R IFLE A

o\,

Bl 2B KRETHANLZRE
#8425 ST

Department of Computer Science and Information Engineering

an

College of Electrical Engineering and Computer Science
National Taiwan University
Master Thesis

FREMCAGRBRINRMECEETIH T A
A New Prospect in Finding Optimization Opportunities for

Multicore Architectures

PO
Ching-Chi Lin

§EHAR BIAREE E
Advisor: Pangfeng Liu, Ph.D.
LR LR HAT L
Co-Advisor: Pen-Chung Yew, Ph.D.

3 K E99FTA
July 2010

B L2 K258 23 X
DRXEBEFELE
ERIBCERGEHEARE LA eI X

A New Prospect in Finding Optimization Opportunities for
Multicore Architectures

WX AL E (23 R97922128) AR L &M AL FM IR
2% mﬁkzzﬁ&:*ﬁ-m X HAERE 9 £7 A1 BARATHHFREE
BB BROREN 4 ILEA

EEE - /&X?%7é%¥> ;Kff

(48 F304%) ~
EZic

J

-

BAERMIGEHIGAFERBEREROAE BARES £k - AREERE AH
LA G@ o MARBAERS KRV HFLETRERARER— LM 214 B RIEF
AR HL BHA LR HEAREFORER T - AT E A RREA - £
AR B EAARAT - AR N A Bakab) T R AR E &7

BRRETREMAGLRREZURL HM EREGHRE L BEFHRM » BTAR
P—% AR BFRE o —F B F 09 R 20 i ~ F95 ~ &3~ 0+~ B Ak
138 R E A+ A IER R R BT B R G oK e
SR ERFPEF LM BRI BERERATF S L -

FINRBBREG LA AM WA ARSI s RA XX EREENE
{5 s SARMIRI TS > BRI R R E W RIS E =R E R c BERMEHEL
& KH B FAL > & KA AR F AR B 260 3 R 2R AR AT S RA B
WA » HHRA 5?*

Rt BH KN FEAB AR R L - WAL RO R - £ XAA L AR
$6 ko A AR &K 6 6 A0 G WA B &R 8 1548 o RoeRA e

BREET BT MY A rRR et A sk B T 6 B AR - KB EAF R AF
A 2ohFBERE—K o

il

2R

RARMEMEIETUSERES X —#FEREMARY B RER > BREREL 7 A
REEZAGRETORXNA RBORR - 22 ESBCARHEH T RERE
e RERSFBA PO REMAEGTHE > BRAANSHTERIAIIT dHOZHIAE
@o&m%a%%%%&m~@%%%%mﬁ”%mz%%&m’ﬁﬂﬂmﬁﬁ%%%
o At RREER FITEHMOZHBERE HFARRRIEN > Ta
BT AL B9 XAT R » &%m%’%ﬁ&RWﬁﬂ%ﬁﬁ%ﬁ&,ﬁfiéﬁﬁma
ARPARY 2 AE AR TS LA A AR KRB E R o s e MRS RAL T o RIS R R T A
KK BEAE R EE” s FE LS d Rz R B e Mkt e » #nik
F AT AL o

MR E T —EHEmEA KR TE > BARRURES A RER G AL »
Ay PR MERRER LG E %%%ﬂﬁ””oAﬁﬁﬁ%%% 538 By A8 Ak
L&A A HERZXIATHBRT - %%%$E%EK%&%’@%%MAEQ%%
oo KA VAFE A IR B4 48 %ﬁﬁﬁ@u%é%%$@%’kﬁ&émﬁm&ﬁ
FHARER AREHRXMITEM KR o B T AIR P HAT 4 F 440 B R A
B2 N B B0 A8 o SH I B 1B [B a9l Shdlae 1 dBl 7 A AR S B R 2 B — AT 8
R o

TP e LSRR . B RAL s BATE

iii

Abstract

There have two groups of works in optimizing program execution in the literature — static and
dynamic program optimization. To our best knowledge, neither of these optimizations, while
looking for optimization opportunities, considers interactions among threads in multi-core archi-
tecture. Therefore we would like to develop techniques that can identify the presence of thread
interactions and use it to guide possible optimization. We observe that interaction among threads,
like competition for shared cache, can lead to “unstable” execution performance. That is, the same
part of program will have very different performance characteristics, therefore we identify those
parts of program as dynamic optimization opportunity, so-that they can be optimized for better

performance.

We propose a simple and efficient sampling-method that analyzes performance variance among
basic blocks, so as to differentiate “unstable”'dzll'ﬁd “stable” basic blocks. The results from the
analysis can be used as a reference to determiné_which parts of the program on which dynamic
optimizer should make extra efforts during execution. By mapping EIP of each sample back to its
basic block, we are able to choose representative basic -block for each interval during execution,
and compare the performance of each thread; so as to calculate the performance variance of each

basic block. This sampling technique can also be applied to single-threaded programs.

Keywords Multi-core architecture, Dynamic optimization, Program behavior.

v

Contents

Certification
Acknowledgement
Chinese Abstract
Abstract

1 Introduction

Related Works

Choosing Representative

3.1 Average EIP . . . SEa." . . o ol -, U L L
32 Mode S8 . =% .8 .. B8R L L.
Methodology

4.1 Sampling and Grouping
42 Representative i e e e e e e e e e e
4.3 Optimization Opportunity

Experimental Results

5.1 Experimental Settings
5.2 Classification Results
5.3 Performance Comparison Results
5.3.1 Optimization Level: OOvs O2
5.3.2 Unstableparts.

10

11

54 Case Study: Swim 17

5.5 Summary of Experimental Results 18
6 Conclusion 19
Bibliography 20

Vi

List of Figures

3.1
32

5.1
52
53
54

EIP-IPC relation for 314.mgrid_m of SPEC OMP2001

EIP-IPC relation after clustering for 314.mgrid_m of SPEC OMP2001

Average CoV of the L1 distance between BBV using the same representative . .

