
國立臺灣大學電機資訊學院資訊工程學研究所

碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

資料超過記憶體容量之大規模線性分類

Large Linear Classification When Data Cannot Fit
In Memory

余相甫

Hsiang-Fu Yu

指導教授：林智仁 博士

Advisor: Chih-Jen Lin, Ph.D.

中華民國 99年 6月

June, 2010

i

中文摘要

最近線性分類研究的進展充分展現出機器學習在某些應用上（如文件分類）非
常有效率。然而大部分現存方法都假設資料可以存於電腦記憶體中。在這樣的前提
下，多數方法都會對資料進行隨機存取。這使得這些方法無法輕易處理那些大小超
過記憶體容量的資料。在這篇論文中，我們特別針對這種大規模的資料提出了一個
區塊最佳化演算法架構。在這個架構中，每一次更新都只有部分的資料區塊會被載
入記憶體。根據這個架構，我們針對線性支持向量機分別設計了兩種實作的方法。
由於資料大小超過記憶體容量，許多設計考量也和傳統的設計很不一樣。實驗中，
我們使用了大小超過記憶體容量二十倍的資料。結果顯示出我們所提的方法在處理
此類問題上非常有效率。

關鍵詞: 區塊最佳化, 大規模學習, 支持向量機.

ii

ABSTRACT

Recent advances in linear classification have shown that for applications such as

document classification, the training can be extremely efficient. However, most of the

existing training methods are designed by assuming that data can be stored in the

computer memory. These methods cannot be easily applied to data larger than the

memory capacity due to the random access to the disk. We propose and analyze a

block minimization framework for data larger than the memory size. At each step

a block of data is loaded from the disk and handled by certain learning methods.

We investigate two implementations of the proposed framework for primal and dual

SVMs, respectively. As data cannot fit in memory, many design considerations are

very different from those for traditional algorithms. Experiments using data sets 20

times larger than the memory demonstrate the effectiveness of the proposed method.

Part of this thesis has appears in Yu et al. (2010).

KEYWORDS: Block minimization, large scale learning, support vector machines.

iii

TABLE OF CONTENTS

口口口試試試委委委員員員會會會審審審定定定書書書 . i

中中中文文文摘摘摘要要要 . ii

ABSTRACT . iii

LIST OF FIGURES . vi

LIST OF TABLES . vii

CHAPTER

I. Introduction . 1

II. Block Minimization for Linear SVMs 5

III. Solving Dual SVM by LIBLINEAR for Each Block 9

3.1 Loosely Solving the Sub-problem 12
3.2 Accurately Solving the Sub-problem 12

IV. Solving Primal SVM by Pegasos for Each Block 14

V. Techniques to Reduce the Training Time 16

5.1 Data Compression . 16
5.2 Random Permutation of Sub-problems 17
5.3 Split of Data . 17

VI. Other Functionality . 19

6.1 Cross Validation . 19
6.2 Multi-class Classification . 20
6.3 Incremental/ Decremental Setting 20

iv

VII. Experiments . 22

7.1 Data and Experimental Environment 22
7.2 A Related Method . 23
7.3 Training Time and Testing Accuracy 23
7.4 Initial Block Split and Random Permutation of Sub-problems . 27
7.5 Block Size . 27
7.6 Data Compression . 27

VIII. Discussion and Conclusions . 28

APPENDICES . 29

BIBLIOGRAPHY . 34

v

LIST OF FIGURES

Figure

1.1 Data size versus training time on a machine with 1GB memory. . . . 2
7.1 This table shows the relative function value difference to the minimum

and the accuracy difference to the best testing accuracy. Time (in
seconds) is log scaled. The blue dotted vertical line indicates time
spent by Algorithms 1-based methods for the initial split of data to
blocks. StreamSVM goes through data only once, so we present only
one accuracy value. Note that in Figure 7.1(f), the curve of BLOCK-
L-D is not connected, where the missing point corresponds to the best
accuracy. 24

7.2 Effectiveness of two implementation techniques: raw: no random as-
signment in the initial data splitting. perm: a random order of blocks
at each outer iteration. BLOCK-L-D is used. 26

7.3 Convergence speed of using different m (number of blocks). BLOCK-
L-D is used. 26

vi

LIST OF TABLES

Table

7.1 Data statistics: We assume a sparse storage. Each non-zero feature
value needs 12 bytes (4 bytes for the feature index, and 8 bytes for the
value). However, this 12-byte structure consumes 16 bytes on a 64-bit
machine due to data structure alignment. 23

vii

CHAPTER I

Introduction

Linear classification1 is useful in many applications, but training large-scale data

remains an important research issue. For example, a category of of PASCAL Large

Scale Learning Challenge2 at ICML 2008 compares linear SVM implementations. The

competition evaluates the time after data have been loaded into the memory, but many

participants find that loading time costs more. Thus some have concerns about the

evaluation.3 This result indicates a landscape shift in large-scale linear classification

because time spent on reading/writing between memory and disk becomes the bottle-

neck. Existing training algorithms often need to iteratively access data, so without

enough memory, the training time will be huge. To see how serious the situation is,

Figure 1.1 presents the running time by applying an efficient linear classification pack-

age LIBLINEAR (Fan et al., 2008) to train data with different scales on a computer

with 1 GB memory. Clearly, the time grows sharply when the data size is beyond the

memory capacity.

1By linear classification we mean that data remain in the input space and kernel methods are not
used.

2http://largescale.first.fraunhofer.de/workshop
3http://hunch.net/?p=330

1

http://largescale.first.fraunhofer.de/workshop
http://hunch.net/?p=330

2

Figure 1.1: Data size versus training time on a machine with 1GB memory.

We model the training time to contain two parts:

training time = time to run data in memory +

time to access data from disk.

