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中文摘要 

背景與目的 

PM2.5細懸浮微粒係指氣動粒徑小於 2.5 微米的粒子，依據不同的成分組成及附著

物具有不同的毒性，其孔徑大小足以穿透肺泡至人體血液中，尤其對於長者、幼兒、具有

心肺功能疾病者，不論長短期，暴露於細懸浮微粒都具有對危害健康的潛在風險。環保署

於 1993年完成全國空氣品質監測站網的設置，以達到監督空氣品質保障人民健康之目

的，而近年來隨著空氣品質受到民眾重視，也越來越多研究嘗試對空氣汙染進行預測。本

研究旨在利用不同機器學習模型比較空氣品質預測效力。 

材料與方法 

本研究針對環保署設立於台北地區以台灣新北市及台北市為主的一般空氣品質測

站，蒐集 2018 年至 2019 年間包含 PM2.5細懸浮微粒等空氣污染物以及其相關的氣象資

料，以過去 8小時之歷史資料推估未來三小時後之 PM2.5細懸浮微粒濃度，使用 2018年

對模型進行訓練，並用 2019年的資料進行驗證，以評估模型的效果。模型部分使用傳統

線性回歸統計方法作為基準，比較機器學習與深度學習模型對於 PM2.5細懸浮微粒濃度預

測的效力。研究中探討單一模型對於不同測站間、不同模型間的預測效果比較，並考量加

入鄰近測站的影響，評估其對不同模型的預測效果提升是否有幫助。 

結果 

本研究共蒐集納入兩年間 13測站共 227760筆逐時資料，23個變數，各測站的

PM2.5濃度平均為 15.23毫克 (標準差為 10.15 毫克)，使用三種模型進行預測，發現以

XGBoost 預測模型效力最高，其次是 LSTM，兩者平均都高於線性回歸模型。在測站方
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面，以土城及菜寮站在 R-squared上表現最好，士林及萬華站表現最差，而加入鄰近測站

變項後，比較無納入變項的土城站、士林站及萬華站的預測效果都有所提升，最終的模型

對於 2019年整年的預測達到了 64%的預測力。 

結論 

本研究顯示在提前三小時的預測力上 XGBoost 預測模型相較於神經網路及線性回

歸具有較佳的預測效果，加入鄰近測站也能提高模型的準確率。 

 

 

關鍵字: 空氣汙染預測、細懸浮微粒、機器學習 
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Abstract 

Backgrounds: Increasing air pollution has become a grave concern, with researchers finding 

adverse health effects caused by air pollutants. Among all air pollutants, fine particulate matter 

(PM2.5) whose aerodynamic diameter is less than 2.5μm is of particular concern. Especially for 

sensitive people, short-term as well as long-term exposure to PM2.5 might cause serious hazards. 

Although the Taiwan Environment Protection Administration has built an air quality monitoring 

network to monitor the PM2.5 concentrations and the government has revised the standards 

related to pollutants, an accurate and prompt early warning system is urgently needed.  

 

Methods: In this study, we conducted a comprehensive evaluation of several models to predict 

PM2.5 concentrations in the Taipei area. We collected the data of Taipei City and New Taipei 

City from 2018 to 2019 from the Environmental Protection Administration open data platform, 

and we applied three kinds of models, i.e., linear regression, machine learning, and deep learning 

after a series of data preprocessing steps. Depending on the various requirements of models, the 

dataset can be classified as time-series-oriented and feature-oriented to fit the model. Model 

performance among stations and various models are compared in our research. We also 

compared using geographical predictors using nearby stations to see whether they would 

improve the predictions. The performance of prediction was evaluated using Root Mean Square 

Error, Mean Absolute Error and R-squared. 

 

Results: In this study, 227760 hourly data from 13 stations were collected, and 23 variables were 

adopted to train the model. Among all stations, the XGBoost model outperformed the LSTM 

model followed by the linear regression model. Tucheng and Cailiao station in all the three 
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models achieved the best R-squared on average (0.6043, 0.6042 respectively). By additionally 

considering the influence of nearby stations, most models improved their predictions. Finally, the 

best models ’prediction reached an R-squared value of 0.64. 

 

Conclusion: This study found that the prediction using the 2018-year data in a single station in 

the Taipei Area can have a performance of 0.64 by using the XGBoost model, which 

outperformed the LSTM model followed by the linear regression model. Additional features 

from nearby stations for training are also beneficial to the predictions. 

 

Keywords: Air pollution prediction, Forecasting, PM2.5, Machine learning, Deep learning 
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Introduction 

Rapid development of the economy has caused many negative environmental impacts with 

air pollution being one of them. Air pollution refers to the aggregation of harmful materials in 

the air. An air pollutant is possibly causing adverse health effects on humans. According to an 

official report published by World Health Organization in 2008, it mentioned for three-quarters 

of the world’s population, the air pollution concentration values of living environments exceed 

the WHO’s guideline limits; moreover, indoor and outdoor air causes about 7 million premature 

deaths every year (World Health, 2015). 

