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English Abstract 
 

In recent years, biologics market increases rapidly, but the development costs are 

also very high. Therefore, after the patent of biological products expires, many 

pharmaceutical companies have invested in the development of biosimilar drug 

products. But biological products are different from traditional small molecule drug 

products. Therefore the methods for assessment of biosimilar drug products are also 

different. Innovators ask for clinical trials to provide the efficacy and safety data to 

approve biosimialr drug products. However if approval of biosimilar products requires 

clinical trials, then development cost of biosimilar products will be the same as that of 

the innovators. As a result, it cannot achieve the goal of cost reduction. Therefore we try 

to apply the method of the parallel line assay to test whether the approval of the 

biosimilar should require clinical trials and to evaluate the similarity between the 

biosimilar products and innovator’s biological products. The results of type I error and 

power from the simulation studies are presented. A numerical example is used to 

illustrate the application of the proposed method. 

 

Keywords:  Biological products, Biosimilar, Parallel line assay, Bioequivalence, 

Extrapolation 
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中文摘要中文摘要中文摘要中文摘要 

 

近年來生物製劑的市場逐漸增加，但所開發的成本太高。所以在生物製劑的

專利期到期之後，許多藥廠紛紛投入生物製劑學名藥的開發。但生物製劑有別於

一般傳統的小分子學名藥，所以評估生物製劑學名藥的方法可能不同。生技原廠

認為生物製劑學名藥須執行臨床試驗才能被核准。但若生物製劑學名藥須執行大

型臨床試驗，則生物製劑學名藥的研發則與發展新的生物製劑相同，而不能達到

降低成本造福病患的目的。所以本論文以平行檢定的方法評估生物製劑學名藥是

否必須進行大型臨床試驗及提出生物製劑學名藥與原廠生物製劑藥品相似的方法，

執行模擬評估所提出方法之第一型錯誤機率和檢定力，並以數值例子來介紹提出

方法之應用。 

 

關鍵字: 生物製劑，生物製劑學名藥，平行檢定，生物相等性，外插 
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Chapter 1 Introduction 

 

1.1 Background and Motivation 

Biological drug products are therapeutic moiety manufactured by a living system 

or organism, such as human, plants, animals or microorganisms, and they are used for 

medical, prevention and cure of human diseases. It can be applied to cancer, diabetes 

mellitus, growth impairment, and many other diseases. Many biologic drug products are 

important life-saving drug products for patients with unmet medical needs. The 

worldwide sales of biological products in 2008 reached US $125 billion dollars which 

accounts about 20% of the pharmaceutical industry. 

In addition, unlike the chemical drug products, biological drug products are 

proteins or peptides with much larger molecular weights. In other words, biological 

drug products are organic compounds made of amino acids, which possess primary, 

secondary, tertiary, and quaternary structures. Biologic products are sensitive to heat, 

light and shock, and it can easily be contaminated (Keith O, 2007). Therefore, the 

manufacture of biological agents has to be noted, such as types of bacteria, the cells to 

create the protein, and the quality of production equipments. Therefore the biological 
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drugs are very expensive and can reach up to US $ 100,000 per patient per year. This 

high cost denies the accessibility of most of patients to the most of life-saving biological 

products. 

Many best-selling biological products in recent years will face patent expiration. 

Table 1.1 shows that several biological products have reached the end of their patent 

protection. Therefore, generic versions of the innovator’s biological products can be 

made available. These generic versions of the innovator’s biological products are called 

biosimalar products by the European Union and follow-on products in the United States. 

In 2008, the US Congressional Budget Office predicted a savings of US $25 billion 

dollars in the next 10 years. It is therefore hoped that due to competition and avoidance 

of unnecessary drug testing and clinical trials, the price of the biosimilar drug products 

can be reduced and become affordable for most needed patients.  

    Biosimilars or follow-on biologics are not like the more common small-molecule 

chemical drugs. Biologics generally exhibit high molecular complexity and may be 

quite sensitive to manufacturing process changes. Table 1.2 provides comparisons of the 

differences between small-molecule chemical generics and biosimilar products 

Biosimilar products and small molecule generics are different. Therefore, 

assessment of biosimilar products may also be different. The innovators of the 

biological products suggest that biosimilar products should not be approved without 
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data from large clinical trials. However if approved of biosimilar products requires 

clinical trials, then development cost of biosimilar products will be the same as that of 

the innovators. As a result, it cannot achieve the goal of cost reduction to benefit the 

patients. 

    Therefore, we try to apply the method of parallel line assay to verify whether the 

clinical trials are required for approval of the biosimilar products and to assess the 

equivalence between the innovator and biosimilar products if validated characteristics of 

the drug products are reliable predictors of clinical responses. 

1.2 Bioequivalence 

For small molecular chemical compounds, the measure of bioavailability include 

the peak concentration (Cmax) and the area under the concentration – time curve (AUC). 

The assessments of traditional chemical generic drugs are based on pharmacokinetics 

measures and the approval of traditional chemical generic drugs is based on the 

following Fundamental Bioequivalence Assumption (Chow and Liu, 2008) 

 

When two drug products are equivalent in the rate and extent to which the active 

drug ingredient or therapeutic moiety is absorbed and becomes available at the 

site of drug action, it is assumed that they will be therapeutically equivalent and 

can be used interchangeably.  

 

Next, we briefly review the regulations for approval of the traditional chemical generic 
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drug products of small molecules.  

Europe 

According to European regulations two medicinal products are bioequivalent if 

they are pharmaceutically equivalent or pharmaceutical alternatives and if their 

bioavailability after administration in the same molar dose is similar to such a degree 

that their effects, with respect to both efficacy and safety, will be essentially the same. 

This can be demonstrated if the 90% confidence intervals of the means ratios between 

the two preparations based on Cmax and AUC lie in the range of (0.80, 1.25) or (-0.2231, 

0.2231) for the log-transformed data. 

United States 

The FDA considers two products are bioequivalent if based on Cmax, AUC(0-t) and 

AUC(0-∞), the 90% CI of the ratio of the means of the test (e.g. generic formulation) to 

the reference (e.g. innovator brand formulation) is within 80.00% to 125.00%. 

Taiwan 

    The Department of Health of Taiwan also has similar regulations for approval of 

generic products with respect to Cmax, AUC(0-t) and AUC(0-∞) based on the logarithm 

scale. If the 90% confidence interval of the mean ratio between generic and innovator of 

products is within (0.8, 1.25), then the generic drug product is claimed to the 

bioequivalent to the innovator’s drug product. 
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Since approval of the traditional chemical generic drugs is not require conducting 

expensive and large clinical trials, the costs of chemical generic drugs are quite 

inexpensive, usually 1/5 to 1/2 of the innovator products. Therefore many chemical 

generic drugs become affordable to many needed patients. On the other hand, the 

biological products and traditional generic drug are fundamentally different. Currently, 

there is no regulation to approve the follow-on products in the United States. The 

European Union requires the efficacy and safety data on clinical trials to approve 

biosimilar products. Therefore it cannot reduce the cost of biosimailar products, and 

cannot achieve the goal of reducing the costs to the needed patients. The main reason is 

that even if characteristics of the biosimilar products are equivalent to those of 

innovator products, it does not guarantee that the efficacy and safety of the biosimilar 

products are similar to those of the innovator biological products. 
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Table1.1: Patent status of leading biopharmaceuticals 

Product Active 

Substance 

Company Patent 

Expiry 

(year) 

Worldwide sales 

    (2005 in $million) 

Cerezyme imiglucerase Genzyme 2001 933 

Humulin human insulin Eli Lily 2001 1005 

Novolin human insulin Novo Nordisk 2001 1618 

Intron-A interferon 

alpha2b 

Schering-Plough 2002 287 

Avonex interferon-beta Biogen Idec 2003 1543 

Humatrope somatropin Eli Lily 2003 414 

Nutropin somatropin Genentech 2003 370 

Procrit erythropoietin J&J 2004 3324 

Epogen erythropoietin Amgen 2004 2455 

Neupogen figrastim Amgen 2006 1216 

   Total 13,165 

Source: Generic Pharmaceutical Association and Company Reports(2005) 
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Table1.2: The differences between small-molecule generics and biosimilar 

products. 

 Small molecule generics Biosimilars 

Product 

characteristics 

• Small molecules 

• Often very stable 

• Mostly without a 

device 

• Large, complex molecules 

• Stability requires special 

handling 

• Device is often a key 

differentiator 

Production • Produced by chemical 

synthesis 

• Produced in living 

organisms 

• Highly sensitive to 

manufacturing changes 

• Often comparatively high 

costs 

Regulation • Abbreviated 

registration 

procedures in Europe 

and US 

• Usually enjoy 

"substitutability" 

status 

• Regulatory pathway now 

defined by EMEA 

• "Comparability" status 

• No pathway yet in US 

under BLA 

Marketing  • No or limited detailing 

to physicians 

• Key role of 

wholesalers and 

payors 

• Market substitution in 

pharmacies 

• High price discounts 

• Detailing to (specialist) 

physicians required 

• Pharmacists may not 

substitute 

• Price discounts smaller; 

price sensitivity is product 

specific 

http://www.sandoz.com/site/en/product_range/more_about_biosimilars/index.shtml 
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Chapter 2 Literature Review 

In this chapter, we briefly review the method of assessment of the bioequivalence 

of traditional chemical generic drugs and the parallel line assay. 

 

2.1 Interval Hypotheses 

The assessment of average bioequivalence is based on the comparison of 

bioavailability profiles between formulations. However, in practice, it is recognized that 

no two formulations will have exactly the same bioavailability profiles. Therefore, if the 

profiles of the two formulations differ by less than a (clinically) meaningful limit, the 

profiles of the two formulations may be considered equivalent. Following this concept, 

Schuirmann (1981) first introduced the use of interval hypotheses for assessing average 

bioequivalence. 

Let Tµ be the average bioavailability of the test (T) formulation andRµ the average 

bioavailability of the reference (R) formulation. The interval hypotheses for average 

bioequivalence on the log-scale can be formulated as 

0   or  

vs.          
T R L T R U

a L T R U

H

H

µ µ θ µ µ θ

θ µ µ θ

− ≤ − ≥


 < − <

：

：
                        (2.1)
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Where Lθ = - Uθ = -0.2231 are some clinically meaningful limits.  

The concept of interval hypotheses Eq. (2.1) is to show average bioequivalence by 

rejecting the null hypothesis of inbioequivalence. 

