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VERIFICATION AND SCHEDULABILITY ANALYSIS
FOR CYBER-PHYSICAL SYSTEMS WITH MULTIPLE
WEAKLY-HARD CONSTRAINTS

Student: Yi-Ting HSIEH Advisor: Dr. Chung-Wei Lin

Department of Computer Science and Information Engineering
National Taiwan University

Abstract

A weakly-hard fault model can be captured by an (m,k) constraint, where
0 < m < k, meaning that there are at most m bad events (faults) among any k
consecutive events. In this thesis, we use a weakly-hard fault model to constrain the
occurrences of faults in system inputs. We develop approaches to verify properties
for all possible values of (m, k), where k is smaller than or equal to a given K, in
an exact and efficient manner. By verifying all possible values of (m, k), we define
weakly-hard requirements for the system environment and design a runtime monitor
based on counting the number of faults in system inputs. If the system environ-
ment satisfies the weakly-hard requirements, the satisfaction of desired properties
is guaranteed; otherwise, the runtime monitor can notify the system to switch to
a safe mode. This is especially essential for cyber-physical systems which need to
provide guarantees with limited resources and the existence of faults. Experimental
results with discrete second-order control, network routing, vehicle following, and
lane changing demonstrate the generality and the efficiency of the proposed ap-

proaches. Moreover, considering multiple systems sharing a processor, a scheduler
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is needed. Since properties of systems should be guaranteed during the scheduling
process, system designers can assign weakly-hard constraints from the verification
results to systems. The scheduler has to make sure the resources distribution can
satisfy the constraints. We also propose the schedulability analysis method under
multiple weakly-hard constraints and compare our method with other schedulabil-
ity analysis methods to demonstrate the generality. The verification can give the
strategy to system design ,and the schedulability analysis can help system designers

analyze whether the strategy is feasible or not.

Keywords: Formal verification, runtime monitoring, weakly-hard models, schedu-

lability analysis
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Chapter 1

Introduction

1.1 Motivations

Cyber-physical systems often tolerate some faults and can still maintain sys-
tem properties. In this thesis, we constrain the fault occurrence of systems with
weakly-hard constraints. Weakly-hard models have different definitions and appli-
cations in different works [1-3,5,9,10,12,18,24]. A weakly-hard constraint in this
thesis is formatted as (m, k), where among any k consecutive events, there are at
most m bad events (faults). We verify properties of systems under the weakly-hard
constraint and bring benefits to systems. The tolerance of the bad event can reduce
the computation load and the resource can be scheduled to other critical systems.
With the verification result, we can optimize resource usage to guarantee system

properties.

The verification result under the weakly-hard constraint brings benefits to
system designers of cyber-physical systems. If systems can ensure that the fault
occurrences satisfy the weakly-hard constraint which guarantees properties, system
properties will be guaranteed. If not, system designers should apply a runtime
monitor to track whether systems satisfy the weakly-hard constraint. When systems
violate the constraint, the runtime monitor can change systems into safe mode and

inform the engineers.
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For example, applications of connected vehicles, such as intersection man-
agement and cooperative adaptive cruise control, rely on periodic messages from
other vehicles or roadside units. However, a message may be missing due to net-
work faults or even malicious attacks. With the verification results, a connected
vehicle can monitor the number of missing messages during runtime. If the corre-
sponding (m, k) constraint is violated, the connected vehicle should switch to a safe
mode (e.g., slowing down or stopping immediately). It should be emphasized that,
in practice, the cost of a network without missing messages is too high, or even it
may not be possible to predict how the environment behaves, so the satisfaction of
the (m, k) constraint cannot be guaranteed. Therefore, a runtime monitor for the

(m, k) constraint is desired.

1.2 Related Works

Hamdaoui et al. [10] first introduced the notion of weakly-hard constraints
and gave the schedulability analysis to such systems with dynamic priority assign-
ment. Researchers applied the weakly-hard model to different systems, such as
real-time systems [2] and network systems [16]. In this thesis, we also applied our

approaches to a use case related to network systems.

In this thesis, we consider safety properties verification for weakly-hard cyber-
physical systems. [7] proposed a formal analysis for real-time systems by representing
them as a network of hybrid automata, and verified by SpaceEx [8]. [6] further
reduces the verification problem into software verification. On the other hand, [15]
studied the verification problem of weakly-hard systems with nonlinear dynamics
and proposed a technique to convert infinite-time safety problems into a finite one.
[14] further improved the converting of the infinite-time safety problem with graph

theory. In recent works, [23] proposed different approaches to verify the discrete
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systems under multiple weakly-hard constraints in an efficient way.

The fundamental difference between the above works, and this thesis, is that
we focus on discrete systems rather than continuous systems. Since a variety of
systems are discrete in practice, we believe the study of specific discrete systems
is necessary. Benefiting from this, our technique is able to generate sound and
complete verification results with respect to the weakly-hard constraints for large-

scale problems.

[3,5,17,22] focused on the priority assignment algorithm of the scheduling
problem and the schedulability analysis under weakly-hard constraints. [22] used
fixed priority method while [5,17] applied dynamic priority assignment method. To
bound the temporal behavior of overloaded systems, [1,9,11,13,19-21,24], have

studied the problem under weakly-hard constraints.

1.3 Contributions

In this thesis, given a labelled transition system S, a property P, and a
positive integer K, we aim to develop a runtime monitor to verify whether the
environment satisfies a subset of the (m, k) constraints, where 1 < m < k < K and
the subset is sufficient to enforce P, i.e., if the environment satisfies the subset of
the (m, k) constraints, it implies that S guarantees to satisfy P; otherwise, S cannot
guarantee to satisfy P, which should lead S to switch to a safe mode. Unlike some
existing runtime-monitoring approaches (without an explicit model of S), this thesis
assumes that the model of S is given, but the satisfaction of an (m, k) constraint
can only be verified during runtime.

The runtime monitor relies on a safety table which stores the satisfaction con-

K(K+1)

5 constraints

dition of property P under each (m, k) constraint. As there are
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in the safety table, a straightforward approach evaluating each (m, k) constraint one

by one needs to verify a property —K(Igﬂ)

times, where each individual verification
may be expensive to carry out. To remedy this problem, we propose approaches to

compute the safety table in a more efficient way.

The second part of this thesis considers a scheduling problem under weakly-
hard constraints. The first part gives the verification result to systems. However,
if the consecutive events of multiple systems are the executive jobs and share the
same processor, a scheduler will be needed to handle them. Since each system can
tolerate some jobs missed (faults), the purpose of the scheduler is to assign the jobs
to the processor and maintain the satisfaction of the weakly-hard constraints which

can ensure properties of each system.

Considering the scheduling process, the consecutive events of a system in
this thesis will be formatted as a task 7; with period P; and execution time E;. The
scheduling process is preemptive. That is, P; can also be the deadline of a job since
at each timestamp, the scheduler might assign the different job to the processor. If
a job can not be completed before P;, it will be considered missing the deadline,

which is also a fault to a system.

With the safety table, system designers can determine a weakly-hard con-
straint for systems which will give the least overhead to the scheduling process.
However, it is also important that the scheduler can appropriately schedule the
taskset. In this thesis, we emphasize the schedulability analysis, which will analyze
whether the taskset is schedulable given the taskset, weakly-hard constraints, and
the scheduler (priority assignment method). If the taskset is schedulable, we could

ensure properties of all systems.

Instead of considering a single weakly-hard constraint for one task, in this
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thesis, we consider multiple weakly-hard constraints for one task, which is a more
generalized scenario for the scheduling problem. A task with multiple weakly-hard
constraints denotes that at each timestamp, the task only needs to satisfy any
one of the constraints. Considering multiple constraints can give benefits to sys-
tem designers. For example, if (mq, k1), (ma, ko) both ensure system properties, and
(mq, k1), (ma, ko) are not schedulable in single-constraints scenario, it is possible that
considering both (my, k1), (ma2, k2) in the scheduling process will make it schedula-
ble. As the result, considering multiple constraints can bring flexibility to system

designers.

The main contributions of this thesis include:

e Based on the existing theorems that state various logical relationships between
weakly-hard constraints, we propose approaches that require verifying at most

2K times to compute this satisfaction boundary.

e Based on the resulting satisfaction boundary, we define weakly-hard require-
ments for the system environment and design a lightweight runtime monitor

that dynamically checks the satisfaction of the weakly-hard requirements.

e We prove that, without being given a satisfaction boundary as an input, an
optimal deterministic approach does not exist. Then, given a satisfaction
boundary as an input, we introduce an optimal approach which can be used
to appraise the efficiency of the proposed approaches. The correctness of the

optimal approach and the uniqueness of its evaluated weakly-hard constraints.

e We consider a special case of reachability of finite-state machines. Based on
the existing layered Breadth-First Search (BFS) approach, we propose a more

efficient dual-layered Breadth-First Search (BFS) approach which computes
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Table 1.1: The overview of the proposed approaches.

| Property & System || Single (m, k) Constraint |

Multiple (mn, k) Constraints |

Reachability &
Finite-State Machine

Mask-Compressing
(Section 5.2)

Layered BFS, Dual-Layered BFS
(Sections 5.3 and 5.4)

General Property &
General System

Not
Covered

Algorithms 1, 2, and 3
(Sections 3.2, 3.3, and 3.4)

the satisfaction boundary for all (m, k) constraints (1 < m < k < K) with the

same computational complexity as evaluating a single (m, K) constraint.

e We propose the schedulability analysis method for multiple weakly-hard con-

straints given a general priority assignment method.

e Experimental results with discrete second-order control, network routing, and

lane changing demonstrate the generality and the efficiency of the proposed

approaches.

e Comparing our schedulability analysis method with another method to demon-

strate the generality and the similar worst-case analysis.

We overview the existing and proposed approaches in this thesis in Table 1.1.

There are six approaches: the monotonic approach (Algorithm 1) in Section 3.2, the

monotonic approach with dynamic upper bound of satisfaction boundary (Algo-

rithm 2) in Section 3.3, the lowest-cast-first heuristic (Algorithm 3) in Section 3.4,

the mask-compressing approach in Section 5.2, the layered BFS approach in Sec-

tion 5.3, and the dual-layered BFS approach in Section 5.4. The first three ap-

proaches are for general properties, general systems, and multiple weakly-hard con-

straints, with different evaluation orders. They decide the orders of evaluating the

weakly-hard constraints and need to call a verification approach for a single weakly-

hard constraint. Note that the first three approaches assume that one can verify
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a property P under a single weakly-hard constraint — this thesis does not cover
how to achieve that, except in the special case of reachability for finite-state ma-
chines. The last three approaches are exactly for the special case of reachability for
finite-state machines. The mask-compressing approach is for a single weakly-hard
constraint, and thus it can be plugged into (called by) the first three approaches,
while the layered BF'S approach and the dual-layered BFS approach is for multiple

weakly-hard constraints.