(1.1)

Traditional training algorithms, assuming that the second part is negligible, focus on

the first part by minimizing the number of CPU operations. Linear classification,

especially when applied to document classification, is in a situation that the second

part may be more significant. Recent advances on linear classification (e.g., Bottou,

2007; Hsieh et al., 2008; Joachims, 2006; Shalev-Shwartz et al., 2007) have shown that

training one million instances takes only a few seconds (without counting the loading

time). Therefore, some have said that linear classification is essentially a solved problem

if the memory is enough. However, handling data beyond the memory capacity remains

a challenging research issue.

According to Langford et al. (2009a), existing approaches to handle large data can

3

be roughly categorized to two types. The first approach solves problems in distributed

systems by parallelizing batch training algorithms (e.g., Chang et al., 2007; Zhu et al.,

2009). However, not only writing programs on a distributed system is difficult, but also

the data communication/synchronization may cause significant overheads. The second

approach considers online learning algorithms. Since data may be used only once, this

type of approaches can effectively handle the memory issue. However, even with an

online setting, an implementation over a distributed environment is still complicated;

see the discussion in Section 2.1 of Langford et al. (2009b). Existing implementations

(including those in large Internet companies) may lack important functions such as

evaluations by different criteria, parameter selection, or feature selection.

This thesis aims to construct large linear classifiers for ordinary users. We consider

one assumption and one requirement:

• Assumption: Data cannot be stored in memory, but can be stored in the disk

of one computer. Moreover, sub-sampling data to fit in memory causes lower

accuracy.

• Requirement: The method must be simple so that support for multi-class classi-

fication, parameter selection and other functions can be easily done.

If sub-sampling does not downgrade the accuracy, some (e.g., Yu et al., 2003) have

proposed approaches to select important instances by reading data from disk only

once.

In this work, we discuss a simple and effective block minimization framework for

applications satisfying the above assumption. We focus on batch learning though

extensions to online or incremental/decremental learning are straightforward. While

many existing online learning studies claim to handle data beyond the memory capac-

ity, most of them conduct simulations with enough memory and check the number of

4

passes to access data (e.g., Bottou, 2007; Shalev-Shwartz et al., 2007). In contrast, we

conduct experiments in a real environment without enough memory.

This thesis is organized as follows. In Chapter II, we consider SVM as our linear

classifier and propose a block minimization framework. Two implementations of the

proposed framework for primal and dual SVM problems are respectively in Chapters

III and IV. Techniques to minimize the training time modeled in (1.1) are in Chapter V.

Chapter VI discusses the implementation of cross validation, multi-class classification,

and incremental/decremental settings. We show experiments in Chapter VII and give

conclusions in Chapter VIII.

Part of this thesis has appears in Yu et al. (2010).

CHAPTER II

Block Minimization for Linear SVMs

We consider linear SVM in this work because it is one of the most used linear

classifiers. Given a data set {(xi, yi)}li=1, xi ∈ Rn, yi ∈ {−1,+1}, SVM solves the

following unconstrained optimization problem:1

min
w

1

2
wTw + C

l∑
i=1

max(1− yiwTxi, 0), (2.1)

where C > 0 is a penalty parameter. This formulation considers L1 loss, though our

approach can be easily extended to L2 loss. Problem (2.1) is often referred to as the

primal form of SVM. One may instead solve its dual problem:

min
α

f(α) =
1

2
αTQα− eTα

subject to 0 ≤ αi ≤ C, i = 1, . . . , l, (2.2)

where e = [1, . . . , 1]T and Qij = yiyjx
T
i xj.

As data cannot fit in memory, the training method must avoid random accesses of

data. In Figure 1.1, LIBLINEAR randomly accesses one instance at a time, so frequent

moves of the disk head result in lengthy running time. A viable method must satisfy

the following conditions:

1. Each optimization step reads a continuous chunk of training data.

1The standard SVM comes with a bias term b. Here we do not consider this term for the simplicity.

5

6

Algorithm 1 A block minimization framework for linear SVM

1. Split {1, . . . , l} to B1, . . . , Bm and store data into m files accordingly.

2. Set initial α or w

3. For k = 1, 2, . . . (outer iteration)

For j = 1, . . . ,m (inner iteration)

3.1. Read xr, ∀r ∈ Bj from disk

3.2. Conduct operations on {xr | r ∈ Bj}
3.3. Update α or w

2. The optimization procedure converges toward the optimum even though each

step uses only a subset of training data.

3. The number of optimization steps (iterations) should not be too large. Otherwise,

the same data point may be accessed from the disk too many times.

Obtaining a method having all these properties is not easy. We will propose methods

to achieve them to a certain degree.

In unconstrained optimization, block minimization is a classical method (Chapter

2.7 Bertsekas, 1999). Each step of this method updates a block of variables, but here

we need a connection to data. Let {B1, . . . , Bm} be a partition of all data indices

{1, . . . , l}. According to the memory capacity, we can decide the block size so that

instances associated with Bj can fit in memory. These m blocks, stored as m files, are

loaded when needed. Then at each step, we conduct some operations using one block of

data, and update w or α according to if the primal or the dual problem is considered.

We assume that w or α can be stored in memory. The block minimization framework

is summarized in Algorithm 1. We refer to the step of working on a single block as

an inner iteration, while the m steps of going over all blocks as an outer iteration.

Algorithm 1 can be applied on both the primal form (2.1) and the dual form (2.2). We

7

show two implementations in Chapters III and IV, respectively.

We discuss some implementation considerations for Algorithm 1. For the conve-

nience, assume B1, . . . , Bm have a similar size |B| = l/m. The total cost of Algorithm

1 is

(Tm(|B|) + Td(|B|))×
l

|B|
×#outer-iters, (2.3)

where

• Tm(|B|) is the cost of operations at each inner iteration, and

• Td(|B|) is the cost to read a block of data from disk.

