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Résumé

Le dépdt autocatalytique dans les microcanaux est une technologie en plein
essor dans l'industrie. D’un point de vue physique, il s’agit d’'un probleme
multiphysique incluant la dynamique des fluides, le transfert de masse, la
réaction chimique, le changement de phase, etc. Surtout a I’échelle mi-
crométrique, des phénomenes physiques plus subtils sont intéressants. Dans
cette these, le probleme du dépot autocatalytique est principalement traité
par la modélisation mathématique et I’analyse numérique. Il y a trois chapitres
dans cette these: Un examen rapide et une introduction du dépot autocat-
alytique sont donnés dans le chapitre 1. L’analyse d’un probleme de dépot
autocatalytique dans un écoulement de liquide monophasique est présentée
au chapitre 2. La simulation numérique du probleme de dépot électrolytique

avec la production de gaz est abordée au chapitre 3.

e Dans le chapitre 2, la génération de gaz due au dépdt autocataly-
tique est négligée. Au lieu de cela, un écoulement incompressible
monophasé couplé a un transfert de masse est considéré. Le petit mou-
vement de frontiere dii aux especes chimiques déposées est modélisé

ix
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Résumé

par une approximation de la transpiration. Avec cette simplification,
le modele mathématique se compose d’un écoulement Navier-Stokes et
d’une équation pour la concentration du produit chimique de dépot
couplée par des conditions aux limites non standard et non linéaires.
L’existence et I'unicité sont prouvées pour 1’équation de concentration.
Une analyse numérique est réalisée qui justifie les schémas numériques

et ’algorithme non linéaire proposés.

Dans le chapitre 3, la génération de gaz et le mouvement de la phase
gazeuse sont pris en compte. Etant donné que les bulles sont générées
de maniere aléatoire et partout, un modele d’écoulement a deux phases
moyennées en volume est appliqué. Cette simplification est couplée a
des équations de convection-diffusion soumises a des conditions aux lim-
ites de flux satisfaisant 1’équilibre électronique. Une méthode conserva-
trice de volume de phase du premier ordre et une méthode d’éléments
finis sont effectuées pour la simulation numérique et le bien-fondé du
schéma numérique est prouvé. Des études numériques dans des cas uni
et bidimensionnels avec comparaison a I’expérience sont réalisées pour

justifier le modele proposé.

Dans 'annexe B, un autre modele simplifié pour le transport d’especes
chimiques dans un écoulement a deux phases est considéré. Dans ce
cas, les termes de convection sont négligés de sorte que la fraction vo-

lumique de phase liquide ne dépend que de la concentration en gaz de

doi:10.6342/NTU202200609
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dissolution dans I’électrolyte. On considere trois équations de concen-
tration pour le transport de deux especes chimiques et le couplage du
gaz de dissolution avec une ODE pour la fraction volumique de la phase
liquide. La condition aux limites de flux sur la surface de réaction avec
équilibre électronique est prise en compte. L’existence et I'unicité sont
prouvées pour les équations de couplage. On montre que le cas des

deux especes peut étre généralisé au cas des N-especes.
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Abstract

Electroless plating process in microchannel is a rising technology in industry.
From a physical point of view, it is a multiphysics problem including fluid
dynamics, mass transfer, chemical reaction, phase change, etc.. Especially
in micrometer scale, more subtle physical phenomena are of interest. In
this thesis, electroless plating problem is mostly taken care by mathematical
modeling and numerical analysis. There are three chapters in this thesis:
A quick review and introduction of electroless plating process are given in
Chapter 1. Analysis of an electroless plating problem in a single phase liquid
flow is presented Chapter 2. The numerical simulation on the electrolss

plating plating problem with gas generation is discussed in Chapter 3.

e In Chapter 2, the gas generation due to the electroless plating is ne-
glected. Instead, single phase incompressible flow coupled with mass
transfer is considered. The small boundary motion owing to the de-
posited chemical species is modeled by a transpiration approximation.
With this simplification, the mathematical model, consists of a Navier-
Stokes flow and an equation for the concentration of the plating chem-

xiil
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xiv Abstract

ical coupled by non-standard and nonlinear boundary conditions. Ex-
istence and uniqueness are proven for the concentration equation. Nu-
merical analysis is carried out and justifies the proposed numerical

schemes and nonlinear algorithm.

o In Chapter 3, the gas generation and motion of gaseous phase are
taken into account. Since the bubbles are generated randomly and ev-
erywhere, a volume averaged two phase flow model is applied. This
simplification is coupled with convection-diffusion equations subject
to flux boundary conditions satisfying electron balance. A first-order
phase volume conservative method and finite element method are car-
ried out for numerical simulation and the well-posedness of numerical
scheme is proved. Numerical studies in one and two-dimensional cases
with comparison to experiment are performed to justify the proposed

model.

e In Appendix B, a further simplified model for chemical species trans-
port in two phase flow is considered. In this case, the convection terms
are neglected so that the volume fraction of liquid phase depends only
on the concentration of dissolving gas in the electrolyte. Three concen-
tration equations for two chemical species transport and dissolving gas
coupling with an ODE for volume fraction of liquid phase are consid-
ered. The flux boundary condition on the reacting surface with electron

balance is taken care. The existence and uniqueness are proven for the
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coupling equations. It is shown that the two species case can be gener-

alized to N-species case.
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Chapter 1

Introduction and state of the

art

1.1 Electroless plating process

1.1.1 Overview

Electroless plating is a class of industrial chemical reaction process aimed
at forming a film or layer on a base substrate by reducing complex metal
cations in a liquid solution [2, 3, 4]. In contrast to electroplating processes,
the reduction of matal cations can be achieved without the external current
during electroless plating process. The metal coatings is created by autocat-
alytic chemical reduction of metal cations in a liquid bath. This technique
has been widely applied in various industries. For instance, surface decora-

tion, hard-wearing coating, manufacture of hard-disc drive, printed circuit

1
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2 1. Introduction and state of the art

boards, etc.[4, 5].

Recently, electroless process in microfluidic channels has been regarded
as a promising micro or nano meter technology. Applications range from
chemical etching process for electronic devices, to electrical packaging for
food [6, 7]. Compared to the large-scale electroless process, the change of
geometry to the micro- or nano-meter scale raises a critical issue for the
deposition as the thickness becomes comparable to the dimension of flow
channel. For instance, in the copper interconnecting process [8] by electroless
plating, the thickness of the deposition layer of copper is large enough to risk

a connection of the pillars.

1.1.2 Mechanism

In general, the chemical reaction of electroless plating can be expressed as

z+
Maq

ooy + Xy = Miy + 2,

(aq)

)

where M is the metal, X* is the reducing agent, and 7 is its oxidized by
product.

In order to deposit the metal uniformly on a reaction surface, an initiator
that is either an additional catalyst or the substrate itself shall be added
in advance. Moreover, the reaction must be autocatylic so that it continues
after the reaction surface has been covered by the metal. For the setting of

the electroless plating process, see also Figure 1.1.
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1.1. FElectroless plating process 3

Electrolyte bath——— R® = R 4+ ze~

Substrate — Mt 4+ ze— = M°

Metal deposited

Figure 1.1: Schematic of electroless plating setup.

1.1.3 Mixed potential theory

Two assumption is made when the mixed potential theory is applied for the
electroless plating process: (i) The overall chemical reaction can be divided
into several partial reactions. Each partial reaction belongs to either anodic
part or cathodic part. Here, the anodic reaction is the decomposition of the

reducing agent

R’ — R™" + ze™, (1.1)

and the cathodic reaction the reduction of the metal comples cations

Mt + zem — M°. (1.2)

(ii) The reaction must satisfy electron balance at all time. Therefore, the
sum of the anodic current density and the cathodic current density is zero.

That is,

> L+ > Li=0. (1.3)

j€anodic j€cathodic
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4 1. Introduction and state of the art

We denote the equilirium potential for species j by E;, the Butler-Volmer
equation (see for example [9]) suggest that the current density I, can be
expressed as

I; = ijc;-“ =A; [exp (W) — exp (%) ]c;y], (1.4)

where A; is the ratio of the reference current density and the correspond-
ing reference species concentration, a; the anodic transfer coefficient, 3; the
cathodic transfer coefficient, z; the number of electrons, F' the Faraday con-
stant, R the gas constant, ¢ the temperature, c; the species concentration,
and ; the concentration dependency. In the above, (; is the overpotential

which can be expressed as
Cj = Emzx - Eja (15)

where E,,;, is the mixed potential (see also Figure 1.2).

1.1.4 Electroless plating in a microchannel

As the size of channel becomes smaller, more subtle issues influencing the
deposition quality shall be taken into account. Those effects that do not
play crucial roles in a large size problem become main characters in micro-
or nano-scale. Some issues which are worthy of further consideration for

electroless plating in a microchannel are listed below.
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I (Acm™?)

Icmodic

! ;
> Eppie (V)
/

Icathodic

Figure 1.2: Current-potential curves for the system satisfying the hypotheses

of the mixed potential theory.
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6 1. Introduction and state of the art

Figure 1.3: A microchannel of cross section 8 mm x 1 mm with a copper

plate where the electroless copper plating process occurs.

Gas generation

In a large scale problem, the gas generation in the electroless plating process
is not important becuase it takes only slight space in comparison with the
size of bath. In contrast, the effect that bubbles prevent the substrate from
being plated is serious when the flow channel is of smaller size. Indeed,
conducting a electroless copper plating in a microchannel with cross section
of size 8 mm x 1 mm for 2 minutes, the bubbles will have been taken over a
large portion of the channel (see Figure 1.3).

Whether the gas generation occurs is determined by the electroless plat-
ing system being employed. Electroless nickel and copper plating systems
generate hydrogen gas. On the other hand, electroless gold does not gener-
ate gas. Given this fact, both single phase and two-phase flow problems for

the fluid motion in a electroless plating process play crucial roles.
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1.1. Electroless plating process 7

Substrate Substrate

Microbump Microbump
Substrate Substrate
(a) Flap-topped microbumps. (b) Dome shape microbumps.

Figure 1.4: Comparison between flat-topped bump and dome shape mi-

crobumps.

Seams and voids between microbumbs

Microbump bonding is one of the important applications of electroless plating
in microchannels. The geometry effect arising from the shape of microbumps
is significant for the plating quality. For example, if two microbumps to be
plated are flat-topped (see Figure 1.4a), then seams or voids may appear in
the jointed bumps [8, 10]. This is owing to the fact that the region between
two bumps is always of the lowest ionic concentration. The deposition rate of
the outer region is always higher than the inner region between tp bumpes.
Once the innter region is closed by the deposited metal of outer region, the
seam or void remains due to the shortage of fresh electrolyte. On the other
hand, if the dome-shaped microbumps (see Figure 1.4b) are adopted for

electroless plating process, The bumbs can be jointed perfectly.
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8 1. Introduction and state of the art

Bridging

For a circuit pattern, It is essential to control precisely where to be plated
and not to be plated. Let us take the bonding of face-to-face microbump
array as an illustration. In most cases, the desired region to be plated is the
gap between face-to-face bumps. Conversely, the plane within the bumbs
installed on the same substrate are not desired to be deposited since the short
circuit will be caused by the connection between to bumbs on the same plane.
Such undesired phenomenon is called bridging [11, 12]. Bridging is due to
the instability of the electrolyte which causes a homogeneous decomposition
so that the metal particles accumulate everywhere. Indeed, this phenomenon
is observed in the low flow velocity region where the ionic concentration is

sufficient but the metal particles cannot be moved away.

Uniformity

For many circuit board, there always exists period structure so that the uni-
formity of plating quality is important. However, many physical conditions
in such periodic space may not be uniform. For example, the bubble dis-
tribution is in general far from uniform even in a microchannel with simple
geometry (see Figure. 1.3)

To see another uniformity issue, we take the bonding of face-to-face mi-
crobump arrays as an example again. Considering an face-to-face array of

microbumps is placed in a microchannel, we observed that the plating condi-
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1.2. Mathematical model for electroless plating problem 9

tion is highly nonuniform [12]. The most interesting observation is that the
bumps near the flow entrance, which were in the region of higher ionic con-
centration, were not deposited. A hypothesis is that the metal particles near
the entrance was washed away by the fluid flow but deposit behind. Indeed,
when the entrance velocity is sufficiently high, None of the microbumps can

be plated.

1.2 Mathematical model for electroless plat-

ing problem

Electroless plating problem can be regarded as a multiphysics problem which
consists of surface reaction, fluid dynamics, heat transfer, chemical potential
distribution, etc.. In a large scale deposition, simplified models would be ade-
quate for describing the occuring physical phenomena, especially in a simple
geometry case. In what follows, we review two kinds of one-dimensional mod-

els which well described the electroless plating process in the special cases.

1.2.1 One-dimensional steady state advection-diffusion
equations

Kim and Sohn proposed a model describing the concentration profile of chem-
ical species in the diffusion layer of a plated rotating disk with constant an-

gular velocity [1]. In this situation, the fluid flow near the surface of rotating
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10 1. Introduction and state of the art

disk can be approximated by a uniformly disbributed flow directing to the
surface. In addition, the thickness of diffusion layer is approximately uni-
form on the surface. Consequently, the physical domain for modeling can
be reduced to be one-dimensional (see Chapter II, Section 11 in [13] for the
derivation).

The modeling problem is given as follows: Let c¢; be the concentration
profile of the j-th species. The governing equations for steady state problem
is

aQCj %

— ]g /Uaz = O, (16)

where D; is the diffusion coefficient, v the velocity field given by
v = —az?w? V2 (1.7)

where a = 0.51023, w is the angular velocity of the rotating disk, and v the

kinematic viscosity of the electrolyte. The boundary conditions are given by
cj = cpj, 24717 = 00, — D=L = Z —  z=0, (1.8)

where ¢, ; is the bulk concentration of species j, R; the set collecting those
species j participating in the reaction related to c;, z; the number of electrons,
F the Faraday constant, and ; the current density. We recall that I; can be
expressed by (1.4) with the overpotential (1.5).

For numerical simulation, the Dirichlet boundary condition ¢; = ¢ ; shall

be set at the diffusion layer-bulk interface. The diffusion layer thickness o;
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1.2. Mathematical model for electroless plating problem 11

at steady state for a rotating disk can be expressed as
§; = 1.61D; 2w~ 1/21/0, (1.9)

Finally, the system of equations can be closed by the electron balance condi-

tion (1.3).

1.2.2 One-dimensional time-dependent diffusion-migration
equations

To simulate electroless copper plating on a planar substrate, Ramasubra-
manian et. al. [14] applied a system of time-dependent diffusion-migration
equations for solving the concentration profile of each species participating
in the electroless process.

Let ¢;, j = 1,... N be the concentration profile of the j-th species. In
the diffusion layer, the mass balance implies that

g, 9,

— +Y;, 1.10
ot 0z / ( )
where Y is the rate of homogeneous production or consumption of species j

and the flux J; is contributed by diffusion and migration:

_ZijFCjaj _ Dacj

i = RO 02 oz

(1.11)

In the above @ is the solution potential. In the electrolyte, water equilibrium

holds at all times and therefore we have

> zje; =0, (1.12)
J
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12 1. Introduction and state of the art

which closes the system with unknowns (cq, ..., cy, ®).

The boundary conditions are similar to those proposed by Kim and Sohn

[1]. At the diffusion layer-bulk interface, we let

Cj = Cbj

At the electrode surface, the Neumann boundary conditions are given simi-

larly the second equation of (1.8) but the current densities take the form

JF Ba '
=A, Tk 2 WV-0-UY ( [V —® — U°>>},
{klgf% (eXp(<Re[ > P\ Re
:AC{Hc%’“(exp(%[V—@—Uﬂ)—eXp(f{e V-0 — U0>>},
k€ER.
(1.13)

where R, and R, are the set of species j involving in anodic reaction and
cathodic reaction, respectively, V' is the electrode potential, and UJQ is the
open-circuit potential for the j-th species. Here, V' plays a similar role as the
mixed potential E,,;, in (1.5). The full system can be closed by the electron

balance on the reacting surface:

I,+1.=0. (1.14)
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1.3. Governing equations of interest in an electroless plating problem 13

1.3 Governing equations of interest in an elec-

troless plating problem

1.3.1 Navier-Stokes equations

To derive the Navier-Stokes equations, we assume that the fluid is a contin-
uum and all the fields of interest, such as density, flow velocity, pressure,

and temperature are differentiable.

Material derivative

Changes of a physical quantity can be measured in two different ways depend-
ing on where the observer is: One can measure a physical quantity either (i)
on a fixed point (Eulerian), or (ii) by following a parcel of fluid along its
streamine (Lagragian). The derivative of a physical quantity with respect to
a fixed position in space is called a Eulerian derivatve, while the derivative
following the flow velocity is called a Lagragian derivative. Based on the
relation between Eulerian and Lagragian derivatve, we define the material
derivative which connects these two concept:

D
- v 1.1
Dt Jgu+u-V, (1.15)

where u is the flow velocity.
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14 1. Introduction and state of the art

Continuity equation

Let ¢ be any physical quantity defined over a control volume 2, and T' its

boundary. The mass conservation can be expressed as

jt/ﬂgbdx:/rgbu-ndS:/Qsdx, (1.16)

where u is the flow velocity of teh field, n is the outward unit normal, and s

is the sink or source in the flow. By the divergence theorem, we have

d
%/qud:c . /Q V- (pu)da — /Qsdx. (1.17)
Applating the Reynolds transport theorem, we have
/ B,pda = —/ V- (pu)da — / sdz. (1.18)
Q Q Q
The above equation must hold for any control volume. Therefore,

86+ V- (¢pu) +s=0 (1.19)

Conservation of mass

Replacing ¢ by the density p in (1.19), and assuming that there is no source

or sink of mass, we have

Op+ V- (pu) =0. (1.20)

Conservation of momentum
Let ¢ = pu in (1.19), we have

Oi(pu) + V- (pu®@u) = s, (1.21)
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1.3. Governing equations of interest in an electroless plating problem 15

where s is a vector function. The above equation can be split as

(Op)u+ pou+ (u-Vplu+pu-Viu+p(V-u)u=s. (1.22)

The rearrangement gives

(Op+u-Vp+pV-u)u+ p(du+ (u-V)u)

(1.23)
= (Op + V- (pu))u+ p(du+ (u-V)u) =s
By (1.15) and (1.20), we get
P = pfdt (u- V)u) =5 (1.24)

Cauchy momentum equation

The momentum source s can be split into two terms: one term for internal
stresses and another for external forces. The momentum equation can be
expressed as

Du

where o is the Cauchy stress tensor and f is the body force.
In three dimensional space, o is a rank two symmetric tensor which can

be explicitly represented as a 3 x 3 matrix

Oxe Toy Txz

1.26
Opy  Tye (1.26)
Tzw Tzy Ozz

In the above, o can be further split into isotropic part standing for the normal

doi:10.6342/NTU202200609
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stresses and anisotropic part for shear stresses:

Oze Toy Taz b 0 0 Oz +p Ty Tz
O=\Tp 0y Tp| =710 p 0] F Tyr Oy +D Ty
Tew Tay Oz 00 p Tow Tey  Ose TP
=—pl+T1,
(1.27)

where [ is the identity matrix, and 7 is the deviatoric stress tenor. Since the
tensor 7 should be zero when the fluid is motionless, we define the mechanical
pressure p by

1
Finally, the Cauchy equation can be expressed as

Du

—_— = = . f. 1.2
th Vp+V -1+ (1.29)

1.3.2 Compressible and incompressible flow
Compressible flow

We assume that the Cauchy stress tensor 7 in (1.29) satisfying the following

assumptions

1. 7 is Galilean invariant: it depends only on the spatial derivatives of

the flow velocity. That is, 7 is a function of Vu.

2. The stress 7 is linear in the variable 7(Vu) = C': Vu for some fourth-

order constant tensor.
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3. The fluid is isotropic. By Helmholtz decompositionm 7 can be ex-
pressed in terms of two scalar Lamé parameters: the bulk viscosity A

and the dynamic viscosity p, i.e.
T=ANV-u)l +2pue, (1.30)
where I is the identity tensor and £(Vu) = ;Vu + 5(Vu)’.

In three-dimension, given that tr(¢) = V-u and tr(7) = (3\+2u)Vu, 7 can

be split into isotropic and deviatoric parts:
2 r 2
T=(\+ gu)(v ‘u)! + p(Vu+ (Vu)' — g(V -u)l). (1.31)

Introducing the second viscosity ¢ := A + %,u, the linear stress constitutive

equation can be expressed as
T =((V-ul+p(Vu+ (Vu)" — z(v ~a)l). (1.32)
Let p := p — (Vu, we obtain the Navier-Stokes momentum equation
p (O + (u-V)u) = —Vp+ V- (,,L(Vu +(Vu)T — g(v ~ u>f> FE(133)
Applying the relation V - (Vu)? = V(V - u), we finally get

1
p(Ou+ (u-V)u) = —Vp+ pAu + guV(V -u) + £ (1.34)

Remark 1.3.1 In two dimension, we have

p(Ou+ (u-V)u) = =Vp+ pAu +f. (1.35)
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Incompressible flow

The incompressiblity implies that the mateiral derivative of the density is

Zero, i.e.,

Dp

_0. 1.
5 =0 (1.36)

Combining the above equation with the continuity equation (1.20), we have
V-u=0. (1.37)
Therefore, the linear stress constitutive equation for the incompressible flow
can be written as
7= p(Vu+ (Vu)’). (1.38)
If i is constant, divergence of the deviatoric stress is given by

V.-7=V-(Vu+ (Vu)') = pAu. (1.39)

Furthermore, if p is constant, the incompressible Navier-Stokes equation can
be expressed as

du+ (u-V)u—vAu=—-Vp+f, (1.40)

~ 1
where v = u/p, p=p/p, £ = —f.
p

1.3.3 Gas-liquid two phase flow

In electroless copper and nickel plating system, hydrogen gas generation is a
crucial issue, especially in a microchannel, since the volume of gas is compa-
rable to the size of the physical domain. Therefore, the governing equations

for gas-liquid two phase flow should be considered.
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1.3. Governing equations of interest in an electroless plating problem 19

There are several versions of models describing the two phase flow. They
can be roughly divided into two classes: (i) The interfaces of heterogeneous
phases can be explicitly captured; (ii) The distribution of phases is somehow
stochastic so that the problem can only be described in an average sense. For
electroless plating process with gaseous phase generation, the problem at the
beginning before a serious aggregation of bubbles is of class (ii). Once some
large bubbles has accumulated in the microchannel, the problem becomes
class (i) in a sense of approximation. Now we are in a position to introduce

some governing equations in the aspect of these two classes.

Diffuse interface models

To formulate the thermodynamics and transport phenomena of multiphase
systems, Reyleigh [15] and van der Waals [16] proposed a so-called diffuse
interface model which assumes that the heterogeneous interfaces have a non-
zero thickness. Based on this idea, several Navier-Stokes/Cahn-Hilliard sys-
tem were proposed for modeling the multiphase flow [17, 18, 19]. For exam-

ple, the model H for incompressible two phase flow proposed by Hohenberg
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and Halperin [18] can be read as

pda+ p(u-Viu—V - (n(c)(Vu+ (Vu)')) + Vp =5eV - (Ve ® ¢),
V-u=0,
dc+u-Ve=V-(mVp),

p=0oe W' (¢) — GeAc.
(1.41)

In the above, p is the density, u is the mean velocity of fluids, p is the pressure
and c is an order parameter corresponding to the concnetration of the fluids
(e.g. concentration of one component or concentration difference between
two components), 1(c) is the viscosity of the mixture,  is the surface energy
density € is a parameter related to the thickness of the interface, ¥ is a
homogeneous free energy density and p is the chemical potential.

Another example proposed by Abels [17] is a thermodynaically consis-
tent generalization of (1.41) to the case of non-matched densities based on
a divergence-free velocity field u. The governing equations can be expressed

as

o) + V- (@) + V- (e () V)

V- () (Va+ (Vo)) + Vp = ~56V - (Vo @ Vo),

Vou=0, (1.42)
dhp+u-Vo=V-(m(p)Vpu)

p=35e W (p) —Gely,

where ¢ = g — 1 is the difference of the volume fracions and py — p; is
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the difference of the densities. The above model has been widely used for

numerical simulation (e.g. [20, 21, 22]).

Level set model

Unlike the diffuse interface model, the interface between two phases formu-
lated by the level set model is sharp, i.e., the thickness of the interface
between two phases is zero. In this case, the equation of motion for incom-

pressible two phase flow is described by [23]

du+ (u-Viu= ! (V (u(Vau+ (Va)h)) — Vp + aﬁé(d)n) +f
p (1.43)

V-u=0,
where u = u(x,t) is the fluid velocity, p = p(z,t) is the fluid density, p =
p(x,t) is the fluid viscosity, and f is the body force. The surface tension is
assumed to be a force exerting only on the interface. We denote by o the
surface tension, k the curvature of the interface, d the normal distance to the
interface, ¢ the Dirac delta function, and n the unit outward normal at the
interface.

For immiscible fluids, the density and viscosity are constant along the

path of velocity field. Therefore, we have

Op+(-V)p=0
(1.44)
Op+ (u-V)u=0.

Let pi1, pq denote the density and viscosity of the gaseous phase fluid, respec-

tively, and for liquid phase, pa, po. The level set ¢ is defined to discriminate
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the phases. For example, ¢ satisfies the following properties

P2, 1f¢>0

P=p1, if ¢ <0 (1.45)
P1+PQ7 )

2
and

M2, 1f¢>0

H= if <0 (1.46)
‘“;“Z, if ¢ = 0.

Moreover, ¢ is carried by the velocity field
¢+ (u-V)p =0. (1.47)

If we initialize ¢ to be the signed distance function from the interface, ¢ is
smooth, unlike p and p. This shows the advantage to solve ¢ numerically.
To avoid the instability caused by the sharp changing of density and
viscosity at the interface, a smoothing procedure on these two quantities
is often applied to modify the governing equation, which leads to a similar
idea as the diffuse interface model. Here is a common example of smoothing
on the density: the density p can be smoothed by acting with a smoothed

Heaviside function H, defined by

1, if ¢ > «,

Ha(9) = {0, if o < —a., (148)
1 o 1 . mwp )
5(1 + - + - sm(;)), otherwise.
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Now the smoothed density can be defined by

p(®) = paHa(9) + p1(1 — Ha(9)). (1.49)

It is worth noting that the smoothing in the diffuse interface model is by

hypothesis but it is artificially made in the level set model.

Averaged two phase flow model

When the distribution of dispersive phases in a physical domain is stochastic,
we may describe it in terms of the volume fraction of each phase at each point
of the physical domain. The volume fraction of a phase can be regarded as
the expectation that the phase occurs at a given point. This macroscopic
aspect to the phase distribution is called volume averaging.

We review the derivation of volume averaging formulae introduced in
[24, 25]. Let V; be an elementary volume to be observed in and Vj, the
volume in Vj occupied by a single phase k£ and bounded by the interface Ay,
which is assumed to be oriented. Let nj be a outer normal to A; and w;, the
normal velocity of Ay.