Note that the monotonic approach (Algorithm 1) in Section 3.2, the mask-
compressing approach in Section 5.2, and the layered BFS approach in Section 5.3

are the existing approaches refer to [23].

1.4 Organization

The thesis is organized as follows. Chapter 2 provides the problem for-
mulation. Chapter 3 describes how we solve the problem for general properties
and systems and introduces a runtime monitor. Chapter 4 discusses optimal ap-
proaches. Chapter 5 considers the special case of reachability for finite-state ma-
chines. Chapter 6 describes our schedulability analysis method. Chapter 7 presents

the experimental results. Chapter 8 concludes the thesis.
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Chapter 2

System Model and Problem Formulation

2.1 Weakly-Hard Verification

In this thesis, we consider a labelled transition system S = (Q,%, R, Qo)
where () is the set of states, 2 is the set of alphabet, R C ) x X x () is the transition
relation, and Qg C @ is the set of initial states. Without loss of generality, a subset
of alphabet represents input events {0,1} C X, where 0 and 1 represent a normal
and faulty environmental event, respectively. We use o € ¥* = {0, 1}* to represent
an input trace. We are interested in evaluating whether a property P is satisfied

with inputs under the constraints of weakly-hard fault models.

Definition 1. Weakly-Hard Fault Model. A weakly-hard fault model is defined

by (m, k), meaning that there are at most m faulty events (denoted as 1’s) among

any k consecutive events in the input trace. The corresponding constraint is denoted

as W(m, k).

Based on the definition, an input trace o = W (m, k) if and only if ¢ has at

most m 1’s in any size-k window of o.

Definition 2. Weakly-Hard Constraint Set. Given K € Z*, the weakly-hard

constraint set is defined as C(K) = {W(m,k) | 1 <m <k < K}.

Given a system S, a property P, and a positive integer K, the goal in this

thesis is to develop a runtime monitor to verify whether the environment satisfies a
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Figure 2.1: (a) An example safety table and (b) its satisfaction boundary.

subset of C(K'), where the subset is sufficient to enforce P, i.e., if the environment
satisfies the subset of C(K), it implies that S guarantees to satisfy P; otherwise,
S cannot guarantee to satisfy P, which should lead S to switch to a safe mode.
We do not consider the case of m = 0 as, if there is no faulty event, S should be
designed to satisfy P, which should be regarded as a design-time problem (although

our approach can also be used to handle this special case situation).

The runtime monitor relies on a safety table, which stores the satisfaction

condition of P under each W(m, k) in C'(K). A safety table is defined as follows.

Definition 3. Safety Table. Given K € 77", a safety table T € {True, False,
N/AYEXE s defined as

True ifm <k andVo = W(m,k), S P;
Tm,k| = { False if m <k and Jo | W(m,k), S |~ P; (2.1)
N/A  ifm > k.
For m > k, T'|m, k| is not applicable as the corresponding weakly-hard fault

model is undefined. Note that a safety table is computed off-line in design phase, and
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the satisfaction of P under each W (m, k) in C(K') needs to be stored and accessed

during runtime. An example safety table is shown in Figure 2.1(a).

Problem 1. Verification. Given K € Z" and a transition system S, compute the
safety table T.

2.2 Weakly-Hard Scheduling

Definition 4. Task model Each task 7; is formally defined as (E;, P;, C;), where

e [; is the execution time of a job of task ;.
e P is the period of a job of task ;.

o C; is the multiple weakly-hard constraints set of task ;.

The multiple weakly-hard constraints set C; can be represented as C; =

{(mil, kil); ey (mm, ]{Zm>} where VJ <n, my; < km

Each task in the taskset considers the latest job as the most useful one. That
is, if a job misses its deadline, a system will discard the incomplete job and try to

complete the latest one.

Definition 5. Priority Assignment Method. A priority assignment method

will assign the priority to each job for the task at each timestamp. The scheduling

process at each timestamp will execute a job with the highest priority.

A priority assignment method can be a fixed-priority method that fixes the
priority for each task. It can also be a dynamic-priority method that dynamically
adjusts the priority at each time stamp. Note that a job can face different priorities

before completing by the definition.
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Problem 2. Schedulability Analysis. Given a taskset with N tasks and a prior-

ity assignment method, output whether the taskset is schedulable under the worst-case

scenario.
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Chapter 3

General Approaches and Runtime Monitor Design

In this section, we first define the strength of weakly-hard constraints (Section 3.1).
We then derive the fundamental theorems of logical relationships between weakly-
hard constraints and propose an algorithm to compute the safety table and its cor-
responding satisfaction boundary based on these theorems (Section 3.2). We further
derive advanced theorems of logical relationships between weakly-hard constraints
and propose an improved algorithm (Section 3.3) and a lowest-cost-first heuristic
(Section 3.4) taking all properties into account. Based on the computed safety table

and the satisfaction boundary, we can design a runtime monitor (Section 3.5).

Section 3.1 and 3.2 are the previous works refer to [23]. To introduce our
further approaches and experimental results, we keep the notations and detailed

algorithms for these sections.

3.1 Strength of Weakly-Hard Constraint

Definition 6. Strength of Weakly-Hard Constraints. Given two weakly-hard

constraints W(m, k) and W(m/, k'), we define that W (m, k) is stronger than W (m/, k'),
denoted as W (m, k) = W (m', k"), if and only if any input trace that satisfies W (m, k)
also satisfies W (m', k').

Understanding the logical relationships between constraints allows us to de-

12
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termine the satisfaction of properties under some W (m, k) constraints directly from
the known verification results of other W (m/, k') constraints. From an algorithm
design perspective, exploiting these relationships by evaluating the constraints in a

proper order leads to a significant improvement in efficiency.

3.2 Monotonic Approach

Theorem 1. For any m,m' k € Z*, m <m/ <k, W(m, k) = W(m' k).

Proof. By definition, for any input trace o = W (m, k), it has at most m 1’s in any

size-k window of o. Since m < m/, it follows that o = W(m/, k). O

Implication 1. For any m,m'. k € ZT,m < m’ <k, if a property P is unsatisfied
under W(m, k), then P is unsatisfied under W (m/ k); if a property P is satisfied
under W (m/', k), then P is satisfied under W(m, k).

Theorem 2. For any m, k. k' € ZT . m <k <k, W(m, k) = W(m, k).

Proof. By definition, for any input trace o = W (m, k), it has at most m 1’s in any
size-k window of o. If we reduce the window size to &/, the maximum number of 1’s in

the window only remains the same or decreases, so it follows that o = W (m, k'). O

Implication 2. For any m,k, k' € ZT,m < k' < k, if a property P is unsatisfied
under W(m, k), then P is unsatisfied under W (m,k'); if a property P is satisfied
under W(m, k'), then P is satisfied under W(m, k).

By Implication 1, the problem of computing a safety table can be reduced
to the problem of computing the satisfaction boundary of the safety table. The

satisfaction boundary is defined as follows.

doi:10.6342/NTU202200995



14

Algorithm 1 Monotonic Approach

1: procedure GET_SATISFACTION_BOUNDARY (S, P, K)
2 B+ ]

3 m <0

4 for k <+ 1 to K do > Get satisfaction boundary for each k
5: while m < k do

6 if S}~ P under W(m + 1, k) then

7 break

8 end if

9: m+—m+1

10: end while

11: Blk] <+ m

12: end for

13: return B

14: end procedure

Definition 7. Satisfaction Boundary. For each k, the satisfaction boundary

B(k) is the mazimum m such that T|m, k| (in the safety table) is True.

The satisfaction boundary of the safety table in Figure 2.1(a) is shown in
Figure 2.1(b). The reduction is crucial because we only need to store the satisfaction

boundary rather than the whole safety table for the runtime monitor.

Implications 1 and 2 imply that evaluating constraints in a monotonic manner
(i.e., increasing m and increasing k until a given K) can compute the satisfaction
boundary without evaluating all constraints in C'(K). We assume that we can verify
a property P under a single W(m, k) — an example of verifying reachability under
a single W (m, k) is described in Chapter 5. We propose the monotonic approach
(Algorithm 1) to compute the satisfaction boundary B(k) for each k < K. For each
k < K, the algorithm increases m until P is unsatisfied and obtains B(k) (Lines 5-
11). By Implication 1, since P is unsatisfied under W (B(k) + 1, k), P is unsatisfied
under W(m, k) where m > B(k) + 1, and thus there is no need to verify P under

W(m, k) where m > B(k) + 1. For example, as shown in Figure 3.1(a), if P is
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unsatisfied under W (3,4), then P is unsatisfied under W (4, 4), which does not need
to be evaluated. Then, k is increased by 1 (Line 4), and the same procedure repeats
and starts with m = B(k—1)+1 (not m = 1). By Implication 2, since P is satisfied
under W(B(k —1),k—1), P is satisfied under W (B(k — 1), k), and thus there is no
need to verify P under W(B(k — 1), k). For example, as shown in Figure 3.1(b), if
P is satisfied under W (3,4), then P is satisfied under W (3,5) (and W (3, k) where
k > 5), which does not need to be evaluated. The algorithm terminates when B(k)

is computed for each k < K, and the satisfaction boundary is returned (Line 13).

Assuming the complexity of verifying P under a single weakly-hard constraint
is O(X), the complexity of Algorithm 1is O(2K - X) = O(K - X), since both m, k
are non-decreasing in the algorithm and bounded above by K. It is a significant

improvement over brute-forcing each W (m, k) in C(K), which has the complexity

O(K?- X).

3.3 Monotonic Approach with Dynamic Upper Bound of
Satisfaction Boundary

Theorem 3. For any m,k,x € ZT,m < k,x > 2, W(m, k) = W(xm, zk).

Proof. For any input trace o |= W (m, k) and size-(xk) window of o, the window can
be constructed by z size-k windows, and each of which has at most m 1’s. Thus, there

are at most xm 1’s in the size-(xk) window, and it follows that o = W (zm, xk). O

Implication 3. For any m,k,z € ZT,m < k,x > 2, if a property P is unsatisfied
under W(m, k), then P is unsatisfied under W (xm, xk); if a property P is satisfied
under W (xm, xk), then P is satisfied under W (m, k).