CPI results of each thread of bencbmﬁg(mrSPEC OMP2001 using OO0
i '\-1'&-" e g

CPI results of each thriraz}ﬁ}ben&}ﬁjarks _%EPE& %2001 using 02

Optimization Oppoﬁ'l:mty €Sl

15“

,-__:_jj:t?l-'

-

ke

&l

RO CTE]

vii

List of Tables

5.1 Execution time results

viii

Chapter 1

Introduction

There have two groups of works in optimizing program execution in the literature — static and
dynamic program optimization. Static optimization is performed by compiler while generating
the executable program. Static optimizations, such as loop-unrolling, function in-lining, rename-
register, are performed, depending on which-level of optimization is specified by the user. The
purpose of static optimizations is to reduce the size of the resulting machine code, or to create

code that runs much faster, potentially increasing its size.

Dynamic optimization, on the other hand, works during execution runtime. The idea of dy-
namic optimization is that if a sequence of basie blocks, or fraces, are “hot”, meaning that the
traces are executed very frequently, then loptimizing these traces-should improve performance.
Thus dynamic optimization focuses'on the real execution behavior of the program, rather than in-
formation that could be obtained from.the source code during static compilation. There have been
many dynamic optimizers in the literature; such as Dynamo [1], DynamoRIO [2], ADORE [3],
and Mojo [4]. Other works like [5, 6] aim to optimize power consumption by configuring micro-

architecture features according to the program behaviors at runtime .

Recently, Multi-core architecture becomes the mainstream in the computer industry. Thus, the
multi-core computing raises new issues and opportunities for dynamic program optimizers. For
example, most of the multi-core architectures have shared cache among cores. Competition for
shared cache among threads may affect thread behavior and degrade overall performance. This is

an issue in multi-core architectures but not in single core architectures.

The cache competition on multi-core architecture can cause unstable program behaviors, and
static optimizers can not handle the cache competition in multi-core architectures since it can
not assume that the generated code will only run in multi-core architectures. Hence the cache

competition can only be handled by a dynamic optimizer during runtime.

During program execution, the dynamic optimizer can detect unstable program behaviors, and

apply runtime optimization on those code segments. As a result we can view those code segments

that have an unstable behaviors as dynamic optimization opportunities in multi-core architectures.

The goal of this paper is to to identify which parts of the program execution are unstable, and
which parts are stable in multi-core architectures. We want to make this distinction so that we can
apply dynamic optimization techniques on those stable parts, and use different techniques on the
unstable parts during runtime. It is important to have this distinction because we can only apply

correct optimization after we know the behaviors of the program.

Our first try is to identify stable and unstable program execution from the time domain, namely
to determine which time slots have stable execution, and which do not. We analyzed the runtime
characteristics of parallel benchmarks from SPEC OMP2001, and found that even if these bench-
marks run in multi-thread on multi-core with shared memory, most of the time the behaviors of
individual threads are still very similar. The interferences we expected due to competition for
shared memory/cache from different threads is not significant, and we were not able to determine

which part of program execution is stable or unstable in time domain.

In order to reveal more information about the interferences among different threads, we pro-
pose a new observation method that’observes the behaviors of threads not from time domain, but
from basic block domain. For.every basic block we determine whether it is “stable” or not by
its behavior over the whole execution time. For those basic blocks with very unstable behaviors,
i.e., with a large variance in the metrics we aré_,i':l_lgerested, these basic blocks might provide good

optimization opportunities.

It is very time-consuming to observe the perf-o'rmance of individual basic blocks, and the over-
heads from the observation can“affect-the original program behayvior. In order to minimize the
observation overheads, we use sampling techniques to-measure the performance of individual in-
terval at runtime, and choose a representative for that interval. By comparing the performance of
each interval with the same representative, we can decide which intervals are “stable”, and which

are “unstable”.

The major contribution of this work is that we propose a new prospect in finding optimization
opportunities in multi-thread programs on multi-core architecture. Our simple and fast methods
can be applied to identify those opportunities in programs. Both static and dynamic optimizers can
use these opportunities to generate more efficient executables or perform more aggressive runtime

optimizations.

The rest of the paper is as follows. Section 2 introduces related works. Section 3 discusses
how to choose a representative extended instruction pointer (EIP) for a set of samples. Section 4
describes our sampling methodology. Section 5 describes our experimental results and analysis.

Conclusion and future works are presented in Section 6.

Chapter 2

Related Works

A substantial amount of researches have been conducted on dynamic optimization. Dynamic opti-
mizers such as Dynamo [1], DynamoRIO [2] and ADORE [3] use hot trace to improve execution
efficiency. A hot trace is a series of frequently executed basic blocks. Hot trace is put into a code
cache so that it can be accessed much faster next time. it is required. Kister et al. [7] describes a
continuous optimization framework that.looks for stable phases in un-optimized code, and phase

changes in previously optimized-code before optimizing code.

Those dynamic optimizers identify traces according to the execution frequency of traces, but
not to the performance information of traces; sueh-as CPIs information. Our techniques can pro-
vide such information about those unstable program segments so-that those dynamic optimizers

can utilize those information to improve performance.

Phase detection is an important component of dynamic:optimizers. A phase is defined as a set
of intervals that executing the same parts of program, hence similar runtime behavior [8]. Basic
Block Vector (BBV) are widely used as code signature of an execution interval. The BBV of an

interval records the number of times each basic block is executed during execution of this interval.

There are many studies on phase detection and prediction [9, 10, 11, 12, 13] in recent years.
Annavaram et al. [14] and Lau et al. [15] studied the relation between code and performance,
and concluded that there exist a strong correlation between code and performance, and a weaker
correlation between sampled code signature and performance. In [15], Lau et al. used receiver
operating characteristic curves and low intra-phase coefficient of variation of CPI to prove their

conclusion.

