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Abstract
Backgrounds: Increasing air pollution has become a grave concern, with researchers finding
adverse health effects caused by air pollutants. Among all air pollutants, fine particulate matter
(PM25) whose aerodynamic diameter is less than 2.5um is of particular concern. Especially for
sensitive people, short-term as well as long-term exposure to PM.s might cause serious hazards.
Although the Taiwan Environment Protection Administration has built an air quality monitoring
network to monitor the PM2 s concentrations and the government has revised the standards

related to pollutants, an accurate and prompt early warning system is urgently needed.

Methods: In this study, we conducted a comprehensive evaluation of several models to predict
PM25 concentrations in the Taipei area. We collected the data of Taipei City and New Taipei
City from 2018 to 2019 from the Environmental Protection Administration open data platform,
and we applied three kinds of models, i.e., linear regression, machine learning, and deep learning
after a series of data preprocessing steps. Depending on the various requirements of models, the
dataset can be classified as time-series-oriented and feature-oriented to fit the model. Model
performance among stations and various models are compared in our research. We also
compared using geographical predictors using nearby stations to see whether they would
improve the predictions. The performance of prediction was evaluated using Root Mean Square

Error, Mean Absolute Error and R-squared.

Results: In this study, 227760 hourly data from 13 stations were collected, and 23 variables were
adopted to train the model. Among all stations, the XGBoost model outperformed the LSTM

model followed by the linear regression model. Tucheng and Cailiao station in all the three

viii doi:10.6342/NTU202200596



models achieved the best R-squared on average (0.6043, 0.6042 respectively). By additionally
considering the influence of nearby stations, most models improved their predictions. Finally, the

best models ’prediction reached an R-squared value of 0.64.

Conclusion: This study found that the prediction using the 2018-year data in a single station in
the Taipei Area can have a performance of 0.64 by using the XGBoost model, which
outperformed the LSTM model followed by the linear regression model. Additional features

from nearby stations for training are also beneficial to the predictions.

Keywords: Air pollution prediction, Forecasting, PM2s, Machine learning, Deep learning
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Introduction

Rapid development of the economy has caused many negative environmental impacts with
air pollution being one of them. Air pollution refers to the aggregation of harmful materials in
the air. An air pollutant is possibly causing adverse health effects on humans. According to an
official report published by World Health Organization in 2008, it mentioned for three-quarters
of the world’s population, the air pollution concentration values of living environments exceed
the WHO’s guideline limits; moreover, indoor and outdoor air causes about 7 million premature
deaths every year (World Health, 2015).

Besides the statistic of deaths, plenty of research over the past ten years has provided robust
evidence showing that poor air quality was responsible for adverse effects on health (Bai et al.,
2018; Ning, Ji, Li, & Sang, 2019; Qiu et al., 2019; Shou et al., 2019; Song et al., 2017).

Particulate matter (PM) below 2.5 um, which is called PMz s, is recognized as a major
source of mortality among air pollutants. With the growth of the public concern, it has been
widely studied around the world and has been found to adversely affect human health, including
such problems as cardiovascular, cerebrovascular, and pulmonary diseases (Puett et al., 2009;
Stafoggia et al., 2014; C. F. Wu et al., 2016). Moreover, according to existing research (Z. Chen,
Wang, Ma, & Zhang, 2013; Dockery et al., 1993; Pope lii et al., 2002; Sun et al., 2005; Xu,
Zhang, Zhang, & Li, 2016; Yu & Stuart, 2017), PM2s are found to be strongly correlated with
effects of cardiovascular disease.

In conclusion, PM2 s can penetrate deeply into the lungs when human inhales, causing
mainly cardiopulmonary disease but not limited, which includes: chronic bronchitis and nonfatal
heart attacks, such as cardiovascular disease (Pope et al., 2004), respiratory symptoms (Dominici

et al., 2006), diabetes (Y. Yang et al., 2018) and other adverse influence. Especially, those
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vulnerable groups such as children, elders (Simoni et al., 2015), and people already with heart or
lung diseases are the most vulnerable. De Prado Bert also observed PM_ s might cause various
neurodegenerative diseases by penetrating the blood-brain barrier and entering the brain (de
Prado Bert, Mercader, Pujol, Sunyer, & Mortamais, 2018).

However, the short-term effects of PM2 s exposures are relatively less discussed but still of
interest to epidemiologists. Some previous epidemiological studies have assessed the effects and
observed inconsistent results, indicating that short-term exposure to PM2 ;5 is associated with
increased (Chang et al., 2015; Hoffmann et al., 2012; Jacobs et al., 2012; H. Lin et al., 2017; Mar
et al., 2005; S. Wu et al., 2013) and decreased changes (Ibald-Mulli et al., 2004; Mirowsky et al.,
2015) in blood pressure. For body function, some studies also showed that short-term PMz s
exposures would reduce lung function. For the asthma inhaler user, Williams found that the
usage would increase per 1-ug/m3 (Williams, Phaneuf, Barrett, & Su, 2019). Some research also
suggests that for every 10-ug/m3 increase there was a reduction in daily peak expiratory flow
(YYamazaki et al., 2011).

As a result of health effects, environmental prediction can be beneficial to the protection of
human health and welfare from pollution. To monitor and control the possible exposure, many
countries have developed their own real-time monitoring network (e.g., http://www.pm25.in/)
using various stations.

