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In the first part, we will give the definitions, examples and some theorems of
p-divisible groups. In the second part, we will obtain the Hodge-Tate decomposition
of the Tate module of a p-divisible group over a certain ring.
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A SURVEY OF p-DIVISIBLE GROUPS

CHIANG HSIEH LIANG CHOU

Introduction

In the first part, we will give the definitions, examples and
some theorems of p-divisible groups. In the second part, we
will obtain the Hodge-Tate decomposition of the Tate module
of a p-divisible group over a-gertain ring.

o, - )
Let R be a co ;‘ iing @nd m its maxi-
mal ideal. We adstinfi k= R/m is of
characteristic p 8 ¢ e group scheme
G = Spec(A) is &af iRt r R if it is com-
mutative and A is%f i.e. Ais alocally
free R-module of fintéygy |G| of G is defined

to be the rank of the 0,-‘
If |G| = m, then
(IO:G_>G7 ($'—>mx)

is the trivial map; this is known as the Deligne theorem
(16], p. 4.). For a finite group scheme G, we can define
its Cartier dual ([4], p. 8.) GY = Spec(AY), where AY =
Homp (A, R), and its ring multiplication is given by the
dual of the comultiplication

m':A— AR A
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The dual GV has a natural structure of a group scheme, whose
comultiplication comes from the dual of the multiplication
of the ring A, and the inverse is induced by the inverse of
(G. The construction of the dual group scheme is functorial
in G and we have a natural isomorphism G ~(GY)". An
alternative characterization of GV is given by

GY(S) = Homs—_group(G x S, G,/ S)

for any R-scheme S. Here G,,/S denotes the multiplicative
group over S.

Example 1. (a) The dual of ,upn = Spec(R[T]/(T" — 1)) is the

(b) There is an _r'-*w Bl y category of finite
etale group sche 4¥s, 0\ M gty of finite contin-
uous i (R)- (RY “the etale funda-
mental group off 5

We say that a seq AP 8 G 1-;57-;' G" > 0is a

is faithfully flat. If the ord P& (resp. G, G) is m (resp.
m m”), then m =m'm’ .

Example 2. The following sequences are short exact:
(a) 0 = p, = G =G, — 0.

(b) 0 — Spec(R|T]|/(T?)) =G, g G,— 0. Here, G,
Spec(R[T]) with the operation (t,¢) — t +t denotes the
additive group over R.

Proposition 3. Any finite group scheme G = Spec(A) over the
ring R admits a canonical functorial connected-etale short
exact sequence
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0=-G' =G —=G"—=0

where GY = Spec(AY) is the connected component of G and
G= Spec(A?) corresponds to the mazimal etale subalgebra

of A over R.

For a proof, see [2], chap. 1.5.

Remark 4. The exact sequence has a canonical splitting if R = k
is a perfect field of characteristic p > 0. We recall that a field
is perfect if every finite extension is a separable extension.

Definition 5. Let p be a prime and h a nonnegative integer. A
p — divisible group G _n gEpiepl height hois an inductive
system NCla

Where G/U iS a ﬁ ":'- %g ‘,,‘ -.f: ] I € '. i .e.;_‘ p : and for
each v we have df} exa¥ | SNCE

A morphism between p-divisible groups is a collection of mor-
phisms

(f.: G, — H,)

on each level, compatible with the structure of a p-divisible
groups.

Example 6. (a) G, (p) = (u,») with the natural inclusion is a
p-divisible group of height one.
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(b) Let X be an abelian variety over R, dimX = n. Let
p” : X — X be the multiplication by p” and

X[p'| = ker(p”). Then X(p) = (X[p"]) has a natural
structure of a p-divisible group of height 2n.

Remark 7. Let G be a p-divisible group. We have
(1) p” : G — G is surjective (= faithfully flat) for all v.

(2) G[p"] = ker(p’ : G — G) is a finite group scheme over
R of rank p™. In fact, G[p’] = G.,.

(3) lz%nG[p“] = G.

ctors through

(6) The sequence

0= Gy Guw 8 Gy — 0

1s exact.

Definition 8. An n — dimensional formal Lie group over R
is the formal power series ring A = R[[Xq,..., X,]| with a
suitable comultiplication structure

m": A— A@A =R [D/la ceey Yn: Zln o0y Zn]] )
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which is determined by F(Y,Z) = (f;(Y,Z)), where f; are

the images of X;, and m”* satisfies the following statements:
(1) X = F(X,0) = F(0,X)

(2) F(X,F(Y,Z))=F(F(X,Y),2)

3) F(X,Y)=F(Y, X).

Let 1 : A — A denote the multiplication by p of the formal
Lie group A. We say that A is divisible if A is a finite free
module over (A).

