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摘要 

 

一個弱硬式錯誤模型可以用(m, k)來描述，代表在 k 個連續的事件

中，最多只有 m 個錯誤的事件。這篇論文我們用弱硬式錯誤模型來約

束系統的一個輸入，我們提出的方法可以快速的在所有可能的(m, k)下

驗證系統的性質，在驗證完所有的(m, k)後，我們可以知道系統需要被

約束在甚麼條件下才能保有該性質，並且我們可以設計一個即時監控

來偵測目前錯誤的數量，如果偵測到的系統輸入符合弱硬式條件的需

求，我們可以保證系統的性質；否則，即時監控可以讓系統進入到一個

安全的模式。這對於需要在有限資源和存在錯誤的情況下提供保證的

網宇實體系統尤其重要，離散二階控制、網絡路由、車輛跟隨和車道變

換的實驗結果證明了所提出方法的普遍性和效率。此外，考慮到多個系

統共享一個處理器，需要一個排程器，由於在排程過程中應保證系統的

特性，系統設計人員可以將驗證結果中的弱硬約束分配給系統。調度器

必須確保資源分配能夠滿足約束，我們還提出了多個弱硬條件下的排
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程性分析方法，並將我們的方法與其他排程性分析方法進行比較以證

明其通用性。驗證可以為系統設計提供策略，排程性分析可以幫助系統

設計人員分析策略是否可行。 

關鍵詞：正規式驗證、即時監控、弱硬式模型、排程性分析 
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FOR CYBER-PHYSICAL SYSTEMS WITH MULTIPLE

WEAKLY-HARD CONSTRAINTS

Student: Yi-Ting HSIEH Advisor: Dr. Chung-Wei Lin
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Abstract

A weakly-hard fault model can be captured by an (m, k) constraint, where

0 ≤ m ≤ k, meaning that there are at most m bad events (faults) among any k

consecutive events. In this thesis, we use a weakly-hard fault model to constrain the

occurrences of faults in system inputs. We develop approaches to verify properties

for all possible values of (m, k), where k is smaller than or equal to a given K, in

an exact and efficient manner. By verifying all possible values of (m, k), we define

weakly-hard requirements for the system environment and design a runtime monitor

based on counting the number of faults in system inputs. If the system environ-

ment satisfies the weakly-hard requirements, the satisfaction of desired properties

is guaranteed; otherwise, the runtime monitor can notify the system to switch to

a safe mode. This is especially essential for cyber-physical systems which need to

provide guarantees with limited resources and the existence of faults. Experimental

results with discrete second-order control, network routing, vehicle following, and

lane changing demonstrate the generality and the efficiency of the proposed ap-

proaches. Moreover, considering multiple systems sharing a processor, a scheduler

v
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is needed. Since properties of systems should be guaranteed during the scheduling

process, system designers can assign weakly-hard constraints from the verification

results to systems. The scheduler has to make sure the resources distribution can

satisfy the constraints. We also propose the schedulability analysis method under

multiple weakly-hard constraints and compare our method with other schedulabil-

ity analysis methods to demonstrate the generality. The verification can give the

strategy to system design ,and the schedulability analysis can help system designers

analyze whether the strategy is feasible or not.

Keywords: Formal verification, runtime monitoring, weakly-hard models, schedu-

lability analysis

vi



doi:10.6342/NTU202200995

Table of Contents

Acknowledgements ii

Abstract (Chinese) iii

Abstract v

List of Tables x

List of Figures xi

Chapter 1. Introduction 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2. System Model and Problem Formulation 8

2.1 Weakly-Hard Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Weakly-Hard Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 3. General Approaches and Runtime Monitor Design 12

3.1 Strength of Weakly-Hard Constraint . . . . . . . . . . . . . . . . . . . . . 12

3.2 Monotonic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Monotonic Approach with Dynamic Upper Bound of Satisfaction Boundary 15

3.4 Lowest-Cost-First Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Runtime Monitor Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vii



doi:10.6342/NTU202200995

Chapter 4. Discussion on Optimal Approaches 21

4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Optimal Verified Set Computation . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Correctness and Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.1 Other Single-Constraint Implications . . . . . . . . . . . . . . . . . 25

4.3.2 Multiple-Constraint Implications . . . . . . . . . . . . . . . . . . . 27

4.3.3 Completion of Proof . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Chapter 5. Reachability Analysis for Finite-State Machines 30

5.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Mask-Compressing Approach . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Layered BFS Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4 Dual-Layered BFS Approach . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 6. Schedulability Analysis 37

6.1 Job Trace Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Maximum Interrupt Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.3 Worst-Case Response Time . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.4 Job Trace Model Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 41

Chapter 7. Experimental Results 44

7.1 Weakly-Hard Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.1.1 Discrete Second-Order Control . . . . . . . . . . . . . . . . . . . . 44

7.1.1.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.1.1.2 Experiment on |Q| . . . . . . . . . . . . . . . . . . . . . . 45

7.1.1.3 Experiment on K . . . . . . . . . . . . . . . . . . . . . . . 47

7.1.2 Network Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.1.2.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.1.2.2 Experiment on |Q| . . . . . . . . . . . . . . . . . . . . . . 50

7.1.2.3 Experiment on K . . . . . . . . . . . . . . . . . . . . . . . 51

7.1.3 Lane Changing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

viii



doi:10.6342/NTU202200995

7.1.3.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.1.3.2 Experiment on |Q| . . . . . . . . . . . . . . . . . . . . . . 54

7.1.3.3 Experiment on K . . . . . . . . . . . . . . . . . . . . . . . 55

7.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2 Weakly-Hard Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2.1 Taskset Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.2.2 Schedulability Analysis Comparison . . . . . . . . . . . . . . . . . 56

Chapter 8. Conclusions 58

Bibliography 60

ix



doi:10.6342/NTU202200995

List of Tables

1.1 The overview of the proposed approaches. . . . . . . . . . . . . . . . 6

7.1 Discrete second-order control: runtime (in second) with different val-
ues of |Q|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.2 Discrete second-order control: runtime (in second) with different val-
ues of K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.3 Network routing: runtime (in second) with different values of |Q|. . . 50

7.4 Network routing: runtime (in second) with different values of K. . . . 50

7.5 Lane changing: runtime (in second) with different values of |Q|. . . . 54

7.6 Lane changing: runtime (in second) with different values of K. . . . . 54

7.7 Schedulability Analysis Comparison: schedulability ratio with differ-
ent values of U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

x



doi:10.6342/NTU202200995

List of Figures

2.1 (a) An example safety table and (b) its satisfaction boundary. . . . . 9

3.1 An illustration of Algorithms 1 (which applies Implications 1 and 2
only) and 2 (which applies Implications 1, 2, 3, and 4). To have a
clear comparison, we focus on the implications of W (3, 4) only. (a) If
P is unsatisfied under W (3, 4), then P is unsatisfied under W (4, 4).
Algorithm 2 further implies that P is unsatisfied under W (6, 8) and
W (m, k) where k ≥ 5 and m ≥ k − 1. (b) If P is satisfied under
W (3, 4), then P is satisfied under W (3, k) where k ≥ 5. . . . . . . . . 16

5.1 (a) An example layered BFS fromW (m, k) toW (m+1, k). Vertices A
and B are reachable in W (m, k). Vertices C and D are unreachable
in W (m, k) but reachable in W (m + 1, k). (b) An example dual-
layered BFS from W (m, k) to W (m, k− 1) and then to W (m+1, k).
Vertices A and B are reachable in W (m, k). Vertex C is unreachable
in W (m, k) but reachable in W (m, k − 1). Vertices D and E are
unreachable in W (m, k) and W (m, k−1) but reachable in W (m+1, k). 34

6.1 (a) The part of the job trace model. (b) Since the worst-case response
time of the job trace A is less than the period, it represents the
resulting job trace model after removing edge AC . . . . . . . . . . . 41

7.1 Discrete second-order control: computed satisfaction boundaries. . . . 45

xi



doi:10.6342/NTU202200995

Chapter 1

Introduction

1.1 Motivations

Cyber-physical systems often tolerate some faults and can still maintain sys-

tem properties. In this thesis, we constrain the fault occurrence of systems with

weakly-hard constraints. Weakly-hard models have different definitions and appli-

cations in different works [1–3, 5, 9, 10, 12, 18, 24]. A weakly-hard constraint in this

thesis is formatted as (m, k), where among any k consecutive events, there are at

most m bad events (faults). We verify properties of systems under the weakly-hard

constraint and bring benefits to systems. The tolerance of the bad event can reduce

the computation load and the resource can be scheduled to other critical systems.

With the verification result, we can optimize resource usage to guarantee system

properties.

The verification result under the weakly-hard constraint brings benefits to

system designers of cyber-physical systems. If systems can ensure that the fault

occurrences satisfy the weakly-hard constraint which guarantees properties, system

properties will be guaranteed. If not, system designers should apply a runtime

monitor to track whether systems satisfy the weakly-hard constraint. When systems

violate the constraint, the runtime monitor can change systems into safe mode and

inform the engineers.

1
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2

For example, applications of connected vehicles, such as intersection man-

agement and cooperative adaptive cruise control, rely on periodic messages from

other vehicles or roadside units. However, a message may be missing due to net-

work faults or even malicious attacks. With the verification results, a connected

vehicle can monitor the number of missing messages during runtime. If the corre-

sponding (m, k) constraint is violated, the connected vehicle should switch to a safe

mode (e.g., slowing down or stopping immediately). It should be emphasized that,

in practice, the cost of a network without missing messages is too high, or even it

may not be possible to predict how the environment behaves, so the satisfaction of

the (m, k) constraint cannot be guaranteed. Therefore, a runtime monitor for the

(m, k) constraint is desired.

1.2 Related Works

Hamdaoui et al. [10] first introduced the notion of weakly-hard constraints

and gave the schedulability analysis to such systems with dynamic priority assign-

ment. Researchers applied the weakly-hard model to different systems, such as

real-time systems [2] and network systems [16]. In this thesis, we also applied our

approaches to a use case related to network systems.

In this thesis, we consider safety properties verification for weakly-hard cyber-

physical systems. [7] proposed a formal analysis for real-time systems by representing

them as a network of hybrid automata, and verified by SpaceEx [8]. [6] further

reduces the verification problem into software verification. On the other hand, [15]

studied the verification problem of weakly-hard systems with nonlinear dynamics

and proposed a technique to convert infinite-time safety problems into a finite one.

[14] further improved the converting of the infinite-time safety problem with graph

theory. In recent works, [23] proposed different approaches to verify the discrete
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systems under multiple weakly-hard constraints in an efficient way.

The fundamental difference between the above works, and this thesis, is that

we focus on discrete systems rather than continuous systems. Since a variety of

systems are discrete in practice, we believe the study of specific discrete systems

is necessary. Benefiting from this, our technique is able to generate sound and

complete verification results with respect to the weakly-hard constraints for large-

scale problems.

[3, 5, 17, 22] focused on the priority assignment algorithm of the scheduling

problem and the schedulability analysis under weakly-hard constraints. [22] used

fixed priority method while [5,17] applied dynamic priority assignment method. To

bound the temporal behavior of overloaded systems, [1, 9, 11, 13, 19–21, 24], have

studied the problem under weakly-hard constraints.

1.3 Contributions

In this thesis, given a labelled transition system S, a property P , and a

positive integer K, we aim to develop a runtime monitor to verify whether the

environment satisfies a subset of the (m, k) constraints, where 1 ≤ m ≤ k ≤ K and

the subset is sufficient to enforce P , i.e., if the environment satisfies the subset of

the (m, k) constraints, it implies that S guarantees to satisfy P ; otherwise, S cannot

guarantee to satisfy P , which should lead S to switch to a safe mode. Unlike some

existing runtime-monitoring approaches (without an explicit model of S), this thesis

assumes that the model of S is given, but the satisfaction of an (m, k) constraint

can only be verified during runtime.