In East Asia, the Taiwan Environmental Protection Administration (EPA) set up 19 weather
stations in 1980 in order to observe hourly air pollution data in major cities and to report through
the internet in real time. In 1993, the Taiwanese government developed the Taiwan Air Quality
Monitoring Network. Until 2021, 78 national air monitoring stations have been established all

over Taiwan.
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With these stations, the concentration of PM2s can be checked anytime so that people can
decide whether to go out or try to avoid polluted areas. However, in order to know the future air
pollution status in advance, we must rely on an air pollution prediction system (T. Liu, Lau,
Sandbrink, & Fung, 2018; Y. Wang, Sun, Yang, & Yuan, 2016; Yang, Huang, & Li, 2018).

How to correctly use a single station point to collect history and real-time concentration
data and then consider the spatiotemporal correlation among multiple stations hence are
important in the air quality prediction field to avoid exposure to hazardous pollutants and protect
ourselves from adverse health effects. Moreover, an effective model has a high application value
for early warning since it can provide useful information for either guiding government
policymaking or vulnerable people's short-term hazard assessment guideline.

PM2 5 predictions are challenging because many factors strongly influence PM2s. Related
investigations show that estimation of PM2s from meteorological measures was carried out by
researchers using nonlinear exposure-lag-response models (Z.-Y. Chen et al., 2018).

In recent years, a wealth of research (Cho, Lee, Kwon, & Kim, 2019; Corani, 2005; Delavar
et al., 2019; Elangasinghe, Singhal, Dirks, Salmond, & Samarasinghe, 2014; Franceschi, Cobo,
& Figueredo, 2018; Xuefei Hu et al., 2014; Maharani & Murfi, 2019; Mingjian, Guocheng,
Xuxu, & Zhongyi, 2011; Rybarczyk & Zalakeviciute, 2018; Soh, Chang, & Huang, 2018; J.
Wang & Song, 2018; Yi, Zhang, Wang, Li, & Zheng, 2018; Q. Zhou, Jiang, Wang, & Zhou,
2014) has been conducted to predict air pollution. According to different classification aspects,
categories of air quality forecasting (AQF) systems might differ from much research (Cheng et
al., 2021; Lee et al., 2020; Y. Li, Jiang, She, & Lin, 2018; L. Lin, Chen, Yang, Xu, & Fang,
2020; Ma, Yu, Qu, Xu, & Cao, 2020; Y. Zhou et al., 2019). Generally, physical models and

machine learning models are two types of techniques that are used to forecast air quality.
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In the 1990s, scientists applied various atmospheric dynamics methods to apply in physical
models with complicated equations to calculate great iterations. The accuracy was limited and
the importance of new and old data was not able to be identified (Marriboyina, 2018). For the
time being, chemical transport models (CTMs) have been widely used to provide daily air
quality forecasts (Ghim et al., 2017; Mathur, Yu, Kang, & Schere, 2008; Otte et al., 2005;
Zabkar et al., 2015). However, uncertainties in emission inventories and meteorological forecasts
as the key parameters of these models might lead to incomplete physical and chemical
mechanisms in the CTMs, related to the substantial prediction errors in real values (Cobourn,
2010; Lv, Cobourn, & Bai, 2016).

Apart from physical methods, some traditional PM> s prediction methods have focused
mostly on statistic models (Kiesewetter, Schoepp, Heyes, & Amann, 2015; Lu & Wang, 2005).
However, traditional methods are not capable of processing a large amount of multidimensional
nonlinear data. Also, the complexity between PM2 s concentration and other climate features
makes it more difficult. It is against this backdrop that machine learning models have attracted
considerable attention given the numerous benefits they offer. For example, machine learning
models provide a new way to analyze air quality in the absence of a physical model (Kurt &
Oktay, 2010) by quantifying the underlying complex relationships between air pollutants and
potential predictors based on big data sets under various atmospheric conditions (Cobourn, 2010;
Hrust, Klai¢, Krizan, Antoni¢, & Hercog, 2009). They also provide a promising approach
towards dealing with complex nonlinear relationships between various interacting predictors
(Zhan et al., 2017). It removes the classical statistical process, which consists of hypothesis
distribution, a mathematical model fitting, hypothesis testing and determination of the P-value.

Previous studies have indicated that an air quality prediction model is worthy of studying with
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the big data and developing machine learning techniques (Huang, Chen, Hwang, Tzeng, &
Huang, 2018; Mahajan, Chen, & Tsai, 2018).

The common machine learning and deep learning models for time series problems include
support vector regression (SVR), random forests (RF) (T. Liu et al., 2018), gradient boosting
decision tree, multi-layer perceptron (MLP) or called artificial neural networks (ANNS), long
short-term memory neural network (LSTM), and so on (Witten, Frank, & Hall, 2011).

Tree-based machine learning methods (e.g., RF) feature tackling linear and nonlinear
problems with extra feature importance as a reference of feature values. In another study, RF
algorithms have several advantages and have been successfully applied in different countries (X.
Hu et al., 2017; Stafoggia et al., 2019; Wei et al., 2019). In particular, another popular machine
learning algorithm, the gradient boosting decision tree (GBDT) (Jerome, 2001), namely by
iterating multiple trees to make final decisions, is preferred for big data mining due to its
interpretability and efficiency; compared to logistic regression, which can only be used for linear
regression, all linear or nonlinear problems can be applied to GBDT. It exhibits a greater ability
of robustness and generalization to handle complex correlated variables (P. Li, 2012).

In 2016, Chen et al., from the University of Washington, promoted a robust algorithm,
named eXtreme Gradient Boosting (XGBoost), based on the GBDT (T. Chen & Guestrin, 2016).
Pan (Pan, 2018) has applied the XGBoost algorithm to predict hourly PMzs concentrations in
China. He compared the results with prediction from various models including the random
forest, support vector machine, linear regression, and decision tree regression. Among these,
XGBoost algorithm demonstrated the best performance in air quality forecasting.

