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摘要	

片秩法	 (Slice Rank) 是 Croot, Lev以及 Pach於 2016年提出的一個新的組合

數學工具，許多極值組合學當中的問題都透過了這個方法有了新的進展。在這篇論

文中，我們會介紹片秩法及其應用，同時我們也會介紹劃分秩法	 (Partition Rank) 

及其應用。最後我們會利用片秩法以及隨機圖的定理證明直角移除定理。 

 

關鍵詞：片秩法、劃分秩法、極值組合、直角、移除引理。	
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Abstract

Slice rank methods are new combinatorial tools introduced by Croot, Lev, and Pach [6] in

2016. Many problems in extremal combinatorics are improved by applying the slice rank meth-

ods. In this thesis, we’ll introduce the slice rank methods and their applications. Moreover,

the partition rank and one of its applications are also introduced. Finally, we use slice rank

methods and a random graph theorem to prove the right angles removal lemma.

Keywords: slice rank, partition rank, extremal combinatorics, right angle, removal lemma
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1 Introduction

1.1 Background

The slice rank methods are innovative ideas that improve many results in extremal combinatorics.

They are first appeared in the work of Croot, Lev, and Pach [6] in 2016. They use this methods to

obtain an exponential upper bound for progression-free subsets in Zn4 . Later that year, Ellenberg and

Gijswijt [8] also used this methods to obtain an exponential upper bound for three-term-progression-

free subsets, but this time the sets lie in Fnq , which is the case for the cap set problem in affine

geometry if q = 3. Many new applications of this methods are found in these years. Such as finding

solutions of certain linear system and finding upper bounds for right-angle-free sets,... etc. It is no

doubt that this is one of the powerful methods in extremal combinatorics.

In this thesis, we first introduce the slice rank of functions and prove some of its basic properties,

as well as two of its applications. See Section 2 for more details. In Section 3 we introduce the slice

rank of tensors, which is in fact equivalent to that of functions but the basis independent property

helps us to prove more advanced properties of the slice rank. In Section 4, we define the partition

rank of functions, which is similar to the slice rank but it gives better upper bounds than the slice

rank gives. An application of it is also provided.

Finally in section 5, we’ll use the slice rank method to prove the right angle removal lemma.

Roughly speaking, it says that if there are not too many right angles in a given set, then one can

remove reasonable elements from it so that the remaining set is right-angle-free. See Theorem 5.2.1

for more detail.

1.2 General notations

Throughout this thesis, the symbol [L] denotes the set {1, 2, . . . , L} for any positive integer L. For

any set X and any positive integer k, we denote Xk the k-fold Cartesian product of X. For any

prime p and any prime power q, we denote Fp and Fq to be the finite field with order p and q,

respectively. In particular, Fnq denotes the n-fold Cartesian product of Fq, which can be considered

1
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as an n dimensional vector space of the field Fq.

2 Slice Rank of Functions and Its Applications

The notion of the slice rank can be defined on functions or tensors. We’ll introduce the slice rank

of a function first.

2.1 Slice rank of functions

Definition 2.1.1. Given finite sets X1, . . . , Xk and a field F. Consider a function

F : X1 × · · · ×Xk → F.

We say F is of slice rank one if it is non-zero and can be written as

F (x1, . . . , xk) = f(xi)g(xî)

for some i ∈ [k] and functions f : Xi → F, g : X1 × · · ·Xi−1 ×Xi+1 × · · · ×Xk → F and xî denotes

the (k − 1)-variables (x1, . . . , xi−1, xi+1, . . . , xk).

For general F : X1×· · ·×Xk → F, its slice rank, denoted as slice-rank(F ), is the least non-negative

integer r so that F can be written as a sum of r slice rank one functions.

Thus, for any non-negative integer r, slice-rank(F ) ≤ r if and only if

F (x1, . . . , xk) =
k∑
i=1

∑
α∈Si

fi,α(xi)gi,α(xî)

for some fi,α : Xi → F and gi,α : X1×· · ·Xi−1×Xi+1×· · ·×Xk → F and the index sets Si satisfying

|S1|+ · · ·+ |Sk| ≤ r.

The reason why it is called the “slice rank” is because the function F : X1 × · · · ×Xk → F can be

considered as a hypermatrix whose size is |X1| × · · · × |Xk|, and the non-zero function f(xi)g(xî) is

2
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of slice rank 1 because its “slice” along the i−th dimension is a multiple of g(xî) as a hypermatrix.

Remark. Under the case of dimension k = 2, the slice rank of F : X1 ×X2 → F equals to the rank

of the corresponding |X1| × |X2| matrix. Indeed, from a basic property in linear algebra, the rank

of a matrix equals to the dimension of its column space. Using the basis of the column space, we

obtain that slice-rank(F ) equals to the rank of the matrix form of F.

Similar to the rank of a matrix, the slice rank of a function is bounded above by its sizes of each

dimension.

Lemma 2.1.2. Given a function F : X1 × · · · ×Xk → F, we have

slice-rank(F ) ≤ min
1≤i≤k

|Xi|.

Proof. For any i ∈ [k], we can write

F (x1, . . . , xk) =
∑
a∈Xi

1a=xi
F (x1, . . . , xi−1, a, xi+1, . . . , xk).

Since each 1a=xi
F (x1, . . . , xi−1, a, xi+1, . . . , xk) is of slice rank 1, we have slice-rank(F ) ≤ |Xi| for

all i ∈ [k].