These two terms respectively correspond to the two parts in (1.1) for modeling the

training time.

Many studies have applied block minimization to train SVM or other machine

learning problems, but we might be the first to consider it in the disk level. Indeed

the major approach to train nonlinear SVM (i.e., SVM with nonlinear kernels) has

been block minimization, which is often called decomposition methods in the SVM

community. We discuss the difference between ours and existing studies in two aspects:

• variable selection for each block, and

• block size.

Existing SVM packages assume data in memory, so they can use flexible ways to select

each Bj. They do not restrict B1, . . . , Bm to be a split of {1, . . . , l}. Moreover, to

decide indices of one single Bj, they may access the whole set, an impossible situation

for us. We are more confined here as data associated with each Bj must be pre-stored

in a file before running Algorithm 1.

8

Regarding the block size, we now go back to analyze (2.3). If data are all in memory,

Td(|B|) = 0. For Tm(|B|), people observe that if |B| linearly increases, then

|B| ↗, Tm(|B|)↗, and #outer-iters↘ . (2.4)

Tm(|B|) is generally more than linear to |B|, so Tm(|B|) × l/|B| is increasing along

with |B|. In contrast, the #outer-iters may not decrease as quick. Therefore, nearly

all existing SVM packages use a small |B|. For example, |B| = 2 in LIBSVM (Chang

and Lin, 2001) and 10 in SVMlight (Joachims, 1998). With Td(|B|) > 0, the situation

is now very different. At each outer iteration, the cost is

Tm(|B|)× l

|B|
+ Td(|B|)×

l

|B|
. (2.5)

The second term is for reading l instances. As reading each block of data takes some

initial time, a smaller number of blocks reduces the cost. Hence the second term in

(2.5) is a decreasing function of |B|. While the first term is increasing following the

earlier discussion, as reading data from the disk is slow, the second term is likely to

dominate. Therefore, contrary to existing SVM software, in our case the block size

should not be too small. We will investigate this issue by experiments in Chapter VII.

The remaining issue is to decide operations at each inner iteration. The second

and the third conditions mentioned earlier in this chapter should be considered. We

discuss two implementations in the next two chapters.

CHAPTER III

Solving Dual SVM by LIBLINEAR for Each Block

A nice property of the SVM dual problem (2.2) is that each variable corresponds

to a training instance. Thus we can easily devise an implementation of Algorithm 1

by updating a block of variables at a time. Assume B̄j = {1, . . . , l}\Bj, at each inner

iteration we solve the following sub-problem.

min
dBj

f(α + d) (3.1)

subject to dB̄j
= 0 and 0 ≤ αi + di ≤ C, ∀i ∈ Bj.

That is, we change αBj
, while fix αB̄j

. We then update αBj
using the solution of

(3.1). Then Algorithm 1 reduces to the standard block minimization procedure, so the

convergence to the optimal function value of (2.2) holds (Proposition 2.7.1 Bertsekas,

1999).

We must ensure that at each inner iteration, only one block of data is needed. With

the constraint dB̄j
= 0 in (3.1),

f(α + d) =
1

2
dT
Bj
QBjBj

dBj
+ (QBj ,:α− eBj

)TdBj
+ f(α), (3.2)

where QBj ,: is a sub-matrix of Q including elements Qri, r ∈ Bj, i = 1, . . . , l. Clearly,

QBj ,: in (3.2) involves all training data, a situation violating the requirement in Algo-

9

10

Algorithm 2 An implementation of Algorithm 1 for solving dual SVM

We only show details of steps 3.2 and 3.3:

3.2 Exactly or approximately solve the sub-problem (3.1) to obtain d∗Bj

3.3 αBj
← αBj

+ d∗Bj

Update w by (3.4)

rithm 1. Fortunately, by maintaining

w =
l∑

i=1

αiyixi, (3.3)

we have

Qr,:α− 1 = yrw
Txr − 1,∀r ∈ Bj.

Therefore, if w is available in memory, only instances associated with the block Bj are

needed. To maintain w, if d∗Bj
is an optimal solution of (3.1), we consider (3.3) and

use

w← w +
∑
r∈Bj

d∗ryrxr. (3.4)

This operation again needs only the block Bj. The procedure is summarized in Algo-

rithm 2.

For solving the sub-problem (3.1), as all the information is available in the memory,

any bound-constrained optimization method can be applied. We consider LIBLINEAR

(Fan et al., 2008), which implements a coordinate descent method (i.e., block mini-

mization with a single element in each block). Then Algorithm 2 becomes a two-level

block minimization method. The two-level setting had been used before for SVM or

other applications (e.g., Memisevic, 2006; Pérez-Cruz et al., 2004; Rüping, 2000), but

ours might be the first to associate the inner level with memory and the outer level

with disk.

Algorithm 2 converges if each sub-problem is exactly solved. Practically we often

11

obtain an approximate solution by imposing a stopping criterion. We then address two

issues:

1. The stopping criterion for solving the sub-problem must be satisfied after a finite

number of operations, so we can move on to the next sub-problem.

2. We need to prove the convergence.

Next we show that these two issues can be resolved if using LIBLINEAR for solving

the sub-problem. Let {αk} be the sequence generated by Algorithm 2, where k is the

index of outer iterations. As each outer iteration contains m inner iterations, we can

further consider a sequence

{αk,j}∞,m+1
k=1,j=1 with αk,1 = αk and αk,m+1 = αk+1.

From αk,j to αk,j+1, LIBLINEAR coordinate-wisely updates variables in Bj to approx-

imately solve the sub-problem (3.1) and we let tk,j be the number of updates.