Theorem 4. For any m,k,x € ZT,m < k, W(m,k) = W(m+ x,k + x).
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Figure 3.1: An illustration of Algorithms 1 (which applies Implications 1 and 2 only)
and 2 (which applies Implications 1, 2, 3, and 4). To have a clear comparison, we
focus on the implications of W (3,4) only. (a) If P is unsatisfied under W (3,4), then
P is unsatisfied under W (4,4). Algorithm 2 further implies that P is unsatisfied
under W (6,8) and W (m, k) where k > 5 and m > k — 1. (b) If P is satisfied under
W (3,4), then P is satisfied under W (3, k) where k > 5.

Proof. For any input trace o = W(m, k) and size-(k + x) window of o, the window
can be constructed by combining two windows of sizes k and x, respectively. Since
o = W(m,k), there are at most m 1’s in the size-k window. On the other hand,
there are at most = 1’s in the size-x window. Thus, there are at most (m+x) 1’s in

the size-(k 4+ x) window, and it follows that o = W(m + x, k + x). O

Implication 4. For any m,k,x € Z7,m < k, if a property P is unsatisfied under
W (m, k), then P is unsatisfied under W(m + x, k + x); if a property P is satisfied
under W(m + x,k + x), then P is satisfied under W (m, k).
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Algorithm 2 Monotonic Approach with Dynamic Upper Bound of Satisfaction
Boundary

1: procedure GET_SATISFACTION_BOUNDARY (S, P, K)

2: B+ [ ]

3: m<+ 0

4: for k< 1 to K do > Initialize satisfaction boundary
5: Blk] =k

6: end for

7: for k < 1to K do > Get satisfaction boundary for each k
8: while m < Blk] do

9: if S}~ P under W(m + 1, k) then

10: T2

11: while z - k£ < K do > Implication 3
12: Blzk] < min(Bzk],z - (m+ 1) — 1)

13: r—zr+1

14: end while

15: T+ 1

16: while £k + 2 < K do > Implication 4
17: Blk + 2] < min(Blk+z|,(m+1)+x —1)

18: ré—zr+1

19: end while

20: break

21: end if

22: m<+—m+1

23: end while

24: B[k] + min(B[k], m)

25: end for

26: return B

27: end procedure

Implications 3 and 4 imply the satisfaction of a property P beyond the same
m or k. Integrating with the previously proposed monotonic approach which in-
creases m and k, we exploit the implications and propose the monotonic approach
with dynamic upper bound of satisfaction boundary (Algorithm 2) to compute the
satisfaction boundary B(k) for each k& < K. The main difference between Algo-

rithms 1 and 2 is that the former one considers the search range for the satisfaction
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Algorithm 3 Lowest-Cost-First Heuristic

1: procedure GET_SAFETY_TABLE(S, P, K)

2 T < {undefined} > Initialize as undefined for the safety table
3 while 7" has undefined element do

4: Select the lowest-cost undefined W(m, k)

5: if S = P under W(m, k) then

6 T|m, k| < True

7 else

8 T'[m, k] < False

9 end if

10: Recursively update T' by Implications 1, 2, 3, and 4
11: end while

12: return 7'

13: end procedure

boundary from an m to k, while the latter one dynamically reduces the search range

whenever P is unsatisfied under a constraint.

Specifically, suppose the algorithm is in the process of computing B(k), and P
is unsatisfied under W(m+1, k) (Line 9). By Implication 3, P is unsatisfied for each
W(z-(m+1),zk),x > 2, and thus z-(m~+1)—1is an upper bound of B(zk) (Lines 10—
14). Similarly, by Implication 4, P is unsatisfied for each W ((m+1)+x,k+x),x €
Z*, and thus (m+1)+2z—1 is an upper bound of B(k+z) (Lines 15-19). An example
is shown in Figure 3.1(a), if P is unsatisfied under W (3,4), then P is unsatisfied
under W (4,4), W(6,8), and W (m, k) where k > 5 and m > k — 1, which do not
need to be evaluated. If P is satisfied under W (3,4), then the implication is the

same as Algorithm 1, as shown in Figure 3.1(b).

3.4 Lowest-Cost-First Heuristic

Since the implications of the theorems do not necessarily restrict the order

of evaluating each W(m, k) in C(K), the efficiency can be further improved by a
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good evaluation order. We suppose that we can estimate the verification (time)
cost for each W(m, k) in C(K), e.g., based on the complexity as a function of m
and k. Intuitively, evaluating lower-cost constraints which implies more constraints
or higher-cost constraints is preferred. We propose the lowest-cost-first heuristic
(Algorithm 3) which iteratively selects a not-yet-evaluated constraint in C(K) by the
estimated cost (Line 4), evaluates it (Lines 5-9), and processes all implied constraints
after each evaluation (Line 10). The lowest-cost-first heuristic, though not optimal,
provides the flexibility of evaluating constraints in C'(K) by different orders. The
lowest-cost-first heuristic, though not optimal, provides the flexibility of evaluating
constraints in orders different from the previous monotonic approaches. System

designers can decide the order according to the system features.

3.5 Runtime Monitor Design

Based on the satisfaction boundary computed above, we design a runtime
monitor to verify whether the environment satisfies each W(m, k) in C(K). De-
pending on the satisfaction boundary, we can then determine whether a property
P can be guaranteed. If P cannot be guaranteed, we can switch the system to a
safe mode. As shown in Algorithm 4, the runtime monitor only needs to store the
satisfaction boundary B][|, instead of the safety table, in advance, reducing the space

complexity from O(K?) to O(K).

Besides the satisfaction boundary, the runtime monitor only needs two ad-
ditional arrays, I[k] for the last k-th inputs and N;[k] for the number of 1’s among
the last k inputs, where 1 < k£ < K. During runtime (Lines 7-17), the runtime
monitor reads an input (Line 8) and, for each k (Line 9), it updates the number of
I’s among the last k inputs, N;[k]| (Line 10), and checks if it exceeds the satisfaction

boundary Blk] (Line 11). If yes, it means that P is not guaranteed to be satisfied,
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Algorithm 4 Runtime Monitoring

1: procedure RUNTIME_MONITORING(K, B]))

2 for k <+ 1 to K do

3 Ikl + 0 > Store the last k-th input
4 Ni[k] <0 > Store the number of 1’s among the last k& inputs
5: end for

6 10

7 while 1 do > During runtime
8 x = Get_Input()

9: for k < 1 to K do
10: Ni[k] < Ny[k] + 2 = I[(i — k)% K]
11: if Ni[k] > B[k| then > Exceed the satisfaction boundary
12: Switch to a safe mode
13: end if
14: end for
15: I[i] + x
16: i (i +1)NK

17: end while
18: end procedure

and the system switches to a safe mode (Line 12). The runtime monitor then stores

the input (Line 15) and continues monitoring.
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Chapter 4

Discussion on Optimal Approaches

In this section, we define optimal approaches. The main purposes are to appraise the
efficiency of the proposed approaches in Chapter 3 (by checking if any evaluation
of weakly-hard constraints is actually not necessary) and demonstrate that there
exists no deterministic algorithm that computes an optimal verified set without
being given a satisfaction boundary as an input, i.e., an optimal approach needs to
know the satisfaction boundary in advance. It should be emphasized that an optimal
approach cannot be applied to solve the problem defined in Chapter 2 where the

satisfaction boundary is not given.

4.1 Definitions

Definition 8. Verified Set. Given a system, a property, and an approach, the
verified set of the approach is the set of weakly-hard constraints verified (not by

implications) by the approach to compute the satisfaction boundary.

Definition 9. Implied Set. Given a system, a property, and an approach, the
implied set of the approach is the set of weakly-hard constraints implied by the weakly-

hard constraints in the verified set.

Based on the definitions, the union of the verified set and the implied set is

C(K). Assuming that the verification cost for each weakly-hard constraint can be

21
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1, its complexity, or its runtime, we can define an optimal approach and an optimal

verified set as follows:

Definition 10. Optimal Approach. For any system and any property, an optimal

approach computes the satisfaction boundary and minimizes the total verification

cost.

Definition 11. Optimal Verified Set. Given a system and a property, the veri-

fied set of an optimal approach is an optimal verified set.

Theorem 5. There exists no optimal approach without being given a satisfaction

boundary as an input.

Proof. Given K € Z*, for any (deterministic) approach without being given a sat-
isfaction boundary, the first verified W (m, k) is always the same. Since there is no
single W (m, k) that appears in all the optimal verified sets after we enumerate all
possible satisfaction boundaries, the first verified W (m, k) is not in the optimal ver-
ified sets of some systems and some properties. Therefore, there exists no optimal

approach without being given a satisfaction boundary as an input. ]

Consider an example with K = 8 and assume that the verified set of an
approach is {W(1,2), W(1,3), W(2,5), W(3,7), W(3,8)} and the optimal verified
set is {W(1,2), W(2,5), W(3,7), W(3,8)}, where the given property P is satisfied
under W(3,8). By Theorems 2 and 3, W(1,3) > W(3,8), and thus P is satisfied
under W (1,3), which does not need to be evaluated. Therefore, W(1,3) is not
included in the optimal verified set. However, the approach does not know the
satisfaction boundary in advance, so evaluating W (3,8) first does not make it an
optimal approach — if P is unsatisfied under W (3,8), W (1,3) still needs to be
evaluated. Furthermore, if P is unsatisfied under W (1,3), evaluating W (3,8) is a

waste as it can be implied by W (1, 3).
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Algorithm 5 Optimal Verified Set Computation

1: procedure COMPUTE_OPTIMAL_VERIFIED_SET(K, BJ])

2 T[]

3 for k < 1 to K do

4: for m < 1 to k do

5: I[ml]lk] <= W (m, k) > Initialize array [

6 end for

7 end for

8 for k < 1 to K do

9: for m < 1 to k do

10: for W(m/, k") implied by W(m, k) do > Use B and Implications in
Chapter 3

11: ITm/][K'] < I[m][k]

12: end for

13: end for

14: end for
15: return the set of W(m, k) where I|m][k] = W (m, k)
16: end procedure

4.2 Optimal Verified Set Computation

Given the satisfaction boundary B, we propose Algorithm 5 to compute an
optimal verified set, as Definition 11. We first initialize a 2-dimensional array [
(Lines 2-7). I[m/|[K'] <~ W (m, k) means that W (m/, k') can be implied by W (m, k),
i.e., either W(m/, k") = W(m, k) or W(m,k) = W(m/, k"), which depends on the
satisfaction boundary B. For example, if a property P is satisfied under W(m, k),
ITm/][K'] <= W (m, k) means W(m/, k') = W (m, k); otherwise, if a property P is un-
satisfied under W (m, k), I[m/|[k'] <= W (m, k) means W (m, k) = W(m/, k’). Then,
we can iteratively update I (Lines 8-14) by B and Implications 1, 2, 3, and 4. For
each W(m, k), we can find a set of W (m’, k") which can be implied by W(m, k)
(Lines 10-12) since the satisfaction boundary is given. After that, an optimal ver-
ified set is the set of W (m, k) where I[m][k] = W (m, k) (Line 15). The size of the

optimal verified set is at most K. It should also be mentioned that Algorithm 5 is
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applicable to any verification cost (e.g., 1, its complexity, or its runtime) for each
weakly-hard constraint. This is because a weakly-hard constraint is in the optimal
verified set if and only if it cannot be implied by any other constraint in C'(K) —

this is not affected by the definition of a verification cost.