Recall that in linear algebra, it is well known that the rank of a diagonal matrix equals to the number

of non-zero indexes in its diagonal. The following theorem is an analogous result in the slice rank

of a function. It turns out that this is one of the most important theorems in slice rank methods.

Theorem 2.1.3. [31, Lemma 1] Let X be a finite non-empty subset and k ≥ 2 be integers and let

F be a field. Suppose that F : Xk → F is diagonal. That is, suppose F can be written as

F (x1, . . . , xk) =
∑
a∈A

ca1a=x1=x2=···=xk

for some A ⊆ X where ca 6= 0 for each a ∈ A. Then

slice-rank(F ) = |A|.

3
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Proof. Note that we can restrict F on Ak and its slice rank remains the same. By Lemma 2.1.2, we

have slice-rank(F ) ≤ L. So it suffices to show slice-rank(F ) ≥ L.

Without loss of generality, set X = [L]. We’ll use induction on k. The case k = 2 follows from the

previous Remark. So we may assume k ≥ 3. By definition of slice rank, we can write

F (x1, . . . , xk) =
k∑
i=1

∑
α∈Si

fi,α(xi)gi,α(xî), (1)

for some fi,α : [L] → F and gi,α : [L]k−1 → F and the index sets satisfying |S1| + · · · + |Sk| =

slice-rank(F ). We consider the orthogonal complement H of the vector subspace spanned by the

functions fk,α, α ∈ Sk over F. That is,

H = {h : [L]→ F |
L∑
x=1

fk,α(x)h(x) = 0 ∀α ∈ Sk}.

Then it has dimension at least L − |Sk|. So this space must contain an element h0 : [L] → F with

h0(x) 6= 0 for at least L− |Sk| values of x ∈ [L]. Multiply by h0(xk) and take the sum over xk ∈ [L]

to (1), we have
L∑

xk=1

h0(xk)F (x1, . . . , xk) =

k−1∑
i=1

∑
α∈Si

fi,α(xi)g̃i,α(x ˆi,k), (2)

where x ˆi,k denotes (k − 2) variables (x1, . . . , xi−1, xi+1, . . . , xk−1) and

g̃i,α(x ˆi,k) =
L∑

xk=1

h0(xk)gi,α(xî)

for each i and α. Since the left hand side of the equation (2) is diagonal with at least L−|Sk| non-zero

diagonal entries, its slice rank is at least L− |Sk| by induction hypothesis. On the other hand, the

right hand side is the sum of |S1| + · · · + |Sk−1| slice rank one functions. Hence its slice rank is at

most |S1|+· · ·+|Sk−1| by definition. Therefore, we obtain an inequality L−|Sk| ≤ |S1|+· · ·+|Sk−1|,

or equivalently,

L ≤ |S1|+ · · ·+ |Sk| = slice-rank(F ),

as desired.

4
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Using this theorem, we can prove some results in combinatorics. In the next subsection, we’ll

introduce its application in proving the existence of non-trivial solutions of a given homogeneous

linear system.

2.2 Application 1: Cap set problem

In affine geometry, a cap set is a subset of Fn3 which contains no lines, or equivalently no non-trivial

arithmetic progressions of length three. We denote r3(n) to be the largest size of cap sets in Fn3 .

The cap set problem is the following:

Question 2.2.1. How large can r3(n) be?

The trivial bound is r3(n) ≤ 3n. Back in 1987, Frankl Graham, and Rodl [11] showed that r3(n) =

o(3n). Years later, Meshulam [21] used the Fourier method to improve the bound to r3(n) = O(
3n

n
).

The proof is a direct use of the ideas of Roth, who is famous for its theorem about the largest

progression-free subsets in {1, . . . , n}. This bound is then improved to O(
3n

n1+c
) for some constant

c > 0 by Bateman and Katz [3]. It turns out that via the slice rank method, we can have an

exponential bound r3(n) = o(2.756n). This is first proved by Ellenberg and Gijswijt [8].

The proof is short but elegant. It also presents the standard process of the slice rank methods. The

key lemma is the following:

Lemma 2.2.2. [8] Given any non-empty set A ⊆ Fn3 . Define a function F : A3 → F3 by

F (x, y, z) =


1 if x+ y + z = 0,

0 otherwise.

(3)

Then

slice-rank(F ) ≤ 3
(
t−2/3 + t1/3 + t4/3

)n
,

where t = −1+
√
33

8 . In particular, we have slice-rank(F ) = o(2.756n).

5
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Proof. Fermat’s little theorem states that for all t ∈ Fp,

tp−1 =


1 if t 6= 0,

0 if t = 0.

Using this theorem for p = 3, we can rewrite F as

F (x, y, z) =
n∏
i=1

[1− (xi + yi + zi)
2],

where xi, yi, zi denotes the i-th index of the vector x, y, z, respectively. By expanding the product,

we can see that F is a linear combinations of

xd11 · · ·xdnn ye11 · · · yenn zf11 · · · zfnn

for integers di, ei, fi ∈ {0, 1, 2} satisfying the inequality

n∑
i=1

(di + ei + fi) ≤ 2n. (4)

Thus the slice rank of F is at most the sum of the slice rank of those terms. From the inequality

(4), we know that at least one of these three summations
∑n
i=1 di,

∑n
i=1 ei and

∑n
i=1 fi is at most

2n/3. Hence F can be written as

F (x, y, z) =
∑

∑
di≤2n/3

[
xd11 · · ·xdnn

]
αd1,...,dn(y, z)

+
∑

∑
ei≤2n/3

[ye11 · · · yenn ]βe1,...,en(x, z)

+
∑

∑
fi≤2n/3

[
zf11 · · · zfnn

]
γf1,...,fn(x, y).