0—GY— G, — G4 —0
one gets an exact sequence

0—=-G" =G —= G4 =0,

where G is an etale p-divisible group. The dimension of the
formal Lie group corresponding to GV is, by definition, the
dimension of G.

Therefore, for a p-divisible group G there are two invariants:
the height A and the dimension n of a p-divisible group.
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Example 10. (a) G,,(p) is a p-divisible groups of height 1 and
dimension 1. It corresponds to the formal Lie group whose
multiplication is given by F(Y, Z) =Y + Z + Y Z.

(b) For an abelian variety X, X(p) is a p-divisible group of
height 2n and dimension n.

We fix our notations. Let R be a complete discrete valuation
ring with perfect residue field £ of characteristic p > 0 and
fraction field K of characteristic 0.

Definition 11. Let G = Spec(A) be a finite group scheme over
R. The trace Tr : A ® A — R extends to a morphism

The discrimina
generated by thii

Proposition 12. r
discriminant of 4

For a proof, see [2], clitipg6.2." p._ 1o#"
!"-'r‘\:-"{: VT -‘

Proposition 13. Suppose G is a p-divisible group over R, then

dim(G) + dim(G") = ht(G),
where ht(G) denotes the height of G.

(Pf):

Let dim(GY) =n", dim(G) = n. The dimension and height
of G do not change if we reduce G mod m. Hence we may
assume that R = k is a field. The maps

p:G— G,
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F : G — GW) (Frobenius),
V : GW) — G (Verschiebung),
p:GP - GW
are surjective, and
VoF=p=FoV ([3], p. 163).

Therefore, there is an exact sequence

0 — ker(F) — ker(p) EN ker(V) — 0.

is injective on G, g el B | #the same as that of
. iewthe G as a formal

ks tat ker(V) is the
5 Gl (G

4Now the assertion

sequence.

2. THE HODGE-TATE DECOMPOSITION OF THE TATE MODULES

We will go through Tate’s approach step by step. First we
fixed our notations.

Notations and assumptions
(R, m): a complete notherian discrete valuation ring.

k: residue field R/m of characteristic p > 0; assume k is
perfect.

K fraction field of R; assume it is of characteristic 0.
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K: the algebraic closure of K.

C': the completion of K.

G: Gal(K/K)

Oc: ring of integers of C with maximal ideal me,,.

Let G be a p-divisible group over R and GY, G* denote its
connected and etale part respectively. Let Al0.et)

lzlnAf,oﬁt) be its ring of functions.
v

Tate’s approach:

We start from ;t.;-'“"; -.
following two .__';'; ;

O(G) =limG,
v B

and

(G) Z(Qp/zpyl

both with action of G.

There is a canonical isomorphism of G-modules
T(G) ~ Hom(Qp/Zp, d(G)),
(I)<G) — T(G> ® (Qp/Zp)-
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Since G ® K is etale, we conclude that the information of
the generic fiber is all contained in the G-module T(G) or
®(G). In order to extract information from the two Galois
modules, we need to use analytic method.

Definition 14. Define G(O¢) := Homeont (A; C') to be the O¢-
points of G.

Remark 15. G(C) = G(OC) = l’l(l?"LG(OC/mZOC>

]

i

of the points .x ; are p power
torsions. ®(G) are all P {iamsrdepsiths ([3], p. 169).

Proposition 17. The torsion part G(Oc¢)ier of G(O¢) equals
O(G).
(Pf):

The p"-torsions of G(O¢/m'O¢) are exactly
G,(Oc/m'Oc). Therefore, the p’- torsions of G(O¢) are
Gy(Oc)= Gy(K).

Taking direct limit on v, we get this proposition.

To study the analytic structure of G(O¢), we observe that
G(O¢) has a structure of an analytic p-adic Lie group. (]3],
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p.167) So, we have a logarithm map from G°(O¢) to the
tangent space

te(Oc) ={ d|d: I"/(I")* = C},

where 1" is the augmentation ideal of A". The log map is
defined by

loga(f) = lim ({10

where 7 € G(O¢), f € A (]3], p. 168).

This map isa Z, homomorphlsm and well-defined on G(O¢)
since the etale part is touaiiREVI Ot °r, restricted to G*(O¢),
" orﬁ*énhﬁj " 2(Oc) and is surjec-

log is a local analy 1
tlve Therefore, b entlﬁed with the

Theorem 18. Let G ;‘
Tate decomposition g - e
Hom(T(G), C) ~ th(c @ t5(C) @c Hom(H, C),

where H = T(Gp,(p)) and tf, is the cotangent space of G at
the origin.

For proving the Hodge-Tate decomposition, we need some
facts.