Besides the statistic of deaths, plenty of research over the past ten years has provided robust 

evidence showing that poor air quality was responsible for adverse effects on health (Bai et al., 

2018; Ning, Ji, Li, & Sang, 2019; Qiu et al., 2019; Shou et al., 2019; Song et al., 2017).  

Particulate matter (PM) below 2.5 um, which is called PM2.5, is recognized as a major 

source of mortality among air pollutants. With the growth of the public concern, it has been 

widely studied around the world and has been found to adversely affect human health, including 

such problems as cardiovascular, cerebrovascular, and pulmonary diseases (Puett et al., 2009; 

Stafoggia et al., 2014; C. F. Wu et al., 2016). Moreover, according to existing research (Z. Chen, 

Wang, Ma, & Zhang, 2013; Dockery et al., 1993; Pope Iii et al., 2002; Sun et al., 2005; Xu, 

Zhang, Zhang, & Li, 2016; Yu & Stuart, 2017), PM2.5 are found to be strongly correlated with 

effects of cardiovascular disease. 

In conclusion, PM2.5 can penetrate deeply into the lungs when human inhales, causing 

mainly cardiopulmonary disease but not limited, which includes: chronic bronchitis and nonfatal 

heart attacks, such as cardiovascular disease (Pope et al., 2004), respiratory symptoms (Dominici 

et al., 2006), diabetes (Y. Yang et al., 2018) and other adverse influence. Especially, those 
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vulnerable groups such as children, elders (Simoni et al., 2015), and people already with heart or 

lung diseases are the most vulnerable. De Prado Bert also observed PM2.5 might cause various 

neurodegenerative diseases by penetrating the blood-brain barrier and entering the brain (de 

Prado Bert, Mercader, Pujol, Sunyer, & Mortamais, 2018). 

However, the short-term effects of PM2.5 exposures are relatively less discussed but still of 

interest to epidemiologists. Some previous epidemiological studies have assessed the effects and 

observed inconsistent results, indicating that short-term exposure to PM2.5 is associated with 

increased (Chang et al., 2015; Hoffmann et al., 2012; Jacobs et al., 2012; H. Lin et al., 2017; Mar 

et al., 2005; S. Wu et al., 2013) and decreased changes (Ibald-Mulli et al., 2004; Mirowsky et al., 

2015) in blood pressure. For body function, some studies also showed that short-term PM2.5 

exposures would reduce lung function. For the asthma inhaler user, Williams found that the 

usage would increase per 1-ug/m3 (Williams, Phaneuf, Barrett, & Su, 2019). Some research also 

suggests that for every 10-ug/m3 increase there was a reduction in daily peak expiratory flow 

(Yamazaki et al., 2011).  

As a result of health effects, environmental prediction can be beneficial to the protection of 

human health and welfare from pollution. To monitor and control the possible exposure, many 

countries have developed their own real-time monitoring network (e.g., http://www.pm25.in/) 

using various stations. 

In East Asia, the Taiwan Environmental Protection Administration (EPA) set up 19 weather 

stations in 1980 in order to observe hourly air pollution data in major cities and to report through 

the internet in real time. In 1993, the Taiwanese government developed the Taiwan Air Quality 

Monitoring Network. Until 2021, 78 national air monitoring stations have been established all 

over Taiwan.  
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With these stations, the concentration of PM2.5 can be checked anytime so that people can 

decide whether to go out or try to avoid polluted areas. However, in order to know the future air 

pollution status in advance, we must rely on an air pollution prediction system (T. Liu, Lau, 

Sandbrink, & Fung, 2018; Y. Wang, Sun, Yang, & Yuan, 2016; Yang, Huang, & Li, 2018). 

How to correctly use a single station point to collect history and real-time concentration 

data and then consider the spatiotemporal correlation among multiple stations hence are 

important in the air quality prediction field to avoid exposure to hazardous pollutants and protect 

ourselves from adverse health effects. Moreover, an effective model has a high application value 

for early warning since it can provide useful information for either guiding government 

policymaking or vulnerable people's short-term hazard assessment guideline. 

PM2.5 predictions are challenging because many factors strongly influence PM2.5. Related 

investigations show that estimation of PM2.5 from meteorological measures was carried out by 

researchers using nonlinear exposure-lag-response models (Z.-Y. Chen et al., 2018). 

In recent years, a wealth of research (Cho, Lee, Kwon, & Kim, 2019; Corani, 2005; Delavar 

et al., 2019; Elangasinghe, Singhal, Dirks, Salmond, & Samarasinghe, 2014; Franceschi, Cobo, 

& Figueredo, 2018; Xuefei Hu et al., 2014; Maharani & Murfi, 2019; Mingjian, Guocheng, 

Xuxu, & Zhongyi, 2011; Rybarczyk & Zalakeviciute, 2018; Soh, Chang, & Huang, 2018; J. 