Therefore the slice rank of F is at most

3|{(d1, . . . , dn) ∈ {0, 1, 2}n :
n∑
i=1

di ≤ 2n/3}|,

6
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which equals to

31+nP[
n∑
i=1

di ≤
2n

3
],

where P denotes the probability measure of the uniformly random choices of (d1, . . . , dn) ∈ {0, 1, 2}n.

For any 0 < t ≤ 1, we have

slice-rank(F ) ≤ 31+nP[
n∑
i=1

di ≤ 2n/3]

≤ 31+nP[td1+···+dn ≥ t2n/3]

≤ 31+n
1

t2n/3
E[td1+···+dn ]

= 31+n
1

t2n/3
E[td1 ] · · ·E[tdn ]

= 31+n
1

t2n/3

(
1 + t+ t2

3

)n
= 3

(
t−2/3 + t1/3 + t4/3

)n
.

Using basic calculus, we obtain that t = −1+
√
33

8 gives us the best bound. This proves the lemma.

Theorem 2.2.3. Let r3(n) be the largest size of cap sets in Fn3 . Then

r3(n) = o(2.756n).

Proof. Given a cap set A ⊆ Fn3 . We define F as (3). By lemma 2.2.2, we have slice-rank(F ) =

o(2.756n). Observe that F is diagonal since A contains no non-trivial solution for x + y + z = 0.

Hence we can apply theorem 2.1.3 and obtain that |A| ≤ slice-rank(F ). Thus |A| = o(2.756n).

2.3 Application 2: Solutions of particular linear systems

Recall that the cap set problem can be considered as finding the size of largest solution-free subset

A ⊆ Fn3 corresponding to a single equation x+y+z = 0. Now we’ll consider a more general problem.

Rather than one equation, we consider a system of equations.

7
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Given integers m, k ≥ 1 and a prime p, we consider the following system:


a1,1x1 + · · ·+ a1,kxk = 0,

...

am,1x1 + · · ·+ am,kxk = 0,

where the coefficients ai,j are in Fp and the variables xi are in Fnp , n ∈ N.

A natural question is to ask how large does A ⊆ Fnp need so that there exists a non-trivial solution

(x1, . . . , xk) ∈ Ak to the system? We first observe that if the coefficients satisfying a1,1+· · ·+a1,k 6= 0,

then we can take

A = {



1

x1,2
...

x1,n


∈ Fnp : x1,2, . . . , x1,n ∈ Fp}.

In this case, any element (x1, . . . , xk) ∈ Ak is not a solution of the system. Also, |A| = pn−1 = 1
p |F

n
p |,

which is the same order as the size of the space Fnp as n→∞.

Thus we may assume ai,1 + · · ·+ ai,k = 0 for all i = 1, . . . ,m. Note that in this case, (x, . . . , x) is

a solution of the system for any x ∈ A. We say such solutions are trivial.

For later reference, we formulate our question again:

Question 2.3.1. Given integers m, k ≥ 1 and a prime p, we consider the following system:


a1,1x1 + · · ·+ a1,kxk = 0,

...

am,1x1 + · · ·+ am,kxk = 0,

(5)

where xi ∈ Fnp , n ∈ N, and the coefficients ai,j ∈ Fp satisfying ai,1 + · · ·+ai,k = 0 for all i = 1, . . . ,m.

Is it possible to find a constant 1 ≤ Cp,m,k and 1 ≤ Γp,m,k < p such that if A ⊆ Fnp with |A| >

8
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Cp,m,k(Γp,m,k)n, then there exist a non-trivial solution (x1 . . . , xk) ∈ Ak to the system (5)?

This is in fact one of the fundamental questions in additive combinatorics. Currently, we only know

that the answer is positive under some certain conditions. See [22, 23, 28]. The natural number

version of this problem with sets A ⊆ [N ] is also studied in recent years. [5, 18, 19, 25, 26].

Example 2.3.2. Here’s a example of such system:



x1 − 2x2 + x3 = 0,

x2 − 2x3 + x4 = 0,

x3 − 2x4 + x5 = 0,

. . .

xm − 2xm+1 + xm+2 = 0.

We can see the set of all non-trivial solutions (x1, . . . , xm+2) are precisely the set of all (m +

2)−terms arithmetic progressions in Fnp . Thus one of the special case of Question 2.3.1 is to find

an exponential bound for the size of k-term-progression-free subsets in Fnp . Many partial results are

studied in [3, 7, 8, 9, 14, 15, 16, 20, 21], but this is still an open problem in general.

It turns out that under the case k ≥ 2m + 1, the slice rank methods can help us answer the

question. Before showing the result, we first define the constant Γp,m,k, which strictly smaller than

p if k ≥ 2m+ 1.

Definition 2.3.3. For a prime p and two positive integers m and k, define the constant

Γp,m,k := min
0<t≤1

1 + t+ · · ·+ tp−1

tm(p−1)/k .

Remark. The function f(t) =
1 + t+ · · ·+ tp−1

tm(p−1)/k for 0 < t ≤ 1 indeed attains its minimum. To see

this, we observe that limt→0+ f(t) = +∞. So there is some small enough εp,m,k > 0 such that

inf
0<t≤1

f(t) = inf
εp,m,k≤t≤1

f(t).

9
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Since f(t) is continuous and the interval [εp,m,k, 1] is compact, f(t) indeed attains its minimum on

[εp,m,k, 1], hence on (0, 1].

