we conduct the convergence tests for different time step and mesh

pairs. The reference solution is obtained with 200 × 20 uniform mesh and

δt = 0.05 at T = 10. We always keep the time step being proportional to the

mesh size. Figure 3.6 and Table 3.5 present a linear decay of L2 error with

respect to the time step for each variable.

Third, the convergence tests for different time step and mesh pairs are

performed until a larger final time. The reference solution is obtained with

200×20 uniform mesh and δt = 0.3 at T = 120. Same as the second test, we

always keep the time step being proportional to the mesh size. Figure 3.7 and

Table 3.6 present a nearly linear decay of L2 error with respect to the time

step for each variable. In this test, rg and ck are of the worst convergence.

Their intensity maps are given in Figures 3.8 and 3.9. Except for tests with

time step δt = 1.2, the intensity maps for the tests with δt ≤ 0.6 present no

significant difference with the reference solutions.

Robustness for large time steps

With a large time step δt = 1 and 100×10 uniform mesh, the product of the

maximal liquid fluid speed with the time step is around 1.5 times of the mesh
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Table 3.4: L2 error with respect to the reference solution provided with

time step δt = 0.01, 50 × 10 uniform mesh, and α = 0.0005 for numerical

simulation in Section 3.5.2 at T = 10.

δt ug ul p αg cs ck cg

1 5.56× 10−4 5.49× 10−4 1.45× 10−3 9.11× 10−2 9.12× 10−3 3.77× 10−4 1.74× 10−2

0.5 2.77× 10−4 2.73× 10−4 7.17× 10−4 4.50× 10−2 6.80× 10−3 2.64× 10−4 8.74× 10−3

0.1 4.85× 10−5 4.84× 10−5 1.28× 10−4 8.07× 10−3 3.87× 10−3 2.01× 10−4 1.72× 10−3

0.05 2.25× 10−5 2.24× 10−5 5.75× 10−5 3.58× 10−3 3.00× 10−3 1.55× 10−4 8.77× 10−4

Table 3.5: L2 error with respect to the reference solution provided with

time step δt = 0.05, 200 × 20 uniform mesh, and α = 0.0005 for numerical

simulation in Section 3.5.2 at T = 10.

(δt, mesh) ug ul p αg cs ck cg

(1, 25× 3) 2.03× 10−2 2.04× 10−2 1.72× 10−2 6.24× 10−1 1.55× 10−1 8.73× 10−2 8.57× 10−1

(0.5, 50× 5) 6.50× 10−3 6.45× 10−3 5.24× 10−3 2.18× 10−1 4.54× 10−2 3.08× 10−2 2.78× 10−1

(0.1, 100× 10) 1.47× 10−3 1.35× 10−3 9.48× 10−4 6.09× 10−2 1.57× 10−2 7.65× 10−3 6.58× 10−2

Table 3.6: L2 error with respect to the reference solution provided with

time step δt = 0.3, 200 × 20 uniform mesh, and α = 0.0005 for numerical

simulation in Section 3.5.2 at T = 120.

(δt, mesh) ug ul p αg cs ck cg

(1.2, 50× 5) 1.73× 10−2 1.73× 10−2 6.48× 10−3 3.71× 10−1 3.97× 10−2 1.56× 10−2 2.73× 10−1

(0.6, 100× 10) 1.22× 10−2 1.23× 10−2 4.07× 10−3 2.20× 10−1 1.35× 10−2 1.18× 10−2 2.11× 10−1

(0.4, 150× 15) 6.40× 10−3 6.41× 10−3 2.23× 10−3 1.19× 10−1 6.60× 10−3 6.23× 10−3 1.11× 10−1
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Figure 3.5: Convergence with respect to δt for the case described in Section

3.5.2 with fixed mesh: log-log plot of the error for each unknown; (note that

the curves for ug and ul overlap) . R.O.C. means “Rate Of Convergence”.

The reference solution is a computation with a very small time step.

Figure 3.6: Convergence with respect to δt and mesh size for the case de-

scribed in Section 3.5.2 (see Table 3.5 for the time step and mesh size pair):

log-log plot of the error for each unknown; (note that the curves for ul and

ul overlap) .
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Figure 3.7: Convergence with respect to δt and mesh size for the case de-

scribed in Section 3.5.2 (see Table 3.5 for the time step and mesh size pair):

log-log plot of the error for each unknown; (note that the curves for ug and

ck overlap and the curve of ul is closed to them).

size, which is optimal for the Galerkin-Characteristic method. solutions are

displayed in Figure 3.10-3.15.

CPU time

With δt = 1 and 100 × 10 uniform mesh, it took 5832 seconds to reach

the final time T = 180 with an Intel Core i7-8750H @ 2.20GHz. During

the computation, it took 0.086% of the total CPU for solving the volume

fraction problem, 7.66% for solving the chemical species transport problem

and 91.93% for solving the two velocities/pressure flow problem.

The computer program is written using the FreeFEM++ toolkit [70].
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(a) Intensity map of rg at t = 120 with δt = 1.2 and 50×5 uniform

mesh.

(b) Intensity map of rg at t = 120 with δt = 0.6 and 100 × 10

uniform mesh.

(c) Intensity map of rg at t = 120 with δt = 0.4 and 150 × 15

uniform mesh.

(d) Intensity map of rg at t = 120 with δt = 0.3 and 200 × 20

uniform mesh.

Figure 3.8: For Section 3.5.2: The intensity maps of rg for different time step

and mesh size pairs.



doi:10.6342/NTU202200609

3.5. Numerical simulation 121

(a) Intensity map of cg at t = 120 with δt = 1.2 and 50×5 uniform

mesh.

(b) Intensity map of cg at t = 120 with δt = 0.6 and 100 × 10

uniform mesh.

(c) Intensity map of cg at t = 120 with δt = 0.4 and 150 × 15

uniform mesh.

(d) Intensity map of cg at t = 120 with δt = 0.3 and 200 × 20

uniform mesh.

Figure 3.9: For Section 3.5.2: The intensity maps of cg for different time step

and mesh size pairs.
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(a) Intensity map of ug at t = 100.

(b) Intensity map of ul at t = 100.

Figure 3.10: For Section 3.5.2: The velocity magnitudes of ug and ul.

Results

On Figure 3.10a and 3.10b the velocity vector fields ug and ul are seen to

be almost parabolic in y (Poiseuille flow). but the phase change and moving

boundary induce a non-zero asymmetric vertical component u2g (see Figure

3.14); both play important roles for the bubble distribution. Bubble density

can be inferred by analyzing cg and rg (see Figure 3.17). The color maps of

Figure 3.11 displays a high gas volume fraction area near the top and bottom

plates . Figure 3.12 shows how the steady state is established and how the

electrolyte disappears in the plating region due to the plating. Figure 3.13

explains why it is always of the highest volume fraction of gaseous phase near

the reacting surface. The deposition-induced movement of S is presented in

Figure 3.16. Figure 3.17b shows that the region of the highest bubble density

is moving away from the inlet as the electroless plating proceeds.
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(a) Intensity map of rg at t = 20.

(b) Intensity map of rg at t = 40.

(c) Intensity map of rg at t = 100.

(d) Intensity map of rg at t = 140.

(e) Intensity map of rg at t = 180.

Figure 3.11: For Section 3.5.2: intensity maps of the volume fraction of the

gas phase rg computed with δt = 1 and a 100× 10 uniform mesh.
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(a) Intensity map of cs at t = 20.

(b) Intensity map of cs at t = 40.

(c) Intensity map of cs at t = 100.

(d) Intensity map of cs at t = 140.

(e) Intensity map of cs at t = 180.

Figure 3.12: For Section 3.5.2: intensity maps of the concentration electrolyte

ions cs computed with δt = 1 and a 100×10 uniform mesh. The blue zone in

the plating region, on the lower plate shows that the electrolyte is absorbed

by the plating process.
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(a) Intensity map of cg at t = 20.

(b) Intensity map of cg at t = 40.

(c) Intensity map of cg at t = 100.

(d) Intensity map of cg at t = 140.

(e) Intensity map of cg at t = 180.

Figure 3.13: For Section 3.5.2: intensity maps of the concentration of dis-

solved gas.
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(a) Intensity map of u2g at t = 20.

(b) Intensity map of u2g at t = 40.

(c) Intensity map of u2g at t = 100.

(d) Intensity map of u2g at t = 140.

(e) Intensity map of u2g at t = 180.

Figure 3.14: For Section 3.5.2: The vector fields ug and ul are very closed to

Poisseuille flow. In this case, phase change and moving boundary contribute

to the second component of ug (and ul) together. The numerical test is

conducted with δt = 1 and 100 × 10 uniform mesh. The intensity maps

indicate the bubble rising in the red region. Indeed, their exists high gas

volume fraction region near the top side (see Figure 3.11).
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(a) Intensity map of ul2 at t = 100.

(b) Intensity map of ck at t = 100.

Figure 3.15: For Section 3.5.2: Intensity maps of ul2 and ck at t = 100.

Figure 3.16: The thickness of the deposition is given by the motion of S(t),

plotted here at 5 instants of time, with respect to x-axis (in mm). Notice

that the motion t → S(t) is very small; the oscillations are blown-out of

proportions by the scaling used in the graphic.
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(a) For Section 3.5.2: Intensity map

of cg on S versus x.

(b) For Section 3.5.2: Intensity map

of rg on S versus x.

Figure 3.17: Plots of rg and cg versus x on the reaction surface S.The gas

bubble density in the plating reaction zone can be observed.

3.6 Comparison with experimental results

To validate the numerical method on a real-life problem, an experiment for

reproducing the numerical study in Section 3.5.2 is conducted. Here, we shall

show that the experimental result can be qualitatively fitted by the numerical

simulation.

The experimental setting is described as the following: A micro-channel

is enclosed by two sheet glasses of size 8 mm × 8 mm and another two of

size 8 mm× 1 mm, which form a rectangular channel. The electrolyte goes

in the channel from the left and exit on the right. One piece of the square

sheet glasses is partially glued on a copper plate of size 8 mm×4 mm, where

the longer side of the copper plate coincides with an edge of the inlet (see

Figure 3.18 for geometry setting). The inflow is set to be of average velocity
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0.115 mm/s. At inlet, the copper ion concentration is cs0 = 39.34 mol/m3

and the formaldehyde concentration is ck0 = 77.5883 mol/m3. Here, the inlet

concentrations cg0 and ck0 are the reference concentrations for copper ion and

formaldehyde, respectively. We further define the reference concentration of

the hydrogen gas to be cg0 = 1 mol/m3. Other physical parameters are given

by Table 3.3. Some parameters, for example, reference current densities is, ik,

and ig, may not be exactly same as what are given in Table 3.3. Nevertheless,

they are acceptably closed to the reality, or at least in a same order.

Figure 3.18: The geometry setting for both experiment and numerical simu-

lation. Here, the yellow region indicates the copper plate glued on the sheet

glass.

3.6.1 Experimental

To fabricate the test vehicle, a 4 inch glass wafer was first sputtered with

30 nm chromium and 200 nm copper which served as adhesion layer and

seed layer, respectively. The wafer was then diced into each 8 mm × 8 mm

glass dies. To ensure a significant comparison between the regions being

plated or not, each test die was half immersed in SPS (Na2S2O8) solution

and hydrochloric acid to remove copper and chromium layer. The glass die
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turned out half transparent and half coated with copper where the electroless

copper plating took place. Thereafter, a fully transparent glass which was

identical to the size of test die, was face-to-face aligned and bonded via using

flip-chip die-bonder in order to obtain a clear observation view. Two tungsten

wire which were 8 mm in length and 2 mm in diameter were glued by UV

gel and placed on the periphery of the test die for the purpose of restricting

the flow direction and defining the height between the dies (see Figure 3.19).