4.3 Correctness and Uniqueness

We will prove that Algorithm 5 outputs an optimal verified set, and the
optimal verified set is unique. We will demonstrate that any weakly-hard constraint
in the optimal verified set cannot be implied by any other constraint in C'(K). To

complete the proof, we provide the following definitions first.

Definition 12. Trace Set. The trace set of a weakly-hard constraint W(m, k) is
defined as S(W(m,k)) ={o | o = W(m,k)}.

Definition 13. Equivalence of Weakly-Hard Constraints. Given two weakly-

hard constraints W(m, k) and W(m/, k'), we define that W (m, k) is equivalent to
W(m!', k"), denoted as

W(m, k) =W (m', k"), if and only if S(W(m,k)) = S(W (m/,k)).

Theorem 6. For any m,m' k., k' € Z*,m < k,m' <K, if W(m, k) = W(m/, k),

thenm=m' and k =k'.

Proof. If m # m' or k # k', then there is a trace o such that either “o = W(m, k)
and o = W(m', k') or “o = W(m/,k') and o [~ W(m,k),” where ¢ can be set
as follows: if m # m/, then ¢ = 10" g0 that ¢ = W (max(m,m’), k) and
o = W(min(m,m'),k'); if m = m’ and k # k', then o = 1m0™nE+)=m] 50 that
o = W(m,min(k, k') and o £ W (m,max(k,k")). By contraposition, if W (m, k) =
W(m', k"), then m =m' and k = k. O
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Definition 14. Comparability of Weakly-Hard Constraints. Given two weakly-

hard constraints W (m, k) and W(m', k"), we define that W(m, k) and W (m/, k") are
comparable if and only if either W(m, k) = W(m/, k'), W(m/, k') = W(m,k), or
W(m, k) =W (m',k'); otherwise, we define that W (m, k) and W (m', k") are incom-

parable.

4.3.1 Other Single-Constraint Implications

Here, we prove that, for any pair of weakly-hard constraints, the implication
between them is covered by Theorems 1, 2, 3, and 4. As a result, we do not need to

consider other implications by single weakly-hard constraints.

Theorem 7. For any m,m' k, k' € Z*, m <k, m <m/;m tm/, L%J “k+m —

L%J -m < k', W(m, k) and W(m/, k") are incomparable.

Proof. We first prove that W (m,k) = W (m/, k') is false. Let k* = [ | -k +m' —
] -m+ 1 and 0 = (1m0k_m){%J 1k_{%Jk It is trivial that o = W(m,k),
but o £ W(m/, k*) because o has its length k* and (m’ + 1) 1’s. Therefore, for
E' > k*, o = W(m/,k"). We then prove that W (m/, k') = W (m,k) is false. Let

o = 1™0¥="" It is trivial that o = W (m/', k), but o %= W (m, k) because there
are more than m 1’s in the first k£ inputs. Combining the two proofs, W (m, k) and

W(m/, k") are incomparable. O

Theorem 8. For any m,m', k, k' € ZT, m < k, m < m/, m | m/, % k< K,

W(m, k) and W(m', k") are incomparable.

Proof. We first prove that W (m,k) = W (m/, k') is false. Let k* = ™ -k + 1 and
o= (1m0’“_m)%’1. It is trivial that o = W(m,k), but o = W(m/, k*) because o
has its length k* and (m’ + 1) 1’s. Therefore, for k' > k*, o = W(m', k). We
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then prove that W (m/, k') = W(m, k) is false. Let o = 1™ 0¥~ It is trivial that
o = W(m' k'), but o = W(m,k) because there are more than m 1’s in the first k

inputs. Combining the two proofs, W(m, k) and W(m’, k") are incomparable. [
Theorem 9. For any ml,mg,mg,kl,kg,kg S Z+,m1 < k'l,mg < kg,mg < k?g, Zf

W(ml, ]fl) — W(mg, ]{52) and W(WQ, kZQ) b W(mg, k’g), then W(ml, ]{51) b W(mg, ]fg)

Proof. By Definition 6, any input trace that satisfies W (my, k1) also satisfies W (ma, ks),
and any input trace that satisfies W (ma, ko) also satisfies W (mg, k3). Therefore, any
input trace that satisfies W (my, k1) also satisfies W (ms, k3). O

With Theorem 9, we can combine theorems and get more implications.

Theorem 10. For any m,m' k, k' € ZT, m < k, m" < K, (m,k) # (m/, k),
W(m, k) and W(m', k') are either incomparable or comparable and implied by the

combination of Theorems 1, 2, 3, and 4.

Proof. Given an W(m, k), we define I' = {W(m/, k')|(m, k) # (m',k'),m’ > m}.

Any W(m/, k") € T" is corresponding to one of the following cases:
o If k' =k, then W(m, k) = W(m/, k") or W(m/, k") = W (m, k) by Theorem 1.
o If m' =m, then W(m, k) = W(m', k") or W(m/, k") = W (m, k) by Theorem 2.

o lfm' >mmitm/ k< [%J “k+m — L%J -m, then W(m, k) = W (m', k)

by the combination of Theorems 2, 3, and 4.

o If m'>m,mim' k' > L%J -k4+m'— L%J -m, then W(m, k) and W (m/, k")

are incomparable by Theorem 7.

o If m' >m,m|m/ k' <™.k, then W(m,k) = W(m', k') by the combination

of Theorems 2 and 3.
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o If m' >m,m|m kK > % -k, then W(m, k) and W (m/, k') are incomparable

by Theorem 8.
]

To this point, we prove that Theorems 1, 2, 3, 4, 7, and 8 cover all possible
cases for a pair of weakly-hard constraints. However, Theorems 7 and 8 indicate that
the weakly-hard constraints are incomparable. As a result, we only need to consider

Theorems 1, 2, 3, and 4 for the implications by a single weakly-hard constraint.

4.3.2 Multiple-Constraint Implications

Here, we prove that, if the combination of n weakly-hard constraints {W (my, k1),
W(mag, ka), ..., W(my, k,)} implies another weakly-hard constraint W (m, k), then
a weakly-hard constraint W (my, k;) € {W(mq, k1), W(ma, ka), ..., W(my, k,)} im-
plies W(m, k). As a result, we do not need to consider the implications by multiple

weakly-hard constraints.

Theorem 11. If there is a set of n weakly-hard constraints {W (my, k1), W (ma, ka), ...,
W(my, k,)} and another weakly-hard constraint W(m, k) such that S(W(m,k)) C
Ui, S(W(my, k;)), then there must be a weakly-hard constraint W (m;, k;) € {W(mq, k1),
W(ma, k2), ..., W(mp, ky,)} such that W(m, k) = W{(m;, k;).

Proof. Let 0 = (1m0*™)" and ' = {W(m/,k')|m' < K'}. Any W(m/, k') € T is

corresponding to one of the following cases:

o If m’ < m, then o £ W(m/, k') since m’ < m.

o If m' =m, k" >k, then o = W(m/, k') since the (k + 1)-th element in o is 1.
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o If W(m, k) and W(m/, k') are incomparable, then o = W(m/, k') as o is used

in proving Theorems 7 and 8.

e For another other W (m/, k"), the proof in Theorem 10 states that W (m, k) >
W(m/, k") and thus o = W(m/, k).

Considering all cases, if o = W(m/, k'), then W (m,k) = W(m',k’). Therefore,

Theorem 11 is proved. O

If SW(m,k)) C U, S(W(m;,k;)) and P is satisfied under each W(m;, k;),
then P is satisfied under W(m, k). By Theorem 11, the implication (P is satisfied

under W (m, k)) can actually be obtained from a single-constraint implication.

On the other hand, another implication is that, if S(W (m, k)) D Ur_; S(W (m;, k;))
and P is unsatisfied under at least one W(m;,k;), then P is unsatisfied under
W (m, k). This implication can also be obtained from a single-constraint implication

(from a constraint W (m;, k;) making P unsatisfied).

4.3.3 Completion of Proof

Theorem 12. Algorithm 5 outputs an optimal verified set, and the optimal verified

set is unique.

Proof. By Theorem 11 and the explanation above, a multiple-constraint implication
can be obtained from a single-constraint implication. By Theorem 10, a single-
constraint implication between constraints which are comparable is covered by The-
orems 1, 2, 3, and 4. Therefore, there is no other implication, and Algorithm 5

outputs the unique optimal verified set. O
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It should be mentioned that there are many optimal paths, and each of them
includes the same set of (m, k) (where I[m][k] = W (m, k)) with different sequences

(orders), as returned by Algorithm 5.
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Chapter 5

Reachability Analysis for Finite-State Machines

In this section, we consider a special case of system verification with weakly-hard
constraints — reachability analysis for finite-state machines. We first introduce a
mask-compressing approach to verify reachability under a single weakly-hard con-
straint. The mask-compressing approach serves as the example of verifying a prop-
erty P (reachability) under a single constraint in C(K), and thus it can be plugged
into (called by) the approaches in Chapter 3. Then, we propose a layered BFS
approach which computes the safety table in a more efficient way — the layered
BFS approach computes the safety table with the same computational complexity

as evaluating a single (m, K') constraint.

Section 5.2 and 5.3 are the previous works refer to [23]. In order to introduce
section 5.4 and experimental results, we keep the notations and detailed algorithm

for these sections.