Wang & Song, 2018; Yi, Zhang, Wang, Li, & Zheng, 2018; Q. Zhou, Jiang, Wang, & Zhou, 

2014) has been conducted to predict air pollution. According to different classification aspects, 

categories of air quality forecasting (AQF) systems might differ from much research (Cheng et 

al., 2021; Lee et al., 2020; Y. Li, Jiang, She, & Lin, 2018; L. Lin, Chen, Yang, Xu, & Fang, 

2020; Ma, Yu, Qu, Xu, & Cao, 2020; Y. Zhou et al., 2019). Generally, physical models and 

machine learning models are two types of techniques that are used to forecast air quality.  
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In the 1990s, scientists applied various atmospheric dynamics methods to apply in physical 

models with complicated equations to calculate great iterations. The accuracy was limited and 

the importance of new and old data was not able to be identified (Marriboyina, 2018). For the 

time being, chemical transport models (CTMs) have been widely used to provide daily air 

quality forecasts (Ghim et al., 2017; Mathur, Yu, Kang, & Schere, 2008; Otte et al., 2005; 

Žabkar et al., 2015). However, uncertainties in emission inventories and meteorological forecasts 

as the key parameters of these models might lead to incomplete physical and chemical 

mechanisms in the CTMs, related to the substantial prediction errors in real values (Cobourn, 

2010; Lv, Cobourn, & Bai, 2016). 

Apart from physical methods, some traditional PM2.5 prediction methods have focused 

mostly on statistic models (Kiesewetter, Schoepp, Heyes, & Amann, 2015; Lu & Wang, 2005). 

However, traditional methods are not capable of processing a large amount of multidimensional 

nonlinear data. Also, the complexity between PM2.5 concentration and other climate features 

makes it more difficult. It is against this backdrop that machine learning models have attracted 

considerable attention given the numerous benefits they offer. For example, machine learning 

models provide a new way to analyze air quality in the absence of a physical model (Kurt & 

Oktay, 2010) by quantifying the underlying complex relationships between air pollutants and 

potential predictors based on big data sets under various atmospheric conditions (Cobourn, 2010; 

Hrust, Klaić, Križan, Antonić, & Hercog, 2009). They also provide a promising approach 

towards dealing with complex nonlinear relationships between various interacting predictors 

(Zhan et al., 2017). It removes the classical statistical process, which consists of hypothesis 

distribution, a mathematical model fitting, hypothesis testing and determination of the P-value. 

Previous studies have indicated that an air quality prediction model is worthy of studying with 



doi:10.6342/NTU202200596

 

5 

the big data and developing machine learning techniques (Huang, Chen, Hwang, Tzeng, & 

Huang, 2018; Mahajan, Chen, & Tsai, 2018).  

The common machine learning and deep learning models for time series problems include 

support vector regression (SVR), random forests (RF) (T. Liu et al., 2018), gradient boosting 

decision tree, multi-layer perceptron (MLP) or called artificial neural networks (ANNs), long 

short-term memory neural network (LSTM), and so on (Witten, Frank, & Hall, 2011). 

Tree-based machine learning methods (e.g., RF) feature tackling linear and nonlinear 

problems with extra feature importance as a reference of feature values. In another study, RF 

algorithms have several advantages and have been successfully applied in different countries (X. 

Hu et al., 2017; Stafoggia et al., 2019; Wei et al., 2019). In particular, another popular machine 

learning algorithm, the gradient boosting decision tree (GBDT) (Jerome, 2001), namely by 

iterating multiple trees to make final decisions, is preferred for big data mining due to its 

interpretability and efficiency; compared to logistic regression, which can only be used for linear 

regression, all linear or nonlinear problems can be applied to GBDT. It exhibits a greater ability 

of robustness and generalization to handle complex correlated variables (P. Li, 2012). 

In 2016, Chen et al., from the University of Washington, promoted a robust algorithm, 

named eXtreme Gradient Boosting (XGBoost), based on the GBDT (T. Chen & Guestrin, 2016). 

Pan (Pan, 2018) has applied the XGBoost algorithm to predict hourly PM2.5 concentrations in 

China. He compared the results with prediction from various models including the random 

forest, support vector machine, linear regression, and decision tree regression. Among these, 

XGBoost algorithm demonstrated the best performance in air quality forecasting. 

In this paper, the PM2.5 forecasting model is proposed using XGBoost, as well as the Long 

Short-Term Model (LSTM). Air pollution data was collected in 2018-2019 from the Taiwan 
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Environmental Protection Administration (EPA) and Central Weather Bureau (CWB) for the 

Taipei area, and was combined into 23 features. We used the data in 2019 as the forecasting 

testing data.  

The contribution of this paper is summarized as below: 

1) We proposed an efficient small-region prediction model and set up a prediction 

application to forecast the PM2.5 after three hours (3-h PM2.5). 

2) We implemented two well-known PM2.5 prediction models, XGBoost and LSTM, for 

the 3-h PM2.5 prediction. 

3) A comparative analysis was performed for PM2.5 prediction in between stations in the 

Taipei Area. 