The test vehicle was then subjected to micro-fluidic system composed of

a PDMS mode containing micro-fluidic channel and a bottom glass. Clips

were used to sealed the micro-fluidic system and prevented the leakage of

electrolyte. A peristatic pump was used to control the flow and connect the

micro-fluidic system with silicone tube. Prior to the electroless plating, the

test vehicle was immersed in 10% sulfuric acid to remove copper oxide. Fi-

nally, the electroless copper plating was conducted in a water tank controlled

at 50 ◦C with in-situ recording via stereomicroscope (charged coupled device

digital camera CCD). The electrolyte PHE-1 Uyemura possessing the given

reference concentrations cs0 of (complexed) copper ion and ck0 of formalde-

hyde was used for the experiment. A complete equipment setup is described

in Figure 3.20.



doi:10.6342/NTU202200609

3.6. Comparison with experimental results 131

Figure 3.19: Test vehicle formation.

Figure 3.20: Electroless copper plating via using microfluidic system.

3.6.2 Results

Experimental results (see Figure 3.21) show that the bubbles are not only

appearing on the copper plate, but also appearing on the top. In video, one

can see that there were several bubbles going to the top from the center or the

bottom side of the channel. The region above the glass becomes darker with

time. The simulation results (see Figure 3.11) qualitatively arrive at the

same conclusion. The experiment indicates that the clustering of bubbles

happens on both top side and the bottom side of the channel. Second, the

numerical simulation predicts that most bubbles are generated at an early
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(a) The initial profile of the micro-channel.

(b) micro-channel at t = 20 s.

(c) micro-channel at t = 40 s.

(d) micro-channel at t = 100 s.

(e) micro-channel at t = 140 s.

(f) micro-channel at t = 180 s.

Figure 3.21: The pictures are taken from the top side and the region near

the center between two 8 mm × 1 mm sheet glasses. The brown region is

covered by the copper plate, where the surface reaction occurs.
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stage and near the inlet. The experiment shows that the bubble generation

is more exuberant near the inlet in comparison with other regions at t = 20.

This observation coincides with that of Figs 3.13 and 3.17a. The region near

the inlet at t = 20 is of the highest concentration of dissolving hydrogen gas.

In addition, large bubbles were observed at the back end of the copper plates

(i.e. region near (x,y) = (6,0) corresponding Figure 3.1), which is also the

case in Figure 3.17b.

3.6.3 Discussion

For an electroless plating process accompanying gas generation, the bubble

distribution with respect to time, in the micro-channel, is the most important

index for evaluating the quality of deposition. To measure it quantitatively,

a high-quality optical system installed in the micro-channel is indispensable.

For example, several types of fiber optical probe have been used to measure

the particle (or bubble) size and distribution in a channel flow (or micro-

channel flow) [71, 72, 73, 74]. However, such optical system is difficult to be

installed in our case because there is no appropriate place to setup the light

source and the detector in the micro-channel. The signal interference caused

by the copper plate or glued gel on two sides is almost inevitable.
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3.7 Conclusion

The numerical simulation of an electroless plating is difficult for two reasons:

the multi-phase modeling and the nonlinearities. We have proposed a phase

averaged liquid-gas two fluid velocities/one pressure system combined with

phase densities and chemical concentration equations. The nonlinearities

being similar to those of the Navier-Stokes equations, we have used a semi-

Eulerian time discretization leading to a generalized Stokes operator for the

two velocities/one pressure system; the inf-sup saddle point theorem has

lead to a proof of stability and well posedness of the discretized system

by the Hood-Taylor finite element method. The two phase flow model is

compatible with single phase models when the volume fraction of gas and

the concentration of the gas in the liquid phase are set to zero. The model

is also compatible with the one dimensional model proposed in [1]. The

numerical results confirm the robustness of the method. To validate the

model a real life experiment has been performed. The numerical results

agree qualitatively with the experiment for the repartition of bubbles near

the plating boundary. We believe that in the future the computer code will

be used to design industrial and experimental systems. However, as to the

measurement of the deposition rate, It takes at least one hour to obtain

an observable thickness of plating. In this case, bubbles have accumulated

everywhere in the micro-channel and there is ground for an extension of the

present code with a level set or phase field model which tracks the liquid to
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gas interface. To establish a mathematical model suitable for a larger time

simulation is left as a future work.

3.A Estimation of the interfacial terms

Let V0 be a local volume to be observed which is occupied by gas and liquid.

In a liquid-gas two phase system, we have Al = Ag and further ρl(wl − ul) ·

nl = −ρg(wg − ug) · ng on the interface. If the size of each single bubble

in the electrolyte is small enough, then we can assume that the bubbles are

spherical. Assuming that there is a typical radius for all bubbles RB > 0

such that 1/R2
B is the average of 1/R2 among all bubbles in the system, the

growth rate of bubbles governed by the local mass loss prescribed by Eq.

(3.3) can be computed by the relation

4πR2
BNq

dR

dt
=
∫

V0

Ṡg

ρg

dV, (3.75)

where Nq is the amount of bubbles in a local volume V0. Therefore, we have

the following formulae on Ag and Al, respectively

(ug −wg) · ng = − 1
4πNqR2

∫
V0

Ṡg

ρg

dV (3.76)

(ul −wl) · nl = 1
4πNqR2

∫
V0

Ṡg

ρl

dV. (3.77)

The quantity RB is useful when the fluid velocity is large enough so that each

bubble won’t stay at the observed physical domain, because every bubble

hasn’t been far from the state that is just after nucleation.
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Given a small cube V0 of size |V0| = d×d×d and a typical radius RB, the

ratio of its surface area and volume is 4πNqR
2
B

d3 , where Nq can be estimated

by

Nq = rgd
3

4
3πR

3
B

(3.78)

Therefore, if d is small enough so that the physical quantities in Fα defined

in Section 3.2.3 can be assumed uniform, then we have the approximation

(3.79)

Fl ≈
(

4πNqR
2
B

d3

)
· ρl ·

(
− d3Ṡg

4πNqR2
Bρl

)
ul = −Ṡgul = Ṡlul. (3.80)

Similarly,

Fg ≈ Ṡgug (3.81)

The same approximation can be applied to Gj occurring at (3.5) and (3.6):

Gj ≈ Ṡlcj, j = s, k, Gg ≈ Ṡlcg −MgKρlrl(cg − csat)+ (3.82)
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Preliminaries and notations

A.1 Lebesgue spaces Lp(Ω) and Sobolev spaces

W k,p(Ω)

A.1.1 Lp space

Let 1 ≤ p ≤ ∞ and Ω ⊂ Rd a bounded domain. We denote by Lp(Ω) the set

of all measurable functions from Ω to C or R which satisfy

‖f‖p :=



(∫
Ω
|f |pdx

)1/p

<∞ 1 ≤ p <∞;

ess supx∈Ω |f | p =∞.

(A.1)

In particular, L2(Ω) is a Hilbert space with the inner product (·, ·) defined

by

(f, g) :=
∫

Ω
f(x)g(x)dx, f, g ∈ L2(Ω), (A.2)

which induces the norm ‖ ‖0.

137
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A.1.2 Sobolev space

Let k be a natrual number, α = (α1, . . . , αd) a multi-index with norm |α| =

α1 + · · ·+ αd. We define

Dαf = ∂|α|f

∂xα1
1 · · · ∂xαd

d

The Sobolev space W k,p(Ω) is defined as

W k,p(Ω) := {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω) ∀|α| ≤ k} (A.3)

A common way to define the norm of W k,p(Ω) is

‖f‖W k,p(Ω) :=


(∑

α≤k ‖Dαf‖p
Lp(Ω)

) 1
p 1 ≤ p <∞;

maxα≤k ‖Dαf‖L∞(Ω) p =∞.

(A.4)

For the particular case p = 2, the space Hk(Ω) := W k,2(Ω) is a Hilbert space.

Moreover, we denote by H1
ΓD

(Ω) the closed subspace of H1(Ω) defined by

H1
ΓD

(Ω) := {f ∈ H1(Ω) : f |ΓD
= 0}. (A.5)

If the number k is non-integer, we define the fractional Sobolev space in two

cases: If 0 < k < 1, we define W k,p for 1 ≤ p <∞ by

W k,p(Ω) :=

f ∈ Lp(Ω) : |f(x)− f(y)|
|x− y|

d
p

+k
∈ Lp(Ω× Ω)

 (A.6)

which endowed with the norm

‖f‖W k,p(Ω) :=

∫
Ω
|f |pdx+

∫
Ω

∫
Ω

|f(x)− f(y)|
|x− y|

d
p

+k
dxdy

 1
p

. (A.7)
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When k > 1 and it is not an integer, we write k = m + s, where m is an

integer and 0 < s < 1. The space W k,p(Ω) is defined by

W k,p(Ω) := {f ∈ Wm,p : Dαf ∈ W s,p ∀α s.t. |α| = m}. (A.8)

The above space is equipped with the norm

‖f‖W k,p(Ω) :=

‖f‖p
W m,p(Ω) +

∑
|α|=m

‖Dαf‖p
W s,p(Ω)

 1
p

. (A.9)

In particular, Hk(Ω) := W k,p(Ω) is again a Hilbert space when k is non-

integer.

For convenience, we denote the norm of Hk(Ω) by ‖ · ‖k for real k ≥ 0.

A.1.3 Traces

Theorem A.1.1 Let Ω ⊂ Rd be bounded with Lipschitz boundary. Then

there exists a bounded linear operator T : W 1,p(Ω)→ Lp(∂Ω) such that

Tu = u|∂Ω, u ∈ W 1,p(Ω) ∩ C(Ω)

‖Tu‖Lp(∂Ω) ≤ c(p,Ω)‖u‖W 1,p(Ω), u ∈ W 1,p(Ω)
(A.10)

Remark A.1.1 For 1 < p < ∞, the trace operator T maps maps W 1,p(Ω)

continuously onto the space W 1− 1
p

,p(∂Ω).

A.1.4 Bochner space

Given I := [0, T ] a time interval and a Sobolev space W k,p(Ω), the Bochner

space Lr(I;W k,p(Ω)) is the space of all measurable function u : I → W k,p(Ω)
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such that the associated norm is finite:

‖u‖Lr(I;W 1,p(Ω)) :=
(∫ T

0
‖u(t)‖r

W k,p(Ω)dt

) 1
p

< +∞, 1 ≤ r <∞

‖u‖L∞(I;W k,p(Ω)) := ess sup
t∈I

‖u(t)‖W k,p(Ω) < +∞, r =∞.

(A.11)

A.2 Weighted Sobolev space

Definition A.2.1 (Weighted space Lp
ρ(Ω, d,m) and W 1,p

ρ (Ω, d,m)) Let (Ω, d,m)

be a metric measure space, where m is a locally finite Borel regular measure

on Ω. Let p > 1 and ρ : Ω→ [0,∞] a Borel function satisfying ρ−1 ∈ L
1

p−1m;

we define the weighted space Lp(Ω, d,m) and sobolev space W 1,p
ρ (Ω, d,m) by

Lp
ρ(m) :=

{
f ∈ L1(Ω, d,m) |

∫
Ω
|f |pρdm < +∞

}
,

W 1,p
ρ (m) :=

{
f ∈ W 1,1(Ω, d,m) |

∫
Ω
|f |pρdm+

∫
Ω
|∇f |pρdm < +∞

}
,

respectively. The above spaces are endowed with the norms

‖f‖p
Lp

ρ
:=
∫

Ω
|f |pρdm+

∫
Ω
|∇f |pρdm.