Proposition 2.3.4. If k ≥ 2m+ 1, then 1 ≤ Γp,m,k < p.

Proof. The first inequality follows from the observation

Γp,m,k ≥ min
0<t≤1

1

tm(p−1)/k ≥ 1

since m(p− 1)/k > 0. For the second inequality, we let f(t) =
1 + t+ · · ·+ tp−1

tm(p−1)/k for t > 0. Then by

direct computation, we have f(1) = p and

f ′(1) = [1 + 2 + · · ·+ (p− 1)]− p (m(p− 1)/k) = p(p− 1)(
1

2
− m

k
),

which is positive since k ≥ 2m + 1. So there is some t < 1 near 1 with f(t) < f(1) = p. Hence

Γp,m,k = min0<t≤1 f(t) < p.

Lemma 2.3.5. [6, 31] Suppose k ≥ 2m + 1. We consider the system (5). Given an integer L and

vectors x
(l)
i ∈ Fnp for i ∈ [k] and l ∈ [L]. We define the function f : [L]k → F as

F (l1, . . . , lk) =


1, if (x

(l1)
1 , . . . , x

(lk)
k )is a solution to the system (5),

0, otherwise.

Then the slice rank of F has an upper bound:

slice-rank(F ) ≤ k (Γp,m,k)
n
.

Proof. Denote xi(s) the s−th index of the vector xi ∈ Fnp , then we can rewrite F as a polynomial

10
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of the variables xi(s) :

F (l1, . . . , lk) =


1, if (x

(l1)
1 , . . . , x

(lk)
k )is a solution to the system (5),

0, otherwise.

(6)

=


1, if ai,1x

(l1)
1 (s) + · · ·+ ai,kx

(lk)
k (s) = 0for all i ∈ [m], s ∈ [n],

0, otherwise.

(7)

=
m∏
i=1

n∏
s=1

[
1−

(
ai,1x

(l1)
1 (s) + · · ·+ ai,kx

(lk)
k (s)

)p−1]
. (8)

The last equality holds by the Fermat’s little theorem. The equation (8) is a polynomial of total

degree mn(p − 1) in the kn variables xi(s). Since tp = t for all t ∈ Fp, we can further represent

F (x1, . . . , xk) such that each individual variable appears with degree at most p − 1. Hence every

monomial of (8) can be written as a constant multiple of

k∏
i=1

x
(li)
i (1)d

(i)
1 · · ·x(li)i (n)d

(i)
n ,

where integers 0 ≤ d(i)1 , . . . , d
(i)
n ≤ p− 1 satisfying the inequality

k∑
i=1

(
d
(i)
1 + · · ·+ d(i)n

)
≤ mn(p− 1).

Hence for each such monomial, there is some i ∈ [k] such that

d
(i)
1 + · · ·+ d(i)n ≤

mn(p− 1)

k
. (9)

Using this property, we can sort all the monomials of F and rewrite it as

F (l1, . . . , lk) =
k∑
i=1

∑
d1,...,dn

[
x
(li)
i (1)d1 · · ·x(li)i (n)dn

]
gi,d1,...,dk(x

(l1)
1 , . . . , x

(li−1)
i−1 , x

(li+1)
i+1 , . . . , x

(lk)
k ),

where the summation of the di runs over all the (d1, . . . , dn) ∈ {0, . . . , p−1}n satisfying the inequality

11
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(9). This shows that the slice rank of F is at most

k|{(d1, . . . , dn) ∈ {0, . . . , p− 1}n|
k∑
i=1

di ≤
mn(p− 1)

k
}.

We note that this value equals to

kpnP[
n∑
i=1

di ≤
mn(p− 1)

k
],

where P is the probability corresponding to the uniformly random choices of di ∈ {0, . . . , p− 1}. Fix

any 0 < t ≤ 1, we have

slice-rank(F ) ≤ kpnP[
n∑
i=1

di ≤
mn(p− 1)

k
]

≤ kpnP[td1+···+dn ≥ tmn(p−1)/k]

≤ kpn 1

tmn(p−1)/k
E[td1+···+dn ]

= kpn
1

tmn(p−1)/k
E[td1 ] · · ·E[tdn ]

= kpn
1

tmn(p−1)/k

(
1 + t+ · · ·+ tp−1

p

)n
= k

(
1 + t+ · · ·+ tp−1

tm(p−1)/k

)n
.

Since it holds for all 0 < t ≤ 1, we have

slice-rank(F ) ≤ k (Γp,m,k)
n
.

The following problem gives a positive answer to the question 2.3.1 under the case k ≥ 2m+ 1.

Theorem 2.3.6. [31] Suppose k ≥ 2m + 1, consider the constant Γp,m,k ∈ [1, p) we defined in

Definition 2.3.3. Then for any subset A ⊆ Fnp of size |A| > (Γp,m,k)
n
, the system (5) has a non-

12
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trivial solution (x1, . . . , xk) ∈ Ak.

Proof. Given A ⊆ Fnp , we defined F : Ak → Fp as

F (x1, . . . , xk) =


1, if (x1, . . . , xk)is a solution to the system (5),

0, otherwise.

By Lemma 2.3.5, we have slice-rank(F ) ≤ k (Γp,m,k)
n
. If the all solutions (x1, . . . , xk) ∈ Ak to

(5) are trivial, then F is diagonal. Hence slice-rank(F ) = |A| by Theorem 2.1.3. This shows that

|A| ≤ k (Γp,m,k)
n
. To remove the coefficient k, we consider the system 5 except the variables are

now in Fntp , where t ∈ N, and we replace A with At ⊆ Fntp . Then the above argument still holds,

and this time we obtain the inequality |A|t ≤ k (Γp,m,k)
nt

for all t ∈ N, i.e.

|A| ≤ k1/t (Γp,m,k)
n

for all t ∈ N. Taking t→∞, and we obtain that |A| ≤ (Γp,m,k)
n
.