If the coordinate descent updates satisfy certain conditions, we can prove the con-

vergence of {αk,j}:

Theorem 1 If applying a coordinate descent method to solve (3.1) with the following

properties:

1. each αi, i ∈ Bj is updated at least once, and

2. {tk,j} is uniformly bounded,

then {αk,j} generated by Algorithm 2 globally converges to an optimal solution α∗. The

convergence rate is at least linear: there are 0 < µ < 1 and an iteration k0 such that

f(αk+1)− f(α∗) ≤ µ
(
f(αk)− f(α∗)

)
, ∀k ≥ k0.

12

The proof is in appendix. With Theorem 1, the condition 2 mentioned in the beginning

of Chapter II holds. For condition 3 on the convergence speed, block minimization does

have fast convergence rates. However, for problems like document classification, some

(e.g., Hsieh et al., 2008) have shown that we do not need many iterations to get a

reasonable model. Though Hsieh et al. (2008) differs from us by restricting |B| = 1,

we hope to enjoy the same property of not needing many iterations. Experiments in

Chapter VII confirm that for some document data this property holds.

Next we discuss various ways to fulfill the two properties in Theorem 1.

3.1 Loosely Solving the Sub-problem

A simple setting to satisfy Theorem 1’s two properties is to go through all variables

in Bj a fixed number of times. Then not only tkj is uniformly bounded, but also the

finite termination for solving each sub-problem holds. A small number of passes to go

through Bj means that we very loosely solve the sub-problem (3.1). While the cost per

block is cheaper, the number of outer iterations may be large. Through experiments in

Chapter VII, we discuss how the number of passes affects the running time. A special

case is to go through all αi, i ∈ Bj exactly once. Then Algorithm 2 becomes a standard

(one-level) coordinate descent method, though data are loaded by a block-wise setting.

For each pass to go through data in one block, we can sequentially update variables

in Bj. However, using a random permutations of Bj’s elements as the order for update

usually leads to faster convergence in practice.

3.2 Accurately Solving the Sub-problem

Alternatively, we can accurately solve the sub-problem. The cost per inner iteration

is higher, but the number of outer iterations may be reduced. As an upper bound on

the number of iterations does not reveal how accurate the solution is, most optimization

13

software consider the gradient information. We check the setting in LIBLINEAR. Its

gradient-based stopping condition (details shown in appendix) guarantees the finite

termination in solving each sub-problem (3.1). Thus the procedure can move on to the

next sub-problem without problem. Regarding the convergence, to use Theorem 1, we

must show that {tk,j} is uniformly bounded:

Theorem 2 If coordinate descent steps with LIBLINEAR’s stopping condition are used

to solve (3.1), then Algorithm 2 either terminates in a finite number of outer iterations

or

tk,j ≤ 2|Bj| ∀j after k is large enough.

Therefore, if LIBLINEAR is used to solve (3.1), then Theorem 1 implies the convergence.

CHAPTER IV

Solving Primal SVM by Pegasos for Each Block

Instead of solving the dual problem, in this chapter we check if the framework in

Algorithm 1 can be used to solve the primal problem. Since the primal variable w

does not correspond to data instances, we cannot use a standard block minimization

setting to have a sub-problem like (3.1). In contrast, existing stochastic gradient

descent methods possess a nice property that at each step only certain data are used.

In this chapter, we study how Pegasos (Shalev-Shwartz et al., 2007) can by used for

implementing an Algorithm 1.

Pegasos considers a scaled form of the primal SVM problem:

min
w

1

2lC
wTw +

1

l

l∑
i=1

max(1− yiwTxi, 0),

At the tth update, Pegasos chooses a block of data B and updates the primal variable

w by a stochastic gradient descent step:

w̄ = w − ηt∇t, (4.1)

where ηt = lC/t is the learning rate, ∇t is the sub-gradient

∇t =
1

lC
w − 1

|B|
∑
i∈B+

yixi, (4.2)

and B+ ≡ {i ∈ B | yiwTxi < 1}. Then Pegasos obtains w by scaling w̄:

w← min(1,

√
lC

‖w̄‖
)w̄. (4.3)

14

15

Algorithm 3 An implementation of Algorithm 1 for solving primal SVM. Each inner
iteration is by Pegasos

1. Split {1, . . . , l} to B1, . . . , Bm and store data into m files accordingly.

2. t = 0 and initial w = 0.

3. For k = 1, 2, . . .

For j = 1, . . . ,m

3.1. Find a partition of Bj: B
1
j , . . . , B

r̄
j .

3.2. For r = 1, . . . , r̄

• Use Br
j as B to conduct the update (4.1)-(4.3).

• t← t+ 1

Clearly we can directly consider Bj in Algorithm 1 as the set B in the above update.

Alternatively, we can conduct several Pegasos updates on a partition of Bj. Algorithm

3 gives details of the procedure. Here we consider two settings for an inner iteration:

1. Using one Pegasos update on the whole block Bj.

2. Splitting Bj to |Bj| sets, where each one contains an element in Bj and then

conducting |Bj| Pegasos updates.

For the convergence, though Algorithm 3 is a special case of Pegasos, we cannot apply

its convergence proof (Corollary 1 Shalev-Shwartz et al., 2007), which requires that

all data {x1, . . . ,xl} are used at each update. However, empirically we observe that

Algorithm 3 converges without problems.

CHAPTER V

Techniques to Reduce the Training Time

Many techniques have been proposed to make block minimization faster. However,

these techniques may not be suitable here as they are designed by assuming that all

data are in memory. Based on the complexity analysis in (2.5), in this chapter we

propose three techniques to speed up Algorithm 1. One technique effectively shortens

Td(|B|), while the other two aim at reducing the number of iterations.