4) We compared our comparative analysis results with other studies in the similar study 

area. 

5) We discussed several possible methods to enhance the prediction. 

In the following of the paper, Section 2 presents the methods and materials used in the 

analysis, Section 3 and Section 4 present discussion and results respectively, and conclusions are 

then drawn in Section 5. 
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Materials and Method 

2.1 Data Collection 

2.1.1 Database 

The EPA and CWB databases constitute the main sources for air quality forecasting. These 

systems collect air quality data in Taiwan every hour. 

In our study, we adopted 227,760 samples collected from the EPA database from 2018 to 

2019. Those data were collected from 13 general air monitoring stations in Taipei area, that is, 

Taipei City and New Taipei City, including (1) Xizhi, (2) Wanli, (3) Xindian, (4) Tucheng, (5) 

Banqiao, (6) Xinzhuang, (7) Cailiao, (8) Linkou, (9) Shilin, (10) Zhongshan, (11) Wanhua, (12) 

Guting, (13) Songshan districts. Figure 1 shows the distribution of these 13 stations. These 13 

stations in Taipei area were considered because they are situated in the most populated area and 

the financial center in Taiwan. 

Additionally, CWB has built an automatic weather station that records weather data 

including pressure every hour. We extracted the information of station pressure from CWB and 

combined it with the 16 dimensions of EPA data, as presented in Table 1. According to Chuang 

et al. (2008), high-pressure peripheral circulation, pacific high-pressure systems stretching 

westerly and weak high-pressure systems are related to terrain blocking and aerosol 

accumulation (Chuang et al., 2008). Furthermore, features in the prediction model also include 

time data like the hour of the day, day of the week, weekend or not and year to learn the trend 

and period of the temporal index. In summary, 23 features are used in our models. 

Since May 2014, EPA has annually published linear regression equations for calibration 

referring to the United States Environmental Protection Agency until Sep 2019. In our study, all 
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data before Sep 2019 were calibrated by regression and then published publicly. After Sep 2019, 

it no longer needs to be calibrated since new instruments have passed tests related to regulations.  

2.1.2 Study Area 

In our study, we selected Taipei City and New Taipei City as our study area. Taipei City 

and New Taipei City cover the biggest part of the Taipei area, with an area of 2,324 km2 and a 

population of 6.59 million in 2021, which accounts for almost 30% of Taiwan. It is the center of 

politics, commerce, and culture in Taiwan and people commuting in this area nowadays are 

forced to face the high-level invasion of PM2.5.  

As there is fast-growing concern about air quality issues, Taiwan began to monitor PM2.5 

concentrations in 2005. Due to the large population of the Taipei area, it also has the densest 

monitoring stations (19) in Taiwan (76), which are 25% of the total stations with nearly 6% area 

in Taiwan. The dense monitoring stations tend to provide a more reliable estimation of PM2.5 for 

citizens compared with other counties, which is also the reason we chose the Taipei area in this 

study. 

Figure 1 shows the location of general stations in Taipei area. Among them, Shilin (SL) 

station, Guting (GT) station, Songshan (SS) station, Wanhua (WH) station, and Zhongshan (ZS) 

station are located in Taipei City, while others are in New Taipei City.  

Generally, PM2.5 pollution is often severe in winter due to the geographical characteristics 

of the area, which roughly correspond to areas located within the Taipei Basin. Researchers have 

utilized a weather map to classify the weather patterns for aerosol events in Taipei and found 

aerosol accumulation often comes with enhanced atmospheric stability and weak winds as a 

result of geography (Chuang et al., 2008). 

 



doi:10.6342/NTU202200596

 

9 

2.2 Data preprocessing 

The data sets mainly used in our work are from 13 EPA air quality stations from 2018 to 

2019. CWB data and time features were matched to the stations and study duration. We use 

totally 23-dimensional data from the previous eight hours to process the data to train the model. 

Data preprocessing (Su, Xu, & Tang, 2017) is highly correlated between ozone, PM10, and 

PM2.5. The data preprocessing steps are as shown in the following: 

2.2.1 Missing value and Data imputation 

Table 2 shows the missing percentage of the raw data. The main reason for the missing 

information is measure instrument failure. Additionally, in this study the abnormal values are 

marked as missing. In order to collect more valid data, we dropped those missing values last for 

more than three days. And then we used linear interpolation methods to fill the missing. 