Theorem 19. Let x : G — K™ be a multiplicative character, and

K denote the fized field of ker(x). Suppose that there is a
finite Galois extension Ky of K contained in Ko such that
K/ Ky is totally ramified and Gal(Ky/Ko) ~ Z,. Then

HY(G;C(x)) = H'(G:C(x)) =
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In particular, if €, is the p-adic cyclotomic character on G,

then for all n # 0,

HY(G:C(n)) = H'(G:C(n)) =0.
where C(n) = C(x") is the twist of C' by x" .
(Pf):
Case 1: Suppose that Ky = K.

(a) Let H = Gal(K [ Kx), 0 = Gal(K/Ky). Since (C(x))9 =
((C(X))H)a, where wtiehde

JH@mgtion of 0 on K, extends
R .. with respect to
O without a twist.
Since z

and

we get H'(G: C(x)) = 0.
(b) We have the infation-restriction exact sequence
0 — H'3; Ku(x)) = H'(G;C) — H'(H; C).
Since
HY(H;C)=0
and

H'(0; Koo(X)) = 0 ([3], p. 174)
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we get H(G; C(x)) = 0.

Case 2: Suppose that K| is an arbitrary finite Galois exten-
sion of K.

Let U be the subgroup of G fixing K. By the Case 1 just
proven,
H'(U: C(x)) = H'(U: C(x)) =0,

Therefore, in the infation-restriction sequence

0— HY(G/H: H'U: C(x)) » H'(G:C(x)) = H'U:C),

(Pf): ¢
(a) Since CY —

and
HO(5;E;) = K ([2], chap. 1.9, p. 130),
we get H(G:C) = K.
(b) We have the infation-restriction sequence
0 — H\8:K.) — HY(G:C) — H\(H. C).
Since
HY(H;C)=0

and
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dimKHl(ﬁ;E;) =1 (2], chap. 1.9, p. 130),
we get dimg HY(G: C) = 1.

We show the Hodge-Tate decomposition from the following
proposition and theorem.

Proposition 21. In the following diagram, oy is a bijection and
aand do are injective.

log

ta(C) 0

Hom(7(G"),C) —=0

Here

T(GY).
alg)(f) = limlig

Proof:
Step 1: The map «y is bijective.

Because char(K) = 0, there is a natural isomorphism of
G-modules

G)(C) ~ Hom(G,(C),G,(C))
= Hom(G,,(C), my~(C))

= Hom(G,(C), (Uog )tors)
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Therefore, Cartier duality provides a perfect pairing of abelian
groups

Gn<C) X G;L/(C> — mpnh(OC> — (U(’)C)tm“s;
so there is an isomorphism of G-modules
G,(C) ~ Hom(Gy(C), (Uog)tors) .. [

Note that T(G") is a finitely generated Z,-module, while
(Uog )tors 1s torsion, so any map T(GY) — (Uo, )tors must
factor through some T(G")/p"T(GY), i.e.

through some G)(C). Thus passmg to the limit in &, we

see that there is a nat m of Gg-modules
(I)<G) ‘;_.f.'::‘"‘:'r‘ O tors) :>
and this 1s the 4
Step 2: The Z,- qd ) are Q,-vector

ker(a ) — ker(da) and’ ) AS oker(doz) are isomor-
phisms of Z,[G]-modules. Thus we only need to show that
do is QQp-linear. By functorlahty, do is Qp-linear.

Step 3 G(R) = G(Oc>g and t(;<K) = t(;<C>g .
Using Proposition 20 , we have
CY =K and (Up,)? = R.

On the other hand the G-action on G(O¢) and tg(C) are
induced by the action on Up, and C respectively. Thus
Step 3 follows.

Step 4. The map « is injective on G(R).
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By step 3 and the left-exactness of the fixed-points functor,
we see that

ker(alagm) = (ker(@))F.
By step 2, we see that (ker(a)) is a (),—vector space. Since
(), is also fixed by G,

ker(a ﬂ G(R) = (ker(a))?

is a Q,—vector space. Therefore is p—divisible.

Claim: The Q,—vector spacadier(a) () G(R) is zero.

Given x € ker ':,f}j-"- ‘A for any positive
integer n. Becasise ', positive integer n
and (p"G(R) “

Case 2: If G is agt

Given x € ker(« T':":ZI_.:_:-; @). we ha 'z € ker(a) N GO(R)

for some 7 ([2], chap %g2,%. 1057 3 @'the commutative di-
agram

0 — ker(algog) — G'(R) — Hom(T((G")V;U))

\J | )
0 = ker(algm) — G(R) — Hom(T(GY);U)).

Since G* — G yields T(GY) — T(G°)Y, Hom(T((G°)":U)) —
Hom(T(GY);U)). By case 1 and the injective property, we
therefore see that a|q(r) (p"z) = 0 induces agog) (p"z) = 0
(i.e. p"x =0),s0 z=0.