2.4 Application 3: Largest right-angle-free subsets of Fn
p

Another application of slice rank methods is also an extremal problems in combinatorics. Let q be

an odd prime power. We’ll use the slice rank to obtain a polynomial bound on the size of the largest

right-angles-free subsets in vector space Fnq . We denote 〈·, ·〉 as the dot product in Fnq .

Definition 2.4.1 (Right angle). A right angle in Fnq is a triple (x, y, z) ∈ Fnq ×Fnq ×Fnq of distinct

elements satisfying

〈x− z, y − z〉 = 0.

We say a set A contains a right angle if (x, y, z) is a right angle for some x, y, z ∈ A.

In 2015, Bennett [4] proved that any subset A ⊆ Fnq of size

|A| ≥ 4q
n+2
3

13
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contains a right angle. One year later, Ge and Shangguan [12] used the slice rank methods to

improve this result for large n. They showed that if A ⊆ Fnq satisfying

|A| >
(
n+ q

q − 1

)
+ 3, (10)

then it contains a right angle. Another year later, Naslund [24] also used the slice rank methods

and slightly improved the bound:

Theorem 2.4.2. [24] Let q be an odd prime power. If A ⊆ Fnq satisfies

|A| >
(
n+ q

q − 1

)
+ 2−

(
n+ q − 2

q − 3

)
,

then A contains a right angle.

We’ll follow Naslund’s proof.

Proof. Consider the function F : Fnq × Fnq × Fnq → Fnq defined by

F (x, y, z) = (1− 1x=y − 1x=z − 1y=z)(1− 〈x− z, y − z〉q−1).

Then F is an indicator for distinct right angles since

F (x, y, z) =


−2 if x = y = z,

1 if (x, y, z)is a right angle,

0 otherwise.

If A ⊆ Fnq has no right angle, then F |A×A×A is a diagonal function since q is odd. Thus by

Theorem 2.1.3,

|A| = slice-rank(F |A×A×A) ≤ slice-rank(F ).

On the other hand, we will obtain an upper bound on slice-rank(F ) by rewriting F (x, y, z) into a

14
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linear combination of slice rank 1 functions. Note that
1x=z · (1− 〈x− z, y − z〉q−1) = 1x=z,

1y=z · (1− 〈x− z, y − z〉q−1) = 1y=z,

thus both of them are of slice rank 1.

For the remaining part, we note that

(1− 〈x− z, y − z〉q−1)

can be written as a linear combination of terms of the form

xd11 · · ·xdnn ye11 · · · yenn zf00 z
f1
1 · · · zfnn ,

where xi, yi, zi denotes the ith coordinate of x, y, z, for i = 1, . . . , n respectively, z0 denotes (z21 +

· · ·+ z2n), and each di, ej , fk are non-negative integers satisfying that


d1 + d2 + · · ·+ dn ≤ q − 1,

e1 + e2 + · · ·+ en ≤ q − 1,

f0 + f1 + · · ·+ fn ≤ q − 1.

Thus (1− 1x=y)(1− 〈x− z, y − z〉q−1) can be written as a linear combination of terms of the form

g(x, y)h(z), where h is a polynomial in the space

Poly2
q−1(Fnq ) := spanFq

{(z21 + · · · z2n)f0zf11 · · · zfnn | fk ∈ Z≥0,
n∑
k=0

fi ≤ q − 1}.

Thus

slice-rank(F ) ≤ 2 + dim Poly2
q−1(Fnq ).

We use the following lemma:

15
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Lemma 2.4.3. [2] Let F be a field and d, n be positive integers, then

dim Poly2
d(Fn) =

(
n+ d

d

)
+

(
n+ d− 1

d− 1

)
.

Then we have

|A| ≤ slice-rank(F ) ≤ 2 +

(
n+ q − 1

q − 1

)
+

(
n+ q − 2

q − 2

)
=

(
n+ q

q − 1

)
+ 2−

(
n+ q − 2

q − 3

)

by the binomial identity
(
n+q−1
q−1

)
+
(
n+q−2
q−2

)
+
(
n+q−2
q−3

)
=
(
n+q
q−1
)
.

Remark. In later section, we’ll show the analogous result for “k-right corner”. See Theorem 4.3.2

for more detail.

3 Slice Rank of Tensors

Recall that in the previous section, we define the slice rank of functions, which can also be considered

as hypermatrices. But both of them are basis dependent. It turns out that the slice rank of tensors

would be basis independent. Using such definition, some properties of slice rank becomes much easier

to prove. Before introducing the slice rank of tensors, we introduce the term “tensor product” first.

3.1 Tensor product of vector spaces

We first consider the tensor product between two vector spaces.

Definition 3.1.1 (Tensor product of 2 vector spaces). Given two vector spaces V,W over the same

field F, the tensor product V
⊗
W is a vector space over F generated by the elements v ⊗ w, where

v ∈ V and w ∈W, subject to the constrain that the following operation is bilinear:

(v, w) 7→ v ⊗ w.