The linear interpolate method involves using straight linear to construct new data points 

within the range of a discrete set of known data points. The formula with one data point (𝑥, 𝑦) 

available between (𝑥1,𝑦1) and (𝑥2,𝑦2) is as following: 

𝑦 =  𝐿(𝑥) = 𝑦1(
𝑥 − 𝑥2

𝑥1 − 𝑥2
) + 𝑦2(

𝑥 − 𝑥1

𝑥2 − 𝑥1
) 

2.2.2 Feature engineering 

Some cyclical variables (e.g., wind direction, hour) would be mapped onto a circle under 

some sine and cosine transforming so that the lowest value for that variable appears right next to 

the largest value. For hour, the formula is as follows:  

ℎ𝑜𝑢𝑟(𝑥 − 𝑎𝑥𝑖𝑠) = 𝑠𝑖𝑛(2 × 𝛱 ×
ℎ𝑜𝑢𝑟

23
) 

ℎ𝑜𝑢𝑟(𝑦 − 𝑎𝑥𝑖𝑠) = 𝑐𝑜𝑠(2 × 𝛱 ×
ℎ𝑜𝑢𝑟

23
) 
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For wind, we also combined speed and direction to make the calculation reasonable. The 

following is the formula: 

𝑊𝑖𝑛𝑑(𝑥 − 𝑎𝑥𝑖𝑠) = 𝑊𝑖𝑛𝑑_𝑆𝑝𝑒𝑒𝑑 × 𝑠𝑖𝑛(𝛱 ×
𝑊𝑖𝑛𝑑_𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

180
) 

𝑊𝑖𝑛𝑑(𝑦 − 𝑎𝑥𝑖𝑠) = 𝑊𝑖𝑛𝑑_𝑆𝑝𝑒𝑒𝑑 × 𝑐𝑜𝑠(𝛱 ×
𝑊𝑖𝑛𝑑_𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

180
) 

2.2.3 Data Normalization 

When the scale of each variable is different, some variables might be dominated by others. 

In the neural network which uses the gradient descent method, the different scale possibly causes 

the network iterating for many times before it converges, or leads to its failure to converge. In 

this work we used log transformation for skewed pollutants data and Min-Max Normalization for 

other features to rescale the values between 0 and 1. The Min-Max formula is: 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

 

2.3 Algorithms 

2.3.1 Linear Regression using stepwise 

Linear regression has been used in many different areas of forecasting and analytic studies 

(Cortina–Januchs, Quintanilla–Dominguez, Vega–Corona, & Andina, 2015). However, due to 

its simple structure, some research suggested that they can only predict the general trend or a 

short term trend (Menon, Bharadwaj, Shetty, Sanu, & Nagendra, 2017). Hence, linear regression 

would then be treated as a baseline in our study. We feed all input variables into a single model. 

Besides, we implemented stepwise based on the p-value to boost its prediction performance. 
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2.3.2 eXtreme Gradient Boosting (XGBoost) 

In 2016, Tianqi Chen proposed a robust algorithm named XGBoost which combines 

software and hardware optimization techniques perfectly, and yield superior results than other 

methods (T. Chen & Guestrin, 2016). XGBoost represents a highly efficient kind of gradient 

boosting algorithm, enabling gradient boosting “on steroids” (also known as one of a reason 

called “Extreme Gradient Boosting”). It offers a parallel boost to the tree and features accurately 

solving many data science issues accurately. In the structure of the model, it provides several 

default hyper-parameters which could be tuned or manually adjusted to enhance the model 

performance. In this study, we conducted grid search methods with three-fold cross validation 

and repetition of 300 iterations to find the best combination of hyper-parameters which best 

perform the prediction. 

2.3.3 Long Short-Term Memory (LSTM) 

The LSTM is an improved version of recurrent neural network (RNN) with the addition of a 

memory cell able to store information for a long time. As an abbreviation of Long Short-Term 

Memory, LSTM is commonly used for sequential data processing, such as voice or text 

processing or other time series problems. LSTM is capable of learning long-term dependencies 

conquering the weakness in RNN. In each LSTM cell, there are three Sigmoid functions and one 

Hyperbolic Tan function. For long term problems, LSTM could handle noise, distributed 

representation, and continuous values (Qiao et al., 2019). 

The choice of the optimizer also plays an important role in training. The Adam optimization 

algorithm, a variant of stochastic gradient descent in deep learning, has recently gained 

popularity in the fields of computer vision and natural language processing. Thus, in our work 

we built the LSTM models using the Adam optimizer. 
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2.4 Experimental Design 

 

The previous studies have primarily focused on long-term forecasting of PM2.5 

concentrations (X. Li, Peng, Hu, Shao, & Chi, 2016; Nguyen, Starzyk, Goh, & Jachyra, 2012). 

Given the severity of health impact, reliable and precise PM2.5 forecasting is in urgent need. 

Hence, some studies used time lag for 1-10 hours (Tsai, Zeng, & Chang, 2018). In our work, we 

used the next three-hour as the limit in order to provide people sufficient time to respond.  

Firstly, we used the historical eight hours data to predict the next three-hour data in the 

same station. Next, we picked the models based on the performance in last stage and considered 

the spatial influence by nearest stations. Finally, we focused on one station and compared the 

performance of various combinations of past time periods. Overall, the system workflow was 

designed to perform model training. The 48 models were conducted in this experiment based on 

three stages: 

Stage One: 39 models, trained using 23 variables in 13 stations for eight hours 

Stage Two: six models, trained using 31 variables in six stations including nearby stations’ 

pollutants data for eight hours. 

Stage Three: three models, trained with different historical data: eight hours in one year, 

eight hours in five years, 24 hours in one year. 