The volume average of some quantity ¥ in phase k is
(W), = — | xxVdxz, (1.50)

where xj is the indicator function that is 1 of V,. The intrinsic volume

average is defined by

@ =3

A (W), where Vj, = /Vo Xrdx (1.51)
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%
We define the volume fraction r, = Vk with the properties Zrk =1 and
0 k

(W), = e (V). (1.52)

Some useful formulae in terms of the averaging are listed below[26, 27]:

ou\ o), 1
<8t>k = ot ‘/0 " \I/kwk nde, (153)
1
(V) = V(0 + /A ingdd, (1.54)

If W is a vector, we also have

1

— W . n,dA. 1.55
Vo Ja, Bk ( )

<V"I'>kzv'<‘1’>k+

Remark 1.3.2 If ¥ = 0 outside V}, then we have

1 1 1
- — U -ndAd=—-—— [ V- WJV =—— V- -WdV =— (V- -W¥) .
(1.56)
This implies that V - (¥), = 0.
By taking the volume averaging to (1.20), we have
Ouripw) +V - (rupr(wi)y)) =T, (1.57)
where
Iy — - [ o ) g A
=—— u, — Wy) - ngdA.
k Vo Ja, Pr{Ug k k
The interfacial terms I'j, satisfy the conservation
> Ip=0. (1.58)
k
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1.3. Governing equations of interest in an electroless plating problem = 25

For averaged equations of motion, we have

O, (ripr(w) ) + V - (repr(u) i) @ (W) ) = —V (i (pi)i?)
(1.59)

-+ V- (<Tk>k -+ <Tg>k) + Mk —+ T’k<fk>](€k),

where

1 1
M :_7/ — wy) - npdA 7/ —pI) - npdA
k Vo Ja, Py (uy — W) - ny +Vo Ak("’k pl) - ny,

and
(1) = —(peliy @ W), Ty = (uy — ()
Since the sum of internal forces is zero, we have the interfacial balance con-
dition
ZMk +M,; =0. (1.60)
k
In the above, M, is the surfacial force such that

1
M, = v /Ai okn;dA,

where A; the collection of all the interfaces, o the surface tension, x the

curvature, and n; the outer normal on the interface.

Remark 1.3.3 If there are only two phases (say phase 1 and phase 2) in

the physical domain of interest, then we have

1

M, = —
Vo

/ oknidA = —oRVry, (1.61)
A;

where K is the mean curvature. The above relation can be obtained by the

constitutive relation

T+ Ty = 1, Al = AQ = Az (162)
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1.3.4 Advection-diffusion in an electrolyte

The species transport is the core issue for studying the electroless plating
process. We recall that for a concentration profile ¢; of species j, the general

mass conservation equation can be expressed as

ath+V'Jj :Rj, (163)

where J; is the overall flux and R; is the source or sink of ¢;. If advection
and diffusion are considered in the system, then there are two sources for J;.

First, the advective flux can be expressed as

']j,adv = ugy, (164)

where u is the velocity field. Second, the diffusive flux can be approximated
by the Fick’s first law

Jjairr = —D;Ve, (1.65)

where D; is the diffusion coefficient. Given that the total sum is the summa-

tion of these sources, we have

Jj = Jj,ady + Jj,diff =uc; — DjVCj. (166)

Therefore, the advection-diffusion equation can be expressed as

ath +V- (lle) -V (D]’VCj) = Rj. (167)
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Chapter 2

Single phase problem

2.1 Introduction

In this chapter, the mathematical analysis of the two or three-dimensional
electroless plating problem neglecting the gas gneration is investigated. For
numerical simulation, multi-dimensional electroless processes in geometri-
cally varying micro- or nano-fluidic channels remain computationally expen-
sive so we have investigated on bidimensional cases.

We consider a single chemical species in the electrolyte. The flux of the
chemical species on the reacting surface is described in terms of the exchange
current. In our case, the exchange current I is given by the Butler-Volmer
equation (see for example [13, 28]); it is a linear function of the electrolyte

concentration c

Iy = ipc = A{exp (az?ﬁ) — exp (ﬁgj‘f) ]07 (2.1)
27
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28 2. Single phase problem

where A, ag, 5y are physical constants, R is the perfect gas constant, F the
Faraday constant and z the atomic number of the electrolyte; 6 is the tem-
perature, and £ is the excess potential related to the interaction with other
chemical species which, for our purpose is constant [1, 14]. The temperature

is also assumed uniform and constant.

The plating occurs on a boundary S(t) of the electrolyte, causing this
interface to move inward the fluid domain but this motion is small because it
is only due to plating. The plating being proportional to the concentration

¢, the velocity of S(t) is normal to itself and given by a linear law

u = —aipcn

and « is small. On the other hand the flux of metal ion through S(¢) is

proportional to ¢

-_— = —’ioc

on

where D is a diffusion constant.

The concentration of the chemical species ¢ satisfies a convection diffu-
sion equation while the electrolyte flow is modelled by the Navier-Stokes

equations.

In order to analyse this coupled problem, we approximate the small dis-
placement of the reaction surface S(t) by a transpiration approximation

[29, 30] on a fixed mean surface S. It leads to an integro-differential con-
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2.2. Modeling of the Physical System 29

The mathematical analysis of the Navier-Stokes equations coupled with a
convection-diffusion equation for ¢ is somewhat problematic because of the
non-homogenous condition on S for the velocity. So we restrict the study to
the existence of the weak solution to the convection-diffusion equation with
a given fluid velocity w and even this study is not straightforward. First
a time-discretized approximation is shown to have a unique solution using
a version of Minty-Browder’s theorem and the maximum principle to prove
that 0 < ¢ < 1. The solution of the time continuous problem is obtained as
the weak limit of the of the solution of the time-discretized solutions. Some
numerical tests are given to justify the transpiration approximation and the

convergence of the backward Euler nonlinear scheme.

2.2 Modeling of the Physical System

The plating chemicals flow in a thin channel between a top and a bottom
plate. Due to an electro-potential applied between the two plates the chemi-
cals will deposit on the top plate. Hence the depth of the channel varies with

time. A vertical cross section of the 3D system is depicted in Figure 2.1.
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30 2. Single phase problem

S()

1—‘in Q(t) l—‘out

l—‘wall

Figure 2.1: The physical domain is the domain occupied by the flow Q(t);
the chemical deposit is above the free boundary S(¢). The chemicals flow
from the left boundary, I';,, to the right I',,;. The bottom I',,; is a solid

wall.

2.2.1 The Fluid Flow

The geometry of the fluid part is a two or three-dimensional domain Q(t)
bounded on the left by an inflow boundary I';,, on the right by an out-
flow boundary I',,;, on the bottom by a flat wall I',,; and on the top by a
time dependent boundary S(t). In the three-dimensional case, the remaining
boundaries are assumed to be walls. The fluid is viscous, Newtonian and in-
compressible, so the flow is governed by the Navier-Stokes equations for the

velocity u(x,t) and pressure p(x,t):

du+u-Vu—vAu+Vp=0, V.-u=0,VxeQt), Vtel0,T], (2.3)

where v is the (constant) kinematic viscosity of the fluid. The initial velocity
is given and denoted by wug; the inflow velocity u;, is also given on I';,; a no

slip condition holds on I'yq; U S(t), and we impose a traction-free outflow
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2.2. Modeling of the Physical System 31

condition at I'y,;. So at all t € [0, 7] we have:
u
u=1u;;, only,, wu=0 onl,u, — 1/8— +pn =0 on [y, (2.4)
n
We assume that there is no back-flow on I'y;: w-mn > 0.

Remark 2.2.1 In general, the traction-free boundary condition on I',.,

_,0u

5r +pn = 0 does not imply u - n > 0. However, for electroless plat-

ing process, the fluid velocity field near the outlet is near to a Poiseuille
flow. We note that the Poiseuille flow in a fixed cross section domain sat-
isfies w-n > 0 on I',,; and the traction-free condition. For mathematical

convenience, the assumption: w-n > 0 on I',,; is made.

2.2.2 The Metal Ion Concentration

The metal ion concentration ¢(x,t) solves a convection-diffusion equation
dc+u-Ve—DAc=0, VxeQt), Vtel0,T] (2.5)

with given initial concentration cy; D is the diffusion constant. The con-

centration is given on I';, and a no-flux condition holds on 'y and 'y

oc
c= ¢y, on [y, o 0 on Lyeyy UL . (2.6)

On S(t) a reaction condition is written as suggested in [1, 14],
— Da— =ipc, u=—aiyen, Yr e S(t), (2.7)
n

where g and « are constants. Most important for our study: « is small.
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32 2. Single phase problem

It is also important to remember that ¢, being a concentration it must
be non-negative and less or equal to one. In particular ¢y and ¢;, must be

chosen in [0, 1].

2.2.3 The case a =0

When a = 0, there is no free boundary; consider the case Q = (0, L) x (0,1).

With appropriate initial and inflow conditions, the fluid velocity is
w=(up,u)’, ur=y(l—y), ug=0

Similarly, with appropriate initial and inflow conditions, the concentration

depends only on time ¢ and y := x5 and solves

oc— DOyyc=0, —Ddc=ipcaty=1 0yc=0aty=0.

It has a closed solution ¢ = e~ P cos(\y) provided \ satisfies: \tan A = %0.
When 0 < o << Ly, = (y(1—19),0)", cin = e P¥ cos(\y), wg = in,

Co = Cinli=0, the solution will be a linear perturbation of the above.

2.2.4 Transpiration Approximation

Experimental observation show that the evolution of S(t) is small. Following
[29, 30], we approximate (2.7) with a transpiration approximation as follows.
Let S be the initial position of S(¢) and let n be the distance between

S(t) and S normally to S, i.e.

S(t) ={x+nx,t)n(x) : xS}, n(0) =0
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2.2. Modeling of the Physical System 33

where 7(0) = 0 is short for (x,0) = 0 for all x € S. If the radius of curvature
of S(t) and the derivative of n along S are not large it can be shown that the
difference between the normals of S and S(t) is second order in 1 (see [29]).

By definition of w and by the second equation in (2.7),

dn

t
U= —aige, n(0) =0, = nt) = —aio/O c(s)ds. (2.8)

By a Taylor expansion, the first equation in (2.7) can be written on S rather
than S(t):

2

et s 550+ ol

— dnelx + n(x, (). ) = io (c< )+ i, t>§;<x,t>)+o<n>. (2.0

—Dg;(x +n(x,t)n(x),t) = —D (8

By (2.8), it is rewritten as

2

(1 - a—/ ) (x,t)—ipc(x,t) = n(x, t)DgnZ (x,t)4o(n) = O(n).
(2.10)

A first order in o approximation of this condition is

9 .
- Da—;(x,t) —dge(x, ) = 0 (2.11)

2

1 0
Neglecting o(n) and using T 1 + y and neglecting Da—z leads to
-y

dc . aid [t
D% + igC (1 + 6/0 c(s)ds) =0 onsS. (2.12)

0%c

In the discussion below we argue in favor of this approximation where nD—

on?

is neglected.
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34 2. Single phase problem

The second equation of (2.7) is simply written on S instead of S(%).

Indeed a similar Taylor expansion shows that

0 0
u—{—n% = —ig <c+1782> n + o(na), (2.13)

The second equation in (2.7) implies that u is O(«); so when all normal

derivatives are bounded

u = —aipen + O(na), on S (2.14)

2.2.5 The Final Problem (P)

The domain and the top boundary are now fixed and denoted by €2 and S

the boundary of €2 is
F = 89 = Fm U Fwall U Fout U S

We propose to solve (2.3) and (2.5) in §2 x (0,7") subject to initial conditions

and boundary conditions (2.4) and (2.6) and

c a2 [t
D— 14+ =2 0C = 2.1
7 + ( + D Jy c(s)ds) ioc=0 onS, (2.15)

u = —aigcn on S. (2.16)

2.2.6 Discussion:

2

C(X, t) in (2.12), this condition would

It had kept the t t)D—
we had kept the term n(x,t) o7

have been second order. But even without it we expect it to be near second
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2.2. Modeling of the Physical System 35

order when ¢ varies slowly and € is elongated, because (2.5) will not be far
dD?c
f —-D— =~ 0.
rom o
One of the purpose of this article is to analyse the additional nonlinear
term in (2.15). In the numerical section , it will be compared to the first
order condition obtained by setting o = 0 in (2.15).

A third condition can be obtained as follows. If s denotes arc length on

S, the PDE which governs c tells us that near S

dc d%c 0?c

Assuming that the variations in s are much smaller than those in n, we obtain

2
Dgnz = Oyc — aiocgz = 0ic+ O(a). (2.17)

Inserting the above equation into (2.10), we get

-D <1 — ag /Ot c(s)ds) g;(x, t)—ipc(x,t) = — (aio /Ot c(s)ds) (Orc+0(a)).

(2.18)

1
As for getting (2.12), by a first order approximation (1 ~1+y)and a

discard of the term of order O(a?), leads to

dc (i t _
D% + ipc + i <Dc — 8tc) /0 c(s)ds =0 on S. (2.19)
2.2.7 Plan

If it wasn’t for the boundary conditions, the mathematical analysis of (2.3),

(2.5,and (2.11),(2.16) is somewhat classical, so we shall focus on the problem
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36 2. Single phase problem

raised by the nonlinear boundary conditions (2.3),(2.5,(2.15),(2.16). Then,
at the end we shall argue that there is no essential new difficulty if the term
Oic is added, namely problem (2.3),(2.5,(2.19),(2.16).

Once more, existence of ¢ will be shown for a given flow w, p. The coupled

problem is analysed only in the numerical section.

2.3 Variational formulation

2.3.1 Notations

For convenience, C, C" and C;, i = 1,2,3, ..., denote generic constants inde-
pendent of u and ¢. We denote d = 2,3 the dimension.

We use the standard notations: f* = max{f,0} and f~ = —min{f,0}.

We denote by || - ||s the norm of H*(2) and by || - ||sr the norm of H*(I")
for I' C 09).

If B is a Banach space, B' denotes its dual space. The L3(2) inner
product is (-, -) and the duality product between B and B’ is (-, VBB -

We define

W={weH(Q): wl, =0}:

since W is closed in H'(€) and H'(Q) is a Hilbert space, then so is .

We assume that w € L*(0,T; Vg,) N L>®(0,T; L*(2)?) is given, where

Vi i ={v € Hl(Q)d: V-v =0}
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2.3. Variational formulation 37

In view of (2.16) with nonnegative concentration ¢ and assuming that there

is no back-flow on I',,;, we make the following assumptions for

(Ul) w-mn<0 onlsS,
(2.20)

(U2) wu-n>0 onl,y.

In variational form (2.5), (2.6), (2.15) is: Let w(x,t) be a sufficiently smooth
function defined in Q x [0, 7] and vanishing on I';,. Multiplying w(x,t) with
(2.5), integrating over €2, and using (2.6), (2.15), (2.16), we have

/Q(atc +u - Ve — DAc)wdx

= / (Oyc)wdzx + 1 / (u - Vo)wdr — 1/ (u - Vw)edr + 1/ (u-n)cw

Q 2 Ja 2 Ja 2 Joa
Oc

+/ DVe-Vwdr — D—w
on

—/ (Orc)wdz + = / u-Veo)w — (u - Vw)c d:zc—i—/DVc Vwdz

2/ u-n cw+/ <1 - — % (s)ds) ipcw.
Cout 0

The resulting variational formulation reads:

(2.21)

Problem (P)
Given ¢g € HY(Q), co(x) € [0,1], cin € HY*(Ty), cin(z) € [0,1], and
u € L*0,T;Vy,) satisfying (U1), (U2), find ¢ € L*(0,T; H'(Q)) 0ic €

L*(0,T;W"), such that, ¢(0) = co, ¢

r,, = Cin and, for all w € W,

1
(Oc, W)y w + | DVe-Vwdr + = [ [(u-Ve)w — (u - Vw)c|dz
’ / / (2.22)

1 il )
+§ Fm(u n)cw +/ ( - ? + 30 (s)ds) igcw = 0.

The following result, central to this chapter, shows existence of the concen-

tration profile ¢ when the velocity field u, is known:
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38 2. Single phase problem

Theorem 2.3.1 Given ¢y € H*(Q), co(z) € [0,1], cin € HY*(Ty), cin(x) €
[0,1], and w € L?(0,T; Vy,) satisfying (U1) and (U2), there exists a unique
ce L*0,T; H(Q)) with d,c € L*(0,T; W') such that

/OT<atC, W)y ydt + ; (/OT /Q[(u Veo)w — (u- Vw)c]dxdt>

;2

+D/ /Vc de:cdt—i—/ /(1— % ; (s)ds) ipcwdt
/ /0420 </ ds) wdt—|—2/ /Fout u - n)cwdt

(2.23)

for all w € L%(0,T; W), and ¢(0) = ¢y € H*(Q2), and c|r,, = cin € HY*(Ty,).

Remark 2.3.1 The existence and regularity of the coupled problem {u,c}
will not be studied. Mostly because it would require minute and perhaps hard
to obtain estimates due to the corners in the domain as in [31, 32, 33|, the
traction-free boundary condition, etc, but also because, u is merely weakly
coupled with ¢ only through the boundary condition on S. Furthermore, due
to the numerical values of the physical constants, w is small on I';,,. Therefore,
we focus on the solution to the convection-diffusion equation (2.22), for which,

as we shall see, the functional setting is not so simple.

2.3.2 Convexification

2
ac
The term ¢ — - in the integral on S is problematic because it is not mono-

tone so it makes the problem non-coercive. Indeed its primitive ¢(c) :=

2 acdd

1
5" 5 is nonconvex beyond ¢ > —. But the physics require that ¢ € [0, 1]
Q@
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¥(0)

Original curve ,
Modified curve = — = s

Figure 2.2: Graphic showing the modification of the nonconvex function

Z  acd®

c 5~ ? into a convex one.

and the maximum principle will insure it. So any modification of i outside
(0,1) will not affect the solution; hence to work with a convex potential let

us replace ¥ by (see Figure 2.2).

e ac®

Y o<t
ge)={2 6 (2.24)

c 1 .
— — ——  otherwise.
200 6a2

Let p be any time dependent function defined on [0, 7). We define

aig

(G0 = ink(o(0) + “So) [(olas, te0.T), (229

where U(c) is the derivative of ¥ with respect to c:

2
. c— 2 e < é,
B(c) = 2 (2.26)

1
— otherwise.
2a

Naturally ¥ is monotone increasing. Note that W is strictly convex and WU is
strictly increasing in [0, 1].

e
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The convexified variational formulation replacing (2.22) is

Problem (F.)
Given ¢g € HY(Q), co(z) € [0,1], cin € HY*(Ty,), cin(z) € [0,1], and
u € L*(0,T; Vy,) satisfying (U1), (U2), find ¢ € L*(0,T; H'()) satisfying

r. = Cin € HY?(I'y,), Oic € L2(0,T; W), ¢(c) € L*(0,T; L*(S)), and

c

1
(O, W+ /Q DVe- Vwds + /Q (w- Ve)w — (u - Vw)dde .
1 |
+§ Fm('u, ‘M) cw +/Sgb(c)w =0, Ywell

Note that when 0 < ¢ < 1, then both ¢ and ¢(c) € L>(2 x (0,T)).

The proof of existence goes by steps. We assume that u € L*(0,T’; V)N
L>=(0,T; L*(2)), so as to focus on the equation for ¢ with u given. We will
first discretize in time, show existence for the time discretized problem and

then let the time step tend to zero.

2.4 Existence for the Time-discretized Prob-

lem

T
Let N € N* and let 6t = N be the time step.

Discrete velocity field u
Since functions in a Bochner space LP(0,T’; X) for all Banach space (X, ||-

||) can be approximated by step functions on a uniform discretization of (0,T")

(see for instance [34, 35]), we define us : (0, 7] — Vy, by
N-1

Ua(t) = Z um+1X(m6t,(m+1)5t] (75), (2.28)

m=0
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. 1 pE+D8t
where uw/ = &/ u(s)ds for j = 0,...N — 1. For convenience, we
further define u® = u(0) € Vy;,. Obviously, u/ € Vy, for all 0 < j < N. To

show that u; converges to u strongly in L2(0, T; H*(Q)%), we need a lemma:

Lemma 2.4.1 Let f € L*([a,b]) for a,b € R, a < b, and N > 0 be an

integer. Defining 6t = 2%, we have

b
N

&Nil /a+<j+1)6t /jHiH)MM

5 dsdt — 0, asdt—0  (2.29)
a+jot +jot

J=0

Proof. Given ¢; > 0, there exists g € C([a, b]) such that

b
/ |f—g]Pdt < &

We note that choice of ¢ is independent to 6t. With given ¢ in hand, for

every €; > 0, there exists 0 > 0 such that for every s,t¢ € [a, b], we have
lg(s) — g(t)| < €2, whenever |s — | <.

Choosing 6t < §, we have the estimate:

Nz_:l/ +(]+1)5t/a +(+1)ot 1f(s) = f(t)2dsdt

=0 a+jot +j6t

<33 [0 [UR) - 0P + (o) — g0 + 1) — gl0) s

=0 a+jot +j6t
N +(+1)6t  pat+(i+1)dt +(j+1)8t  pa+(j+1)6t
<6) it / / ds|+3 / / s
B jzzg ( a+jot a+jét | ( ) ‘ ) Z a+jot a+j5t lg( )
< 66ter + 3(b — a)dtes
(2.30)

Therefore,

&Nil /a+(j+1)6t /aa+(j+1)5t|f(5)—f(t)|2

st . 52 dsdt < 6 +3(b—a)ez.  (2.31)
a-Tj ¥

J=0

— g(t)|*dsdt
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By the arbitrariness of ¢; and ey, the proof is completed. Q.E.D.

Proposition 2.4.1 Let u; be defined by (2.28), we have the following:
||’U, — u&“LQ(O,T;Hl(Q)) — 0 as ot — 0. (232)

Proof.
r 2
| st = u()

G+nse -
=3 [0 et )

7=0
N=1  (G41)st|| 1 pGi+1)st ] 2d
=0 /j(5t ot /jét (u(s) — u(t))ds 1 (2.33)

< (G+0ét (1 G+t A2ds ) dr
<3 [0 G, ) —u(n) s
1

2

0
NZL pGna pG+00t ||lu(s) — w(t)|
— 5t / / Ldsdt
J jét ot? s

Defining the function f : [0,7] — R by s — ||u(s)||3 and applying Lemma

2.4.1, the proof is completed. Q.E.D.

We observe that u; is strongly convergent to w in L?(0,T; H'(2)4). Thus,

Corollary 2.4.1 There exists a constant C' depending only on 2,7, u so

that

ws| 20,1 (1) < € V6t > 0. (2.34)

Problem (P)

For each integer m € (0, N — 1), given ¢™ € H'(Q), and ™" = us((m +
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1)dt) satisfying (U1), (U2), find ¢ € H'(Q) such that for all w € W,

Cerl —cm
/ - wdx + D/ Vet Vwdz
Q ot 0

1 m+1 m~+1 o m+1 m-+1 2.35
+ 2/9[(u V™ w — (u Vw)d™ " dx (2.35)

1
+/ (@™ + = m+1 m+l,, )
S¢ (™ Hw 5 FOut('u, n)c" " w

with ¢™ . = ¢ € HY?(Tput), where ¢,,,(c™") is the following time ap-

proximation of ¢(c),
. .3 m .
G (™) = iU (™) + % (Z dét) L
=0

The boundary condition is given by ¢|r, = ¢y, € HY?(I'y,), 0 < ¢, < 1. The

initial value is & = ¢o with ¢y € HY (), co|r,, = cin € H'?(Ti), 0 < o < 1.

2.4.1 Existence of the Solution to the Time-discretized

Problem (P")

To prove the existence, the Minty-Browder Theorem (see Theorem 9.14.1 in

[36] and a series of works by Minty and Browder[37, 38, 39]) will be used.

Theorem 2.4.1 (Minty-Browder) Let B be a reflexive Banach space and
| || its norm. Let A : B — B’ a continuous mapping such that
(i) (Au—Av,u—v) >0 Yu,v € B, u#wv
(ii) | l‘i‘m ||~ (Au, u) = +o0.
Uu||—o0

Then, for any b € B', there is a unique u such that Au = b.

doi:10.6342/NTU202200609



44 2. Single phase problem

Remark 2.4.1 The continuity of A in Theorem 2.4.1 can be generalized to

hemicontinuity, or demicontinuity.

The theorem will be applied to ¢™ — ¢, where ¢;,, € H'(Q) is a lift of the

boundary conditions defined as the unique solution of
/ DVé,, - Vwde =0, Ywe W (2.36)
Q

such that ¢, = ¢, on I'y,. With ¢;,, € HY?(I';,), the existence and unique-

ness of ¢;, can be guaranteed (see Section 7 in [40]).
Lemma 2.4.2 If 0 < ¢;, <1, then ¢, satisfies 0 < ¢;, <1 a.e.

Proof. The argument is classical; let us recall it for the reader’s conve-
nience. Note that (¢;, — 1)T and (¢&,)~ belong to W. Choosing w = (¢;,)~
n (2.36), gives ||V(¢,)7||2 = 0. Hence (¢;,)~ = 0 i.e. ¢, > 0.

Now choosing w = (¢, —1)* in (2.36) implies ||V (¢;, —1)T||2 = 0. Hence

(CGin — 1T =0, i€ ¢, <1lae in Q. QE.D.

Proposition 2.4.2 Let m > 0. If 0 < ¢/ <1 ae. in Q, ¢ € H(Q) for all
j <m, then ™ € HY(Q) and 0 < ¢! <1 a.e. in Q.

Proof. Letting w = (¢™*1)~ in (2.35), gives

1 m — m — 1 m m -2
—= ()71 = DIV ()71 = 5 /F () ()
o mely [ metly— O”o ¢m1y / (™) >
—l—/SZO\I/(c (e =2 ;)07575 - = 0
(2.37)

All terms on the left are obviously negative except W(¢™')(¢™t1)~. Two

cases: if ¢ > L then ¢~ = 0 and Ule)ew = 0; if ¢ < L then U(e)e =

doi:10.6342/NTU202200609



2.4. Existence for the Time-discretized Problem 45

(c—2c*)c = —(c7)? — 2c2¢ < 0. Hence ¥(c™1)(c™1)~ < 0 always; thus
(2.37) leads to ||(c™™1)7]|2 = 0.

Define @71 = ¢mt! — 1. Tt satisfies
-m+1 _ —=m
/ i / DVE™ . Vwda
Q ot Q

4 ; / [(uerl X vEerl)w o (um+1 A Vw)6m+1]d$
Q
(2.38)

1 . ais I
- = um+1-nw+/ilﬂcm+1w+/7o Adtd™ M w
2 SUFout( ) 5" ( ) s D ]2:%
1
+3 (™ n)@ T + Dw =0
Fout

Testing with w = (€™*1)*, gives

ot ot Ja

-3 m
. \If m-+1\ /=m+1\+ + CWO/ C](St m+1/—=m+1\+
Joibe ey G S

1
2 Fout

_m —m (=m —m 1 m —m
@~ (@)t + D|V(e “)*H%—§/S(u o) (et

to [ @)@ D Em) =0,

(2.39)
By the induction hypothesis, ¢" is negative; observe that u™*!-n < 0on S
by (U1), w™'-n >0 on by by (U2) and ¥(¢™1) > 0 because ¢™+! > 0.