The runtime monitor relies on a safety table which stores the satisfaction con-

dition of property P under each (m, k) constraint. As there are K(K+1)
2

constraints
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in the safety table, a straightforward approach evaluating each (m, k) constraint one

by one needs to verify a property K(K+1)
2

times, where each individual verification

may be expensive to carry out. To remedy this problem, we propose approaches to

compute the safety table in a more efficient way.

The second part of this thesis considers a scheduling problem under weakly-

hard constraints. The first part gives the verification result to systems. However,

if the consecutive events of multiple systems are the executive jobs and share the

same processor, a scheduler will be needed to handle them. Since each system can

tolerate some jobs missed (faults), the purpose of the scheduler is to assign the jobs

to the processor and maintain the satisfaction of the weakly-hard constraints which

can ensure properties of each system.

Considering the scheduling process, the consecutive events of a system in

this thesis will be formatted as a task τi with period Pi and execution time Ei. The

scheduling process is preemptive. That is, Pi can also be the deadline of a job since

at each timestamp, the scheduler might assign the different job to the processor. If

a job can not be completed before Pi, it will be considered missing the deadline,

which is also a fault to a system.

With the safety table, system designers can determine a weakly-hard con-

straint for systems which will give the least overhead to the scheduling process.

However, it is also important that the scheduler can appropriately schedule the

taskset. In this thesis, we emphasize the schedulability analysis, which will analyze

whether the taskset is schedulable given the taskset, weakly-hard constraints, and

the scheduler (priority assignment method). If the taskset is schedulable, we could

ensure properties of all systems.

Instead of considering a single weakly-hard constraint for one task, in this



doi:10.6342/NTU202200995

5

thesis, we consider multiple weakly-hard constraints for one task, which is a more

generalized scenario for the scheduling problem. A task with multiple weakly-hard

constraints denotes that at each timestamp, the task only needs to satisfy any

one of the constraints. Considering multiple constraints can give benefits to sys-

tem designers. For example, if (m1, k1), (m2, k2) both ensure system properties, and

(m1, k1), (m2, k2) are not schedulable in single-constraints scenario, it is possible that

considering both (m1, k1), (m2, k2) in the scheduling process will make it schedula-

ble. As the result, considering multiple constraints can bring flexibility to system

designers.

The main contributions of this thesis include:

• Based on the existing theorems that state various logical relationships between

weakly-hard constraints, we propose approaches that require verifying at most

2K times to compute this satisfaction boundary.

• Based on the resulting satisfaction boundary, we define weakly-hard require-

ments for the system environment and design a lightweight runtime monitor

that dynamically checks the satisfaction of the weakly-hard requirements.

• We prove that, without being given a satisfaction boundary as an input, an

optimal deterministic approach does not exist. Then, given a satisfaction

boundary as an input, we introduce an optimal approach which can be used

to appraise the efficiency of the proposed approaches. The correctness of the

optimal approach and the uniqueness of its evaluated weakly-hard constraints.

• We consider a special case of reachability of finite-state machines. Based on

the existing layered Breadth-First Search (BFS) approach, we propose a more

efficient dual-layered Breadth-First Search (BFS) approach which computes
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Table 1.1: The overview of the proposed approaches.

Property & System Single (m, k) Constraint Multiple (m, k) Constraints

Reachability & Mask-Compressing Layered BFS, Dual-Layered BFS
Finite-State Machine (Section 5.2) (Sections 5.3 and 5.4)
General Property & Not Algorithms 1, 2, and 3
General System Covered (Sections 3.2, 3.3, and 3.4)

the satisfaction boundary for all (m, k) constraints (1 ≤ m ≤ k ≤ K) with the

same computational complexity as evaluating a single (m,K) constraint.

• We propose the schedulability analysis method for multiple weakly-hard con-

straints given a general priority assignment method.

• Experimental results with discrete second-order control, network routing, and

lane changing demonstrate the generality and the efficiency of the proposed

approaches.

• Comparing our schedulability analysis method with another method to demon-

strate the generality and the similar worst-case analysis.

We overview the existing and proposed approaches in this thesis in Table 1.1.

There are six approaches: the monotonic approach (Algorithm 1) in Section 3.2, the

monotonic approach with dynamic upper bound of satisfaction boundary (Algo-

rithm 2) in Section 3.3, the lowest-cast-first heuristic (Algorithm 3) in Section 3.4,

the mask-compressing approach in Section 5.2, the layered BFS approach in Sec-

tion 5.3, and the dual-layered BFS approach in Section 5.4. The first three ap-

proaches are for general properties, general systems, and multiple weakly-hard con-

straints, with different evaluation orders. They decide the orders of evaluating the

weakly-hard constraints and need to call a verification approach for a single weakly-

hard constraint. Note that the first three approaches assume that one can verify
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a property P under a single weakly-hard constraint — this thesis does not cover

how to achieve that, except in the special case of reachability for finite-state ma-

chines. The last three approaches are exactly for the special case of reachability for

finite-state machines. The mask-compressing approach is for a single weakly-hard

constraint, and thus it can be plugged into (called by) the first three approaches,

while the layered BFS approach and the dual-layered BFS approach is for multiple

weakly-hard constraints.

Note that the monotonic approach (Algorithm 1) in Section 3.2, the mask-

compressing approach in Section 5.2, and the layered BFS approach in Section 5.3

are the existing approaches refer to [23].

1.4 Organization

The thesis is organized as follows. Chapter 2 provides the problem for-

mulation. Chapter 3 describes how we solve the problem for general properties

and systems and introduces a runtime monitor. Chapter 4 discusses optimal ap-

proaches. Chapter 5 considers the special case of reachability for finite-state ma-

chines. Chapter 6 describes our schedulability analysis method. Chapter 7 presents

the experimental results. Chapter 8 concludes the thesis.
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Chapter 2

System Model and Problem Formulation

2.1 Weakly-Hard Verification

In this thesis, we consider a labelled transition system S = ⟨Q,Σ, R,Q0⟩

where Q is the set of states, Σ is the set of alphabet, R ⊆ Q×Σ×Q is the transition

relation, and Q0 ⊆ Q is the set of initial states. Without loss of generality, a subset

of alphabet represents input events {0, 1} ⊆ Σ, where 0 and 1 represent a normal

and faulty environmental event, respectively. We use σ ∈ Σ∗ = {0, 1}∗ to represent

an input trace. We are interested in evaluating whether a property P is satisfied

with inputs under the constraints of weakly-hard fault models.

Definition 1. Weakly-Hard Fault Model. A weakly-hard fault model is defined

by (m, k), meaning that there are at most m faulty events (denoted as 1’s) among

any k consecutive events in the input trace. The corresponding constraint is denoted

as W (m, k).

Based on the definition, an input trace σ |= W (m, k) if and only if σ has at

most m 1’s in any size-k window of σ.

Definition 2. Weakly-Hard Constraint Set. Given K ∈ Z+, the weakly-hard

constraint set is defined as C(K) := {W (m, k) | 1 ≤ m ≤ k ≤ K}.

Given a system S, a property P , and a positive integer K, the goal in this

thesis is to develop a runtime monitor to verify whether the environment satisfies a

8
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(1,8) (2,8) (3,8) (4,8)

(1,7) (2,7) (3,7) (4,7)

(1,6) (2,6) (3,6)

(1,5) (2,5)

(1,4) (2,4)

(1,3)

(1,2)

(5,8) (6,8) (7,8) (8,8)

(5,7) (6,7) (7,7)

(4,6) (5,6) (6,6)

(3,5) (4,5) (5,5)

(3,4) (4,4)

(2,3) (3,3)

(2,2)

(1,1)

N/A

k

m

(a)

(1,8) (2,8) (3,8) (4,8)

(1,7) (2,7) (3,7) (4,7)

(1,6) (2,6) (3,6)

(1,5) (2,5)

(1,4) (2,4)

(1,3)

(1,2)

(5,8) (6,8) (7,8) (8,8)

(5,7) (6,7) (7,7)

(4,6) (5,6) (6,6)

(3,5) (4,5) (5,5)

(3,4) (4,4)

(2,3) (3,3)

(2,2)

(1,1)

N/A

k

m

(b)

True / Satisfied False / Unsatisfied Satisfaction Boundary

Figure 2.1: (a) An example safety table and (b) its satisfaction boundary.

subset of C(K), where the subset is sufficient to enforce P , i.e., if the environment

satisfies the subset of C(K), it implies that S guarantees to satisfy P ; otherwise,

S cannot guarantee to satisfy P , which should lead S to switch to a safe mode.

We do not consider the case of m = 0 as, if there is no faulty event, S should be

designed to satisfy P , which should be regarded as a design-time problem (although

our approach can also be used to handle this special case situation).

The runtime monitor relies on a safety table, which stores the satisfaction

condition of P under each W (m, k) in C(K). A safety table is defined as follows.

Definition 3. Safety Table. Given K ∈ Z+, a safety table T ∈ {True,False,

N/A}K×K is defined as

T [m, k] =


True if m ≤ k and ∀σ |= W (m, k), S |= P ;

False if m ≤ k and ∃σ |= W (m, k), S ̸|= P ;

N/A if m > k.

(2.1)

For m > k, T [m, k] is not applicable as the corresponding weakly-hard fault

model is undefined. Note that a safety table is computed off-line in design phase, and
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the satisfaction of P under each W (m, k) in C(K) needs to be stored and accessed

during runtime. An example safety table is shown in Figure 2.1(a).

Problem 1. Verification. Given K ∈ Z+ and a transition system S, compute the

safety table T .

2.2 Weakly-Hard Scheduling

Definition 4. Task model Each task τi is formally defined as (Ei, Pi, Ci), where

• Ei is the execution time of a job of task τi.

• Pi is the period of a job of task τi.

• Ci is the multiple weakly-hard constraints set of task τi.

The multiple weakly-hard constraints set Ci can be represented as Ci =

{(mi1, ki1), ..., (min, kin)} where ∀j ≤ n,mij < kij.

Each task in the taskset considers the latest job as the most useful one. That

is, if a job misses its deadline, a system will discard the incomplete job and try to

complete the latest one.

Definition 5. Priority Assignment Method. A priority assignment method

will assign the priority to each job for the task at each timestamp. The scheduling

process at each timestamp will execute a job with the highest priority.

A priority assignment method can be a fixed-priority method that fixes the

priority for each task. It can also be a dynamic-priority method that dynamically

adjusts the priority at each time stamp. Note that a job can face different priorities

before completing by the definition.



doi:10.6342/NTU202200995

11

Problem 2. Schedulability Analysis. Given a taskset with N tasks and a prior-

ity assignment method, output whether the taskset is schedulable under the worst-case

scenario.
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Chapter 3

General Approaches and Runtime Monitor Design

In this section, we first define the strength of weakly-hard constraints (Section 3.1).

We then derive the fundamental theorems of logical relationships between weakly-

hard constraints and propose an algorithm to compute the safety table and its cor-

responding satisfaction boundary based on these theorems (Section 3.2). We further

derive advanced theorems of logical relationships between weakly-hard constraints

and propose an improved algorithm (Section 3.3) and a lowest-cost-first heuristic

(Section 3.4) taking all properties into account. Based on the computed safety table

and the satisfaction boundary, we can design a runtime monitor (Section 3.5).

Section 3.1 and 3.2 are the previous works refer to [23]. To introduce our

further approaches and experimental results, we keep the notations and detailed

algorithms for these sections.