Jiang et al. [16], enlightened by the existence of strong correlations among program behav-
iors, propose a regression based framework to automatically identify a small set of behaviors that
can lead to accurate prediction of other behaviors in a program. Sherwood et al. [17, 18, 19] use
BBV as code signature to find periodic behavior of program phases. By comparing BBV between

intervals, it is possible to detect stable phases and phase changes. Sherwood et al. [20] and Merten

et al. [21] proposed a hardware mechanism for detecting phase changes to support runtime opti-
mization. Davies et al. implement iPART [22], an full-automated phase analysis and recognition

tool.

Phase detection is also important in choosing simulation points. Hamerly et al. [8] use BBV for
clustering, and choose simulation points from each cluster. Perelman et al. [23] also use clustering

to help choose simulation points on multi-thread benchmarks.

Researches of phase detection usually use k-means [24, 25] clustering as classification method.
The value of k is chosen such that it has the highest Bayesian Information Criterion (BIC) from 1 to
K, where K is the maximum number of phases allowed. Our work avoid using k-means because
it reduces the dimension of basic block vectors and potentially increases the risk of information
lose. In addition with different random seed, k-means algorithm produces very different clustering

results, which could not be comparable directly between two runs of k-means.

We summarize the difference of our, work and previous works as follows. First, most of the
previous works on phase detection and dynamic optimization target at sequential programs and
evaluated their techniques with sequential. benchmark suites such as CPU2000 or CPU2006. We
aim to study interaction and interference between multiple threads in parallel programs, such as
OMP2001 benchmark programs. Furthermore, in previous works; the goal of phase detection is
either to find simulation points or to predict phé_l_s_es at runtime. Our goal is to find optimization
opportunities (i.e., code segments that have uri.ste.lble behaviors) in multi-thread programs, which

requires very different phase analysis techniques.-

Chapter 3

Choosing Representative

Many works in the literature use basic block, i.e., a block of instructions with a single entry and
a single exit, as a basic unit in program behavior analysis. However the overheads of observing
individual basic block is extremely large, which can destroy the program behavior we want to
observe. Instead of taking every basic block into consideration, we take samples for every fixed
amount of time. Previous studies show that take samples every 10° to 10° instructions, and group
107 to 108 instructions (about 100 samples) together as an interval is reasonable, so we will use

this sampling rate throughout this paper.

Most of the previous works use Basic Block*Vector (BBV) to tepresent an interval. A BBV
contains the number of times a basic block being|executed ‘during-an interval. Usually the vector

is normalized according to the total number of samples in that interval.

The K-means clustering is widely used.asa classification-method in phase detection. The goal
is to classify basic block vectors into clusters so that'each cluster contains intervals with similar

execution behavior.

Use K-means clustering method on BBVs can achieve good classification results, but it also
raises the following issues. First, the number of cluster k is difficult to determine beforehand.
Second, K -means clustering can generate different results due to initial random seeds. Last but
not the least, before applying /-means clustering, we need to randomly project BBV into lower
dimension to avoid the “dimension curse”, i.e., the high overheads in dealing with the very large
number of dimensions in original BBV. Therefore, the clustering results are not directly compa-
rable between each other or between different runs, and we need another metric to represent an

interval instead of using BBV.

3.1 Average EIP

At first we try to use the average EIP as a representative for an interval. Every interval can be
identified and compared to each other by the average EIP of samples. This is a fast and intuitive
way compared to BBV. But after some analysis, we find that even if this method is simple and fast,

average EIP can not be used as our representative of an interval.

1. T T T T

(109
T
T
i

[R]

06 = -

(]

02 L
4, 22e+80 A, Pdevlif A, PherBE A, Ml 4. 9ev0E 4,32c+80 A St

Figure 3.1: EIP-IPC relation-for 314.mgrid_m of SPEC OMP2001

Figure 3.1 shows the performance results from mgrid using average EIP. Mgrid is a benchmark
from SPEC OMP2001. Each data point represents an interval. The = coordinate is the average
EIP of the interval and the y coordinate is the IPC(Instruction Per Cycle) of that interval. As we
can see, there exists similar patterns in figure 3.1. For example, there are two sets of points that
form a similar pattern at the left part of the figure. These repeated patterns raise an issue that if

using average EIP as representative a good choice.

To find the reason that cause these repeated patterns, k-means clustering is applied. For each
interval we collect its sampled BBV and apply k-means. Each cluster is assigned with different
colors. Figure 3.2 shows the colored result. The color of each point in figure 3.2 indicates which
cluster an interval is belonged to using k-means.Intervals from the same cluster should have the

same color.

From Figure 3.1 and Figure 3.2, we can conclude that it is not appropriate to use the average

EIP to represent an interval. A desirable result should be data points with the same color gathering

6

Do b 4, PdorBR A, PReriE A, PRetiE PR 4, 3PeHE A, Bt B

Figure 3.2: EIP-IPC re_l_.a-tion afteW:erin% J,fo;;_l314.mgfiﬁ:m of SPEC OMP2001
| M= 0
together, having similar EIP as representat veﬁ% t\ué figures shéw, those points with the same
color separated through z-axis, and cauls repeﬁ_‘@d pqttlf>rns. The reason is that during program
execution, instuction pointer may jump t in's'fr?étionklwith lalfge' EIP, which can significantly
increase the average EIP. For exaﬁlf):le_, t elle are two set& f red pdints on the left part of Figure 3.2.
These two set of intervals are from the élamelcluster resylt by applying k-means, but those intervals
in the right set have samples with large EII; while the intervals in the left set do not. This result
shows that even there are only very few samples with large EIP differ, the average EIP of an

interval can have a significant change.

There is another reason for not using average EIP as representative. The basic block an average
EIP belongs to may not actually be executed during that interval. We can conclude that it is not

reasonable using the average EIP as representative for an interval.