5.1 Data Compression

The loading time Td(|B|) is a bottleneck of Algorithm 1 due to the slow disk access.

Except some initial cost, Td(|B|) is proportional to the length of data. Hence we can

consider a compression strategy to reduce the loading time of each block. However,

this strategy introduces two additional costs: the compression time in the beginning of

Algorithm 1 and the decompression time when a block is loaded. The former is minor

as we only do it once. For the latter, we must ensure that the loading time saved is

more than the decompression time. The balance between compression speed and ratio

has been well studied in the area of backup and networking tools Morse (2005). We

choose a widely used compression library zlib for our implementation.1 Experiments in

Chapter VII show that the compression strategy effectively reduces the training time.

1http://www.zlib.net

16

http://www.zlib.net

17

Because of using compression techniques, all blocks are stored in a binary format

instead of a plain text form.

5.2 Random Permutation of Sub-problems

In Algorithm 1, we sequentially work on blocks B1, B2, . . ., Bm. We can consider

other ways such as a permutation of blocks to decide the order of sub-problems. In

LIBLINEAR’s coordinate descent implementation, the authors randomly permute all

variables at each iteration and report faster convergence. We adopt a permutation

strategy here as the loading time is similar regardless of the order of sub-problems.

5.3 Split of Data

An important step of Algorithm 1 is to split training data to m files. We need

a careful design as data cannot be loaded into memory. To begin, we find the size

of data and decide the value m based on the memory size. This step does not have

to go through the whole data set as the operating system provides information such

as file sizes. Then we can sequentially read data instances and save them to m files.

However, data in the same class are often stored together in the training set, so we may

get a block of data with the same label. This situation clearly causes slow convergence.

Thus for each instance being read, we randomly decide which file it should be saved

to. Algorithm 4 summarizes our procedure. It goes through data only once.

18

Algorithm 4 Splitting data into blocks

• Decide m and create m empty files.

• For i = 1, . . .

1. Convert xi to a binary format x̄i.

2. Randomly choose a number j ∈ {1, . . . ,m}.
3. Append x̄i into the end of the jth file.

CHAPTER VI

Other Functionality

A learning system only able to solve an optimization problem (2.2) is not practically

useful. Other functions such as cross validation (for parameter selection) or multi-class

classification are very important. We discuss how to implement these functions based

on the design in Chapter II.

6.1 Cross Validation

Assume we conduct v-fold cross validation. Due to the use of m blocks, a straight-

forward implementation is to split m blocks to v groups. Each time one group of

blocks is used for validation, while all remaining groups are for training. However, the

loading time is v times more than training a single model. To save the disk accessing

time, a more complicated implementation is to train v models together. For example,

if v = 3, we split each block Bj to three parts B1
j , B

2
j , and B3

j . Then ∪mj=1(B1
j ∪B2

j) is

the training set to validate ∪m
j=1B

3
j . We maintain three vectors w1,w2, and w3. Each

time when Bj is loaded, we solve three sub-problems to update w vectors. This im-

plementation effectively saves the data loading time, but the memory must be enough

to store v vectors w1, . . . ,wv.

19

20

6.2 Multi-class Classification

Existing multi-class approaches either train several two-class problems (e.g., one-

against-one and one-against-the rest) or solve one single optimization problem (e.g.,

Crammer and Singer, 2000). Take one-against-the rest for a K-class problem as an

example. We train K classifiers, where each one separates a class from the rest. Sim-

ilar to the situation in cross validation, the disk access time is K times more if we

sequentially train K models. Using the same technique, we split each blocks Bj to

B1
j , . . . , B

K
j according to the class information, Then K sub-problems are solved to

update vectors w1, . . . ,wK . Finally we obtain K models simultaneously. The one-

against-one approach is less suitable as it needs K(K − 1)/2 vectors for w, which may

consume too much memory. For one-against-the rest and the approach in Crammer

and Singer (2000), they both need K vectors.

6.3 Incremental/ Decremental Setting

Many practical applications retrain a model after collecting enough new data. Our

approach can be extended to this scenario. We make a reasonable assumption that

each time several blocks are added or removed. Using LIBLINEAR to solve the dual

form as an example, to possibly save the number of iterations, we can reuse the vector

w obtained earlier. Algorithm 2 maintains w =
∑l

i=1 yiαixi, so the new initial w can

be

w← w +
∑

i:xi being added

yiαixi −
∑

i:xi being removed

yiαixi. (6.1)

For data being added, αi is simply set to zero, but for data being removed, their

corresponding αi are not available. To use (6.1), we must store α. That is, before and

after solving each sub-problem, Algorithm 2 reads and saves α from/to disk.

If solving the primal problem by Pegasos for each block, Algorithm 3 can be directly

21

applied for incremental or decremental settings.

CHAPTER VII

Experiments

In this chapter, we conduct experiments to analyze the performance of the proposed

approach. We also investigate several implementation issues discussed in Chapter V.

7.1 Data and Experimental Environment

We consider two document data sets yahoo-korea1 and webspam, and an artificial

data epsilon.2 Table 7.1 summarizes the data statistics.

We randomly split 4/5 data for training and 1/5 for testing. All feature vectors are

instance-wisely scaled to unit-length (i.e., ‖xi‖ = 1,∀i). For epsilon, each feature of the

training set is normalized to have mean zero and variance one, and the testing set is

modified according to the same scaling factors. This feature-wise scaling is conducted

before the instance-wise scaling. The value C in (2.1) is set to one.

We conduct experiments on a 64-bit machine with 1GB RAM. Due to the space

consumed by the operating system, the real memory capacity we can use is 895MB.