‖f‖p

W 1,p
ρ

:=
∫

Ω
|f |pρdm+

∫
Ω
|∇f |pρdm.

If Ω ⊂ Rn endowed with standard Euclidean metric, we shorten the notations

by Lp
ρ(Ω) := Lp

ρ(Ω, d,m), W 1,p
ρ (Ω) := W 1,p

ρ (Ω, d,m), respectively

Proposition A.2.1 ∀p > 1, the weighted Sobolev space (W 1,p
ρ (Ω, d,m), ‖ ·

‖ρ) is a Banach space whenever ρ−1 ∈ L
1

p−1 (Ω)

Definition A.2.2 (Doubling) A locally finite Borel measure m on (Ω, d)

is doubling if it gives finite positive measure to balls and there is a constant
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C > 0 such that

m(B(x, 2r)) ≤ Cm(B(x, r)), ∀x ∈ Ω, r > 0

Definition A.2.3 (p-Poincaré) For p ∈ [1,∞), we say that a p-Poincaré

inequality holds for Lipschitz functions if there are constants τ,Λ > 0 such

that ∀f ∈ Lip(Ω), ∀x ∈ supp(m), r > 0, the following inequality holds:

1
m(B(x, r))

∫
B(x,r)

|f − fB(x,r)|dm ≤ τ

(
1

m(B(x,Λr))

∫
B(x,Λr)

|∇f |pdm
) 1

p

,

where

fA := 1
m(A)

∫
A
fdm.

Definition A.2.4 A doubling metric measure space satisfying p-Poincaré

inequality is called PIp space.

Remark A.2.1 Euclidean space endowed with normal euclidean distancing

is PIp for all p ≥ 1.

Theorem A.2.1 [75] Suppose that (Ω, d,m) is a PI1 metric measure space,

ρ ∈ L1
loc(m) and ρ−1 ∈ L

1
p−1 (m). Then W 1,p

ρ (Ω, d,m) is reflexive for all p > 1.

Corollary A.2.1 Let Ω ⊂ Rd be a open bounded domain, W 1,p
ρ is a reflexive

Banach space if p > 1, ρ ∈ L1
loc(Ω), and ρ−1 ∈ L

1
p−1 (Ω).

Remark A.2.2 Let Ω ⊂ Rd and p = 2, we denote W 1,p
ρ (Ω) by H1

ρ(Ω), which

is a Hilbert space endowed with the inner product

(u, v)ρ,1 =
∫

Ω
u(x)v(x)ρ(x)dx+

∫
Ω
(∇u(x) · ∇v(x))ρ(x)dx.
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We also denote the inner product for L2
ρ(Ω) by

(u, v)ρ,0 =
∫

Ω
u(x)v(x)ρ(x)dx.

The norm of Hk
ρ (Ω), k ∈ N ∪ {0} is denoted by ‖ · ‖ρ,k.

Theorem A.2.2 (compact embedding) [76] Let Ω ⊂ Rd, 1 ≤ s ≤ r <

dq
d−q

, q ≤ p, 1 < p < +∞, and

K(w) := max
{
‖w− 1

p‖
L

pq
p−q (Ω)

, ‖w
1
s‖

L
rs

r−s (Ω)

}
< +∞. (A.12)

Note that we take +∞ if p−q = 0 or r−s = 0 in (A.12). Then the embedding

operator

i : W 1,p
w (Ω) ↪→ Ls

w(Ω)

is a compact operator. For r = dq/(d − q), the embedding operator i is

bounded only.

A.3 Weak convergence in Banach spaces

Lemma A.3.1 Let E be a Banach space, ‖ · ‖ its norm, and fn : E → R a

sequence of functions for n = 1, 2, . . .. If fn is equicontinuous and pointwisely

convergent on a dense subset D ⊂ E, then fn is pointwisely convergent

everywhere.

Proof. Let a ∈ E. Since D is dense in E, there is a b ∈ D such that for every

ε there is a δ such that ‖a− b‖ < δ and |fn(b)− fn(a)| < ε

3
. For any m > n,
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we have

|fm(a)− fn(a)| ≤ |fm(a)− fm(b)|+ |fm(b)− fn(b)|+ |fn(b)− fn(a)|

<
2ε
3

+ |fm(b)− fn(b)|

But fn(b) is convergent, it is shown that fn(a) is a Cauchy sequence. Q.E.D.

Lemma A.3.2 Let E be a normed space, ‖ · ‖ its norm and ‖ · ‖E′ the norm

of its dual space. Let xn be a sequence in E for n = 1, 2, . . ., x ∈ E. The

followings are equivalent:

(i) xn → x in E weakly

(ii) xn is bounded and for all S ⊂ E
′ such that span S = E

′ satisfies

lim
n→∞

f(xn) = f(x) for all f ∈ S.

Proof. (i)⇒(ii). Assuming that xn → x in E weakly, then xn is bounded.

Moreover, for all f ∈ E ′ , we have lim
n→∞

f(xn) = f(x). Hence for all S ⊂ E
′

such that span S = E
′ we have lim

n→∞
f(xn) = f(x) for all f ∈ S.

(ii)⇒ (i). Assume that ‖xn‖ is bounded by some constant M > 0 and

for all S ⊂ E
′ such taht span S = E

′ satisfies limn→∞ f(xn) = f(x) for all

f ∈ S. Take arbitrary g ∈ span S, then g =
m∑

k=1
αkfk for αk ∈ R and fk ∈ S.

This gives us lim
n→∞

g(xn) = g(x). Now, take arbitrary g ∈ E ′ = span S, then

g = lim
k→∞

gk for some sequence gk in span S. Fix ε > 0. Since g = lim
k→∞

gk,
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there is K ∈ N such that ‖g − gk‖E′ ≤ ε for all k > K. Then

|g(xn)− g(x)| ≤ |g(xn)− gk(xn)|+ |gk(xn)− gk(x)|+ |gk(x)− g(x)|

≤ ‖g − gk‖E′‖xn‖+ |gk(xn)− gk(x)|+ ‖gk − g‖E′‖x‖

≤ εM + |gk(xn)− gk(x)|+ ε‖x‖
(A.13)

We take a limit n→∞ in the above inequality, then

lim sup
n→∞

|g(xn)− g(x)| ≤ εM + lim
n→∞

|gk(xn)− gk(x)|+ ε‖x‖

Since gk ∈ span S, we have lim
n→∞

|gk(xn)− gk(x)| = 0 and we get

lim sup
n→∞

|g(xn)− g(x)| ≤ εM + ε‖x‖.

Since ε > 0 is arbitrary, we obtain lim sup
n→∞

|g(xn) − g(x)| = 0. This implies

that lim
n→∞

g(xn) = g(x). Since g ∈ E
′ is arbitrary, the proof is completed.

Q.E.D.

Lemma A.3.3 Let X be a Banach space, D a dense subset of X ′ , xn, n =

1, 2, . . . the bounded sequence in X. If g(xn) → g(x) for all g ∈ D, then

xn → x weakly in X.

Proof. If xn is a bounded sequence in X, it is an equicontinuous sequence

as a sequence of functions X ′ → R. And xn is pointwisely convergent on D

by the hypothesis. Using Lemma A.3.1, xn is pointwisely convergent. By

Lemma A.3.2, since xn is bounded in norm by the hypothesis, we conclude

that xn is weakly convergent to x in X. Q.E.D.
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Lemma A.3.4 Let X, Y be two normed space and T : X → Y the bounded

linear operator. If xn → x weakly in X, then Txn → Tx.

Proof. Let y∗ ∈ Y ′ . We can define x∗ = y∗T ∈ X ′ . So

y∗(Txn) = (y∗T )(xn) = x∗(xn)→ x∗(x) = (y∗T )(x) = y∗(Tx).

Q.E.D.

Corollary A.3.1 Let Γ ⊂ ∂Ω. There is a trace operator Tr : L2(0, T ;H1(Ω))→

L2(0, T ;H 1
2 (S)) such that: If xn → x weakly in L2(0, T ;H1(Ω)), then Trxn →

Trx weakly in L2(0, T ;H 1
2 (Γ)).

Proof. By Section 5.7 in [77], there exists a trace operator Tr : L2(0, T ;H1(Ω))→

L2(0, T ;H 1
2 (Γ)) which is linear and bounded. By Lemma A.3.4, the proof is

completed. Q.E.D.
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Appendix B

A simplified model with surface

reaction

We assume that Ω ⊂ Rd be a bounded open domain. For Sobolov space, the

norm of W k,p(Ω) space is denoted by ‖ · ‖k,p for p > 0, k ≥ 0. If p = 2, the

norm is denoted by ‖ · ‖k. For weighted Sobolev space, we denote the norm

of Hk
ρ (Ω) by ‖ · ‖ρ,k for k ∈ N, ρ any function satisfying ρ,

1
ρ
∈ L1(Ω). If

k = 0, we denote the norm of L2
ρ(Ω) by ‖ · ‖ρ for simplicity. We denote the

inner product for L2
ρ(Ω) by (·, ·)ρ. For convenience, we denote the generic

constant by C or Cj, j = 1, 2, . . ..

B.1 Modeling equations

We assume that there are two chemical species s and k involving in the

surface reaction in terms of the mixed potential (see (3.20)). Let Ej be the

147
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constant with subscripts j = s, k representing the ion to be plated and the

anodic ion involving in the surface reaction, respectively. Without loss of

generality, we assume that 0 > Es > Ek. For the physical system, we assume

that the chemical reaction satisfying electron balance on the reaction surface

S ⊂ ∂Ω, the convective effect in system (3.26)-(3.26) is negligible, and the

densities satisfy ρl >> ρg > 0. For simplicity, we further assume that the

saturation concentration can be neglected. That is, we require that

ug = ul = 0, csat = 0. (B.1)

Employing (B.1) into (3.3), we get

∂trl = −K
ρ̃g

rlcg, (B.2)

where 1
ρ̃g

:= 1
ρg

− 1
ρl

. The assumption (B.1) tells us that the momentum

balance equations (3.27) are dropped. The remaining equations (3.5) with

the assumption (B.1) can be rewritten as

rl∂tcj −Dj∇ · (rl∇cj) = 0, j 6= g

rl∂tcg −Dg∇ · (rl∇cg) + KgMg

ρl

rlcg = 0
(B.3)

Since there are only two chemical species s and k involving in the surface re-

action, (B.2), (B.3) and the boundary conditions (3.19)-(3.20) with electrical

neutrality assumption lead to the system:
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∂trl = −K
ρg

rlcg, in Ω× (0, T ],

rl∂tcg −Dg∇ · (rl∇cg) + KgMg

ρl

rlcg = 0, in Ω× (0, T ],

rl∂tcs −Ds∇ · (rl∇cs) = 0, in Ω× (0, T ],

rl∂tck −Dk∇ · (rl∇ck) = 0, in Ω× (0, T ],

(B.4)

subject to the boundary conditions

−Ds
∂cs

∂n = |Is|
zsF

, −Dk
∂ck

∂n = |Ik|
zkF

, −Dg
∂cg

∂n
= −β|Is|

zsF
on S,

∂cs

∂n = ∂ck

∂n = ∂cg

∂n 0, on ∂Ω \ S × (0, T ]
(B.5)

for some constant β > 0. The initial conditions rl(0) = r0
l , cs(0) = c0

s,

ck(0) = c0
k, cg(0) = c0

g are all in H1(Ω) satisfying

0 < c0
s, c

0
k, c

0
g ≤ 1, 0 < ε < r0

l ≤ 1 in Ω (B.6)

for some constant ε > 0. In the above, Is and Ik satisfy (3.20) with j = s, k

respectively and we further assume that γs = γk = 1. For electron balance,

we have the constrain:

Is + Ik = 0, on S. (B.7)

We shall note that we replace ρ̃g with ρg in (B.4) by an abuse of notation.