3.2 Mode

To overcome the repeated pattern problem in Figure 3.1, we propose using the mode (i.e., the
one that occurs most frequently) of EIP sampled in an interval to represent that interval. We use
PIN [26] to build a EIP to basic block mapping table. For every samples in an interval, its EIP can
be mapped to the corresponding basic block by mapping table. We choose the basic block that

occurs most and use the EIP of the first instruction of that basic block to represent this interval.

Using the mode is much more suitable than using the average EIP. As discussed in the previous
section, the average EIP will shift significantly even when there is only one very large EIP in
the samples. By using mode in choosing representative, those instructions with large EIP will
be treated as “noise” and filtered out, so that using mode will not be affected by them. The

representative chosen using mode is surely to be executed during an interval.

Chapter 4

Methodology

Our goal is to find optimization opportunities of a program. If a set of basic block has an unstable
behavior during runtime, then we consider it as an optimization opportunity. To compare the
behavior of each basic block, we need to collect the information of behaviors during the program

execution.

4.1 Sampling and Grouping

We collect the performance and execution information| by sampling at program runtime. Perf-
mon [27], a performance monitoring tool, is used to help us to do sampling. A sample is taken
every fixed number of instructions. For every sample, Perfmon records one EIP, clock cycles used
during this sample, and some other'relevant information.: And for every fixed size of samples, we
group them into a data point, or an interval.. The total sum of clock cycle used in an interval is
calculated, and divided by the total instruction retired to get the cycle per instruction (CPI) to be

the performance of this interval.

4.2 Representative

The most appearance basic block of an interval is used as representative. Choosing the represen-
tative EIP from an interval is an interesting problem. Section 3 discussed the reasons of using
the mode (one that occurs most frequently) in choosing the representative instead of using sample
BBV or average EIP. The result indicates that using the average EIP as the representative can cause
repetitive patterns on the EIP-IPC graph like Figure 3.1, even if the data points of those patterns
are executing the same part of program. In another word, data points from executing the same part
of program could be separated and not be able to compare with each other. Another reason is that
the most appearance EIP is surely to be executed during that interval, which the average one may

not.

One thing worth to mention is that an instruction is too small to be an optimization unit. A
much more suitable unit should be one or a set of basic block. As a result, for every EIP Perfmon
sampled, which basic block that EIP belongs to is important. We build a lookup table by PIN [26],
which contains the EIP range of each basic block. With this table each sampled EIP can be mapped
to basic block it belongs. The most appearance basic block of an interval is selected, and the first

EIP is used to be the representative of this interval.

4.3 Optimization Opportunity

After collecting the representative EIP and performance data for each interval, the standard devi-
ation(Std) and coefficient of variance(CoV) of CPI for intervals with the same representative can
be calculated. EIPs with large Std or CoV of CPI will be marked as “unstable”. If an EIP is said
to be “unstable”, it means that the basic block starting with this EIP and its neighboring basic
blocks have unstable behavior during execution. It is with high possibility to get performance gain

applying dynamic optimization to those basic blocks;during runtime.

To fit out goal of identifying large performance varianee; CoV of CPI is chosen as the evalua-
tion metric to decide if an EIP is/unstable.or.not. But-using only €CoV of CPI is not good enough,
due to the fact that some EIPs have only a few.intervals but with large CPI variance. Trying to
optimize those during runtime can produce tin-; :p'erformance gain but raise more overheads. The
coverage of interval for a representative EIP should also be takeh-into consideration. The EIPs
chosen as “unstable” should be with large CoV c.>f CPI and medium coverage during execution.

The evaluation function can be defined as:
OptimizationOpportunity = CoVofCPI x Coverage 4.1)

If the optimization opportunity is larger, it is more likely to get performance gain during runtime
optimization. A threshold 7, is applied, and only EIPs with opportunity over 7}, will be marked

and noticed by optimizer.

10

Chapter 5

Experimental Results

5.1 Experimental Settings

The experimental environment is as follows: We use Intel Nehalem Core 17, CPU model Intel(R)
Core2(R) CPU 975 @ 3.33GHz as our platform. A CPU has four cores, each with a 256KB L2
cache and shared a 8MB L3 cache: "The memory size is-12-GB. Spec OMP2001 is used as our
benchmark suite, with medium:size dataset. Every benchmark runs with 4 threads, one per core,
and is monitored during execution ' with Perfmon [27]. Sampling'rate is set to be 10° instructions

per sample.

We further analyze the monitored results of Berfmon to get the representative and performance
data, which are described as follows. The monitored results are recorded in four text files, one for
each thread, with the EIP and performance information for'each.sample. Then we use basic block
look up table to map EIPs to corresponding basic blocks., The basic block look up table is generated
before the experiment using PIN [26]. After mapping EIPs to basic blocks, samples are grouped
into intervals. The interval size is set to 100 samples. The most frequently occurring basic block
is chosen as the representative of this interval. The performance behavior, in our work, CPI, is

calculated by the performance information of those samples in an interval.

5.2 Classification Results

Before comparing the results of each thread, we first examine the effectiveness. After knowing the
representative of each interval, we group those intervals with the same representative basic block
into a cluster, and form an average BBV of the cluster. Having the average BBV, we calculate the
Manhattan distance between BB Vs and the average BBV in a cluster. The idea of using Manhattan
distance is that if two BBVs have a large Manhattan distance, the basic blocks they execute should
be very different. We calculate the correlation of covariance (CoV) of the Manhattan distance for

each cluster in each thread.