So we have that ||(¢™*1)*]|2 = 0. Q.E.D.

Let us define.

cti=c"—cp,eW, m=0,1,...,N.

Remark 2.4.2 As & € [—1,1] and ¥(¢™) € [0, 1], therefore |W(c™)e™| < 1.
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46 2. Single phase problem

By construction, (2.35), which defines Problem P, can be rewritten as
Problem (P™)
For each integer m € (0, N —1), given ¢™ € HY(Q), ¢;, € H'(R), ¢in(7) €

[0,1], and u™™ = ws((m + 1)dt) satisfying (U1), (U2), find ¢™* € W such

that for all w € W,

1 ~m+1 1 m+1 ~m—+1 m+1 ~m+1
—/ M wdx + 7/ [(u V"M Hw — (u -Vw)d™ " dx
ot Ja 2 Ja

1
- D/ vt Vwde +/ G (™ w + 7/ (™ )ty
Q 5 2Jr

out

_ ! [(u™ - Ve w — (u™ - Vw)é,|de + 1/ Mwdx — 1/ (u™ . n)E,w
2 Ja ot Ja 2 JTout
(2.40)
Now define the mapping A : W — W' by
1 1 m+1 m+41
(Ap,w) = —/ pwdx + — / (™™ - Vp)w — (u™ - Vw)pldz

1
+D/9Vp - Vwdz + /s Om(p + Cin)w + 3 (u™™ - n)pw

Fout

Since W is closed in H*(Q2) and H'() is a Hilbert space, then so is W.

Lemma 2.4.3 Let m > 0. We suppose that ¢; € H'(Q) for all j < m, then

A:W — W' defined by (2.41) is locally Lipschitz continuous.

The proof is fairly straightforward but long, so it is postponed to Ap-
pendix A so as not to break the thread of the proof of existence of (P™).

From the definition of A by (2.41), there is no essential difficulty to arrive,

via a sequence of inequalities, at
[(Ap1 — Apz, )]

< (Cl + Collu™ |y + Cs(||pall1 + [lp2ll1) + Cudt > chHl) o1 — pallil|w]]s,

J=0

(2.42)
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2.4. Existence for the Time-discretized Problem 47

Lemma 2.4.4 Let pi,ps,p € W and m > 0. We suppose that 0 < ¢/ < 1

a.e. in Q forall j <m. A: W — W defined by (2.41) satisfies
(i) (Ap1 — Apa, p1 — p2) >0 if p1 # po

(i) lim [pll;'{Ap, p) = +oo.
llplli—+o0

Proof. To show (i), we use (2.41) with py, ps € W,
1
(Ap = Apo,) = 5 [ (01 = po)uda

N % /Q[(um-H V(p1 — p2))w — (W™ Vw) (py — po)]da + D/Qv(m = p2) - Vwdz

" / (Gnp1 + ) = blpr+ E)w+ 3 [ (@
s

5 n)(p1 — p2)w.

Fout

(2.43)
By the definition of ¢,,, ¢/ are given for j < m irrespectively of p. Let

w = p; — p2 in the above equation, one obtain

(Apl — Ap2, p1 — P2> =

1 1

/ 51— p2) d$+D/ V(o1 — po)|de + 5 ;. (u™ - n)(p1 — p2)?
il m . N

/ t(pr — p2)* + / p1+ Cin) — V(p2 + Cin))(p1 — p2).

(2.44)

Recall that ™" -n > 0 on I'yy,. All the terms on the right are obviously
positive, except the last one. Without loss of generality, we assume that ps >
p1; we know that W is strictly increasing. That is, U(py + G) > W(p1 + Gin).

Hence (¥(ps + Gin) — W(p1 + Gn))(p2 — p1) > 0. Hence
1 2 2
(Ap1 — Ap2, p1 — pa2) > &HPl = p2llo + DIIV(pr = p2)llo-

Finally (ii) can be proved by taking p; = 0 in (i). Q.E.D.
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48 2. Single phase problem

By Theorem 2.4.1 and Lemmas 2.4.3, 2.4.4, we have

Corollary 2.4.2 There exists a unique solution to Problem (P™) and hence

also to (P") defined by (2.35).

2.5 Stability of the Time-discretized Problem

Pm

Cc

Proposition 2.5.1 Let ¢™*! be the solution of (2.40) for each integer m €
(0, N — 1) with given & € H'(Q), &d(z) € [-1,1] for j = 0,...,m, ¢, €

HY(Q), ¢in(z) € [0,1], and ™ € HY(Q)? satisfying (U1), (U2). We have

lem 15+ HE””“—“””H3+Df5tHV5'”“H3+<5t/F (w™ - m) (@ )?

< ||E™|2 + CLt + Codt||u™ |2 + Cs6t|| Ve, ||2 (2.45)

Proof. By (2.40) with w = ¢™*! we have

1 ~m
ﬁ”c 3+

1 -~m -~m -~m 1 m -~m
sl =@+ DIVE i+ 5 [ ()

/ . \IJ( L) gL / aig zm:cjét mAlami1 L (
=— [ ig¥(c ¢ — [ = e — = u
s s D = 2

Fout

m+1 ~ ~m+1

1)CinC

1

1 1
-3 (™t Vet dr + = / (™t Ve, ) e dr + — |||
0

2 Jo 20t
(2.46)
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2.5. Stability of the Time-discretized Problem P 49

We estimate each term of the right hand side
—/ioxif(cm“)anH gio/ (™ E | < o))
s s
.3 m .3 m .3 .3
oty ; 1 1 aag ; 1 1 iy agT
— [ Q0[5 gt | emram <—/ Jot | en g <—/m5t< s|.
/SD@) <D s\ & et < [ mot < =518

1
_/ (uerl . n)’cvmngrl < |Fout’% (/ |um+1|2> 2 < CHuerIH%
Fout Fout

1
_/Q(um—I—l v~m+1)0 d33‘</ ‘um—I—l vem +1|d.7}< 2D|| m+1||(2)_|_ HVNm—HHQ'

~ - 1 [
/<um+1 - Veim)e" e < / ™t Ve, [de < —[lu™ S+ *chmug-
A 0 2D

Collecting all terms leads to

1 D 1
Sl R+ sl R DIV i [ @2

2 20t

1 . _
< S I + G+ Collu™ 1 + Col |Vl
(2.47)

Multiplying both sides by 20t completes the proof. Q.E.D.

Summing (2.45) from 0 to m, leasds to the following:

Corollary 2.5.1 Let w/t! € H*(Q)? be given satisfying (U1), (U2) for all
j=0,...,N—1.If e HY(Q), P(x) € [-1,1], &, € H'(Q), &in() € [0,1],

then (2.40) implies that

o2 + 3 |+ — c7||0+D6tZ||Vc7+l||0+Zc5t/ (Wit ) (@412

Jj=0 j=0

< |3 + T + 02&2 w2 4 C3T || Ve, |12
j=0

(2.48)

Proposition 2.5.2 Let u/*! € H(Q)? be given satisfying (U1), (U2) for all

j=0,..., N—1 I e H(Q), @) € [-1,1], & € H'(Q), En(z) € [0,1],
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50 2. Single phase problem

then (2.40) implies that

2

m CJ+1 —
Z is uniformly bounded. (2.49)
j=1 w'
Proof. By definition
gt —¢gm 1 cntlt —¢gm
= su , Wo ). 2.50
T D e

By (2.40), with w = —2 € W,

[[wollx
~m+1 __ ~m
¢ ¢ H = sup {—/ DVt Vwdx
ot W weW,jw|=1
1 .
1 [( mtl ety (. Va)em ) de — io/ B (™ w
2 s
m-s m (2.51)
I ) st _ 7/ w™t ) et
1
5 L@ Ve — Vw>am]dx}.
Q

We estimate all terms on the right hand side of (2.51)

- D/ Vet Vudz < DI[Ve™ o[ Vwllo < DIle™ i [lwlly = Dlje™ s,

(2.52)

/ (W™ V)™ < / ™ V| < u™ o, (2.53)
Q Q

_/ mrl et ydy = / (W™ V)ady _/ (W™ p)E
o9

< [l o + [w™ Hloellwllae < Cllu™ 1,

(2.54)

- [¥Ew < sl = IS, (2.55)

—/S (chét) ¢y < /ST|w| < OT|S|3|lw|l, = CT|S|E,  (2.56)
j=0
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2.6. Passage to the Limit 0t — 0 51

[ @t < el < Ol el =
(2.57)

/Q(um“ - Vw)éindz < /Q ™ V| < [lu™ oflwll = [l o, (2.58)
- /Q (W™ V&, wdr < Cllu™ |, (see (2.54)). (2.59)

Collecting (2.52)-(2.59) with (2.51), all multiplied by dt, gives

2
< OSt(1+ ([T + [lum™ D). (2.60)
W/

By summing (2.60) from 0 to N — 1 and the boundedness given by Corollary

2.4.1 and Corollary 2.5.1, the proof is completed. Q.E.D.

2.6 Passage to the Limit 6t — 0

Let us define

e [0,T] — H(Q), cs(t) =7 ifte((j—1)6t,jot], (2.61)

t—(j—1)0t . jot—t
e [0,T] — HYQ), enlt) = (J5t )0t I —

71 ift € ((j—1)6t, jot],
(2.62)
cs [0,T] = HY(Q), c;_(t) = ifte|(j—1)t,j6t), (2.63)
Cs_:0,T] — H' (), Cs_(t) = ijc’Hét if t € [(j —1)dt,jdt), (2.64)
k=1
for j = 1,...,N. Note that ¢, ¢4, and c;_ are in L?(0,T; H*()) and
L>(Q x (0,7)). With these notations, problem (P") reads

(Opcn,w) + ;[(’U,(s -Ves,w) — (us - Vw, ¢s))

) ;3 1
+D(Ves, Vw) + / oW (cs)w —|—/ %05(]5_11} + —/ (us - m)csw = 0.
S s D 2 JTour
(2.65)
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52 2. Single phase problem

Lemma 2.6.1 Cs_ is in L*(0,T; H'(Q)).
Proof.

/T/anziczsf(t)‘dedt < /T/ (515%‘%0“')2@%

N

_/ /5t2< |0z 1|> dxdt</ 5t? - T Z|6xick_1|2dx

k 1

_ T25tz/ 10,5 2dz < C
k=17

The last inequality is due to Corollary 2.5.1.

Lemma 2.6.2

N
||05 - ChHL2 (0,T)x ) \/7 (Z HCJH - CJH%) (2-66)

N

Proof.
—jot . .
Ca(t)—ch(t)— 5 (& — 7Y for (j — 1)t < t < jét,
jot St
t) —cu()|odt = || — 75
o lestt) = en@®lde = e =13

The proof can be completed by taking summation from j =1 to N.

Corollary 2.6.1

cs—cp,— 0 in L*((0,T) x Q) as 6t — 0. (2.67)

By the boundedness given by Proposition 2.4.2, 2.5.2, and Corollary 2.5.1,

there are subsequences of ¢s and ¢, (still denoted by c¢s and ¢;,), respectively
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such that
cs —> ¢ in L2(0,T; H'(Q))) weakly, (2.68)
Ch = Cs in L?(0,T; H'(Q)) weakly, (2.69)
Ch — Cy in L>(Q2 x (0,7)) weak star, (2.70)
Oc, = g in L2(0,T;W') weakly. (2.71)

By Corollary 2.6.1, we have ¢ = c,.

By a classical argument, see for instance [41], we have
g = Osc. (2.72)

Let

Y ={we 20,7, H(Q), dw € L*(0,T; W)}

By the Aubin-Lions Lemma, Y is compactly embedded in L?(0,T; L())
with ¢ < 6 when d = 3 and ¢ < oo when d = 2. Therefore, we have in

particular

cn — ¢ in L*((0,T) x Q) strongly. (2.73)
Using Corollary 2.6.1 again, we get

c; —c in L*((0,T) x Q) strongly. (2.74)
To see the convergence of the boundary term, we need the following lemma:

Lemma 2.6.3 Let X be a normed linear space, D a dense subset of X',

Tp, n = 1,2,... a uniform bounded sequence in X. If g(z,) — g(z) for all
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54 2. Single phase problem

g € D, then z,, — x weakly in X.

The above Lemma can be found in Theorem 10.1 of [42].

Lemma 2.6.4 Given c¢s defined by (2.61), there exists a subsequence (still
denoted by c¢;s) satisfying (2.68) and the followings:

W(cs) = W(c) in L2(0,T; H2(S)) weakly, (2.75)

Cs /Ot cs(s)ds — c/ot c(s)ds in L*(0,T; H2(S)) weakly. (2.76)

Proof. Let us prove that ¥(c;) tends to W(c) weakly in L2(0,T; H'(Q)). First,

acs

we know that ¥(c;) is bounded in Q x [0,7] and we have W(cs) = ¢5 — 5

a.e. since ¢s < 1 a.e.. Moreover, since a < 1, we have
T . T
/ / 10,V (c5)|*dwdt = / 0,05 — 5Oy, c5|*dadt
o Jo 0
T T
:/ / |(1 — acs) Oy, cs)*dadt :/ / 11 — acs|?|0,, 52 dadt
o Ja 0o Ja

T
§/ /|6xic(;]2dxdt<oo.
0o Jo

Therefore, ¥ converges weakly in L*(0,T; H (). To identify its limit, let

w € C([0,T] x Q). Then (2.74) implies that

/OT/Q\P(C(;)wdxdt — /OT/Q\i/(c)wdmdt

and (2.74) and (2.68) imply that

/OT/gzaxi\P(05)wdxdt—> /()T/Qazi‘if(c)wd:cdt_

This gives the desired convergence. By the continuity of the trace mapping

¢ ¢laq

doi:10.6342/NTU202200609



2.6. Passage to the Limit 6t — 0 95
for the weak topology, we deduce that
W(cs) = U(c) weakly in L(0,T; H2(S)). (2.77)

¢
For (2.76), we define r(t, ¢s) := 05/ cs(s)ds in (0,7") x Q. To begin with,

0
we observe that / cs(s)ds — / s)ds strongly in L*((0,T) x ). This can

be checked by the estimate:

05 —c(s))ds

dxdt</ / / les(s) — e(s)Pdsdadt
S/o t/o /Q|c(5(s) — ¢(s)|*dxdsdt = 2T2/0 /Q|c(5(s) — ¢(s)|*dxds

—0 as ot — 0.
Let w € C([0,T] x Q). Since c;s strongly converges to ¢ in L2((0,7T) x ), we

have

/OT/QT(t,C(;)wdxdt — /OT/Qr(t,c)wdxdt. (2.78)

We differentiate r(t, cs):

t t
Op,r(t, c5) = 8%.05/0 cs(s)ds +05/0 Oy, c5(s)ds. (2.79)

We have the boundedness for the first term on the right hand side:

[

65 s)ds
0

d:cdt</ /t\a 5|2 dudt
(2.80)

< T/ / |0y, 52 dzdt < oo
o Ja

t
Using the fact that both 0,,cs — 0,,c weakly in L?((0,T)x) and / cs(s)ds —
0

t
/ c(s)ds strongly in L*((0,T) x ©), we have
0

/ /amzc(; (/0 cs(s ds) wdmdt—>/ /8 c(/t (s)ds) wdzdt. (2.81)
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The second term is bounded as well:

T t 2 T '
/ / / 6I¢C§(S)d3 dx(it < / / t/ |8Ii65(s)|2d5dxdt
0 Q1J0 0 Q 0
t ? = 0 2 (2 82)

1 T
= —Tz/ / \axic(;(s)|2d$dt < 00
2 0 JQ

And we observe that

/OT/Q (/ot Or,Cs (3)d8> wdzdt
) /OT /Ot </Q axicé(S)wdx> dsdf — /OT (/Ot /Q axic(S)wdxds) dt

because w(t) for fixed t is continuous in 2. Now, we have c¢s — cin L*((0,7T") x
¢ ¢

2) strongly and / Op,C5(s)ds — / O, c(s)ds weakly in L*((0,T) x Q). This
0 0

implies that

/OT /Q Cs (/Ot axic(s(s)dé‘) w(t)dxdt — /DT /Q c </Dt Qxic(s)ds) wdxdt

By (2.82) and Lemma A.3.3 below, we have c; /Ot Op,c5(s)ds — c/ot Oy,c(8)ds
weakly in L?((0,7T) x ).

Collecting all the weak convergence results above, we conclude that r(t, ¢5) —
r(t,c) in L*(0,T; H'(Q)) weakly. By the continuity of the trace for the weak

topology, we have r(t, ¢;) — r(t,c) in L2(0,T; Hz(S)) weakly. Q.E.D.

Lemma 2.6.5 Cj_ defined in (2.64) satisfies

Proof. For all t € [(j — 1)dt, jot),

t
Cs— —/0 cs(s)ds

< Ot (2.83)

L2(0,T;H ()

Cs (1) — /Ot s(s)ds = 3 F 16t — 5 kot — It — (j — 1)1

=0t — (t — (j — 1)6t).
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But for ¢ € [(j — 1)dt, jot), we have 0 <t — (j — 1)dt < 6t. Therefore

Cs- () - | " co(s)ds

< ot + .

On the other hand,
8,,Cs_(t) — 0, / cs(s)ds = 9, Cs_( / 0,.¢5(5)

= 0,0t — 0, (t — (j — 1)dt).

Hence, we have

o, (05_@) -/ t c(;(s)ds>

< 0t]0,, (" + ).

Therefore,

|

2 2

Cor (1)~ | " e(s)ds 1

t
C(;,—/O cs(s)ds

T
LOTHN Q) /o

N .
Z/ (6021 + |2

j Jl)t

i/'t 2 (1) + 1)

| A

| /\

N
< 2||"[[3(0t)* +2(3t)* _ ot ||

j=1
< C(6t)?
Q.E.D.

Proof of Theorem 2.3.1.
Now, we are in a position to pass to the limit in (2.65). Take any w =
v(z)A(t), where v € W NWH(Q) and A € Wy>°(0,T). Then

—/ Ch, V)N (B)dt + = / us - Ves,v) — (us - Vo, cs)|Adt

+/ (Ves, Vo) )\dt+/ /ZO\I/ e oAt dt+/ /70505 oA(t)dt

+ 2/0 /Fm(u(; -n)csuA(t)dt =
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Since us; — u strongly in L*(Q x (0,7)) and Ves — Ve weakly in L?(Q x
(0,7")), the regularity of v and X implies that
T , T , T
- / (e 0)X (£)dt — — / (e, 0)N (1)dt = / (O, v)yr wAdE,  (2.84)
0 0 0 ’
1 /T 1 T
5/ [(us - Ves,v) — (us - Vo, cs)|Adt — 5/ [(u-Ve,v) — (u- Vo, c)]\dt,
0 0
(2.85)
T T
/ D(Ves, Ve)rdt — / D(Ve, Vo)Adt. (2.86)
0 0
Similarly, the weak convergence of W(cs) to W(c) in L2(0,T; H2(S)) implies
that
T . T .
/ /S ioW (c5)oA(t)dt — / /S B(e)uA(t)dt, (2.87)
0 0

and the weak convergence of ¢;Cs_ to ¢ [3 ¢ in L*(0,T; Hz=(S)) implies that

/OT/SQCJU)\(t)dt — /OT/SC(/Ot c(s)ds) vA(t)dt. (2.88)

Finally, we consider the last term ; /0 ! Fm(u(; -m)csvA(t). Given the con-
struction of us in Section 2.4, we have: us — u weakly in L*(0,T; H'(2)?)
and us — w strongly in L2(0, T; L*(2)¢) (thanks to the strong convergence of
us by (2.32), H1(2)? can be replaced by any space X so that H'(Q) cC X.

Here we take X = L*(Q2)¢, which is compatible with d = 3; the exponent has

to be less than 6). We use Green’s formula:

/OT /Fout(U5 ‘M) CsVN = /OT/QV - (ugscs)v + /OT/Q(C&,M CVUIA (2.89)

for all A € L*(0,7T) and for all smooth v that vanish on 0\ Iy It is

suffices to prove the convergence of each term to the desired limit.
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1) For all v € L*(Q) and for all A\ € L>(0,T):

/T/ V‘(u(;c(;)v)\:/T/ us - Vesv
_/ /u5 Vch—i—/ /u VesvA

T
< Jlus = wll sl Veslzaxoay Il =on [0l + [ [ w- Vesoa.
It is noted that uv\ € L(0,T; L*(Q)?) and Vs — Ve weakly in L2(0, T; L?(2)9),

we have

/OT/QV - (uscs)vd — /OT/Q(U -Ve)vd = /OT /Q V - (uc)v. (2.90)

2) For all v € HY(Q), A € L>=()

/OT/Q(C6U6'VU))\:/OT/QC§(’UI6—’u,)-VUA—F/OT/Q’U,(C(;—C)-VC)\+/()T/§20(u.VU))\

< lws — wl| 20,02 €5 || 2o @x (0.0 [ VU |0 [| Al oo ()

T
+ lullzoriasion lles = cllzoras@s | Volol Nl =@ + | [ elu-Tv)A
Therefore

/ (Orc, V) wAdt + - / u-Ve,v) — (u- Vo, c))Adt

t
+/ VchAdt+/ Jioe mzH/ /0”0 ([ cls)ds) orar
+*/ / (u-mn)cvrdt =0
2 0 Fout
(2.91)
for all A € Wy>°(0,T) and for all v € W'>°(Q). This gives the equations a.e
n (0,7).

To recover the initial condition, we take A € Wh>(0,T), \(T) = 0,

A0) # 0, and v € WH>(Q). We consider (2.65) such that all terms are

identical except the first:

/OT(é?tch,v))\dt:/OTﬁt(ch,v)Adt: —/OT(ch,v)X(t) (P, )N0). (2.92)
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When passing to the limit, we obtain

/ O v At = — /0 Le N (1) = (&, 0)A(0)
—/ (e, 0)A + (e(0), 0)A0) = (*.0)A(0) (2.93)
- /0 (D, V) wAdE + ((0), 1)A(0) — (°, v)A(0).

Therefore

(c(0),v) = (,v), VYveWnNnWhH>e(Q).

This implies that ¢(0) = ¢°.
The above shows that Problem (P,.) has a unique solution, which satisfies

0 < ¢ < 1; it is also the solution of (P). Q.E.D.

2.6.1 On the boundary condition (2.19) which contains

8,50

To prove existence a similar strategy is taken: O;c is replaced by (c™*1 —

c™)/dt, existence is shown and then convergence when dt — 0.

The proof of existence of the time-discretized problem is exactly the same

but with ¢ redefined as

qu(cm—H) — iO\If( m+1) + aig %0 — (Z 07515)

Convergence with dt — 0 requires more regularity, which can be obtained

from the PDE differentiated in time.
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2.7 Numerical Simulations

The rectangular domain of size 0.025 mm x 0.005 mm is the initial physical

domain. The electroprocess is simulated up to time 7" = 5000.

2.7.1 Scalings

The simulation will be done with dimensionless variables. Let L,C and U
be representative length, concentration and velocity of the physical system.
Then it is easy to see that the dimensionless equation for ¢ is the same as
the original equation but with D /(LU) instead of D, where D is the physical

molecular diffusion. Similarly because (2.7) becomes

dc i() io
=—¢, u=—-aC—cn,

Ton U U
the original form holds but with i/U redefined as ip and a C' redefined as a.

It is well known that the dimensionalized Navier-Stokes equation has the
inverse Reynolds number /(U L) redefined as v, where v being the kinematic
viscosity.

The parameters of nickel ion given in [1] are ig = 49/(2F) with iy =
0.001 A-mm™2, the number of electrons involves in the reaction z = 2 and
the Faraday constant F' = 96487 s- A -mol™', C =3 x 1077 mol - mm™3.

For electrodeless plating we may take U = 1 mm - s~ L = 0.005 mm,
D=1x10"*mm?-s1, a = 6590 mm? - mol~', and 7 = 1.2 mm?2 - s~ .

So in the end the numerical tests are done on a rescaled domain 2 =
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62 2. Single phase problem

(0,5) x (0,1) with

a = 0.002085, ip=0.017273, D =0.02, v = 240,

2.7.2 Numerical algorithm

The finite element method is used for spacial discretization. Let 7, be a
triangulation consisting of K traingles {7} }X_, with the standard conformity
hypothesis. We define the finite element space which will be used in this

section:

Wh = {w - Co(ﬁ) : U)|T,C S Pl VTk S 77” w Lin — 0}7
Ch = {U) € CO<§) : w’Tk € P17 VT]C € 77L}7
Vii= {v € C°(Q): wlr, € (P22 VIL € Ta, (2.94)

Jy = {v e C°Q)*: v|y, € (P?)* VTx € Th, v|oa\r,w = 0},

Qn = Ch.

Solving concentration profile ¢;"*! with known velocity field "t

We use the P! finite element method for Problem (P™) to define {c}"}m=o-
Given u}"*' € V}, one must solve the finite dimensional problem (P™) de-

fined to be (P™) with W}, instead of W in (2.35): find ¢;"** € O}, satisfying,
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2.7. Numerical Simulations 63

for all wy, € Wy,

m—i—l_c

Ch h m+1 m+1
—————wyd / -V
/Q T x + ) wy,

+D/ Vert . thdx+/ (1+ (z_: )) ioci wy, =0, (2.95)

m—+1
Ch

in = Cinh
In the above, ¢;,;, is the piecewise linear interpolate of ¢;,.

Since w™ and {c]};<n are given, (2.95) leads to a linear system by

assigning wy, to be the P1 hat functions in a standard way. We apply UMF-

PACK]J43] for solving the linear system at each time step.

1 +1

Solving velocity field u}'"" with known concentration profile ¢}’

For the Navier-Stokes equation we use the P?/P! triangular Taylor-Hood
element [44] and we denote by u}", p}* the finite element solution and by V,
Q1 the corresponding finite element space. The variational formulation is:

Find u]"™' € V}, and pj**! € Q,, satisfying

m+1

- /M”“V con + @V " + epugy)da = 0,

vhdx—i—/ S V)up vhdx—l—y/ Vut : Vo,dr

wtt =g, on Ty, w™ =0 on Tyay,  ul™ = —aipc™n on S

(2.96)
for all vy, € Jp, and g, € Qp; € is a small regularization parameter which is
taken to be 1072 in our computer implementation. In the above, w;,), is the
P? interpolation of w;,.

m—+1

With known uj* and ¢, (2.96) leads to a linear system for the degrees
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64 2. Single phase problem

of freedom of uj"™ and p"™ which is solved with the numerical library

UMFPACK]J43], at each m.