16
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Thus every elements in the tensor product V
⊗
W are of the form

N∑
i=1

vi ⊗ wi

where vi ∈ V,wi ∈ W and N ∈ N ∪ {0}. The bilinear constrains allow us to do the following

operations:

• (v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w,

• v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2,

• (cv)⊗ w = v ⊗ (cw) = c(v ⊗ w),

for v, v1, v2 ∈ V,w,w1, w2 ∈W and c ∈ F.

Note that in the definition of the tensor product, it is no need to specify the basis of the vector space V

and W. But if we specify the basis, the elements in the tensor product would have a unique expression

corresponding to the given basis. Say the vector spaces V,W have basis {v1 . . . , vn}, {w1, . . . , wm},

respectively, then the tensor product V
⊗
W has basis

{vi ⊗ wj : 1 ≤ i ≤ nand 1 ≤ j ≤ m}.

So the elements in the tensor product V
⊗
W can be uniquely written as

n∑
i=1

m∑
j=1

ci,jvi ⊗ wj ,

and this can be considered as a function F : [n] × [m] → F with F (i, j) = ci,j or an n ×m matrix

whose (i, j)-index is ci,j . Notice that if we choose different basis for V and W, the corresponding

matrix would be different, but those matrices are mutually similar.

Now we consider the tensor product of k vector spaces. We’ll define the slice rank of tensors in these

space.

Definition 3.1.2 (Tensor product of k vector spaces). Given vector spaces V1, . . . , Vk over the

same field F, the tensor product V1
⊗
· · ·
⊗
Vk =

⊗k
i=1 Vi is a vector space over F generated by all

17
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the elements v1 ⊗ · · · ⊗ vk, where vi ∈ Vi, subject to the constrain that the following operation is

multilinear:

(v1, . . . , vk) 7→ v1 ⊗ · · · ⊗ vk.

Thus every elements in
⊗k

i=1 Vi are of the form

N∑
j=1

v1,j ⊗ · · · ⊗ vk,j ,

where vi,j ∈ Vi and N ∈ N ∪ {0}. Similar to the k = 2 case, we can do the following operations:

• v1 ⊗ · · · ⊗ (vi + v′i)⊗ · · · ⊗ vk = (v1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vk) + (v1 ⊗ · · · ⊗ v′i ⊗ · · · ⊗ vk),

• v1 ⊗ · · · ⊗ (cvi)⊗ · · · ⊗ vk = c(v1 ⊗ · · · ⊗ vk),

for vi, v
′
i ∈ Vi and c ∈ F.

We also don’t need to specify the basis of the vector space Vi here. But if we specify the basis, the

elements in the tensor product would have a unique expression. Say the vector spaces Vi have basis

{vi,1 . . . , vi,di} for each i, then the tensor product
⊗k

i=1 Vi has basis

{v1,t1 ⊗ · · · ⊗ vk,tk : 1 ≤ ti ≤ difor each i}.

So the elements in the tensor product
⊗k

i=1 Vi can be uniquely written as

d1∑
t1=1

· · ·
dk∑
tk=1

ct1,...,tkv1,t1 ⊗ · · · ⊗ vk,tk ,

and this can be considered as a function F : [d1] × · · · × [dk] → F or an d1 × · · · × dk hypermatrix

(ct1,...,tk)t1,...,tk .

In the tensor product
⊗k

i=1 Vi, we can define an operation: for each 1 ≤ j ≤ k, we have the smaller

tensor product
⊗

1≤i≤k,i6=j Vi and the jth tensor product

⊗j : Vj ×
⊗

1≤i≤k,i6=j

Vi →
k⊗
i=1

Vi,

18
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which defined as the unique F-bilinear operation satisfying that

vj ⊗j (v1 ⊗ · · · ⊗ vj−1 ⊗ vj+1 ⊗ · · · ⊗ vk) = v1 ⊗ · · · ⊗ vk

for all vi ∈ Vi.

3.2 Slice rank of tensors

Now we can define the slice rank of tensors.

Definition 3.2.1 (Slice rank of tensors). Given vector spaces V1, . . . , Vk over the same field F. We

say a non-zero element v in the tensor product
⊗k

i=1 Vi is of slice rank one if it is of the form

v = vj ⊗j vĵ

for some j ∈ [k], vj ∈ Vj and vĵ ∈
⊗

1≤i≤k,i6=j Vi.

The slice rank of any element v ∈
⊗k

i=1 Vi is the least non-negative integer r = slice-rank(v) such

that v can be written as a sum of r slice rank one elements.

Remark. Compare to the definition of slice rank of functions (Definition 2.1.1). They are actually

compatible. More specifically, given a function f : X1 × · · · × Xk → F, where Xi = [di] are finite

sets and F is a field. We can consider the tensor product

k⊗
i=1

F|Xi|,

and let the element

v =
∑

1≤xi≤di,1≤i≤k

f(x1, . . . , xk)e(1)x1
⊗ · · · ⊗ e(k)xk

,

where {e(i)1 , . . . , e
(i)
|Xi|} is any fixed basis of the vector space F|Xi|. Then the slice rank of the function

f equals to the slice rank of the tensor v. Conversely, by specifying any basis of Vi, we can construct

a corresponding function for any tensor element and their slice ranks are the same.

This allows us to switch the objects whenever we want and it makes the proof of properties of slice
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rank much easier to achieve. They have their own advantages: Functions on finite sets are easier to

visualize and compute, while tensors are elements in a vector space, so we can use tools in linear

algebra.

The following proposition states some characterization of the slice rank of tensors.

Proposition 3.2.2. [29] Given vector spaces V1, . . . , Vk over the same field F. For any v ∈
⊗k

i=1 Vi

and any non-negative integer r, the following statements are equivalent:

(i) slice-rank(v) ≤ r.