In this paper, the PM2 s forecasting model is proposed using XGBoost, as well as the Long

Short-Term Model (LSTM). Air pollution data was collected in 2018-2019 from the Taiwan
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Environmental Protection Administration (EPA) and Central Weather Bureau (CWB) for the
Taipei area, and was combined into 23 features. We used the data in 2019 as the forecasting
testing data.
The contribution of this paper is summarized as below:
1)  We proposed an efficient small-region prediction model and set up a prediction
application to forecast the PM s after three hours (3-h PM> s).
2)  We implemented two well-known PM> s prediction models, XGBoost and LSTM, for
the 3-h PM; 5 prediction.
3) A comparative analysis was performed for PM 5 prediction in between stations in the
Taipei Area.
4)  We compared our comparative analysis results with other studies in the similar study
area.
5) We discussed several possible methods to enhance the prediction.
In the following of the paper, Section 2 presents the methods and materials used in the
analysis, Section 3 and Section 4 present discussion and results respectively, and conclusions are

then drawn in Section 5.
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Materials and Method
2.1 Data Collection
2.1.1 Database

The EPA and CWB databases constitute the main sources for air quality forecasting. These
systems collect air quality data in Taiwan every hour.

In our study, we adopted 227,760 samples collected from the EPA database from 2018 to
2019. Those data were collected from 13 general air monitoring stations in Taipei area, that is,
Taipei City and New Taipei City, including (1) Xizhi, (2) Wanli, (3) Xindian, (4) Tucheng, (5)
Bangiao, (6) Xinzhuang, (7) Cailiao, (8) Linkou, (9) Shilin, (10) Zhongshan, (11) Wanhua, (12)
Guting, (13) Songshan districts. Figure 1 shows the distribution of these 13 stations. These 13
stations in Taipei area were considered because they are situated in the most populated area and
the financial center in Taiwan.

Additionally, CWB has built an automatic weather station that records weather data
including pressure every hour. We extracted the information of station pressure from CWB and
combined it with the 16 dimensions of EPA data, as presented in Table 1. According to Chuang
et al. (2008), high-pressure peripheral circulation, pacific high-pressure systems stretching
westerly and weak high-pressure systems are related to terrain blocking and aerosol
accumulation (Chuang et al., 2008). Furthermore, features in the prediction model also include
time data like the hour of the day, day of the week, weekend or not and year to learn the trend
and period of the temporal index. In summary, 23 features are used in our models.

Since May 2014, EPA has annually published linear regression equations for calibration

referring to the United States Environmental Protection Agency until Sep 2019. In our study, all
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data before Sep 2019 were calibrated by regression and then published publicly. After Sep 2019,
it no longer needs to be calibrated since new instruments have passed tests related to regulations.
2.1.2 Study Area

In our study, we selected Taipei City and New Taipei City as our study area. Taipei City
and New Taipei City cover the biggest part of the Taipei area, with an area of 2,324 km? and a
population of 6.59 million in 2021, which accounts for almost 30% of Taiwan. It is the center of
politics, commerce, and culture in Taiwan and people commuting in this area nowadays are
forced to face the high-level invasion of PM2s.

As there is fast-growing concern about air quality issues, Taiwan began to monitor PMas
concentrations in 2005. Due to the large population of the Taipei area, it also has the densest
monitoring stations (19) in Taiwan (76), which are 25% of the total stations with nearly 6% area
in Taiwan. The dense monitoring stations tend to provide a more reliable estimation of PM2 s for
citizens compared with other counties, which is also the reason we chose the Taipei area in this
study.

Figure 1 shows the location of general stations in Taipei area. Among them, Shilin (SL)
station, Guting (GT) station, Songshan (SS) station, Wanhua (WH) station, and Zhongshan (ZS)
station are located in Taipei City, while others are in New Taipei City.

Generally, PM2 s pollution is often severe in winter due to the geographical characteristics
of the area, which roughly correspond to areas located within the Taipei Basin. Researchers have
utilized a weather map to classify the weather patterns for aerosol events in Taipei and found
aerosol accumulation often comes with enhanced atmospheric stability and weak winds as a

result of geography (Chuang et al., 2008).
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2.2 Data preprocessing

The data sets mainly used in our work are from 13 EPA air quality stations from 2018 to
2019. CWB data and time features were matched to the stations and study duration. We use
totally 23-dimensional data from the previous eight hours to process the data to train the model.
Data preprocessing (Su, Xu, & Tang, 2017) is highly correlated between ozone, PM10, and
PM2s. The data preprocessing steps are as shown in the following:
2.2.1 Missing value and Data imputation

Table 2 shows the missing percentage of the raw data. The main reason for the missing
information is measure instrument failure. Additionally, in this study the abnormal values are
marked as missing. In order to collect more valid data, we dropped those missing values last for
more than three days. And then we used linear interpolation methods to fill the missing.