 

Schuirmann’s Two One-Sided Tests Procedure 

 

The interval hypotheses (2.1) can be decomposed into two sets of one-sided hypotheses 

           

01 T R L a1 T R L

02 T R U a2 T R U

H : vs. H :

and

H : vs. H :

µ µ θ µ µ θ

µ µ θ µ µ θ

− ≤ − >

− ≥ − >
                     (2.2) 

The first set of hypotheses is to verify that the average bioavailability of the test 

formulation is not too low, whereas the second set of hypotheses is to verify that the 

average bioavailability of the test formulation is not too high. A relatively low (or high) 

average bioavailability may refer to the concern of efficacy (or safety) of the test 

formulation. If one concludes that L T Rθ µ µ< −  (i.e., reject H01) and T R Uµ µ θ− <  

(i.e., reject H02), then it has been concluded that 

L T R Uθ µ µ θ< − <  

T Randµ µ , thus, are equivalent. The rejection of H01 and H02, which leads to the 

conclusion of average bioequivalence, is equivalent to rejecting H0 in Equation 2.1. 

Schuirmann (1981, 1987) first introduced the two one-sided tests procedure based on 

Equation 2.2 for assessing average bioequivalence between formulations. The proposed 

two one-sided tests procedure suggests the conclusion of equivalence of T Randµ µ  at 
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the a level of significance if, and only if, H01 and H02 in Equation 2.2 are rejected at a 

predetermined a level of significance. Under the normality assumptions, the two sets of 

one-sided hypotheses can be tested with ordinary one-sided t tests. We conclude that 

T Randµ µ are average equivalent if 

T R L
L R T

d
R T

(Y Y )
T t( ,n n 2)

1 1
ˆ

n n

θ α
σ

− −= > + −
+

          

and 

T R U
U R T

d
R T

(Y Y )
T t( ,n n 2)

1 1
ˆ

n n

θ α
σ

− −= < − + −
+

 

where ,T RY Y  and ˆdσ  are the least squares estimator of the test and reference means 

and square root of error mean square. 

The two one-sided t tests procedure is operationally equivalent to the classic (shortest) 

confidence interval approach; that is, if the classic (1-2α)100% confidence interval for 

T Randµ µ  is within L U( , )θ θ , then both H01 and H02 are also rejected at the α level by 

the two one-sided t tests procedure (Chow and Liu, 2008). 

2.2 Two-by-Two Crossover Design 

Several useful designs for assessing bioequivalence in variety of situations were 

discussed in literature (Chow and Liu, 2008). The most commonly used statistical 

design for comparing average bioavailability between two formulations of a drug 
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probably is a two-sequence, two-period, crossover design, we shall refer to this design 

as the standard 2×2 crossover design. For the standard 2×2 crossover design, each 

subject is randomly assigned to either sequence RT or sequence TR at two dosing 

periods. In other words, subjects within RT (TR) receive formulation R(T) at the first 

dosing period and formulation T(R) at the second dosing period. The dosing periods are 

separated by a washout period of sufficient length for the drug received in the first 

period to be completely metabolized or excreted from the body. An example of a 2×2 

crossover design is illustrated in Figure 2.1. 

Because the biological products and traditional small molecular chemical generic 

drugs are fundamentally different, therefore the methods for evaluation of 

bioequivalence based on pharmacokinetics measures are not applicable to assess the 

biosimilar products. As a result, we propose to employ the parallel line assay to evaluate 

biosimilar products. In the next two sections, biological assay and parallel line assay 

will briefly reviewed. 

2.3 Biological assay 

Bioassay is a preparation (such as drugs, hormones, etc.) added to the subject. It is 

the method to determine the nature, constitution, and potency of the preparation by the 

reaction of subjects. The preparation added to the subject can have a single dose, or 
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several different doses. Therefore the subjects produce a response value or multiple 

response values, we can test the potency of the preparation by these values. The purpose 

of testing is usually to compare the relative potency of two or more preparations. 

So we always take a common nature of the preparation known as standard 

preparation, while the other is the unknown nature of the newly developed preparation, 

referred to as test preparation. The two preparations produce the difference between 

response values in the same dose, i.e., for inference of the potency of the test 

preparation. Generally we use the indirect assay. Indirect assay consists of quantitative 

responses and quantal responses. Indirect assay with quantitative responses also 

involves parallel line assay and slope ratio assay. 

    For our current research, we propose to use the parallel line assay to evaluation of 

the similarity of biosimilar products and its innovator’s biological products. In next 

section we briefly reviewed parallel line assay.   

2.4Parallel Line Assay 

Liu and Chow (2010) refer to group means of a well-defined product characteristic 

can be computed for each dose level for the biosimilar and innovator’s product 

respectively. Using the group means of the well-defined characteristic as the 

independent variable, a simple linear regression equation can be fitted to primary 
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efficacy endpoint for the biosimilar and innovator’s biological products, respectively. It 

follows that the concept of relative potency in the parallel-line bioassay can be then 

employed to investigate extrapolability of equivalence in product characteristic to 

equivalence in efficacy. 

Parallel line assay is to compare potency of two preparations under a linear 

regression model. The first step is to test for a linear regression model. If the 

relationship between the product characteristic and clinical responses are linear, then the 

second step is to test whether regression lines are parallel. In the setting, the innovative 

biological product is treated as the standard preparation, and the biosimilar product is 

referred to as the test preparation. 

Let the mean characteristics at different doses be the independent variable (x), and 

clinical efficacy response be the dependent variable (Y). Then the regression model of 

the reference preparation is given as 

( ) .RE Y z xλα β α β= + = +                                         (2.3) 

Where α, β, λ are unknown constants, and x zλ=  

When λ=0, x = logz , 

( ) log .RE Y z xα β α β= + = +                                        (2.4) 

Under the same reaction, the ratio of the two preparation doses is called the relative 

potency (ρ) 
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S
S T

T

Z
 =  ,  Z = Z .

Z
ρ ρ   

It follows that 

T( ) ( ) z

   x .

E Y z λ λ λ

λ

α β ρ α βρ
α βρ

= + = +

= +
                                   (2.5) 

When λ=0 

T( ) (log log ) log log

   x .

E Y z zα β ρ α β ρ β
α β

= + + = + +
′= +

                   (2.6) 

It is also a linear function. Therefore the regression line for the response preparation in 

(2.4) and that for the test preparation in (2.6) have same slope (β) but different 

intercepts.  

2.4.1 Testing linearity of a regression model 

For lack of fit test for a linear regression model, multiple efficacy responses must 

observed for each mean product characteristic. The data structure for testing linearity is 

given Table 2.1.   

The corresponding ANOVA table for lack of fit test is given in Table 2.2. 

where      .. .
1

, , ,
in

i ij i ij i i
j

n n y y T y x n x
=

= = = =∑ ∑∑ ∑ ∑  

2
2 .

..

2
2 ..

k

xx i i

xy i ij

yy ij

x
S n x

n

x y
S x y

n

y
S y

n

⋅

= −

= −

= −

∑

∑∑

∑∑

 

The F value of lack of fit test is 0
MSL

F
MSP

=  
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If 0 , 2,k n kF Fα − −<  , then we fail to reject the null hypothesis of no lack of fit. 

2.4.2 Testing for Parallel Lines 

Next, we want to know whether two linear regression lines are parallel. In other 

words we need to check whether the slopes are equal between the two regression lines. 

The linear regression models for the test and reference preparation are given as 

respectively. 

,R R R R RY xα β ε= + +  

and 

.T T T T TY xα β ε= + +  

The corresponding estimated linear regression equations are given as respectively.   

ˆ ˆ ,R R R R T T T TY a b x and Y a b x= + = +  

   

, .

, .

R xy
R R R R R

R xx

T xy
T T T T T

T xx

S
where b a y b x

S

S
b a y b x

S

= = −

= = −
 

R TSxy and Sxy are the connected sums of cross products between mean characteristic 

sand clinical responses for reference and test preparations, similarlyR TSxx and Sxx 

are the sums of squares of the mean characteristics of the reference and test preparations, 

R Ty and y are the average clinical responses for the reference and test preparations, 

and R Tx and x are the average of the mean characteristics for the reference and test 

preparations, respectively. 
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The hypothesis of equal slopes is given as 

0 : . . : .R T a R TH v s Hβ β β β= ≠  

Let SR
2 and ST

2  be the residue mean squares for the reference and test preparations 

respectively as follows  

2

2

,
2

.
2

R R R
R

R

T T T
T

T

Syy b Sxy
S and

n

Syy b Sxy
S

n

− ⋅=
−

− ⋅=
−                                  

 

2 2

2 2

max{ , }
( , 2, 2)

min{ , }
R T

R T
R T

S S
If F F n n

S S
α= < − −  

We fail to reject the null hypothesis of homogeneity of the error variances between the 

reference and test formulations. 

If the residual variances of the reference and test preparation are homogeneous, the test 

statistic for equality of the two slopes is given as 

, (2.7)
( )

−=
−

R T

R T

b b
t

V b b
                                     

2 1 1ˆ ˆ ˆ( ) ( ) ( ) ( ) ,R T R T p
R T

where V b b V b V b S
Sxx Sxx

− = + = +  

2 2
2 ( 2) ( 2)

4
R R T T

p
R T

n S n S
and S

n n

− + −=
+ −  

If t > t(α/2, nR+ nT - 4), the null hypothesis of equal slope is rejected at the α 

significance level. 

If the null hypothesis of equal slopes is not rejected at the α significance level, then the 

common slope is estimated as: 
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R T
c

R T

Sxy Sxy
b

Sxx Sxx

+=
+  

It follow that estimated linear regression lines for the reference and test preparation are 

given as respectively, 

ˆ

ˆ
R R c R

T T c T

y a b x

y a b x

= +
= +

 

 

2.4.3 Relative Potency 

Assume that the test preparation is more potent than the reference preparation, then 

the regression line of the test preparation is above that of the clinical reference 

preparation. When responses of two drugs are the same, let the dose of the test 

preparation be x0.  

Denote ∆ as the horizontal distance between the two regression lines. Then x0 dose 

of the test preparation effect is the same with the 0x + ∆  dose of the reference 

preparation effect under the log10 scale. Therefore the 10∆  dose of the test preparation 

effect is the same with the 0 0 log10 10x x R+∆ +=  dose of the reference preparation effect 

under the original scale. 0 0 10 0log log
1010 10 10 10 , log .x R x R xR where R+ = ⋅ = ⋅ ∆ =  The left 

hand side of the above equation is the dose of test preparation where the right hand side 

of the above equation is the dose of reference preparation multiplied by R. In other 

words, the potency of the test preparation is R times of the reference preparation. 
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An estimate of ∆ is given as 

ˆ R T R T
T R

c c

a a y y
x x

b b

− −∆ = = − +  

ˆ

10
ˆ ˆlog 10R anti ∆= ∆ =  

The confidence interval of Relative Potency 

Let 1 2( , )x x is bivariate normal distribution. Its expectation is1 2( , )µ µ with variance

2 2
11 22( , )v vσ σ , and covariance2

12vσ  (沈明來,2000). 