Remark 2.7.1 If mass-lumping is used and the triangulation has no obtuse
angle, the positivity of (2.95) can be guaranteed by the same argument in the
proof of Proposition 2.4.2. Therefore, the assumption (U1) holds for u]**!.
Again, (U2) does not hold for the system (2.96) in general. In practical

numerical implementation, the natural outflow boundary condition

au’;ln+1 m—+1
—UV
on + Dy

n=>0

does no harm to (U2) when the velocity field is closed to a Poiseuille flow

(for instance, the numerical tests conducted in Sections 7.3 and 7.4).

Iteration algorithm

The coupled system (2.95)-(2.96) is solved iteratively. We replace ¢;"** by ¢*

in (2.95) and solve (2.96). We denote the solution by w*. Then we replace
"™ by u* in order to get the new ¢*, until ||u’,,, — w5yl + I¢:ew — Challo
is sufficiently small.

To validate the method we need to compare with the original free bound-
ary problem. It is solved with a similar iterative fixed point like process but

the mesh needs to be rebuilt when the free boundary is updated. It is done

by a scaling on y-coordinate at each time step t/: y +— (1 — aioc,’;ét)y.
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Data: u}', p}*, ¢, and y
1 Set initial data wug, cg;

2 for m do

3 ct =
a | while [us., —ugllo + [|¢hew — Gallo = tolerance do
5 Solve (2.95) to get ;..
6 Solve (2.96) to get u’,,, and p’..;
7 end
8 | A=l
o | upt =ul,;
10 For the free boundary case change the mesh by
y < (1 — aipe) ™ ot)y;

11 end

2.7.3 Numerical results at low Reynolds number
The initial and inflow values are

Co = COS()\y), Uy = y(l - y)7 Cin = Co Lin-

A uniform triangular mesh 150 x 30 for the initial domain for each test
so that the time-discrete error can be emphasized.

We compare the results obtained using a time dependent domain (Figure
2.3a) with the results using a fixed domain and the linear condition (2.7)

(see Figure 2.3b) and finally with the nonlinear condition (2.12) (see Figure
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66 2. Single phase problem

2.3c).

On Figure 2.4 the free boundary and the reconstructed free boundaries
are displayed using 7 given by (2.8).

The convergence with respect to time step size is shown on Table 2.1,
computed at an intermediate time 7" = 100. Since no exact solution is
available, the numerical solution with time step 6t = 0.01 is taken as the
reference solution. The numerical results in Table 2.1 show a first order
convergence in L? error conformed with the estimates given in Appendix B
(see Figure 2.5).The weak first order convergence of H' error is also proved
in Appendix B. However the numerical results show strong first order H*!

convergence for this test problem (see Figure 2.6).

2.7.4 Numerical results at larger Reynolds number

In the previous example, where the values of the parameters correspond to the
physical design of [45], we could have neglected the inertial terms and work
with the Stokes approximation. In order to validate the algorithm at higher
Reynolds number, which may be the case for other plating problems, we
keep all parameters given in the end of Section 7.1 but change the Reynolds
number to the inverse of ¥ = 0.01. The same experiments are conducted as
in Section 7.3. The numerical results obtained for the low Reynolds number
and the larger Reynolds number are very similar; no visible changes can be

seen (see the right side of Figure 2.4 ) so we do not display the plots of Figure

doi:10.6342/NTU202200609



2.7. Numerical Simulations 67

IsoValue

M0.42591
W0.444123
W0.462336
y M0.48055
M0.498763

M0.53519

M0.553404
W0.571617
M0.589831
M0.608044
M0.626258
W0.644471
M0.662684
M0.680898
W0.726432

(a) Intensity map of ¢ computed with a free boundary on a moving mesh.

IsoValue

W0.429716
W0.447684
W0.465651
y W0.483619
W0.501587

W0.537523
W0.555491
W0.573459
W0.591427
M0.609395
M0.627363
M0.64533

W0.663298
W0.681266
m0.726186

(b) Intensity map of ¢ computed by the linear transpiration approximation.

IsoValue

m0.418614
W0.437298
W0.455982
y W0.474666
049335

M0.530719
W0.549403
W0.568087
W0.586771
W0.605455
M0.624139
M0.642824
M0.661508
M0.680192
M0.726902

(c) Intensity map of ¢ computed by nonlinear transpiration approximation.

Figure 2.3: The solution profiles of numerical experiments with v = 240.

doi:10.6342/NTU202200609



68 2. Single phase problem

Moving mesh|
— Linear
I = = Nonlinear

Moving mesh|
— Linear
I = = Nonlinear | 0.88

Figure 2.4: S(T) calculated by 3 experiments at 7' = 5000. The red curve is
the height of S(7") computed by moving mesh. The blue curve is computed
by the displacement 7n(7") with linear condition. The green dash curve is
computed by the displacement 7(7") with nonlinear condition. If the curve
of moving mesh is regarded as the reference solution, it is easy to see that
the nonlinear approximation does better than the linear approximation. Left

figure corresponds to with v = 240 and Right figure to v = 0.01.

o L?error 5 H eror
R.0.C = 1.29431 R.0.C = 1.2943

L2 error
H' error

T T
0.1 0.01 0.1 0.01
3t 8t

Figure 2.5: L? relative error versus Figure 2.6: H! relative error ver-

ot at T'= 100 sus 0t at 17" = 100.
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ot L? error ot H! error ot L? error

0.16 | 1.01723 x 107° || 0.16 | 1.03365 x 107° || 0.16 | 1.01722 x 107

0.08 | 4.74704 x 107% || 0.08 | 4.82368 x 107% || 0.08 | 4.74701 x 10~°

0.04 | 2.03444 x 107¢ || 0.04 | 2.06729 x 107¢ || 0.04 | 2.03443 x 10°¢

0.02 | 6.78147 x 1077 || 0.02 | 6.89107 x 10~7 || 0.02 | 6.78142 x 1077

ot H' error

0.16 | 1.03365 x 10~°

0.08 | 4.82367 x 107°

0.04 | 2.06729 x 107°

0.02 | 6.89103 x 1077

Table 2.1: Convergence when 6t — 0: L? and H* relative error at 7" = 100
for the scheme with the nonlinear transpiration approximation and v = 240
(left columns) and v = 0.01 (right columns). A uniform triangular mesh

150 x 30 is used.; ¢5—g.01 is used as reference solution.
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2.3 for the high Reynolds number case.
Furthermore, several numerical experiments show no visible change by

choosing the Reynolds number between the inverse of 240 and the inverse of

0.01.

2.7.5 Influence of the term 0J;c in (2.19)

For the geometry considered in these numerical test no visible difference

could be observed between (2.12) and (2.19) .

2.8 Conclusion

We have proposed a simplified model which approximates the Electroless
process of [45] by replacing the time dependent domain occupied by the
reacting chemical by a fixed domain using a transpiration approximation. We
have validated the approximation numerically with a finite element method
in space and a fully implicit in time approximation. We have constructed an
existence proof by using variational convex analysis or fixed point arguments.
The proof is technical and long because the nonlinearity is on the boundary
condition and because it required a convexification of the energy potential
and the maximum principle. However it was worth the effort because it
gives a stable ground for the numerical studies and it may be useful for other

similar problems. We plan to extend this study to two phase flows to take
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into account the formation of bubbles.

2.A Proof of Lemma 2.4.3.

Let p1, po € W. Formula (2.41) gives

1
(Apr = Apz,w) = = /Q(Pl — p2)wdzx
. [(u™ - V(p1 = p2))w — (™ - Vw)(p1 — p2)ldz + D | V(p1 — ps) - Vwdz
2 Ja Q

4 [ Gnlor ) = bnlpr+ @t [ @ m)n = po)u

(2.97)

We estimate each term on the right hand side of (2.97):
1/( Jwde < < | lollwllo < < [l (2.98)
— — p2)wdr < —|[p1 — w —|lp1 — w :
ot Qpl P2 =5 P1 — P2llo 0= 5 P1 — P2l1 1

[ @™V (o1 = po)wda < [ 1oy |V (o = o)l e

< Clluw™ M1 llpr = palla]Jwlh

/(um+1 -Vw)(p1 — p2)de < ||um+1”L4(Q)vaHOHp1 - 132HL4(9)
@ (2.100)
< Cllu™ 1 llpr = palla lwl]ly

/QV(Pl — p2) - Vwdz < [[V(p1 = p2)lfol[Vwllo < [[p1 = palifw]ly  (2.101)

Let 1,25 € R. If 214Gy, and wo+Cipy > 5, then |9 (21+Cin) =0 (22+Cin)| =

1 1
0. If x1 + ¢, < — and x5 + ¢;, > —, then
2c0 2c

[0 (w1 + Cin) = (@2 + Cin)| < [0 o1 + En) |21 — 22

< |1 —afzy + )|z — 22| < (1 + o+ alzy|)|z1 — 22
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72 2. Single phase problem

If x1 + ¢, and z9 + ¢, < i, then

Q

J— . - - . - 8% 2N
[V (21 + Cin) — (T2 + Cin)| = |71 + Cin — (21 + Cin)® — (w2 + Cin) + §($2 + Cin)’|

[\]

(0% - (0% ~
= |.T1 — T9 — *(.771 + Cm)2 + *(.Z‘Q + Cm)2|
2 2
(8% ~
= |$1 — X9 — *(131 + wz)(l’l — :1:2) — Cka(.Tl — LUQ)’

2

(0] [0
<(l+a+ 5]:}51\ + 5\:62])\:51 — Tal.

Now we can conclude that

_ B — _ Q o}

L@ o +0) =B oz + @) < [ (1+a+Floil + Sloalor = pal ]
(0%

< A+ a)llpr = pollsllwlls + §(||P1||L3(S) + [lp2llzas) oy = p2llss) llwllzacs)

< Cillpr = pallullwlly + Co([lprllx + llo2ll0) lor — pallullw]l1-
(2.102)

Now,

/Si At((p1 + Cin) — (p2 + Cin))w

J=0

= [Y-cibtlor — payw < 0t [ S IellIpy = pallul
S5 S i

<0ty N Naesllor = p2llrzs)lwliras) < Cot D 1llpr = pell1llw]l

j=0 7=0

(2.103)

And finally,

[ @)= pw < [ [wtmlp = pall
Fout Fout

<N s oun 191 = P2l s oun) 1 W] 3oy < Cllw™ Hillpr — p2ll1]Jw]ly
(2.104)
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Combining (2.98)-(2.104), we have

|(Ap1 — Apz, w)|

< (Cl + Collu™ |1 + Cs(||pall1 + [l p2ll1) + Cadt > HC‘jHl) o1 — pall1|lwlx

=0
(2.105)
This completes the proof. Q.E.D.
2.B Error estimates
In this section, we further assume that
T
(A1) / |0yc||® 1 dt < M, for some constant M; and
0 (2.106)
(A2) sup ||9ccl| g1 gy < Mz for some constant Ma.
te[0,7]
For convenience, we define
il
B(u,v):= {1+ 7 U tov,
b(u,v,w) ::/ 1+ Oé—igu LpUwW (2.107)
) ) S D )

The difference equation for the exact solution of ¢ defined by (2.5) can

be expressed as:

c(t™t) — c(t™)

5 +u™t . Vet — DAc(t™ ) = R™, (2.108)

where

R™ =~ /t (t — ™) Dye(t)dt (2.109)
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Defining ¢/ = ¢(t/) — ¢/, the error equation can be expressed by

m+1 m

— €

— u™th . Vet — DA = R™ (2.110)

subject to the boundary condition

aem—H
€™ =0 on Ty, 5 =0 on 'y UL
n
a€m+1 tm+1 m (2111)
D + B(/ c(s)ds, c(t™)) — B> ¢;6t,c™) =0 on S.
on 0 =
The symmetrized weak formulation to (2.108) is
C(tm+1) _ C(tm)
D/ m+1y |
/Q 5 w + QVc(t ) - Vw
1
+ 5 [(um+1 . Vc(tm“))w _ (’U,m+1 . Vw)c(tm+1)]d:v + A (um—H . n)cm+1w
OéCerl CYZQ m ) - .
+ 5(1_ 5 —|—D0j§%c7) 10C Jrlwz/QR wdzx
(2.112)
Subtracting (2.112) by (2.35), we have
6m—l—l —m
/ ———wdx + D/ Vet Vwdz
Q ot Q
1
+ 5 / [(um-i-l . v€m+1)w _ (um—i-l . Vw)€m+1]d$ + (um—i-l . n)eme
Q Tout
Al m+1y m+1 o m+1
— T(C(t )+ ™)™ w + b( c(s)ds, c(t™ ), w)
S 0
—b(>_ ot ™ w) = / R™wdz
=0 Q
(2.113)

Before investigating the error estimate, some auxiliary results are needed.

We collect them in the Remark below:
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Remark 2.B.1 We have

tm+1

B(/ c(s)ds, c(t™)) Zc’ét )
0 oy
042'2 m ) az'S tm+1 m
=11 "0 ;o om+1 —0 / _ m+l
( + D;)c’ét)zoe 1, s)ds z::ddt cft
(2.114)
Defining
tm+1 m
_— / s)ds — Zc?ét (2.115)
0 :
we have
gr=>"€edt+¢", (2.116)

J=0

where ¢™ =Y 9,¢(6?)5t* for some 67 € (t,¢711). By (2.114), (2.115), (2.116)
j=0

and letting w = €™*! in (2.113), we have
H m+1H2 5t/ m+1 mdx+D‘|v€m+1”2+b Zdét 6erl m+1)
7=0

+ G(C(thrl)7 Z €j5t, 6erl) + G(C(tm+1), ¢m’ €m+1) 4 (uerl . n)(6m+1)2
j:() Fout

_/S%<0<tm+l)+cm+l)( m+1 /medl’
(2.117)

Multiplying the both sides by dt, we get

€™ TH|? + Dat||[Ve™ |* + 6tb (> ot et et
=0

+ 0tG(c(t™ ), > €t €™ + 5tG(c(t™ ), ¢, €™ + 6t (™ n) (™2
j=0 Fout

o Oé’io m+1 m—+1 m+1\2 — / m / m+1_m
5t/s2 (™) + M) (™) =0t QR wdzx + €M dx
(2.118)

Q.E.D.
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Theorem 2.B.1 There is a generic constant C' such that

T
"t <Cot VO<m< 5! (2.119)
and
; T
€™, <otz VO<m< 5L (2.120)

Proof. By a recurrence argument, we are going to show that if the statements

(2.119) and (2.120) hold simultaneously for all €/ and for all j < m, then they

m+1

hold as well for € . Notice that it is true when m = 0.

Defining G = [G(e(t™ ), £y 3, )] and G = |G(e(t™+), 6™, e+,

we have the estimates:

< aigi/ le(t™ ) el ™t ot|

- D 3s

< W03 [ fatoenny < O (Z Heffusat) em+]is
7=0

(Z uauﬁt> lem My < Clm + )32 ™4y < Cllem |5t

(2.121)
Using (A2), we have
i i
< S [eemitygrentt) < 50 [ fgmeny
D Js (2.122)

'3
an
< e lsle™ s < Clig™ el < Cotfle™ v
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By (A1), we have

ot

/ R e
Q

D
< Zétuem“H% + 05t R™ 13

g+l 2

D
=l + cor! / (t — ™) Oycdt
t7"/

H' (@) (2.123)

tm+1 tm+1

D
fyyem+1y|§+05r1/tm HattchHl(Q)/dt/t (t — ™)2dt

4 m
tmt

D
Zlemt )z + o |
4 tm

IN

1
H@ttcHip(Q)/ dt

IN

IN

D
Zlem i + cor

bt et ety — [ S0 e e (e

0 5 2
2 m
z/ (1+0‘7’°ch5¢> io(em+1)2—/aio(em+l)2 (2.124)
s D = s
2 m
> / (1—a) + 205 ot | ig(em+1)2 > 0.
s D =
[emstendn < Liemz + Lpemerpe. (2.125)
Q -2 2

Combining (2.118), (2.121)-(2.125), and since the boundary term of 'y, in

(2.118) is nonnegative, we have

1 1 3 :
(5 = DO P + S Dotlen [ < Cllem ot + Co. (2.126)

This implies (2.120). Now using (2.126) and (2.120), we get (2.119). Q.E.D.

Theorem 2.B.2 (Improved estimate) For 0 < m < — — 1, we have

ot

5t €T < Cot? (2.127)

J=0
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Proof. Putting w = 2¢™*! in (2.118) and using the estimates in Theorem

2.B.1, we have

le 4[> + 2Dt | Ve |* < 26¢Cyle™ |y (Z ||€j”15t)
=0
tm+l

D
420,08 s+ 0t I+ Codt? [ ooy e+ [
(2.128)

Note that
[€" P + 2Ddt||e™ T = (1 — 2D6t)[|e™H|* 4 2Dat |+ |7,

Taking the sum of (2.128) from 0 to m and using (A1), we have

9 7T ) m ) J
(1= 3 Do)l 1" + 3 >_ Datlle [t < 3 26tChlle™ (Z ||6'“||15t)
7=0 7=0 k=0
—f- Z 2025t3||€j+1||1 + Cg(StQ.

=0

(2.129)

The first term on the right hand side of (2.129) can be estimated by

m k
S amcen i (3 et
=0

J k=0
— D J+112 2 J k2
< Z ZétHe |1 + Cdt Z Z €1 (2.130)
§=0 =0 k=0

D mo
< Zotlem R+ Cot Y|l

=0
Similarly, the second term can be estimated by
m m 1
520508 e s < 32008 (5 e + S
= = 2v 2

< vOT|Q6t* + ScstQ > 1™ 3 (2.131)

J=0

D & D
< Cott+ 2oty IR + ot
§=0
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for every v > 0.

Finally, employing (2.129)-(2.131), we have

2

4D5tz [€7TH)7 < Cuét*> + Coot Y |1€]|5. (2.132)

11
(1 — DcSt) €™+ +

4 — —
J J

By induction on m, we can easily show that

iDdtZ |2 < Cot?. (2.133)

=0

Q.E.D.
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Chapter 3

Simulation on electroless
plating problem with gas

generation

3.1 Introduction

When emphasizing on micro-scale electroless plating problem, gas genera-
tion will be a serious issue. The existence of relatively large bubbles in a mi-
crochannel has been an important issue in the study of microfluid[46, 47, 48].
In electroless plating process, the bubbles may prevent electrolyte from going
into the region needed to be plated. In view of the trouble caused by bubble
generation, we are motivated to understand the mechanism of bubble mo-

tion and bubble generation in electroless process. From a theoretical point

81
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82 3. Simulation on electroless plating problem with gas generation

of view, the physical phenomena for describing electroless process are very
complicated. In practical simulation, not all the physical phenomena are of
interest. Therefore, for the simulation, we chose a system which includes:
gas-liquid two phase flow, chemical species transport, surface reaction, and

moving boundary caused by deposition.

Numerous papers about modeling and simulation of gas-liquid two phase
flow have been published [49, 50, 51, 52, 53|. In terms of how we resolve the
motion of the gaseous phase flows, the working models in most of these papers
can be sorted into two classes: (i) phase field or level set models where the
gas-liquid interface is tracted[17, 20, 23, 54]; (ii) averaged models [55, 56, 25].
Several reasons support our choice for an averaged model: (i) The bubble
generation is random, we only know that there is a higher chance of gas
generation occurring in regions of higher concentration of dissolving gas; (ii)
Even if the bubble generation can be well predicted, vast amounts of bubbles
are generated in a short moment for electroless process; furthermore, the
computational cost for capturing each bubble is prohibitive; (iii) Interfacial
terms (e.g. terms caused by phase change) can be easily estimated if the
averaged model is applied (see Appendix A); (iv) it simplifies substantially

the modeling.

Experimentally, the bubbles are seen to get stuck somewhere in the mi-
crochannel. This indicates that the velocities of two phases are quite differ-

ent. To allow a disparity of motion between the liquid phase and gaseous

doi:10.6342/NTU202200609



3.1. Introduction 83

phase, a two velocities model will be used. To our knowledge, such approach

is new for incompressible two phase flows in thin microchannels.

A system of linear convection-diffusion equations with additional phase
change terms is applied for depicting the concentration profiles of chemi-
cal species. We use the mixed potential theory (see for instance [13]) to
model the reaction boundary condition describing the electroless process,
which is a Robin boundary condition subject to electron balance constraints.
We further consider the boundary motion induced by the chemical species
deposition on reaction surface. Combining all with the average model for
gas-liquid two phase flow, we propose a set of coupled equations for a system
which includes gas-liquid fluid motion, chemical species transport and mov-
ing boundary to simulate an electroless plating process. Note that, in absence
of bubbles, the proposed model reduces to the usual single phase model (i.e.
neglecting the existence of gas) which is compatible with previous studies on

electroless process such as [57].

For numerical simulations, the Galerkin characteristic method[58] is ap-
plied for time discretization. The Finite element method of degree one is
used for space discretization. The well-posedness of the numerical scheme
for the coupling system is proved. We reproduce a one-dimensional numeri-
cal simulation on electroless nickel plating problem to compare with [1]. The
numerical code for the full system is implemented as well and we compare the

numerical results with a real-world experiment done by one of the authors
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84 3. Simulation on electroless plating problem with gas generation

for this purpose. Unfortunately the numerical experiment is very difficult
to make and it gave only qualitative results. So the numerical results are
compared qualitatively only with the experiment.

So the numerical simulations seems more reliable than experiment and
they give detail information on the free boundary and on the speeds and
concentrations of the chemical, highly important for the design of commercial

systems.

3.2 Modeling equations for liquid-gas flow

Let Q(t) be the time-dependent physical domain which is a thin channel
between a top and a bottom plate. The boundary of €2 consists of the inlet
[in, the outlet Ty, the solid wall T and the reacting surface S(t) (see

Figure 3.1).

3.2.1 Volume averaging

We review the derivation proposed by Ni and Beckermann [24].

Let Qq(x,t) be an small open set to be observed in Q(t) and €, C g the
set occupied by phase k and bounded by the interface 0€);, which is assumed
to be oriented. Assume that Uy, = Qo and Q, N Q; =0, k # j. Let ny be

a outer normal to 02, and wj; the normal velocity of 0€2.

Let ¥ be a function of a slow variable = and a fast variable y due to
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Solid wall without
chemical reaction

10mm

Lwan

Fixed inflow | Tin Tout |1 mm

+~lmm-~ f—— 4mm —

Traction free outflow

Chemical reaction mainly
occurs here

0.5 mm buffer region

Figure 3.1: The computational domain () for the test problem in Section
3.5.2 is initially a rectangle of size 10mm x Imm. We assume a fixed inflow
velocity and given chemical concentrations from the left on I';,, a solid wall
on the top side with a no-slip condition for the velocity, and a traction-
free outflow on I'y,;. On the bottom side, S(t) is a free boundary and its
motion is given by (3.23). However as the reaction site is active mostly for
x € (1.bmm,5.5mm), we may block the chemical reactions for z < Imm to
avoid a corner singularity at the entrance and also for x > 6mm because
experiments show that almost no plating occurs there. In the regions x €
(1.0mm, 1.5mm) U (5.5mm, 6.0mm) the numerical simulations may not be
accurate due to the singularity caused by the discontinuity in the boundary

conditions (see figure 3.17 for details).
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86 3. Simulation on electroless plating problem with gas generation

the phase change. The volume average of ¥ in phase k is (V), (z,t) =
Vio Jao(ery Xe(¥) ¥ (2, y)dy, where X is the indicator function of the domain of
phase k and Vy = [, dw, assumed constant. The intrinsic volume average is
defined as

%
(\If),(f) = ?0 (U), where V;, = / Xkedy (3.1)
k Qo

Vi
The volume fraction r, = Vk has the properties » 7, = 1 and (¥), =
0 k

Tk (\I/>,(€k) . Some useful formulas in terms of the averaging are listed below |26,

27):

ou\ o), 1 oy
<(9t>k Y Vo o, U wg nipdA, (V¥), =V <\I’>k—0—VO /89k UndA.
(3.2)

In principle one should introduce also fast and slow time variables but it is

assumed that spatially averaged functions are no longer varying fast in time.

3.2.2 Mass conservation

We consider a gas and a liquid phase. Let p, be the density of gas, p; the
density of liquid. We have the mass conservation for both phases (I for liquid

and g for gas):

Oi(rip;) +V - (rjpju;) =S5, 1=1,g (3.3)

where S'g is the mass gained owing to the precipitation of dissolved gas, S,
is the mass loss when liquid is replaced by the gas, and wu,(z,t), w(x,t) are

the volume averaged fluid flow of gas and liquid, respectively. Since the mass
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3.2. Modeling equations for liquid-gas flow 87

gained in gas balances the mass loss in liquid, we have
S = — ). (3.4)

For chemical species, we assume that the ions are transported only by the
liquid electrolyte. Let ¢, be the volume averaged concentration of metallic
ions destined to be deposited on the reacting surface, ¢, the volume averaged
concentration of dissolved gas and ¢, k = kq,..., ky the volume averaged
concentration of other chemical species participating to the chemical reaction.

The equations for the concentrations are
O(mpicy) + V- (ripicyw) =V - (nipD;Ve;)) —Gj =0, j=s,9,k.  (3.5)

where G, j = s, k are interfacial terms due to the phase change. By (3.3) ,

we can rewrite the above equation by

ripi(Oue; + - Vey) = V- (npD;Ve;) — Gy + Sic; =0, j=s,g,k. (3.6)

where D; are the diffusion coefficients. In particular, since the gas is

consumed by the phase change, we have

1
Gg = ——/ plcg(ul — ’LUZ) . nldA - legKrl<cg - csat)+ (37)
Vo Jag,

by assuming the gas precipitation is linearly dependent on the dissolving gas

concentration[59, 60].
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88 3. Simulation on electroless plating problem with gas generation

In the above, wy; is the interface velocity of 9€2; and where K is a constant
independent of 74, r; and csq is the saturated concentration of the gas, M,

is the reciprocal of the molar mass of the gas,
Sy = Kri(cy — Coar) " (3.8)

Moreover, G;, j = s, k, g can be estimated by (see Appendix A)

G; =~ S'lcj, j=sk Gy~ Slcg — iMyKri(cy — Csar) " (3.9)

For incompressible fluids, a volume conservation is derived from (3.3):

S L [0(rapa) + - (rapatta) — Sa] =0. (3.10)

a=g,l P«

By (3.4), the above reduces to

. 1 1
Vo (rgug +ru) =5, < — ) ) (3.11)
Pg Pl

Recall that the physical domain is occupied either by gas or liquid, therefore

re(t) +ri(t) = 1 at all times.

3.2.3 Equations of motion

Let 114, tu be the viscosity of the gas and the liquid, respectively. The volume

averaged Navier-Stokes equations are used for momentum balance (see [24]):

Ou(rjpjw;)+V - (ripju; @u;) +1;Vp;—p; V- (r; D(w;)) + Mp ; = Fj, j = g,1

(3.12)
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3.2. Modeling equations for liquid-gas flow 89
where p;, Mp;, F;, j=1,g are pressure, drag force terms[25, 24]

Mp 4 = Cprgluy — w|(u, — )
(3.13)

MD,l = CDT‘Q"U,Q — ul|(ul — ug),

where Cp is drag coefficient, and interfacial terms F, = _V% fan p,u,(u, —
w,)-n,dA, j=1,9, D(v) = Vv+ (Vo)T is the viscous stress tensor for any

vector-valued function v; Fj, j =1, g can be estimated by (see Appendix A)
F,~ S,u,, F~ Su, (3.14)

In view of (3.11), following [61, 62], we assume a constitutive relation p =
i = pg in order to close the system of equations. The velocity fields of both
phases are assumed to be 0 outside their own single phase region, respectively.