Remark B.1.1 In (B.4), we employ cg instead of c+
g in the second term of

the first equation and the third term of the second equation. We will show

that cg is nonnegative with a proper initial condition.
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B.2 Time-discrete problem

Let N > 0 be an integer and δt = T/N be the time step. To study the exis-

tence and the stability of (B.4)-(B.7), we consider the time-discrete problem:

rm+1
l − rm

l

δt
= −Kg

ρg

rm+1
l cm

g

rm+1
l cm+1

g − rm+1
l cm

g

δt
−∇ · (Dgr

m+1
l ∇cm+1

g ) + MgKg

ρl

rm+1
l cm+1

g = 0

rm+1
l cm+1

s − rm+1
l cm

s

δt
−∇ · (Dsr

m+1
l ∇cm+1

s ) = 0

rm+1
l cm+1

k − rm+1
l cm

k

δt
−∇ · (Dkr

m+1
l ∇cm+1

k ) = 0

(B.8)

with boundary conditions on S:

−Ds
∂cm+1

s

∂n = 1
zsF
|is(Em+1

mix )|cm+1
s , −Dk

∂cm+1
k

∂n = 1
zkF
|ik(Em+1

mix )|cm+1
k , −Dg

∂cm+1
g

∂n
= βDs

∂cm+1
s

∂n
(B.9)

where

is(Em+1
mix ) = Ls

(
exp

(
αszsF (Em+1

mix − Es)
Rθ

)
− exp

(
−βszsF (Em+1

mix − Es)
Rθ

))
,

ik(Em+1
mix ) = Lk

(
exp

(
αkzkF (Em+1

mix − Ek)
Rθ

)
− exp

(
−βkzkF (Em+1

mix − Ek)
Rθ

))
,

is(Em+1
mix )cm+1

s + ik(Em+1
mix )cm+1

k = 0.

In the following context, we define im+1
s := |is(Em+1

mix )|, im+1
k := |ik(Em+1

mix )|.

Let us begin with the upper bound and the lower bound of rl.

Lemma B.2.1 Assume that 0 < ε < rj
l < 1, cj

g ≥ 0, cj
g ∈ H1(Ω) ∩ L∞(Ω)

and rj
l ∈ H1(Ω) for all integer 0 ≤ j ≤ m, then

(i) 0 < ε

1 +Kδt/ρg

< rm+1
l < 1.
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(ii) 1
rm+1

l

∈ L∞(Ω)

(iii) rm+1
l ∈ H1(Ω)

Proof. By the first equation of (B.8), we have

(
1 + Kδt

ρg

cm
g

)
rm+1

l = rm
l . (B.10)

By the assumption cm
g ≥ 0, we have

rm+1
l ≤ 1, ε

1 +Kδt/ρl

< rm+1
l .

This proves (i). Since 1 < 1
rm+1

l

<
1 +Kδt/ρl

ε
, we have proved (ii).

Taking the derivative with respect to xi in (B.10), we have

(
1 + Kδt

ρg

cm
g

)
∂xi
rm+1

l = −Kδt
ρg

rm+1
l ∂xi

cm
g + ∂xi

rm
l . (B.11)

Since ∂xi
rm

l , rm+1
l ∂xi

cm
g are bounded in L2(Ω), we can conclude that ∂xi

rm+1
l

is bounded in L2(Ω). This proves (iii). Q.E.D.

The weak formulation regarding the system (B.8) except its first equation

can be expressed as:

Problem (P̃c):

Let 0 < rm
l , r

m+1
l ≤ 1, rm

l , r
m+1
l ∈ H1(Ω), 0 < cm

s , c
m
k ≤ 1, cm

g ≥ 0,

cm
s , c

m
k , c

m
g ∈ H1

rm
l

(Ω). Find cm+1
s , cm+1

k , cm+1
g ∈ H1

rm+1
l

(Ω) and Em+1
mix ∈ L2(S)

such that

1
δt

(cm+1
s , ws)rm+1

l
+Ds(∇cm+1

s ,∇ws)rm+1
l

+ 1
zsF

(rm+1
l im+1

s cm+1
s , ws)L2(S) = 1

δt
(cm

s , ws)rm+1
l

(B.12)
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1
δt

(cm+1
k , wk)rm+1

l
+Dk(∇cm+1

k ,∇wk)rm+1
l

+ 1
zkF

(rm+1
l im+1

k cm+1
k , wk)L2(S) = 1

δt
(cm

k , wk)rm+1
l

(B.13)
1
δt

(cm+1
g , wg)rm+1

l
+Dg(∇cm+1

g ,∇wg)rm+1
l
− β

zsF
(rm+1

l im+1
s cm+1

s , wg)L2(S)

+ (MgKg

ρl

cm+1
g , wg)rm+1

l
= 1
δt

(cm
g , wg)rm+1

l

(B.14)

(is(Em+1
mix ) + ik(Em+1

mix ), w)L2(S) = 0 (B.15)

for all ws, wk, wg ∈ H1(Ω) and w ∈ L2(S).

B.3 Existence of the time-discrete problem

Proposition B.3.1 If Em+1
mix ∈ B := {w ∈ L2(S)| Ek ≤ w ≤ Es a.e.}

is given, There exist unique solutions (cm+1
s , cm+1

k , cm+1
g ) for Problem (P̃c).

Proof. The existence and uniqueness for cm+1
s , cm+1

k and cm+1
g can be guaran-

teed by a classic theory since (B.12)-(B.14) are linear.

If Em+1
mix is given, we can further obtain the positivity for cm+1

s , cm+1
k and

cm+1
g .

Proposition B.3.2 LetEm+1
mix ∈ B, if cm

s , c
m
k , c

m
g ≥ 0 a.e., then cm+1

s , cm+1
k , cm+1

g ≥

0 a.e..

Proof. Similar to the proof of Proposition 2.4.2, the nonnegativity of cm+1
s , cm+1

k , cm+1
g

can be guaranteed by letting ws = (cm+1
s )−, wk = (cm+1

k )−, wg = (cm+1
g )−.

Q.E.D.
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Proposition B.3.3 Let Em+1
mix ∈ B, 0 < cj

s, c
j
k ≤ 1, Ej

mix ∈ B, for all

0 ≤ j ≤ m. Furthermore, we assume that 0 ≤ c0
g < M for some positive

constant M , we have

cm+1
s , cm+1

k ≤ 1 (B.16)

and there exists a positive constant C depending only on Ω, Dg, T , such that

cm+1
g ≤ C, (B.17)

Proof. To obtain (B.16), we can take ws = (ws − 1)+ and wk = (wk − 1)+ in

(B.12) and (B.13), respectively. The proof of (B.17) is extremely technical

which can be referred to Lemma II 5.7 and Theorem II 6.2 in [78]. Q.E.D.

If the value of mixed potential Em+1
mix is restricted in [Ek, Es], the L∞ norms

of im+1
s , im+1

k are uniformly bounded in terms of Em+1
mix , respectively. By

Thoerem 4 in [79], we have the following:

Lemma B.3.1 (Strong positivity for cm+1
s amd cm+1

k ) Let cm
s , c

m
k ≥ 0,

Em+1
mix ∈ B. Assuming further that there are constant ηm

s , η
m
k > 0 such that

cm
s ≥ ηm

s and cm
k ≥ ηm

k a.e., there are constants ηm+1
s , ηm+1

s > 0 such that

cm+1
s ≥ ηm+1

s , and cm+1
k ≥ ηm+1

k a.e.. Moreover, cm+1
s and cm+1

k are Hölder

continuous in Ω for some exponent 0 < α < 1.

Corollary B.3.1 Assuming that ‖cj
s‖L∞(Ω) is uniformly bounded for all 0 ≤

j ≤ N , there is a generic constant C > 0 such that

‖r
j+1
l − rj

l

δt
‖L∞(Ω) ≤ C (B.18)
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for all 0 ≤ j ≤ N .

To show the existence for the full problem (P̃c), the Browder fixed point

theorem can be applied:

Theorem B.3.1 (Schauder fixed point theorem) LetK be a nonempty

closed convex set in a Banach space. If a function f : K → K is compact,

then f has a fixed point.

Lemma B.3.2 B := {w ∈ L2(S)| Ek ≤ w ≤ Es a.e.} is a closed bounded

convex subset in L2(S).

Proof. Since S is of finite measure, it is obvious that B is bounded. Let

θ ∈ (0, 1), for w1, w2 ∈ B we have θEk ≤ θw1 ≤ θEs and (1 − θ)Ek ≤

(1− θ)w2 ≤ (1− θ)Es. Therefore Ek ≤ θw1 + (1− θ)w2 ≤ Es. This implies

that B is convex. Finally, let x be a limit point of B, there exists a sequence

{xn}∞
n=1 ⊂ B such that

‖xn − x‖L2(S) → 0 as n→∞

This shows that Ek ≤ x ≤ Es almost everywhere on S. This completes the

proof. Q.E.D.

We define the space Wη := {w ∈ H1
rm+1

l

(Ω) | η ≤ w ≤ 1 a.e.}. Given

Lemma B.3.1, we define ηm+1
s , ηm+1

k to be the essential infimum of cm+1
s , cm+1

k ,

respectively. Let us define the mapping Γ1 : B → H := Wηm+1
s
×Wηm+1

k
such

that Γ1(E) is the set of solutions to (P̃cs), and (P̃ck
), respectively, when

letting Em+1
mix = E.
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Lemma B.3.3 Γ1 is a bounded operator.

Proof. Let ws = cm+1
s in (B.12), we have

1
δt
‖cm+1

s ‖2
rm+1

l
+Ds‖∇cm+1

s ‖2
rm+1

l
+ (rm+1

l im+1
s cm+1

s , cm+1
s )L2(S)

= 1
δt

(cm
s , c

m+1
s )rm+1

l

≤ 1
δt
‖cm

s ‖rm
l
‖cm+1

s ‖rm+1
l

≤ ‖cm
s ‖rm

l

(
‖cm+1

s ‖2
rm+1

l
+Dsδt‖∇cm+1

s ‖2
rm+1

l

) 1
2

(B.19)

This shows that the bound for cm+1
s is independent of is. By the same

argument, we can show that cm+1
k is uniformly bounded as well. We recall

that the element in B has a minimal norm ‖Es‖L2(S). There must exists a

sufficiently large constant M > 0 such that

δt

K
ρl

‖cm+1
g ‖L∞(Ω) + 1

δt

∥∥∥∥∥ 1
rm+1

l

∥∥∥∥∥
L∞(Ω)

‖rm
l ‖L∞(Ω)

 1
2

‖cm
s ‖rm

l


≤M‖Es‖L2(S) ≤M‖E‖L2(S)

(B.20)

for all E ∈ B. Q.E.D.

By Corollary 7.3 in [80], we have:

Lemma B.3.4 The trace operator T : H→ L2(S)× L2(S) is compact.