In stage two, we explored the effect of adding nearby stations pollutant features into our 

model. We implemented the Pearson correlation analysis of PM2.5 for three-hour lags when t=k 

and t=k-3 in-between stations to decide which stations should be added to the variables. Based 

on the performance of stage one, we chose six models, the best three and the poorest three 

models, and continued to analyze them.  

In stage three, the different training periods were compared. We chose the station with the 
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best performance in R-squared and compared the models’ improvement with different historical 

data. 

2.5 Forecasting evaluation 

This paper uses the information of 13 air quality from 2018 to 2019. We use eight hours as 

the time period to predict the PM2.5 concentration value in the next three hour. For prediction, the 

data of 2018 are used as the training set, and the data of 2019 as the testing set. 

In order to quantitatively evaluate the prediction accuracy of the proposed model, we used 

root-mean-square error (RMSE), mean-absolute error (MAE), and R-squared (R2). RMSE and 

MAE are commonly used as a measure of the difference between predicted and observed values. 

The smaller the RMSE and MAE value is, the better the performance of the prediction model 

there is. However, for the R-squared, which measures the suitability of the model to the sample 

standard deviation of the predicted value, the larger the value is, the better effect the model 

has. Also, the actual value is between zero and one. The closer to one, the higher the suitability 

of the model. Equations are given below:  

𝑴𝑨𝑬 =
1

𝑵
∑|𝑶𝒊 − 𝑷𝒊|

𝑵

𝒊=1

 

𝑹𝑴𝑺𝑬 = √
1

𝑵
∑(𝑶𝒊 − 𝑷𝒊)

2

𝑵

𝒊=1

= √𝑴𝑺𝑬 

𝑹 − 𝒔𝒒𝒖𝒂𝒓𝒆𝒅 = 𝟏 −
∑ (𝑶𝒊 − 𝑷𝒊)

𝟐𝒏
𝒊=𝟏

∑ (𝑶𝒊 − 𝑶̅)𝟐𝒏
𝒊=𝟏

= 𝟏 −
𝑴𝑺𝑬

𝑽𝒂𝒓(𝑶)
 

where n is the number of data points, 𝑶𝒊 is the observed value (true value), 𝑷𝒊 is the prediction 

value, and 𝑶̅  is the mean value. 
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Results 

In the Materials and Methods section, we have proposed three prediction models and three 

experiment stages. 

3.1 Summary statistics 

The available concentration of PM2.5 based on data collected from 13 air quality stations in 

the Taipei Area from 2018 to 2019 are summarized in Tables 3-5. It can be observed that the 

average hourly PM2.5 concentrations for all stations range between 12.87 μg/m³ to 15.85 μg/m³, 

with Linkou having the lowest value and Banqiao the highest. In terms of standard deviation, 

except for Wanli, all stations had high values over 9. We also found that there were several 

continuous missing values that spanned more than three days. For instance, Guting in both 2018 

and 2019 had periods of three consecutive months of missing hours, so we did not use it in the 

models. Missing counts can also be inferred from Table 3-5.  

3.2 Comparison between various stations 

Experiments were conducted to determine the predictive performance of the proposed 

models, with R2, RMSE, and MAE serving as performance metrics. 

3.2.1 Performance of linear regression using stepwise 

We first evaluated the performance of linear regression. The results are presented in Figure 

2 and Table 6. As a baseline of prediction models, the results of the testing set in 2019 showed 

that the values of R2 ranged from 0.37 to 0.56 and the RMSE ranged from 5.27 μg/m³ to 7.73 

μg/m³. For R-squared, the best three stations were Tucheng, Cailiao, and Xinzhuang station, 

while the poorest ones are Shilin, Wanhua, and Songshan. For RMSE, the lowest values fall at 

Wanli, Cailiao, and Xinzhuang station, while the highest are Shilin, Guting, and Wanhua. For 

MAE, all stations have similar results as RMSE. 
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3.2.2 Performance of XGBoost 

Through the same grid search process of models with three-fold cross validation and 300 

repetitions for each station, the models were finally tuned with the best hyper-parameters among 

the number of estimators, max depth, learning rate, subsample, and minimum child weight. The 

results are presented in Table 7 and Figure 3. 

The results show that the performance of the models in the testing set is the best in R-

squared when predicting Tucheng, Cailiao, and Xinchuang, and the poorest in Shilin, Wanhua, 

and Songshan. In terms of RMSE and MAE, the lowest values occur in Wanli, Cailiao, and 

Xinzhuang, while the highest ones occur in Shilin, Guting, and Wanhua. 

3.2.3 Performance of LSTM 

Table 8 and Figure 4 present the results of LSTM. 

It can be seen from the tables that the prediction models of LSTM have good R-squared 

performance in Tucheng, Cailiao, and Xinzhuang, but poor performance in Shilin, Songshan, and 

Wanhua. For the RMSE, Wanli, Xizhi, and Xinzhuang had the best performance of LSTM in the 

testing set, while Shilin, Guting, and Wanhua had the poorest ones. For MAE, unlike RMSE in 

third place, the Cailiao is better than Xinzhuang and Zhongshan is worse than Wanhua. 