If 1 2,x x are the sample mean, then11 22
1 2

1 1
,v v

n n
= = 。 

If 1 2,x x are the regression slopes, then 
( ) ( )11 222 2

1 1 2 2

1 1
,v v

x x x x
= =

− −∑ ∑
 

Let 1

2

µθ
µ

= ，its estimator is 1

2

x

x
θ =
⌢

，and 2S  is an estimate of 2σ   

Let 1 2
ˆx xθ− . The variance of 1 2

ˆx xθ−  is given as 

2 2
1 2 11 12 22

ˆ( ) ( 2 )Var x x v v vθ σ θ θ− = − +
  

It follows that 

( )2 2
1 2 11 12 22~ 0, ( 2 )x x N v v vθ σ θ θ− − +
⌢

 
Therefore 1 2

2 2
11 12 22( 2 )

x x

S v v v

θ
θ θ

−
− +

⌢

, follows a central t-distribution with 4R Tn n+ =  

degrees of freedom. 

The probability statement of constructing an 100(1-α)% confidence interval for θis 

given as 
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( )
2

2

1 2 2
2 2

11 12 22

Pr 1
( 2 )

x x
t

S v v v
α

θ
α

θ θ

 − ≤ = − − +  

⌢

 

Where /2tα  is the upper α/2 quantifile of a central distribution with 4R Tn n+ −  

degrees of freedom. 

It turns out that it is a quadratic equation of θ̂  as expressed in the following

  
2 2 2

2 2 2 2 2 2 2 2 2
2 22 1 2 12 1 11( ) 2 ( ) ( ) 0x t S v x x t S v x t S vα α αθ θ− − − + − ≤

⌢ ⌢

  

The two roots of the above quadratic equation constitute the lower and upper limits of 

the 100(1-α)% confidence interval for θas 

{ }2 2 2 2 2 2 2 2 2 2 2
1 2 12 1 2 12 2 22 1 112 2 2

2 22

1
( ) ( ) ( )( )x x t S v x x t S v x t S v x t S v

x t S v
θ = − ± − − − −

−
⌢

 

It can also be rearranged as  

2 2 2 2 2 2 2 2 2
21 12 1 12 22 1 11

2 2 2 2 2 2 2
22 2 2 2 2 2 2 2

2
2

1
( ) ( ) (1 )( )

1

x t S v x t S v t S v x t S v

t S v x x x x x x x
x

θ
  = − ± − − − − 
  −

⌢

 

 

Let 
2 2

22 1
2
2 2

,
t S v x

g
x x

θ= =
⌢

  

To get 
2

212 12
11 12 22

22 2 22

1
(1 ) 2

1

v vtS
g g v v v g

g v x v
θ θ θ
  − ± − − + + −   

⌢ ⌢ ⌢

 

If x1 and x2 are independent, 12 0v =  

It follows that 2
11 22

2

1
(1 )

1

tS
g v v

g x
θ θ
 

± − + −  

⌢ ⌢

.
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( ) ( )

1 2

11

22 2 2

,

1 1

1

T R c

T R

T T R R

Let x y y x b

v
n n

v
x x x x

= − =

= +

=
− + −∑ ∑

 

and ˆ ( ) T R
R T

c

y y
x x

b
θ−∆ − − = =
⌢

 

A 100(1-α)% confidence interval of Δ is given as 

( ) ( )
( ) ( )

2

2

2 2

ˆ
1 1 1ˆ( ) (1 )( ) (2.8)

1

α

  ∆ − +  − + ∆ − + ± − + +  − − + −  
  

∑ ∑
R T

R T R T
c R T T T R R

x xt S
x x x x g

g b n n x x x x

If g < 0.1, then it can be ignored in the equation (2.8), an 100(1-α)% confidence interval 

of Δ which is given as  

( )
( ) ( )

2

1
2 2

2 2

ˆ1 1ˆ, ( ) ( ) (2,9)
α

 
  ∆ − +   ∆ ∆ = − + ∆ − + ± + +   − + −      

∑ ∑
R T

U L R T R T
c R T R R T T

x xt S
x x x x

b n n x x x x

If R Tx x=  then equation (2.9) can be reduced to 

( ) ( )
2

1

22

2 2

ˆ1 1ˆ,U L
c R T R R T T

t S

b n n x x x x

α    ∆
 ∆ ∆ = ∆ ± + + 

− + −   ∑ ∑
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Table 2.1: The data structure for testing linearity. 

Independent  

variable  

1x  2x  … kx  

Dependent  

variable  

11y  21y  … 1ky  

12y  22y  … 2ky  

. 

. 

. 

. 

 . 

. 

11ny  
22ny  

… 
kkny  

Sum  1T  2T  … kT  

Replications 1n  2n  … kn  
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Table2.2: The ANOVA table of lack of fit test 

Source of Variation df Sum of Squares Mean 

Squares 

F-statistics 

Regression(R) 1 2
xy xxSSR S S=  

MSR  

Residual error(E) n-2 
yySSE S SSR= −  

MSE  

Lack of fit (L) k-2 SSL SSE SSP= −  MSL 0 /F MSL MSP=  

Pure error(P) n-k 2 2
ij i iSSP y T n= −∑∑ ∑  

MSP  

Total(T) n-1 
yySST S=  

  

 

 

 

  



 

 

Figure 2.1:
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: The standard two-by two crossover design

 

 

by two crossover design 
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Chapter 3 Proposed Methods 

In the previous chapter we reviewed the statistical methods for parallel line assay. 

In this chapter we propose the applications of the parallel line assay to evaluation of 

biosimilar products. 

 

3.1 Design 

Design (a) in Figure 3.1 proposed by Liu and Chow (2010) consists of two 

dose-response trials, one for the biosimilar product and one for the innovator’s 

biological product, each with at least three dose levels with a placebo group. Eligible 

patients are first randomized into biosimilar or innovator groups. Within each group, 

patients are randomized again to receive one of the doses for the respective products. 

Well-defined product characteristics and primary efficacy endpoints are evaluated for all 

patients at their respective doses. Suppose that after a statistically significant 

relationship as represented by a simple linear regression equation can be established 

between the well-defined product characteristics and the primary efficacy endpoint 

through dose levels for the innovator’s product, maybe after a suitable transformation. If 

a similar linear relationship can be also obtained for the biosimilar product and its 

corresponding linear regression equation is very close to the one for the innovator’s 
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product, then equivalence in efficacy based on the primary efficacy endpoint may be 

claimed. Because the innovator’s product has been approved by the regulatory agencies 

due to its confirmed efficacy, therefore the objective of Design (a) is not to establish the 

efficacy of either biological products but to establish the similar patterns of the 

relationship between the well-defined product characteristics and primary efficacy 

endpoint for the two products. As a result, the sample size of Design (a) can be reduced 

significantly. 

 

3.1.1. Fundamental Biosimilarity Assumption 

Similar to the chemical generic drug products, approval for the biosimilar drug 

products can be treated as the evaluation of post-approval changes. (ICH Q5E, 2005) 

and this post-approval change is the change of drug manufacturers. Therefore, as 

indicated by Liu and Chow (2010) if the biosimilar drug products and the corresponding 

innovator’s biological products appear highly similar, and if in addition, based on the 

accumulated experience relevant information and data, minute differences observed in 

the product characteristics are expected to have no clinically meaningful adverse effect 

of safety and efficacy profiles. Under this circumstance, biosimilar drug products and 

innovator’s products can be considered similar. Therefore, except for the traditional 

pivotal bioequivalence study, no further data from pivotal phase III trials should be 
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requested. However, the above statement is based on a crucial assumption that at least 

one of the product characteristics is a validated and reliable predictor of the safety and 

efficacy profiles of the biological products. As a result, the Fundamental Biosimilarity 

Assumption (FBA) is 

 

When a biosimilar product is claimed to be biosimilar to an innovator’s product 

based on some well-defined product characteristics and is therapeutically 

equivalent provided that the well-defined product characteristics are validated 

and reliable predictors of safety and efficacy of the products. 

 

For the chemical generic products, the well-defined product characteristics are the 

exposure measures for early, peak, and total portions of the concentration-time curve. 

The Fundamental Bioequivalence Assumption is assumed that the equivalence in the 

exposure measures implies therapeutically equivalent. However, due to the complexity 

of the biosimilar drug products, one has to verify that some validated product 

characteristics are indeed reliable predictors of the safety and efficacy. It follows that 

the design and analysis for evaluation of equivalence between the biosimilar drug 

product and innovator product are substantially different from those of the chemical 

generic products. 

For design (a) Liu and Chow (2010) suggest that, the standard statistical method 

for analysis of parallel line assays can be used to construct the (1-2α)100% confidence 
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interval for the relative potency in the following steps: 

Step 1: Fit a linear regression equation to the primary efficacy endpoint with the group 

mean of the product characteristics at each dose level as the independent variable 

separately for the biosimilar and innovator’s biological products. This may be done after 

a suitable transformation. 

Step 2:  If the estimate of the slope of any one product is not significant at the 

pre-defined level, then conclude that no simple relationship can be established between 

the product characteristic and primary endpoint and hence, a full clinical evaluation of 

the biosimilar product is required. Otherwise, go to Step 3. 

Step 3: Test whether the two estimated simple linear regressions are parallel at the 

predefined significance level. If the two estimated linear regressions are not parallel, 

then further clinical evaluation of the biosimilar product is warranted. Otherwise, 

proceed to Step 4. 

Step 4: Compute estimated relative potency and its corresponding (1-2α)100% 

confidence interval.  If the (1-2α)100% confidence interval for the relative potency is 

within the predefined margins (δL, δU), then equivalence in the product characteristic 

can be extrapolated to equivalence in the primary efficacy endpoint at the α significance 

level. Otherwise, further clinical investigation of the biosimilar product is needed. 

The objective of application of Design (a) is not to establish the efficacy of 
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biosimilar product but rather to test whether the relative potency is within some 

pre-defined limits. We will use this design to assess the biosimilar products. Let Y be 

clinical responses, and X be the sample means of biomarkers or PK measures under 

some doses to establish the regression model. 

 

3.2 The procedure and methods based on relative potency of 

product characteristics 

Figure 3.2 provides a graphic depiction of the application of the parallel line assay 

to evaluation of the extrapolability of equivalence in product characteristic to 

equivalence in efficacy. 

The interval hypothesis based on the relative potency is given as  

0 :

. .

: ,

L U

a L U

H or

v s

H

δ δ

δ δ

∆ ≤ ∆ ≥


 ≤ ∆ ≤                                               (3.1)

 

where δL and δU are some pre-defined lower and upper margins. 

If the 100(1-2α)% confidence interval for ∆ given in (2.8) is within ( , )L Uδ δ then null 

hypothesis (3.1) is rejected and the biosimilar product is similar to the innovator product 

at the α  significance level. 
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3.3 The procedure and methods based on clinical responses 

    The method for the relative potency mention above is based on the horizontal 

distance for a fixed clinical response. However, on the other hand, sometimes it is of 

interest to see whether the clinical responses of the biosimilar and innovator’s products 

are similar at a fixed level of mean characteristic. This can be accomplished using the 

vertical distance. A graphical representation of the concept is given in Figure 3.3. 