Now we define the operator Γ2 : T (H)→ L2(S) by

Γ2(cs, ck) = cs

ck

, (cs, ck) ∈ H.
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Lemma B.3.5 Γ2 is a bounded operator.

Proof. Let (cs, ck) ∈ T (H), we have, pointwisely
∣∣∣∣ cs

ck

∣∣∣∣ ≤ 1
ηm+1

k

|cs|. (B.21)

Therefore,∥∥∥∥ cs

ck

∥∥∥∥2

L2(S)
≤ 1

(ηm+1
k )2

∫
S
|cs|2dσ ≤

1
(ηm+1

k )2

∫
S
|cs|2 + |ck|2dσ

= 1
(ηm+1

k )2 (‖cs‖2
L2(S) + ‖ck‖2

L2(S))
(B.22)

This completes the proof. Q.E.D.

Finally, we define Γ3 : Γ2(T (H))→ B by

Γ3 : ζ 7→ E,

where E satisfying is(E)ζ + ik(E) = 0 pointwisely.

Lemma B.3.6 Γ3 is a bounded operator.

Proof. We write ζ = ζ(E), we have ζ(E) = −ik(E)
is(E)

. Observing that ik(E) >

0 and is(E) < 0 for E ∈ (Ek, Es), since ik(E) is strictly increasing and

−is(E) is strictly decreasing, we have ζ(E) is strictly increasing. Therefore,

Γ3 is the inverse of ζ. Since ik(E) and is(E) are linear combinations of

exponential function of E, respectively, and is(E) < 0 for E ∈ (Ek, Es), ζ(E)

is differentiable in (Ek, Es). Therefore, we have

ζ
′(E) = 1

Γ′
3(ζ)

.

For any element c = (cs, ck) in T (H), we always have

min(ηm+1
k , ηm+1

s ) ≤ ck

cs

≤ 1
min(ηm+1

k , ηm+1
s )

.
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Now we are going to seek the upper bound of Γ′
3(ζ) for

ζ ∈ [min(ηm+1
k , ηm+1

s ), 1
min(ηm+1

k , ηm+1
s )

]. By the strict monotonity of ζ, there

are constants m and M such that Ek < m < M < Es so that

Γ3([min(ηm+1
k , ηm+1

s ), 1
min(ηm+1

k , ηm+1
s )

]) ⊂ [m,M ].

Let α1 = αszsF

Rθ
, α2 = αkzkF

Rθ
, β1 = βszsF

Rθ
, β2 = βkzkF

Rθ
, we have

ζ
′(E)

= −Lk

Ls

1
(eα1(E−Es) − e−β1(E−Es))2

[
(eα1(E−Es) − e−β1(E−Es))(α2e

α2(E−Ek) + β2e
β2(E−Ek))

− (eα2(E−Ek) − eβ2(E−Ek))(α2e
α2(E−Ek) + β2e

β2(E−Ek))
]

(B.23)

For m ≤ E ≤M , we have

ζ
′(E) ≥ Lk

Ls

(e−β1(M−Es) − eα1(M−Es))(α2e
α2(m−Ek) + β2e

−β2(m−Ek))
(eα1(m−Es) − e−β1(m−Es))2 (B.24)

Therefore, there is a constant M̃ such that |Γ′
3(ζ)| ≤ M̃ for all

ζ ∈ [min(ηm+1
k , ηm+1

s ), 1
min(ηm+1

k , ηm+1
s )

]. Finally we have

|Γ3(ζ)| ≤ min(ηm+1
k , ηm+1

s ) + M̃ |ζ| ≤ (M̃ + 1)|ζ|.

The proof can be completed by integrating the square of the above inequality.

Q.E.D.

Proposition B.3.4 The operator Γ = Γ3 ◦ Γ2 ◦ T ◦ Γ1 : B → B has a fixed

point.

Proof. Since B is convex and closed by Lemma B.3.2 and the composition of
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bounded operator with compact operator (also their commutation) is com-

pact, the existence of the fixed point can be proved by the Schauder fixed

point theorem with Lemmas B.3.3,B.3.4,B.3.5,B.3.6. Q.E.D.

Now, we have the theorem

Theorem B.3.2 If δt > 0 is sufficiently small, the system Problems (P̃c) is

well-posed.

Proof. It remains to prove the uniqueness of the system. Assuming that

(cs1, ck1, E1), (cs2, ck2, E2) ∈ Wηm+1
s
×Wηm+1

k
× B are two different solutions.

If E1 = E2, then we must have cs1 = cs2 and ck1 = ck2 by the uniqueness of

Problems (P̃c). Therefore, we may assume that E1 6= E2 for all δt > 0. By

(B.12) and (B.13), we have

(cs1 − cs2, ws)rm+1
l

+ δtDs(∇(cs1 − cs2), ws)rm+1
l

+ 1
zsF

(rm+1
l (|is(E1)|cs1 − |is(E2)|cs2), ws)L2(S)

+ (ck1 − ck2, wk)rm+1
l

+ δtDk(∇(ck1 − ck2), wk)rm+1
l

+ 1
zkF

(rm+1
l (|ik(E1)|ck1 − |ik(E2)|ck2), wk)L2(S)

= 0.

(B.25)

To estimate the boundary term, we observe pointwisely:

|is(E1)|cs1−|is(E2)|cs2 = |is(E1)|(cs1− cs2)− cs2(|is(E1)|− |is(E2)|). (B.26)
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Using notations in Lemma B.3.6, we have, pointwisely

||is(E1)| − |is(E2)|| = Ls

∣∣∣(eα1(E1−Es) − e−β1(E1−Es))− (eα1(E2−Es) − e−β1(E2−Es)
∣∣∣

≤ Ls

(
α1 + β1e

β1(Es−Ek)
)
|E1 − E2|

≤ Ls

(
α1 + β1e

β1(Es−Ek)
)
M̃
∣∣∣∣ cs1

ck1
− cs2

ck2

∣∣∣∣
≤ Ls

(
α1 + β1e

β1(Es−Ek)
) M̃

(ηm+1
k )2 (|cs1 − cs2|+ |ck1 − ck2|)

(B.27)

Similarly, we have

|is(E1)| − |is(E2)| ≤ Lk(α2e
α2(Es−Ek) + β2)

M̃

(ηm+1
k )2 (|cs1 − cs2|+ |ck1 − ck2|).

(B.28)

Now letting ws = cs1− cs2 and wk = ck1− ck2 in (B.25) and by (B.26)-(B.28)

with Hölder inequality, there is a generic constant C such that

‖cs1 − cs2‖2
rm+1

l
+ ‖ck1 − ck2‖2

rm+1
l

+ δtDs‖∇(cs1 − cs2)‖2
rm+1

l
+ δtDk‖∇(ck1 − ck2)‖2

rm+1
l

≤ Cδt(‖cs1 − cs2‖2
L2(S) + ‖ck1 − ck2‖2

L2(S))
(B.29)

Since ‖ 1
rl

‖L∞(0,T ;L∞(Ω)) is bounded, we also have

‖cs1 − cs2‖2
0 + ‖ck1 − ck2‖2

0 + δtDs‖∇(cs1 − cs2)‖2
0 + δtDk‖∇(ck1 − ck2)‖2

0

≤ Cδt(‖cs1 − cs2‖2
L2(S) + ‖ck1 − ck2‖2

L2(S))
(B.30)

for some constant C > 0. Applying the trace inequality, there is a constant
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C1 > 0 such that

‖cs1 − cs2‖2
L2(S) ≤ C1‖cs1 − cs2‖0‖cs1 − cs2‖1

≤ C1

2ε1
‖cs1 − cs2‖2

0 + C1ε1

2
‖cs1 − cs2‖2

1 = (C1

2ε1
+ C1ε1

2
)‖cs1 − cs2‖2

0 + C1ε1

2
‖∇(cs1 − cs2)‖2

0

(B.31)

for all ε1 > 0. Similarly, there is a constant C2 > 0 such that

‖ck1 − ck2‖2
L2(S) ≤ (C2

2ε2
+ C2ε2

2
)‖ck1 − ck2‖2

0 + C2ε2

2
‖∇(ck1 − ck2‖2

0 (B.32)

for all ε2 > 0. Choosing ε1 = 2Ds

C1
, ε2 = 2Dk

C2
and

δt ≤ min

 1
2
(

C2
1

4Ds
+Ds

) , 1
2
(

C2
2

4Dk
+Dk

)
 ,

we have
1
2
‖cs1 − cs2‖2

0 + 1
2
‖ck1 − ck2‖2

0 ≤ 0. (B.33)

This implies that cs1 = cs2 and ck1 = ck2. Since cs1, cs2, ck1, ck2 ∈ C(Ω), the

unique solvability for (B.15) implies that E1 = E2 on S. This leads to the

contradiction. Q.E.D.

Remark B.3.1 In the above theorem, the choice of δt is independent of the

data of the previous step (cm
s , c

m
k , E

m
mix). Therefore, the unique solution for

time-discrete problem at time t = T can be reached in finite steps.

B.4 Stability analysis

Since the uniform bounds independent of Em+1
mix have been found for L∞

boundedness of cm
s and cm

k , m = 0, . . . , N . Now we provide some results of

stability:
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Lemma B.4.1 Let 0 ≤ c0
j ≤ 1, c0

j ∈ H1(Ω) for j = s, k, g, and E0
mix ∈ B.

There are generic constants C > 0 such that

δt
∑

j=s,k,g

N−1∑
m=0
‖∇cm+1

j ‖2
rm+1

l
≤ C (B.34)

Proof. Letting ws = cm+1
s in (B.12), we have

‖cm+1
s ‖2

rm+1
l

+ δtDs‖∇cm+1
s ‖2

rm+1
l

+ δt(rm+1
l im+1

s cm+1
s , cm+1

s )L2(S)

= (cm
s , c

m+1
s )rm+1

l
≤ ‖cm

s ‖rm
l
‖cm+1

s ‖rm+1
l

≤ 1
2
‖cm

s ‖2
rm

l
+ 1

2
‖cm+1

s ‖2
rm+1

l
.

(B.35)

Similarly, letting wk = cm+1
k in (B.13), we have

‖cm+1
k ‖2

rm+1
l

+ δtDk‖∇cm+1
k ‖2

rm+1
l

+ δt(rm+1
l im+1

k cm+1
k , cm+1

k )L2(S)

≤ 1
2
‖cm

k ‖2
rm

l
+ 1

2
‖cm+1

k ‖2
rm+1

l
.

(B.36)

Once more, letting wg = cm+1
g in (B.14), we have

‖cm+1
g ‖2

rm+1
l

+ δtDg‖∇cm+1
g ‖2

rm+1
l

+ δt
MgKg

ρl

‖cm+1
g ‖2

0

= (cm
g , c

m+1
g )rm+1

l
+ βδt(rm+1

l im+1
s cm+1

s , cm+1
s )L2(S)

≤ 1
2
‖cm

g ‖2
rm

l
+ 1

2
‖cm+1

g ‖2
rm+1

l
+ βδt(rm+1

l im+1
s cm+1

s , cm+1
g )

≤ 1
2
‖cm

g ‖2
rm

l
+ 1

2
‖cm+1

g ‖2
rm+1

l
+ βδt‖is‖L2(S)‖cg‖L2(S)

≤ 1
2
‖cm

g ‖2
rm

l
+ 1

2
‖cm+1

g ‖2
rm+1

l
+ βδt( 1

2ε
‖is‖2

L2(S) + ε

2
‖cg‖L2(S))

≤ 1
2
‖cm

g ‖2
rm

l
+ 1

2
‖cm+1

g ‖2
rm+1

l
+ Cδt( 1

2ε
‖is‖2

L2(S) + ε

2
‖cg‖2

1)

(B.37)

Therefore, we have

(1+δtMgKg

ρl

−Cεδt)‖cm+1
g ‖2

rm+1
l

+δt(2Dg−Cε)‖∇cg‖2
rm+1

l
≤ Cδt

ε
‖is‖L2(S)+‖cm

g ‖2
rm

l

(B.38)
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Taking ε = Dg

C
sufficiently small so that and using the fact that cm+1

g has

a uniform L∞ bound. We can conclude that there exists a generic constant

C > 0 such that

‖∇cm+1
g ‖2

0 ≤ C (B.39)

Collecting (B.35), (B.36), and (B.39) and taking the summation from 0

to T

δt
− 1, the proof is completed. Q.E.D.