1This data set is not publicly available
2webspam and epsilon can be downloaded at http://largescale.first.fraunhofer.de/

instructions/

22

http://largescale.first.fraunhofer.de/instructions/
http://largescale.first.fraunhofer.de/instructions/

23

Table 7.1: Data statistics: We assume a sparse storage. Each non-zero feature value
needs 12 bytes (4 bytes for the feature index, and 8 bytes for the value).
However, this 12-byte structure consumes 16 bytes on a 64-bit machine due
to data structure alignment.

Data set l n #nonzeros Memory (Bytes)
yahoo-korea 460,554 3,052,939 156,436,656 2,502,986,496
webspam 350,000 16,609,143 1,304,697,446 20,875,159,136
epsilon 500,000 2,000 1,000,000,000 16,000,000,000

7.2 A Related Method

For the comparison we include another method StreamSVM Rai et al. (2009), which

performs only a single pass over data. The method initiates with a single data point.

When a new data point is read, it checks whether the point is contained in a ball

enclosing past data. If so, it continues to next data point. If not, it updates the center

and radius of the ball to cover the point. Because this method is very different from

our approach, we omit its details here.

7.3 Training Time and Testing Accuracy

We compare the following methods:

• BLOCK-L-N : Algorithm 2 with LIBLINEAR to solve each sub-problem. LIBLINEAR

goes through the block of data N rounds, where we consider N = 1, 10, and 20.

• BLOCK-L-D: Algorithm 2 with LIBLINEAR to solve each sub-problem. LIBLINEAR’s

default stopping condition is adopted.

• BLOCK-P-B: Algorithm 3 with r̄ = 1. That is, we apply one Pegasos update on

the whole block.

• BLOCK-P-I: Algorithm 3 with r̄ = |Bj|. That is, we apply |Bj| Pegasos updates,

each of which uses an individual data instance.

24

(a) yahoo-korea: Relative difference to opti-
mum.

(b) yahoo-korea: Difference to the best accuracy.

(c) webspam: Relative difference to optimum. (d) webspam: Difference to the best accuracy.

(e) epsilon: Relative difference to optimum. (f) epsilon: Difference to the best accuracy.

Figure 7.1: This table shows the relative function value difference to the minimum and
the accuracy difference to the best testing accuracy. Time (in seconds) is
log scaled. The blue dotted vertical line indicates time spent by Algorithms
1-based methods for the initial split of data to blocks. StreamSVM goes
through data only once, so we present only one accuracy value. Note that
in Figure 7.1(f), the curve of BLOCK-L-D is not connected, where the
missing point corresponds to the best accuracy.

25

• LIBLINEAR: The standard LIBLINEAR without any modification to handle the

situation if data cannot fit in memory.

• StreamSVM

For all methods under the framework of Algorithms 1, the number of blocks is 5 for

yahoo-korea, 40 for webspam and 30 for epsilon. We make sure that no other jobs

are running on the same machine and report wall clock time in all experiments. We

include all data loading time and, for Algorithm 1, the initial time to split and compress

data into blocks. It takes around 228 seconds to split yahoo-korea, 1,594 seconds to

split webspam and 1,237 seconds to split epsilon. For LIBLINEAR, the loading time for

yahoo-korea is 103 seconds, 829 seconds for webspam and 560 seconds for epsilon.

Figure 7.1 presents two results:

1. Training time versus the relative difference to the optimum∣∣∣∣fP (w)− fP (w∗)

fP (w∗)

∣∣∣∣ ,
where fP is the primal objective function in (2.1) and w∗ is the optimal solution.

Since w∗ is not really available, we spend enough training time to get a reference

solution.

2. Training time versus the difference to the best testing accuracy

(acc∗ − acc(w))× 100%,

where acc(w) is the testing accuracy using the model w and acc∗ is the best

testing accuracy among all methods.

Clearly, LIBLINEAR suffers from slow disk swapping due to the random access of

data. For Algorithm 1-based methods, BLOCK-L-∗ methods (using LIBLINEAR) are

26

Figure 7.2: Effectiveness of two imple-
mentation techniques: raw:
no random assignment in
the initial data splitting.
perm: a random order of
blocks at each outer itera-
tion. BLOCK-L-D is used.

Figure 7.3: Convergence speed of us-
ing different m (number of
blocks). BLOCK-L-D is
used.

faster than BLOCK-P-∗ (using Pegasos) methods. The reason seems to be that for

BLOCK-P-∗, the information of each block is underutilized. In particular, BLOCK-

P-B suffers from very slow convergence as for each block it conducts only one very

simple update. However, it may not be always needed to use the block of data in an

exhaustive way. For example, in Figure 7.1(a), BLOCK-L-1 (for each block LIBLINEAR

goes through all data only once) is slightly faster than BLOCK-L-D (for each block

running LIBLINEAR with the default stopping condition). Nevertheless, as reading each

block from the disk is expensive, in general we should make proper efforts to use it.

For StreamSVM, because of passing data only once, its accuracy is lower than others.

Note that the objective values of BLOCK-P-∗ methods may not be decreasing as

Pegasos does not have this property. All BLOCK-∗ methods except BLOCK-P-B needs

around four iterations to achieve reasonable accuracy values. This number of iterations

is small, so we do not need to read the training set many times.

27

7.4 Initial Block Split and Random Permutation of Sub-problems

Chapter V proposes randomly assigning data to blocks in the beginning of Al-

gorithm 1. It also suggests that a random order of B1, . . . , Bm at each iteration is

useful. We are interested in their effectiveness. Figure 7.2 presents the result of run-

ning BLOCK-L-D on webspam. We assume the worst situation that data of the same

class are grouped together in the input file. If data are not randomly split to blocks,

clearly the convergence is very slow. Further, the random permutation of blocks at

each iteration slightly improves the training time.