5.1 Problem Definition

A non-deterministic finite-state machine model S is defined as (Q, 3, §, P,, qo, F')
where @ is the finite set of states, ¥ = {0,1} is the set of input symbols, § C

@ x X x @ is the transition table, P, : 6 — (0,1] is the transition probability
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satisfying
V(igx) €eQx%, > Plgxg) =1 (5.1)

7€Q,(q,x,g)€0

where qq is the initial state, and F' C @ is the finite set of unsafe states. Given a
finite-state machine S and a positive integer K, the goal is to determine whether the

property P of “never reaching an unsafe state” is satisfied with all possible traces

under each W(m, k) in C(K).

5.2 Mask-Compressing Approach

We introduce the masking-compressing approach to verify the reachability
property P under a single weakly-hard constraint W(m,k). Again, it should be
emphasized that the mask-compressing approach serves as the example of verifying
a property P (reachability) under a single constraint in C(K), and thus it can
be plugged into (called by) the approaches in Chapter 3. The mask-compressing
approach traverses a finite-state machine with all possible traces that satisfy the
weakly-hard constraint. It records the previous k — 1 inputs and considers the
possibility of the next input. Since there are at most m 1’s among any k consecutive
inputs, if there have been m 1’s among previous £ — 1 inputs, then the next input

must be 0.

Given the previous k£ — 1 inputs, we encode them by compressing them into a
(k — 1)-bit mask. Formally, given a finite state machine S = (Q, 3,9, P,, qo, F'), we
define a graph to perform verification for a single weakly-hard constraint W (m, k)

as follows:

e The vertex set is the set product of the states of S and the (k — 1)-bit mask.
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e There is a directed edge from vy mqsk to Vs mask if and only if

(¢, mask % 2, q) €9, (5.2)
(mask - 2) % 2"~ + mask % 2 = mask, (5.3)
Countl(mask) + mask % 2 < m, (5.4)

where Countl1() counts the number of 1’s in a mask.

Equation (5.2) is for the transition in S, Equation (5.3) is for the 1-bit “shift” of
the mask, and Equation (5.4) is for the number of 1’s bounded by the weakly-hard
fault model. After constructing the graph, we can traverse the graph with a BFS
starting from v,, o, and P is unsatisfied if and only if we can reach a vertex vy mask
where ¢ € F. Note that this is equivalent to verifying the composition of S and
the state machine representing a single weakly-hard constraint W (m, k). Here, we
use masks because we can achieve computationally efficient implementation by bit

operations.

The graph has at most |Q| - 2% vertices and |d| - 2% edges, and thus the
complexity is O(N - 2%), where N = |Q| + |d], for the mask-compressing approach
verifying the reachability property P under a single W (m, k). When plugging the
masking-compressing approach into the approaches in Chapter 3, the complexities

are as follows:

o Algorithm 1: O (/5,2 N+ 2) = O (N - 2671 = N - 2) = O(N - 25),
o Algorithm 2: O (/5 N+ 24) = O (N - 2541 = N - 2) = O(N - 2K),

e Algorithm 3: it depends on the cost estimation and constraint implication.
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5.3 Layered BFS Approach

Here, we propose the layered BFS approach which computes the safety table
in a more efficient way. The key insight of the layered BF'S approach is that multiple
weakly-hard constraints W (m, k) with the same k can be verified together within a

BFS.

Theorem 13. For W(m, k), W(m + 1,k) € C(K), the graph for W(m,k) con-
structed by the mask-compressing approach is a subgraph of the graph for W (m +
1, k).

Proof. By Equation (5.4), if an edge is in the graph for W (m, k), it must also be in
the graph for W(m + 1, k). O

Theorem 14. Fach reachable vertex in the graph for W(m + 1,k) is also reachable
from the initial states of the graph for W(m, k).

Proof. 1t is straightforward by Theorem 13. Note that the initial vertices for the

graphs for W(m, k) and W (m + 1, k) are the same. O

Theorem 13 implies that evaluating W (m, k) leads to the results for all
W(m' k), where 1 < m’ < m. Thus, only the graph for W (k, k) needs to be
traversed for all W(m/, k), where 1 < m’ < k. Theorem 14 further implies that
we can perform BFS for k iterations from the graph for W(1,k) to the graph for
W (k, k), called the “layered BFS approach” in this thesis. Formally, we denote the
sets of edges and vertices in the graph for W (m, k) as E,, and V,, respectively. For
the m-th iteration (as a layer), we perform BFS on the graph G,, = (V,,, E.). We
exploit the previous result of the BFS on G,,—1 = (Vj,_1, Fin_1) and thus avoid

redundancy as G,,_1 C G,,.
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Gmk \\[/
m+ 1.k

A
®

Figure 5.1: (a) An example layered BFS from W(m, k) to W(m + 1,k). Vertices
A and B are reachable in W (m, k). Vertices C' and D are unreachable in W (m, k)
but reachable in W(m + 1,k). (b) An example dual-layered BFS from W (m, k) to
W (m,k —1) and then to W (m + 1, k). Vertices A and B are reachable in W (m, k).
Vertex C' is unreachable in W (m, k) but reachable in W (m, k — 1). Vertices D and
E are unreachable in W(m, k) and W (m, k — 1) but reachable in W (m + 1, k).

UGKQ
)

An example is shown in Figure 5.1, where vertices A and B are reachable
(satisfying Equation (5.2)) and other vertices are unreachable (not satisfying Equa-
tion (5.2)). After performing the BFS for W (m, k), we can collect a vertex set V,,
containing unreachable vertices (such as vertices C' and D), and, for each v' € V,,
there exists a vertex v € V,, such that (v,v") € E,,;1 (such as edges (A,C) and
(B,D)). By Theorems 13 and 14, after starting from the vertices in V!, and per-
forming the BFS on G,,,1, we traverse all vertices in V,,; without repeating the
BFS on G,,. Note that the mask of each vertex in V! satisfies W (m + 1, k). After
the iterations from W (m, k) to W (k, k), each vertex in Gy is traversed only once.
Moreover, if an unsafe state is reached in the m-th iteration, P is only guaranteed

to be satisfied under W (m/, k), where m’ < m.

Since each vertex in the graph for W (k, k) only needs to be traversed once,
the complexity for a given k is O(N -2%), where N = |Q|+|d|. The total complexity
for all k is O (ZleN.zk) — O(N-2K+1 — N.2) = O(N - 25). This shows
that the layered BF'S approach computes the satisfaction boundary with the same

complexity as Algorithms 1 and 2 as well as verifying a single (m, K).
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5.4 Dual-Layered BFS Approach

In the layered BFS approach, the graph for W(m, k) is constructed by the
mask-compressing approach with a (k—1)-bit mask, whereas the graph for W (m, k—
1) is constructed with a (k—2)-bit mask. As a result, the same input trace is encoded
into different vertices and edges in the two graphs, and thus it requires two traversals
to perform verification. Here we propose to construct both graphs with a (k— 1)-bit
mask so that the weakly-hard constraints W (m, k) and W (m, k — 1) can be verified
within a BFS.

Theorem 15. For W(m, k), W(m,k — 1) € C(K), the graph for W(m,k) con-
structed by the mask-compressing approach with a (k — 1)-bit mask is a subgraph of
the graph for W(m,k — 1), also constructed with a (k — 1)-bit mask.

Theorem 16. For W(m,k — 1), W(m+ 1,k) € C(K), the graph for W(m,k — 1)
constructed by the mask-compressing approach with a (k — 1)-bit mask is a subgraph

of the graph for W(m + 1,k), also constructed with a (k — 1)-bit mask.

Theorem 15 implies that evaluating W (m, k—1) leads to the result of W (m, k),
and Theorem 16 implies that evaluating W (m+1, k) leads to the result of W (m, k —
1). Therefore, a single BFS on the graph for W (k, k) allows us to compute the sat-
isfaction boundaries B(k — 1) and B(k). Formally, we denote the sets of edges and
vertices in the graph for W(m, k) as E,,; and V,, respectively. Upon performing
the BFS on G p-1 = (Emg—1, Vink—1), we exploit the previous result of BFS on
G and avoid redundancy as G, ;, € Gy, —1. Similarly, upon performing the BF'S
on G114k, we exploit the previous result of BFS on Gy, ;—1 and avoid redundancy
as G -1 C Gy, Note that all these graphs are constructed with a (k — 1)-bit

mask.
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Specifically, during the BF'S on G, 1, we collect two vertex sets V| ;| and
Vi1, Where, for each v' € V], there exists a vertex v € V;, ;. such that (v,v') ¢
Ep i and (v,0") € Epp1; and for each o' € V., there exists a vertex v € Vi,
such that (v,v") ¢ E,, ;-1 (thus (v,v") ¢ E,, %) and (v,v") € Epp1%. Upon the BES
on Gp k-1, we start from the vertices in V, , , and avoid redundant traversal of
G k- Similarly, during the BFS on G, —1, we collect a vertex set V" 1.5 Where, for
each v” € V7, there exists a vertex v € Vi, 1 — Vi x such that (v, V") & Bkt
and (v,v") € E,41%. Upon the BFS on G414, we start from the vertices in

/ " 4
Vii1x U Vi1, and avoid redundant traversal of G, x—1. As a result, every vertex

in Gy is traversed at most once in order to compute B(k — 1) and B(k).

If an unsafe state ¢ € F' is reached during the BFS on G,,, it is clear
that B(k) = m — 1. By Implication 2, B(k — 1) = m — 1. On the other hand,
if an unsafe state ¢ € F' is reached during the BFS on G, ;_1, it is clear that the
B(k —1) = m — 1. Since G, has already been traversed without reaching any

unsafe states, by Implication 4, B(k) = m.
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Chapter 6

Schedulability Analysis

In this section, we consider the scheduling process. The consecutive events of a sys-
tem will be formatted as a task 7; with period F;, execution time F;, and weakly-hard
constraints C;. Given a taskset and a priority assignment method, the schedulability
analysis proposed in this section will analyze whether the taskset is schedulable or
not considering the worst-case scenario. Section 6.1 introduces the job trace model
which represents the status of a task. Section 6.2 and 6.3 exploit the job trace
models of the taskset to compute the worst-case response time. Section 6.4 further

reconstructs the job trace models and gives the results to the schedulability analysis.