Since ‖ 1
rm+1

l

‖L∞(Ω) is bounded for all m = 0, . . . , N , we have

Corollary B.4.1 There are generic constants C > 0 such that

δt
∑

j=s,k,g

N−1∑
m=0
‖∇cm+1

j ‖2
0 ≤ C (B.40)

Lemma B.4.2 There are generic constants C > 0 such that

∑
j=s,k,g

N−1∑
m=0
‖rm+1

l (cm+1
j − cm

j )‖2
0 ≤ C. (B.41)

Proof. The proof is almost identical to Lemma B.4.1 with the fact that

(rm+1
l cm+1

j − cm
j , c

m+1
j )

= 1
2
‖cm+1

j ‖2
rm+1

l
+ 1

2
‖cm

j − cm
j ‖2

rm+1
l
− 1

2
‖cm

j ‖2
rm+1

l

≤ 1
2
‖cm+1

j ‖2
rm+1

l
+ 1

2
‖cm

j − cm
j ‖2

rm+1
l
− 1

2
‖cm

j ‖2
rm

l

(B.42)

Q.E.D.

Lemma B.4.3 There are generic constants C > 0 such that

δt
∑

j=s,k,g

N−1∑
m=0

∥∥∥∥∥r
m+1
l (cm+1

j − cm
j )

δt

∥∥∥∥∥
2

(H1(Ω))′
≤ C (B.43)
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Proof. We only look for the boundedness of cs and the case is similar for k

and dis. By definition

∥∥∥∥∥r
m+1
l (cm+1

s − cm
s )

δt

∥∥∥∥∥
(H1(Ω))′

= sup
ws∈H1(Ω)

〈
rm+1

l (cm+1
s − cm

s )
δt

, ws

〉
(B.44)

By (B.12), with w = ws

‖ws‖1
∈ H1(Ω),

∥∥∥∥∥r
m+1
l (cm+1

s − cm
s )

δt

∥∥∥∥∥
(H1(Ω))′

= sup
w∈H1(Ω),‖w‖1=1

{
−Ds(∇cm+1

s ,∇w)rm+1
l
− 1
zsF

(rm+1
l |im+1

s |cm+1
s , w)L2(S)

}
(B.45)

We estimate all terms on the right hand side of (B.45):

−Ds(∇cm+1
s ,∇w)rm+1

l
≤ Ds‖∇cm+1

s ‖rm+1
l
‖∇w‖rm+1

l

≤ Ds‖∇cm+1
s ‖rm+1

l
‖∇w‖ ≤ Ds‖∇cm+1

s ‖rm+1
l
‖w‖1 ≤ Ds‖∇cm+1

s ‖rm+1
l

,

(B.46)

− 1
zsF

(rm+1
l |im+1

s |cm+1
s , w)L2(S) ≤

1
zsF
|is(Ek)|‖cm+1

s ‖L2(S)‖w‖L2(S)

≤ C‖cm+1
s ‖1‖w‖1 = C‖cm+1

s ‖1,

(B.47)

Collecting (B.46)-(B.47) and multiplying by δt gives

δt

∥∥∥∥∥r
m+1
l (cm+1

s − cm
s )

δt

∥∥∥∥∥
2

(H1(Ω))′
≤ Cδt(‖cm

s ‖2
1 + ‖cm+1

s ‖2
1). (B.48)

Taking the summation from 0 to N − 1 and the boundedness given by Corol-

laray B.4.1 and Lemma B.3.3, we have the desired estimate. Q.E.D.

Corollary B.4.2 There are generic constants C > 0 such that

δt
∑

j=s,k,g

N−1∑
m=0

∥∥∥∥∥c
m+1
j − cm

j

δt

∥∥∥∥∥
2

(H1(Ω))′
≤ C (B.49)
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Proof. This is the direct result from Lemma B.4.3 and the fact that rm+1
l is

bounded in L∞(Ω). Q.E.D.

Corollary B.4.3 There are generic constants C > 0 such that

δt
∑

j=s,k,g

N−1∑
m=0

∥∥∥∥∥r
m+1
j cm+1

j − rm
j c

m
j

δt

∥∥∥∥∥
2

(H1(Ω))′
≤ C (B.50)

Proof. By the relation

rm+1
l cm+1

j − rm
l c

m
j = rm+1

l (cm+1
j − cm+1

j ) + cm
s (rm+1

l − rm
l ), 0 ≤ m ≤M − 1,

the desired result can be obtained by collecting Lemma B.4.3, Corollary B.

4.2 and the L∞ boundedness of rm
l for all 0 ≤ m ≤ N . Q.E.D.

Lemma B.4.4 Assuming that rj
l ∈ H1(Ω), 0 < rj

l ≤ 1, cj
g ∈ H1(Ω)∩L∞(Ω),

cj
g ≥ 0 for all 0 ≤ j ≤ m ≤ N , then we have the estimate

‖∇rk
l ‖2

0 ≤ exp
(
KgT

ρg

)
(‖∇r0

l ‖2
0 + Kgδt

ρg

N−1∑
m=0
‖∇cm

g ‖2
0). (B.51)

Proof. Multiplying (C.11) with ∂xi
rm+1

l and integrating the both sides with

respect to Ω, we have
∫

Ω
(1 + Kδt

ρg

cm
g )|∇rm+1

l |2dx = −Kδt
ρg

∫
Ω
∇cm

g · ∇rm+1
l dx+

∫
Ω
∇rm

l · ∇rm+1
l dx

≤ Kδt

ρg

‖∇cm
g ‖0‖∇rm+1

l ‖0 + ‖∇rm
l ‖0‖∇rm+1

l ‖0

≤ 1
2
‖∇rm

l ‖2
0 + 1

2
(1 + Kδt

ρg

)‖∇rm+1
l ‖2

0 + 1
2
Kδt

ρg

‖∇cm
g ‖2

0.

(B.52)

The above inequality leads to

(1− Kδt

ρg

)‖∇rm+1
l ‖2

0 ≤ ‖∇rm
l ‖2

0 + Kδt

ρg

‖∇cm
g ‖2

0. (B.53)
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Taking the summation from 0 to N − 1, we have

‖∇rj
l ‖2

0 ≤
(

1− Kδt

ρg

)−N

(‖∇r0
l ‖2

0 + Kδt

ρg

N−1∑
m=0
‖∇cm

g ‖2
0) (B.54)

for all 0 ≤ j ≤ N . Since δt = T/N , we have

(1− Kgδt

ρg

)−N = (1− KgT

Nρg

)−N ≤ exp(KgT

ρg

)

Employing the above inequality to (B.54), the proof is completed. Q.E.D.

B.5 Passage to limit δt→ 0

Let us define

rl,δ : [0, T ]→ H1(Ω), rl,δ(t) = rj
l if t ∈ ((j − 1)δt, jδt], (B.55)

rl,h : [0, T ]→ H1(Ω), rl,h(t) = t− (j − 1)δt
δt

rj
l +
jδt− t
δt

rj−1
l if t ∈ ((j−1)δt, jδt],

(B.56)

cdis,δ : [0, T ]→ H1(Ω), cg,δ(t) = cj
g if t ∈ ((j − 1)δt, jδt], (B.57)

cs,δ : [0, T ]→ H1(Ω), cs,δ(t) = cj
s if t ∈ ((j − 1)δt, jδt] (B.58)

ck,δ : [0, T ]→ H1(Ω), ck,δ(t) = cj
k if t ∈ ((j − 1)δt, jδt] (B.59)

cdis,h : [0, T ]→ H1(Ω),

cdis,h(t) = t− (j − 1)δt
δt

cj
g + jδt− t

δt
cj−1

g if t ∈ ((j − 1)δt, jδt],
(B.60)

cs,h : [0, T ]→ H1(Ω),

cs,h(t) = t− (j − 1)δt
δt

cj
s + jδt− t

δt
cj−1

s if t ∈ ((j − 1)δt, jδt],
(B.61)
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ck,h : [0, T ]→ H1(Ω),

ck,h(t) = t− (j − 1)δt
δt

cj
k + jδt− t

δt
cj−1

k if t ∈ ((j − 1)δt, jδt],
(B.62)

cdis,δ− : [0, T ]→ H1(Ω), cdis,δ(t) = cj−1
g if t ∈ ((j − 1)δt, jδt] (B.63)

cs,δ− : [0, T ]→ H1(Ω), cis,δ(t) = cj−1
s if t ∈ ((j − 1)δt, jδt] (B.64)

ck,δ− : [0, T ]→ H1(Ω), ck,δ(t) = cj−1
k if t ∈ ((j − 1)δt, jδt] (B.65)

Emix,δ : [0, T ]→ L2(S), Emix,δ(t) = Ej
mix if t ∈ ((j − 1)δt, jδt] (B.66)

(rlcg)h : [0, T ]→ H1(Ω), (rlcg)h(t) = t− (j − 1)δt
δt

rj
l c

j
g+jδt− t

δt
rj−1

l cj−1
g if t ∈ ((j−1)δt, jδt],

(B.67)

(rlcs)h : [0, T ]→ H1(Ω), (rlcs)h(t) = t− (j − 1)δt
δt

rj
l c

j
s+
jδt− t
δt

rj−1
l cj−1

s if t ∈ ((j−1)δt, jδt],

(B.68)

(rlck)h : [0, T ]→ H1(Ω), (rlck)h(t) = t− (j − 1)δt
δt

rj
l c

j
k+jδt− t

δt
rj−1

l cj−1
k if t ∈ ((j−1)δt, jδt],

(B.69)

With the above notations, the system of discrete equations can be expressed

as:

〈∂trl,h, w〉+ (Kg

ρg

rl,δcdis,δ−) = 0 (B.70)

〈rl,δ∂tcdis,h, wg〉+Dg(rl,δ∇cdis,δ,∇wg) + MgKg

ρl

(rl,δcdis,δ, wg)

= β

zsF
(rl,δ|ig(Emix,δ)|cdis,δ, wg)L2(S),

(B.71)

〈rl,δ∂tcs,h, ws〉+Ds(rl,δ∇cs,δ,∇ws) + 1
zsF

(rl,δ|is(Emix,δ)|cs,δ, ws)L2(S) = 0,

(B.72)

〈rl,δ∂tck,h, wk〉+Dk(rl,δ∇ck,δ,∇wk) + 1
zkF

(rl,δ|ik(Emix,δ)|ck,δ, wk)L2(S) = 0

(B.73)
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Here we collect the boundedness of functions given by (B.58)-(B.66): By