3.1 Strength of Weakly-Hard Constraint

Definition 6. Strength of Weakly-Hard Constraints. Given two weakly-hard

constraints W (m, k) and W (m′, k′), we define that W (m, k) is stronger than W (m′, k′),

denoted as W (m, k) ≻ W (m′, k′), if and only if any input trace that satisfies W (m, k)

also satisfies W (m′, k′).

Understanding the logical relationships between constraints allows us to de-

12
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termine the satisfaction of properties under some W (m, k) constraints directly from

the known verification results of other W (m′, k′) constraints. From an algorithm

design perspective, exploiting these relationships by evaluating the constraints in a

proper order leads to a significant improvement in efficiency.

3.2 Monotonic Approach

Theorem 1. For any m,m′, k ∈ Z+,m < m′ ≤ k, W (m, k) ≻ W (m′, k).

Proof. By definition, for any input trace σ |= W (m, k), it has at most m 1’s in any

size-k window of σ. Since m < m′, it follows that σ |= W (m′, k).

Implication 1. For any m,m′, k ∈ Z+,m < m′ ≤ k, if a property P is unsatisfied

under W (m, k), then P is unsatisfied under W (m′, k); if a property P is satisfied

under W (m′, k), then P is satisfied under W (m, k).

Theorem 2. For any m, k, k′ ∈ Z+,m ≤ k′ < k, W (m, k) ≻ W (m, k′).

Proof. By definition, for any input trace σ |= W (m, k), it has at most m 1’s in any

size-k window of σ. If we reduce the window size to k′, the maximum number of 1’s in

the window only remains the same or decreases, so it follows that σ |= W (m, k′).

Implication 2. For any m, k, k′ ∈ Z+,m ≤ k′ < k, if a property P is unsatisfied

under W (m, k), then P is unsatisfied under W (m, k′); if a property P is satisfied

under W (m, k′), then P is satisfied under W (m, k).

By Implication 1, the problem of computing a safety table can be reduced

to the problem of computing the satisfaction boundary of the safety table. The

satisfaction boundary is defined as follows.
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Algorithm 1 Monotonic Approach

1: procedure Get satisfaction boundary(S, P,K)
2: B ← [ ]
3: m← 0
4: for k ← 1 to K do ▷ Get satisfaction boundary for each k
5: while m < k do
6: if S ̸|= P under W (m+ 1, k) then
7: break
8: end if
9: m← m+ 1
10: end while
11: B[k]← m
12: end for
13: return B
14: end procedure

Definition 7. Satisfaction Boundary. For each k, the satisfaction boundary

B(k) is the maximum m such that T [m, k] (in the safety table) is True.

The satisfaction boundary of the safety table in Figure 2.1(a) is shown in

Figure 2.1(b). The reduction is crucial because we only need to store the satisfaction

boundary rather than the whole safety table for the runtime monitor.

Implications 1 and 2 imply that evaluating constraints in a monotonic manner

(i.e., increasing m and increasing k until a given K) can compute the satisfaction

boundary without evaluating all constraints in C(K). We assume that we can verify

a property P under a single W (m, k) — an example of verifying reachability under

a single W (m, k) is described in Chapter 5. We propose the monotonic approach

(Algorithm 1) to compute the satisfaction boundary B(k) for each k ≤ K. For each

k ≤ K, the algorithm increases m until P is unsatisfied and obtains B(k) (Lines 5–

11). By Implication 1, since P is unsatisfied under W (B(k) + 1, k), P is unsatisfied

under W (m, k) where m > B(k) + 1, and thus there is no need to verify P under

W (m, k) where m > B(k) + 1. For example, as shown in Figure 3.1(a), if P is
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unsatisfied under W (3, 4), then P is unsatisfied under W (4, 4), which does not need

to be evaluated. Then, k is increased by 1 (Line 4), and the same procedure repeats

and starts with m = B(k−1)+1 (not m = 1). By Implication 2, since P is satisfied

under W (B(k− 1), k− 1), P is satisfied under W (B(k− 1), k), and thus there is no

need to verify P under W (B(k − 1), k). For example, as shown in Figure 3.1(b), if

P is satisfied under W (3, 4), then P is satisfied under W (3, 5) (and W (3, k) where

k ≥ 5), which does not need to be evaluated. The algorithm terminates when B(k)

is computed for each k ≤ K, and the satisfaction boundary is returned (Line 13).

Assuming the complexity of verifying P under a single weakly-hard constraint

is O(X), the complexity of Algorithm 1 is O(2K ·X) = O(K ·X), since both m, k

are non-decreasing in the algorithm and bounded above by K. It is a significant

improvement over brute-forcing each W (m, k) in C(K), which has the complexity

O(K2 ·X).

3.3 Monotonic Approach with Dynamic Upper Bound of
Satisfaction Boundary

Theorem 3. For any m, k, x ∈ Z+,m < k, x ≥ 2, W (m, k) ≻ W (xm, xk).

Proof. For any input trace σ |= W (m, k) and size-(xk) window of σ, the window can

be constructed by x size-k windows, and each of which has at mostm 1’s. Thus, there

are at most xm 1’s in the size-(xk) window, and it follows that σ |= W (xm, xk).

Implication 3. For any m, k, x ∈ Z+,m < k, x ≥ 2, if a property P is unsatisfied

under W (m, k), then P is unsatisfied under W (xm, xk); if a property P is satisfied

under W (xm, xk), then P is satisfied under W (m, k).

Theorem 4. For any m, k, x ∈ Z+,m < k, W (m, k) ≻ W (m+ x, k + x).
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m

(a)

k

m
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True / Satisfied False / Unsatisfied Not Determined Yet

(1,8) (2,8) (4,8)

(1,7) (2,7) (4,7)

(1,6) (2,6)

(1,5) (2,5)

(1,4) (2,4)

(1,3)

(1,2)

(5,8) (6,8) (7,8) (8,8)

(5,7) (6,7) (7,7)

(4,6) (5,6) (6,6)

(4,5) (5,5)

(4,4)

(2,3) (3,3)

(2,2)

(1,1)

N/A

(3,8)

(3,7) 

(3,6) 

(3,5) 

(3,4) 

Implication

Implication 1

Implication 4

Implication 3

Implication 2

Figure 3.1: An illustration of Algorithms 1 (which applies Implications 1 and 2 only)
and 2 (which applies Implications 1, 2, 3, and 4). To have a clear comparison, we
focus on the implications of W (3, 4) only. (a) If P is unsatisfied under W (3, 4), then
P is unsatisfied under W (4, 4). Algorithm 2 further implies that P is unsatisfied
under W (6, 8) and W (m, k) where k ≥ 5 and m ≥ k − 1. (b) If P is satisfied under
W (3, 4), then P is satisfied under W (3, k) where k ≥ 5.

Proof. For any input trace σ |= W (m, k) and size-(k + x) window of σ, the window

can be constructed by combining two windows of sizes k and x, respectively. Since

σ |= W (m, k), there are at most m 1’s in the size-k window. On the other hand,

there are at most x 1’s in the size-x window. Thus, there are at most (m+ x) 1’s in

the size-(k + x) window, and it follows that σ |= W (m+ x, k + x).

Implication 4. For any m, k, x ∈ Z+,m < k, if a property P is unsatisfied under

W (m, k), then P is unsatisfied under W (m + x, k + x); if a property P is satisfied

under W (m+ x, k + x), then P is satisfied under W (m, k).



doi:10.6342/NTU202200995

17

Algorithm 2 Monotonic Approach with Dynamic Upper Bound of Satisfaction
Boundary

1: procedure Get satisfaction boundary(S, P,K)
2: B ← [ ]
3: m← 0
4: for k ← 1 to K do ▷ Initialize satisfaction boundary
5: B[k] = k
6: end for
7: for k ← 1 to K do ▷ Get satisfaction boundary for each k
8: while m < B[k] do
9: if S ̸|= P under W (m+ 1, k) then
10: x← 2
11: while x · k ≤ K do ▷ Implication 3
12: B[xk]← min(B[xk], x · (m+ 1)− 1)
13: x← x+ 1
14: end while
15: x← 1
16: while k + x ≤ K do ▷ Implication 4
17: B[k + x]← min(B[k + x], (m+ 1) + x− 1)
18: x← x+ 1
19: end while
20: break
21: end if
22: m← m+ 1
23: end while
24: B[k]← min(B[k],m)
25: end for
26: return B
27: end procedure

Implications 3 and 4 imply the satisfaction of a property P beyond the same

m or k. Integrating with the previously proposed monotonic approach which in-

creases m and k, we exploit the implications and propose the monotonic approach

with dynamic upper bound of satisfaction boundary (Algorithm 2) to compute the

satisfaction boundary B(k) for each k ≤ K. The main difference between Algo-

rithms 1 and 2 is that the former one considers the search range for the satisfaction
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Algorithm 3 Lowest-Cost-First Heuristic

1: procedure Get safety table(S, P,K)
2: T ← {undefined} ▷ Initialize as undefined for the safety table
3: while T has undefined element do
4: Select the lowest-cost undefined W (m, k)
5: if S |= P under W (m, k) then
6: T [m, k]← True
7: else
8: T [m, k]← False
9: end if
10: Recursively update T by Implications 1, 2, 3, and 4
11: end while
12: return T
13: end procedure

boundary from an m to k, while the latter one dynamically reduces the search range

whenever P is unsatisfied under a constraint.

Specifically, suppose the algorithm is in the process of computing B(k), and P

is unsatisfied under W (m+1, k) (Line 9). By Implication 3, P is unsatisfied for each

W (x·(m+1), xk), x ≥ 2, and thus x·(m+1)−1 is an upper bound of B(xk) (Lines 10–

14). Similarly, by Implication 4, P is unsatisfied for each W ((m+1)+x, k+x), x ∈

Z+, and thus (m+1)+x−1 is an upper bound of B(k+x) (Lines 15–19). An example

is shown in Figure 3.1(a), if P is unsatisfied under W (3, 4), then P is unsatisfied

under W (4, 4), W (6, 8), and W (m, k) where k ≥ 5 and m ≥ k − 1, which do not

need to be evaluated. If P is satisfied under W (3, 4), then the implication is the

same as Algorithm 1, as shown in Figure 3.1(b).

3.4 Lowest-Cost-First Heuristic

Since the implications of the theorems do not necessarily restrict the order

of evaluating each W (m, k) in C(K), the efficiency can be further improved by a
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good evaluation order. We suppose that we can estimate the verification (time)

cost for each W (m, k) in C(K), e.g., based on the complexity as a function of m

and k. Intuitively, evaluating lower-cost constraints which implies more constraints

or higher-cost constraints is preferred. We propose the lowest-cost-first heuristic

(Algorithm 3) which iteratively selects a not-yet-evaluated constraint in C(K) by the

estimated cost (Line 4), evaluates it (Lines 5–9), and processes all implied constraints

after each evaluation (Line 10). The lowest-cost-first heuristic, though not optimal,

provides the flexibility of evaluating constraints in C(K) by different orders. The

lowest-cost-first heuristic, though not optimal, provides the flexibility of evaluating

constraints in orders different from the previous monotonic approaches. System

designers can decide the order according to the system features.

3.5 Runtime Monitor Design

Based on the satisfaction boundary computed above, we design a runtime

monitor to verify whether the environment satisfies each W (m, k) in C(K). De-

pending on the satisfaction boundary, we can then determine whether a property

P can be guaranteed. If P cannot be guaranteed, we can switch the system to a

safe mode. As shown in Algorithm 4, the runtime monitor only needs to store the

satisfaction boundary B[], instead of the safety table, in advance, reducing the space

complexity from O(K2) to O(K).