7.5 Block Size

In Figure 7.3, we present the training speed of BLOCK-L-D by using various block

sizes (equivalently, numbers of blocks). The data webspam is considered. The training

time of using m = 40 blocks is smaller than that of m = 400 or 1000. This result is

consistent with the discussion in Chapter II. When the number of blocks is smaller (i.e.,

larger block size), from (2.4), the cost of operations on each block increases. However,

as we read less files, the total time is shorter. Furthermore, the initial split time is

longer as m increases. Therefore, contrary to traditional SVM software which use small

block sizes, now for each inner iteration we should consider a large block. We do not

check m = 20 because the memory is not enough to load a block of data.

7.6 Data Compression

We check if compressing each block saves time. By running 10 outer iterations of

BLOCK-L-D on the training set of webspam with m = 40, the implementation with

compression takes 3,230 seconds, but without compression needs 4,660 seconds. Thus

the compression technique is very useful.

CHAPTER VIII

Discussion and Conclusions

The discussion in Chapter VI shows that implementing cross validation or multi-

class classification may require extra memory space and some modifications of Algo-

rithm 1. Thus constructing a complete learning tool is certainly more complicated

than implementing Algorithm 1. There are many new and challenging future research

issues.

In summary, we propose and analyze a block minimization method for large linear

classification when data cannot fit in memory. Experiments show that the proposed

method can effectively handle data 20 times larger than the memory size.

Our code is available at

http://www.csie.ntu.edu.tw/~cjlin/liblinear/exp.html

28

http://www.csie.ntu.edu.tw/~cjlin/liblinear/exp.html

APPENDICES

29

30

APPENDIX A. Proofs

A.1 Proof of Theorem 1

If each sub-problem involves a finite number of coordinate descent updates, then

Algorithm 1 can be regarded as a coordinate descent method. We apply Theorem

2.1 of Luo and Tseng (1992) to obtain the convergence results. The theorem requires

that (2.2) satisfies certain conditions and in the coordinate descent method there is an

integer t such that every αi is iterated at least once every t successive updates (called

almost cyclic rule in Luo and Tseng (1992)). Following the same analysis in the proof

of (Hsieh et al., 2008, Theorem 1), (2.2) satisfies the required conditions. Moreover,

the two properties on tj,k imply the almost cyclic rule. Hence both global and linear

convergence results are obtained.

A.2 Proof of Theorem 2

To begin, we discuss the stopping condition of LIBLINEAR. Each run of LIBLINEAR

to solve a sub-problem generates {αk,j,v | v = 1, . . . , tk,j + 1} with

αk,j = αk,j,1 and αk,j+1 = αk,j,tk,j+1.

We further let ij,v denote the index of the variable being updated by αk,j,v+1 = αk,j,v +

d∗eij,v , where d∗ is the optimal solution of

min
d
f(αk,j,v + deij,v) subject to 0 ≤ αk,j,v

ij,v
+ d ≤ C, (A.1)

and eij,v is an indicator vector for the (ij,v)th element. All tk,j updates can be fur-

ther separated to several rounds, where each one goes through all elements in Bj.

31

LIBLINEAR checks the following stopping condition in the end of each round:

max
v∈a round

∇P
ij,v
f(αk,j,v)− min

v∈a round
∇P

ij,v
f(αk,j,v) ≤ ε, (A.2)

where ε is a tolerance and ∇Pf(α) is the projected gradient:

∇P
i f(α) =



∇if(α) if 0 < αi < C,

max(0,∇if(α)) if αi = C,

min(0,∇if(α)) if αi = 0.

(A.3)

The reason that LIBLINEAR considers (A.2) is that from the optimality condition, α∗

is optimal if and only if ∇Pf(α∗) = 0.

Next we prove the theorem by showing that for all j = 1, . . . ,m there exists kj such

that

∀k ≥ kj, tk,j ≤ 2|Bj|. (A.4)

Suppose that (A.4) does not hold. We can find a j and a sub-sequence R ⊂ {1, 2, . . .}

such that

tk,j > 2|Bj|,∀k ∈ R. (A.5)

Since {αk,j | k ∈ R} are in a compact set, we further consider a sub-sequence M ⊂ R

such that {αk,j | k ∈M} converges to a limit point ᾱ.

Let σ ≡ miniQii. Following the explanation in (Hsieh et al., 2008, Theorem 1), we

only need to analyze indices with Qii > 0. Therefore, σ > 0. Lemma 2 of Hsieh et al.

(2008) shows that

f(αk,j,v)− f(αk,j,v+1) ≥ σ

2
‖αk,j,v −αk,j,v+1‖2,

∀v = 1, . . . , 2|Bj|.
(A.6)

The sequence {f(αk) | k = 1, . . .} is decreasing and bounded below as the feasible

32

region is compact. Hence

lim
k→∞

f(αk,j,v)− f(αk,j,v+1) = 0,

∀v = 1, . . . , 2|Bj|.
(A.7)

Using (A.7) and taking the limit on both sides of (A.6), we have

lim
k∈M,k→∞

αk,j,2|Bj |+1 = lim
k∈M,k→∞

αk,j,2|Bj | = · · ·

= lim
k∈M,k→∞

αk,j,1 = ᾱ.

(A.8)

From the continuity of ∇f(α) and (A.8), we have

lim
k∈M,k→∞

∇f(αk,j,v) = ∇f(ᾱ), ∀v = 1, . . . , 2|Bj|.

Hence there are ε and k̄ such that ∀k ∈M with k ≥ k̄

|∇if(αk,j,v)| ≤ ε

4
if ∇if(ᾱ) = 0, (A.9)

∇if(αk,j,v) ≥ 3ε

4
if ∇if(ᾱ) > 0, (A.10)

∇if(αk,j,v) ≤ −3ε

4
if ∇if(ᾱ) < 0, (A.11)

for any i ∈ Bj, v ≤ 2|Bj|.