However, their values are quite similar. 

3.3 Comparing various models 

In our work, approximately 8760 records for each station are used as the testing data set 

from 1 Jan 2019 to 31 Dec 2019 using the established prediction models such as Linear 

Regression, XGBoost, and LSTM. Figure 5 shows the results of the three algorithms in 

predicting the effectiveness of the PM2.5 concentrations after three hours. XGBoost errors on an 

average 13 stations in the RMSE and MAE aspects are 6.22 and 4.47 respectively, which are 
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lower than those of the LSTM and Linear Regression. In the R-squared aspect, XGBoost has 

0.53 on average, which is higher than those of LSTM and Linear regression. From the 

perspective of individual stations, XGBoost consistently outperformed LSTM and LSTM 

consistently outperformed Linear Regression for all stations. That is, by comparing three 

evaluation methods, XGBoost is better than LSTM and Linear Regression in predicting the PM2.5 

value after three hours using pollutants and meteorological data for all 13 stations.  

3.4 Effect of Adding Nearby Station Pollutants Features 

3.4.1 Pearson Correlation 

Table 9 illustrates the results of Pearson correlation for three-hour lags when t=k and t=k-3 

in-between stations. Based on the results of Stage 1, we then chose Tucheng, Cailiao, and 

Xinzhuang with the best three performances and Shilin, Songshan, and Wanhua with the poorest 

ones in terms of R-squared scores. Table 3 indicates the Pearson correlation outcomes. It can be 

seen that Banqiao and Xinzhuang are closest to Tucheng station, which also with the highest 

correlations. Note Cailiao is further from Tucheng than Xindian but its PM2.5 concentrations is 

more relevant. There are several similar cases in Songshan, Wanhua, Shilin and Cailiao, wherein 

the most related stations are not always the nearest ones. Only in Xinzhuang station the most 

relevant stations are consistent with the nearest ones.  

3.4.2 Effect of Adding Nearby Station Pollutants Features 

Next, we selected the same six stations and three of the most relevant stations for each 

station for analyzing the effect of adding nearby station pollutants features. The additional 

variables are presented in Table 10 and Figure 6. The results indicate that the effect may 

provide some improvement ranging from 0.02 to 0.07 in the R-squared aspect for the prediction 
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outcome. In the Wanhua station, it provided the most significant enhancement among the three 

stations. Overall, these stations have an average improvement of 0.03.  

3.5 Comparing using various lengths of historical data 

To realize the effect of using the various lengths of historical data, we chose Tucheng 

station and implemented one training with 24 hours based on the same 23 variables using data 

from 2018 and another with 8 hours using data from 2014 to 2018. 

The results showed that prolonging the historical hour to 24 hours did not improve the 

performance; instead, this resulted in slightly worse results for R-squared, MAE, and RMSE than 

the original one. However, without changing the length of historical hours data, we additionally 

collected more observations from 2014 to 2018 which enhanced the performance of all scores 

(R-squared, MAE, and RMSE). The results are presented in Table 11 and Figure 7.  
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Discussion 

This study collected 227,760 hourly data from EPA and CWB from 2018 to 2019, and we 

implemented three models for predicting the PM2.5 concentration three hours later using 

historical eight-hour data. 

Air quality forecast has aroused attention from governments and scientists for improving the 

environmental quality of citizens. However, PM2.5 predictions are still challenging because 

spatial and temporal variations strongly influence the formation and transportation of PM2.5 

(Chu, Huang, & Lin, 2015; Mandal et al., 2020). These limitations of time and space also lead to 

variations of predictive performance when applying different models in different countries 

(Deleawe, Kusznir, Lamb, & Cook, 2010; Zhao, Zhang, Wang, Bai, & Liu, 2010). Even in 

different areas within the same country, there might exist divergence due to multiple factors (Lee 

et al., 2020). To make a more meaningful comparison, we compared our predictions with 

previous studies whose area of interest was also in Taipei. In our study, the XGBoost model we 

proposed using meteorological and pollutants data for the next three hour resulted in a similar or 

lower MAE (3.5-5.6) and RMSE (5-8) value compared to previous studies with the same 

prediction period (Lee et al., 2020; Shih, To, Nguyen, Wu, & You, 2021; Tsai et al., 2018; Y. 

Zhou et al., 2019) in which LSTM, random forest, and Gradient Boosting Decision were used. 

However, the outcome differs from evaluation methods, station characteristics, and training and 

testing periods. Some studies evaluated using R-squared and RMSE (Ho, Chen, & Hwang, 2020; 

Lee et al., 2020; Y. Li et al., 2018; L. Wang et al., 2020b); some used error rate or NRMSE, 

which makes the comparison more difficult.  