Let θ be the vertical distance between the two regression lines.     

( ) ( ) .R T R TE Y E Yθ α α= − = −  

The interval hypothesis based on θ is given as: 

0 :

. .

: .

L U

a L U

H or

v s

H

θ θ θ θ

θ θ θ

≤ ≥


 ≤ ≤                                              (3.2) 

An estimate of θ is given as ˆ ˆ ˆ .R TY Yθ = −  

For a fixed mean characteristic x0 , the expected value of θ
⌢

 is the difference of the 

intercepts of the two regression line between the innovator’s and biosimilar products. 

0 0 0 0 0
ˆ ˆ ˆ( | ) ( | ) ( | ) ( ) ( ) .R T R c T c R TE x E Y x E Y x x xθ α β α β α α= − = + − + = −

 

θ̂  is an unbiased estimation of θ. 

Since T̂Y  and R̂Y  are independent, it follows that the variance of θ̂  is given as 

0 0 0 0

0 0

ˆ ˆ ˆ ˆ ˆ( | ) ( | ) ( | ) ( | )

( ) ( ) .
R T R T

R c T c

Var x Var Y Y x Var Y x Var Y x

Var a b x Var a b x

θ = − = +
= + + +

 

On the other hand 
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( ) ( ) ( )

( ) ( )

2
0 0 0

2 222
2 0

02 2 2

2 2 22
20 0

2 2

ˆ( | ) ( ) 2 ( , ) ( )

1
2

( ) ( )1
.

T T T c c

TT
T

i i i

TT
T

i i

Var Y x Var a x Cov a b x Var b

xxx
x

n x x x x x x

x x x x

n nx x x x

σσσ

σσ σ

= + +

  −
 = + + +
 − − − 

 − −
 = + = +
 − − 

∑ ∑ ∑

∑ ∑

  

Similarly 

( )
2

2 0
0 2

( )1ˆ( | )R R

i

x x
Var Y x

n x x
σ

 −
 = +
 − ∑ .

 

It follows that 

( )
( )

2
2 2 0

0 2

( )1ˆ( | ) R T

i

x x
Var x

n x x
θ σ σ

 −
 = + +
 −  ∑ .

 

Then an estimate of variance of θ̂  is given as 

( )
( )

2
2 2 0

0 2

( )1ˆˆ ( | ) R T

i

x x
Var x S S

n x x
θ

 −
 = + +
 −  ∑

  and 

( )
( )

( )
2

2 20
2

( )1ˆ ~ ,R T R T

i

x x
N

n x x
θ α α σ σ

  −  − + +
  −  ∑

. 

As a result, 

( ) 2( 2),
ˆ ˆˆ(1 2 )100% . . ( )R T na C I of is given as a a t Varαα θ θ−

 − − ±
   .

            (3.3) 

Let
( )2

2

2
i R c i

R

Y a b x
S

n

− −
=

−
∑ , and

( )2

2

2
i T c i

T

Y a b x
S

n

− −
=

−
∑  be given in section 2.4.2. 

If the 100(1-2α)% confidence interval for̂θ  is within ( , )L Uθ θ , then the biosimilar 

product is similar to the innovator product at the α significance level. 

The rejection region for the proposed procedure for hypothesis (3.2) is given as 
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{ }
{ }

ˆ ˆ( , )

ˆ ˆˆ( , ) , ( )

L U

L U

R s ts and ts

R s ts ts where s Var

θ θ θ θ θ

θ θ θ θ θ

− > + <

= + < < − =
. 

It follows that the power function is given as 

( )ˆ( ) |L UP ts tsθ θ θ θ θΦ = + < < − ∈Θ
, 

where ( , )L Uθ θΘ = . 

For simplicity, we only consider the situation of symmetric equivalence margin where

0U Lθ θ θ= − = . 

Next we determine the require sample size for at least 1-β power, when θ=0 and 

T Rn n n= = . 

Since 0 0
ˆ(0) | 0 1P ts tsθ θ θ θ β Φ = − + < < − = ≥ −  .

 

It follows that 

( ) ( )

( )
( )

0

2
2 20

2

0

2
2 20

2

( ,2 2) ( ,2 2) ,
2

( )1

( ,2 2) ( ,2 2) .
2

( )1

R T

i

R T

i

t n t n
x x

S S
n x x

t n t n
x x

S S
n x x

θ βα

θ β α

− − ≤ −
 −
 + +
 − 

⇒ ≤ − + −
 −
 + +
 − 

∑

∑

 

The required sample size per drug at least 1-β power is given as 

( ) ( )

1
2

2
0 0

22 2

( )1

( ,2 2) ( ,2 2)
2

R T i

x x
n

S S x xt n t n

θ
β α

−
   
    −  = −   

+ −   − + −
     

∑   .          (3.4)
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When 0 0θ θ< ≠  and T Rn n n= = , an approximate formula for sample size 

determination per drug is given as 

( ) ( )

1
2

2
0 0

22 2

( )1

( ,2 2) ( ,2 2)
2

R T i

x x
n

S S x xt n t n

θ θ
β α

−
   
   − −  = −   

+ −   − + −
     

∑
.

         (3.5) 

Then the sample size per drug can be allocated to each dose. For example, with each 

allocation of k doses, the required sample size per dose is n/k. 

  



 

 

Figure 3.1: Design (a) for evaluation of extrapolation ability
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Design (a) for evaluation of extrapolation ability

 

 

Design (a) for evaluation of extrapolation ability 



 

 

Figure 3.2: Application of the parallel line assay to evaluation of the extrapolability 

of based on product characteristics
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Application of the parallel line assay to evaluation of the extrapolability 

product characteristics 

 

 

Application of the parallel line assay to evaluation of the extrapolability 

 



 

 

Figure 3.3: Application of the parallel line assay to evaluation of the 

of based on clinical responses.
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Chapter 4 Numerical Example 

 

In this chapter we apply the proposed statistical methods derived in chapter 3 to a 

numerical data set. We want to test if the AUC in the innovative drug product and 

biosimilar are close, then clinical response values are also close.  

Because we can not get real data, we use the Fortran to generate the data to 

evaluate the biosimilar drug. The purpose of this section is to illustrate the proposed 

methods with a numerical data set. The steps for generation of data are fronded below :  

Step 1: Determine the relationship between dose and AUC. For each dose generate 20 

AUC under normal assumption with mean=10, 20, 30, 40, 50 and variance =1. 

Step 2: To calculate the mean of AUC (xR or xT) and use the mean to generate the data 

set of clinical responses(y) based on the following linear regression models. 

100

100
R R R

T T T

Y x

Y x

ε
ε

= − +
= − +  

Rε  and Tε  are generated from normal assumption with mean=0 and variance =144
 

Both proposed methods are illustrated with the above data set which is given in 

Appendix A. 

The mean characteristics and mean clinical response with the correspond standard 

deviation for biosimilar and innovator’s products are provided in Table 4.1. Table 4.2 
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gives the ANOVA tables for biosimilar and innovator’s products. 

The linear regression line for the biosimilar and innovator’s products are given 

respectively as ̂ ˆ100 , 100T T R Ry x y x= − = − . First, we should test the linear regression 

model. The F-values for the lack of fit test for both products, because FR,LOF = 0.174 and 

FT,LOF = 0.876 which are less than F (0.05, 3, 95) = 2.7, therefore we fail to reject the 

null hypothesis that the two regression models are linear at the 5% significance level. 

Next we verify whether the two linear regression lines are parallel, the corresponding 

sums of square and cross products are provided in Table 4.3. 

The residual mean squares for the innovator’s and biosimilar products are given as 

 

1.184 (0.1,98,98) 2.14F F= < =  

Therefore the null hypothesis of homogenous variances is not rejected at the 5% 

significance level. 

The pooled residual mean squares is then estimates as 

2 1
(118.334 140.067) 129.2

2pS = + =
 

It follow the estimated variance of bR-bT is
 

1 1
( ) 129.2 0.0132

19612.75 19612.75R TV b b
 − = + =    

Therefore the test statistic for hypothesis of equal slope is 
 

2

2

118.334
2

140.067
2

R R R
R

r

T T T
T

t

Syy b Sxy
S and

n

Syy b Sxy
S

n

− ⋅= =
−

− ⋅= =
−
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0.05,196

0.8437 ( 1.002)
1.379 1.65

0.0132
t t

− − −
= = < =

 

As results, null hypothesis of equal slopes is not rejected at 5% significance level  

The estimated common slope is then given as   

-16548.043 (-19652.91)
0.9229

19612.75 19612.75cb
+= = −
+  

It follow that the two estimated linear regression lines are given as: 

97.2205 0.9929
96.935 0.9929

R

T

y x
y x

= −
= −  

An estimated relative potency is given as 

97.2205 96.935ˆ 0.2875
0.9229

R T

c

a a

b

− −∆ = = = −
−

 

Since 

 

0.1
2

2 2 2
,196

22 2 2

1.65 129.2
0.011 0.1

( 0.9229) (19612.75 19612.75)( ) ( )c r r t t

t S
g

b x x x x

⋅= = = <
− + − + − ∑ ∑  

We can ignore g-value is computation of the 90% confidence interval for Δ. The lower 

and upper limits of the 90% confidence interval for Δ. 

( ) ( )

( )

( )

2

1

22

2 2

1
2 2

ˆ1 1ˆ ˆ ˆ( , )

0.28751.65 129.2 1 1
= 0.2875

0.9229 100 100 19612.75 19612.75

0.2875 2.874

3.162 , 2.5865

U L
c R T R R T T

t S

b n n x x x x

α    ∆
 ∆ ∆ = ∆ ± + + 

− + −   

 −⋅  − ± + +  − +   

= − ±
= −

∑ ∑

 

The 90% confidence interval for∆̂  is (-3.162, 2.5865). Let -δL = δU = 10. Since the 

90% confidence interval (-3.162, 2.5865) is contained within (-10, 10), then we can 
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conclude that the biosimilar product is similar to the innovator product at 5% 

significance level. 

On the other hand, the estimated vertical distance of the two regression lines is  

ˆ= 0.2855R Ta aθ − =  

Its corresponding estimated variance is given as 

( )
( ) ( )

2 2
2 20

2 2

( )1 1 (30 30.0615)ˆˆ ( ) 2 129.2 2.584
100 19612.75R T

i

x x
Var S S

n x x
θ

    − −   = + + = + × =     − ∑
 

It follows that the 90% confidence interval for θ is (-2.3712, 2.9422)

 If the equivalence limits θ0 is set at 10, since the 90% confidence interval (-2.3712, 

2.9422) is completely within (-10,10) , then the null hypothesis is rejected and 

biosimilar product is similar to the innovator product at 5% significance level. 