Lemmas B.3.2, B.3.3 and B.4.1, cdis,δ, cs,δ, ckδ, cdis,δ−, cs,δ−, ck,δ− are uniformly

bounded in L2(0, T ;H1(Ω)). Since Emix,δ is always bounded in B for all

time, Emix,δ is uniformly bounded in L2(0, T ;L2(S)). Therefore, there are

rl, r
∗
l , cg, cs, ck, c

∗
g, c

∗
s, c

∗
k, Emix such that there exist subsequences of rl,δ, rl,h, cdis,δ, cs,δ,

ck,δ, cdis,δ−, cs,δ−, ck,δ− (still denote by same notations) satisfying

rl,δ → rl in L2(0, T ;H1(Ω)) weakly, (B.74)

rl,h → r∗
l in L2(0, T ;H1(Ω)) weakly, (B.75)

cdis,δ → cg in L2(0, T ;H1(Ω)) weakly, (B.76)

cs,δ → cs in L2(0, T ;H1(Ω)) weakly, (B.77)

ck,δ → ck in L2(0, T ;H1(Ω)) weakly, (B.78)

cdis,δ− → c∗
g in L2(0, T ;H1(Ω)) weakly, (B.79)

cs,δ− → c∗
s in L2(0, T ;H1(Ω)) weakly, (B.80)

ck,δ− → c∗
k in L2(0, T ;H1(Ω)) weakly, (B.81)

Emix,δ → Emix in L2((0, T )× S) weakly. (B.82)
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For the time derivatives, by Lemma B.4.3, Corollaries B.4.2 and B.4.2, there

are g1, g2, g3, g4, g5, g6, g7 such that

∂trl,h → g1 in L2(0, T ;L2(Ω)) weakly, (B.83)

∂tcdis,h → g2 in L2(0, T ; (H1(Ω))′) weakly, (B.84)

∂tcs,h → g3 in L2(0, T ; (H1(Ω))′) weakly, (B.85)

∂tck,h → g4 in L2(0, T ; (H1(Ω))′) weakly, (B.86)

∂t(rlcg)h → g5 in L2(0, T ; (H1(Ω))′) weakly, (B.87)

∂t(rlcs)h → g6 in L2(0, T ; (H1(Ω))′) weakly, (B.88)

∂t(rlck)h → g7 in L2(0, T ; (H1(Ω))′) weakly, (B.89)

Remark B.5.1 By the L2(0, T ;H1(Ω)) boundedness of rl,δcj,δ for j = s, k, dis,

it is easy to conclude that

rl,δcj,δ → rlcj in L2(0, T ;H1(Ω)) weakly. (B.90)

Lemma B.5.1 There are generic constants C > 0 such that

∑
j=s,k,g

∫ T

0
‖rl,δ(cj,δ − cj,h)‖2

0dt ≤ Cδt (B.91)

Proof. By the definition of (B.55), (B.58), and (B.61), we have

∫ jδt

(j−1)δt
‖rl,δ(cs,δ − cs,h)‖2

0dt = δt

3
‖rj

l (cj
s − cj−1

s )‖2
0 (B.92)
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Taking the summation from j = 1 to j = T/δt, we get
∫ T

0
‖rl,δ(cs,δ − cs,h)‖2

0dt =
N∑

j=1

∫ jδt

(j−1)δt
‖rl,δcs,δ − (rlcs)h‖2

0dt

= δt

3

m∑
j=0
‖rj

l (cj
s − cj−1

s )‖2
0 ≤ Cδt

(B.93)

for some constant C > 0 by Lemma B.4.2. The same proof can be used to

show the boundedness for rl,δ(ck,δ − ck,h) and rl,δ(cdis,δ − cdis,h). Q.E.D.

Lemma B.5.2

cg = c∗
g, cs = c∗

s, ck = c∗
k, a.e. in [0, T ]× Ω (B.94)

Proof. Since there is a uniform L∞ bound of 1
rm

l

for all 0 ≤ m ≤ N , there is

a constant C > 0 such that

C‖cm+1
j − cm

j ‖0 ≤ ‖rm+1
l (cm+1

j − cm
j )‖0, j = s, k, dis. (B.95)

Lemma B.4.2 directly leads to the desired result.Q.E.D.

Remark B.5.2 By a classical argument, see for instance [41], we have

g1 = ∂trl, g2 = ∂tcg, g3 = ∂tcs, g4 = ∂tck, g5 = ∂t(rlcg), g6 = ∂t(rlcs), g7 = ∂t(rlck)

(B.96)

In order to pass the limit in (B.70)-(B.73), we look into (B.72) firstly and

take any w = v(x)λ(t), where v ∈ W 1,∞(Ω) and λ ∈ W 1,∞
0 (0, T ). Then

−
∫ T

0
((rlcs)h, v)λ′(t)dt−

∫ T

0
(cs,δ−∂trl,h, v)λ(t)dt+

∫ T

0
Ds(rl,δ∇cs,δ,∇v)λdt

+ 1
zsF

∫ T

0
(rl,δ|is(Emix,δ)|cs,δ, v)L2(S)λdt = 0

(B.97)
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For the first term in (B.72), we have

−
∫ T

0
((rlcs)h, v)λ′(t)dt→ −

∫ T

0
(rlcs, v)λ′(t)dt =

∫ T

0
〈∂t(rlcs), v〉(H1(Ω))′ ,H1(Ω)λ(t)dt.

(B.98)

Since ∂trl,δ converges to ∂trl weakly in L2((0, T )×Ω) and cs,δ− converges to

cs in L2(0, T )× Ω) by Aubin-Lions lemma, we have

∫ T

0
(cs,δ−∂trl,h, v)λ(t)dt→

∫ T

0
(cs∂trl, v)λ(t)dt. (B.99)

Since rl,δ is strongly convergent in L2((0, T ) × Ω) (by Aubin-Lions lemma)

and ∂xi
cs,δ is weakly convergent in L2((0, T ) × Ω) for any direction xi, we

have
∫ T

0
Ds(rl,δ∇cs,δ,∇v)λdt→

∫ T

0
Ds(rl∇cs,∇v)λdt. (B.100)

To deal with the fourth term, Theorem 1 in [81] can be applied. By the

Rellich-Kondrachov theorem, we have the compact embedding H1(Ω) ↪→

Hs(Ω) for all 0 ≤ s < 1. On the other hand, Hs is continuously embedded

in (H1(Ω))′ . Let u be an arbitrary function defined on [0, T ] × Ω. We

define στu(t, x) = u(t − τ, x) in [τ, T ] × Ω for 0 < τ < T . We claim that

δt−1‖rl,δcs,δ − σδt(rl,δcs,δ)‖L1(δt,T ;(H1(Ω))′ ) is uniformly bounded.

Lemma B.5.3 There are generic constants C1, C2 > 0 such that

‖rl,δcs,δ−σδt(rl,δcs,δ)‖L1(τ,T ;(H1(Ω))′ ) ≤ C1δt, ‖rl,δck,δ−σδt(rl,δck,δ)‖L1(τ,T ;(H1(Ω))′ ) ≤ C2δt

(B.101)
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Proof. We prove the bound for cs,δ only. By definition of cs,δ, we have

‖rl,δcs,δ − σδt(rl,δcs,δ)‖L1(τ,T ;(H1(Ω))′ ) =
∫ T

τ
‖rl,δcs,δ − σδt(rl,δcs,δ)‖(H1(Ω))′dt

=
N−1∑
m=1

∫ (m+1)δt

mδt
‖rl,δcs,δ − σδt(rl,δcs,δ)‖(H1(Ω))′dt ≤ δt

N−1∑
m=0
‖rm+1

s cm+1
s − rm

s c
m
s ‖(H1(Ω))′

= δt2
N−1∑
m=0

∥∥∥∥∥rm+1
s cm+1

s − rm
s c

m
s

δt

∥∥∥∥∥
(H1(Ω))′

≤ δt2
N−1∑
m=0

∥∥∥∥∥rm+1
s cm+1

s − rm
s c

m
s

δt

∥∥∥∥∥
2

(H1(Ω))′
+ 1

2

 ≤ (C + 1
2
T )δt

for some generic constant C > 0 (by Lemma B.4.3). Q.E.D.

Now using Theorem 1 in [81], we have in particular

rl,δcs,δ → rlcs in L2(0, T ;H 3
4 (Ω)) strongly (B.102)

rl,δck,δ → rlck in L2(0, T ;H 3
4 (Ω)) strongly (B.103)

Regarding the trace operator TS : L2(0, T ;H 3
4 (Ω)) → L2(0, T ;H 1

2 (S)) is

continuous, we have

rl,δcs,δ → rlcs in L2(0, T ;H 1
4 (S)) strongly (B.104)

rl,δck,δ → rlck in L2(0, T ;H 1
4 (S)) strongly (B.105)

Since is is strongly negative on B, |is| : B → L2(S) preserves the continuity

and boundedness. Therefore, |is(Emix,δ)| → |is(Emix)| weakly in L2((0, T )×

S). Likewise, ik : B → L2(S) is continuous. Therefore, ik(Emix,δ)→ ik(Emix)

weakly in L2((0, T )× S). The strong convergence of rl,δcs,δ in L2((0, T )× S)

implies that

1
zsF

∫ T

0
(rl,δ|is(Emix,δ)|cs,δ, v)L2(S)λdt→

1
zsF

∫ T

0
(rl|is(Emix)|cs, v)L2(S)λdt

(B.106)
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Therefore
∫ T

0
〈rl∂tcs, v〉(H1(Ω))′ ,H1(Ω) +

∫ T

0
Ds(rl∇cs,∇v)λdt

+ 1
zsF

∫ T

0
(rl|is(Emix)|cs, v)L2(S)λdt = 0

(B.107)

for all λ ∈ W 1,∞
0 (0, T ) and for all v ∈ W 1,∞(Ω). By a totally same argument,

we have
∫ T

0
〈rl∂tck, v〉(H1(Ω))′ ,H1(Ω)λdt+

∫ T

0
Dk(rl∇ck,∇v)λdt

+ 1
zkF

∫ T

0
(rl|ik(Emix)|ck, v)L2(S)λdt = 0

(B.108)

for all λ ∈ W 1,∞
0 (0, T ) and for all v ∈ W 1,∞(Ω). Moreover, since is(Emix,δ)cs,δ+

ik(Emix,δ)ck,δ = 0 in (0, T )× S for all δt and

∫ T

0
(is(Emix,δ)cs,δ + ik(Emix,δ)ck,δ, v)λdt→

∫ T

0
(is(Emix)cs + ik(Emix)ck, v)λdt

(B.109)

for all λ ∈ W 1,∞
0 (0, T ) and for all v ∈ W 1,∞(Ω). Therefore the resctriction

is(Emix)cs + ik(Emix)ck = 0 holds.

Since rl,δ, cdis,δ are strongly convergent in L2((0, T )× Ω), we have

∫ T

0
(rl,δcdis,δ, v)λ(t)dt→

∫ T

0
(rlcg, v)λ(t)dt (B.110)

Employing the same argument as for s and k, we have

∫ T

0
〈rl∂tcg, v〉(H1(Ω))′ ,H1(Ω) +

∫ T

0
Dg(rl∇cg,∇v)λdt

+ KgMg

ρl

∫ T

0
(rl,δcdis,δ, v)λ(t)dt→

∫ T

0
(rlcg, v)λ(t)dt− β

zsF

∫ T

0
(rl|is(Emix)|cs, v)L2(S)λdt = 0

(B.111)

for all λ ∈ W 1,∞
0 (0, T ) and for all v ∈ W 1,∞(Ω).
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To recover the initial conditions, we take λ ∈ W 1,∞(0, T ), λ(T ) = 0,

λ(0) 6= 0, and v ∈ W 1,∞(Ω). We consider (B.97) such that all terms are

identical except the first one:

∫ T

0
(∂t(rlcs)h, v)λdt =

∫ T

0
∂t((rlcs)h, v)λdt = −

∫ T

0
((rlcs)h, v)λ′(t)dt−(r0

l c
0
s, v)λ(0).