6.1 Job Trace Model

Definition 15. Job Trace. For a task 7; at a certain timestamp, the job trace t
15 a binary sequence with length K; which is the past K; jobs status where K; =

max(kil, ceey kzn)

Job trace is a representation of the task status. For example, if the results
of the past three jobs are miss, miss, and meet, the job trace at this timestamp will
be 110. The reason why we need to define the length of the job trace K; is that
the resulting job trace can also represent whether the weakly-hard constraints are

satisfied or not.
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Definition 16. Job Trace Model. The job trace model of a task 7; can be repre-

sented as a directed graph G; = {V;, E;}, where

o V; is the set of all possible job traces of task ;.

e I, is the set of edges which represent the deadline meet or miss.

The edge represents whether the deadline of the current job is met or missed.
That is, if the current job of a job trace t meets the deadline, we will have an edge
from t to ¢’ where ¢’ = (t << 1)A0. For example, if the current job of a job trace 111
meets the deadline, we will have an edge from 111 to 110. Initially, if we consider

all possible job trace that a task can face, there will be 25 vertices and 25! edges.

The reason why we need the job trace model is that the job trace model
represents all job trace a task will face, and the job trace has the directed relation
to the weakly-hard constraint. However, during the scheduling process, there might
be some job trace in the job trace model which is impossible to reach. Therefore,
the rest of the schedulability analysis will focus on removing those job traces in the

job trace model base on the worst-case scenario.

6.2 Maximum Interrupt Jobs

The computation of the maximum interrupt jobs can help analyze the worst-
case response time. Given a job trace t of a task 7;, another task 7;, and a number
n, we target to know the maximum number of the jobs with higher priority within
n consecutive jobs of task 7;. Note that the priority assignment method can map
one job trace to one priority, and the higher priority here means the priority p’ of

the job trace of task 7; is higher than the priority p of the job trace ¢.
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Algorithm 6 Maximum Interrupt Jobs Computation

1: procedure COMPUTE_MAXIMUM_INTERRUPT_JOBS(p, V;, E;, PM,n)
2: M <+ [ ]

3: if any v € V;, PM(v) > p then > Obtain the maximum interrupt jobs
within 1 consecutive job

4: M[l] +—1

5: else

6: M[l] +0

7 end if

8: A <+ adjacency list of V}, E;

9: B+ [ ]

10: forv e V; do > Assign 0 or 1 to each vertex according to the priority

11: if PM(v) > p then

12: Blv] + 1

13: else

14: Blv] « 0

15: end if

16: end for

17: for k < 2 ton do

18: NB «+[]

19: for v € V; do

20: for v € Afv] do > Broadcast the temporary maximum interrupt
jobs to its adjacency vertices

21: if PM(v") > p then

22: NB[v'] + Max(NB[v'], Blv] + 1)

23: else

24: NB[V'] «— Max(NB[v'|, B[v])

25: end if

26: end for

27 MIk] <= Max(NB[v],v € ;)

28: B+ NB

29: end for

30: end for

31: return M

32: end procedure

To make it more convenient for the worst-case response time analysis, given

n, Algorithm 6 will output the maximum interrupt jobs within 1 to n consecutive
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jobs and store them in B. At k' iteration (Line 17), each vertex will consider
itself as the end of the £ — 1 consecutive jobs and store the temporary maximum
interrupt jobs. Next, each vertex will broadcast its temporary maximum interrupt
jobs to its adjacency vertices (Line 20) and update them with the interrupt jobs of
k consecutive jobs (Lines 21-25). For each iteration, the maximum interrupt jobs

of k consecutive jobs will be the maximum value among all vertices (Line 27).

The time complexity of Algorithm 6 will depend on n and the number of
vertices and edges. For each iteration (Line 17), the broadcast method of the job
trace model will cost O(|V;| + |E;|). Consider the initial job trace model, the time

complexity of Algorithm 6 will be O(n x 2K7).

6.3 Worst-Case Response Time

For each job trace t with priority p of a task 7;, we target to find the worst-
case response time, where every other task 7; faces the maximum interrupt jobs.
Based on the maximum interrupt jobs computation, we can compute the temporary

interference from other tasks and recursively compute the worst-case response time.

Theorem 17. Given a time window w, the worst-case temporary interference of a

job trace t with priority p of a task T; will be
= Y ar, [[2]] x5, o)
TiFTi

{%-‘ represents the number of the consecutive jobs of task 7; during time
J
window w. Since we have obtain M? . by the Algorithm 6 beforehand, we just need

to summarize the maximum interrupt jobs of all the other tasks.

Theorem 18. The worst-case response time of a job trace t with priority p of a
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@ (b)

Figure 6.1: (a) The part of the job trace model. (b) Since the worst-case response
time of the job trace A is less than the period, it represents the resulting job trace
model after removing edge AC

task ; will be computed by the following recurrence
W(t,ﬂ-,m—i—l) <— Ei—|—1<t,Ti,W(t,Ti,m)). (62)

The recurrence is initialized with W (t, 7;,0) < E; and terminates when W (t, 7;,m) >

P,oor W(t,7;,m+1)=W(t,m,m).

When W(t, 7;,m) > P;, the current job of 7; might possibly miss base on the
worst-case scenario. That is, we do not need to continue the recurrence. The time
complexity of the recurrence will be O(|7| x n x 257 + 7 x |7|), where |7| x n x 2K
denotes the preprocessing of the maximum interrupt jobs and r x |7| denotes the

recurrence. Note that r is the recursive calls, and the maximum n will be {%-‘,

where P42, Pnin are the maximum and minimum period of the taskset.

6.4 Job Trace Model Reconstruction

After computing all the worst-case response times of every task, we target
to remove vertices and edges from the job trace model. Since the job trace model
represents all possible statuses a task can reach, if the worst-case response time of
a job trace is less or equal to the period, the job with the job trace will meet the

deadline certainly, and we can further remove the missed edge of the job trace.
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Algorithm 7 Job Trace Model Stabilization

1: procedure JOB_TRACE_MODEL_STABILIZATION(T)
2 Initialize job trace models with 7.

3 do

4 for every job trace do

5: Compute maximum interrupt jobs

6

7

8

9

Compute worst case response time
end for
for every job trace do
if worst case response time < period then
10: Remove the missed edge
11: end if
12: end for
13: while Being able to remove any edge from job trace models
14: end procedure

For example, in Figure 6.1, after the worst-case response time computation,
the worst-case response time of the job trace A is less than the period. That is,
the job with the job trace A will always meet the deadline, and we can remove the

missed edge AC. If every inbound of C' is removed, C' can further be removed.

We introduced Algorithm 7 to recursively remove the missed edge of the job
trace models. Since the removing (Line 10) will lead to the change of the worst-
case response time computation (Lines 5-6), the recursive method will make the

worst-case response time tighter.

Assume that the priority assignment method will give ¢ kinds of priority to
the taskset, and the time complexity for the job trace model stabilization will be

O(s x g x |7| x n x 2Ki). Note that s is the number of recursive calls (Line 13).

Theorem 19. Schedulability Analysis If all of the job trace satisfy the weakly-

hard constraints after stabilization, the taskset will be schedulable in any case.

Despite the introduced schedulability analysis being general to the priority
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assignment method, the priority assignment method should follow that one job trace
can only be mapped to one priority. If not, we could construct another one-to-one

mapping by considering another status instead of considering past K; jobs status.
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Chapter 7

Experimental Results

7.1 Weakly-Hard Verification

To compare the efficiency of different approaches, we implemented a brute-
force approach which evaluates all constraints in C'(K’) one by one (BF), the mono-
tonic approach (MONO, Algorithm 1), the monotonic approach with dynamic up-
per bound of satisfaction boundary (MONO-DUB, Algorithm 2), the lowest-cost-
first heuristic (LCF, Algorithm 3), which defines the estimated cost for evaluating
W(m,k)asy ", (kgl), the optimal approach (OPT, Algorithm 5), the layered BF'S
approach (L-BFS), and the dual-layered BFS approach (DL-BFS), Except the op-
timal approach, the layered BFS approach, and the dual-layered BF'S approach,
the other four approaches call the mask-compressing approach when they need to

evaluate a single constraint in C'(K).

7.1.1 Discrete Second-Order Control
7.1.1.1 Setting

The case study is a discrete second-order controller under perturbation at-
tacks. The objective of the controller is to maintain the position at a fixed value
(0 in our case), and the attacker attempts to shift the position away from the fixed
value. The detailed configuration can refer to [23]. The unsafe state represents the

state where the control position is out of the range. Verifying whether the control
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Table 7.1: Discrete second-order control: runtime (in second) with different values

of |Q).
[1Q[ ] BF [MONO | MONO-DUB | LCF [ OPT [[ L-BFS | DL-BFS |

280 (| 2.069 | 0.105 0.103 0.102 || 0.055 || 0.105 0.074
314 || 2.506 | 0.146 0.144 0.144 || 0.071 || 0.147 0.099
331 || 9.817 1.683 1.641 1.641 || 1.234 || 1.752 1.786
341 || 54.730 | 9.624 5.128 5.128 || 2.655 || 5.621 4.434
351 || 61.834 | 11.526 5.546 5.546 || 3.127 || 6.178 4.027
361 || 58.244 | 11.098 5.039 5.039 || 2.802 || 7.088 4.450
371 || 63.565 | 12.462 5.258 5.258 || 2.900 || 7.613 4.141
381 || 65.523 | 12.995 5.229 5.229 || 2.900 || 7.999 4.329
20

— | 0|=280
—Q|=314
— | 0 |=331
= Others

1 m 20

1

Figure 7.1: Discrete second-order control: computed satisfaction boundaries.

position is in the safe range under perturbation attacks is reduced to solving for the

reachability of the unsafe state for the finite-state machine.

7.1.1.2  Ezxperiment on |Q

We experimented on how each approach scales with respect to the number
of states in the finite-state machine, |@|. To create different numbers of states,
we fixed Tyin = —4, Tmax = 4, o = 2, and Sy = {5} and experimented with
(Zmin, Tmax) = {£30,+40, £50, ..., £100}, resulting |@Q| from 280 to 381. A larger
safe range [Tmin, Tmax] Of the control value z allows the controller to have a larger

margin to recover from attacks. K is set to 20.
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Table 7.2: Discrete second-order control: runtime (in second) with different values
of K.