Suppose that θ=0, the required sample size for hypothesis (3.2) for 80% power at the 

5% significance level is given as 

( ) ( )

1
2

2
0

22 2

( )1
28.25

( ,2 2) ( ,2 2)
2

R T i

x x
n

S S x xt n t n
β α

−
   
    −∆  = − =   

+ −   − + −
     

∑  

The sample size is 29 per group. However, there are 5 doses, therefore we round 29 up 

to 30 so that with an equal allocation, the sample size for each dose is 6 per products. 
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Table 4.1: The Descriptive Statistics of innovator’s product and biosimilar product 

Mean characteristic of 

Innovator's products 

  

Mean 10.06 20.44 30.18 39.71 49.93 

Standard deviation 1.5 0.98 0.87 1.12 1.54 

Mean characteristic of 

Biosimilar products 

  

Mean 9.65 19.93 28.9 40.15 50.18 

Standard deviation 0.59 1 0.84 0.93 0.86 

Innovator's products 

  

  

Mean 85.69 78.74 68.61 62.11 52.23 

Standard deviation 9.2 12.03 10.99 11.55 11.12 

Biosimilar products 

  

  

Mean 87.46 80.42 68.9 62.23 46.95 

Standard deviation 11.79 11.06 11.46 10.85 13.87 
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Table 4.2: The ANOVA table of lack of fit test  

  Innovator’s product Biosimialr product 

Source of 

Variation 

df Sum of 

Squares 

Mean 

Squares 

F-statistics Sum of 

Squares 

Mean 

Squares 

F-statistics 

Regression(R) 1 13962.225 13962.225  19693.152 19693.152  

Residual error(E) 98 11596.045 118.327  13725.538 140.057  

Lack of fit (L) 3 63.448 21.149 0.174 369.398 123.133 0.876 

Pure error(P) 95 11532.600 121.396  13356.140 140.591  

Total(T) 99 25558.270   33418.690   
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Table 4.3: The Descriptive Statistics of innovator’s product and biosimilar product  

group n Sxx Sxy Syy xbar ybar a b 

Innovator’s 100 19612.75 -16548.04 25558.27 30.0615 69.4769 94.841 -0.8437 

Biosimilar 100 19612.75 -19652.91 33418.69 30.0615 69.1914 99.315 -1.002 
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Chapter 5 Simulation Study 

 

In this chapter, Compaq Visual Fortran 6.5 and IMSL’s STAT/LIBRARY 

FORTRAN subroutines RNNOR were used in simulation study to generate the data to 

do simulation to compare the coverage probability and power with different sample size, 

variance and dose. A flow chart of the simulation study is given in Figure 5.1. 

 

5.1 Simulation Process   

First we generate the data of AUC, for each dose generates 20 AUC under normal 

assumption with specified means and variances. The number of doses is 3, 5, 7. In 

addition, the RNNOR subroutine of Compaq Visual Fortran 6.5/IMSL was employed to 

generate normal deviates with variance 1 and dose 10 to k10 by 10, where k is the 

number of the dose. The responses were generated using following regression equation, 

and where xR (xT) are the mean AUC at each dose. 

100

100 .
R R R

T T T

Y x

Y x

ε
ε

= − +
= − +  

ε are i.i.d. with mean 0 and standard deviation from 12 to 24 by 6.  

Then we use the statistical method mentioned in Chapter 3 to determine the 90% 

confidence interval. Then we repeated for 10000 times to determine the empirical power, 

empirical size and coverage probability. The equivalence limits are set to be ±10 for 
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both methods based on product characteristic and clinical responses. The empirical size 

is estimated the proportion of 10000 random samples for which the confidence intervals 

are totally contained within (-10, 10) when 10T Rµ µ− = ± . 

The empirical power is calculated as the proportion of 10000 random samples in 

which the confidence interval falls entirely within (-10, 10), where

T R 5,0 and 5µ µ− = − . 

The coverage probability is computed as the proportion of 10000 confidence intervals 

containing the specified T R 10 to 10 by 5µ µ− = −  

At the 5% nominal significance level, a simulation study with 10000 samples   

that 95% of the empirical sizes will be between 0.0457 and 0.0542 if the proceed 

procedure can adequately control the type one error rate at its nominal level. Similarly, 

90% coverage probability will be between 0.8941 and 0.9059 if the proceed procedure 

can provide adequate coverage probability at the 90% level. 

5.2 Simulation Result 

The simulation results based on relative potency are given from Table 5.1 to Table 

5.3. In general, the empirical size decreases as the variability increases or the number of 

the doses increase. 36.67% (33/90) of empirical sizes are within (0.0457, 0.0542). This 

indicates that the method based on relative potency can not adequately control the size. 
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When σ = 12 and the number of the doses is fewer than 5, the method based on relative 

potency yields the empirical sizes greater than 0.0542. Therefore, the method based on 

relative potency is liberal when the variability is small and the number of doses is fewer. 

However when σ = 24 and the number of doses is 5 or above, the empirical sizes are 

below 0.0457. This reveals that the method based on relative potency becomes much 

more conservative when the variability is higher and the number of doses is larger. 

The simulation results based on clinical responses are provided from Table 5.4 to 

Table 5.6. When σ = 12, all 30 empirical sizes are within (0.0457, 0.0542). However, 

when σ > 12, all empirical size are below 0.0457. The empirical sizes based on clinical 

responses are smaller than 0.01 when σ = 24. Therefore, the method based on clinical 

responses can adequately control the size when variability is small. It becomes 

extremely conservative when variability is large. 

The sample size for the simulation study is to provide a 80% power when 

T R 0µ µ− = and σ = 12 using the formula based on the clinical responses. This is 

confirmed by the fact that empirical power is at least 80% when T R 0µ µ− = and σ = 12. 

On the other hand, when T R 0µ µ− = and σ=12, the empirical power based on the 

relative potency are around 80% though they are smaller than those based on clinical 

response. 

In general, the empirical power for both methods decreases dramatically as the 
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variability increases for the sample size investigated in the simulation study. On the 

other hand, the empirical power increases slightly as the number of doses increases or 

the sample size increases. None of the coverage probabilities given from Table 5.1 to 

Table 5.6 are smaller than 0.8941. This suggested that the confidence intervals 

constructed by both methods can provide sufficient probability.  
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Table 5.1: Simulation result of power and coverage probability based on relative 

potency under σ=12 

dose n 
 

-10 -5 0 5 10 

3 26 power 0.0648 0.4130 0.7303 0.4198 0.0703 

  
coverage probability 0.9231 0.9200 0.9220 0.9214 0.9182 

3 27 power 0.0706 0.4250 0.7394 0.4223 0.0706 

  
coverage probability 0.9186 0.9174 0.9157 0.9170 0.9161 

3 28 power 0.0686 0.4373 0.7684 0.4387 0.0726 

  
coverage probability 0.9188 0.9174 0.9183 0.9162 0.9151 

3 29 power 0.0672 0.4475 0.7831 0.4451 0.0672 

  
coverage probability 0.9186 0.9177 0.9198 0.9173 0.9182 

3 30 power 0.0665 0.4574 0.7961 0.4622 0.0675 

  
coverage probability 0.9204 0.9206 0.9185 0.9203 0.9193 

5 26 power 0.0585 0.4196 0.7776 0.4330 0.0560 

  
coverage probability 0.9078 0.9103 0.9081 0.9070 0.9100 

5 27 power 0.0588 0.4346 0.7915 0.4396 0.0590 

  
coverage probability 0.9034 0.8991 0.9021 0.9014 0.9017 

5 28 power 0.0593 0.4457 0.8153 0.4475 0.0601 

  
coverage probability 0.9038 0.9029 0.9051 0.9041 0.9032 

5 29 power 0.0546 0.4615 0.8359 0.4606 0.0570 

  
coverage probability 0.9071 0.4615 0.8359 0.9608 0.9043 

5 30 power 0.0545 0.4692 0.8441 0.4794 0.0560 

  
coverage probability 0.9090 0.9069 0.9061 0.9057 0.9075 

7 26 power 0.0535 0.4195 0.7882 0.4347 0.0537 

  
coverage probability 0.9059 0.9070 0.9048 0.9042 0.9058 

7 27 power 0.0567 0.4380 0.8038 0.4410 0.0558 

  
coverage probability 0.8977 0.8957 0.8986 0.8986 0.8977 

7 28 power 0.0550 0.4472 0.8315 0.4499 0.0553 

  
coverage probability 0.9015 0.8999 0.9005 0.9018 0.9005 

7 29 power 0.0513 0.4626 0.8510 0.4613 0.0532 

  
coverage probability 0.9054 0.9068 0.9032 0.9025 0.9021 

7 30 power 0.0504 0.4744 0.8624 0.4816 0.0536 

  
coverage probability 0.9042 0.9028 0.9032 0.9022 0.9028 
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Table 5.2: Simulation result of power and coverage probability based on relative 

potency under σ=18 

dose n 
 

-10 -5 0 5 10 

3 26 power 0.0617 0.1979 0.2967 0.2041 0.0676 

  
coverage probability 0.9282 0.9392 0.9482 0.9406 0.9235 

3 27 power 0.0669 0.2065 0.3099 0.2142 0.0677 

  
coverage probability 0.9241 0.9376 0.9437 0.9358 0.9217 

3 28 power 0.0672 0.2229 0.3381 0.2257 0.0685 

  
coverage probability 0.9231 0.9345 0.9420 0.9349 0.9214 

3 29 power 0.0667 0.2325 0.3475 0.2266 0.0657 

  
coverage probability 0.9251 0.9366 0.9448 0.9355 0.9260 

3 30 power 0.0662 0.2374 0.3700 0.2427 0.0684 

  
coverage probability 0.9268 0.9393 0.9424 0.9367 0.9242 

5 26 power 0.0500 0.1745 0.2725 0.1802 0.0502 

  
coverage probability 0.9166 0.9202 0.9188 0.9178 0.9181 

5 27 power 0.0505 0.1844 0.2874 0.1858 0.0507 

  
coverage probability 0.9095 0.9079 0.9089 0.9103 0.9102 

5 28 power 0.0526 0.2033 0.3204 0.2026 0.0524 

  
coverage probability 0.9132 0.9125 0.9146 0.9125 0.9141 

5 29 power 0.0495 0.2195 0.3364 0.208 0.0525 

  
coverage probability 0.9164 0.9150 0.9151 0.9140 0.9125 

5 30 power 0.0513 0.2211 0.3645 0.2189 0.0526 

  
coverage probability 0.9156 0.9156 0.9143 0.9124 0.9138 

7 26 power 0.0439 0.1662 0.2664 0.1685 0.0454 

  
coverage probability 0.9115 0.9111 0.9094 0.9095 0.9100 

7 27 power 0.0477 0.1783 0.2829 0.1791 0.0473 

  
coverage probability 0.9013 0.9000 0.9029 0.9026 0.9032 

7 28 power 0.0476 0.1978 0.3125 0.1922 0.0461 

  
coverage probability 0.9040 0.9037 0.9049 0.9054 0.9054 

7 29 power 0.0457 0.2110 0.3333 0.2075 0.0486 

  
coverage probability 0.9097 0.9107 0.9072 0.9071 0.9060 

7 30 power 0.0465 0.2151 0.3656 0.2214 0.0498 

  
coverage probability 0.9075 0.9068 0.9064 0.9056 0.9062 
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Table 5.3: Simulation result of power and coverage probability based on relative 