The linear interpolate method involves using straight linear to construct new data points
within the range of a discrete set of known data points. The formula with one data point (x, y)

available between (X1,Y) and (x3,y,) is as following:

X —X _x]_

y= L) =n— )+yz( _x)
X1 — 1

2.2.2 Feature engineering
Some cyclical variables (e.g., wind direction, hour) would be mapped onto a circle under
some sine and cosine transforming so that the lowest value for that variable appears right next to

the largest value. For hour, the formula is as follows:

' , hour
hour(x — axis) = sin(2 X II X >3 )

_ hour
hour(y — axis) = cos(2 X II X >3 )
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For wind, we also combined speed and direction to make the calculation reasonable. The
following is the formula:

Wind_Direction
180

Wind(x — axis) = Wind_Speed X sin(Il X

Wind_Direction
180

Wind(y — axis) = Wind_Speed X cos(Il X

2.2.3 Data Normalization

When the scale of each variable is different, some variables might be dominated by others.
In the neural network which uses the gradient descent method, the different scale possibly causes
the network iterating for many times before it converges, or leads to its failure to converge. In
this work we used log transformation for skewed pollutants data and Min-Max Normalization for

other features to rescale the values between 0 and 1. The Min-Max formula i1s:

X — Xmin

Xscaled = —
Xmax Xmin

2.3 Algorithms
2.3.1 Linear Regression using stepwise
Linear regression has been used in many different areas of forecasting and analytic studies
(Cortina—Januchs, Quintanilla-Dominguez, Vega—Corona, & Andina, 2015). However, due to
its simple structure, some research suggested that they can only predict the general trend or a
short term trend (Menon, Bharadwaj, Shetty, Sanu, & Nagendra, 2017). Hence, linear regression

would then be treated as a baseline in our study. We feed all input variables into a single model.

Besides, we implemented stepwise based on the p-value to boost its prediction performance.
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2.3.2 eXtreme Gradient Boosting (XGBoost)

In 2016, Tianqi Chen proposed a robust algorithm named XGBoost which combines
software and hardware optimization techniques perfectly, and yield superior results than other
methods (T. Chen & Guestrin, 2016). XGBoost represents a highly efficient kind of gradient
boosting algorithm, enabling gradient boosting “on steroids” (also known as one of a reason
called “Extreme Gradient Boosting”). It offers a parallel boost to the tree and features accurately
solving many data science issues accurately. In the structure of the model, it provides several
default hyper-parameters which could be tuned or manually adjusted to enhance the model
performance. In this study, we conducted grid search methods with three-fold cross validation
and repetition of 300 iterations to find the best combination of hyper-parameters which best
perform the prediction.

2.3.3 Long Short-Term Memory (LSTM)

The LSTM is an improved version of recurrent neural network (RNN) with the addition of a
memory cell able to store information for a long time. As an abbreviation of Long Short-Term
Memory, LSTM is commonly used for sequential data processing, such as voice or text
processing or other time series problems. LSTM is capable of learning long-term dependencies
conquering the weakness in RNN. In each LSTM cell, there are three Sigmoid functions and one
Hyperbolic Tan function. For long term problems, LSTM could handle noise, distributed
representation, and continuous values (Qiao et al., 2019).

The choice of the optimizer also plays an important role in training. The Adam optimization
algorithm, a variant of stochastic gradient descent in deep learning, has recently gained
popularity in the fields of computer vision and natural language processing. Thus, in our work

we built the LSTM models using the Adam optimizer.
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2.4 Experimental Design

The previous studies have primarily focused on long-term forecasting of PM; 5
concentrations (X. Li, Peng, Hu, Shao, & Chi, 2016; Nguyen, Starzyk, Goh, & Jachyra, 2012).
Given the severity of health impact, reliable and precise PM; 5 forecasting is in urgent need.
Hence, some studies used time lag for 1-10 hours (Tsai, Zeng, & Chang, 2018). In our work, we
used the next three-hour as the limit in order to provide people sufficient time to respond.

Firstly, we used the historical eight hours data to predict the next three-hour data in the
same station. Next, we picked the models based on the performance in last stage and considered
the spatial influence by nearest stations. Finally, we focused on one station and compared the
performance of various combinations of past time periods. Overall, the system workflow was
designed to perform model training. The 48 models were conducted in this experiment based on
three stages:

Stage One: 39 models, trained using 23 variables in 13 stations for eight hours

Stage Two: six models, trained using 31 variables in six stations including nearby stations’
pollutants data for eight hours.

Stage Three: three models, trained with different historical data: eight hours in one year,
eight hours in five years, 24 hours in one year.

In stage two, we explored the effect of adding nearby stations pollutant features into our
model. We implemented the Pearson correlation analysis of PM s for three-hour lags when t=k
and t=k-3 in-between stations to decide which stations should be added to the variables. Based
on the performance of stage one, we chose six models, the best three and the poorest three
models, and continued to analyze them.

In stage three, the different training periods were compared. We chose the station with the
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best performance in R-squared and compared the models’ improvement with different historical
data.
2.5 Forecasting evaluation

This paper uses the information of 13 air quality from 2018 to 2019. We use eight hours as
the time period to predict the PM» 5 concentration value in the next three hour. For prediction, the
data of 2018 are used as the training set, and the data of 2019 as the testing set.