When we update αk,j,v to αk,j,v+1 by changing the ith element (i.e., i = ij,v) in the

first round, the optimality condition for (A.1) implies that one of the following three

situations occurs:

∇if(αk,j,v+1) = 0, (A.12)

∇if(αk,j,v+1) > 0 and αk,j,v+1
i = 0, (A.13)

∇if(αk,j,v+1) < 0 and αk,j,v+1
i = C. (A.14)

33

From (A.9)-(A.11), we have that

i satisfies



(A.12)

(A.13)

(A.14)

⇒



∇if(ᾱ) = 0

∇if(ᾱ) ≥ 0

∇if(ᾱ) ≤ 0

. (A.15)

In the second round, assume αi is not changed again until the v′th update. From

(A.15) and (A.9)-(A.11), we have

|∇if(αk,j,v′)| ≤ ε

4
, (A.16)

or

∇if(αk,j,v′) ≥ − ε
4

and αk,j,v′

i = 0, (A.17)

or

∇if(αk,j,v′) ≤ ε

4
and αk,j,v′

i = C. (A.18)

Using (A.16)-(A.18), the projected gradient defined in (A.3) satisfies

|∇P
i (αk,j,v′)| ≤ ε

4
.

This result holds for all i ∈ Bj. Therefore,

max
v∈2nd round

∇P
ij,v

(αk,j,v)− min
v∈2nd round

∇P
ij,v

(αk,j,v)

≤ ε
4
− (− ε

4
) =

ε

2
< ε.

Thus (A.2) is valid in the second round. Then tk,j = 2|Bj| violates (A.5). Hence (A.4)

holds and the theorem is obtained.

BIBLIOGRAPHY

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA 02178-
9998, second edition, 1999.

L. Bottou. Stochastic gradient descent examples, 2007. http://leon.bottou.

org/projects/sgd.

C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

E. Chang, K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu, and H. Cui. Parallelizing
support vector machines on distributed computers. In NIPS 21, 2007.

K. Crammer and Y. Singer. On the learnability and design of output codes for
multiclass problems. In COLT, 2000.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR:
A library for large linear classification. JMLR, 9:1871–1874, 2008.

C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A dual
coordinate descent method for large-scale linear SVM. In ICML, 2008.

T. Joachims. Making large-scale SVM learning practical. In Advances in Kernel
Methods - Support Vector Learning. MIT Press, 1998.

T. Joachims. Training linear SVMs in linear time. In ACM KDD, 2006.

J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient.
JMLR, 10:771–801, 2009a.

J. Langford, A. J. Smola, and M. Zinkevich. Slow learners are fast. In NIPS,
2009b.

Z.-Q. Luo and P. Tseng. On the convergence of coordinate descent method for
convex differentiable minimization. J. Optim. Theory Appl., 72(1):7–35, 1992.

R. Memisevic. Dual optimization of conditional probability models. Technical
report, Department of Computer Science, University of Toronto, 2006.

K. G. Morse, Jr. Compression tools compared. Linux Journal, 2005. URL http:

//www.linuxjournal.com/article/8051.

34

http://leon.bottou.org/projects/sgd
http://leon.bottou.org/projects/sgd
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.linuxjournal.com/article/8051
http://www.linuxjournal.com/article/8051

35

F. Pérez-Cruz, A. R. Figueiras-Vidal, and A. Artés-Rodŕıguez. Double chunking
for solving SVMs for very large datasets. In Proceedings of Learning 2004, Spain,
2004.

P. Rai, H. Daumé III, and S. Venkatasubramanian. Streamed learning: One-pass
SVMs. In IJCAI, 2009.

S. Rüping. mySVM - another one of those support vector machines, 2000. Soft-
ware available at http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: primal estimated sub-
gradient solver for SVM. In ICML, 2007.

H. Yu, J. Yang, and J. Han. Classifying large data sets using SVMs with hierar-
chical clusters. In ACM KDD, 2003.

H.-F. Yu, C.-J. Hsieh, K.-W. Chang, and C.-J. Lin. Large linear classification
when data cannot fit in memory. In Proceedings of the 16th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, 2010. URL http:

//www.csie.ntu.edu.tw/~cjlin/papers/kdd_disk_decomposition.pdf.

Z. A. Zhu, W. Chen, G. Wang, C. Zhu, and Z. Chen. P-packSVM: Parallel primal
gradient descent kernel SVM. In ICDM, 2009.

http://www.csie.ntu.edu.tw/~cjlin/papers/kdd_disk_decomposition.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/kdd_disk_decomposition.pdf

	口試委員會審定書
	中文摘要
	ABSTRACT
	LIST OF FIGURES
	LIST OF TABLES
	 I. Introduction
	 II. Block Minimization for Linear SVMs
	 III. Solving Dual SVM by LIBLINEAR for Each Block
	3.1 Loosely Solving the Sub-problem
	3.2 Accurately Solving the Sub-problem

	 IV. Solving Primal SVM by Pegasos for Each Block
	 V. Techniques to Reduce the Training Time
	5.1 Data Compression
	5.2 Random Permutation of Sub-problems
	5.3 Split of Data

	 VI. Other Functionality
	6.1 Cross Validation
	6.2 Multi-class Classification
	6.3 Incremental/ Decremental Setting

	 VII. Experiments
	7.1 Data and Experimental Environment
	7.2 A Related Method
	7.3 Training Time and Testing Accuracy
	7.4 Initial Block Split and Random Permutation of Sub-problems
	7.5 Block Size
	7.6 Data Compression

	 VIII. Discussion and Conclusions
	APPENDICES
	BIBLIOGRAPHY