Step 5: The map dal,, k) is injective.
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By steps 1 and 4, along with the Snake Lemma, doz\tag() is
injective.

Step 6: The map da is injective.

We can factorize da as

ta(C) ~ te(K) ®Kx C — Homg, (T(GY),C)Y @k C —
Homg, (T'(GY),C).

By step 5, the middle map is an injection. We need the fol-
lowing lemma: (Hodge-Tate Lemma) If W is a finite-dimensional
C-vector space admitting a continuous semi-linear G-action,
then the natural C-lineap a0 C' of G-modules is in-
jective. In particulag “di i mite ([2], chap 7.1, p
107.). So the last gia el

of K-vector spaces, where U denotes 1+ mo,,.

(Pf):

Proposition 21 implies the injectivity of these maps, and also,

via G(R) = G(O¢)%nd tq(K) = to(K)Y that we have

coker(ag) — (coker(ag))?

and
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coker(dag) — (coker(dag))?
are injective. Since coker(a) — coker(da) is bijective, it
follows that the map
coker(ag) — coker(dag)

is injective, so we are reduced to proving da is surjective.
Since

t6(K) “F Homp, (T(GY): C)°

is a K-linear map apf'injéetivefhis #ya question of dimen-

Let W = Homz) (T(GY): C)
They are (! S ht(G) on which
G operates semifiiipal
Put

dimy (tev(K)) = dim(GY) = n
and

d = dimg(W)9, d = dimg(W")9.

By the injectively of dag we already know n < d and n' < d,
and we wish to show that equality holds. Since n + n = h,
it will suffice to show that d + d < h.
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Since
T(G) = Homzp(T(Gv), Z,(1)),

we have

WY =T(G)® Hom(H;C),

so that there is a canonical non-degenerate G-pairing

WxWY =Y,

Y9 = HYGY) #N1
Since W9 and (¥
W9C and

WVY. Their dif#

., 0([2], p 176).
Y&, it follows that
wpaces of TV and
fence d + dV <

By Hodge-Tate Lemma, we have

ta(C) = to(K) @k C =t6(C)Y @x C — W,

and

tav(C) =tov(K) @k C = th(C)g R C — W.

(2) We have a perfect pairing W x WY — Hom(H;C) =Y.
(3) ta(C) and tgv(C') are orthogonal.
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(4) 0 = tee(C) ™ W = Home(ta(C),Y) = t5(C) ®
Hom(H;C) — 0.

(5) The sequence in (4) is of the type

0 C" =W — C(x )" —o.

®C(x

0—-Cx)" = WeC(x)— C"—0.
Here G acts on H as the cyclotomic character x.

(6) By H'(G; C(x)) g, thigscaigmc@aglits and by H°(G; C(x)) =
0 we know the o_f;_tiif | = r

Example 23. If (¢ "i )(7 then the
Hodge-Tate decd weave a decompo-
sition of the firgs %/'( X @ K.

Theorem 24. Let [§4 Wil J ﬁmthem'an domain,
whose function field¥s &
p-divisible groups otepR.

f Gpr K - H®r K

of the generic fiber extends uniquely to a homomorphism

G—H.

For povering this theorem, we need following lemma.

Lemma 25. (1) If f : G — H s a homomorphism such that
f ®pr K s an isomorphism, then f is an isomorphism.

(2) Let H* be a p-divisible subgroup of G @p K, then there
exists a p-divisible subgroup H of G such that H Qp K s
H*.
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Proof of theorem 24:

Since R is integrally closed domain, we have R = [ R,
where p runs through all minimal primes of R. Therefore
we are reduced to the case of discrete valuation ring. By
passing to the completion, we only need to consider the case
of complete discrete valuation ring by faithfully flat descent.
If the residue field has characteristic # p, the category of
finite flat group schemes is equivalent to the category of finite
Galois modules. In this case we are working with etale group
schemes and the lifting is trivial.

Assume the lemma 25 be hold. Given a map

G . By the second
tisible subgroup

We can consider
statement of th@
'Cc(GxH)

is an isomorphism. Therefore, we have an extended map
prooprit G —T — H.

The uniqueness is trivial.

For lemma 25 (2):

Pick the closure H, of each H> in G, .Take

H, = l?%nKer(p“ : H;+v — H;ﬂ,).
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One checks that H, is desired the p-divisible group.
For lemma 25 (1):

The discriminants of the two p-divisible groups are equal.
Thus f must be an isomorphism.

Corollary 26. There is a fully faithful functor G — T(G) from
the category of p-divisible groups over R to the category of
the Tate modules (with Galois action). Precisely, we have

Hom(G,H) = Homg(T(G), T(H)).

([3], p. 181)
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