In order to quantitatively evaluate the prediction accuracy of the proposed model, we used
root-mean-square error (RMSE), mean-absolute error (MAE), and R-squared (R2). RMSE and
MAE are commonly used as a measure of the difference between predicted and observed values.
The smaller the RMSE and MAE value is, the better the performance of the prediction model
there is. However, for the R-squared, which measures the suitability of the model to the sample
standard deviation of the predicted value, the larger the value is, the better effect the model
has. Also, the actual value is between zero and one. The closer to one, the higher the suitability

of the model. Equations are given below:

N
1
i=1

N

1
RMSE = NZ(OI- — P,)? = VMSE
i=1
121(0; — P)* MSE

R — squared =1 —

—=1—-—
,(0,—0)%  Var(0)
where n is the number of data points, Q; is the observed value (true value), P; is the prediction

value, and O is the mean value.
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Results

In the Materials and Methods section, we have proposed three prediction models and three
experiment stages.
3.1 Summary statistics

The available concentration of PM2 s based on data collected from 13 air quality stations in
the Taipei Area from 2018 to 2019 are summarized in Tables 3-5. It can be observed that the
average hourly PM2s concentrations for all stations range between 12.87 pg/m?® to 15.85 pug/m?,
with Linkou having the lowest value and Bangiao the highest. In terms of standard deviation,
except for Wanli, all stations had high values over 9. We also found that there were several
continuous missing values that spanned more than three days. For instance, Guting in both 2018
and 2019 had periods of three consecutive months of missing hours, so we did not use it in the
models. Missing counts can also be inferred from Table 3-5.
3.2 Comparison between various stations

Experiments were conducted to determine the predictive performance of the proposed
models, with R2, RMSE, and MAE serving as performance metrics.
3.2.1 Performance of linear regression using stepwise

We first evaluated the performance of linear regression. The results are presented in Figure
2 and Table 6. As a baseline of prediction models, the results of the testing set in 2019 showed
that the values of R2 ranged from 0.37 to 0.56 and the RMSE ranged from 5.27 pg/m?3to 7.73
ug/m?. For R-squared, the best three stations were Tucheng, Cailiao, and Xinzhuang station,
while the poorest ones are Shilin, Wanhua, and Songshan. For RMSE, the lowest values fall at
Wanli, Cailiao, and Xinzhuang station, while the highest are Shilin, Guting, and Wanhua. For

MAE, all stations have similar results as RMSE.
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3.2.2 Performance of XGBoost

Through the same grid search process of models with three-fold cross validation and 300
repetitions for each station, the models were finally tuned with the best hyper-parameters among
the number of estimators, max depth, learning rate, subsample, and minimum child weight. The
results are presented in Table 7 and Figure 3.

The results show that the performance of the models in the testing set is the best in R-
squared when predicting Tucheng, Cailiao, and Xinchuang, and the poorest in Shilin, Wanhua,
and Songshan. In terms of RMSE and MAE, the lowest values occur in Wanli, Cailiao, and
Xinzhuang, while the highest ones occur in Shilin, Guting, and Wanhua.

3.2.3 Performance of LSTM

Table 8 and Figure 4 present the results of LSTM.

It can be seen from the tables that the prediction models of LSTM have good R-squared
performance in Tucheng, Cailiao, and Xinzhuang, but poor performance in Shilin, Songshan, and
Wanhua. For the RMSE, Wanli, Xizhi, and Xinzhuang had the best performance of LSTM in the
testing set, while Shilin, Guting, and Wanhua had the poorest ones. For MAE, unlike RMSE in
third place, the Cailiao is better than Xinzhuang and Zhongshan is worse than Wanhua.
However, their values are quite similar.

3.3 Comparing various models

In our work, approximately 8760 records for each station are used as the testing data set
from 1 Jan 2019 to 31 Dec 2019 using the established prediction models such as Linear
Regression, XGBoost, and LSTM. Figure 5 shows the results of the three algorithms in
predicting the effectiveness of the PM2 s concentrations after three hours. XGBoost errors on an

average 13 stations in the RMSE and MAE aspects are 6.22 and 4.47 respectively, which are
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lower than those of the LSTM and Linear Regression. In the R-squared aspect, XGBoost has
0.53 on average, which is higher than those of LSTM and Linear regression. From the
perspective of individual stations, XGBoost consistently outperformed LSTM and LSTM
consistently outperformed Linear Regression for all stations. That is, by comparing three
evaluation methods, XGBoost is better than LSTM and Linear Regression in predicting the PM2s
value after three hours using pollutants and meteorological data for all 13 stations.
3.4 Effect of Adding Nearby Station Pollutants Features
3.4.1 Pearson Correlation

Table 9 illustrates the results of Pearson correlation for three-hour lags when t=k and t=k-3
in-between stations. Based on the results of Stage 1, we then chose Tucheng, Cailiao, and
Xinzhuang with the best three performances and Shilin, Songshan, and Wanhua with the poorest
ones in terms of R-squared scores. Table 3 indicates the Pearson correlation outcomes. It can be
seen that Bangiao and Xinzhuang are closest to Tucheng station, which also with the highest
correlations. Note Cailiao is further from Tucheng than Xindian but its PM2s concentrations is
more relevant. There are several similar cases in Songshan, Wanhua, Shilin and Cailiao, wherein
the most related stations are not always the nearest ones. Only in Xinzhuang station the most
relevant stations are consistent with the nearest ones.
3.4.2 Effect of Adding Nearby Station Pollutants Features

Next, we selected the same six stations and three of the most relevant stations for each
station for analyzing the effect of adding nearby station pollutants features. The additional
variables are presented in Table 10 and Figure 6. The results indicate that the effect may

provide some improvement ranging from 0.02 to 0.07 in the R-squared aspect for the prediction
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outcome. In the Wanhua station, it provided the most significant enhancement among the three
stations. Overall, these stations have an average improvement of 0.03.
3.5 Comparing using various lengths of historical data

To realize the effect of using the various lengths of historical data, we chose Tucheng
station and implemented one training with 24 hours based on the same 23 variables using data
from 2018 and another with 8 hours using data from 2014 to 2018.