Besides the satisfaction boundary, the runtime monitor only needs two ad-

ditional arrays, I[k] for the last k-th inputs and N1[k] for the number of 1’s among

the last k inputs, where 1 ≤ k ≤ K. During runtime (Lines 7–17), the runtime

monitor reads an input (Line 8) and, for each k (Line 9), it updates the number of

1’s among the last k inputs, N1[k] (Line 10), and checks if it exceeds the satisfaction

boundary B[k] (Line 11). If yes, it means that P is not guaranteed to be satisfied,
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Algorithm 4 Runtime Monitoring

1: procedure Runtime Monitoring(K,B[])
2: for k ← 1 to K do
3: I[k]← 0 ▷ Store the last k-th input
4: N1[k]← 0 ▷ Store the number of 1’s among the last k inputs
5: end for
6: i← 0
7: while 1 do ▷ During runtime
8: x = Get Input()
9: for k ← 1 to K do
10: N1[k]← N1[k] + x− I[(i− k)%K]
11: if N1[k] > B[k] then ▷ Exceed the satisfaction boundary
12: Switch to a safe mode
13: end if
14: end for
15: I[i]← x
16: i← (i+ 1)%K
17: end while
18: end procedure

and the system switches to a safe mode (Line 12). The runtime monitor then stores

the input (Line 15) and continues monitoring.
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Chapter 4

Discussion on Optimal Approaches

In this section, we define optimal approaches. The main purposes are to appraise the

efficiency of the proposed approaches in Chapter 3 (by checking if any evaluation

of weakly-hard constraints is actually not necessary) and demonstrate that there

exists no deterministic algorithm that computes an optimal verified set without

being given a satisfaction boundary as an input, i.e., an optimal approach needs to

know the satisfaction boundary in advance. It should be emphasized that an optimal

approach cannot be applied to solve the problem defined in Chapter 2 where the

satisfaction boundary is not given.

4.1 Definitions

Definition 8. Verified Set. Given a system, a property, and an approach, the

verified set of the approach is the set of weakly-hard constraints verified (not by

implications) by the approach to compute the satisfaction boundary.

Definition 9. Implied Set. Given a system, a property, and an approach, the

implied set of the approach is the set of weakly-hard constraints implied by the weakly-

hard constraints in the verified set.

Based on the definitions, the union of the verified set and the implied set is

C(K). Assuming that the verification cost for each weakly-hard constraint can be

21
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1, its complexity, or its runtime, we can define an optimal approach and an optimal

verified set as follows:

Definition 10. Optimal Approach. For any system and any property, an optimal

approach computes the satisfaction boundary and minimizes the total verification

cost.

Definition 11. Optimal Verified Set. Given a system and a property, the veri-

fied set of an optimal approach is an optimal verified set.

Theorem 5. There exists no optimal approach without being given a satisfaction

boundary as an input.

Proof. Given K ∈ Z+, for any (deterministic) approach without being given a sat-

isfaction boundary, the first verified W (m, k) is always the same. Since there is no

single W (m, k) that appears in all the optimal verified sets after we enumerate all

possible satisfaction boundaries, the first verified W (m, k) is not in the optimal ver-

ified sets of some systems and some properties. Therefore, there exists no optimal

approach without being given a satisfaction boundary as an input.

Consider an example with K = 8 and assume that the verified set of an

approach is {W (1, 2), W (1, 3), W (2, 5), W (3, 7), W (3, 8)} and the optimal verified

set is {W (1, 2), W (2, 5), W (3, 7), W (3, 8)}, where the given property P is satisfied

under W (3, 8). By Theorems 2 and 3, W (1, 3) ≻ W (3, 8), and thus P is satisfied

under W (1, 3), which does not need to be evaluated. Therefore, W (1, 3) is not

included in the optimal verified set. However, the approach does not know the

satisfaction boundary in advance, so evaluating W (3, 8) first does not make it an

optimal approach — if P is unsatisfied under W (3, 8), W (1, 3) still needs to be

evaluated. Furthermore, if P is unsatisfied under W (1, 3), evaluating W (3, 8) is a

waste as it can be implied by W (1, 3).
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Algorithm 5 Optimal Verified Set Computation

1: procedure Compute Optimal Verified Set(K,B[])
2: I ← [ ][ ]
3: for k ← 1 to K do
4: for m← 1 to k do
5: I[m][k]← W (m, k) ▷ Initialize array I
6: end for
7: end for
8: for k ← 1 to K do
9: for m← 1 to k do
10: for W (m′, k′) implied by W (m, k) do ▷ Use B and Implications in

Chapter 3
11: I[m′][k′]← I[m][k]
12: end for
13: end for
14: end for
15: return the set of W (m, k) where I[m][k] = W (m, k)
16: end procedure

4.2 Optimal Verified Set Computation

Given the satisfaction boundary B, we propose Algorithm 5 to compute an

optimal verified set, as Definition 11. We first initialize a 2-dimensional array I

(Lines 2–7). I[m′][k′]← W (m, k) means that W (m′, k′) can be implied by W (m, k),

i.e., either W (m′, k′) ≻ W (m, k) or W (m, k) ≻ W (m′, k′), which depends on the

satisfaction boundary B. For example, if a property P is satisfied under W (m, k),

I[m′][k′]← W (m, k) means W (m′, k′) ≻ W (m, k); otherwise, if a property P is un-

satisfied under W (m, k), I[m′][k′] ← W (m, k) means W (m, k) ≻ W (m′, k′). Then,

we can iteratively update I (Lines 8–14) by B and Implications 1, 2, 3, and 4. For

each W (m, k), we can find a set of W (m′, k′) which can be implied by W (m, k)

(Lines 10–12) since the satisfaction boundary is given. After that, an optimal ver-

ified set is the set of W (m, k) where I[m][k] = W (m, k) (Line 15). The size of the

optimal verified set is at most K. It should also be mentioned that Algorithm 5 is
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applicable to any verification cost (e.g., 1, its complexity, or its runtime) for each

weakly-hard constraint. This is because a weakly-hard constraint is in the optimal

verified set if and only if it cannot be implied by any other constraint in C(K) —

this is not affected by the definition of a verification cost.

4.3 Correctness and Uniqueness

We will prove that Algorithm 5 outputs an optimal verified set, and the

optimal verified set is unique. We will demonstrate that any weakly-hard constraint

in the optimal verified set cannot be implied by any other constraint in C(K). To

complete the proof, we provide the following definitions first.

Definition 12. Trace Set. The trace set of a weakly-hard constraint W (m, k) is

defined as S(W (m, k)) = {σ | σ |= W (m, k)}.

Definition 13. Equivalence of Weakly-Hard Constraints. Given two weakly-

hard constraints W (m, k) and W (m′, k′), we define that W (m, k) is equivalent to

W (m′, k′), denoted as

W (m, k) = W (m′, k′), if and only if S(W (m, k)) = S(W (m′, k′)).

Theorem 6. For any m,m′, k, k′ ∈ Z+,m < k,m′ < k′, if W (m, k) = W (m′, k′),

then m = m′ and k = k′.

Proof. If m ̸= m′ or k ̸= k′, then there is a trace σ such that either “σ |= W (m, k)

and σ ̸|= W (m′, k′)” or “σ |= W (m′, k′) and σ ̸|= W (m, k),” where σ can be set

as follows: if m ̸= m′, then σ = 1max(m,m′) so that σ |= W (max(m,m′), k) and

σ ̸|= W (min(m,m′), k′); if m = m′ and k ̸= k′, then σ = 1m0min(k,k′)−m1 so that

σ |= W (m,min(k, k′)) and σ ̸|= W (m,max(k, k′)). By contraposition, if W (m, k) =

W (m′, k′), then m = m′ and k = k′.
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Definition 14. Comparability of Weakly-Hard Constraints. Given two weakly-

hard constraints W (m, k) and W (m′, k′), we define that W (m, k) and W (m′, k′) are

comparable if and only if either W (m, k) ≻ W (m′, k′), W (m′, k′) ≻ W (m, k), or

W (m, k) = W (m′, k′); otherwise, we define that W (m, k) and W (m′, k′) are incom-

parable.

4.3.1 Other Single-Constraint Implications

Here, we prove that, for any pair of weakly-hard constraints, the implication

between them is covered by Theorems 1, 2, 3, and 4. As a result, we do not need to

consider other implications by single weakly-hard constraints.

Theorem 7. For any m,m′, k, k′ ∈ Z+, m < k, m < m′,m ∤ m′,
⌊
m′

m

⌋
· k + m′ −⌊

m′

m

⌋
·m < k′, W (m, k) and W (m′, k′) are incomparable.

Proof. We first prove that W (m, k) ≻ W (m′, k′) is false. Let k∗ =
⌊
m′

m

⌋
· k +m′ −⌊

m′

m

⌋
· m + 1 and σ = (1m0k−m)

⌊
m′
m

⌋
1
k∗−

⌊
m′
m

⌋
·k
. It is trivial that σ |= W (m, k),

but σ ̸|= W (m′, k∗) because σ has its length k∗ and (m′ + 1) 1’s. Therefore, for

k′ ≥ k∗, σ ̸|= W (m′, k′). We then prove that W (m′, k′) ≻ W (m, k) is false. Let

σ = 1m
′
0k

′−m′
. It is trivial that σ |= W (m′, k′), but σ ̸|= W (m, k) because there

are more than m 1’s in the first k inputs. Combining the two proofs, W (m, k) and

W (m′, k′) are incomparable.

Theorem 8. For any m,m′, k, k′ ∈ Z+, m < k, m < m′, m | m′, m′

m
· k < k′,

W (m, k) and W (m′, k′) are incomparable.

Proof. We first prove that W (m, k) ≻ W (m′, k′) is false. Let k∗ = m′

m
· k + 1 and

σ = (1m0k−m)
m′
m 1. It is trivial that σ |= W (m, k), but σ ̸|= W (m′, k∗) because σ

has its length k∗ and (m′ + 1) 1’s. Therefore, for k′ ≥ k∗, σ ̸|= W (m′, k′). We
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then prove that W (m′, k′) ≻ W (m, k) is false. Let σ = 1m
′
0k

′−m′
. It is trivial that

σ |= W (m′, k′), but σ ̸|= W (m, k) because there are more than m 1’s in the first k

inputs. Combining the two proofs, W (m, k) and W (m′, k′) are incomparable.

Theorem 9. For any m1,m2,m3, k1, k2, k3 ∈ Z+,m1 ≤ k1,m2 ≤ k2,m3 ≤ k3, if

W (m1, k1) ≻ W (m2, k2) and W (m2, k2) ≻ W (m3, k3), then W (m1, k1) ≻ W (m3, k3).

Proof. By Definition 6, any input trace that satisfiesW (m1, k1) also satisfiesW (m2, k2),

and any input trace that satisfies W (m2, k2) also satisfies W (m3, k3). Therefore, any

input trace that satisfies W (m1, k1) also satisfies W (m3, k3).

With Theorem 9, we can combine theorems and get more implications.

Theorem 10. For any m,m′, k, k′ ∈ Z+, m < k, m′ < k′, (m, k) ̸= (m′, k′),

W (m, k) and W (m′, k′) are either incomparable or comparable and implied by the

combination of Theorems 1, 2, 3, and 4.

Proof. Given an W (m, k), we define Γ = {W (m′, k′)|(m, k) ̸= (m′, k′),m′ ≥ m}.

Any W (m′, k′) ∈ Γ is corresponding to one of the following cases:

• If k′ = k, then W (m, k) ≻ W (m′, k′) or W (m′, k′) ≻ W (m, k) by Theorem 1.

• If m′ = m, then W (m, k) ≻ W (m′, k′) or W (m′, k′) ≻ W (m, k) by Theorem 2.