In our study, we found the similarity in stations’ performance in different models. Tucheng, 

Cailiao, and Xinzhuang had the best score in R-squared in XGBoost, LSTM, as well as Linear 
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regression. In Figure 7, it can be seen that stations in New Taipei City seem to have better 

performance in R-squared and RMSE than those in Taipei City, which is consistent with the 

prediction in our work that the best three stations are all in New Taipei City. However, the 

underlying mechanism is unclear. We evaluated the relationship among standard, mean, R-

squared, and RMSE and found a significant difference.  

In the comparison of Tucheng and Cailiao, we found that from the perspective of RMSE, 

Cailiao is better than Tucheng but from that of R-squared it is worse than Tucheng, which is 

because with the same mean squared error, the bigger the standard deviation, the higher the R-

squared, according to the formula in the Methods section. However, a higher deviation is not 

absolute to the high R-squared; for instance, Shilin station whose deviations are similar to 

Tucheng but lower R-squared. 

In terms of enhancement for model prediction, we implemented Pearson correlation in 

between stations and found that for most stations the most relevant station might not always be 

the closest ones. This might be because of the monsoon characteristics of Taiwan, which is 

consistent with the findings of previous studies (Beckerman et al., 2013; Hwa-Lung & Chih-

Hsin, 2010). In response, we added the pollutant data of nearby stations and found improvement 

in R-squared among all models ranging from 0.02 to 0.07, which means this information might 

represent an important factor to predictions. Furthermore, when we implemented the comparison 

of different lengths of historical data, we found that the most important features often fell in the 

past eight hours from the feature importance figures. 

To clarify the prediction hour over time, we additionally ran two more models, one using 24 

hours historical data in two years and the other using eight hours in five years respectively. We 

found that longer training time does not improve the prediction and might even be slightly worse 
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than the original one. In the feature importance information (Figure 8-9), the most important 

features are all within eight hours. However, using five years data with the same historical length 

provided a better prediction outcome. This implies that the performance might be enhanced by 

the addition of observations and features related to influence by nearby stations.  

Some studies in Taiwan used land-use parameters like traffic, population, satellite data or 

other potential factors to evaluate the air pollution for daily or monthly prediction, which also 

showed good results (Kibirige, Yang, Liu, & Chen, 2021; D.-R. Liu, Lee, Huang, & Chiu, 2020; 

L. Wang et al., 2020a). We plan to study these issues in the future. 
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Conclusion 

This paper demonstrated the PM2.5 forecasting model using XGBoost, LSTM, and Linear 

Regression. The air pollution data were extracted from Taiwan EPA and CWB at the individual 

general stations from New Taipei City and Taipei City in 2018-2019. We found that the 

XGBoost model has a higher accuracy (R-squared, RMSE, and MAE) than the two other models, 

and its performance is similar or better than previous studies. The study also investigated the 

performance divergence among stations. We found that stations in New Taipei city are more 

predictable than those in Taipei City. However, the mechanism is still unclear. This work also 

proposes a feasible direction for improving predictions by adding observations or geographical 

features. 

One limitation of this study is that as the population, emissions or traffic data is not present 

in our datasets, the influence of these factors cannot be predicted. Future work should focus on 

the methods for enhancing model prediction, particularly by investigating divergence in spatial 

factors.  
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Table 1. Air quality and meteorological data used in this study  
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Table 2. Missing value of 15 pollutants in 2018 and 2019 
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Table 3. PM2.5 value of 13 stations in 2018 and 2019 
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Table 4. PM2.5 value of 13 stations in 2018 
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Table 5. PM2.5 value of 13 stations in 2019 
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Table 6. Main results of R2, MAE, and RMSE at all stations for PM2.5 using Linear regression 
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Table 7. Main results of R2, MAE, and RMSE at all stations for PM2.5 using XGBoost 
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Table 8. Main results of R2, MAE, and RMSE at all stations for PM2.5 using LSTM 
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Table 9. Pearson correlation of PM2.5 concentrations with 3 hour-lag among 13 stations 
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Table 10. Pearson correlation of PM2.5 concentrations with 3 hour-lag among 13 stations 
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Table 11. Prediction outcomes while training with different length of historical data 
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Figure 1. The distribution of air quality monitoring stations in Taipei Areas established by the 

Taiwan Environmental Protection Administration (EPA) 
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Figure 2. Linear Regression prediction outcomes in 2019 
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Figure 3. XGBoost prediction outcomes in 2019 
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Figure 4. LSTM prediction outcomes in 2019 
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Figure 5. The comparison of linear regression, XGBoost, and LSTM in prediction performance 

among all stations when the meteorological and pollutants data are only input. 
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Figure 6. The comparison of XGBoost prediction performance among six stations when 

adding pollutants data from nearby stations. 
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Figure 7. The comparison of XGBoost prediction performance in RMSE and R2 at 

Tucheng station. 
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Figure 8. The feature importance of the XGBoost model in Tucheng using 24 hours in 2018 

for training. 
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Figure 9. The feature importance of the XGBoost model in Tucheng using eight hours in 

2014-2018 for training. 

 

 