The results showed that prolonging the historical hour to 24 hours did not improve the
performance; instead, this resulted in slightly worse results for R-squared, MAE, and RMSE than
the original one. However, without changing the length of historical hours data, we additionally
collected more observations from 2014 to 2018 which enhanced the performance of all scores

(R-squared, MAE, and RMSE). The results are presented in Table 11 and Figure 7.
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Discussion

This study collected 227,760 hourly data from EPA and CWB from 2018 to 2019, and we
implemented three models for predicting the PM2.s concentration three hours later using
historical eight-hour data.

Air quality forecast has aroused attention from governments and scientists for improving the
environmental quality of citizens. However, PM2 s predictions are still challenging because
spatial and temporal variations strongly influence the formation and transportation of PM2 s
(Chu, Huang, & Lin, 2015; Mandal et al., 2020). These limitations of time and space also lead to
variations of predictive performance when applying different models in different countries
(Deleawe, Kusznir, Lamb, & Cook, 2010; Zhao, Zhang, Wang, Bai, & Liu, 2010). Even in
different areas within the same country, there might exist divergence due to multiple factors (Lee
et al., 2020). To make a more meaningful comparison, we compared our predictions with
previous studies whose area of interest was also in Taipei. In our study, the XGBoost model we
proposed using meteorological and pollutants data for the next three hour resulted in a similar or
lower MAE (3.5-5.6) and RMSE (5-8) value compared to previous studies with the same
prediction period (Lee et al., 2020; Shih, To, Nguyen, Wu, & You, 2021; Tsai et al., 2018; Y.
Zhou et al., 2019) in which LSTM, random forest, and Gradient Boosting Decision were used.
However, the outcome differs from evaluation methods, station characteristics, and training and
testing periods. Some studies evaluated using R-squared and RMSE (Ho, Chen, & Hwang, 2020;
Leeetal., 2020; Y. Li etal., 2018; L. Wang et al., 2020b); some used error rate or NRMSE,
which makes the comparison more difficult.

In our study, we found the similarity in stations’ performance in different models. Tucheng,

Cailiao, and Xinzhuang had the best score in R-squared in XGBoost, LSTM, as well as Linear
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regression. In Figure 7, it can be seen that stations in New Taipei City seem to have better
performance in R-squared and RMSE than those in Taipei City, which is consistent with the
prediction in our work that the best three stations are all in New Taipei City. However, the
underlying mechanism is unclear. We evaluated the relationship among standard, mean, R-
squared, and RMSE and found a significant difference.

In the comparison of Tucheng and Cailiao, we found that from the perspective of RMSE,
Cailiao is better than Tucheng but from that of R-squared it is worse than Tucheng, which is
because with the same mean squared error, the bigger the standard deviation, the higher the R-
squared, according to the formula in the Methods section. However, a higher deviation is not
absolute to the high R-squared; for instance, Shilin station whose deviations are similar to
Tucheng but lower R-squared.

In terms of enhancement for model prediction, we implemented Pearson correlation in
between stations and found that for most stations the most relevant station might not always be
the closest ones. This might be because of the monsoon characteristics of Taiwan, which is
consistent with the findings of previous studies (Beckerman et al., 2013; Hwa-Lung & Chih-
Hsin, 2010). In response, we added the pollutant data of nearby stations and found improvement
in R-squared among all models ranging from 0.02 to 0.07, which means this information might
represent an important factor to predictions. Furthermore, when we implemented the comparison
of different lengths of historical data, we found that the most important features often fell in the
past eight hours from the feature importance figures.

To clarify the prediction hour over time, we additionally ran two more models, one using 24
hours historical data in two years and the other using eight hours in five years respectively. We

found that longer training time does not improve the prediction and might even be slightly worse
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than the original one. In the feature importance information (Figure 8-9), the most important
features are all within eight hours. However, using five years data with the same historical length
provided a better prediction outcome. This implies that the performance might be enhanced by
the addition of observations and features related to influence by nearby stations.

Some studies in Taiwan used land-use parameters like traffic, population, satellite data or
other potential factors to evaluate the air pollution for daily or monthly prediction, which also
showed good results (Kibirige, Yang, Liu, & Chen, 2021; D.-R. Liu, Lee, Huang, & Chiu, 2020;

L. Wang et al., 2020a). We plan to study these issues in the future.
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Conclusion

This paper demonstrated the PM2 s forecasting model using XGBoost, LSTM, and Linear
Regression. The air pollution data were extracted from Taiwan EPA and CWB at the individual
general stations from New Taipei City and Taipei City in 2018-2019. We found that the
XGBoost model has a higher accuracy (R-squared, RMSE, and MAE) than the two other models,
and its performance is similar or better than previous studies. The study also investigated the
performance divergence among stations. We found that stations in New Taipei city are more
predictable than those in Taipei City. However, the mechanism is still unclear. This work also
proposes a feasible direction for improving predictions by adding observations or geographical
features.