• If m′ > m,m ∤ m′, k′ ≤
⌊
m′

m

⌋
· k +m′ −

⌊
m′

m

⌋
·m, then W (m, k) ≻ W (m′, k′)

by the combination of Theorems 2, 3, and 4.

• If m′ > m,m ∤ m′, k′ >
⌊
m′

m

⌋
· k +m′ −

⌊
m′

m

⌋
·m, then W (m, k) and W (m′, k′)

are incomparable by Theorem 7.

• If m′ > m,m | m′, k′ ≤ m′

m
· k, then W (m, k) ≻ W (m′, k′) by the combination

of Theorems 2 and 3.
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• If m′ > m,m | m′, k′ > m′

m
· k, then W (m, k) and W (m′, k′) are incomparable

by Theorem 8.

To this point, we prove that Theorems 1, 2, 3, 4, 7, and 8 cover all possible

cases for a pair of weakly-hard constraints. However, Theorems 7 and 8 indicate that

the weakly-hard constraints are incomparable. As a result, we only need to consider

Theorems 1, 2, 3, and 4 for the implications by a single weakly-hard constraint.

4.3.2 Multiple-Constraint Implications

Here, we prove that, if the combination of n weakly-hard constraints {W (m1, k1),

W (m2, k2), . . . ,W (mn, kn)} implies another weakly-hard constraint W (m, k), then

a weakly-hard constraint W (mi, ki) ∈ {W (m1, k1),W (m2, k2), . . . ,W (mn, kn)} im-

plies W (m, k). As a result, we do not need to consider the implications by multiple

weakly-hard constraints.

Theorem 11. If there is a set of n weakly-hard constraints {W (m1, k1),W (m2, k2), . . . ,

W (mn, kn)} and another weakly-hard constraint W (m, k) such that S(W (m, k)) ⊆⋃n
i=1 S(W (mi, ki)), then there must be a weakly-hard constraint W (mi, ki) ∈ {W (m1, k1),

W (m2, k2), . . . ,W (mn, kn)} such that W (m, k) ≻ W (mi, ki).

Proof. Let σ = (1m0k−m)n and Γ = {W (m′, k′)|m′ < k′}. Any W (m′, k′) ∈ Γ is

corresponding to one of the following cases:

• If m′ < m, then σ ̸|= W (m′, k′) since m′ < m.

• If m′ = m, k′ > k, then σ ̸|= W (m′, k′) since the (k + 1)-th element in σ is 1.
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• If W (m, k) and W (m′, k′) are incomparable, then σ ̸|= W (m′, k′) as σ is used

in proving Theorems 7 and 8.

• For another other W (m′, k′), the proof in Theorem 10 states that W (m, k) ≻

W (m′, k′) and thus σ |= W (m′, k′).

Considering all cases, if σ |= W (m′, k′), then W (m, k) ≻ W (m′, k′). Therefore,

Theorem 11 is proved.

If S(W (m, k)) ⊆
⋃n

i=1 S(W (mi, ki)) and P is satisfied under each W (mi, ki),

then P is satisfied under W (m, k). By Theorem 11, the implication (P is satisfied

under W (m, k)) can actually be obtained from a single-constraint implication.

On the other hand, another implication is that, if S(W (m, k)) ⊇
⋃n

i=1 S(W (mi, ki))

and P is unsatisfied under at least one W (mi, ki), then P is unsatisfied under

W (m, k). This implication can also be obtained from a single-constraint implication

(from a constraint W (mi, ki) making P unsatisfied).

4.3.3 Completion of Proof

Theorem 12. Algorithm 5 outputs an optimal verified set, and the optimal verified

set is unique.

Proof. By Theorem 11 and the explanation above, a multiple-constraint implication

can be obtained from a single-constraint implication. By Theorem 10, a single-

constraint implication between constraints which are comparable is covered by The-

orems 1, 2, 3, and 4. Therefore, there is no other implication, and Algorithm 5

outputs the unique optimal verified set.
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It should be mentioned that there are many optimal paths, and each of them

includes the same set of (m, k) (where I[m][k] = W (m, k)) with different sequences

(orders), as returned by Algorithm 5.
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Chapter 5

Reachability Analysis for Finite-State Machines

In this section, we consider a special case of system verification with weakly-hard

constraints — reachability analysis for finite-state machines. We first introduce a

mask-compressing approach to verify reachability under a single weakly-hard con-

straint. The mask-compressing approach serves as the example of verifying a prop-

erty P (reachability) under a single constraint in C(K), and thus it can be plugged

into (called by) the approaches in Chapter 3. Then, we propose a layered BFS

approach which computes the safety table in a more efficient way — the layered

BFS approach computes the safety table with the same computational complexity

as evaluating a single (m,K) constraint.

Section 5.2 and 5.3 are the previous works refer to [23]. In order to introduce

section 5.4 and experimental results, we keep the notations and detailed algorithm

for these sections.

5.1 Problem Definition

A non-deterministic finite-state machine model S is defined as ⟨Q,Σ, δ, Pr, q0, F ⟩

where Q is the finite set of states, Σ = {0, 1} is the set of input symbols, δ ⊆

Q × Σ × Q is the transition table, Pr : δ → (0, 1] is the transition probability

30
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satisfying

∀(q, x) ∈ Q× Σ,
∑

q∈Q,(q,x,q)∈δ

Pr(q, x, q) = 1, (5.1)

where q0 is the initial state, and F ⊆ Q is the finite set of unsafe states. Given a

finite-state machine S and a positive integer K, the goal is to determine whether the

property P of “never reaching an unsafe state” is satisfied with all possible traces

under each W (m, k) in C(K).

5.2 Mask-Compressing Approach

We introduce the masking-compressing approach to verify the reachability

property P under a single weakly-hard constraint W (m, k). Again, it should be

emphasized that the mask-compressing approach serves as the example of verifying

a property P (reachability) under a single constraint in C(K), and thus it can

be plugged into (called by) the approaches in Chapter 3. The mask-compressing

approach traverses a finite-state machine with all possible traces that satisfy the

weakly-hard constraint. It records the previous k − 1 inputs and considers the

possibility of the next input. Since there are at most m 1’s among any k consecutive

inputs, if there have been m 1’s among previous k − 1 inputs, then the next input

must be 0.

Given the previous k−1 inputs, we encode them by compressing them into a

(k − 1)-bit mask. Formally, given a finite state machine S = ⟨Q,Σ, δ, Pr, q0, F ⟩, we

define a graph to perform verification for a single weakly-hard constraint W (m, k)

as follows:

• The vertex set is the set product of the states of S and the (k − 1)-bit mask.
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• There is a directed edge from vq,mask to vq,mask if and only if

(q, mask % 2, q) ∈ δ, (5.2)

(mask · 2) % 2k−1 +mask % 2 = mask, (5.3)

Count1(mask) +mask % 2 ≤ m, (5.4)

where Count1() counts the number of 1’s in a mask.

Equation (5.2) is for the transition in S, Equation (5.3) is for the 1-bit “shift” of

the mask, and Equation (5.4) is for the number of 1’s bounded by the weakly-hard

fault model. After constructing the graph, we can traverse the graph with a BFS

starting from vq0,0, and P is unsatisfied if and only if we can reach a vertex vq,mask

where q ∈ F . Note that this is equivalent to verifying the composition of S and

the state machine representing a single weakly-hard constraint W (m, k). Here, we

use masks because we can achieve computationally efficient implementation by bit

operations.

The graph has at most |Q| · 2k vertices and |δ| · 2k edges, and thus the

complexity is O(N · 2k), where N = |Q| + |δ|, for the mask-compressing approach

verifying the reachability property P under a single W (m, k). When plugging the

masking-compressing approach into the approaches in Chapter 3, the complexities

are as follows:

• Algorithm 1: O
(∑K

k=1 2 ·N · 2k
)
= O

(
N · 2K+1 −N · 2

)
= O(N · 2K).

• Algorithm 2: O
(∑K

k=1 N · 2k
)
= O

(
N · 2K+1 −N · 2

)
= O(N · 2K).

• Algorithm 3: it depends on the cost estimation and constraint implication.
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5.3 Layered BFS Approach

Here, we propose the layered BFS approach which computes the safety table

in a more efficient way. The key insight of the layered BFS approach is that multiple

weakly-hard constraints W (m, k) with the same k can be verified together within a

BFS.

Theorem 13. For W (m, k), W (m + 1, k) ∈ C(K), the graph for W (m, k) con-

structed by the mask-compressing approach is a subgraph of the graph for W (m +

1, k).

Proof. By Equation (5.4), if an edge is in the graph for W (m, k), it must also be in

the graph for W (m+ 1, k).

Theorem 14. Each reachable vertex in the graph for W (m+1, k) is also reachable

from the initial states of the graph for W (m, k).

Proof. It is straightforward by Theorem 13. Note that the initial vertices for the

graphs for W (m, k) and W (m+ 1, k) are the same.

Theorem 13 implies that evaluating W (m, k) leads to the results for all

W (m′, k), where 1 ≤ m′ ≤ m. Thus, only the graph for W (k, k) needs to be

traversed for all W (m′, k), where 1 ≤ m′ ≤ k. Theorem 14 further implies that

we can perform BFS for k iterations from the graph for W (1, k) to the graph for

W (k, k), called the “layered BFS approach” in this thesis. Formally, we denote the

sets of edges and vertices in the graph for W (m, k) as Em and Vm respectively. For

the m-th iteration (as a layer), we perform BFS on the graph Gm = (Vm, Em). We

exploit the previous result of the BFS on Gm−1 = (Vm−1, Em−1) and thus avoid

redundancy as Gm−1 ⊆ Gm.
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(b)

Gm,k

A B

D E
Gm + 1, k

C

Gm, k - 1
Gm

A B

C D
Gm + 1

(a)

Figure 5.1: (a) An example layered BFS from W (m, k) to W (m + 1, k). Vertices
A and B are reachable in W (m, k). Vertices C and D are unreachable in W (m, k)
but reachable in W (m + 1, k). (b) An example dual-layered BFS from W (m, k) to
W (m, k− 1) and then to W (m+1, k). Vertices A and B are reachable in W (m, k).
Vertex C is unreachable in W (m, k) but reachable in W (m, k − 1). Vertices D and
E are unreachable in W (m, k) and W (m, k − 1) but reachable in W (m+ 1, k).

An example is shown in Figure 5.1, where vertices A and B are reachable

(satisfying Equation (5.2)) and other vertices are unreachable (not satisfying Equa-

tion (5.2)). After performing the BFS for W (m, k), we can collect a vertex set V ′
m

containing unreachable vertices (such as vertices C and D), and, for each v′ ∈ V ′
m,

there exists a vertex v ∈ Vm such that (v, v′) ∈ Em+1 (such as edges (A,C) and

(B,D)). By Theorems 13 and 14, after starting from the vertices in V ′
m and per-

forming the BFS on Gm+1, we traverse all vertices in Vm+1 without repeating the

BFS on Gm. Note that the mask of each vertex in V ′
m satisfies W (m + 1, k). After

the iterations from W (m, k) to W (k, k), each vertex in Gk is traversed only once.

Moreover, if an unsafe state is reached in the m-th iteration, P is only guaranteed

to be satisfied under W (m′, k), where m′ < m.