(ii) The element v can be written as

v =
k∑
j=1

∑
α∈Sj

vα,j ⊗j vα,ĵ ,

for some vα,j ∈ Vj , vα,ĵ ∈
⊗

1≤i≤k,i6=j Vi with |S1|+ · · ·+ |Sk| ≤ r.

(iii) We have

v ∈
k∑
j=1

Uj ⊗j

 ⊗
1≤i≤k,i6=j

Vi

 ,

where Uj is a vector subspace of Vj for each j with dimU1 + · · ·+ dimUk ≤ r and we view the

tensor product Uj ⊗j
(⊗

1≤i≤k,i6=j Vi

)
as a subspace of

⊗k
i=1 Vi in the obvious fashion.

(iv) There exist subspaces Wi of the dual space V ∗i for each i ∈ [k] respectively such that

dimW1 + · · ·+ dimWk ≥ dimV1 + · · ·+ dimVk − r

and v is orthogonal to
⊗k

i=1Wi in the sense that

〈w1 ⊗ · · · ⊗ wk, v〉 = 0 ∀wi ∈Wi,

where the dual pair 〈·, ·〉 :
⊗k

i=1 V
∗
i ×

⊗k
i=1 Vi → F is the obvious pairing.

Proof. The equivalence between (i) and (ii) follows from the definition of the slice rank of tensors.
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We suppose (ii) is true. For each j ∈ [k], we let Uj be the subspace of Vj generated by the elements

vα,j , α ∈ Sj . Then
k∑
j=1

dimUj ≤
k∑
j=1

|Sj | ≤ r.

Also, by our construction of Uj , we obtain that

∑
α∈Sj

vα,j ⊗j vα,ĵ ∈ Uj ⊗j

 ⊗
1≤i≤k,i6=j

Vi

 .

Hence v ∈
∑k
j=1 Uj ⊗j

(⊗
1≤i≤k,i6=j Vi

)
. So (ii) implies (iii).

On the other hand, we suppose (iii) is true. Then we take a basis of Uj . Say {v1,j , . . . , vdimUj ,j} is

a basis of Uj , we set Sj = {1, . . . ,dimUj}. Then we have

k∑
j=1

|Sj | =
k∑
j=1

dimUj ≤ r.

and every elements in Uj ⊗j
(⊗

1≤i≤k,i6=j Vi

)
can be written as

dimUj∑
α=1

vα,j ⊗j vα,ĵ ,

for some vα,j ∈ Vj , and vα,ĵ ∈
⊗

1≤i≤k,i6=j Vi. Thus (iii) implies (ii).

Now we suppose (iii) is true. For each i ∈ [k], we let Wi be the annihilator of Ui. That is, the

subspace consists of all elements in V ∗i that are orthogonal to Ui, which can be written as

Wi = {wi ∈ V ∗i | 〈wi, ui〉 = 0 ∀ui ∈ Ui},

where 〈·, ·〉 denotes the dual pair. Then dimWi = dimV ∗i − dimUi = dimVi − dimUi. Hence

k∑
i=1

dimWi =
k∑
i=1

(dimVi − dimUi) ≥
k∑
i=1

dimVi − r.

By definition, Wi is orthogonal to Ui for each i w.r.t to the dual pair, so
⊗k

i=1Wj is orthogonal to
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Uj ⊗j
(⊗

1≤i≤k,i6=j Vi

)
for each j. Since v is generated by the elements in Uj ⊗j

(⊗
1≤i≤k,i6=j Vi

)
with j ∈ [k],

⊗k
i=1Wj is orthogonal to v. So (iii) implies (iv).

Finally, we suppose (iv) is true. In this case, we let Ui be the annihilator of Wi. Then dimUi =

dimV ∗i − dimWi = dimVi − dimWi. Hence

k∑
i=1

dimUi =
k∑
i=1

(dimVi − dimWi) ≤ r.

Recall a result in linear algebra [17, Page 27, Exercise 8(c)], which states that if V1 and V2 are

subspaces of a finite dimensional vector space V, and V ◦1 , V
◦
2 are the annihilator of V1, V2 respectively.

Then

(V1 ∩ V2)◦ = V ◦1 + V ◦2 . (11)

Since Uj = W ◦j for each j, we have

Uj ⊗j

 ⊗
1≤i≤k,i6=j

Vi

 =

Wj ⊗j

 ⊗
1≤i≤k,i6=j

Vi

◦ .
Thus by (11),

v ∈ {w1 ⊗ · · · ⊗ wk | wi ∈Wi}◦ =

 k⋂
j=1

Wj ⊗j

 ⊗
1≤i≤k,i6=j

Vi

◦ =

k∑
j=1

Uj ⊗j

 ⊗
1≤i≤k,i6=j

Vi

 ,

as desired.

Using the above characterizations of the slice rank of tensors, we can generalize Theorem 2.1.3.

First, we recall the definition of an antichain.

Definition 3.2.3 (antichain). Given a partial order � on a set S. A subset A ⊆ S is called an

antichain if any two distinct elements in A are not comparable, that is, for all distinct x, y ∈ A,

we have both x 6� y and y 6� x.