One limitation of this study is that as the population, emissions or traffic data is not present
in our datasets, the influence of these factors cannot be predicted. Future work should focus on
the methods for enhancing model prediction, particularly by investigating divergence in spatial

factors.
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Table 1. Air quality and meteorological data used in this study

# Item Source Units

Input parameters

1 SO> EPA ppb

2 CO EPA ppm

3 O3 EPA ppb

4 PMio EPA |ng'm3

5 PM2s EPA pg/m®

6 NOx EPA ppb

7 NO EPA ppb

8 NO2 EPA ppb

9 Ambient Temperature (AMB_TEMP) EPA °C

10 RAINFALL EPA mm

1" Relative humidity (RH) EPA %

12 WIND_SPEED (WS, instantaneous value) EPA m/sec

13 WIND_DIREC (WD, instantaneous value) EPA degress

14 WS_HR (hourly average) EPA m/sec

15 WD_HR (hourly average) EPA degress

16 Station Pressure (StnPres) CwB hPa

Output parameters

17 Next three hour PM2.5 concentration EPA pg/m?
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Table 2. Missing value of 15 pollutants in 2018 and 2019

pollutants

station
AMB_TEMP
co

NO

NO2

NOx

03

PM10
PM2.5
RAINFALL
RH

s02
wind_x
wind_y
wind_x_HR
wind_y_HR

2018 2019

missing total percentages (%) missing total percentages (%)
0 113880 0O 0 113880 O
584 113296 0.005 1337 112543 1.188
1198 112682 0.011 2071 111809 1.852
2339 111541 0.021 3926 109954 3.5T1
2339 111541 0.021 3642 110238 3.304
2339 111541 0.021 3637 110243 3.299
1292 112588 0.011 2464 111416 2.212
2113 111767 0.019 3536 110344 3.205
5133 108747 0.047 2475 111405 2.222
866 113014 0.008 1394 112486 1.239
602 113278 0.005 1217 112663 1.080
1858 112022 0.017 3208 110672 2.899
616 113264 0.005 1172 112708 1.040
616 113264 0.005 1172 112708 1.040
625 113255 0.006 1076 112804 0.954
625 113255 0.006 1076 112804 0.954
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Table 3. PM; s value of 13 stations in 2018 and 2019

Abbr. Station Count Type Mean Maximum Standard deviation
(ug/m3) (Hg/m4) (ng/m5)
ZS Zhongshan 17520 Normal 15.15 83.00 9.74
GT Guting 15131 Normal 14.10 95.00 9.40
TC Tucheng 17520  Normal 15.81 100.00 10.59
SL Shilin 17520  Normal 14.06 109.00 10.55
XD Xindian 17520  Normal 13.47 88.00 9.45
XZ Xinzhuang 17520 Normal 14.21 77.00 9.48
SS Songshan 17520 Normal 14.64 89.00 9.33
BQ Bangiao 17520 Normal 15.85 85.00 10.18
LK Linkou 16314  Normal 12.87 72.00 9.88
Xz Xizhi 17373  Normal 13.84 103.00 9.69
CL Cailiao 17520  Normal 14.55 78.00 9.44
WH Wanhua 17520 Normal 14.16 85.00 10.03
WL Wanli 17179  Normal 13.93 90.00 7.65
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Table 4. PM; s value of 13 stations in 2018

Abbr. station count Type Mean Maximum Standard deviation
(ng/m3) (ng/im4) (ng/m5)
zZS Zhongshan 8760 Normal 14.43 83.00 9.17
GT Guting 8555 Normal 14.14 95.00 10.24
TC Tucheng 8760 Normal 14.52 80.00 10.19
SL Shilin 8760 Normal 12.81 71.00 9.71
XD Xindian 8760 Normal 12.01 75.00 8.70
XZ Xinzhuang 8760 Normal 13.70 75.00 9.00
SS Songshan 8760 Normal 14.43 89.00 8.92
BQ Bangiao 8760 Normal 14.85 77.00 9.36
LK Linkou 8760 Normal 11.30 72.00 8.94
XZ Xizhi 8613 Normal 13.63 82.00 8.52
CL Cailiao 8760 Normal 13.55 78.00 9.14
WH Wanhua 8760 Normal 13.21 85.00 9.26
WL Wanli 8419 Normal 12.94 90.00 7.44
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Table 5. PM; s value of 13 stations in 2019

Abbr. station count Type Mean Maximum  Standard deviation
(ng/m3) (ng/m4) (ng/m5)
ZS Zhongshan 8760 Normal 15.88 73.00 10.23
GT Guting 6576 Normal 14.04 63.00 8.18
TC Tucheng 8760 Normal 17.09 100.00 10.83
SL Shilin 8760 Normal 15.31 109.00 11.20
XD Xindian 8760 Normal 14.93 88.00 9.94
Xz Xinzhuang 8760 Normal 14.72 77.00 9.91
SS Songshan 8760 Normal 14.85 84.00 9.72
BQ Bangiao 8760 Normal 16.85 85.00 10.86
LK Linkou 7554 Normal 14.68 69.00 10.58
XZ Xizhi 8760 Normal 14.04 103.00 10.72
CL Cailiao 8760 Normal 15.55 77.00 9.63
WH Wanhua 8760 Normal 15.11 76.00 10.67
WL Wanli 8760 Normal 14.89 58.00 7.73
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Table 6. Main results of R2, MAE, and RMSE at all stations for PM> 5 using Linear regression

2018 2019

variables train_r2 train_mae train_rmse test_r2 test_mae test rmse

Tucheng 25 0.62 4.84 6.68 056 486 678
Cailiao 28 0.62 4.27 5.96 0.53 4.55 6.23
Xinzhuang 30 0.63 4.38 6.07 0.51 4.56 6.31
Wanli 23 0.58 3.67 5.03 0.50 3.79 5.27
Bangiao 23 0.62 4.84 6.70 0.49 4.79 6.66
Linkou 27 0.61 4.66 6.62 0.47 4.78 6.52
Guting 24 0.47 4.49 5.95 0.46 5.06 7.51
Xizhi 28 0.68 4.34 6.03 0.46 4.61 6.26
Xindian 29 0.57 4.80 6.53 0.45 4.69 6.43
Zhongshan 31 0.49 5.52 7.33 0.43 5.14 6.94
Songshan 35 0.53 5.12 6.70 0.42 4.99 6.82
Wanhua 27 0.49 5.73 7.64 0.41 5.25 7.09
Shilin 26 0.44 6.34 8.40 0.37 5.89 7.73
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Table 7. Main results of R2, MAE, and RMSE at all stations for PM2 s using XGBoost