11

Thread 8 EZ=3
Thread 1 E=E2
Thread 2 =
Thread 3 C==3

Average Co¥ of L1 distance
o
L]
1}
T

[
8.3 R 5
i [[
e i B [
i = Bl i
8.2 r L] i o F 1
-] kot i B L
o] L] i - i FLgii
L) s i] [E:d L)
Fgied Ly i] i FLgii
L) s i [[E:d L)
Fgied Ly L) i i Fgied
a.1 [Eoti] Fod]] [<E [B
. g o N [e i g
ko] i [i Pelin ko]
JiiE] iz ko] i Wit [
Fod] L] \ i e o Fod]
a b4 i 2 B g

equake fnadd swin Wupwisze

Thread 8 8.174 98.146 08,2368 98.8683 8,134 8,144 8,162 8.371 0.334
Thread 1 8.192 9.128 06.251 6.533 8,294 8,135 B8.163 08.3261 0,198
Thread 2 6.247 @8.154 8,254 8,666 8,274 8,179 6,166 6.394 08,281

Thread 3 6.193 @8.142 8,386 8,265 8,245 8,182 6,137 6.255 0,281

Figure 5.1: Average CoV of the L1 distance-between BB Vs using the same representative

Figure 5.1 shows the average CoV of Manhattan distance for-clusters in each thread using O2
optimization level. From the table we observe that most of the benchmarks have small average
CoV (under 0.3), which indicates that.the BB Vs in.the same cluster are similar. But for threads of
some benchmarks, such as art, the value is-oyer 0.5;:which is large. The reason is that for these
benchmarks there are many other “frequent” basic blocks other than the most frequent basic block.
If two different execution sequences have the same mode basic block, they will be placed into the
same cluster and cause the CoV of this cluster to increase. But still, for most cases, the CoV of

clusters are small.

5.3 Performance Comparison Results
After choosing the representative basic block for each interval and making those with the same rep-

resentative into a cluster, we compare the performance results for each cluster. First we compare

the results between different optimization level, then pinpoint those “unstable” parts of programs.

12

CPI

CPI

CPL

CPL

CPL

annp
8 \ T \ \
thread 8
7= thread 1 I
thread 2
6~ thread 3]
5 .
a4 .
3 .
a .
[iv [T
1 ; wm} (N J | _
B 1 1 | 1 | |
4,1 4.2 4.3 4.4 4.5 4.6 4.7 4.8
Extended Instruction Pointer(1876)
apsi
8 \ T \ T T
thread 8
- thread 1 N
thread 2
6~ thread 3 7
5 .
a4 .
3 .
a .
IR]
el o
B 1 1 1 | 1 | | 1
4.2 4.3 4.4 4.9 4.8 4.7 4.8 4.9 a9 3.1
Extended Instruction Pointer(18°6)
equake
8 \ T T \
thread 8
- thread 1 N
thread 2
6~ thread 3 7
5 |- _
4 .
3 .
a - .
1 o _
8 | | | | |
4.1 4.3 4.4 4.9 4.6 4.7 4.8
Extended Instruction Pointer(18°6)
ngrid
8 \ T \ \
thread 8
7= thread 1 N
thread 2
6~ thread 3 7
5 .
q _
3 .
2 - o
te il Il
8 | | | | | |
4.1 4,2 4.3 4.4 4,5 4.6 4.7 4.8
Extended Instruction Pointer{1876}
wupwise
8 \ T T \
thread 8
7= thread 1 N
thread 2
6= thread 3
5 .
4 _
3 .
a .
tE gL (-
8 | | | | | |
4.1 4,2 4.3 4.4 4,5 4.6 4,7 4.8

Extended Instruction Pointer{1876}

Figure 5.2: CPI results of each thread of benchmarks in SPEC OMP2001 using O0

13

CPI

CPI

CPI

CPI

applu

T
thread 8
thread 1
thread 2
thread 3

¥ i-.J‘hJII ‘ | | |

@ B M oW A O @ W@
T

.y
h
=

4.2 4.3 4.4 4.5 4.6 4.7

Extended Instruction Pointer {1076}

art

T T | T

thread 8
thread 1
thread 2
thread 3

F T - BN
T

I A
1 | 1 1 1 | 1 1

3
2
1
a
4

Extended Instruction Pointer {18762

fradd

.19 4.2 4.23 4.3 4.35 4.4 4.43 4.9 4.597 4.6

4.63

T
thread 8
thread 1
thread 2
thread 3

W A O o@m W@

X}
T

4 4.9 H 9.9 i}
Extended Instruction Pointer {18762

sMin

6.9

8 T T T T
thread 8
thread 1
thread 2
thread 3

7
[}
5
4
3
2
1
a
4

Extended Instruction Fointer{1876}

15 4.2 4,25 4.3 4,39 4.4 4,45 4,5 4,35 4.6 4,65

4,7

CPI

CPI

CPL

CPL

CPL

annp
5 T \ T
thread 8
thread 1
4 — thread 2 T
thread 3
3| _
2 =
! | |
N] §
i]
i
|
8 1 1 1 | 1
4,2 4.3 4.4 4.5 4.6 4.7 4.8
Extended Instruction Pointer(1876)
apsi
3 \ T \ T
thread 8
thread 1
4 - thread 2 T
thread 3

B 1 1 1 | 1 | | 1
4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 9 3.1
Extended Instruction Pointer(18°6)

equake
3 \ T T \
thread 8
thread 1
4 - thread 2 T
thread 3
3 .
a - .
oo |
1k li ' =
[¢ e
8 | | | | | |
4.1 4.2 4.3 4.4 4.9 4.6 4.7 4.8
Extended Instruction Pointer(18°6)
ngrid
9 \ T \ \
thread 8
thread 1
4= thread 2 B
thread 3
3 .
I i .
2 - -
! .
1 |ﬂ”| d | T
8 | | | | | |
4.1 4,2 4.3 4.4 4,5 4.6 4.7 4.8
Extended Instruction Pointer{1876}
wupwise
3 \ T T \
thread 8
thread 1
4 thread 2 =
thread 3
3 .
2~ ‘ | | I
i
1| | i i —
8 | | | | | |
4.2 4.3 4.4 4.5 4.6 4,7 4.8 4.9