potency under σ=24 

dose n 
 

-10 -5 0 5 10 

3 26 power 0.0420 0.0907 0.1207 0.0967 0.0489 

  
coverage probability 0.9303 0.9516 0.9667 0.9520 0.9253 

3 27 power 0.0479 0.0992 0.1245 0.1054 0.0505 

  
coverage probability 0.9245 0.9519 0.9662 0.9550 0.9230 

3 28 power 0.0506 0.1060 0.1428 0.1148 0.0526 

  
coverage probability 0.9235 0.9485 0.9663 0.9494 0.9218 

3 29 power 0.0521 0.1208 0.1471 0.1087 0.0481 

  
coverage probability 0.9266 0.9515 0.9625 0.9477 0.9273 

3 30 power 0.0521 0.1184 0.1576 0.1194 0.0541 

  
coverage probability 0.9267 0.9516 0.9633 0.9513 0.9250 

5 26 power 0.0237 0.0504 0.0688 0.0507 0.0239 

  
coverage probability 0.9271 0.9311 0.9327 0.9307 0.9292 

5 27 power 0.0236 0.0510 0.0675 0.0545 0.0248 

  
coverage probability 0.9223 0.9212 0.9229 0.9221 0.9208 

5 28 power 0.0256 0.0613 0.0842 0.0650 0.0275 

  
coverage probability 0.9235 0.9253 0.9268 0.9262 0.9236 

5 29 power 0.0274 0.0701 0.0915 0.0638 0.0275 

  
coverage probability 0.9256 0.9259 0.9254 0.9254 0.9219 

5 30 power 0.0292 0.0700 0.1026 0.0734 0.0295 

  
coverage probability 0.9252 0.9259 0.9266 0.9238 0.9245 

7 26 power 0.0148 0.0349 0.0441 0.0336 0.0152 

  
coverage probability 0.9185 0.9188 0.9173 0.9159 0.9166 

7 27 power 0.0162 0.0330 0.0452 0.0374 0.0157 

  
coverage probability 0.9088 0.9065 0.9073 0.9090 0.9088 

7 28 power 0.0173 0.0413 0.0541 0.0451 0.0169 

  
coverage probability 0.9101 0.9091 0.9112 0.9108 0.9108 

7 29 power 0.0187 0.0543 0.0671 0.0458 0.0207 

  
coverage probability 0.9150 0.9160 0.9146 0.9129 0.9125 

7 30 power 0.0184 0.0510 0.0743 0.0536 0.0207 

  
coverage probability 0.9134 0.9124 0.9111 0.9101 0.9105 
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Table 5.4: Simulation result of power and coverage probability based on clinical 

response under σ=12 

dose n 
 

-10 -5 0 5 10 

3 26 power 0.0478 0.4161 0.8013 0.4279 0.0455 

  
coverage probability 0.9067 0.9067 0.9067 0.9067 0.9067 

3 27 power 0.0498 0.4355 0.8130 0.4337 0.0502 

  
coverage probability 0.9000 0.9000 0.9000 0.9000 0.9000 

3 28 power 0.0488 0.4472 0.8396 0.4435 0.0495 

  
coverage probability 0.9017 0.9017 0.9017 0.9017 0.9017 

3 29 power 0.0478 0.4636 0.8592 0.4536 0.0485 

  
coverage probability 0.9037 0.9037 0.9037 0.9037 0.9037 

3 30 power 0.0474 0.4707 0.8703 0.4771 0.0489 

  
coverage probability 0.9037 0.9037 0.9037 0.9037 0.9037 

5 26 power 0.0475 0.4149 0.8020 0.4279 0.0459 

  
coverage probability 0.9066 0.9066 0.9066 0.9066 0.9066 

5 27 power 0.0496 0.4363 0.8125 0.4376 0.0502 

  
coverage probability 0.9002 0.9002 0.9002 0.9002 0.9002 

5 28 power 0.0489 0.4464 0.8405 0.4437 0.0496 

  
coverage probability 0.9015 0.9015 0.9015 0.9015 0.9015 

5 29 power 0.0479 0.4639 0.8602 0.4541 0.0484 

  
coverage probability 0.9037 0.9037 0.9037 0.9037 0.9037 

5 30 power 0.0474 0.4706 0.8707 0.4767 0.0488 

  
coverage probability 0.9038 0.9038 0.9038 0.9038 0.9038 

7 26 power 0.0480 0.4153 0.8022 0.4291 0.0461 

  
coverage probability 0.9059 0.9059 0.9059 0.9059 0.9059 

7 27 power 0.0498 0.4361 0.8128 0.4370 0.0502 

  
coverage probability 0.9000 0.9000 0.9000 0.9000 0.9000 

7 28 power 0.0489 0.4473 0.8399 0.4445 0.0494 

  
coverage probability 0.9017 0.9017 0.9017 0.9017 0.9017 

7 29 power 0.0475 0.4634 0.8595 0.4546 0.0486 

  
coverage probability 0.9039 0.9039 0.9039 0.9039 0.9039 

7 30 power 0.0477 0.4714 0.8701 0.4768 0.0483 

  
coverage probability 0.9040 0.9040 0.9040 0.9040 0.9040 
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Table 5.5: Simulation result of power and coverage probability based on clinical 

response under σ=18 

dose n 
 

-10 -5 0 5 10 

3 26 power 0.0369 0.1464 0.2477 0.1527 0.0354 

  
coverage probability 0.9067 0.9067 0.9067 0.9067 0.9067 

3 27 power 0.0395 0.1646 0.2732 0.1667 0.0402 

  
coverage probability 0.9000 0.9000 0.9000 0.9000 0.9000 

3 28 power 0.0407 0.1839 0.3006 0.1752 0.0396 

  
coverage probability 0.9017 0.9017 0.9017 0.9017 0.9017 

3 29 power 0.0414 0.1972 0.3236 0.1696 0.0427 

  
coverage probability 0.9037 0.9037 0.9037 0.9037 0.9037 

3 30 power 0.0423 0.2046 0.3595 0.2140 0.0449 

  
coverage probability 0.9037 0.9037 0.9037 0.9037 0.9037 

5 26 power 0.0367 0.1471 0.2484 0.1532 0.0358 

  
coverage probability 0.9066 0.9066 0.9066 0.9066 0.9066 

5 27 power 0.0395 0.1650 0.2738 0.1661 0.0402 

  
coverage probability 0.9002 0.9002 0.9002 0.9002 0.9002 

5 28 power 0.0408 0.1853 0.3010 0.1761 0.0396 

  
coverage probability 0.9015 0.9015 0.9015 0.9015 0.9015 

5 29 power 0.0415 0.1977 0.3244 0.1961 0.0426 

  
coverage probability 0.9037 0.9037 0.9037 0.9037 0.9037 

5 30 power 0.0423 0.2045 0.3604 0.2144 0.0447 

  
coverage probability 0.9038 0.9038 0.9038 0.9038 0.9038 

7 26 power 0.0371 0.1474 0.2477 0.1539 0.0362 

  
coverage probability 0.9059 0.9059 0.9059 0.9059 0.9059 

7 27 power 0.0398 0.1643 0.2735 0.1661 0.4010 

  
coverage probability 0.9000 0.9000 0.9000 0.9000 0.9000 

7 28 power 0.0408 0.1860 0.3014 0.1747 0.0392 

  
coverage probability 0.9017 0.9017 0.9017 0.9017 0.9017 

7 29 power 0.0409 0.1980 0.3243 0.1962 0.0429 

  
coverage probability 0.9039 0.9039 0.9039 0.9039 0.9039 

7 30 power 0.0427 0.2051 0.3603 0.2144 0.0442 

  
coverage probability 0.9040 0.9040 0.9040 0.9040 0.9040 
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Table 5.6: Simulation result of power and coverage probability based on clinical 

response under σ=24 

dose n 
 

-10 -5 0 5 10 

3 26 power 0.0026 0.0087 0.0087 0.0065 0.0031 

  
coverage probability 0.9067 0.9067 0.9067 0.9067 0.9067 

3 27 power 0.0045 0.0077 0.0117 0.0087 0.0049 

  
coverage probability 0.9000 0.9000 0.9000 0.9000 0.9000 

3 28 power 0.0042 0.0108 0.0173 0.0126 0.0040 

  
coverage probability 0.9017 0.9017 0.9017 0.9017 0.9017 

3 29 power 0.0052 0.0146 0.0220 0.0136 0.0059 

  
coverage probability 0.9037 0.9037 0.9037 0.9037 0.9037 

3 30 power 0.0071 0.0215 0.0287 0.0190 0.0087 

  
coverage probability 0.9037 0.9037 0.9037 0.9037 0.9037 

5 26 power 0.0026 0.0086 0.0085 0.0063 0.0033 

  
coverage probability 0.9066 0.9066 0.9066 0.9066 0.9066 

5 27 power 0.0043 0.0078 0.0123 0.0091 0.0046 

  
coverage probability 0.9002 0.9002 0.9002 0.9002 0.9002 

5 28 power 0.0046 0.0111 0.0170 0.0126 0.0037 

  
coverage probability 0.9015 0.9015 0.9015 0.9015 0.9015 

5 29 power 0.0052 0.0149 0.0219 0.0137 0.0059 

  
coverage probability 0.9037 0.9037 0.9037 0.9037 0.9037 

5 30 power 0.0072 0.0210 0.0283 0.0190 0.0088 

  
coverage probability 0.9038 0.9038 0.9038 0.9038 0.9038 

7 26 power 0.0027 0.0085 0.0088 0.0058 0.0037 

  
coverage probability 0.9059 0.9059 0.9059 0.9059 0.9059 

7 27 power 0.0044 0.0079 0.0124 0.0092 0.0046 

  
coverage probability 0.9000 0.9000 0.9000 0.9000 0.9000 

7 28 power 0.0043 0.0114 0.0175 0.0122 0.0039 

  
coverage probability 0.9017 0.9017 0.9017 0.9017 0.9017 

7 29 power 0.0052 0.0148 0.0220 0.0138 0.0061 

  
coverage probability 0.9039 0.9039 0.9039 0.9039 0.9039 

7 30 power 0.0072 0.0213 0.0289 0.0190 0.0084 

  
coverage probability 0.9040 0.9040 0.9040 0.9040 0.9040 
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Figure 5.1: Flow chart of simulation process 
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Chapter 6 Discussion and Conclusion 

 

Following the results of simulation, when the variance increases, the error of size 

decrease, and the empirical power also decreases. And the number of doses also affects 

the empirical power. Under the same sample size, when the number of doses increases, 

the empirical power also increases. In summary, when sample size is large enough with 

an reasonable variance, we can choose the dose appropriately. 