Consequently, and by (3.3), (3.12), the momentum equations simplify to

7ip;(Opuj + (wj - V)uy) +1;Vp — V- (r;D(uy)) + 7;Cprgluy, — wf(uy —w) =0,

j=g,l, withvy,=1andy = -1

(3.15)

3.2.4 Boundary conditions

We consider a fluid flow from an input boundary I';, to an output boundary

I',.: with a solid wall at the bottom, I',.;:

U; = Uy On Fina u; = 0 on 1_‘walh

(3.16)
—p;D(u;) - n+pn=0 onl,,, j=1g.
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90 3. Simulation on electroless plating problem with gas generation

The boundary conditions for r;, j = g, are

rg==¢ 1 =1—¢€ only,

87“9 o 6’77

(3.17)

on  On

where € is a fixed positive small constant.

=0 on 9N\ Iy,

The boundary conditions for the concentrations of chemical species are,
with ¢;;, given:

O
¢; = Cjin on Ly, —acj =0 onTyatUTlwu, j=s,9k (3.18)
n

With F' the Faraday constant, and z the atomic number of the material.
Referring to Figure 3.2, if S(¢) is the reaction surface , we denote S;(t) C

S(t) the region occupied by the liquid and S,(t) := S(t) \ Si(¢) the region

occupied by gas. Choosing an arbitrary subset W C S(t), the surface re-

action takes place only on W N Sj(t). Assuming that the concentration

profile is uniform near the small region W, we have: — / pleé?;jdA =
W n
I.
/ ledA. Therefore by dividing both sides by [}, 1dA:
wns,(t) "z
de; || dc BIL]
—Dj— = — =s,k, —D,—2=— 1
Ton 4 F’ J =55 Y 0n 2. F (3.19)

for a positive number § indicating the chemical equivalence for gaseous molec-
ular generation.
In the above, I; is the current density satisfying the Butler-Volmer equa-

tion

I = ij(Emiz)c;’ ::Lg{exp (aﬂzﬂ ( j)>—exp< Bizs F J)N J

RO RO ¢’ J= sk
(3.20)
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Figure 3.2: The reaction surface.

where R is the gas constant, E; are the chemical potentials of species j,
¢ is the temperature, «;, 3;,L;, k; are constants, F,,;, is given by writing
electrical neutrality :

I;+> I, =0. (3.21)
k

On S(t), the fluid velocity induced by the deposition is

_ rl‘/s‘[s’n

g = W o F (3.22)
where V; is a constant. Hence S(t) moves according to
#() = (u, - m)nly. a(t) € S(1) (3.23)

3.2.5 Single phase flow

If there is no gaseous phase in the system and no dissolved gas in liquid,
ie. 1y =cy =0, then u = u; and Sg = 0 and mass conservation reduces to

V -u = 0. The convection-diffusion of chemicals become,
Ocj+u-Ve; —DjAc; =0, j=s,k, (3.24)
and the fluid system reduce to the Navier-Stokes equations:

p(Ou + (u-V)u) — yAu + Vp =0, V-u=0. (3.25)

doi:10.6342/NTU202200609



92 3. Simulation on electroless plating problem with gas generation

The above system of equations exactly describes the chemical species trans-

ported by the fluid flow satisfying the incompressible Navier-Stokes equation.

3.3 Numerical method

3.3.1 Notations

If f € R, we denote by f* := max(f,0) and by f~ := —min(f,0). We
denote by |- = - [ rca the L norm on (t), || - fuss := |- luks(ay
the WP norm on Q(t), and || - ||gx = || - ||we2, 0 < k < 400, 1 < p < +00.

Remembering that ci(z,t) is a vector, let us denote C' = (cg, ¢, ¢y)T.
We assume the densities p; constant and denote a; = 7;p; and the kine-

matic viscosities v; = p;/p;. The system is

v
Pl

@ozj + u; - VOéj + ajV U; — o (Cg - Csat>+ = 07 j - l?.g (326)

o (O + ;- Vg + p; ' Vp) =, V(0 D(w))) 4+, Corlarg—w| (wy—w) = 0, j = g,1

(3.27)

(0,C+u;-VC) =V - (D -VCO)+ (0,0, MyKay(c, — coar) )T =0, (3.28)

where D is the appropriate diffusion matrix compatible with (3.15). In addi-

tion as S'g =-S5 =K ai(cg — Csat)T/p1, we may use the redundant equation
(3.11):
. 1 1
Vo (L, + M) = 8, ( - ) . (3.29)
Pg Pl Pg Pl
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3.3. Numerical method 93

3.3.2 Semi-discrete schemes

Let T' be the final time and 6t a time step. We denote by ¢, m =
0,1,...,N := T/t the numerical solution of any physical quantity ¢ at

time modt. Convection terms are approximated in time by the method of

characteristics. Let X7"(v) ~ r — u}*(x)dt. Then

]' m m m
(Orj + ;- V) |ogmpmis ~ = (]! (@) — a™(X]'(x))) -

Consider the following scheme

1 1
&(a;”“ —a" o X{") + a" ! (v u" + —K(c' csat)+> = ((3.30)
pi
it =" i, 7’;”“ =1, a;nﬂ = PgTy gt (3.31)
1 m m m m m m m
&O‘j +1<uj +1 u OX )+:0] 1 +1vp +1 ujV ( +1D( +1))
+y505 Cpay ™ Hug ™ —uf ™ (ug™ — w1 =0, j =g,
(3.32)

V- (py oy a4 p o ) = o Kol (e = o) (0,0 = 001 S
(3.33)

;tozlmH(C'm+1—C’moX;”)—V-(a}”“D-VC’mH)—I—(O, 0, MgKoz?l(cZ"‘—csat)Jr)T =0,
(3.34)

For electroless plating the domain is Q™ = {(z,y) : 0 <y < y"(z), = €

(0, L)}, so it is updated by

Y () =y (@) + Otugy T (2), € (0, L)
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Remark 3.3.1 Because of the asymmetrical treatment of o, and oy the

scheme (3.30) does not imply that

(g™ —am o XM + IV ug = p o K (¢ = caar) T (3.35)

However, by (3.30),(3.31), (3.33), we have

1

gl =g o X el IV g Pt — o)V (! — )
+ g(a;" o X' —ay o X") + (uy' —w") - Vay'
= pflaZ”HK(c;” — Coat) T+ pl_l(ppj — 1) (o — ") K (' — Coat) -

(3.36)

By a Taylor expansion at x, we obtain

af (X["(z)) — g (X" (x)) = 6t(u) —uf") - Vai'(z) + O(6t%),  (3.37)

g g g

and

ot —af" = =0t(u; - Vo' + o TV ) — 5K o () — coar) T+ O(68%).
(3.38)
Plugging (3.37) and (3.38) into (3.36), we have

1
ﬁ((x;”“ —al o X"+ TV ul = p o K (¢ — o) T+ O(01). (3.39)

So the scheme is consistent with the equation for a.

3.3.3 Positivity

Positivity of a]"*! holds only if ¢ is small enough. When positivity is re-

quired absolutely, an O(dt) modification of (3.30) forces the positivity of
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1 1 &
5 (a}”“(x) — alm(Xl’”(;E))) + ot <V cut + p—K(c;” - csat)+>
l (3.40)

1
=aq) (V St + EK(CZL - csat)+>

Indeed assume that ] is strictly positive, or more precisely that ;" > € > 0

for all x; then we have

1 1
a1+ 0LV - + EK(c;” - csat)Jr)ﬂ = o (X") + dta]" [V cu)t + EK(CZL — Csat) T

1
> 1+ 0V " + K (e - Csat) T)7)-
1
(3.41)

1. Let us show first that (3.30) generates a bounded sequence {a]" }=1. n-
For clarity we assume homogeneous data at the boundaries. With

simplified notations

1
a(O/n-‘,-l _amoXm> —|—Oém+1 (Vum+¢m) =0

A multiplication by a™*! and an integration on Q™! leads to
m+1)2 __ m—+1 m m m+1 L m
la™ |72 = /Qm-H {Oz (a o X™ — ot (a V-um+¢ ))} dx

By the Cauchy Schwarz inequality and the positivity of ¢™,

Jun

o™ 3 < o+ ( |

Qm+1

[am o X™ — §ta™ vV - um]Q da:) : )

The inverse of the determinant of the Jacobian of the transformation
x> X™(x) is 1+ 0tV - u + O(6t?); therefore, for any smooth function

f, in particular with f = o™ o X™ — §ta™ ™'V - u™ = o™ o X™(1 —
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GtV - u™ o X™ + O(6t?)),
/ o X :/ F(L+ 6tV - u™ + O(5t2))da
Qm+1 Qm
= o™ Y|zz < fla™[|z2 (1 + C(|V2u™ || 1<)dt?).
where C() is a generic constant bounded by the Hessian of u™. Thus

{a]"}m=1.n is bounded.

. Stability of the scheme for C' is shown by the same argument.

. Stability of the scheme for u, and u; is a consequence of a similar argu-

ment combined with the Ladhyzenskaya-Babuska-Brezzi saddle point

theory (LBB) [63].

We denote by (-,-) the L? inner product. For tensor-valued functions

such that f,g € L*(Q(t))™, m,n € N*, (f,g) = X%, X0, (fij» 9i5)-
With self explanatory notations, the equations for the velocities (3.32),(3.33)

are written in variational form as:

Find uy, w; and p satisfying the Dirichlet conditions and such that,

Vo, 0 € Vi = (HH(Q™H))” and Vg € P = L Q) /R,

(Bytsg:8,) + (G, 80) + 5 (0, D{asy), D(,)) + 5 (gD (aw), D(1)

ay o . a a . _ .
- (p, V- (o, + lv;)) + (q, V- (“Hu, + lu;)) = (Ly,9,) + (Li,01) + (@, f) -
Pg Pi Pg Pl
(3.42)
1 C
where, for j = g,l, oj == O./;'H_l, Bj = 51 + pjag|’u,;” — "l
]' m m CD m m|,,m —1 m+1 + —1 —1
L, = 570 oX] —|—p—gag|ug —u" |y, fi=p Ka(e]™ —Csar) (pg — )
(3.43)
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and where lg =1, Il = g.

Note that the above is a semi-linearization of (3.32),(3.33). However
in algorithm 1 below, the nonlinear problem is solved by an iterative

fixed point which uses (3.42)-(3.43).

The LBB theorem says that the solution of (3.42) exists and is unique

because, for every p € P™*! there is a (non-unique) w € Vg™ with
(V-w,q) = (f,q), Yge P™",

provided that [p. ;M = [omi fdz. Let us show stability in the

special case f = 0 because one can always subtract w from %ug + %ul
g

so as to work with ug;, = Ui, =0 and f = 0.
Thus, setting v, = u,, U; = u; and ¢ = p leads to

1 s 1 | 5 1 )
Vgl IVED ) [t Gl [ VaD () 32 < (L, ug)+(Lr,w)

(3.44)
By the same argument used above, it implies that w;, j = g,[ is

bounded. Indeed, assuming o™ > 0,

N[ =

ot (Lj,u;) = / ajul’ o X7 - ujdr < H\/aj'u,j

2
m m
Lo </Qm+1aj‘uj o X; ‘ d:v>

Vil ([ are Xy (1= otV - up + 06 [uy o X7 da

m m m 1 m m m|? 2
= |V L2 </Qm+1 (aj OX oV +EK(09 _Csat)+)> ‘uj o ‘ dx)
o ST
< Ve, (/Qmﬂ (0" 0 X} = adtV ") [uf" 0 X7 dx)
< < :

= || V/u; L /Qm (a?(l + 0(5252))) "u,;”f dm);
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< |[vajuy|,, (1402 C (e e, IV [[10)) ||yl A (3.45)
for some generic constant C' depending on ||¢]'||z and ||V?u]"|| L.
Finally, we obtain
m+1 m+1 2 mo,,m CD Qg m m m o ,,m
g™ w1 < (14+C687)||Jug', !Hm+5tpfg|!afm(ug —u]")|[ o [[[ug’, wi"||lm
J
(3.46)
where
2 2
g wllls, == 3 |\ o], + 30t |\ /aiDw)| ,, m=0,....N.
J=gl

This estimate is optimal, but for the constant C' which is the drawback
of the characteristic method and for the L* norm which is consequence
of the unsophisticated treatment of the nonlinearity. Nevertheless,

would these two be bounded, the scheme would be H! stable.

4. Note that we have swept under the rug the fact that at level m the
domain of definition of the functions is 2™ and at level m + 1 it is
Q™. The problem can be solved but at the cost of difficult notations

and iterations between y™ ™! and u™"!; for details see [64].

3.4 Finite element implementation

For simplicity, the physical domain Q(t) is assumed to be a two-dimensional

polygonal domain.
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3.4.1 Mesh

Let {KCh(t) }r>0 be an affine, shape regular (in the sense of Ciarlet[65]) family
of mesh conforming to 2(¢). The conforming Lagrange finite element space

of degree p on Q(t) is
X5, ={vel’Q(t): v|lk € P", YK € Ky(t)}, (3.47)

where PP is the space of polynomials of degree p of R2.

Let {¢1,...¢n,} be the nodal Lagrange basis of X ,. If the vertices
are denoted by {qi}f[q, then ¢;(g;) = d;;. Let S; be the support of ¢;
and let S;; := 5; NS;. If £ is a union of triangles, define Z(E) := {i €
{1,....,N,} + |Sin E| # 0}. Finally, the local minimum mesh size of
K € Ku(t) is hg(t) := 1/max;ez(k) || Vi|lL=(x), and the global minimum
mesh size is h(t) := mingex, hx(t).

We assume that the connectivity of the mesh Kj(t) never changes with

time.

3.4.2 Spatial discretization

We use the Hood-Taylor element: the velocities are in V;(t) := (X} ,)* and
the pressure is in Py (t) :== X %,t. For the volume fractions and the concentra-
tions we use also P (t).

Recall that the nodes of X lit are the vertices and the middle of the edges.

Denote by {t1,...,%n,} the nodal Lagrange basis of associated with the
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100 3. Simulation on electroless plating problem with gas generation

nodes {ay, ..., ay,} for Xj,. For convenience, we define Q™ := Q(¢"), P* =
Xflz,tm and V)" = (Xlg,tm)z-

On the boundaries where Dirichlet conditions are set, the functions are
known. We denote FJ; and V' , the corresponding spaces where basis

functions attached to a Dirichlet node are removed.

Volume fractions

Given o, ¢, € B and v}, € V", find ozﬁfl € P! satisfying the

Dirichlet boundary conditions and such that

1 _ . _ _
5 (et = afh o X7ho G )+ (i (V -y + pr K (€ — caat) ), @) = 0, Vi € Pyt

(3.48)

where X7 (z) = = — 0tu]y,(z) for € Q™, j = g,I. Then we let a}/! =

Pg(l - pl_lam:rl)-
Remark 3.4.1 A modification similar to (3.40) will insure the positivity of

m+1
alvh .

Concentration profiles

Given of;" € B oy € B, wupy, € Vi, Ot e (PR find O e
(P th)2+ka guch that

1 . _ .
5 (a%ﬂ(C}TH —Cplo le),wh) + (aThHDVC’,TH, th) + (MgKozZlh(cgfh - csat)+,wg7h)

+(1ERE O @

_ -~ m~+1\2+kns
mix,h =0 vwh € <P0h ) )

(3.49)

h)L2<s<tm+1>>
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3.4. Finite element implementation 101

subject to

> (B () (gi) = 0, for each nodal point g; on S™ - (3.50)
j=s,k

where g, is the last component of @y, and

I<Em+1

mizx,h

) = dia i (Bt )] lie(Emt i)l Blia(Epith)
& 2 F 2F 2 F ’
T

(O ey = (e, (e, (et ™)

Sy

for is, 4 defined by (3.20).

Two phase flow

: m+1 m+1 - m—+1 m—+1 m m m+1
Given oy € B, j = g,l, ¢y € P, and uf), € V)", find uj} €

V"t j =g, 1 and p]*™' € P /R such that

1 1
+1(, m+1 ~ +1 +1
> :l{&(a;}h (i = o X713, 850) + 5vi (a7 T D), Dlvya) )
J=9,

-1 m+1|, m+1 m—+1 m+1 m+1\ m—+1 -1 _m+1~ _
+7p4 Cp (ag,h |ug,h — U |(ug,h —Up )a”j,h) - (ph ’v'(pj Qi h ”j,h))}—o

(3.51)

K
~ —1 _m+1, m+1 -1 _m+1_ ,m+1 _ ~ m+1/ m—+1 + —1 —1
(qh,V : (pg Qgp Ugp TP Oy Upy, )) = <Qh7pl0‘1,h (Cg,h — Csat) (Pg — P )

(3.52)

for all ©;, € V7', j=g,l and @, € P! /R,

3.4.3 Fixed point iterative solution of (3.51), (3.52)

The system (3.51)-(3.52) is nonlinear. An iterative algorithm is described in

Algorithm 1.
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102 3. Simulation on electroless plating problem with gas generation

Algorithm 1: A semi-lineariazation for solving (3.51)-(3.52).

1 Let Ly, L;, f be defined by (3.43).
Data: Set u; =uj}, j =g,
2 forn=1...N do
3 Set 3 = (;a%jl + Cp?og;'?}jﬂug - uz\>7
4 Find w4, u; and p sastifying the Dirichlet conditions and such that,

Vo, 0, € Vit and Vg € PR

(Byttg, ) + (B, 30) + 5 (077 Dlwg), D(8,)) + 5 (03 Dlaw), D(®1))

am}—Li-l R a;nh—i-l R R Oém]—li-l a;nh—i-l
—(p,V-( = g+ —v) |+ |7 V- ( ‘Z)’ Uy + ——u)

Pg Pl 9 Pl
= (Lg>'8g) + (le 171) + (21\7 f) . (353)
5 end
6 Set U?—H =uj, j=g,l.
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3.4. Finite element implementation 103

3.4.4 Consistence and Stability

Variational formulations discretized by finite element methods inherit the sta-
bility and consistency of the continuous equations. The LBB theorem applies
also to the Hood-Taylor element for velocity pressure problems. Therefore,
as in the continuous case, the H' norms of /"', w/*!, C"*" are less than
(1+C(IV*ui*||L~)dt) times the H' norms of of",u}*, C7". If we could show

that C'( ) is bounded, then it would imply that the scheme converges when

ot — 0.

3.4.5 Solvability of the linear system in matrix form

Let ¢ = (¢, &) € (V)2 a?fh“ € P a;y > e for some constant € > 0,

Jj=gl

To study the solvability of (3.51)-(3.52), we consider a simpler case with

u, = uw; = 0 on OQ™ 1\ T, and take the linearized approximation on
the drag force terms. The problem reads: Find u}"™ := (uyh l,ufhﬂ) €

(Vgrt1)2 and ppt! € PR satisfying

ac(uy ™, o) + b(py o) = F(B),  b(Gnup ™) =G(@@), (359
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where, for u = (u,, w;),v = (v, v) € (vii™)?, ¢ € P

ac(u,v) = Z {5115 (a;”}jluj,'v» + ;yj (a;?f}le(uj),D(vj))}

Jj=g,l
+ 9, " C (g 1¢y — Gil(ug — w), v, —v))
g g » g
b(a,0) = = (4, V - (p, "ot vy + py ' afli )
1 m+1 m m —1 m—+1/ m+1 +/ -1 —1
Z 5*( 3.h u]h(Xj,h(x>>7Uj) G(q) = (%Pz K@z,h (Cg,h — Csat) (Pg — P ))
(3.55)

On the basis of V;"™* and P;"*!, we can write

ugy = Zum“% upit = Zum“@bz, = me“gbz, (3.56)

More precisely {11, ..., vy, } is {t)1e1,...,Un,€1,101€0,... 0y, €2} for e, =
(1,0)T and e, = (0,1)7,

Problem (3.54) can be formally expressed as a system of linear equations:
UM = F™, (3.57)

where ® is a (4N, + N,) x (4N, + N,) matrix, U™ and F™ are (4N, + N,)
vectors. Note that ® has the form

& = , with A = . (3.58)
BT O Amix Al

In the above,
Av = (5 (anir b s) + 5o (a5 D), D)) + 07 Co (i 16 — Gl ) )

Amiz = (—PfCD( mH‘Cg Clh/)i’l/)j))@jzl

-----

o AR S)
= (65, V - (ool 0) )

B =
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3.4. Finite element implementation 105

Proposition 3.4.1 The linear system (3.57) is uniquely solvable.
Proof. According to the Ladyzhenskaya-Babuska-Brezzi theorem [63] the
saddle point problem (3.53) is well posed when for p € P;"*! /R, there exists

v € Vy't! such that

(p7v -’U)

> c||p||r2/r for some ¢ > 0. (3.59)
[0l

Therefore @ has full rank and is non singular.

3.4.6 Iterative process

At each time step, (3.48), is solved first, then (3.49)-(3.50) is solved itera-
tively by using a semi-linearization of the nonlinear boundary terms. Then
(3.51),(3.52) is solved iteratively by a semi-linearization of the nonlinear
terms; each block involves the solution of a well posed symmetric linear
system. Finally S™ is updated by (3.23). Algorithm 2 summarises the pro-

cedure.

Note that the computational domain is Q™ = {(x,y),0 < z < L, 0 <

y <y™(z)}.
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Algorithm 2: Algorithm for solving the full system of equations.

fag 0 0 0 0o 0 0 0 0
1 Set initial data Qg iy X s Uy ps Wiy Cspy Chpy Co o E

2

10

11

12

13

14

15

. m m m m m m m m m m
Data: gl Oy Ug'hs WLy PR's Cos Chiny Coho E and y

miz,h’

mix,h’

for m do
Solve (3.48) to get a;’ff{l, af’“h“;
Initial guess: E;';‘;:;LO =E b C}TH’O = solution to (3.49) when
mixed potential is E;Z;};LO;
while HC;LnH’kJrl - C'}TH’]{H > tolerance do
Initial guess: Eﬁ;’l,’lkﬂ’o = E:Z:;lhk,
while HEﬂ;};ﬁH’ZH - Z;},;kﬂ’l 2(smy = tolerance do
Solve (3.49) to get cz}fl’kﬂ’lﬂ, ch;{l’kH’lH, cg?;[l’kﬂ’lﬂ;
Solve (3.50) to get EZLL;},’ZHU*;
Eﬂ;}ﬁkﬂ’lﬂ _ gEZZ;}];kH,l* (- {)Enn;;?};kﬂ,l’ 0<¢<1;
end
end
Solve (3.51)-(3.52) to get, ugf,jl, ulr,”hﬂ, P! (Using Algorithm 1);
For the free boundary case change the mesh by y™+! = ™ + 5tu2’g’ff[ L.
end
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3.5. Numerical simulation 107

3.5 Numerical simulation

3.5.1 Omne-dimensional electroless nickel plating prob-

lem

Here we reproduce, with a two dimensional computation, the one-dimensional
study by Kim and Sohn [1]. In their work, the electroless nickel plating pro-
cess on a rotating disk with constant angular velocity is considered. In this
situation, the velocity field near the surface of the rotating disk can be ap-
proximated by a uniformly distributed flow towards the plating surface. In
addition, the thickness of diffusion layer is assumed uniform on the surface.
Consequently, for the modeling, the domain becomes one-dimensional. Given
that the gas generation is not considered and only the steady state is com-
puted in [1], a single phase recovery r; = 1, ¢, = 0 is applied. Finally, four

partial reactions in the electroless nickel plating process are considered:

HyPO; + HyO = HyPO3 + 2H' + 2¢ (anodic) (3.60a)
HyPO; +2HY 4+ e = P+ 2H,0 (cathodic) (3.60b)
Ni*t +2e~ = Ni (cathodic) (3.60c)
2H' +2¢~ = H, (cathodic) (3.60d)

All chemical species are labeled as follows: ¢; is the concentration of the
anodic hypophosphite (HsPO3 ), co the concentration of the cathodic hy-

pophosphite, c3 the concentration of the nickel ion (N7?T), and ¢4 the con-
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108 3. Simulation on electroless plating problem with gas generation

Table 3.1: Physical parameters used in the simulation by Kim and Sohn [1],

which are valid for pH = 4.5 and the concentration of H,PO; = 0.3 M

H* N2t Hy POy (cathodic) Hy PO, (anodic)
io (A/em?) 1.5x107%%  15x1077% 6.0x 1074 8.9 x 1073
D (em?/s) 45x107°%  05x107%¢ 1.7x107° 1.7 x 107
oY 0.79 ¢ 0.79 ¢ 0.2 0.9
3B 0.21 ¢ 0.21 ¢ 0.8 0.1
z 1 2 1 4
v 1.0 ¢ 1.0°¢ 0.3 1.0
Ey (V)4  —0.101 —0.147 —0.806 —0.878
co (M) 3.162 x 107° ¢ 0.1 0.3 0.3
subscript 7 4 3 2 1

¢ Estimated from the literature [66]. ° Assumed in this study. ¢ Taken from
the literature [67] . ¢ Calculated based on the literature [68]. all values except
Eo3 (Ni*t) depend on pH (see (3.66)). € If pH = x, then coq = 107 (M). iq:
Exchange current density, D: Diffusion coefficient. a: Anodic transfer coeflicient,
B Cathodic transfer coefficient. z: Number of electron transport, 7: Reaction

order, Ey: Equilibrium potential (90°C) ¢ inlet and initial concentration
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Table 3.2: Conditions assumed in [1] for performing our simulations

Experimental conditions

Angular velocity w 400 rpm
Kinematic viscosity v 1.2 x 1072 em?/s
Temperature 90 °C

Composition of electrolytes

NiSOy (nickel sulfate) 0.1 M
NaHyPOy (sodium hypophosphite) 0.3 M

pH 4053

centration of the hydrogen ion (H ™). Now the two-dimensional analogue can
be formulated: Let © = (0,d3) x (0, €), where d3 is the thickness of the diffu-
sion layer for nickel and € << d3 is a small positive number. The thickness

of the diffusion layer for species j is given in [13]:

§; = 1.61D} w210, (3.61)

The governing equation for the concentration profile is given by

ath +u- VCj - DjACj =0 in Q, (362)
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subject to the boundary conditions

O
c; = cg; at x =03, —Dja—(;Z:O at y =0,€,
_ Dj% i) ((L=r)er )™ 4 [2(Emiz)| <7"C2>72 j=12
on ZlF Co1 ZQF Co2
Oc;  |ij(Emiz)| 1\ .
_p, % _ 146 Emiz)| () — 3,4 atz =0,
I on ZjF Co1 J ’ e

(3.63)
with the electron balance constraint
it ()", o
= s \ay

The velocity field can be expressed as in [13]:
u = (—az®w® 712 )" (3.65)

where a = 0.51023 is an experimental constant, r = 0.995 is the ratio be-
tween the hypophosphite anodic part and the cathodic part on the reacting
surface. The equilibrium potential Ej; for species j can be approximated by
the Nernst equation, with pH = log(co4):

0.25R0 0.3R0

Eo = —0.878 + log (104'5004) , Loz = —0.806 + log (104'5604) ’

RY
Eyg = —0.147, Eyy = —0.101 + — log (10%cqs).
(3.66)

By simulating system (3.62), (3.63), and (3.64), with the physical constants
given in Table 3.1, until a steady state is reached, the numerical tests show
that the present model agrees well with the previous 1D studies of Kim and

Sohn [1]: see Figures 3.3 and 3.4.
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Figure 3.3: In red, the mixed potential E,,;, computed by the one dimen-
sional system (3.63) versus pH= logcos. In black, the same but computed

with the full two dimensional system.