Extended Instruction Pointer{1876}

Figure 5.3: CPI results of each thread of benchmarks in SPEC OMP2001 using O2

14

CPI

CPI

CPI

CPI

applu

5 T T T
thread 8
thread 1
4 - thread 2 -
thread 3
3 _
s . _
1 il ﬂﬂ d | -
8 1 | | 1 1 1 1
4,1 4,2 4.3 4.4 4.5 4.6 4.7 4.8 4.8
Extended Instruction Pointer {1076}
art
9 T T T
thread 8
thread 1
4 thread 2 -
thread 3
3 _
a - _
1 : -
I
8 1 1 1 1 1
4.2 4.23 4.3 4.33 4.4 4,45 4.9
Extended Instruction Pointer {18762
fradd
9 1T T T T T 1
[thread 8
I thread 1
4 -, thread 2 =
; thread 3
sl -
'
i
i
2 - ! -
11]
' 1 Lo .
8 | | | | | | | | | |
4.2 4.4 4,6 4.8 5 9.2 9.4 5.6 D.8 6 6.2 6.4

Extended Instruction Pointer {18762

sMin
9 T T T T T
thread 8 .
. thread 1
4 - thread 2 -
thread 3
3 -
a ‘ B i
! H |
i [
| P
1 -
a | | | | | | | | | |
4,15 4.2 4,25 4.3 4,35 4.4 4,45 4,5 4,55 4.6 4,65 4.7

Extended Instruction Fointer{1876}

5.3.1 Optimization Level: O0 vs O2

Figure 5.2 and Figure 5.3 show the CPI results for each thread in different benchmarks. Every data
point indicates an interval. The xz-axis of each sub-figure is the beginning EIP of the representative
basic block, and the y-axis is CPI value. Different colors indicate which thread an interval is taken
from. Data points with the same x-coordinate means that they have the same representative basic
block. If data points with the same x-coordinate spread widely, i.e., a long vertical line, then we
say this basic block is “unstable”. On the other hand, if the data points are close to each other,

then the basic block is “stable” on performance in terms of CPL

From Figure 5.2 we can see that for most of the benchmarks with O0 optimization level,
the CPI values locate within the range [0.5, 1.5]. However, with O2 optimization level, both the
average CPI and the variance become larger as Figure 5.3 shows. The main reason is that in
order to produce executables that run faster, static optimization techniques such as loop-unrolling,
function in-lining, rename-register, etc. are performed. The instructions used in the executable are
more complicate compared to those with no-optimization, which results in larger CPI. We choose
02 optimization level as our target of finding optimization epportunities because the CPI variances

are much more significant at this- optimization level.

5.3.2 Unstable parts

Intervals with the same representative(same clust.er) that have large correlation of covariance(CoV)
of CPI are called “unstable”. But itis not.good enough using only-CoV of CPI as mentioned in sec-
tion 4.3. Coverage of the representative. is-taken inte.consideration to help deciding optimization
opportunity. Figure 5.4 shows the optimization opportunity, defined in Section 4.3, of each repre-
sentative in each benchmark. The threshold 75, is set to be 0.01. If optimization opportunity of
a cluster exceeds the threshold 7T,,, the cluster is marked as “unstable”. Note that these threshold

values are determined by observing, further work is needed to obtain appropriate thresholds.

By comparing Figure 5.3 and Figure 5.4, it is clear that some basic blocks seem to have large
CPI variance, but small optimization opportunity due to small overall coverage. From Figure 5.4
we can observe that for most basic blocks, the optimization opportunity values are likely to be

small. But still there are some with large values, which will be marked as “unstable”.

After marking those “unstable” basic blocks, we can generate files containing information
including EIPs of the “unstable” basic blocks. Dynamic optimizer will be able to use these infor-
mation to improve performance during program execution. It is not clear how much performance
gain can be achieved due to lack of such dynamic optimizers that can take advantage of these infor-
mation. Nevertheless, we provides a mechanism that may help future dynamic optimizer design.

First, our method can be used to collect information on which part of the program is “unstable”.

15

optinization Opportunity optinization Opportunity optinization Opportunity optinization Opportunity

Optinization Opportunity

8,818
8.816
8,814
8,812
8.81
8,888
8,806
8,884
8,882
a

8,84
8,835
8,83
8,823
6.82
8,815
8.81

8,805

Extended Instruction Pointer{1876}

annp
+ T T
+
+ o+ N
I
+
£+ Fl 4 by 1 1 |
4.2 4.3 4,4 4.5 4.6 4.7 4.8
Extended Instruction Pointer{18"6)
apsi
T T T
- + o
+
- 5
L+ T+ -
o
—‘H&+ K +
AR] ! ! L} Lt
4.2 4.3 4.4 4.9 4.6 4.7 4.8 4.9 il 3.1
Extended Instruction Pointer{18°6)
equake
T T T
- + .
- " .
I
g, 4| I N Ly
4.1 4.2 4.3 4.4 4.9 4.6 4.7 4.8
Extended Instruction Pointer{18°6)
ngrid
T T T
+
+
- + |
| bt | | | | I+
.1 4,2 4.3 4.4 4.5 4.6 4.7 4.8
Extended Instruction Pointer{1876}
wupwise
+ T T
- N .
_+ 4 .
- I | | 1 A | +
2 4.3 4.4 4.5 4.6 4.7 4.8 4.9