Since each vertex in the graph for W (k, k) only needs to be traversed once,

the complexity for a given k is O(N ·2k), where N = |Q|+ |δ|. The total complexity

for all k is O
(∑K

k=1N · 2k
)

= O
(
N · 2K+1 −N · 2

)
= O(N · 2K). This shows

that the layered BFS approach computes the satisfaction boundary with the same

complexity as Algorithms 1 and 2 as well as verifying a single (m,K).
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5.4 Dual-Layered BFS Approach

In the layered BFS approach, the graph for W (m, k) is constructed by the

mask-compressing approach with a (k−1)-bit mask, whereas the graph forW (m, k−

1) is constructed with a (k−2)-bit mask. As a result, the same input trace is encoded

into different vertices and edges in the two graphs, and thus it requires two traversals

to perform verification. Here we propose to construct both graphs with a (k−1)-bit

mask so that the weakly-hard constraints W (m, k) and W (m, k− 1) can be verified

within a BFS.

Theorem 15. For W (m, k), W (m, k − 1) ∈ C(K), the graph for W (m, k) con-

structed by the mask-compressing approach with a (k − 1)-bit mask is a subgraph of

the graph for W (m, k − 1), also constructed with a (k − 1)-bit mask.

Theorem 16. For W (m, k − 1), W (m + 1, k) ∈ C(K), the graph for W (m, k − 1)

constructed by the mask-compressing approach with a (k− 1)-bit mask is a subgraph

of the graph for W (m+ 1, k), also constructed with a (k − 1)-bit mask.

Theorem 15 implies that evaluatingW (m, k−1) leads to the result ofW (m, k),

and Theorem 16 implies that evaluating W (m+1, k) leads to the result of W (m, k−

1). Therefore, a single BFS on the graph for W (k, k) allows us to compute the sat-

isfaction boundaries B(k − 1) and B(k). Formally, we denote the sets of edges and

vertices in the graph for W (m, k) as Em,k and Vm,k respectively. Upon performing

the BFS on Gm,k−1 = (Em,k−1, Vm,k−1), we exploit the previous result of BFS on

Gm,k and avoid redundancy as Gm,k ⊆ Gm,k−1. Similarly, upon performing the BFS

on Gm+1,k, we exploit the previous result of BFS on Gm,k−1 and avoid redundancy

as Gm,k−1 ⊆ Gm+1,k. Note that all these graphs are constructed with a (k − 1)-bit

mask.
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Specifically, during the BFS on Gm,k, we collect two vertex sets V ′
m,k−1 and

V ′
m+1,k, where, for each v′ ∈ V ′

m,k−1, there exists a vertex v ∈ Vm,k such that (v, v′) /∈

Em,k and (v, v′) ∈ Em,k−1; and for each v′ ∈ V ′
m+1,k, there exists a vertex v ∈ Vm,k

such that (v, v′) /∈ Em,k−1 (thus (v, v′) /∈ Em,k) and (v, v′) ∈ Em+1,k. Upon the BFS

on Gm,k−1, we start from the vertices in V ′
m,k−1 and avoid redundant traversal of

Gm,k. Similarly, during the BFS on Gm,k−1, we collect a vertex set V ′′
m+1,k, where, for

each v′′ ∈ V ′′
m+1,k, there exists a vertex v ∈ Vm,k−1 − Vm,k such that (v, v′′) /∈ Em,k−1

and (v, v′′) ∈ Em+1,k. Upon the BFS on Gm+1,k, we start from the vertices in

V ′
m+1,k ∪ V ′′

m+1,k and avoid redundant traversal of Gm,k−1. As a result, every vertex

in Gk,k is traversed at most once in order to compute B(k − 1) and B(k).

If an unsafe state q ∈ F is reached during the BFS on Gm,k, it is clear

that B(k) = m − 1. By Implication 2, B(k − 1) = m − 1. On the other hand,

if an unsafe state q ∈ F is reached during the BFS on Gm,k−1, it is clear that the

B(k − 1) = m − 1. Since Gm,k has already been traversed without reaching any

unsafe states, by Implication 4, B(k) = m.
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Chapter 6

Schedulability Analysis

In this section, we consider the scheduling process. The consecutive events of a sys-

tem will be formatted as a task τi with period Pi, execution time Ei, and weakly-hard

constraints Ci. Given a taskset and a priority assignment method, the schedulability

analysis proposed in this section will analyze whether the taskset is schedulable or

not considering the worst-case scenario. Section 6.1 introduces the job trace model

which represents the status of a task. Section 6.2 and 6.3 exploit the job trace

models of the taskset to compute the worst-case response time. Section 6.4 further

reconstructs the job trace models and gives the results to the schedulability analysis.

6.1 Job Trace Model

Definition 15. Job Trace. For a task τi at a certain timestamp, the job trace t

is a binary sequence with length Ki which is the past Ki jobs status where Ki =

max(ki1, ..., kin).

Job trace is a representation of the task status. For example, if the results

of the past three jobs are miss, miss, and meet, the job trace at this timestamp will

be 110. The reason why we need to define the length of the job trace Ki is that

the resulting job trace can also represent whether the weakly-hard constraints are

satisfied or not.

37
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Definition 16. Job Trace Model. The job trace model of a task τi can be repre-

sented as a directed graph Gi = {Vi, Ei}, where

• Vi is the set of all possible job traces of task τi.

• Ei is the set of edges which represent the deadline meet or miss.

The edge represents whether the deadline of the current job is met or missed.

That is, if the current job of a job trace t meets the deadline, we will have an edge

from t to t′ where t′ = (t << 1)∧0. For example, if the current job of a job trace 111

meets the deadline, we will have an edge from 111 to 110. Initially, if we consider

all possible job trace that a task can face, there will be 2Ki vertices and 2Ki+1 edges.

The reason why we need the job trace model is that the job trace model

represents all job trace a task will face, and the job trace has the directed relation

to the weakly-hard constraint. However, during the scheduling process, there might

be some job trace in the job trace model which is impossible to reach. Therefore,

the rest of the schedulability analysis will focus on removing those job traces in the

job trace model base on the worst-case scenario.

6.2 Maximum Interrupt Jobs

The computation of the maximum interrupt jobs can help analyze the worst-

case response time. Given a job trace t of a task τi, another task τj, and a number

n, we target to know the maximum number of the jobs with higher priority within

n consecutive jobs of task τj. Note that the priority assignment method can map

one job trace to one priority, and the higher priority here means the priority p′ of

the job trace of task τj is higher than the priority p of the job trace t.



doi:10.6342/NTU202200995

39

Algorithm 6 Maximum Interrupt Jobs Computation

1: procedure Compute Maximum Interrupt Jobs(p, Vj, Ej, PM, n)
2: M ← [ ]
3: if any v ∈ Vj, PM(v) > p then ▷ Obtain the maximum interrupt jobs

within 1 consecutive job
4: M [1]← 1
5: else
6: M [1]← 0
7: end if
8: A← adjacency list of Vj, Ej

9: B ← [ ]
10: for v ∈ Vj do ▷ Assign 0 or 1 to each vertex according to the priority
11: if PM(v) > p then
12: B[v]← 1
13: else
14: B[v]← 0
15: end if
16: end for
17: for k ← 2 to n do
18: NB ← [ ]
19: for v ∈ Vj do
20: for v′ ∈ A[v] do ▷ Broadcast the temporary maximum interrupt

jobs to its adjacency vertices
21: if PM(v′) > p then
22: NB[v′]←Max(NB[v′], B[v] + 1)
23: else
24: NB[v′]←Max(NB[v′], B[v])
25: end if
26: end for
27: M [k]←Max(NB[v], v ∈ Vj)
28: B ← NB
29: end for
30: end for
31: return M
32: end procedure

To make it more convenient for the worst-case response time analysis, given

n, Algorithm 6 will output the maximum interrupt jobs within 1 to n consecutive
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jobs and store them in B. At kth iteration (Line 17), each vertex will consider

itself as the end of the k − 1 consecutive jobs and store the temporary maximum

interrupt jobs. Next, each vertex will broadcast its temporary maximum interrupt

jobs to its adjacency vertices (Line 20) and update them with the interrupt jobs of

k consecutive jobs (Lines 21–25). For each iteration, the maximum interrupt jobs

of k consecutive jobs will be the maximum value among all vertices (Line 27).

The time complexity of Algorithm 6 will depend on n and the number of

vertices and edges. For each iteration (Line 17), the broadcast method of the job

trace model will cost O(|Vj| + |Ej|). Consider the initial job trace model, the time

complexity of Algorithm 6 will be O(n× 2Kj).

6.3 Worst-Case Response Time

For each job trace t with priority p of a task τi, we target to find the worst-

case response time, where every other task τj faces the maximum interrupt jobs.

Based on the maximum interrupt jobs computation, we can compute the temporary

interference from other tasks and recursively compute the worst-case response time.

Theorem 17. Given a time window w, the worst-case temporary interference of a

job trace t with priority p of a task τi will be

I(t, τi, w) =
∑
τj ̸=τi

Mp
τi,τj

[⌈
w

Pj

⌉]
× Ej. (6.1)

⌈
w
Pj

⌉
represents the number of the consecutive jobs of task τj during time

window w. Since we have obtain Mp
τi,τj

by the Algorithm 6 beforehand, we just need

to summarize the maximum interrupt jobs of all the other tasks.

Theorem 18. The worst-case response time of a job trace t with priority p of a
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Figure 6.1: (a) The part of the job trace model. (b) Since the worst-case response
time of the job trace A is less than the period, it represents the resulting job trace
model after removing edge AC

task τi will be computed by the following recurrence

W (t, τi,m+ 1)← Ei + I(t, τi,W (t, τi,m)). (6.2)

The recurrence is initialized with W (t, τi, 0)← Ei and terminates when W (t, τi,m) >

Pi or W (t, τi,m+ 1) = W (t, τi,m).

When W (t, τi,m) > Pi, the current job of τi might possibly miss base on the

worst-case scenario. That is, we do not need to continue the recurrence. The time

complexity of the recurrence will be O(|τ | × n× 2Kj + r× |τ |), where |τ | × n× 2Kj

denotes the preprocessing of the maximum interrupt jobs and r × |τ | denotes the

recurrence. Note that r is the recursive calls, and the maximum n will be
⌈
Pmax

Pmin

⌉
,

where Pmax, Pmin are the maximum and minimum period of the taskset.

6.4 Job Trace Model Reconstruction

After computing all the worst-case response times of every task, we target

to remove vertices and edges from the job trace model. Since the job trace model

represents all possible statuses a task can reach, if the worst-case response time of

a job trace is less or equal to the period, the job with the job trace will meet the

deadline certainly, and we can further remove the missed edge of the job trace.
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Algorithm 7 Job Trace Model Stabilization

1: procedure Job Trace Model Stabilization(τ)
2: Initialize job trace models with τ .
3: do
4: for every job trace do
5: Compute maximum interrupt jobs
6: Compute worst case response time
7: end for
8: for every job trace do
9: if worst case response time < period then
10: Remove the missed edge
11: end if
12: end for
13: while Being able to remove any edge from job trace models
14: end procedure

For example, in Figure 6.1, after the worst-case response time computation,

the worst-case response time of the job trace A is less than the period. That is,

the job with the job trace A will always meet the deadline, and we can remove the

missed edge AC. If every inbound of C is removed, C can further be removed.

We introduced Algorithm 7 to recursively remove the missed edge of the job

trace models. Since the removing (Line 10) will lead to the change of the worst-

case response time computation (Lines 5–6), the recursive method will make the

worst-case response time tighter.

Assume that the priority assignment method will give q kinds of priority to

the taskset, and the time complexity for the job trace model stabilization will be

O(s× q × |τ | × n× 2Kj). Note that s is the number of recursive calls (Line 13).

Theorem 19. Schedulability Analysis If all of the job trace satisfy the weakly-

hard constraints after stabilization, the taskset will be schedulable in any case.