Regarding (3.60), atomic nickel and phosphorus are deposited on the sur-
face during the electroless process. The deposition thickness can be estimated

in terms of the current densities:

<i2(Emix) (cala=0/co2) VP n i3(Emia) (¢3le=0/Co3) VM) t (3.67)

ZQF ZgF
where Vp, Viy; are molar volumes of phosphorus and nickel, respectively, and

t is the deposition time.

3.5.2 Two species in a gas-liquid two phase flow

Let the initial domain 2 be a rectangular of size 0.01 x 0.001 (in meters). We
consider complexed (by tartrate, denoted by L) copper ions, formaldehyde,
and hydrogen dissolved in water, which are denoted by the subscriptions
s, k, g, respectively, for the chemical species transport equations.

The chemical reaction can be expressed as the following two partial reac-
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s —-—c, in this study

0.4 P —-—c, in this study
—-=c, in this study
i i
024 A ¢, by Kim & Sohn
z —c, by Kim & Sohn
—c, by Kim & Sohn
T
T 1

Dimensionless concentration (c/c,)

0.0

T T T
0.0 0.2 0.4 0.6 0.8 1.0

Dimensionless distance (x/3)

Figure 3.4: Concentration profiles of three chemical species versus = com-
puted by the one dimensional system (3.63) and compared with the results

of the full two dimensional system.

tions:

Cu(OH)yLy* = Cu+20H™ + 2L 72 (3.68a)

2HCHO + 40H™ = 2HCOO™ + Hy + 2H;0 + 2~ (3.68D)

Given the above equations, we also use the subscriptions s and £ to represent

the quantities corresponding to (3.68a) and (3.68b), respectively.

The values of the physical constants are listed in Table 3.3.
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physical quantity value physical quantiy  value

o (kg/m?) 995.65 pg (kg/m3) 1.161

po (kg/m?) 1.161 g (kg/m - s) 1.86 x 107°
wi (kg/m - s) 7.977 x 107*  dy (m) 0.001

ug (m/s) 0.001 Csat (mol/m?) 0

ig (A/m?) 1.0x 1072 s (A/m?) 1.0 x 1072
ix (A/m?) 10 R (J/K -mol)  8.314

K (kg/mol - s) 3.87x107% M, (mol/kg) 500

cg0 (mol/m?) 1 cso (mol/m3) 39.34

cro (mol/m?) 77.58 Dy (m?/s) 2x 1078
Dy (m?/s) 7 x 10710 Dy, (m?/s) 1.2 x 107
zs (1) 2 2, (1) 4

as (1) 0.67 o (1) 0.37

Bs (1) 0.33 Br (1) 0.63

0 (K) 363.15 E, (V) —0.266
Ey (V) 1.5 Cp (1) 242220

a (1) 0.0005

Table 3.3: Parameters used in Section 3.5.2.
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For convenience, the following scalings are applied:

L
L — — (L is any length), p; — ﬁ, pg — &,
do Po Po
g Cq Ck Cs dOCQO
1 — ) - —, g — —, ¢ — —, ¢ — —, K=+ —"K,
: podoug He podouo” " cqo o’ T e PoUo
L L Ly D D Dy
Ly~ —%— Li——"— Lp——r, — 2 Dy— —> Dp— —
g U()CgonF7 s ’U,()CsonF K ’U,()Ckosz g ’LL(]do s U()do k uodk
. ig . Z‘s . Zk
- —4 - " i .
! upcqozsF’ bs UCs02s F Uk UoCro 2k F
(3.69)
The initial conditions are set to: constant phase ratio and Poiseuille flow:
=e rm=1-¢ u)=u=(0.69y(1—-y),0)", (3.70)
with € = 0.0001. Also, let C° = (), ), ¢))" satisfies
)DVC®) =0, C%,, =(1,1,0)" oct =0 (371
-V (rl \Y ) =0, |Fm - ( )’ 4 ) ) %|Fouturwall - ( : )
plus the first equation in (3.73) subject to (3.21). The inflow values are
ug M r,, = w e, = (Y(1-9),0)7, ¢lr, =0, e, = alr, =1, 71, = 1€
(3.72)
The boundary conditions on S(t™*1) are
Ocy 1 1 1 1 1 1) :m+1| m+1
. + .
—Dp# = xr** |z;”+ |c;1Jr , p=s5,q,k, uZ” =u"" = axr T
(3.73)
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where o« = 0.0005 and

x—%—i—isin(?w(m—%)), 1 <z <15,

1, 1.5 <z <55,
x(z,y) = (3.74)

%—x—%sin(%r(:c—%)), 55 <z <6,

0, 0<z<lor6<z<10.

Boundary conditions on I',,; and ',y are as in Section 3.2.4. See also Figure

3.1.

Remark 3.5.1 We note that a = 0.0005 is much larger than the experimen-
tal values; the numerical simulations produce wu,, (and ;) of magnitude in
the order O(10™%). On the other hand, the deposition rate in a typical ex-
periment is of order 1 ym per hours [69], which is not larger than O(107°).
Yet the numerical test is conducted to validate the numerical method when

the evolution of the domain is larger than real life values.

Convergence

First, we conduct the convergence test for different time step with a fixed
mesh. To obtain a “reference solution”, the system (3.48)-(3.52) is solved
with a 50 x 10 uniform mesh and a small time step ot = 0.01 and 7" = 10.
The convergence with respect to dt is studied without changing the mesh;
results are given in Table 3.4 and the rate of convergence for each variable is

presented in Figure 3.5. Numerical tests for solving two phase flow problem
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and volume fraction problem present a linear decay of L? error with respect to
the time step. However, the convergence for solving the concentration profiles
does not reach the expectation due to extremely low diffusion coefficients and

large current densities.

Second, we conduct the convergence tests for different time step and mesh
pairs. The reference solution is obtained with 200 x 20 uniform mesh and
ot = 0.05 at T'= 10. We always keep the time step being proportional to the
mesh size. Figure 3.6 and Table 3.5 present a linear decay of L? error with
respect to the time step for each variable.

Third, the convergence tests for different time step and mesh pairs are
performed until a larger final time. The reference solution is obtained with
200 x 20 uniform mesh and 6t = 0.3 at T' = 120. Same as the second test, we
always keep the time step being proportional to the mesh size. Figure 3.7 and
Table 3.6 present a nearly linear decay of L? error with respect to the time
step for each variable. In this test, r, and ¢, are of the worst convergence.
Their intensity maps are given in Figures 3.8 and 3.9. Except for tests with
time step 0t = 1.2, the intensity maps for the tests with 6t < 0.6 present no

significant difference with the reference solutions.

Robustness for large time steps

With a large time step 6t = 1 and 100 x 10 uniform mesh, the product of the

maximal liquid fluid speed with the time step is around 1.5 times of the mesh
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Table 3.4: L? error with respect to the reference solution provided with
time step 6t = 0.01, 50 x 10 uniform mesh, and o = 0.0005 for numerical

simulation in Section 3.5.2 at T = 10.

ot Ug u; p ay Cs Cr g

1 5.56 x 1074 549 x107% 1.45x1073 9.11 x 1072 9.12x 1073 3.77x 107* 1.74 x 1072
0.5  277x107* 273 x107* 7.17x107* 4.50x 1072 6.80 x 1073 2.64 x 107 8.74 x 1073
0.1 4.85x107° 4.84x107° 1.28x107*% 807x1073 387 x107% 201 x10~* 1.72x 1073

0.05 2.25x107° 224x107° 575x107° 3.58x 1073 3.00x 107® 1.55 x 10~* 8.77 x 10~*

Table 3.5: L? error with respect to the reference solution provided with
time step ot = 0.05, 200 x 20 uniform mesh, and o = 0.0005 for numerical

simulation in Section 3.5.2 at T = 10.

(0, mesh) Uy w P ag Cs Ck [

(1,25 x 3) 2.03x 1072 2.04x1072 1.72x 1072 6.24x 107! 1.55x 107! 873 x 1072 857 x 107!
(0.5,50 x 5) 6.50 x 1073 6.45 x 1073 524 x 1073 218 x 107! 4.54x 1072 3.08 x 1072 2.78 x 107!

(0.1,100 x 10) 147 x 1073 1.35x 1073 9.48 x 107* 6.09 x 1072 1.57 x 1072 7.65x 1073 6.58 x 102

Table 3.6: L? error with respect to the reference solution provided with
time step 6t = 0.3, 200 x 20 uniform mesh, and o = 0.0005 for numerical

simulation in Section 3.5.2 at T = 120.

(6t, mesh) Uy w p agy Cs Ck g

(1.2,50 x 5) 1.73x 1072 1.73x 1072 648 x 1073 3.71 x 107! 3.97x 1072 1.56 x 1072 2.73 x 107!
(0.6,100 x 10) 1.22x 1072 123 x 1072 4.07x 1072 2.20x 107! 1.35x 1072 1.18 x 1072 2.11x 107!

(0.4,150 x 15)  6.40 x 1072 6.41 x 1073 2.23x 1073 1.19x 107} 6.60 x 1073 6.23 x 1073 1.11 x 1071
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u, (R.O.C.= 1.07314)
e u (RO.C=1.06867)

p (RO.C.=1.07585)
v 4, (RO.C.=1.07795)
¢ c, (RO.C.=0.36584)
< ¢, (RO.C.=0.26703)
| 4

(R.O.C.= 1.00007)

C,

~— 9

ot
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Figure 3.5: Convergence with respect to 0t for the case described in Section

3.5.2 with fixed mesh: log-log plot of the error for each unknown; (note that

the curves for u, and u,; overlap) .

R.O.C. means “Rate Of Convergence”.

The reference solution is a computation with a very small time step.

L2 error

= u, (RO.C=1.10243)
® u, (RO.C.=1.14180)

p (RO.C.=1.22456)
v a, (RO.C=0.97240)
¢, (RO.C.=0.93650)
< ¢, (ROC.=1.02359)
¢, (

~ , (RO.C.=1.07617)

0.1
8t

Figure 3.6: Convergence with respect to 6t and mesh size for the case de-

scribed in Section 3.5.2 (see Table 3.5 for the time step and mesh size pair):

log-log plot of the error for each unknown; (note that the curves for u; and

u, overlap) .
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u, (RO.C.=0.85993)
u; (R.O.C.=0.85885)

( )
C,

]
p (RO.C=093841

v a,(RO.C=1.00841)
@ ¢, (RO.C.=162440
— ¢, (RO.C.=0.78716)
—F_ » ¢, (RO.C=0.77425

10" 4 =

L2 error

10°

Figure 3.7: Convergence with respect to 0t and mesh size for the case de-
scribed in Section 3.5.2 (see Table 3.5 for the time step and mesh size pair):
log-log plot of the error for each unknown; (note that the curves for u, and

¢ overlap and the curve of w; is closed to them).

size, which is optimal for the Galerkin-Characteristic method. solutions are

displayed in Figure 3.10-3.15.

CPU time

With 6t = 1 and 100 x 10 uniform mesh, it took 5832 seconds to reach
the final time 7" = 180 with an Intel Core i7-8750H @ 2.20GHz. During
the computation, it took 0.086% of the total CPU for solving the volume
fraction problem, 7.66% for solving the chemical species transport problem

and 91.93% for solving the two velocities/pressure flow problem.

The computer program is written using the FreeFEM++ toolkit [70].
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(a) Intensity map of 4 at t = 120 with §¢ = 1.2 and 50 x 5 uniform

mesh.

(b) Intensity map of r4 at ¢ = 120 with §t = 0.6 and 100 x 10

uniform mesh.

(c) Intensity map of r4 at t = 120 with 6¢ = 0.4 and 150 x 15

uniform mesh.

(d) Intensity map of 74 at t = 120 with 6t = 0.3 and 200 x 20

uniform mesh.

Figure 3.8: For Section 3.5.2: The intensity maps of r, for different time step

and mesh size pairs.
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(a) Intensity map of ¢4 at t = 120 with 6t = 1.2 and 50 x 5 uniform

mesh.

(b) Intensity map of ¢, at ¢ = 120 with 6t = 0.6 and 100 x 10

uniform mesh.

(c) Intensity map of ¢4 at t = 120 with 6¢ = 0.4 and 150 x 15

uniform mesh.

(d) Intensity map of ¢4 at ¢ = 120 with 6t = 0.3 and 200 x 20

uniform mesh.

Figure 3.9: For Section 3.5.2: The intensity maps of ¢, for different time step

and mesh size pairs.
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(a) Intensity map of u, at t = 100.

(b) Intensity map of u; at ¢t = 100.

Figure 3.10: For Section 3.5.2: The velocity magnitudes of u, and u,.

Results

On Figure 3.10a and 3.10b the velocity vector fields u, and u; are seen to
be almost parabolic in y (Poiseuille flow). but the phase change and moving
boundary induce a non-zero asymmetric vertical component uy, (see Figure
3.14); both play important roles for the bubble distribution. Bubble density
can be inferred by analyzing c, and r, (see Figure 3.17). The color maps of
Figure 3.11 displays a high gas volume fraction area near the top and bottom
plates . Figure 3.12 shows how the steady state is established and how the
electrolyte disappears in the plating region due to the plating. Figure 3.13
explains why it is always of the highest volume fraction of gaseous phase near
the reacting surface. The deposition-induced movement of S is presented in
Figure 3.16. Figure 3.17b shows that the region of the highest bubble density

is moving away from the inlet as the electroless plating proceeds.
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(c) Intensity map of 4 at ¢t = 100.

(d) Intensity map of r4 at t = 140.

(e) Intensity map of 4 at t = 180.

Figure 3.11: For Section 3.5.2: intensity maps of the volume fraction of the

gas phase r, computed with ¢ =1 and a 100 x 10 uniform mesh.
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(e) Intensity map of ¢s at ¢t = 180.

Figure 3.12: For Section 3.5.2: intensity maps of the concentration electrolyte
ions ¢, computed with 6t = 1 and a 100 x 10 uniform mesh. The blue zone in
the plating region, on the lower plate shows that the electrolyte is absorbed

by the plating process.
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(e) Intensity map of ¢4 at t = 180.

Figure 3.13: For Section 3.5.2: intensity maps of the concentration of dis-

solved gas.
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(a) Intensity map of ug, at t = 20.

(b) Intensity map of uyg at ¢t = 40.

(e) Intensity map of ug, at ¢ = 180.

Figure 3.14: For Section 3.5.2: The vector fields u, and u; are very closed to
Poisseuille flow. In this case, phase change and moving boundary contribute
to the second component of u, (and w;) together. The numerical test is
conducted with 6t = 1 and 100 x 10 uniform mesh. The intensity maps
indicate the bubble rising in the red region. Indeed, their exists high gas

volume fraction region near the top side (see Figure 3.11).
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(b) Intensity map of ¢j at t = 100.

Figure 3.15: For Section 3.5.2: Intensity maps of u;5 and ¢ at ¢ = 100.

0.0004

—— S(t=20)
0.0003 | —— S(t=40)
S(t=100)
—— S(t=140)
—— S(t=180)

> 0.0002 4

0.0001 4

0.0000

Figure 3.16: The thickness of the deposition is given by the motion of S(t),
plotted here at 5 instants of time, with respect to z-axis (in mm). Notice
that the motion t — S(t) is very small; the oscillations are blown-out of

proportions by the scaling used in the graphic.
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0.05

(a) For Section 3.5.2: Intensity map (b) For Section 3.5.2: Intensity map

of ¢ on S versus x. of ry on S versus z.

Figure 3.17: Plots of r, and ¢, versus z on the reaction surface S.The gas

bubble density in the plating reaction zone can be observed.
3.6 Comparison with experimental results

To validate the numerical method on a real-life problem, an experiment for
reproducing the numerical study in Section 3.5.2 is conducted. Here, we shall
show that the experimental result can be qualitatively fitted by the numerical
simulation.

The experimental setting is described as the following: A micro-channel
is enclosed by two sheet glasses of size 8 mm x 8 mm and another two of
size 8 mm x 1 mm, which form a rectangular channel. The electrolyte goes
in the channel from the left and exit on the right. One piece of the square
sheet glasses is partially glued on a copper plate of size 8 mm x 4 mm, where
the longer side of the copper plate coincides with an edge of the inlet (see

Figure 3.18 for geometry setting). The inflow is set to be of average velocity
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0.115 mm/s. At inlet, the copper ion concentration is ¢y = 39.34 mol /m?
and the formaldehyde concentration is cyy = 77.5883 mol/m?>. Here, the inlet
concentrations cgy and ¢y are the reference concentrations for copper ion and
formaldehyde, respectively. We further define the reference concentration of
the hydrogen gas to be ¢, = 1 mol/m?. Other physical parameters are given
by Table 3.3. Some parameters, for example, reference current densities iy, i,
and 7,, may not be exactly same as what are given in Table 3.3. Nevertheless,

they are acceptably closed to the reality, or at least in a same order.

inflow /| Imm /’ /'
i } 8mm
Cu i
ﬁ e ]
|/ outflow
fe——4mm ——f——4mm ——]

Figure 3.18: The geometry setting for both experiment and numerical simu-
lation. Here, the yellow region indicates the copper plate glued on the sheet

glass.

3.6.1 Experimental

To fabricate the test vehicle, a 4 inch glass wafer was first sputtered with
30 nm chromium and 200 nm copper which served as adhesion layer and
seed layer, respectively. The wafer was then diced into each 8 mm x 8 mm
glass dies. To ensure a significant comparison between the regions being
plated or not, each test die was half immersed in SPS (Nay5205) solution

and hydrochloric acid to remove copper and chromium layer. The glass die
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turned out half transparent and half coated with copper where the electroless
copper plating took place. Thereafter, a fully transparent glass which was
identical to the size of test die, was face-to-face aligned and bonded via using
flip-chip die-bonder in order to obtain a clear observation view. Two tungsten
wire which were 8 mm in length and 2 mm in diameter were glued by UV
gel and placed on the periphery of the test die for the purpose of restricting

the flow direction and defining the height between the dies (see Figure 3.19).

The test vehicle was then subjected to micro-fluidic system composed of
a PDMS mode containing micro-fluidic channel and a bottom glass. Clips
were used to sealed the micro-fluidic system and prevented the leakage of
electrolyte. A peristatic pump was used to control the flow and connect the
micro-fluidic system with silicone tube. Prior to the electroless plating, the
test vehicle was immersed in 10% sulfuric acid to remove copper oxide. Fi-
nally, the electroless copper plating was conducted in a water tank controlled
at 50 °C' with in-situ recording via stereomicroscope (charged coupled device
digital camera CCD). The electrolyte PHE-1 Uyemura possessing the given
reference concentrations ¢y of (complexed) copper ion and ¢y of formalde-
hyde was used for the experiment. A complete equipment setup is described

in Figure 3.20.
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¢ Lower die

Flow direction

Figure 3.19: Test vehicle formation.

" Electrolyte
Monitor ik

Figure 3.20: Electroless copper plating via using microfluidic system.

3.6.2 Results

Experimental results (see Figure 3.21) show that the bubbles are not only
appearing on the copper plate, but also appearing on the top. In video, one
can see that there were several bubbles going to the top from the center or the
bottom side of the channel. The region above the glass becomes darker with
time. The simulation results (see Figure 3.11) qualitatively arrive at the
same conclusion. The experiment indicates that the clustering of bubbles
happens on both top side and the bottom side of the channel. Second, the

numerical simulation predicts that most bubbles are generated at an early
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(f) micro-channel at ¢ = 180 s.

Figure 3.21: The pictures are taken from the top side and the region near
the center between two 8 mm x 1 mm sheet glasses. The brown region is

covered by the copper plate, where the surface reaction occurs.
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stage and near the inlet. The experiment shows that the bubble generation
is more exuberant near the inlet in comparison with other regions at t = 20.
This observation coincides with that of Figs 3.13 and 3.17a. The region near
the inlet at t = 20 is of the highest concentration of dissolving hydrogen gas.
In addition, large bubbles were observed at the back end of the copper plates
(i.e. region near (x,y) = (6,0) corresponding Figure 3.1), which is also the

case in Figure 3.17b.

3.6.3 Discussion

For an electroless plating process accompanying gas generation, the bubble
distribution with respect to time, in the micro-channel, is the most important
index for evaluating the quality of deposition. To measure it quantitatively,
a high-quality optical system installed in the micro-channel is indispensable.
For example, several types of fiber optical probe have been used to measure
the particle (or bubble) size and distribution in a channel flow (or micro-
channel flow) [71, 72, 73, 74]. However, such optical system is difficult to be
installed in our case because there is no appropriate place to setup the light
source and the detector in the micro-channel. The signal interference caused

by the copper plate or glued gel on two sides is almost inevitable.
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3.7 Conclusion

The numerical simulation of an electroless plating is difficult for two reasons:
the multi-phase modeling and the nonlinearities. We have proposed a phase
averaged liquid-gas two fluid velocities/one pressure system combined with
phase densities and chemical concentration equations. The nonlinearities
being similar to those of the Navier-Stokes equations, we have used a semi-
Eulerian time discretization leading to a generalized Stokes operator for the
two velocities/one pressure system; the inf-sup saddle point theorem has
lead to a proof of stability and well posedness of the discretized system
by the Hood-Taylor finite element method. The two phase flow model is
compatible with single phase models when the volume fraction of gas and
the concentration of the gas in the liquid phase are set to zero. The model
is also compatible with the one dimensional model proposed in [1]. The
numerical results confirm the robustness of the method. To validate the
model a real life experiment has been performed. The numerical results
agree qualitatively with the experiment for the repartition of bubbles near
the plating boundary. We believe that in the future the computer code will
be used to design industrial and experimental systems. However, as to the
measurement of the deposition rate, It takes at least one hour to obtain
an observable thickness of plating. In this case, bubbles have accumulated
everywhere in the micro-channel and there is ground for an extension of the

present code with a level set or phase field model which tracks the liquid to
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gas interface. To establish a mathematical model suitable for a larger time

simulation is left as a future work.

3.A Estimation of the interfacial terms

Let V4 be a local volume to be observed which is occupied by gas and liquid.
In a liquid-gas two phase system, we have A; = A, and further p;(w; — w;) -
n; = —pg(w, — u,) - ny on the interface. If the size of each single bubble
in the electrolyte is small enough, then we can assume that the bubbles are
spherical. Assuming that there is a typical radius for all bubbles R > 0
such that 1/R% is the average of 1/R? among all bubbles in the system, the
growth rate of bubbles governed by the local mass loss prescribed by Eq.

(3.3) can be computed by the relation

dR $
4 R2N—:/ 294y, 3.75

where N, is the amount of bubbles in a local volume Vj,. Therefore, we have

the following formulae on A, and A;, respectively

1 S,
— —dV 3.76
47TNqR2 Vo pg ( )

(ug —wy) -ny =

1 S

The quantity Rp is useful when the fluid velocity is large enough so that each
bubble won’t stay at the observed physical domain, because every bubble

hasn’t been far from the state that is just after nucleation.
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Given a small cube Vj of size |Vy| = d x d x d and a typical radius Rp, the

. . _4mN,R% .
ratio of its surface area and volume is —n where N, can be estimated
by
r,d?
N, = 74;}%3 (3.78)
3 B

Therefore, if d is small enough so that the physical quantities in F;, defined

in Section 3.2.3 can be assumed uniform, then we have the approximation

(3.79)
F~ (ZWqR%) P <—d359> u = — .gul = Sju. (3.80)
d3 47 N,R%py
Similarly,
F, ~ S,u, (3.81)

The same approximation can be applied to G; occurring at (3.5) and (3.6):

G, ~ Slcj, j=sk G, S’lcg — M,Kpiri(cy — Csar)” (3.82)
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Appendix A

Preliminaries and notations

A.1 Lebesgue spaces L?(f)) and Sobolev spaces
Whe(Q)

A.1.1 L? space

Let 1 <p < oo and Q C R? a bounded domain. We denote by LP(€2) the set

of all measurable functions from €2 to C or R which satisfy

1/p
</|f|”dx> <oo 1<p<oo;
Q

£l = (A1)

essSUp,eq | f] p = 0.

In particular, L?(2) is a Hilbert space with the inner product (-,-) defined
by

(£.9) = [ f@)gl@)de,  f.g € L), (A2)

which induces the norm || ||o.

137
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A.1.2 Sobolev space

Let k be a natrual number, o = (a, ..., ag) a multi-index with norm |a| =

oy + - -+ ag. We define

olel f

Dof=—
/ oxt -+ - 0z y?

The Sobolev space W*?(Q) is defined as
WkP(Q) .= {f € LP(Q) : D*f € LP(Q) V|a| < k} (A.3)

A common way to define the norm of W*?(Q) is

3 =

(Lack D F I ny)” 1< p < oo
I fllwes@) = (A.4)

maxa<k [ Dflle@ p= o0
For the particular case p = 2, the space H*(Q2) := W*?2(Q) is a Hilbert space.
Moreover, we denote by Hf. () the closed subspace of H'(Q) defined by

Hy, () :={f € H'(Q): flr, =0} (A.5)

If the number £ is non-integer, we define the fractional Sobolev space in two

cases: If 0 < k < 1, we define W*? for 1 < p < oo by

Whe(Q) = {f e () O =T ¢ o Q)} (A.6)

jz — y|o

which endowed with the norm

[un

P

I lhweaey = ( [ispar+ [ [ dedy) @9
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When k£ > 1 and it is not an integer, we write £k = m + s, where m is an

integer and 0 < s < 1. The space W*?(Q) is defined by
WHEP(Q) := {f € W™P . D*f € W™ Va s.t. |a| = m}. (A.8)

The above space is equipped with the norm

D=

| fllwrr) = (”f”j;vm,p(g) + > ||Daf||%/s,p(g)) : (A.9)

laf=m

In particular, H*(Q)) := W"P(Q) is again a Hilbert space when k is non-

integer.
For convenience, we denote the norm of H*(Q) by || - || for real k& > 0.
A.1.3 Traces

Theorem A.1.1 Let Q C R¢ be bounded with Lipschitz boundary. Then

there exists a bounded linear operator T': W1P(Q) — LP(9) such that
Tu = ulga, u€W(Q)NC(Q)

(A.10)
1Tl ro) < clp, Dllullwing), ueWH(Q)

Remark A.1.1 For 1 < p < oo, the trace operator T' maps maps W1P(Q)

continuously onto the space WP (092).