[K ] BF | MONO | MONO-DUB [ LCF || OPT [ L-BFS | DL-BFS |

14 || 0.388 | 0.062 0.057 0.057 || 0.032 || 0.061 0.041
16 || 1.200 | 0.217 0.172 0.172 || 0.146 || 0.184 0.186
18 || 3.047 | 0.373 0.333 0.333 || 0.177 || 0.356 0.289
20 || 9.817 1.683 1.641 1.641 || 1.234 || 1.752 1.786
22 || 31.041 | 6.596 6.595 6.555 || 2.931 || 7.023 5.297

The results are shown in Table 7.1, and the corresponding satisfaction bound-
aries are illustrated in Figure 7.1, where all approaches generate the same satisfaction
boundaries. The monotonic approach runs significantly faster than the brute-force
approach because the verification results under many weakly-hard constraints are
implied by Implications 1 and 2. For larger number of states, the runtime differences
are even larger. We then compare the monotonic approach, the monotonic approach
with dynamic upper bound of satisfaction boundary (monotonic-dynamic), and the
lowest-cost-first heuristic. The results are aligned with the theoretical expectations.
The monotonic-dynamic approach runs strictly faster than the monotonic approach
for every setting with the addition implications by Implications 3 and 4, and the
lowest-cost-first heuristic performs same as the monotonic-dynamic approach. The
optimal approach finds the optimal verified set, the runtime corresponding to the
the optimal verified set is smaller than the runtimes of the other approaches. How-
ever, it needs to know the satisfaction boundary in advance, so the main purpose
of the optimal approach is to evaluate the efficiency of the other approaches. It
can be observed that the runtime of the optimal approach may not be monotonic
to |Q| as different |@Q| lead to different boundaries and thus different optimal ver-
ified sets, where a large |@| may have a smaller optimal verified set. The layered
BFS approach runs faster than the monotonic approach in most cases, and it has

comparable runtime as the monotonic-dynamic approach and the lowest-cost-first
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heuristic. Moreover, the dual-layered BFS approach mostly has the best efficiency

among all other approaches except the optimal approach.

7.1.1.3 Ezperiment on K

We experimented on how each approach scales with respect to K. We fixed
Tmin = —50, Zmax = 50, Tmin = —4, Tmax = 4, Teonst = 2, and Sy = {H}. The results
are shown in Table 7.2, where we report the results with K = 14,16, 18,20, 22.
Similar to the previous experiment, the proposed approaches outperform the brute-
force approach significantly. This is aligned with the theoretical complexity analysis
that the brute-force approach needs to evaluate O(K?) weakly-hard constraints,
and the other approaches need to evaluate O(K') weakly-hard constraints only. It
should be emphasized that the verification of a property under a single weakly-hard
constraint W (m, k) usually needs to store the last k inputs, and thus the complexity
is at least O(2%). If properties are more complicated (e.g., in Linear Temporal Logic),
the complexity can be even higher. Therefore, reducing the number of evaluations
of weakly-hard constraints is really advantageous to the efficiency of computing
the safety table or the satisfaction boundary. It should also be mentioned that
the layered BFS approach and the dual-layered BFS approach are especially for
the reachability of finite-state machines, and the other proposed approaches are
general and compatible with other verification approaches for a single weakly-hard

constraint.

7.1.2 Network Routing
7.1.2.1 Setting

The case study is network routing of Extranet. There are two routing paths

with the same source and destinations on one router. We denote the delay levels
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of two routing paths at time ¢ as [;(¢) and l5(t). We also denote the waiting times
(for recovery) of two routing paths at time ¢ as wi(t) and wy(t). The objective of
the network routing is to switch between two routing paths to keep the connection
between the source and the destination. A routing configuration is formally defined

as (11, T2,7), where

e 71 and 7y are the thresholds of two routing paths, respectively. If delay level
l;(t) exceed T;, the i-th routing path is considered to be congested, and it needs

to recover.

e 7 is the time (measured by the number of inputs) that a routing path needs

to recover.
We introduce the following variables:

e s5(t) € {0,1} denotes whether the two routing paths are switched at time t.
e ¢(t) € {0,1} denotes whether both of the two routing path are congested.

e d(t) € {0,1} denotes whether a packet is delayed.
We also introduce the following transition functions:

e If s(t) = 0, meaning that the first routing path is in use (not switched to the

second routing path), then

L(t+1) < L(t)+(2:d(t)—1); wo(t+1) <= wo(t)+1; lo(t+1) < 0; wi(t+1) < 0,
(7.1)

meaning that [1(¢+ 1) is increased or decreased by 1 from [ (¢) if d(¢) is 1 or 0,

respectively, and ws(t 4 1) is increased by 1 from ws(t). lo(t+1) and wy(t+1)

will be set to the initial value until switching to the second routing path.
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e If 5(t) = 1, meaning that the second routing path is in use (switched from the

first routing path), then

lo(t+1) <= lo(t)+(2-d(t)—1); wi(t+1) < wi(t)+1; [1(t+1) <= 0; wo(t+1) < 0,
(7.2)

meaning that wy (¢t 4+ 1) is increased by 1 from wy(t), and lo(t + 1) is increased

or decreased by 1 from lo(¢) if d(t) is 1 or 0, respectively. [;(t+1) and wy(t+1)

will be set to the initial value until switching to the first routing path.

e The two routing paths are switched at time ¢ 4 1 if the delay of the routing
path in use at time t exceeds the corresponding threshold, and the waiting

time (for recovery) of the other routing path at time ¢ exceeds the threshold

v, i.€.,
1, if S(t) =0, ll(t) > T1,U)2(t> >,

s(t+1)« <0, if s(t) = 1,1a(t) > T, wi(t) > ; (7.3)

s(t), otherwise.
e Both of the two routing path are congested if the delay of the routing path in
use at time t exceeds the corresponding threshold, and the waiting time (for

recovery) of the other routing path at time ¢ does not exceed the threshold -,

i.€.,
1, if s(t) =0,0(t) > m,wa(t) <7
c(t+1)« <1, if s(t) =0,0(t) > 2, wi(t) <7; (7.4)

0, otherwise.

For any network routing configuration (71, 72,7), we can determine a finite state

machine (@, X, 9, qo, F'), where

o Q= {(l1,ly, w1, ws,s,c)}.

e ¥ = {0, 1}, which is the input as d(t).
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Table 7.3: Network routing: runtime (in second) with different values of |Q)].

| |Ql || BF | MONO | MONO-DUB | LCF | OPT || L-BFS | DL-BES |

678 9.421 1.930 1.229 1.229 | 0.513 || 1.196 0.924
1,238 || 23.362 | 5.595 3.599 3.599 || 3.485 || 4.051 3.378
1,842 || 36.928 | 8.630 6.340 6.340 || 5.345 || 6.928 6.266
2,452 || 43.097 | 11.263 8.314 8.314 || 8.283 || 9.284 9.572
3,062 || 50.155 | 15.406 11.237 11.237 | 9.847 || 13.336 | 11.835

Table 7.4: Network routing: runtime (in second) with different values of K.

| K[ BF [MONO | MONO-DUB | LCF [ OPT [ L-BFS | DL-BFS |
12 | 0.599 | 0.260 0.160 0.160 || 0.115 [ 0.189 | 0.147
14 || 2329 | 0.858 0.539 0.539 || 0.493 || 0.568 | 0.471
16 || 9.298 | 2.855 1.875 1.875 || 1.829 | 2243 | 1.826
18 || 23.362 | 5.595 3.599 3.599 || 3.485 || 4.051 | 3.378
20 || 129.864 | 31.260 20.351 20.351 || 17.040 || 22.938 | 19.651

e ) is defined exactly from the transition functions above.
® (o = (Oa 07 07 07 Oa O)

o ['= {Qunsafe}

(unsafe TEPTEsents the state where ¢() is 1, meaning that the delay level of one routing
path exceeds its threshold and the other routing path is still recovering. Verifying
whether we can keep the connection (at least one routing path not congested) be-
tween the source and the destination is reduced to solving for the reachability of
(unsafe fOr the finite state machine. Similar to the discrete second-order control, we
compare those approaches as well as the optimal verified set obtained by the optimal

approach.

7.1.2.2  Experiment on |Q|

We experimented on how each approach scales with respect to the number

of states in the finite-state machine, |@Q)|. To create different numbers of states, we
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fixed 71 = 20 and 7, = 16 and experimented with v = {20, 30, 40, 50,60}, resulting
|Q| from 678 to 3,062. A larger v makes it more difficult to keep the connection
between the source and the destination. K is set to 18. The results are shown in
Table 7.3, and all approaches generate the same satisfaction boundaries. Similar
to the previous case study, the proposed approaches outperform the brute-force
approach significantly. The monotonic approach with dynamic upper bound of
satisfaction boundary and the lowest-cost-first heuristic are generally good in this
case study. The dual-layered BFS approach is also good, even using less runtime
than the optimal verified set obtained by the optimal approach. It should be noted
that an optimal approach defined in Definition 10 only considers approaches which
consider weakly-hard constraints one by one and utilize some implications between
weakly-hard constraints. Therefore, an approach considering multiple weakly-hard
constraints, such as the dual-layered BFS approach, may use less runtime than an

optimal approach.

7.1.2.3 Ezperiment on K

We experimented on how each approach scales with respect to K. We fixed
71 = 20, 7» = 16, and 7 = 40. The results are shown in Table 7.4, where we
report the results with K = 12,14, 16,18,20. Similar to the previous case study,
the proposed approaches outperform the brute-force approach significantly. Among

them, the dual-layered BF'S approach has the smallest runtimes.

7.1.3 Lane Changing
7.1.3.1 Setting

The case study is lane changing with two acceleration controllers on two

vehicles driving on two lanes along a road segment with length x,,,x. We denote the
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position, velocity, and acceleration of the vehicle on the primary lane at ¢ as x(t),
v(t), and a(t), and those of the vehicle on the secondary lane as 2'(t), v'(t), and
a'(t), respectively. Each vehicle receives messages including the position, velocity,
and acceleration of the other vehicle. The objective of a controller is to perform
lane changing while each vehicle may miss some messages from the other vehicle. A

controller is formally defined as (Umax, Gmin, Gmax), Where

e [0, Vmax] is the physical constraint for the velocity. If the controller attempts
to set v to a value larger (smaller) than v, (0), v is set to the corresponding

limit.
® [Umin, Gmax] 18 the acceleration range.

We introduce the following variables:

e ¢(t) € {0,1} denotes whether lane changing has happened.

e s(t) € {0,1} denotes whether the vehicle on the primary lane successfully

receives a message from the vehicle on the secondary lane.

e s'(t) € {0,1} denotes whether the vehicle on the secondary lane successfully

receives a message from the vehicle on the primary lane.

e [ denotes the length of a vehicle.