Optinization Opportunity Optinization Opportunity Optinization Opportunity

Optinization Opportunity

applu

8,016 T T T
6,814 +

8.812 —

a.01 —

8.008 —

0,006 — + +
8,004 —

6,802 e

+
+

+ ¥ +
PO T 1 1 [

4.1 4.2 4.3 4.4 4.5 4.6 4.7

Extended Instruction Pointer{18"6)

art

4.8

0,016 T
8,014 —

a.012 —

8.81 —

8.608 —

8.886 =

0,004 £ +

6.e82 —
P ! ! ! \

4.23 4.3 4.35 4.4
Extended Instruction Pointer{18”6)

frasd

4.43

.2 T I

0.18 —

8,16 —

a.14 —

a.12 —

8.1 —

a.88 —

8.86 —

a.84 —

8.02 -4 *r
L gl B P R 1

| |

el
4.2 4.4 4.6 4.6 5 5.2 5.4 9.6 5.8 6
Extended Instruction Pointer {18762

sMin

6.2

8.86 T 1 I

i, | | | | | | | Ly

it

+

a
4.15 4,2

Extended Instruction Fointer{1876}

Figure 5.4: Optimization Opportunity results for each benchmarks

16

4,25 4.3 4,35 4.4 4.43 4,5 4.55 4,6 4,65 4.7

Then a dynamic optimizer can set “check points” at the first EIP for those unstable basic, and take
extra care in generating high performance code instead of simply forming a trace and placing it

into code cache.

5.4 Case Study: Swim

In this section we use benchmark swim to test if the “unstable” information generated by our
work really helps performance. Due to the lack of help from dynamic optimizer, we can only
do some optimization at source code level. First we choose an “unstable” basic block from our
results of benchmark swim. Having this basic block we can look it up in the assembly code. The
assembly code is generated from source code compiled by Intel(R) Compiler. Thus we can find

the corresponding source code of the basic block, and do some optimization by human knowledge.

Table 5.1: Execution time results

original modified
4m36.743s 4m35.948s
4m36.546s 4m35.745s
4m36.547s | .4m35.947s
4m36.:544s = 4m35.950s
4m36.546s 4m35.947s
4m36.546s: 4m35.950s
4m36.547s 4m35.946s
4m36:546s - 4m35.746s
4m36.:547s 4m35.945s
4m36.747s - 4m35.745s
avg 4m36.586 4m35.887s

The optimization shows insignificant performance improvement. After the optimization, the
source code is re-compiled using the same setting as the original program. The execution time
results are shown in table 5.1. The result shows that after modification, the program runs slightly
faster(about 0.7 secs) compared to the original one. The speedup is pretty steady. The result shows
that by optimizing those “unstable” parts identified by our method, we can get some performance
gains for sure. Still we should remember that this optimization is done by hand, and only modify
the corresponding part of source code. It is expected to achieve more performance gains using

dynamic optimizer during runtime.

17

5.5 Summary of Experimental Results

Our experiment results indiciate that the effectiveness of our method is quite good because most
benchmarks have small average CoV (under 0.3), which indicates that the BBVs in the same
cluster are similar. From Figure 5.4, we observe that for most basic blocks, the optimization
opportunity values are likely to be small. But still there are some with value over threshold 7,
and will be marked as “unstable”. For the benchmark swim, we applied simple optimization to
the “unstable” regsion of the source code manually. The experiment result shows insignificant but

steady performance gain of the optimization.

18

Chapter 6

Conclusion

We propose a simple and fast method to find optimization opportunities for dynamic optimization.
Our method works on both single and multi-threaded programs. By mapping the EIP of each
sample back to basic block and choose a representative, we are able to compare the performance
(in our case, CPI) of each thread, and calculate the performance variance of basic blocks. If the
variance is small to a basic block, thenwesay that thissbasic-block is “stable”. On the other hand,
if the variance is large, then we-mark this basic block'as “possible optimization opportunity”” or
“unstable”. There are many reasons that can cause large performance variances. For example, a
basic block with lots of memory instructions; or.cache competitions between threads. Dynamic
optimization may be able to utilize the information on those“unstable” regions and improve per-

formance during runtime.

We also compare the two methods to' present.a set of samples using an EIP. In most of the
existing phase detection works, EIP veetor orbasic block vector is used to present a set of samples.
In this work, we try to find other ways than using cluster ID to represent a vector. The first method
is using average EIP, but it turns out that the results are easily affected by EIPs sampled. Using
average EIP as representative can cause repeated patterns. The other method is using the most
frequently occurring EIP sampled as representative. We conclude that using the most frequent EIP

sampled as representative is a much better choice than using the average EIP.

There are still many issues that need to be analyzed and discussed. The most important one
is that we need an optimizer to help us evaluate the overall performance gain by applying opti-
mization to a program using our analysis results. Another issue is to find a way to compare the
performance of the same code segment using different optimization levels, which might tells us
about which optimization level is more suitable to a procedure or a sequence of basic blocks in
program. Compiler might be able to use such information to perform more accurate optimization.

Analyzing other benchmarks on different architectures is also an important part of the future work.

19

Bibliography

[1]

(2]

(3]

[4]

[5]

[6]

(71

[8]

[9]

V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic optimization
system. SIGPLAN Not., 35(5):1-12, 2000.

D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive dynamic opti-
mization. In CGO ’03: Proceedings of the international symposium on Code generation and

optimization, pages 265-275, Washington, DC, USA, 2003. IEEE Computer Society.

J. Lu, H. Chen, P.C. Yew, and W.C. Hsu. Design and implementation of a lightweight dy-

namic optimization system. Journal of Instruction-Level Parallelism, 6, April 2004.

W.K Chen, S. Lerner, R.‘Chaiken, and"D.M. Gillies. Mojo: Adynamic optimization system.
In Proceedings of the 3rd ACM Workshop-en feedback-Ditected and Dynamic Optimization,
2000.

C. Pereira, J. Lau, B. Calder,’and R! Gupta." Dynamic phase-analysis for cycle-close trace
generation. In CODES+ISSS '05: Proceedings of the 3rd IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, pages 321-326, New York,
NY, USA, 2005. ACM.