A.1.4 Bochner space

Given I := [0,T] a time interval and a Sobolev space W*?(Q), the Bochner

space L"(I; W*P(Q)) is the space of all measurable function u : I — W*P(Q)
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such that the associated norm is finite:

S0

T
[ull (e = (/0 ‘|u<t)‘|1{/llkxp(ﬂ)dt> <400, 1<r<oo
(A.11)

lllzoe riwsaey) = ess sup [[u(®)llweri@) < +o0, 7= oo

A.2 Weighted Sobolev space

Definition A.2.1 (Weighted space L:(S2,d,m) and W (Q,d,m)) Let (2, d,m)
be a metric measure space, where m is a locally finite Borel regular measure
on Q. Let p > 1and p: Q — [0, 00] a Borel function satisfying p~! € Lp%lm;

we define the weighted space LP(S2, d, m) and sobolev space Wpr (Q,d, m) by
Im) = {1 € LA d;m) | [ |fPpdm < +oof,
W (m) = {f e W@ dm) | [ |fPpdm+ [ [Vf17pdm < +oo},
respectively. The above spaces are endowed with the norms
115y = [ 1fpdm + [ |V f7pdm.

£y i= [ £ pdm+ [ [V f17pdm.
If Q C R™ endowed with standard Euclidean metric, we shorten the notations

by LA(Q) := LA(Q,d, m), W)} P(Q) := W P(Q,d, m), respectively

Proposition A.2.1 Vp > 1, the weighted Sobolev space (W, *(Q,d, m), || -

is a Banach space whenever p~! € L 1(Q
p

Definition A.2.2 (Doubling) A locally finite Borel measure m on (£, d)

is doubling if it gives finite positive measure to balls and there is a constant
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C > 0 such that

m(B(z,2r)) < Cm(B(z,r)), Ve e, r>0

Definition A.2.3 (p-Poincaré) For p € [1,00), we say that a p-Poincaré
inequality holds for Lipschitz functions if there are constants 7, A > 0 such

that Vf € Lip(Q2), Vz € supp(m), r > 0, the following inequality holds:

RS

1 1 )
B T) Joteny [~ Pteldm <7 (m(B(A)) Jyenn 7 dm) ’

where

1

Fai= m(A)/Afdm.

Definition A.2.4 A doubling metric measure space satisfying p-Poincaré

inequality is called PI, space.

Remark A.2.1 Euclidean space endowed with normal euclidean distancing

is PI, for all p > 1.

Theorem A.2.1 [75] Suppose that (£2,d, m) is a PI; metric measure space,

loc

p€ L. (m)and p~t € Lp%(m). Then W) ?(Q,d, m) is reflexive for all p > 1.

Corollary A.2.1 Let 2 C R? be a open bounded domain, Wpr is a reflexive

Banach space if p > 1, p € L}, (), and p~! € LT;(Q)

Remark A.2.2 Let Q C R? and p = 2, we denote W,*(Q) by H}(€2), which

is a Hilbert space endowed with the inner product

(w,v)p1 = /Qu(a:)v(x)p(ac)da: + /Q(Vu(x) -Vou(x))p(x)dz.
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We also denote the inner product for L2(Q) by

(w0)p0 = [ ul@)e(x)pla)dr,

The norm of H5(Q2), k € NU {0} is denoted by || - [|,x-

Theorem A.2.2 (compact embedding) [76] Let Q C R 1 < s <r <

dq

i 1< p, 1 <p<+o0, and

K(w) o= max {7 | s, o
Lr—1(Q)

N (A.12)

Note that we take +00 if p—g = 0 or r—s = 0 in (A.12). Then the embedding
operator

i WhP(Q) — L ()

is a compact operator. For r = dq/(d — ¢), the embedding operator i is

bounded only.

A.3 Weak convergence in Banach spaces

Lemma A.3.1 Let E be a Banach space, | - || its norm, and f, : F — R a
sequence of functions forn = 1,2, .... If f,, is equicontinuous and pointwisely
convergent on a dense subset D C E, then f, is pointwisely convergent
everywhere.

Proof. Let a € E. Since D is dense in F, there is a b € D such that for every

e there is a  such that ||a —b|| < § and |f,.(b) — fu(a)| < % For any m > n,

doi:10.6342/NTU202200609



A.3. Weak convergence in Banach spaces 143

we have

|[fm(@) = ful@)l < [fm(a) = fm (D) + [fimn(b) = Fu(B)] + [fn(b) — fula)]

2¢

<5+ Ufn®) = 1u(D)

But f,(b) is convergent, it is shown that f,(a) is a Cauchy sequence. Q.E.D.

Lemma A.3.2 Let E be a normed space, || - || its norm and || - || 7 the norm
of its dual space. Let x, be a sequence in F forn = 1,2,..., x € E. The

followings are equivalent:
(i) =, = = in E weakly

(ii) z, is bounded and for all S C E' such that span S = E’ satisfies

lim f(x,)= f(x) for all fe€S.

n—oo

Proof. (i)=-(ii). Assuming that z, — = in E weakly, then z, is bounded.
Moreover, for all f € E', we have Jim f(z,) = f(x). Hence for all S ¢ E'
such that span S = E' we have lim f(z,) = f(z) forall f €S.

(ii)= (7). Assume that ||z,|| is bounded by some constant M > 0 and
for all S C E' such taht span S = E' satisfies lim,, o f(2,) = f(x) for all
f € S. Take arbitrary g € span S, then g = i ay fr for ap, € R and f, € S.

k=1

This gives us lim g(x,) = g(x). Now, take arbitrary g € E' = span S, then

g = lim g; for some sequence gi in span S. Fix e > 0. Since g = lim gy,
k—o0 k—o0
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there is K € N such that ||g — gx||zr < € for all £ > K. Then

19(xn) — 9(2)] < lg(@n) = gr(wn)| + gk (2n) = g1 ()] + [gr(2) = g()]
< g = grll gzl + 198 (2n) = gr (@) + llgn = gll & |

< eM + [gr(@n) — gr(z)| + €l
(A.13)

We take a limit n — oo in the above inequality, then

limsup [g(zy) — g(z)| < eM + lim |gp(zn) — gi()| + €| z|

n—oo

Since gy, € span S, we have lim lgk(xn) — gr(x)| = 0 and we get

limsup |g(2,) — g()| < M +e]Je].

n—oo

Since € > 0 is arbitrary, we obtain limsup |g(x,) — g(x)| = 0. This implies
n—oo

that nh_}rgo g(x,) = g(x). Since g € E' is arbitrary, the proof is completed.

Q.E.D.

Lemma A.3.3 Let X be a Banach space, D a dense subset of X', x,,, n =
1,2,... the bounded sequence in X. If g(z,) — g(z) for all g € D, then
rn, — x weakly in X.

Proof. If x, is a bounded sequence in X, it is an equicontinuous sequence
as a sequence of functions X' — R. And z,, is pointwisely convergent on D
by the hypothesis. Using Lemma A.3.1, x, is pointwisely convergent. By
Lemma A.3.2, since x,, is bounded in norm by the hypothesis, we conclude

that x,, is weakly convergent to x in X. Q.E.D.
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Lemma A.3.4 Let X, Y be two normed space and T': X — Y the bounded
linear operator. If x,, — = weakly in X, then T'x,, — T'x.

Proof. Let y* € Y'. We can define 2* = y*T € X . So
y (Ten) = (y'T)(xn) = 2% (2n) = 27(2) = (y'T)(2) = y"(Tx).
Q.E.D.

Corollary A.3.1 Let I’ C 99Q. There s a trace operator T : L*(0,T; HY(Q)) —
L2(0,T; Hz(S)) such that: If z,, — = weakly in L*(0, T; H*(Q)), then Trz,, —
Tra weakly in L2(0,T; Hz(T)).

Proof. By Section 5.7 in [77], there exists a trace operator T'r : L*(0,T; H*(2)) —
L2(0,T; H%(F)) which is linear and bounded. By Lemma A.3.4, the proof is

completed. Q.E.D.
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Appendix B

A simplified model with surface

reaction

We assume that Q C R? be a bounded open domain. For Sobolov space, the
norm of W*?(Q) space is denoted by || - ||, for p > 0, k> 0. If p = 2, the
norm is denoted by || - . For weighted Sobolev space, we denote the norm
of H¥(Q) by || - ||, for k € N, p any function satisfying p,; c LYQ). If
k =0, we denote the norm of L2(Q) by || - ||, for simplicity. We denote the
inner product for L2(Q) by (-,-),. For convenience, we denote the generic

constant by C'or C;, j =1,2,.. ..

B.1 Modeling equations

We assume that there are two chemical species s and k involving in the

surface reaction in terms of the mixed potential (see (3.20)). Let E; be the

147
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148 B. A simplified model with surface reaction

constant with subscripts j = s, k representing the ion to be plated and the
anodic ion involving in the surface reaction, respectively. Without loss of
generality, we assume that 0 > E; > FEj. For the physical system, we assume
that the chemical reaction satisfying electron balance on the reaction surface
S C 09, the convective effect in system (3.26)-(3.26) is negligible, and the
densities satisfy p; >> p, > 0. For simplicity, we further assume that the

saturation concentration can be neglected. That is, we require that

u;=u =0, cou =0. (B.1)

Employing (B.1) into (3.3), we get

K
Oyrp = —=riCy, (B.2)
Py
1 1 1 .
where — := — — —. The assumption (B.1) tells us that the momentum
Pg Pg  PL

balance equations (3.27) are dropped. The remaining equations (3.5) with

the assumption (B.1) can be rewritten as

T’lath — D]V : (TlVCj) = 0, j 7£ g
(B.3)

K,M
r0cg — DgV - (rVey) + i) Lricy =0
!

Since there are only two chemical species s and k involving in the surface re-
action, (B.2), (B.3) and the boundary conditions (3.19)-(3.20) with electrical

neutrality assumption lead to the system:
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K
Oy = ——1icy, in Q x (0,77,

g

K, M
10wy — DGV - (1 Vey) + gp Lric, =0, in Q x (0,7,
I

(B.4)
110ics — D5V - (riVeg) =0, in Q x (0,77,
rOicy — DEV - (V) =0, in Q x (0,77,
subject to the boundary conditions
(8;13 = g‘;’: - gcljo, on 90\ S x (0,T]

for some constant 3 > 0. The initial conditions r,(0) = 7P, ¢,(0) = 2,

cx(0) = &, ¢4(0) = ¢ are all in H'(Q2) satisfying
0<cdpcg<l 0<e<r/<1 inQ (B.6)

for some constant € > 0. In the above, I and I, satisfy (3.20) with j = s,k
respectively and we further assume that v = 7, = 1. For electron balance,

we have the constrain:

Is+1;=0, ondéS. (B.7)

We shall note that we replace p, with p, in (B.4) by an abuse of notation.

Remark B.1.1 In (B.4), we employ ¢, instead of ¢/ in the second term of
the first equation and the third term of the second equation. We will show

that ¢, is nonnegative with a proper initial condition.
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B.2 Time-discrete problem

Let N > 0 be an integer and 6t = T'/N be the time step. To study the exis-

tence and the stability of (B.4)-(B.7), we consider the time-discrete problem:

m+1 m
T - Ky it m
— =T ¢
ot Pyg
m+1_m+1 m+1_m
T c -7 c MyK,
1 1
g g vV - (Dgrlm—i-lvc;n—i—l) + grlm+IC;n+1 0
ot pi (B.8)
m+1_m+1 m+1_m
T c —r c
S = = V- (D" Ve ) = 0
ot
m+1 _m-+1 m+1 _m
T c —r c
eV De Vgt =0

with boundary conditions on S:

ac;n+1 1 m—+1 m—+1 86?—1_1 1 m—+1 m+1 8c;n+1 ac;n+1
_DS on - ZSF| (Emw )|Cs ) _Dk on - Z]€7F|Zk(Emzac )|C ) _DQ on - BDS on
(B.9)
where
s sF Em+1 Es T Ms~s Em+1 Es
(E:ZZ—;I) — Ls <exp (Q Z ( géx )) — exp ( B z (Rneux ))) ’
F Em+1 E . F Em+1 E
(ET?;l) — Lk (eXp (Qk‘zk‘ ( f’rgn@w: ki)) o eXp( 5]@2’7@ (R’rgzx k‘))) ,
is(Em e + i (Bt et = 0.
In the following context, we define ™! := |i (BN, ip T = |ip(ETHY).

Let us begin with the upper bound and the lower bound of r;.

Lemma B.2.1 Assume that 0 < e <1/ <1, ¢ >0, ¢ € H(Q) N L®(Q)

and 7] € H'(Q) for all integer 0 < j < m, then

€
) 0< ——— < mtl < 1.
W0 < i, <
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. 1 .
(il) —g7 € L™()
T

(iii) r"™ e HY(Q)
Proof. By the first equation of (B.8), we have

Kot
(1 + c;”> r = (B.10)

Pg

By the assumption ¢;* > 0, we have

Pl <] € < pmtl
S 1t Kot/
1 14+ Kot
This proves (i). Since 1 < ——5 < i /'Ol, we have proved (ii).
T €

Taking the derivative with respect to x; in (B.10), we have

Kt Kt
<1 +—c ) O, = ———1 "0y, ) + O] (B.11)
Py Py

Since Oy, 17", {1 9,, ¢ are bounded in L*(2), we can conclude that 0, r"*'

is bounded in L?(Q). This proves (iii). Q.E.D.

The weak formulation regarding the system (B.8) except its first equation
can be expressed as:

Problem (P.):

Let 0 < v < 1, rr™™ € HYQ), 0 < e < 1, " >0,
et eyt € HﬁZm(Q). Find "™, ™ entt e H1m+1(Q) and Bt € L2(S)

such that

1 (Terl m+1_m+1 1

1
m+17 w8>rl'"+1 + DS(VCZLJFI? VwS)szH - P ts Cs 7w8)L2(S) 5t( ws) o
S

&(Cs
(B.12)

doi:10.6342/NTU202200609
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1 1

+1 +1 +1,m+1_m+1

CZL wk)rlm+1 -+ Dk(VcZL ,Vwk) m+1 + ﬁ< m ZZL CZL ,wk)Lz(S) == E(CZZ7 wk)rg”“
k

(B.13)

B (Tm—i-l m+1 _m-+1

7(Cm+1 w ) m+1 + D (V mtl vwg) m+1 - p F Zs CS 7wg)L2(S)

M, K 1

+ (%C;n+l7wg)rm+l = 7(69 ’wg)rlm+l
1
(B.14)

(is(EPED) + i (B, w) 2(sy) = 0 (B.15)

for all ws, wy, w, € H' () and w € L*(S).

B.3 Existence of the time-discrete problem

Proposition B.3.1 If EMt! € B = {w € L*(S)| By < w < E, ae}

mixr

is given, There exist unique solutions (¢J"™*, ¢!, ¢+1) for Problem (P.).

+1 m+1

,cphand ¢t

Proof. The existence and uniqueness for ¢ can be guaran-

teed by a classic theory since (B.12)-(B.14) are linear.

+1  m+1

If B is given, we can further obtain the positivity for ¢!, ¢**! and

mixr

m—+1
Cg .

Proposition B.3.2 Let Bt € B,if &', ¢, ¢ > 0 a.e., then ¢+, 't et >

mix ) g

0 a.e..

m-+1 Cm+1 m-+1
k ’ g

Proof. Similar to the proof of Proposition 2.4.2, the nonnegativity of ¢
can be guaranteed by letting wy = (¢™) ™, wy = ()7, w, = (")~

Q.E.D.
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Proposition B.3.3 Let E™'' € B, 0 < ¢, ¢, < 1, E/

mix mix

€ B, for all
0 < j < m. Furthermore, we assume that 0 < cg < M for some positive

constant M, we have

et <1 (B.16)

and there exists a positive constant C' depending only on €, D,, T', such that

Ml < O (B.17)

g

Proof. To obtain (B.16), we can take ws = (ws — 1)" and wy = (w, — 1)* in
(B.12) and (B.13), respectively. The proof of (B.17) is extremely technical

which can be referred to Lemma II 5.7 and Theorem II 6.2 in [78]. Q.E.D.

If the value of mixed potential E";'! is restricted in [E}, E], the L> norms

‘m+1 m+1

,ip T are uniformly bounded in terms of Eit!

mixr

of 7! respectively. By

Thoerem 4 in [79], we have the following:

Lemma B.3.1 (Strong positivity for ¢! amd ¢"*') Let ¢, ¢ > 0,
Emtl ¢ B. Assuming further that there are constant ™, 7™ > 0 such that
™ > n™ and ¢ > n* a.e., there are constants 7™ n™+ > 0 such that

L > g and Pt > gt oae.. Moreover, ¢t and ¢t are Hélder

continuous in © for some exponent 0 < a < 1.

Corollary B.3.1 Assuming that ||¢/|| ) is uniformly bounded for all 0 <

j < N, there is a generic constant C' > 0 such that

]+1

-
19—y < € (B.18)
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forall0 <j < N.

To show the existence for the full problem (P.), the Browder fixed point

theorem can be applied:

Theorem B.3.1 (Schauder fixed point theorem) Let K be a nonempty
closed convex set in a Banach space. If a function f : K — K is compact,

then f has a fixed point.

Lemma B.3.2 B := {w € L*(S)| B, < w < E, a.e.} is a closed bounded
convex subset in L?(S).

Proof. Since S is of finite measure, it is obvious that B is bounded. Let
6 € (0,1), for wy,ws € B we have 0E; < Qw; < 0FE; and (1 — 0)E;, <
(1 — 0wy < (1 —0)E,. Therefore Ey < 0wy + (1 — 0)wy < E,. This implies
that B is convex. Finally, let x be a limit point of B, there exists a sequence

{z,}5°, C B such that
|zn — x| z2(5) =+ 0 asn — o0

This shows that F, < x < E, almost everywhere on S. This completes the

proof. Q.E.D.

We define the space W, = {w € H.;1(Q) | n < w < 1 ae}. Given
l

Lemma B.3.1, we define n™*!, 77! to be the essential infimum of ¢™*+!, "1

respectively. Let us define the mapping I'y : B — H := W, m+1 X Wnkmﬂ such

that T';(E) is the set of solutions to (P, ), and (P,

. ); respectively, when

letting E™M! = E.

mix
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Lemma B.3.3 I'; is a bounded operator.

Proof. Let wy = ¢™ in (B.12), we have

1 )
57”0?“”?1%1 + Ds||VCT+1||,%¢+1 + (T ) e
1 m _m+1
= &(Cs y Cs )rlm+1
1 (B.19)
< a||02n|’r;"||0?+1”rr+l

1
2 2
T'lm+1

This shows that the bound for ¢™*! is independent of i,. By the same

< el (Je

s+ D3tV
1

argument, we can show that ™! is uniformly bounded as well. We recall

that the element in B has a minimal norm || £ z2(s). There must exists a

sufficiently large constant M > 0 such that

1
Tlm—l-l

K 1
5t [ — || oo —
M%|h®+&ﬂ

2
7] HL&@») [reda (P
L(@) (B.20)

< M||Eq||22(sy < M| E||L2(s)

for all E € B. Q.E.D.

By Corollary 7.3 in [80], we have:
Lemma B.3.4 The trace operator T': H — L*(S) x L*(S) is compact.
Now we define the operator I'y : T(H) — L?(S) by

c

FQ(CS,Ck) = Ci’ (0876745) € H.
k
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Lemma B.3.5 I'y is a bounded operator.
Proof. Let (cs,cx) € T(H), we have, pointwisely

Cy 1

< ——|csl. B.21
Ck — 77]1;1+1| | ( )
Therefore,
cs||? 1 1
= gi/ cs2d0§7/ cs|? + |c[*do
el = G Js 00 S e el e
1
= W(HCSHQLQ(S) + HckH%Q(S))

This completes the proof. Q.E.D.
Finally, we define I's : T'y(T'(H)) — B by
I3:C—= B,
where E satisfying is(F)( + ix(E) = 0 pointwisely.

Lemma B.3.6 I'; is a bounded operator.

Proof. We write ( = ((E), we have ((E) = _zk((§;

0 and is(F) < 0 for E € (Ey, Es), since ix(F) is strictly increasing and

. Observing that i (E) >

—is(F) is strictly decreasing, we have ((F) is strictly increasing. Therefore,
['3 is the inverse of (. Since ix(F) and is(F) are linear combinations of
exponential function of E, respectively, and i5(E) < 0 for E € (Ey, Es), ((E)
is differentiable in (Ej, F). Therefore, we have

() = i

For any element ¢ = (¢, ¢;) in T'(H), we always have

mln(nk ) s s T min(?];nJrl,n;n—i—l).
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Now we are going to seek the upper bound of I" g(( ) for

1

" min(ng" )

are constants m and M such that E, <m < M < E, so that

¢ € [min(nth pmtt) ]. By the strict monotonity of ¢, there

1

L3 ([min(ny*, n7 C [m, M].
3([mln(nk » Ns )7 min(n;”“, ngnJrl):I) [m7 ]
S SF F S SF F
Let oy = %, g = Oék];l; , b1 = B];H’ By = 61{;2 , we have
¢ (E)
Ly 1

- L, (em(B-E:) Bi(E=Ex)2 [(eal(E_Es) — ¢ PE=F)) (e (FFr) 4 B, eP2 (=)
s ea —Lis) __ 6* —Ls

_ (QQZ(E*EI@) _ eﬁz(E*Ek))(azeaz(E*Ek) + ﬁQeﬁz(E*Ek))}

(B.23)

For m < E < M, we have

(€7ﬁ1(M7ES) _ eal(MfEs))(OZQeaQ(mek) _|_ BQefﬁg(mek))

(eoq(m—Es) _ 6—,31(m—Es))2

(B.24)

/ Ly
C(E)> I.

Therefore, there is a constant M such that [T5(¢)| < M for all
1

c : m-‘rl’ m+1 ’
g [mln(nk s ) min(n]:;nJrl,ngnJrl)

]. Finally we have
()] < min(r 1) + MIC| < (M +1)[¢].

The proof can be completed by integrating the square of the above inequality.

Q.E.D.

Proposition B.3.4 The operator ' =T'30l's 0T o'y : B — B has a fixed
point.

Proof. Since B is convex and closed by Lemma B.3.2 and the composition of
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bounded operator with compact operator (also their commutation) is com-
pact, the existence of the fixed point can be proved by the Schauder fixed

point theorem with Lemmas B.3.3,B.3.4,B.3.5,B.3.6. Q.E.D.

Now, we have the theorem

Theorem B.3.2 If 6t > 0 is sufficiently small, the system Problems (P,) is
well-posed.

Proof. 1t remains to prove the uniqueness of the system. Assuming that
(¢s1,Cr1, B1), (Cs2, Cra, Ea) € W, ms1 X WnLnJrl x B are two different solutions.
If Fy, = E,, then we must have ¢, = ¢ and ¢i; = ¢ by the uniqueness of
Problems (P,). Therefore, we may assume that By # E, for all 6t > 0. By

(B.12) and (B.13), we have

(Csl — C827 ws)rif7l+1 + 6tDs(v<Csl — c§2), ws)r{”“

1 . .
b RO B e — (B ea)s )i
+ (cr1 — cra, wk)rlerl + 0tD(V(cr1 — cr2), wk)rl’"“ (B.25)
1 . .
— (" (lin (B — |in(B2)|ck), wi) r2(s)
ZkF
=0.

To estimate the boundary term, we observe pointwisely:

|is(E)|esr — [is(Ea)lcsa = [is(Eh)|(ca — cs2) — ca(lis(B1) | = [is(ER)]). (B.26)
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Using notations in Lemma B.3.6, we have, pointwisely

||ZS(E1)| _ |23(E2)H =1L, (eal(El—Es) _ e—Bl(El—Es)) _ (eal(E2_Es) — ¢ P1(B2=Ex)

< L, (041 + 516'81(E87Ek)) | By — By

~ | Cs Cs
S Ls (al _'_ 516'81(E87Ek)> M Cil — 072
k1 k2
M

< Ly (041 + 51661(E5_Ek)> (les1 — cs2| + |cr1 — cral)

(i +1)?
(B.27)

Similarly, we have

|ZS(E1)| — |ZS(E2)| < Lk<a2eaz(Es—Ek) + 52)W(|081 — 052| + |Ck1 - Ck;2|).

(B.28)

Now letting wy = ¢ — o and wy, = ¢x1 — g2 in (B.25) and by (B.26)-(B.28)

with Holder inequality, there is a generic constant C' such that

||Csl - CSZH?"LWH + ||Ck1 - Ck2||zlm+1 + (StDsHV(Csl - ng)HzlmH + (StDkHV(Ckl - Ck2>Hzlm+1

< Ct(|lesr — caallizs) + ek — cralliz(s))
(B.29)

1
Since || = || Lo (0,1:20()) is bounded, we also have
T

[ea = csallg 4 ller — crally + 0DV (ca — cs2)|I§ + 0tDk||V (i — cr2)ll3

S C(St(HCSl — CSQH%Q(S) + ||Ck1 - Ck?”%?(S))
(B.30)

for some constant C' > 0. Applying the trace inequality, there is a constant
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C4 > 0 such that

lea — callz2s) < Cilless — esallolless — csalh

0161 ﬁ + C'161

’ 0161
2 261 2

YLV (e — )l
(B.31)

< —llea — CsZH(Q) + |co1 — 052"% = ( Mes: — CsZH% +
1

for all €; > 0. Similarly, there is a constant C5 > 0 such that

C Cye Chye
ek — crzllas) < (6= + —22)llew — cralls + — 2V (e — cralld - (B-32)
269 2 2
2D, 2D
for all e > 0. Choosing €¢; = c €3 = Tgk and
ot < mi ! !
< min ,
(G0 25+ 0
we have
1 o 1 2
llea = csallo + 5 llew = crallo < 0 (B.33)

This implies that c,; = ¢ and ¢y = cpa. Since cq1, Cs2, Cr1, k2 € C(9Q), the
unique solvability for (B.15) implies that £y = Es on S. This leads to the

contradiction. Q.E.D.

Remark B.3.1 In the above theorem, the choice of §t is independent of the

data of the previous step (¢, cf*, E". ). Therefore, the unique solution for

maix

time-discrete problem at time ¢ = T" can be reached in finite steps.

B.4 Stability analysis

Since the uniform bounds independent of E™i! have been found for L*

boundedness of ¢™ and ¢*, m = 0,..., N. Now we provide some results of
S k> ) )

stability:

doi:10.6342/NTU202200609



B.4. Stability analysis 161

Lemma B.4.1 Let 0 < c? <1, c? € HY(Q) for j = s,k,g, and E°, € B.