From the 

( ) ( )
( ) ( )

2

2

2 2

1 1 1
( ) (1 )( ) ,

1

α
  ∆ − +  − + ∆ − + ± − + +  − − + −   ∑ ∑

R T
R T R T

c R T R R T T

t S x x
x x x x g

g b n n x x x x

we will therefore wish to choose the design so that  

i. t-value is small, 

ii.  the common slope bc is large, 

iii.  
1 1

( )+
R Tn n

 is small, 

iv. ( )R Tx x∆ − +  is small, and 

v. xxS∑  is large. 

Then the relative potency will be small (Finney, 1979).  

When the variance increases, the empirical power decreases. So we could increase 

the sample size to increase empirical power. But when we increase the sample size the 

cost of the experiment also increases.  



 

55 

 

In the Chapter 2, we want to know whether two linear regression lines are parallel. 

In other words we need to check whether the slopes are equal between the two 

regression lines. So we let the null hypothesis be β β=R T and the alternative 

hypothesis be β β≠R T . When the Eq. (2.7) less than( )R Tt 2,  n  n  4α + − , we fail to 

reject the null hypothesis. But it dose not imply that the slopes are equal between the 

two regression lines. Therefore, we can apply the concept of equivalence to formulate 

the null and alternative hypothesis. As a result, when we reject the null hypothesis, it 

ensures that the slopes are equivalent between the two regression lines. 

In the Chapter 3 we proposed the sample size based on clinical endpoints. However, 

the sample size based on relative potency is not provided. This is the future goal of our 

research. In the Chapter 5 we generate the data of AUC under normal assumption with 

mean and standard deviation 1 when we increase the standard deviation to 4 and 8. The 

additional simulation results on the coverage probability, empirical power and empirical 

size are quite consistent. 

In this thesis we assume the clinical response is a continuous variable. But many 

clinical responses are categorical data or censored data. Application of the parallel line 

assay to assess biosimilar products may be adapted using the logistic regression for 

binary data and the proportional hazard model for censored data. However further 

research is required for these applications. 
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Appendix A 

 

The data of numerical example 

 

Table A.1: The data of AUC 

Innovator’s products Biosimilar products 

9.86 9.40 9.17 11.38 10.66 9.96 8.76 8.49 9.50 9.62 

12.68 10.41 11.76 10.03 10.97 9.83 9.98 8.91 8.22 9.50 

9.28 10.35 9.84 8.76 10.16 9.52 9.93 10.70 10.32 8.41 

8.01 10.26 11.33 7.81 9.01 10.18 9.53 10.82 10.04 10.70 

21.34 20.53 20.22 19.42 21.55 19.36 21.95 19.81 19.55 19.72 

20.57 20.92 20.38 19.95 20.46 19.88 19.22 19.93 18.81 20.13 

21.09 19.97 21.07 19.93 20.54 20.16 19.53 19.00 18.74 20.57 

21.28 16.97 21.24 21.00 20.30 19.23 20.03 22.00 21.97 19.02 

30.30 28.68 31.17 29.57 30.88 30.75 29.28 28.67 28.81 29.00 

31.09 30.33 29.83 30.47 29.93 30.33 29.43 31.16 29.10 29.80 

31.75 29.77 29.18 29.84 28.20 29.28 30.66 28.77 30.75 30.23 

30.38 29.59 30.88 29.96 31.80 31.77 29.32 30.76 30.74 29.36 

39.14 40.50 39.70 38.79 39.98 38.00 39.91 40.09 39.87 38.73 

40.65 39.63 39.69 39.29 41.00 40.89 39.08 40.13 42.43 40.73 

39.39 42.07 37.82 39.21 38.24 40.73 39.34 40.86 39.35 41.12 

38.33 39.76 39.37 40.16 41.40 40.28 40.28 40.03 40.78 40.42 

50.45 50.59 48.94 52.19 50.73 50.79 51.51 51.61 48.87 50.73 

50.06 48.31 49.34 51.14 49.50 50.07 50.19 50.47 49.26 50.37 

49.37 49.34 50.03 47.96 49.58 49.62 49.59 48.59 50.56 48.95 

52.67 49.02 48.31 51.21 49.86 50.27 51.05 49.72 49.49 51.87 
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Table A.2: The data of clinical response 

Innovator’s products Biosimilar products 

89.47 75.04 71.79 83.91 85.42 111.51 93.15 71.99 70.92 98.87 

87.86 89.66 76.82 68.58 83.89 88.17 95.34 88.47 97.56 81.15 

84.22 89.12 98.40 93.83 70.86 100.52 89.91 87.78 63.14 80.89 

92.15 84.30 99.79 90.38 98.38 90.40 70.60 84.44 95.64 88.69 

71.87 102.98 77.28 74.22 76.19 101.77 98.56 80.20 78.89 59.28 

78.13 70.26 78.74 65.34 81.08 82.88 80.33 86.99 88.19 78.83 

81.50 73.90 67.57 64.45 86.42 67.17 89.04 72.38 69.72 79.79 

70.35 79.94 103.59 103.25 67.78 83.11 75.70 60.67 91.30 83.61 

78.88 61.20 53.86 55.52 57.78 54.74 82.10 68.82 76.17 63.48 

73.74 62.94 83.74 59.06 67.46 84.83 67.55 78.84 61.37 68.29 

61.19 77.69 55.05 78.82 72.62 50.09 57.12 79.71 64.08 78.60 

91.10 61.63 78.96 78.75 62.19 61.25 93.50 54.45 69.57 63.50 

36.26 59.18 61.37 58.71 45.04 67.11 59.46 59.67 38.09 61.58 

70.99 49.27 61.82 89.42 69.01 67.19 45.64 67.16 55.15 51.97 

69.08 52.42 70.58 52.44 73.72 70.10 67.08 55.87 55.44 75.09 

63.68 63.60 60.71 69.65 65.31 60.81 64.71 67.42 89.67 65.37 

59.52 68.23 69.36 36.53 58.88 65.73 50.96 34.17 24.38 39.24 

50.90 52.33 55.74 41.17 54.52 66.40 69.73 58.73 41.97 44.85 

45.55 45.20 33.16 56.82 37.53 40.27 55.25 43.57 31.50 41.50 

53.32 62.62 46.71 43.96 72.51 33.48 25.41 55.35 50.24 66.22 
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Appendix B 

 

Fortran code for simulation program 

 

!sstats.lib smaths.lib sstatd.lib smathd.lib  

PROGRAM MAIN 

!use IMSL 

INTEGER ISEED,ISEED1, NOUT, NR,i,j,k,q 

REAL XM,XSTD,t(5),x_bar,yt_bar,yr_bar,Syyr,Syyt, 

Sxx,Sxy,nm,m,g,tsc,mu,ml,DFD,DFN,F,FIN,P,DF,TV,TIN 

REAL R1(6),R2(30),R3(30),yr(30),yt(30),x(30) 

EXTERNAL RNNOA, RNSET, UMACH, SSCAL, SADD, FIN , TIN 

CALL UMACH (2, NOUT) 

OPEN(8, FILE='M confidence interval.txt') 

print*,"q=" 

read(*,*) q 

!====產生 100筆亂數==================== 

ISEED = 25557 

!ISEED1 = 234 

CALL RNSET (ISEED) 

!CALL RNSET (ISEED1) 

do k=1,10000 

!=====================t,F value========== 

NR2=30 

 

P=0.9 

DFN=NR2-2 

DFD=NR2-2 

F=FIN(P,DFN,DFD) 

!print*, F  

 

P=0.95 

DF=2*NR2-4 

TV=TIN(P,DF) 

!print*, TV 
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!========= ==================== 

NR1 = 6 

XSTD = 1 

do I=1,5 !產生 mean=10,20,30,40,50 

XM = I*10 

!CALL RNSET (ISEED) 

CALL RNNOA (NR1, R1) 

CALL SSCAL (NR1,XSTD,R1,1) 

CALL SADD (NR1,XM,R1,1) 

!WRITE (NOUT,99999) R1 

99999 FORMAT ('normal random deviates: ', 20F8.4) 

t(I)=SUM(R1)/NR1 

end do 

!================將 5 個 array轉成 100array============== 

NR2 = 30 

average_t=sum(t)/5 

!WRITE(8,*)'Mean of X is', X 

do i = 1, 5 

do j = 1, NR2 

if (((i-1)*6 .lt. j) .and. (j .le. i*6) ) then 

x(j)=t(i) 

end if 

end do  

end do 

!print*,'x array',x 

x_bar=sum(x)/NR2 

!print*,'x_bar',x_bar 

!===========error term ~ N(0,12)===== ========= 

CALL UMACH (2, NOUT) 

NR2 = 30 

XSTD = 36 

XM=0 

!CALL RNSET (ISEED) 

CALL RNNOA (NR2, R2) 

CALL SSCAL (NR2,XSTD,R2,1) 

CALL SADD (NR2,XM,R2,1) 

!WRITE (NOUT,9999) R2 

9999 FORMAT ('error normal random : ', 100F8.4) 
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CALL UMACH (2, NOUT) 

NR2 = 30 

XSTD = 36 

XM=0 

!CALL RNSET (ISEED1) 

CALL RNNOA (NR2, R3) 

CALL SSCAL (NR2,XSTD,R3,1) 

CALL SADD (NR2,XM,R3,1) 

!WRITE (NOUT,999) R3 

 

999 FORMAT ('error normal random : ', 100F8.4) 

!==================x_bar, y_bar====================== 

 

yr=100+q-x+R2 

yt=100-x+R3 

!PRINT*,' yr is', yr 

!PRINT*,' yt is', yt 

!print*,'x_bar',x_bar 

yr_bar=sum(yr)/NR2 

!PRINT*,' yr_bar is',yr_bar 

yt_bar=sum(yt)/NR2 

!PRINT*,' yt_bar is', yt_bar 

!================sum of square=================== 

 

Sxx=sum((x-x_bar)**2) 

!PRINT*,' Sxx is', Sxx 

Syyr=sum((yr-yr_bar)**2) 

!PRINT*,' Syyr is', Syyr 

Syyt=sum((yt-yt_bar)**2) 

!PRINT*,' Syyt is', Syyt 

Sxyr=sum(((x-x_bar)*(yr-yr_bar))) 

!PRINT*,' Sxyr is', Sxyr 

Sxyt=sum(((x-x_bar)*(yt-yt_bar))) 

!PRINT*,' Sxyt is', Sxyt 

!================== ========== 

br=Sxyr/Sxx 

!print*,'br=',br 

ar=yr_bar-br*x_bar 
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!print*,'ar=',ar 