(B.112)

When passing to the limit, we get
∫ T

0
〈∂t(rlcs)h, v〉(H1(Ω))′ ,H1(Ω)λdt = −

∫ T

0
(rlcs, v)λ′(t)dt− (r0

l c
0
s, v)λ(0)

=
∫ T

0

d

dt
(rlcs, v)λdt+ (rl(0)cs(0), v)λ(0)− (r0

l c
0
s, v)λ(0)

=
∫ T

0
〈∂t(rlcs), v〉(H1(Ω))′ ,H1(Ω)λdt+ (rl(0)cs(0), v)λ(0)− (r0

l c
0
s, v)λ(0).

(B.113)

Therefore

(rl(0)cs(0), v) = (r0
l c

0
s, v), ∀v ∈ H1(Ω) ∩W 1,∞(Ω)

This implies that rl(0)cs(0) = r0
l cs(0) = r0

l c
0
s. Since r0

l > 0, by copying the

same argument for rl, ck and cg, we may conclude the above result by the

theorem:

Theorem B.5.1 There exists rl, cg, cs, ck ∈ L2(0, T ;H1(Ω)), Emix in L2(0, T ;B)

with ∂trl, ∂tcg, ∂tcs, ∂tck ∈ L2(0, T ; (H1(Ω))′) such that

∫ T

0
(∂trl, w)dt+ Kg

ρg

∫ T

0
(rlcg, w)dt = 0 (B.114)

∫ T

0
〈rl∂tcg, wg〉(H1(Ω))′ ,H1(Ω)dt+

∫ T

0
Dg(rl∇cg,∇wg)dt

− β

zsF

∫ T

0
(rl|is(Emix)|cs, ws)L2(S)dt+ KgMg

ρl

∫ T

0
(rlcg, wg)dt = 0,

(B.115)
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∫ T

0
〈rl∂tcs, ws〉(H1(Ω))′ ,H1(Ω)dt+

∫ T

0
Ds(rl∇cs,∇ws)dt

+ 1
zsF

∫ T

0
(rl|is(Emix)|cs, ws)L2(S)dt = 0,

(B.116)

∫ T

0
〈rl∂tck, wk〉(H1(Ω))′ ,H1(Ω)dt+

∫ T

0
Dk(rl∇ck,∇ws)dt

+ 1
zkF

∫ T

0
(rl|ik(Emix)|ck, wk)L2(S)dt = 0,

(B.117)

satisfying the constraint

∫ T

0
(is(Emix)cs + ik(Emix)ck, we)L2(S)dt (B.118)

for all w,wg, ws, wk ∈ L2(0, T ;H1(Ω)) and for all we ∈ L2((0, T ) × S).

Moreover, rl, cg, cs, ck satisfy the initial conditions rl(0) = r0
l , cg(0) = c0

g,

cs(0) = c0
s, ck(0) = c0

k with 0 < r0
l ≤ 1, 0 ≤ c0

g ≤ 1, 0 < c0
s, c

0
k ≤ 1,

r0
l , c

0
g, c

0
s, c

0
k ∈ H1(Ω).

Remark B.5.3 The solution (rl, cg, cs, ck, Emix) is unique by Theorem B.

3.2.

B.6 Several species case

The results for two species case can be generalized to N + 1 species case,

N > 2. Let Ej be the constants defined in Section 2 with subscripts j =

s, k1, . . . , kN , where s means the ion to be plated and k1, . . . kN mean other

ions involving in the surface reaction. We assume that 0 > Ek1 > · · · > Es >

· · · > EkN
. Again, we assume that the chemical reaction satisfying electron

balance on the reaction surface S ⊂ ∂Ω and the convective effect in system
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(3.26)-(3.28) can be neglected. We assume the same regularity for rl and cg

as in two species case. Te system of equations can be expressed as

∂trl + Kg

ρg

cg = 0 in Ω× (0, T ]

rl∂tcg −∇ · (rlD∇cg) + KgMg

ρl

rlcg = 0 in Ω× (0, T ]

∂t(rlΘ)−∇ · (rlD∇Θ) = 0 in Ω× (0, T ]

(B.119)

subject to the boundary conditions

−Dj
∂cj

∂n = |Ij|
zjF

, on S× (0, T ], ∂cj

∂n = 0, on (∂Ω\S)× (0, T ] (B.120)

for j = s, k1, . . . , kN , and

−Dg
∂cg

∂n = β|Is|
zsF

, on S×(0, T ], ∂cg

∂n = 0, on (∂Ω\S)×(0, T ] (B.121)

The initial conditions are given by rl(0) = r0
l ∈ H1(Ω), cj(0) = c0

j ∈ H1(Ω)

satisfying

0 < c0
j ≤ 1, 0 < r0

l ≤ 1, in Ω (B.122)

for j = dis, s, k1, . . . , kN . In the above Θ = (cs, ck1 , . . . , ckN
)T . The constraint

for electrons balance reads

Is +
N∑

l=1
Ikl

= 0. (B.123)

Here, we omit the semi-discrete scheme for solving rl and cg since there is

nothing different from the two-species case. The time-discrete problem for

species j = s, k1, . . . , kN can be expressed as:

rm+1
l (cm+1

j − cm
j )

δt
−∇ · (Djr

m+1
l ∇cm+1

j ) = 0 (B.124)
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with boundary conditions on S

−Dj

∂cm+1
j

∂n = 1
zjF
|ij(Em+1

mix )|cm+1
j , (B.125)

where

ij(Em+1
mix ) = Lj

(
exp

(
αjzjF (Em+1

mix − Ej)
Rθ

)
− exp

(
−βjzjF (Em+1

mix − Ej)
Rθ

))
,

∑
j

ij(Em+1
mix )cm+1

j = 0

(B.126)

for j = s, k1, k2, . . . , kN . In the following, we define im+1
j := |ij(Em+1

mix )|.

Now we define the weak problem for the time-discrete problem:

Problem (P̃cj
)

Find cm+1
j , j = s, k1, k2, . . . , kN ∈ H2

rm+1
l

(Ω) such that

1
δt

(cm+1
j , wj)rm+1

l
+Dj(∇cm+1

j ,∇wj)rm+1
l

+ 1
zjF

(rm+1
l im+1

j cm+1
j , wj)L2(S)

= K

ρl

(cm+1
g cm

j , wj)rm+1
l

+ 1
δt

(cm
j , wj)rm

l

(B.127)

subject to the constraint

∑
j

∫
S
ij(Em+1

mix )cm+1
j wjdσ = 0 (B.128)

for all wj ∈ H1(Ω).

Regarding the argument given in the two species case, we need only to

show the existence and uniqueness of the fixed point for solving Em+1
mix by

iteration algorithm. Firstly, we shall justify the solvability for Em+1
mix for

pointwisely given cm+1
j on S, j = s, k1, . . . , kN . Since Thoerem 4 in [79] guar-
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antees that there are ηm+1
j > 0 such that cm+1

j ≥ ηm+1
j for j = s, k1, . . . , kN ,

we have

Lemma B.6.1 There is one and only one root E ∈ [EkN
, Ek1 ] satisfying

∑
j

ij(E)(cj) = 0 (B.129)

for given cj ≥ ηm+1
j , j = s, k1, . . . , kN .

Proof. Let f(E) =
∑

j

ij(E)(cj). Obviously, we have

f(Ek1) > 0, f(EkN
) < 0 (B.130)

The continuity of f implies that there is a root in [EkN
, Ek1 ]. Differentiating

f with respect to E, we have

f
′(E) =

N∑
j=1

(
αkj

Lkj
eαkj

(E−Ekj
) + βkj

Lkj
e−βkj

(E−Ekj
)
)
+αsLse

αs(E−Es)+βsLse
−βs(E−Es) > 0

(B.131)

for all E ∈ (EkN
, Ek1). This implies that f(E) is strcitly monotone. There-

fore, the root is unique. Q.E.D.

Let us define Λ1 : B → HN := Wηm+1
s
×Wηm+1

k1
×· · ·×Wηm+1

kN

such that Λ1(E)

is the set of solutions to (P̃cj
) when letting Em+1

mix = E.

Lemma B.6.2 Λ1 is a bounded operator.

Proof. The boundedness of Λ1 can be shown by the same argument as in

Lemma B.3.3. Q.E.D.

By Corollary 7.3 in [80]:
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Lemma B.6.3 The trace operator TN : HN → (L2(S))N+1 is compact.

Finally, we define Λ2 : TN(HN)→ B by

Λ2 : (cs, ck1, . . . , ckN
) 7→ E,

where E satisfying
∑

j

ij(E)cj = 0 for j = s, k1. . . . , kN .

Lemma B.6.4 Λ2 is a bounded operator.

Proof. Let χ = (cs, ck1, . . . , ckN
) ∈ TN(HN), we have EkN

≤ Λ2(χ) ≤ Ek1 .

This implies that

‖Λ2(χ)‖2
L2(S) ≤ ‖EkN

‖2
L2(S) ≤M

∑
j

‖ηm+1
j ‖2

0 ≤M
∑

j

‖cj‖2
0 ≤M

∑
j

‖cj‖2
1

(B.132)

for some constant M > 0. This completes the proof. Q.E.D.

Defining Λ = Λ2 ◦ TN ◦ Λ1, we have

Proposition B.6.1 The operator Λ : B → B has a fixed point.

Now the existence result for two species case can be generalized to several

species case:

Theorem B.6.1 There exist unique rl, cg, cj ∈ L2(0, T ;H1(Ω)), Emix ∈

L2(0, T ;B) with ∂trl, ∂tcg, ∂tcj ∈ L2(0, T ; (H1(Ω))′) such that

∫ T

0
(∂trl, w)dt+ Kg

ρg

∫ T

0
(rlcg, w)dt = 0 (B.133)

∫ T

0
〈rl∂tcg, wg〉(H1(Ω))′ ,H1(Ω)dt+

∫ T

0
Dg(rl∇cg,∇wg)dt

− β

zsF

∫ T

0
(rl|is(Emix)|cs, ws)L2(S)dt+ KgMg

ρl

∫ T

0
(rlcg, wg)dt = 0,

(B.134)
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∫ T

0
〈∂t(rlcj), wj〉(H1(Ω))′ ,H1(Ω) +

∫ T

0
Dj(rl∇cj,∇wj)dt

+ 1
zjF

∫ T

0
(rl|ij(Emix)|cj, wj)L2(S)dt = K

ρl

∫ T

0
(rlcgcj, wj)dt,

(B.135)

satisfying the constraint

∑
j

∫ T

0
(ij(Emix)cs, we)L2(S)dt (B.136)

for all w,wg, wj ∈ L2(0, T ;H1(Ω)) and for all we ∈ L2((0, T )×S). Moreover,

rl, cg, cj satisfy the initial conditions rl(0) = r0
l , cg(0) = c0

g, cj(0) = c0
j with

0 < r0
l ≤ 1, 0 ≤ c0

g ≤ 1, 0 < c0
j ≤ 1, r0

l , c
0
g, c

0
j ∈ H1(Ω).
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