A.S. Dhodapkar and J.E. Smith. Managing multi-configuration hardware via dynamic work-
ing set analysis. In ISCA ’02: Proceedings of the 29th annual international symposium
on Computer architecture, pages 233-244, Washington, DC, USA, 2002. IEEE Computer
Society.

T. Kistler and M. Franz. Continuous program optimization: A case study. ACM Trans.
Program. Lang. Syst., 25(4):500-548, 2003.

G. Hamerly, E. Perelman, and B. Calderd. How to use simpoint to pick simulation points.
SIGMETRICS Perform. Eval. Rev., 31(4):25-30, 2004.

A. Das, J. Lu, and W.C. Hsu. Region monitoring for local phase detection in dynamic
optimization systems. In CGO ’06: Proceedings of the International Symposium on Code
Generation and Optimization, pages 124—134, Washington, DC, USA, 2006. IEEE Computer
Society.

20

(10]

(11]

[12]

(13]

[14]

[15]

[16]

[17]

[18]

P. Nagpurkar, C. Krintz, M. Hind, P.F. Sweeney, and V.T. Rajan. Online phase detection
algorithms. In CGO ’06: Proceedings of the International Symposium on Code Generation
and Optimization, pages 111-123, Washington, DC, USA, 2006. IEEE Computer Society.

G. Fursin, A. Cohen, M. O’Boyle, and O. Temam. A practical method for quickly evalu-
ating program optimizations. In Proceedings of the Ist International Conference on High

Performance Embedded Architectures and Compilers, pages 29-46, November 2005.

J. Lau, M. Arnold, M. Hind, and B. Calder. Online performance auditing: using hot optimiza-
tions without getting burned. In PLDI *06: Proceedings of the 2006 ACM SIGPLAN confer-
ence on Programming language design and implementation, pages 239-251, New York, NY,
USA, 2006. ACM.

C. Dubach, J. Cavazos, B. Franke, G. Fursin, M.E.P. O’Boyle, and O. Temam. Fast compiler
optimisation evaluation using code-feature based performance prediction. In CF ’07: Pro-
ceedings of the 4th internationdal conference on. Computing frontiers, pages 131-142, New
York, NY, USA, 2007. ACM.

M. Annavaram, R. Rakvie, M. Polito, J.Y. Bouguet, R.A. Hankins, and B. Davies. The fuzzy
correlation between code and performance predictability.| In-Proceedings of the 37th annual
IEEE/ACM International Symposium on'M_i_qroarchitecture, pages 93-104. IEEE Computer
Society, 2004. 5

J. Lau, J. Sampson, E. Perelman, G. Hamerl}.f, and B. Calder. The strong correlation between
code signatures and performance. -In ISPASS. '05: Proceedings of the IEEE International
Symposium on Performance Analysis-of Systemsrand Software, 2005, pages 236247, Wash-
ington, DC, USA, 2005. IEEE Computer Society:

Y. Jiang, E.Z. Zhang, K. Tian, F. Mao, M. Gethers, X. Shen, and T. Gao. Exploiting statistical
correlations for proactive prediction of program behaviors. In CGO ’10: Proceedings of the
8th annual IEEE/ACM international symposium on Code generation and optimization, pages

248-256, New York, NY, USA, 2010. ACM.

T. Sherwood, E. Perelman, and B. Calder. Basic block distribution analysis to find periodic
behavior and simulation points in applications. In PACT ’01: Proceedings of the 2001 In-
ternational Conference on Parallel Architectures and Compilation Techniques, pages 3—14,

Washington, DC, USA, 2001. IEEE Computer Society.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically characterizing large
scale program behavior. In Proceedings of the 10th international conference on Architectural
support for programming languages and operating systems, pages 45-57, New York, NY,
USA, 2002. ACM.

21

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder. Discovering and exploiting
program phases. [EEE Micro, 23(6):84-93, 2003.

T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction. In ISCA ’03: Proceedings
of the 30th annual international symposium on Computer architecture, pages 336-349, New
York, NY, USA, 2003. ACM.

M.C. Merten, A.R. Trick, C.N. George, J.C. Gyllenhaal, and W.W. Hwu. A hardware-driven
profiling scheme for identifying program hot spots to support runtime optimization. In ISCA
'99: Proceedings of the 26th annual international symposium on Computer architecture,

pages 136-147, Washington, DC, USA, 1999. IEEE Computer Society.

B. Davies, J. Bouguet, M. Polito, and M. Annavaram. iPART: An Automated Phase Analysis
and Recognition Tool. Technical Report IR-TR-2004-1-iPART, Intel Corporation, February
2004. ftp://download.intel.com/research/library/IR-TR-2004-1-iPART.pdf.

E. Perelman, M. Polito, J.Y. Bouguet; J. Sampson, B. Calder, and C. Dulong. Detecting
phases in parallel applications”on shared memoryrarchitectures. In IPDPS '06: Proceedings

of the 20th International Parallel and Distributed Processing Symposium, April 2006.

G. Hamerly and C. Elkan. Alternatives-te the k-means algorithm that find better cluster-
ings. In CIKM ’02: Proceedings of the eleventh \international conference on Information
and knowledge management, pages 600—607_, New York, NY,USA, 2002. ACM.

D. Pelleg and A.W. Moorey:X-means: Extending k-means' with efficient estimation of the
number of clusters. In ICML ’00: Proceedings of the Seventeenth International Conference
on Machine Learning, pages 727-1734,-San Francisco, CA, USA, 2000. Morgan Kaufmann

Publishers Inc.

C.K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, Geoff Lowney, Steven Wallace, Vi-
jay Janapa Reddi, and Kim Hazelwood. Pin: building customized program analysis tools
with dynamic instrumentation. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN con-

ference on Programming language design and implementation, pages 190-200, New York,
NY, USA, 2005. ACM.

Perfmon. http://perfmon2.sourceforge.net/.

22