The transition functions of the controller on the main lane can be expressed as
. 1
z(t+ 1) < min (x(t) +o(t) + 5 a(t),xmax> : (7.5)

v(t + 1) < max (min (v(t) + a(t), Vmax) ,0), (7.6)
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0, if s(t) = 0;
Umin, 1f s(t) =1, |2/(t) — z(t)| < 2, v(t) < V/(t);
|2’

MDY s i 5(0) = 1 |o'(6) — 2(0)] < 21, 0(8) = /(0

(7.7)

a(t), otherwise.

The transition functions of the controller on the secondary lane can be expressed as
/ : / / 1 /
2'(t+1) < min (m (t) +0'(t) + 5@ (1), xmax) , (7.8)

V'(t + 1) + max (min (v'(¢) + @' (¢), Umax) , 0) , (7.9)
Umax, if §'(t) =0;
Umin, if $'(t) =1, |z(t) — 2/(t)| < 2L, v(t) > V'(1);
Amax, 1f §'(t) =1, |x(t) — 2'(t)] < 21, v(t) < V'(t);
a'(t), otherwise.

a(t+1)+ (7.10)

We also introduce the following transition function:

1, ife(t) =1,
c(t+1) <1, ife(t) =0,2(t) # Tmax OF T'(t) # Tmax, |2/ (t) — z(t)| > 21; (7.11)
0, otherwise.

For any controller configuration (vmax, @min, Gmaxs Vinaxs Tonins Cmax ) s WE can determine

max’ “‘min’ “‘max

a finite state machine (Q, %, 9, qo, F'), where

4 Q = {(x7 v? a’? ‘x,? /U/7 a,)|x7 x/ e [07 xmax]a U? UI E [07 Umax]a a? a’/ E [amina amax]}-

¥ :{00,01,10, 11}, which is the input as s(t) and s'(t).

0 is defined exactly from the transition functions above.

do = (07 07 07 07 07 O)

F= {Qunsafe}

Qunsafe Tepresents the state where z(t) = /() = Zmax and ¢(t) = 0. Verifying

whether the two vehicles can successfully change their lanes is reduced to solving for

93
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Table 7.5: Lane changing: runtime (in second) with different values of |Q)|.

| 1@ [ BF [MONO | MONO-DUB | LCF || OPT | L-BFS | DL-BFS |
46,835 || 19.987 | 2.794 2.365 2.365 || 1.747 || 2.584 | 1.708
72,333 || 31.002 | 4.342 3.687 3.687 || 2.737 || 3.957 | 2.817
97,206 || 40.772 | 7.880 4.166 4.166 || 4.077 || 5.120 | 3.863
125,152 || 54.559 | 10.698 5.453 5453 || 5.330 || 7.240 | 4.623
155,941 || 67.018 | 13.447 7.025 7.025 || 6.879 || 8.192 | 5.980
189,535 || 81.403 | 15.820 8.456 8.456 || 8.294 || 10.557 | 7.047

Table 7.6: Lane changing: runtime (in second) with different values of K.
[K ]| BF |MONO | MONO-DUB | LCF || OPT || L-BFS | DL-BFS |

4 | 2739 | 0.763 0.280 0.280 || 0.280 || 0.640 0.416
5 || 6.485 1.978 0.872 0.872 || 0.709 || 1.360 0.840
6 || 15.600 | 3.298 0.898 0.898 || 0.721 || 2.640 1.700
7 | 34.249 | 5.514 3.155 3.155 || 2.978 || 5.131 3.264
8 || 81.403 | 15.820 8.456 8.456 || 8.294 || 10.557 | 7.047

the reachability of guusate for the finite state machine. Similar to the previous case
studies, we compare those approaches as well as the optimal verified set obtained

by the optimal approach.

7.1.3.2 Ezxperiment on |Q|

We experimented on how each approach scales with respect to the number

of states in the finite-state machine, |@Q|. To create different numbers of states, we

— o/ _ _
fixed Vpax = V.. = 10, Gpax = @

max

/
ma.

/
min

« =9, Qmin = A, = —9,1 =4 and experimented
with Zpa = {50, 60, 70,80, 90,100}, resulting |Q| from 46,835 to 189,535. A larger
range Tny.x of the control value z allows the controller to change the lane more
easily. K is set to 8. The results are shown in Table 7.5, and all approaches
generate the same satisfaction boundaries. Similar to the previous case studies,
the proposed approaches outperform the brute-force approach significantly. The
dual-layered BFS approach is especially good in this case study, even using less

runtime than the optimal verified set obtained by the optimal approach in the
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most cases. Similarly, an optimal approach defined in Definition 10 only considers
approaches which consider weakly-hard constraints one by one and utilize some
implications between weakly-hard constraints. Therefore, an approach considering
multiple weakly-hard constraints, such as the dual-layered BFS approach, may use

less runtime than an optimal approach.

7.1.3.3  Ezxperiment on K

We experimented on how each approach scales with respect to K. We fixed

/
max

=10, Gpax = Aoy = D, Qmin = @y, = —H, 1 = 4. The results

Lmax = 1007 VUmax = U max m

are shown in Table 7.6, where we report the results with K = 4,5,6,7,8. Similar
to the previous case studies, the proposed approaches outperform the brute-force
approach significantly. Among them, the monotonic approach with dynamic upper
bound of satisfaction boundary, the lowest-cost-first heuristic, and the dual-layered

BFS approach have smaller runtimes.

7.1.4 Summary

Based on the case studies, the monotonic approach with dynamic upper
bound of satisfaction boundary, the lowest-cost-first heuristic, and the dual-layered
BF'S approach generally have better efficiency. It should be mentioned that the dual-
layered BF'S approach is especially for reachability analysis for finite-state machines,

so it is not suitable for general properties and general systems.

7.2 Weakly-Hard Scheduling

In this section, we compare our schedulability analysis method with another
method. Different methods have different worst-case scenarios, time complexity,

and scalability. To compare different methods, the first part of this section will
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target the taskset generation, and the second part will apply different methods to

the taskset and specify the advantage of our method.

7.2.1 Taskset Generation

In order to compare different schedulability analysis methods, the taskset
generation is needed. For a target total utilization U, we generate 100 tasksets.
The sum utilization of the tasks for a taskset will be U. For a taskset, the task
utilization is assigned uniformly by the UUniFast algorithm [4]. The period of the

task is assigned uniformly in [10, 100]. We will have 3 weakly-hard constraints.

k of the weakly-hard constraint is assigned uniformly in [5,15], and m is
assigned uniformly in [2,k). Note that each two weakly-hard constraints should
be incomparable by 7, and 8. If two weakly-hard constraints are comparable, the
trace set of one constraint will be the subset of the other. That is, we only need to

consider one constraint instead of multiple constraints.

7.2.2 Schedulability Analysis Comparison

We compare our schedulability analysis (JTMS) to an existing method (JCLS).
JTMS represents our job trace model stabilization method and JCLS represents the
job-class-level scheduler with reachability tree analysis method [5]. For each taskset,
the method will output whether the taskset is schedulable or not. For a target to-
tal utilization U, the method will output a floating value denoting the ratio of the
schedulable tasksets among 100 tasksets. If a method has a higher ratio for a target
U, the worst-case analysis of the method has a tighter upper bound. For example,
if a taskset is schedulable with method A, but it is unschedulable with method B,

the worst-case considered by method B will not occur during scheduling.

We apply job-class-level fixed priority scheduling priority as our priority as-
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Table 7.7: Schedulability Analysis Comparison: schedulability ratio with different
values of U.

| U J1rof[11][12]13]
JTMS | 0.58 | 0.44 | 0.31 | 0.28
JCLS || 0.58 | 0.44 | 0.31 | 0.28

signment method [5]. However, the method can only deal with a single weakly-hard
constraint. For multiple weakly-hard constraints, we obtain the priority with the
constraint with the highest ratio and consider the condition of multiple weakly-hard

constraints.

Table 7.7 stores the schedulability ratio of different methods and different U.
The results of JTMS and JCLS become the same, which denotes that the worst-case
analysis of these two methods leads to a similar worst-case response time while the
worst-case scenarios of these two methods are different. We have further analyzed
the worst-case response time of JTMS and JCLS and found that jobs with the
same status have similar worst-case response times for these two methods. For
the scalability, JTMS can support any kind of priority assignment method if the
method meets the one-to-one condition while JCLS can only support the job-class-
level fixed priority scheduling priority. However, JTMS has a higher time complexity
than JCLS.
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Chapter 8

Conclusions

In this thesis, we used a weakly-hard fault model to constrain the occurrences of
faults in system inputs. We developed approaches to verify properties for multiple
weakly-hard constraints in an exact and efficient manner. By verifying multiple
weakly-hard constraints and storing the verification results as a safety table or the
corresponding satisfaction boundary, we defined weakly-hard requirements for the
system environment and designed a runtime monitor that guarantees desired prop-
erties or notifies the system to switch to a safe mode. Experimental results with
discrete second-order control, network routing, and lane changing demonstrated the
generality and the efficiency of the proposed approaches. Future directions include
properties in Linear Temporal Logic under weakly-hard constraints, other models
of computation under weakly-hard constraints, and system-specific cost estimation

for the lowest-cost-first heuristic.

Moreover, considering multiple systems sharing a processor, a scheduler is
needed. We studied the multiple weakly-hard constraints scheduling problems and
proposed the generalized schedulability analysis method to obtain whether the
taskset is schedulable or not beforehand. For future directions, system designers
can come up with different strategies to assign the weakly-hard constraints for sys-
tems, or the scheduler can exploit different priority assignment methods. Both of

them can bring benefits to the scheduling process. Last but not least, the proposed

o8
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schedulability analysis has a higher time complexity than others which can further
be optimized.

The future works of the verification and schedulability analysis include:

e Consider multiple weakly-hard constraints simultaneously for a system which

could lead to higher dimensional safety table.

e Design a more robust priority assignment method for the weakly-hard schedul-

ing problem.

e Design a strategy to assign the weakly-hard constraints for systems which can

bring benefits to the weakly-hard scheduling problem.

e Extend the scheduling problem to other constraints. A simple method can be
considering the composition of different constraints to be the status of the job

trace model.

e Extend the scheduling problem with the multiple processors scenario. A sim-
ple method can be considering jobs with top n priorities when there are n

processors.
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