There are generic constants C' > 0 such that
N-1
ity N ch:’"“H?m+1 <C (B.34)

j=s,k,g m=0

Proof. Letting wy, = ¢™™! in (B.12), we have

e s + SEDL [T P + ST, ) o

S 7S

s 778

= (c™, ™ et < 18 o 121, mei (B.35)
1 m 1 m
< el + Sl e
Similarly, letting wy, = ¢;*** in (B.13), we have

(B.36)

1
§HC B + Hcm“H2m+1

Once more, letting wy, = ¢;**' in (B.14), we have
M,K
e s + BT B + 82 2

= (C;nanHl) met + BOE(r T P o)

IA

Sz + *HCmHHQmH + Bot(r Tl e et
277 ! (B.37)
1, . 1, . ,

5”% Hglm + iHcg “Hflmﬂ + BOt||is]| L2l cql L2(s)

IN

1 m||2 1 m—+11|2 1. 2 €
< 5”% l7m + §Hcg Hrlmﬂ + 65t(?€"ZS"LQ(S) + §Hcg”L2(S))
L2 L2 Lo € 2
< I B S g s + CBH i) + 5 lel)
Therefore, we have

MyK, Cot
(1+5t P O€5t)||cm+1||2m+1—|—5t(2D Ce)||ch||2m+1 < 7||Zs||L2
l

(B.38)
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D
Taking € = ?g sufficiently small so that and using the fact that ¢)'*' has

a uniform L*> bound. We can conclude that there exists a generic constant
C > 0 such that

Ivepiz < c (B.39)

Collecting (B.35), (B.36), and (B.39) and taking the summation from 0

T
to 5 1, the proof is completed. Q.E.D.

Since ||zt || (o) is bounded for all m = 0,..., N, we have
4]
Corollary B.4.1 There are generic constants C' > 0 such that

N-1
5t > S v <c (B.40)

j:s7k7g m:0

Lemma B.4.2 There are generic constants C' > 0 such that

N-1
Yo 2 MG =Ml < C (B.41)
j=s,k,g m=0

Proof. The proof is almost identical to Lemma B.4.1 with the fact that

(rlm+1cgn+1 _ C}n’ C;nJrl)
1 1 1
o m—+1|2 m m||2 m||2
= iHCj Hrlmﬂ + 5”%’ -G Hrlmﬂ - 5”%’ Hrlm+1 (B-42)
< §||Cj +1||ilm+1 + §||Cj — G ||72«lm+1 - §||Cj IIZm
Q.E.D.
Lemma B.4.3 There are generic constants C' > 0 such that
N=1||pmtlgmtl _ my 2
ot > S |- (5 il <C (B.43)
j=s,k,g m=0 ot (HL()'
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Proof. We only look for the boundedness of ¢, and the case is similar for k&
and dis. By definition

A (o)

ot

m+1/ m+1 _ m
= sup <Tl (< G ),ws> (B.44)
(@) weH(®) ot

By (B.12), with w = € H'(Q),

stnl

m+1(C;n+1 _ C1Sn>

"
ot

(HY ()
1
2z F

= sup {—DS(VCQ”“, VU))Tlm-&-l -

m+1| m+1| m+1
(r" g e w)L?(S)}
weH(Q),[|w1=1

(B.45)

We estimate all terms on the right hand side of (B.45):

— DV, V) s < DLV s [V s

< D[Vl e [Vl < D[ Ve l[wlly < Dy Ve e,

(B.46)
1 m—+1| m+1| m+1 1 . m-+1
- ﬁ(ﬁ |25 e w)pas) < > F|Zs(Ek)|||Cs [r2es) 1wl L2(s)
s . (B.47)
< Ol Hhllwlly = Clle
Collecting (B.46)-(B.47) and multiplying by 0t gives
rlm-i-l(chrl _ Cm) 2 ) 1o
gt | <O+ 1D, (Bay)
(HY ()

Taking the summation from 0 to N — 1 and the boundedness given by Corol-

laray B.4.1 and Lemma B.3.3, we have the desired estimate. Q.E.D.

Corollary B.4.2 There are generic constants C' > 0 such that

2
m+1 Cm

5tzz

j=s,k,g m=0

<C (B.49)
(HL(©)

6t
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164 B. A simplified model with surface reaction

Proof. This is the direct result from Lemma B.4.3 and the fact that r"™ is

bounded in L*(92). Q.E.D.

Corollary B.4.3 There are generic constants C' > 0 such that

2

— m—‘rlcm-I-l Tmcm
ot > Z ! 5 S <C (B.50)
j=s,k,g m=0 (HY ()
Proof. By the relation
7azn+1cgn+1 o rzncj _ rlerl(C;n+1 m+1) +C ( m+1 _rzn)’ 0 S m § M — 1’

the desired result can be obtained by collecting Lemma B.4.3, Corollary B.

4.2 and the L* boundedness of 7" for all 0 < m < N. Q.E.D.

Lemma B.4.4 Assuming that r{ € H'(Q),0 <r] <1,¢] € HY(Q)NL>®(),
cg >0 forall 0 < j <m < N, then we have the estimate

K, ot I

K,T o
||Vrf||SSexp( s )(HW?II% ). (B.51)

g

Proof. Multiplying (C.11) with d,,7"™" and integrating the both sides with

respect to €2, we have

K K
/(1—|— ot )|Vrm+1|2da: 5t/ Vey' Vr}”“dva/ Vr - Vet d
Q

g

K(St

o ol Ve Hlo + 1V o[ Ve lo

1 m 1 Kot m 1 Kot m
§||V7"z 6+ ( TQ)HVTZ 5+ §—||Vc I5-
(B.52)
The above inequality leads to
Kot m m Kot m
(1= =V < IVrlle + ——IVeg - (B.53)
Pg Pg
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Taking the summation from 0 to N — 1, we have

| Ko\ Kot Nt
HVﬁH3§£<1—> v+ K0S veney (B
pg IO!] m=0
for all 0 < 7 < N. Since 6t = T/N, we have
K ot KT KT
(- Bty _ g - Ealyon o BT
Pg Np, Pg

Employing the above inequality to (B.54), the proof is completed. Q.E.D.

B.5 Passage to limit 0t — 0

Let us define

P [0,T) = H'Q), nis(t)=ri ifte((j—1)stjse,  (B.55)

— (i =16t . idt—
t—(j )(5trj+j(5t t

TlLh: [O,T] — Hl(Q), ’I“l’h(t) = 5t 7 5t

rlt it € ((j—1)6t, 56t

(B.56)

caiss [0, T] — HY(Q), c,5(t) =c ifte ((j—1)t,jdt], (B.57)

g

Cos: [0,T] — HY(Q), cs5(t) =c ift € ((j—1)dt,50t] (B.58)

crs [0,T] = HYQ), crs(t) =c) ift e ((j—1)dt,jot] (B.59)
caisp 1 [0, T] — H (),

(-1 5 (B.60)

t—(—1ot ; got—t ., . : .
Caisp(t) = 5 )+ 5 =t it te ((j—1)dt, jot],

Cs,h * [OvT] - H1<Q)a

(B.61)

b= (jét_ 1)5tcg+‘75t_t07_1

t
Cs7h( ) 52:_ S

it e ((j—1)dt, jot],
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166 B. A simplified model with surface reaction

crn [0, T) — HY(Q),

o ) (B.62)
t—(j—1)6t . jot—t ;. , ,

cen(ty = VDG IR e (- 1ot o)

Caiso— 1 [0, T] = H'(Q), caiss(t) =c) ' ift € ((j —1)t,j6t]  (B.63)

Cos 2 [0,T] = H(Q), cius(t) =" ift € ((j —1)dt, jot] (B.64)

cro— : [0,T] = HYQ), crs(t) =c, " ift € ((§ —1)6t, jot] (B.65)

Erizs : [0,T] = L*(S), Emins(t) = EL.. ift € ((j —1)t,jot]  (B.66)

==t et —t

(riegh 0.1 = B'@), (reg)a(t) = D I imim gy e (G- o,
(B.67)
t— (7 =10t . . J0t—1t . 4 .
(riean: 077 '), (eu(t) = LD TSty e (oayar, o),

(B.68)

t— (=0t , , jot—t .4 . 1 . ) .
(ricw)n = [0,T) = HY(Q), (rick)a(t) = O&)deﬁjétrf gt ift e ((j—1)dt, jot],

(B.69)
With the above notations, the system of discrete equations can be expressed
as:

K
(Orips w) + (L1 schis5-) =0 (B.70)

Pg

M, K,
9 (ry 5Cais,5, Wy)
P (B.71)

(r1.60iCdis by Wg) + Dy(r1,5V Cais,g, Vwg) +

= 2 F (rl,5|ig(Emia:,5) |Cdis,(5a wg)LQ(S)a

<rl,58tcs,ha ws) + Ds (Tl,5vcs,§7 sz) + (Tl,dlis(Emixﬁ”Cs,&; ws)LQ(S) = 07

zsF
(B.72)

1 .
(11,50kCp, wi) + Di(115Vers, V) + ﬁ(rl,6|lk(Emiz,6)‘Ck,5a wy) r2(s) = 0
K

(B.73)
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Here we collect the boundedness of functions given by (B.58)-(B.66): By
Lemmas B.3.2, B.3.3 and B.4.1, cyis s, Cs.5, Cks Cdis,5—, Cs,6—» Ck,s— are uniformly
bounded in L*(0,7; H'(2)). Since E,qs is always bounded in B for all
time, Fyn.s is uniformly bounded in L?*(0,T; L?*(S)). Therefore, there are

71,7}, Cgs Cs, Ciy Coyy Cay Ciiy Eomiz sUCh that there exist subsequences of 1.5, 7y 4, Cais.5, Cs,5,

g) s?

Ck.5, Cdis.5— Cs,o—, Cko— (still denote by same notations) satisfying

Tis = T in L?(0,T; H'(2)) weakly, (B.74)

Tih =T in L2(0,T; H'(Q2)) weakly, (B.75)

Cdis,s — Cqg in L2(0,T; H'(Q)) weakly, (B.76)

Cs5 —> Cs in L2(0,T; H'(Q2)) weakly, (B.77)

Chs — Ck in L2(0,T; H'(Q2)) weakly, (B.78)
Cdis,s— — Cy in L2(0,T; H'(2)) weakly, (B.79)
Cs.5— —> Ca in L2(0,T; H'(2)) weakly, (B.80)
Cho— — Cf, in L2(0,T; H'(Q2)) weakly, (B.81)
Erizs = Emia in L2((0,T) x S) weakly. (B.82)
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168 B. A simplified model with surface reaction

For the time derivatives, by Lemma B.4.3, Corollaries B.4.2 and B.4.2, there

are gi, 92, 93, 9, s, ge, g7 such that

Ohrin — 1 in L2(0,T; L*()) weakly, (B.83)
OiCaish — G2 in L2(0,T; (H*(Q))") weakly, (B.84)
OiCs — g3 in L2(0,T; (H'(Q))") weakly, (B.85)
OiChn — Ga in L2(0,T; (H'(Q))") weakly, (B.86)
Oi(ricy)n — gs in L2(0,T; (H'(Q))") weakly, (B.87)
Oy (rics)n — ge in L2(0,T; (Hl(Q))/) weakly, (B.88)
O (rice)n — g7 in L2(0,T; (H*(Q))") weakly, (B.89)

Remark B.5.1 By the L?(0,T; H'(Q)) boundedness of r; 5¢; s for j = s, k, dis,

it is easy to conclude that

r5cis — mic;  in L2(0,T; H'(Q)) weakly. (B.90)

Lemma B.5.1 There are generic constants C' > 0 such that

4 2
3 /0 Irs(cis — cjn)|2dt < Cot (B.91)
j=s,k.g

Proof. By the definition of (B.55), (B.58), and (B.61), we have

ot

jot o A
/( " Ir15(css — csp)llgdt = §||le(c; — Y2 (B.92)
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Taking the summation from j = 1 to j = T'/dt, we get

[ risteas = eon i = z / Irusces = (ric)all3t
(B.93)

0t & -
=3 2l - eI <

for some constant C' > 0 by Lemma B.4.2. The same proof can be used to

show the boundedness for 7, 5(crs — cxn) and 115(Caiss — Caisp)- Q-E.D.

Lemma B.5.2

* ok
g CS_Cs7

k= ¢, ae. in [0,T] x (B.94)

Cg=2C

1
Proof. Since there is a uniform L bound of — for all 0 < m < N, there is
"

a constant C' > 0 such that

C’||c;-”Jrl - c§”||0 < ||7‘lm+1(c;~7hL1 - c§”)||0, j=s,k,dis. (B.95)

Lemma B.4.2 directly leads to the desired result.Q.E.D.
Remark B.5.2 By a classical argument, see for instance [41], we have

g1 =0y, g2 = OiCy, g3 = OiCs, ga = OsCr, g5 = Ou(ricy), g6 = Ou(11Cs), g7 = Op(rick)

(B.96)

In order to pass the limit in (B.70)-(B.73), we look into (B.72) firstly and

take any w = v(z)A(t), where v € W*(Q) and A € W,>°(0,T). Then

T
—/ TlCS hsU )dt—/ (6575_8t7“l7h, dt—i—/ Tl(;VCs §,VU)/\dt

.5 Emm 5,05 Adt =0
+ st/o (r1]2s( 6)|Cs.5: V) L2(8)

(B.97)
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170 B. A simplified model with surface reaction

For the first term in (B.72), we have

T

_ / (i) V)N (£)dt — — / rics, V)N (£)dt = /0 (D(r1s) V) (112 0y s sy MENE.
(B.98)

Since ;15 converges to dyr; weakly in L*((0,T) x Q) and ¢5 s converges to

¢ in L?(0,T) x Q) by Aubin-Lions lemma, we have

T T
[ (eos-0mn o)A@t = [ (e,0m, v (B.99)
0 0

Since 7,5 is strongly convergent in L*((0,7) x Q) (by Aubin-Lions lemma)
and 9,,c, 5 is weakly convergent in L*((0,7) x Q) for any direction z;, we

have

T
/ (s Ves 5, VO)ADE — / (1Y ey, Vo)A, (B.100)
0

To deal with the fourth term, Theorem 1 in [81] can be applied. By the
Rellich-Kondrachov theorem, we have the compact embedding H'(Q) <
H*(Q2) for all 0 < s < 1. On the other hand, H*® is continuously embedded
n (H'(Q)). Let u be an arbitrary function defined on [0,7] x . We
define o u(t,z) = u(t — 7,2) in [7,T] x Q for 0 < 7 < T. We claim that

Ot~ H|715¢s6 — 05t(11,5C5.8) || L1 501 ar1 2y 18 umiformly bounded.
Lemma B.5.3 There are generic constants C,Cy > 0 such that

Ir15¢s.6— 05t (r1,6C5.6) | 1o yy < Cr0t, riscrs—0st(Tiscrs) |l i)y < Codt

(B.101)
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Proof. We prove the bound for ¢ s only. By definition of ¢, 5, we have

T
||7’l,5cs,§ - Uét(rl,écs,é)||L1(T,T;(H1(Q))’) = /T ||7’l,5cs,5 - 0-5t<rl,(§cs,5)||(H1(Q))’dt

—1 (m+1)5t il sl mom
= Z / Ir15¢s6 — U6t<7"l,6cs,6)H(Hl(n))/dt < ot Z [rg e =il ||(H1(Q))'

mdt

m=1 m=0
g e e
= ot (@)
N—-1 m+1_m+1 _ .m_ m 2 1 1
o A Dl f [N S— +- | <(@©+=1)5t
m=0 ot (11 (@)’ 2

for some generic constant C' > 0 (by Lemma B.4.3). Q.E.D.

Now using Theorem 1 in [81], we have in particular

FisCes — TiCs  in L2(0,T; H1(S2)) strongly (B.102)

FisChs — ey in L2(0,T; H1 () strongly (B.103)
Regarding the trace operator T : L2(0,T; H1(Q)) — L2(0,T;Hz(S)) is
continuous, we have

FisCss — TiCs  in L2(0,T; Hi(S)) strongly (B.104)

rsCrs — mic  in L2(0, T Hi(S)) strongly (B.105)
Since i, is strongly negative on B, [is| : B — L*(S) preserves the continuity
and boundedness. Therefore, |is(Emizs)| = |is(Emiz)| weakly in L?((0,7T) X
S). Likewise, iy, : B — L?*(S) is continuous. Therefore, ix(Fpmizs) — ik Emiz)
weakly in L2((0,T) x S). The strong convergence of r; sc, s in L2((0,T) x S)

implies that

1
2

1 T )
~ /O (11} (B o, 0) 205y Mt

S

T
/0 (Tl,6|is(Emim,5)|cs,§7 U)LZ(S))‘dt —

(B.106)
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172 B. A simplified model with surface reaction

Therefore

T T
/0 <Tl6tcsvv>(H1(Q))/7Hl(Q) +/O DS(TZVCS,VU))\dt

1
2.

(B.107)
+

T
| (B s, v) sy At = 0

for all A € Wy>°(0,T) and for all v € W>(Q). By a totally same argument,

we have

T T
/ <7”l8tck, ’U>(H1(Q))’7H1(Q))\dt + / Dk(erck, V’U))\dt
0 0 (B.108)

1 T .
o | i Bl o)t =0

for all A € W, >°(0,T) and for all v € WH°(2). Moreover, since iy( Epiz.s)Cs.5+

ik(Emizs)cre = 01in (0,7) x S for all 6t and

T T
A (is(Emi:c,é)cs,é + ik(Emir,é)ck,6a U))\dt — /0 (is(Emi:L‘)Cs + Zk(Emzx)Cka ,U)Adt

(B.109)
for all A € W, >°(0,T) and for all v € W>°(Q). Therefore the resctriction
is(Emim>Cs + Zk<Engc)Ck = 0 holds.

Since 75, cais s are strongly convergent in L?((0,7) x ), we have
T T
[ (uscaiss, 00N@dt = [ (riey, o)\ D)t (B.110)
0 0

Employing the same argument as for s and k, we have

T T
/0 <7’latcg, U>(H1(Q))I,H1(Q) + /0 Dg(TlVCg, VU)/\dt
+ KgMg
Pl

g
F/O (Tl’Zs(Emix)’Cs,’U)L2(5))\dt =0

T T
[ riscaios, M@t = [ (reg, v @)t -
0 0 s

(B.111)

for all A € W,°°(0,T) and for all v € Wh>=(Q).
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To recover the initial conditions, we take A € W1*(0,T), \(T) = 0,
A0) # 0, and v € Wh(Q). We consider (B.97) such that all terms are

identical except the first one:

ATQ%@mQhJONﬁ::ATaxwmQhﬂ&Mﬁzw—AT«m@ﬁ“)A()dt( & 0)A0).
(B.112)

When passing to the limit, we get

/T<at(rlcs)ha >( (Q))/’Hl(Q))\dt — _/OT(TZCS’U>/\ ( )dt ( OCO U)/\(O)
—/ (11, 0)AE + (11(0)es (0), 0)A(0) — (0, )A(0)

:/0 (8t(rlcs),v)(Hl(Q))/,Hl(m)\dt—|—(rl(O)cs(O),v))\(O) (172, v)A(0).
(B.113)

Therefore
(11(0)cs(0),v) = (r’,v), Yoe HY(Q)NWhHe(Q)

This implies that 7,(0)cs(0) = rPcs(0) = rPc?. Since r) > 0, by copying the
same argument for r;, ¢; and ¢,, we may conclude the above result by the

theorem:

Theorem B.5.1 There exists ry, ¢g, ¢, cx € L*(0,T; HY(Q)), Epiz in L*(0,T; B)

with 9y, dycy, Opes, e € L*(0, T (Hl(Q))') such that

T K, [T
/0 (Opry, w)dt + ,0/0 (ricg,w)dt =0 (B.114)
9

T
/0 <r18tcg,wg)(H1( Q)Y HY(© dt—l—/ o (1 Vg, Vw,)dt

. K,M, T
- [ Bl w,) 250 [ ey, wg)dt = 0,

(B.115)
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T T
/0(Tlatcs,ws>(H1(Q))/7H1(Q)dt—i—/o Dy(rVes, Vwg)dt

- (B.116)
2 | i Basles wi) st = 0,
T T
/(Tl(?tck,wk>(H1(Q))/7H1(Q)dt+/ Dy(rVey, Vwg)dt
0 0 B.117)
1 /T (B
g [ B e w) syt =0,
satisfying the constraint
T
/0 (is(Brmia) s + i (Buia) s W) 125t (B.118)

for all w,w,, ws,wr, € L*0,T; HY(Q)) and for all w, € L*((0,T) x S).
Moreover, 1y, ¢y, Cs, ¢ satisfy the initial conditions 7(0) = r, ¢,(0) = Y

g’

¢s(0) = &, cx(0) = @ with 0 < ) <1,0<¢) <1,0 < ¢, <1,

S

0.0 0.0 1
17, gy Cos G € H(Q2).

Remark B.5.3 The solution (7, ¢y, s, ¢k, Emiz) is unique by Theorem B.

3.2.

B.6 Several species case

The results for two species case can be generalized to N + 1 species case,
N > 2. Let E; be the constants defined in Section 2 with subscripts j =
s,ki,...,kn, where s means the ion to be plated and kq,...ky mean other
ions involving in the surface reaction. We assume that 0 > Fy, > --- > E; >
-+ > L. Again, we assume that the chemical reaction satisfying electron

balance on the reaction surface S C 92 and the convective effect in system
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(3.26)-(3.28) can be neglected. We assume the same regularity for r; and ¢,

as in two species case. Te system of equations can be expressed as

K
ori+—2c, =0 inQx(0,7]

Pg

K, M
r0,cy — V - (nDVe,) + gp Ipic, =0 in Q x (0,7] (B.119)
I

(%(7'[@) -V (TZDV@) =0 in Q x (O,T]

subject to the boundary conditions

dc; || dc;
_ D= = 2 T - — Q T| (B.12
= nSx (0T GE=0. on (9018)x (0.7 (B120)
for j = s, ky,..., kN, and
dey Bl dcy
_Dgan = F on S x (0,77, I =0, on(0Q\S)x(0,7] (B.121)

The initial conditions are given by 7,(0) = 1 € H'(Q2), ¢;(0) = ) € H'(Q)
satisfying

0<d <1, 0<r/<1, nQ (B.122)

for j = dis, s, ki, ..., ky. Inthe above © = (cs, Cy, - - ., Cry)? - The constraint

for electrons balance reads

N
L+Y I, =0. (B.123)

=1
Here, we omit the semi-discrete scheme for solving 7, and ¢, since there is

nothing different from the two-species case. The time-discrete problem for

species 7 = s, k1, ..., ky can be expressed as:
T,m+1 Cm+1 _ Cm
rd J& i) V- (D) =0 (B.124)
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with boundary conditions on S

aCerl 1

— D an = zTF' i (B |t (B.125)
where
G(Enit) =L <exp (ozjsz(E}%}l EJ)) — exp <_szj (ig{fgl EJ))) ;
S i (ERE =0
’ (B.126)
for j = s, ki1, ko, ..., kn. In the following, we define ¢ := |i;(E]t!)].

Now we define the weak problem for the time-discrete problem:
Problem (f’;)

Find ', j = s, k1, ko, ... kn € Hflmﬂ(Q) such that

1 m m 1 m -m m
ﬁ(cj 1 owy), mi1 + D (Ve . Vw,), i1+ Zj—F(rl M) i +ch w;) s
K, 1 1
= E(C +lcj 7wj) m+l + 5t( wj)
(B.127)
subject to the constraint
3 / JEMEY T ydo = 0 (B.128)
S

J
for all w; € HY(Q).
Regarding the argument given in the two species case, we need only to

show the existence and uniqueness of the fixed point for solving E™t1 by

iteration algorithm. Firstly, we shall justify the solvability for E™t1 for

pointwisely given chrl on S, j=sky,..., ky. Since Thoerem 4 in [79] guar-
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antees that there are /"' > 0 such that ¢"*' > n"*! for j = s,ky, ... ky,

we have

Lemma B.6.1 There is one and only one root E € [Ej,, Ey, | satisfying
S i (B)(e;) = 0 (B.129)
J

~ +1
for given ¢; > n}"

j 7j:57k17"'7kN-

Proof. Let f(E) = 1;(E)(c;). Obviously, we have

J

f(Br) >0, f(Eky) <0 (B.130)

The continuity of f implies that there is a root in [Ek,, Fy,]. Differentiating

f with respect to E, we have
N

§(B) = 3 (eun, L5 50 o 5y, Ly o500 ), L P45, L 778 > 0
=1
] (B.131)

for all £ € (Ej,, Fk,). This implies that f(E) is strcitly monotone. There-

fore, the root is unique. Q.E.D.

Let us define Ay : B = Hy 1= W m41 X Wime1 X - X Wy ma such that A (E)
y 1 N

is the set of solutions to (P,) when letting Ef' = E.

mix

Lemma B.6.2 A; is a bounded operator.

Proof. The boundedness of A; can be shown by the same argument as in

Lemma B.3.3. Q.E.D.

By Corollary 7.3 in [80]:
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Lemma B.6.3 The trace operator Ty : Hy — (L*(S))V*! is compact.

Finally, we define Ay : Ty(Hy) — B by
Ao (CsyChay vy Cly) — E,

where E satisfying Y i;(E)c; =0 for j = s,ki...., ky.

J

Lemma B.6.4 A, is a bounded operator.
Proof. Let x = (¢s,Ck1y- -, Cky) € In(Hn), we have Ei, < Ay(x) < Ek,.

This implies that

A2 001 Z2(s) < N Brxl72gsy < M YN0 HIG < MY lleglls < MY [l
J J J
(B.132)

for some constant M > 0. This completes the proof. Q.E.D.
Defining A = Ay o Ty o A4, we have
Proposition B.6.1 The operator A : B — B has a fixed point.

Now the existence result for two species case can be generalized to several

species case:

Theorem B.6.1 There exist unique r,¢,,¢; € L*0,T; HY()), Eniz €

L2(0,T; B) with 01y, dscy, sc; € L2(0,T; (HY())') such that

T K, [T
/0 (Oyry, w)dt + p/o (ricg, w)dt =0 (B.133)
9

T T
/0<r18tcg,wg)(Hl(Q))ng(Q)dt—i—/o Dy(riVeg, Vwg)dt

K,M,

T
gpl g/o (ricg, wy)dt = 0,

(B.134)

BT
= | i (Bio)lew w) st +

Zs
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B.6. Several species case 179

T T
/0 <at(rlcj)7wj>(H1(Q))',H1(Q)+/O D;(riVej, Vuwy)dt

(B.135)
+ZjF 0 (r1lij(Emiz)lej, w5) rs) ~ oo T1CgCj, Wy )at,
satisfying the constraint
T
Z/O (ij(Emix)csawe)LQ(S)dt (B136)
J

for all w, w,, w; € L*(0,T; H(Q)) and for all w, € L*((0,T) x S). Moreover,
71, Cq, ¢; satisfy the initial conditions 7(0) = 77, ¢;(0) = ¢, ¢;(0) = ¢} with

J

0<r)<1,0<¢)<1,0<c}<1,17,c),¢) € H(Q).
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