Tucheng
Cailiao
Xinzhuang
Bangiao
Linkou
Wanli
Xizhi
Zhongshan
Xindian
Guting
Songshan
Wanhua

Shilin

2018 2019
train_r2 train_mae train_rmse test_r2 test_mae test_rmse
0.74 4.09 5.55 0.62 4.42 6.26
0.74 3.58 4.91 0.61 4.01 5.73
0.72 3.80 5.23 0.58 4.05 5.80
0.83 3.39 4.50 0.57 4.29 6.12
0.72 3.92 5.60 0.56 4.28 5.94
0.67 3.22 4.44 0.55 3.54 5.01
0.80 3.49 4.85 0.54 4.17 5.74
0.70 4.33 5.64 0.51 4.75 6.43
0.71 4.00 5.38 0.50 4.41 6.15
0.65 3.67 4.86 0.50 4.98 7.25
0.63 4.57 5.94 0.48 4.67 6.42
0.57 5.28 6.98 0.48 4.91 6.68
0.60 5.46 7.11 0.42 5.59 7.37
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Table 8. Main results of R2, MAE, and RMSE at all stations for PM> s using LSTM

Tucheng
Cailiao
Xinzhuang
Wanli
Bangiao
Xizhi
Linkou
Xindian
Zhongshan
Guting
Wanhua
Songshan

Shilin

2018
train_r2 train_mae  tain_rmse
0.71 4.20 5.81
0.72 3.68 5.10
0.70 3.86 5.39
0.64 3.33 4.62
0.71 4.19 5.86
0.78 3.59 5.07
0.69 4.09 5.92
0.63 4.36 6.01
0.57 5.03 6.70
0.55 4.13 5.52
0.55 5.28 7.13
0.59 4.76 6.26
0.50 5.92 7.92

2019
test r2 test mae  test rmse
0.60 4.55 6.48
0.55 4.28 6.11
0.55 4.29 6.04
0.53 3.53 5.09
0.53 4.48 6.41
0.52 4.20 5.87
0.50 4.48 6.30
0.49 4.46 6.23
0.47 4.92 6.65
0.47 5.04 7.48
0.46 4.91 6.79
0.45 4.81 6.63
0.40 5.66 7.55
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Table 9. Pearson correlation of PMa. s concentrations with 3 hour-lag among 13 stations

2010-2019 three hour lag Pearson correlation of PM2.5 concentrations among Taipei area 13 stations

for each station when t=k (Predicting Objective)

Other station
when
t=k-3

Linkou Xinzhuang Tucheng Bangiao Cailiao Wanhua Shilin Zhonshang Guting Xindian Songshuan Xizhi Wanli

067 064 067 066 065 071 069 066 068 074 072 075 |LUl wen

068 072 o072 o072 o072 075 [EL@ 074 071 073 074 070 084 | shin

078 077 076 077 074 074 070 068 072 071 073 067 | Linkou

075 080 079 079 078 076 077 073 073 076 075 063 | caiiao

069 071 074 074 072 075 071 073 072 076 076 el 070 | xini

0.63 0.72 0.71 0.72 0.71 0.76 0.72 M 0.73 0.71 0.77 0.69 -Zhonshang
063 070 071 071 070 076 071 078 073 074 A 072 063 |songshuan
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Table 10. Pearson correlation of PM» 5 concentrations with 3 hour-lag among 13 stations

2019 (original)

2019 (nearby)

r2 mae rmse r2 mae rmse
Tucheng 0.62 4.42 6.26 0.64 4.48 6.16
Cailiao 0.61 4.01 5.73 0.63 3.90 5.46
Xinzhuang 0.58 4.05 5.80 0.61 4.10 5.69
Wanhua 0.48 4.91 6.68 0.55 4.58 6.22
Songshan 0.48 4.67 6.42 0.51 4.58 6.24
Shilin 0.42 5.59 7.37 0.45 542 7.22
avg 0.53 4.61 6.38 0.56 4.51 6.17
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Table 11. Prediction outcomes while training with different length of historical data

2019
test_r2 test_mae test_rmse
1years 24hr  0.621 4.434 6.277
S5years 8 hr 0.634 4.337 6.170
1 years 8hr 0.622 4.425 6.265
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Figure 1. The distribution of air quality monitoring stations in Taipei Areas established by the

Taiwan Environmental Protection Administration (EPA)
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Figure 2. Linear Regression prediction outcomes in 2019
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Figure 3. XGBoost prediction outcomes in 2019
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Figure 4. LSTM prediction outcomes in 2019
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Comparison of three models
R-squared in 2019 prediction
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Figure 5. The comparison of linear regression, XGBoost, and LSTM in prediction performance

among all stations when the meteorological and pollutants data are only input.
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XGBoost adding nearby station vs original
r2 score in 2019
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Figure 6. The comparison of XGBoost prediction performance among six stations when

adding pollutants data from nearby stations.
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Figure 7. The comparison of XGBoost prediction performance in RMSE and R2 at

Tucheng station.
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Figure 8. The feature importance of the XGBoost model in Tucheng using 24 hours in 2018

for training.
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Figure 9. The feature importance of the XGBoost model in Tucheng using eight hours in

2014-2018 for training.
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