Despite the introduced schedulability analysis being general to the priority
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assignment method, the priority assignment method should follow that one job trace

can only be mapped to one priority. If not, we could construct another one-to-one

mapping by considering another status instead of considering past Ki jobs status.
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Chapter 7

Experimental Results

7.1 Weakly-Hard Verification

To compare the efficiency of different approaches, we implemented a brute-

force approach which evaluates all constraints in C(K) one by one (BF), the mono-

tonic approach (MONO, Algorithm 1), the monotonic approach with dynamic up-

per bound of satisfaction boundary (MONO-DUB, Algorithm 2), the lowest-cost-

first heuristic (LCF, Algorithm 3), which defines the estimated cost for evaluating

W (m, k) as
∑m

i=0

(
k−1
i

)
, the optimal approach (OPT, Algorithm 5), the layered BFS

approach (L-BFS), and the dual-layered BFS approach (DL-BFS), Except the op-

timal approach, the layered BFS approach, and the dual-layered BFS approach,

the other four approaches call the mask-compressing approach when they need to

evaluate a single constraint in C(K).

7.1.1 Discrete Second-Order Control

7.1.1.1 Setting

The case study is a discrete second-order controller under perturbation at-

tacks. The objective of the controller is to maintain the position at a fixed value

(0 in our case), and the attacker attempts to shift the position away from the fixed

value. The detailed configuration can refer to [23]. The unsafe state represents the

state where the control position is out of the range. Verifying whether the control

44
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Table 7.1: Discrete second-order control: runtime (in second) with different values
of |Q|.

|Q| BF MONO MONO-DUB LCF OPT L-BFS DL-BFS

280 2.069 0.105 0.103 0.102 0.055 0.105 0.074
314 2.506 0.146 0.144 0.144 0.071 0.147 0.099
331 9.817 1.683 1.641 1.641 1.234 1.752 1.786
341 54.730 9.624 5.128 5.128 2.655 5.621 4.434
351 61.834 11.526 5.546 5.546 3.127 6.178 4.027
361 58.244 11.098 5.039 5.039 2.802 7.088 4.450
371 63.565 12.462 5.258 5.258 2.900 7.613 4.141
381 65.523 12.995 5.229 5.229 2.900 7.999 4.329

m1 20
1

20

k

| Q | = 280

| Q | = 314

| Q | = 331

Others

Figure 7.1: Discrete second-order control: computed satisfaction boundaries.

position is in the safe range under perturbation attacks is reduced to solving for the

reachability of the unsafe state for the finite-state machine.

7.1.1.2 Experiment on |Q|

We experimented on how each approach scales with respect to the number

of states in the finite-state machine, |Q|. To create different numbers of states,

we fixed ẋmin = −4, ẋmax = 4, ẍC = 2, and Satk = {5} and experimented with

(xmin, xmax) = {±30,±40,±50, . . . ,±100}, resulting |Q| from 280 to 381. A larger

safe range [xmin, xmax] of the control value x allows the controller to have a larger

margin to recover from attacks. K is set to 20.
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Table 7.2: Discrete second-order control: runtime (in second) with different values
of K.

K BF MONO MONO-DUB LCF OPT L-BFS DL-BFS

14 0.388 0.062 0.057 0.057 0.032 0.061 0.041
16 1.200 0.217 0.172 0.172 0.146 0.184 0.186
18 3.047 0.373 0.333 0.333 0.177 0.356 0.289
20 9.817 1.683 1.641 1.641 1.234 1.752 1.786
22 31.041 6.596 6.555 6.555 2.931 7.023 5.297

The results are shown in Table 7.1, and the corresponding satisfaction bound-

aries are illustrated in Figure 7.1, where all approaches generate the same satisfaction

boundaries. The monotonic approach runs significantly faster than the brute-force

approach because the verification results under many weakly-hard constraints are

implied by Implications 1 and 2. For larger number of states, the runtime differences

are even larger. We then compare the monotonic approach, the monotonic approach

with dynamic upper bound of satisfaction boundary (monotonic-dynamic), and the

lowest-cost-first heuristic. The results are aligned with the theoretical expectations.

The monotonic-dynamic approach runs strictly faster than the monotonic approach

for every setting with the addition implications by Implications 3 and 4, and the

lowest-cost-first heuristic performs same as the monotonic-dynamic approach. The

optimal approach finds the optimal verified set, the runtime corresponding to the

the optimal verified set is smaller than the runtimes of the other approaches. How-

ever, it needs to know the satisfaction boundary in advance, so the main purpose

of the optimal approach is to evaluate the efficiency of the other approaches. It

can be observed that the runtime of the optimal approach may not be monotonic

to |Q| as different |Q| lead to different boundaries and thus different optimal ver-

ified sets, where a large |Q| may have a smaller optimal verified set. The layered

BFS approach runs faster than the monotonic approach in most cases, and it has

comparable runtime as the monotonic-dynamic approach and the lowest-cost-first
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heuristic. Moreover, the dual-layered BFS approach mostly has the best efficiency

among all other approaches except the optimal approach.

7.1.1.3 Experiment on K

We experimented on how each approach scales with respect to K. We fixed

xmin = −50, xmax = 50, ẋmin = −4, ẋmax = 4, ẍconst = 2, and Satk = {5}. The results

are shown in Table 7.2, where we report the results with K = 14, 16, 18, 20, 22.

Similar to the previous experiment, the proposed approaches outperform the brute-

force approach significantly. This is aligned with the theoretical complexity analysis

that the brute-force approach needs to evaluate O(K2) weakly-hard constraints,

and the other approaches need to evaluate O(K) weakly-hard constraints only. It

should be emphasized that the verification of a property under a single weakly-hard

constraint W (m, k) usually needs to store the last k inputs, and thus the complexity

is at least O(2k). If properties are more complicated (e.g., in Linear Temporal Logic),

the complexity can be even higher. Therefore, reducing the number of evaluations

of weakly-hard constraints is really advantageous to the efficiency of computing

the safety table or the satisfaction boundary. It should also be mentioned that

the layered BFS approach and the dual-layered BFS approach are especially for

the reachability of finite-state machines, and the other proposed approaches are

general and compatible with other verification approaches for a single weakly-hard

constraint.

7.1.2 Network Routing

7.1.2.1 Setting

The case study is network routing of Extranet. There are two routing paths

with the same source and destinations on one router. We denote the delay levels
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of two routing paths at time t as l1(t) and l2(t). We also denote the waiting times

(for recovery) of two routing paths at time t as w1(t) and w2(t). The objective of

the network routing is to switch between two routing paths to keep the connection

between the source and the destination. A routing configuration is formally defined

as ⟨τ1, τ2, γ⟩, where

• τ1 and τ2 are the thresholds of two routing paths, respectively. If delay level

li(t) exceed τi, the i-th routing path is considered to be congested, and it needs

to recover.

• γ is the time (measured by the number of inputs) that a routing path needs

to recover.

We introduce the following variables:

• s(t) ∈ {0, 1} denotes whether the two routing paths are switched at time t.

• c(t) ∈ {0, 1} denotes whether both of the two routing path are congested.

• d(t) ∈ {0, 1} denotes whether a packet is delayed.

We also introduce the following transition functions:

• If s(t) = 0, meaning that the first routing path is in use (not switched to the

second routing path), then

l1(t+1)← l1(t)+(2·d(t)−1); w2(t+1)← w2(t)+1; l2(t+1)← 0; w1(t+1)← 0,

(7.1)

meaning that l1(t+1) is increased or decreased by 1 from l1(t) if d(t) is 1 or 0,

respectively, and w2(t+1) is increased by 1 from w2(t). l2(t+1) and w1(t+1)

will be set to the initial value until switching to the second routing path.
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• If s(t) = 1, meaning that the second routing path is in use (switched from the

first routing path), then

l2(t+1)← l2(t)+(2·d(t)−1); w1(t+1)← w1(t)+1; l1(t+1)← 0; w2(t+1)← 0,

(7.2)

meaning that w1(t+1) is increased by 1 from w1(t), and l2(t+1) is increased

or decreased by 1 from l2(t) if d(t) is 1 or 0, respectively. l1(t+1) and w2(t+1)

will be set to the initial value until switching to the first routing path.

• The two routing paths are switched at time t + 1 if the delay of the routing

path in use at time t exceeds the corresponding threshold, and the waiting

time (for recovery) of the other routing path at time t exceeds the threshold

γ, i.e.,

s(t+ 1)←


1, if s(t) = 0, l1(t) > τ1, w2(t) > γ;

0, if s(t) = 1, l2(t) > τ2, w1(t) > γ;

s(t), otherwise.

(7.3)

• Both of the two routing path are congested if the delay of the routing path in

use at time t exceeds the corresponding threshold, and the waiting time (for

recovery) of the other routing path at time t does not exceed the threshold γ,

i.e.,

c(t+ 1)←


1, if s(t) = 0, l1(t) > τ1, w2(t) ≤ γ;

1, if s(t) = 0, l2(t) > τ2, w1(t) ≤ γ;

0, otherwise.

(7.4)

For any network routing configuration ⟨τ1, τ2, γ⟩, we can determine a finite state

machine ⟨Q,Σ, δ, q0, F ⟩, where

• Q = {(l1, l2, w1, w2, s, c)}.

• Σ = {0, 1}, which is the input as d(t).
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Table 7.3: Network routing: runtime (in second) with different values of |Q|.
|Q| BF MONO MONO-DUB LCF OPT L-BFS DL-BFS

678 9.421 1.930 1.229 1.229 0.513 1.196 0.924
1,238 23.362 5.595 3.599 3.599 3.485 4.051 3.378
1,842 36.928 8.630 6.340 6.340 5.345 6.928 6.266
2,452 43.097 11.263 8.314 8.314 8.283 9.284 9.572
3,062 50.155 15.406 11.237 11.237 9.847 13.336 11.835

Table 7.4: Network routing: runtime (in second) with different values of K.

K BF MONO MONO-DUB LCF OPT L-BFS DL-BFS

12 0.599 0.260 0.160 0.160 0.115 0.189 0.147
14 2.329 0.858 0.539 0.539 0.493 0.568 0.471
16 9.298 2.855 1.875 1.875 1.829 2.243 1.826
18 23.362 5.595 3.599 3.599 3.485 4.051 3.378
20 129.864 31.260 20.351 20.351 17.040 22.938 19.651

• δ is defined exactly from the transition functions above.

• q0 = (0, 0, 0, 0, 0, 0).

• F = {qunsafe}

qunsafe represents the state where c(t) is 1, meaning that the delay level of one routing

path exceeds its threshold and the other routing path is still recovering. Verifying

whether we can keep the connection (at least one routing path not congested) be-

tween the source and the destination is reduced to solving for the reachability of

qunsafe for the finite state machine. Similar to the discrete second-order control, we

compare those approaches as well as the optimal verified set obtained by the optimal

approach.

7.1.2.2 Experiment on |Q|

We experimented on how each approach scales with respect to the number

of states in the finite-state machine, |Q|. To create different numbers of states, we



doi:10.6342/NTU202200995

51

fixed τ1 = 20 and τ2 = 16 and experimented with γ = {20, 30, 40, 50, 60}, resulting

|Q| from 678 to 3,062. A larger γ makes it more difficult to keep the connection

between the source and the destination. K is set to 18. The results are shown in

Table 7.3, and all approaches generate the same satisfaction boundaries. Similar

to the previous case study, the proposed approaches outperform the brute-force

approach significantly. The monotonic approach with dynamic upper bound of

satisfaction boundary and the lowest-cost-first heuristic are generally good in this

case study. The dual-layered BFS approach is also good, even using less runtime

than the optimal verified set obtained by the optimal approach. It should be noted

that an optimal approach defined in Definition 10 only considers approaches which

consider weakly-hard constraints one by one and utilize some implications between

weakly-hard constraints. Therefore, an approach considering multiple weakly-hard

constraints, such as the dual-layered BFS approach, may use less runtime than an

optimal approach.