 

bt=Sxyt/Sxx 

!print*,'bt=',bt 

at=yt_bar-bt*x_bar 

!print*,'at=',at 

!============ ============= 

Sr_square=(syyr-(br*sxyr))/(NR2-2) 

!print*,'Sr^2=',Sr_square 

St_square=(syyt-(bt*sxyt))/(NR2-2) 

!print*,'St^2=',St_square 

F1=Sr_square/St_square 

!print*,'F=',F 

 

if(F1 .lt. F)then 

Sp_square=(Sr_square+St_square)/2 

!print*,'Sp^2',Sp_square 

end if 

V=Sp_square*(2/Sxx) 

t1=(abs(br-bt))/(sqrt(v)) 

 

if(t1 < TV) then 

bc=(Sxyr+Sxyt)/(Sxx+Sxx) 

!print*,'bc=',bc 

end if 

ar_new=yr_bar-bc*x_bar 

at_new=yt_bar-bc*x_bar 

!print*,'ar_new=',ar_new 

!print*,'at_new=',at_new 

M=(ar_new-at_new) 

!print*,'M=',M 

sigma_t=sum(((yt-at_new-bc*x)**2)/(NR2-2)) 

!print*,sigma_t 

sigma_r=sum(((yr-ar_new-bc*x)**2)/(NR2-2)) 

var=((1.0/NR2)+(((30-x_bar)**2)/Sxx))*(sigma_t+sigma_r) 

var_root=sqrt(var) 

!print*,var_root 
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mu=M+(tv*sqrt(var)) 

ml=M-(tv*sqrt(var)) 

 

!print*,k,M,ml,mu 

!====================count power========== 

cc1=0 

if((ml > -10) .AND. (mu < 10)) cc1 = 1 

oc1=oc1+cc1 

!====== ======count coverage probability================== 

cc2=0 

if((ml <  q) .AND. (mu >  q)) cc2 = 1 

oc2=oc2+cc2 

!========sample size==================== 

sample=9.1827*(1/(Sp_square*2)) 

size=(sample-(((30-x_bar)**2)/Sxx)) 

sample_size=1/size 

!print*,sample_size 

!write(8,*) k,ml,mu 

!,sample_size 

!write(8,*) oc1,oc2 

end do 

write(*,*)"power=", oc1 

write(*,*)"converage probability=", oc2 

END program 

 

 

 

 

!sstats.lib smaths.lib sstatd.lib smathd.lib  

PROGRAM MAIN 

!use IMSL 

INTEGER ISEED,ISEED1, NOUT, NR,i,j,k,muk,power,oc1,oc2,q 

REAL XM,XSTD,t(5),x_bar,yt_bar,yr_bar,Syyr,Syyt, nm, 

Sxx,Sxy,m,g,tsc,mu,ml,t1,t11,t111,t1111,t11111,DFD,DFN,F,FIN,P,DF,TV,TIN 

REAL R1(7),R11(5),R111(3),R1111(5),R11111(7),R2(27),R3(27),yr(27),yt(27),x(27) 

EXTERNAL RNNOA, RNSET, UMACH, SSCAL, SADD, FIN , TIN 

CALL UMACH (2, NOUT) 
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OPEN(8, FILE='M confidence interval.txt') 

 

print*,"q=" 

read(*,*) q 

!====產生 100筆亂數==================== 

ISEED = 12345 

!ISEED1 = 234 

CALL RNSET (ISEED) 

!CALL RNSET (ISEED1) 

do k=1,10000 

!============================================= 

NR2=27 

P=0.9 

DFN=NR2-2 

DFD=NR2-2 

F=FIN(P,DFN,DFD) 

!print*, F  

 

P=0.95 

DF=2*NR2-4 

TV=TIN(P,DF) 

!print*, TV 

!================mean =10  ========================= 

NR1 = 7 

XSTD = 1 

XM = 10 

!CALL RNSET (ISEED) 

CALL RNNOA (NR1, R1) 

CALL SSCAL (NR1,XSTD,R1,1) 

CALL SADD (NR1,XM,R1,1) 

!WRITE (NOUT,99999) R1 

99999 FORMAT ('normal random deviates: ', 20F8.4) 

t1=SUM(R1)/NR1 

!write(*,*)"-------------t1" 

!write(*,*) t1 

!==================mean =20================ 

NR11 = 5 

XSTD = 1 
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XM = 20 

!CALL RNSET (ISEED) 

CALL RNNOA (NR11, R11) 

CALL SSCAL (NR11,XSTD,R11,1) 

CALL SADD (NR11,XM,R11,1) 

!WRITE (NOUT,99998) R11 

99998 FORMAT ('normal random deviates: ', 20F8.4) 

t11=SUM(R11)/NR11 

!write(*,*)"-------------t11" 

!write(*,*) t11 

!===================mean =30=================== 

NR111 = 3 

XSTD = 1 

XM = 30 

!CALL RNSET (ISEED) 

CALL RNNOA (NR111, R111) 

CALL SSCAL (NR111,XSTD,R111,1) 

CALL SADD (NR111,XM,R111,1) 

!WRITE (NOUT,99997) R111 

99997 FORMAT ('normal random deviates: ', 20F8.4) 

t111=SUM(R111)/NR111 

!write(*,*)"-------------t111" 

!write(*,*) t111 

!====================mean =40==================== 

NR1111= 5 

XSTD = 1 

XM = 40 

!CALL RNSET (ISEED) 

CALL RNNOA (NR1111, R1111) 

CALL SSCAL (NR1111,XSTD,R1111,1) 

CALL SADD (NR1111,XM,R1111,1) 

!WRITE (NOUT,99996) R1111 

99996 FORMAT ('normal random deviates: ', 20F8.4) 

t1111=SUM(R1111)/NR1111 

!write(*,*)"-------------t1111" 

!write(*,*) t1111 

!=====================mean =50===================== 

NR11111 = 7 
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XSTD = 1 

XM = 50 

!CALL RNSET (ISEED) 

CALL RNNOA (NR11111, R11111) 

CALL SSCAL (NR11111,XSTD,R11111,1) 

CALL SADD (NR11111,XM,R11111,1) 

!WRITE (NOUT,99995) R11111 

99995 FORMAT ('normal random deviates: ', 20F8.4) 

t11111=SUM(R11111)/NR11111 

!write(*,*)"-------------t11111" 

 

!write(*,*) t11111 

 

!===== ========combine array============================= 

x=(/R1,R11,R111,R1111,R11111/) 

x_bar=(t1+t11+t111+t1111+t11111)/5 

!write(*,*)"-------------x" 

 

!write(*,*) x 

 

!write(*,*) x_bar 

 

!===========error term ~ N(0,12)============= ========= 

CALL UMACH (2, NOUT) 

NR2 = 27 

XSTD = 12 

XM=0 

!CALL RNSET (ISEED) 

CALL RNNOA (NR2, R2) 

CALL SSCAL (NR2,XSTD,R2,1) 

CALL SADD (NR2,XM,R2,1) 

!WRITE (NOUT,9999) R2 

9999 FORMAT ('error normal random : ', 100F8.4) 

CALL UMACH (2, NOUT) 

NR2 = 27 

XSTD = 12 

XM=0 

!CALL RNSET (ISEED1) 
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CALL RNNOA (NR2, R3) 

CALL SSCAL (NR2,XSTD,R3,1) 

CALL SADD (NR2,XM,R3,1) 

!WRITE (NOUT,999) R3 

 

999 FORMAT ('error normal random : ', 100F8.4) 

!==================x_bar, y_bar==================== 

yr=100+q-x+R2 

yt=100-x+R3 

!PRINT*,' yr is', yr 

!PRINT*,' yt is', yt 

!print*,'x_bar',x_bar 

yr_bar=sum(yr)/NR2 

!PRINT*,' yr_bar is',yr_bar 

yt_bar=sum(yt)/NR2 

!PRINT*,' yt_bar is', yt_bar 

!================sum of square=========================== 

 

Sxx=sum((x-x_bar)**2) 

!PRINT*,' Sxx is', Sxx 

Syyr=sum((yr-yr_bar)**2) 

!PRINT*,' Syyr is', Syyr 

Syyt=sum((yt-yt_bar)**2) 

!PRINT*,' Syyt is', Syyt 

Sxyr=sum(((x-x_bar)*(yr-yr_bar))) 

!PRINT*,' Sxyr is', Sxyr 

Sxyt=sum(((x-x_bar)*(yt-yt_bar))) 

!PRINT*,' Sxyt is', Sxyt 

!====================== =============== 

br=Sxyr/Sxx 

!print*,'br=',br 

ar=yr_bar-br*x_bar 

!print*,'ar=',ar 

 

bt=Sxyt/Sxx 

!print*,'bt=',bt 

at=yt_bar-bt*x_bar 

!print*,'at=',at 
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!======================= ====================== 

Sr_square=(syyr-(br*sxyr))/(NR2-2) 

!print*,'Sr^2=',Sr_square 

St_square=(syyt-(bt*sxyt))/(NR2-2) 

!print*,'St^2=',St_square 

F1=Sr_square/St_square 

!print*,'F=',F 

 

if(F1 .lt. F)then 

Sp_square=(Sr_square+St_square)/2 

!print*,'Sp^2',Sp_square 

end if 

V=Sp_square*(2/Sxx) 

t1=(abs(br-bt))/(sqrt(v)) 

 

if(t1 < TV) then 

bc=(Sxyr+Sxyt)/(Sxx+Sxx) 

!print*,'bc=',bc 

end if 

ar_new=yr_bar-bc*x_bar 

at_new=yt_bar-bc*x_bar 

!print*,'ar_new=',ar_new 

!print*,'at_new=',at_new 

M=(at_new-ar_new)/bc 

!print*,'M=',M 

g=((TV**2)*Sp_square)/((bc**2)*(Sxx+Sxx)) 

!print*,'g=',g 

tsc=(TV*sqrt(Sp_square))/abs(bc) 

nm=(2.0/NR2)+((M**2)/(Sxx+Sxx)) 

!print*,nm 

mu=M+(tsc*sqrt(nm)) 

ml=M-(tsc*sqrt(nm)) 

 

!print*,k,M,ml,mu 

!====================count power=================== 

cc1=0 

if((ml > -10) .AND. (mu < 10)) cc1 = 1 

oc1=oc1+cc1 
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!==== =======count converage probability=============== 

cc2=0 

if((ml < q) .AND. (mu > q)) cc2 = 1 

oc2=oc2+cc2 

 

!========sample size============ 

sample=9.1827*(1/(Sp_square*2)) 

size=(sample-(((30-x_bar)**2)/Sxx)) 

sample_size=1/size 

 

!print*,sample_size 

 

 

write(8,*) k,ml,mu 

!,sample_size 

!write(8,*) oc1,oc2 

end do 

write(*,*)"power=", oc1 

write(*,*)"coverage probability=", oc2 

END program 

 

 