7.1.2.3 Experiment on K

We experimented on how each approach scales with respect to K. We fixed

τ1 = 20, τ2 = 16, and γ = 40. The results are shown in Table 7.4, where we

report the results with K = 12, 14, 16, 18, 20. Similar to the previous case study,

the proposed approaches outperform the brute-force approach significantly. Among

them, the dual-layered BFS approach has the smallest runtimes.

7.1.3 Lane Changing

7.1.3.1 Setting

The case study is lane changing with two acceleration controllers on two

vehicles driving on two lanes along a road segment with length xmax. We denote the
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position, velocity, and acceleration of the vehicle on the primary lane at t as x(t),

v(t), and a(t), and those of the vehicle on the secondary lane as x′(t), v′(t), and

a′(t), respectively. Each vehicle receives messages including the position, velocity,

and acceleration of the other vehicle. The objective of a controller is to perform

lane changing while each vehicle may miss some messages from the other vehicle. A

controller is formally defined as ⟨vmax, amin, amax⟩, where

• [0, vmax] is the physical constraint for the velocity. If the controller attempts

to set v to a value larger (smaller) than vmax (0), v is set to the corresponding

limit.

• [amin, amax] is the acceleration range.

We introduce the following variables:

• c(t) ∈ {0, 1} denotes whether lane changing has happened.

• s(t) ∈ {0, 1} denotes whether the vehicle on the primary lane successfully

receives a message from the vehicle on the secondary lane.

• s′(t) ∈ {0, 1} denotes whether the vehicle on the secondary lane successfully

receives a message from the vehicle on the primary lane.

• l denotes the length of a vehicle.

The transition functions of the controller on the main lane can be expressed as

x(t+ 1)← min

(
x(t) + v(t) +

1

2
· a(t), xmax

)
, (7.5)

v(t+ 1)← max (min (v(t) + a(t), vmax) , 0) , (7.6)
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a(t+ 1)←


0, if s(t) = 0;

amin, if s(t) = 1, |x′(t)− x(t)| < 2l, v(t) < v′(t);

amax, if s(t) = 1, |x′(t)− x(t)| < 2l, v(t) ≥ v′(t);

a(t), otherwise.

(7.7)

The transition functions of the controller on the secondary lane can be expressed as

x′(t+ 1)← min

(
x′(t) + v′(t) +

1

2
· a′(t), xmax

)
, (7.8)

v′(t+ 1)← max (min (v′(t) + a′(t), vmax) , 0) , (7.9)

a′(t+ 1)←


amax, if s′(t) = 0;

amin, if s′(t) = 1, |x(t)− x′(t)| < 2l, v(t) ≥ v′(t);

amax, if s′(t) = 1, |x(t)− x′(t)| < 2l, v(t) < v′(t);

a′(t), otherwise.

(7.10)

We also introduce the following transition function:

c(t+1)←


1, if c(t) = 1;

1, if c(t) = 0, x(t) ̸= xmax or x′(t) ̸= xmax, |x′(t)− x(t)| ≥ 2l;

0, otherwise.

(7.11)

For any controller configuration ⟨vmax, amin, amax, v
′
max, a

′
min, a

′
max⟩, we can determine

a finite state machine ⟨Q,Σ, δ, q0, F ⟩, where

• Q = {(x, v, a, x′, v′, a′)|x, x′ ∈ [0, xmax], v, v
′ ∈ [0, vmax], a, a

′ ∈ [amin, amax]}.

• Σ : {00, 01, 10, 11}, which is the input as s(t) and s′(t).

• δ is defined exactly from the transition functions above.

• q0 = (0, 0, 0, 0, 0, 0).

• F = {qunsafe}

qunsafe represents the state where x(t) = x′(t) = xmax and c(t) = 0. Verifying

whether the two vehicles can successfully change their lanes is reduced to solving for
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Table 7.5: Lane changing: runtime (in second) with different values of |Q|.
|Q| BF MONO MONO-DUB LCF OPT L-BFS DL-BFS

46,835 19.987 2.794 2.365 2.365 1.747 2.584 1.708
72,333 31.002 4.342 3.687 3.687 2.737 3.957 2.817
97,206 40.772 7.880 4.166 4.166 4.077 5.120 3.863
125,152 54.559 10.698 5.453 5.453 5.330 7.240 4.623
155,941 67.018 13.447 7.025 7.025 6.879 8.192 5.980
189,535 81.403 15.820 8.456 8.456 8.294 10.557 7.047

Table 7.6: Lane changing: runtime (in second) with different values of K.

K BF MONO MONO-DUB LCF OPT L-BFS DL-BFS

4 2.739 0.763 0.280 0.280 0.280 0.640 0.416
5 6.485 1.978 0.872 0.872 0.709 1.360 0.840
6 15.600 3.298 0.898 0.898 0.721 2.640 1.700
7 34.249 5.514 3.155 3.155 2.978 5.131 3.264
8 81.403 15.820 8.456 8.456 8.294 10.557 7.047

the reachability of qunsafe for the finite state machine. Similar to the previous case

studies, we compare those approaches as well as the optimal verified set obtained

by the optimal approach.

7.1.3.2 Experiment on |Q|

We experimented on how each approach scales with respect to the number

of states in the finite-state machine, |Q|. To create different numbers of states, we

fixed vmax = v′max = 10, amax = a′max = 5, amin = a′min = −5, l = 4 and experimented

with xmax = {50, 60, 70, 80, 90, 100}, resulting |Q| from 46,835 to 189,535. A larger

range xmax of the control value x allows the controller to change the lane more

easily. K is set to 8. The results are shown in Table 7.5, and all approaches

generate the same satisfaction boundaries. Similar to the previous case studies,

the proposed approaches outperform the brute-force approach significantly. The

dual-layered BFS approach is especially good in this case study, even using less

runtime than the optimal verified set obtained by the optimal approach in the
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most cases. Similarly, an optimal approach defined in Definition 10 only considers

approaches which consider weakly-hard constraints one by one and utilize some

implications between weakly-hard constraints. Therefore, an approach considering

multiple weakly-hard constraints, such as the dual-layered BFS approach, may use

less runtime than an optimal approach.

7.1.3.3 Experiment on K

We experimented on how each approach scales with respect to K. We fixed

xmax = 100, vmax = v′max = 10, amax = a′max = 5, amin = a′min = −5, l = 4. The results

are shown in Table 7.6, where we report the results with K = 4, 5, 6, 7, 8. Similar

to the previous case studies, the proposed approaches outperform the brute-force

approach significantly. Among them, the monotonic approach with dynamic upper

bound of satisfaction boundary, the lowest-cost-first heuristic, and the dual-layered

BFS approach have smaller runtimes.

7.1.4 Summary

Based on the case studies, the monotonic approach with dynamic upper

bound of satisfaction boundary, the lowest-cost-first heuristic, and the dual-layered

BFS approach generally have better efficiency. It should be mentioned that the dual-

layered BFS approach is especially for reachability analysis for finite-state machines,

so it is not suitable for general properties and general systems.

7.2 Weakly-Hard Scheduling

In this section, we compare our schedulability analysis method with another

method. Different methods have different worst-case scenarios, time complexity,

and scalability. To compare different methods, the first part of this section will
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target the taskset generation, and the second part will apply different methods to

the taskset and specify the advantage of our method.

7.2.1 Taskset Generation

In order to compare different schedulability analysis methods, the taskset

generation is needed. For a target total utilization U , we generate 100 tasksets.

The sum utilization of the tasks for a taskset will be U . For a taskset, the task

utilization is assigned uniformly by the UUniFast algorithm [4]. The period of the

task is assigned uniformly in [10, 100]. We will have 3 weakly-hard constraints.

k of the weakly-hard constraint is assigned uniformly in [5, 15], and m is

assigned uniformly in [2, k). Note that each two weakly-hard constraints should

be incomparable by 7, and 8. If two weakly-hard constraints are comparable, the

trace set of one constraint will be the subset of the other. That is, we only need to

consider one constraint instead of multiple constraints.

7.2.2 Schedulability Analysis Comparison

We compare our schedulability analysis (JTMS) to an existing method (JCLS).

JTMS represents our job trace model stabilization method and JCLS represents the

job-class-level scheduler with reachability tree analysis method [5]. For each taskset,

the method will output whether the taskset is schedulable or not. For a target to-

tal utilization U , the method will output a floating value denoting the ratio of the

schedulable tasksets among 100 tasksets. If a method has a higher ratio for a target

U , the worst-case analysis of the method has a tighter upper bound. For example,

if a taskset is schedulable with method A, but it is unschedulable with method B,

the worst-case considered by method B will not occur during scheduling.

We apply job-class-level fixed priority scheduling priority as our priority as-
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Table 7.7: Schedulability Analysis Comparison: schedulability ratio with different
values of U .

U 1.0 1.1 1.2 1.3

JTMS 0.58 0.44 0.31 0.28
JCLS 0.58 0.44 0.31 0.28

signment method [5]. However, the method can only deal with a single weakly-hard

constraint. For multiple weakly-hard constraints, we obtain the priority with the

constraint with the highest ratio and consider the condition of multiple weakly-hard

constraints.

Table 7.7 stores the schedulability ratio of different methods and different U .

The results of JTMS and JCLS become the same, which denotes that the worst-case

analysis of these two methods leads to a similar worst-case response time while the

worst-case scenarios of these two methods are different. We have further analyzed

the worst-case response time of JTMS and JCLS and found that jobs with the

same status have similar worst-case response times for these two methods. For

the scalability, JTMS can support any kind of priority assignment method if the

method meets the one-to-one condition while JCLS can only support the job-class-

level fixed priority scheduling priority. However, JTMS has a higher time complexity

than JCLS.
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Conclusions

In this thesis, we used a weakly-hard fault model to constrain the occurrences of

faults in system inputs. We developed approaches to verify properties for multiple

weakly-hard constraints in an exact and efficient manner. By verifying multiple

weakly-hard constraints and storing the verification results as a safety table or the

corresponding satisfaction boundary, we defined weakly-hard requirements for the

system environment and designed a runtime monitor that guarantees desired prop-

erties or notifies the system to switch to a safe mode. Experimental results with

discrete second-order control, network routing, and lane changing demonstrated the

generality and the efficiency of the proposed approaches. Future directions include

properties in Linear Temporal Logic under weakly-hard constraints, other models

of computation under weakly-hard constraints, and system-specific cost estimation

for the lowest-cost-first heuristic.

Moreover, considering multiple systems sharing a processor, a scheduler is

needed. We studied the multiple weakly-hard constraints scheduling problems and

proposed the generalized schedulability analysis method to obtain whether the

taskset is schedulable or not beforehand. For future directions, system designers

can come up with different strategies to assign the weakly-hard constraints for sys-

tems, or the scheduler can exploit different priority assignment methods. Both of

them can bring benefits to the scheduling process. Last but not least, the proposed
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schedulability analysis has a higher time complexity than others which can further

be optimized.

The future works of the verification and schedulability analysis include:

• Consider multiple weakly-hard constraints simultaneously for a system which

could lead to higher dimensional safety table.

• Design a more robust priority assignment method for the weakly-hard schedul-

ing problem.

• Design a strategy to assign the weakly-hard constraints for systems which can

bring benefits to the weakly-hard scheduling problem.

• Extend the scheduling problem to other constraints. A simple method can be

considering the composition of different constraints to be the status of the job

trace model.

• Extend the scheduling problem with the multiple processors scenario. A sim-

ple method can be considering jobs with top n priorities when there are n

processors.
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