Theorem 3.2.4. [29] Let L, k ∈ N and let F be a field. Fix k total ordering �1, . . . ,�k on [L] and

we consider the corresponding product partial ordering � on [L]k, i.e. (a1, . . . , ak) � (b1, . . . , bk) iff
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ai �i bi for each i = 1, . . . , k. Suppose that F : [L]k → F is a function with its support

S = {(`1, . . . , `k) ∈ [L]k : F (`1, . . . , `k) 6= 0}

is an antichain w.r.t to �, Then

slice-rank(F ) = min
S=S1∪···∪Sk

(|π1(S1)|+ · · ·+ |πk(Sk)|) ,

where πi : [L]k → [L] is the ith projection. That is, πi(`1, . . . , `k) = `i for each i.

Proof. Consider the vector space FL over F with standard basis e1, . . . , eL, and let

v =
∑

(`1,...,`k)∈[L]k
F (`1, . . . , `k)e`1 ⊗ · · · ⊗ e`k

=
∑

(`1,...,`k)∈S

F (`1, . . . , `k)e`1 ⊗ · · · ⊗ e`k . (12)

Then v is an element in the tensor product
⊗k

i=1 FL and slice-rank(v) = slice-rank(F ). Given any

partition S = S1 ∪ · · · ∪ Sk, we have

v =
k∑
j=1

∑
`j∈πj(Sj)

e`j ⊗j vĵ,`j

for some vĵ,`j ∈
⊗

1≤i≤k,i6=j FL. Thus we have an upper bound

slice-rank(v) ≤ |π1(S1)|+ · · ·+ |πk(Sk)|.

Note that this inequality also holds if S is not an antichain. Now it suffices to show

slice-rank(v) ≥ |π1(S1)|+ · · ·+ |πk(Sk)|

for some partition S = S1∪· · ·∪Sk. Without loss of generality, assume the total orderings �i are all

defined as 1 �i · · · �i L for each i. Let r = slice-rank(v). By the statement (iv) of Proposition 3.2.2,
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there exist subspaces Wi of the dual space (FL)∗ for each i = 1, . . . , k so that v is orthogonal to⊗k
i=1Wi and

dimW1 + · · ·+ dimWk ≥
k∑
i=1

dimFL − r = kL− r.

Let di := dimWi. By Gaussian elimination, we can find basis {wi,1, . . . , wi,di} of W so that they’re

in the row echelon form with respect to the standard dual basis e∗1, . . . , e
∗
L of (FL)∗. Hence there

exists indexes

1 ≤ ti,1 < · · · < ti,di ≤ L

so that wi,j is a linear combination of e∗ti,j , e
∗
ti,j+1, . . . , e

∗
L and the coefficient of e∗ti,j is 1. We claim that

S∩
∏k
i=1{ti,1, . . . , ti,di} = ∅. Suppose not, then there exist 1 ≤ ri ≤ di such that (t1,r1 , . . . , t1,rk) ∈ S.

Since v is orthogonal to
⊗k

i=1Wi, we have

〈w1,r1 ⊗ · · · ⊗ wk,rk , v〉 = 0.

On the other hand, the element w1,r1 ⊗ · · · ⊗ wk,rk is e∗t1,r1 ⊗ . . . ⊗ e
∗
tk,rk

plus a linear combination

of those e∗t′1
⊗ . . .⊗ e∗t′k with

(t′1, . . . , t
′
k) > (t1,r1 , . . . , tk,rk).

Since S is an antichain and (t1,r1 , . . . , t1,rk) ∈ S, we obtain that (t′1, . . . , t
′
k) 6∈ S.Hence F (t′1, . . . , t

′
k) =

0. This shows that the coefficient of et′1 ⊗ . . .⊗ et′k in (12) is 0 for all (t′1, . . . , t
′
k) > (t1,r1 , . . . , tk,rk).

Therefore

0 = 〈w1,r1 ⊗ · · · ⊗ wk,rk , v〉 = 〈e∗t1,r1 ⊗ . . .⊗ e
∗
tk,rk

, v〉 = F (t1,r1 , . . . , tk,rk),

which implies (t1,r1 , . . . , tk,rk) 6∈ S, a contradiction. Therefore S ∩
∏k
i=1{ti,1, . . . , ti,di} = ∅ is true.

Since S ∩
∏k
i=1{ti,1, . . . , ti,di} = ∅, we may let

Si := {(`1, . . . , `k) ∈ S : `i 6∈ {ti,1, . . . , ti,di}}
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for each i. Then S = S1 ∪ · · · ∪ Sk and |πi(Si)| ≤ L− di for each i, which implies that

|π1(S1)|+ · · ·+ |πk(Sk)| ≤
k∑
i=1

(L− di) ≤ kL− (kL− r) = r,

as desired.

Remark. The above theorem is stronger than Theorem 2.1.3. Indeed, suppose k ≥ 2 and we define

the total orderings �1 and �2 as

1 �1 · · · �1 L and L �2 · · · �2 1,

and the remaining orderings �i are defined arbitrary. If F : [L]k → F is diagonal, then its support

S ⊆ {(`, . . . , `) ∈ [L]k : ` ∈ [L]}

is an antichain w.r.t the corresponding product partial order, and for any partition S = S1∪· · ·∪Sk,

|S| = |π1(S1)|+ · · ·+ |πk(Sk)|,

which implies that slice-rank(F ) = |S|.

This theorem can also help us understand the structure of the solutions of linear system we discussed

in Section 2.3.

Corollary 3.2.5. [28, Corollary 3.7] Suppose we are given a linear system of equations with coeffi-

cients in Fp and constant terms in Fnp , consisting of m ≥ 1 equations in k ≥ 2m+ 1 variables. Let

(x
(l)
1 , . . . , x

(l)
k ) ∈ (Fnp )k for l = 1 . . . , L be solutions in Fnp to this system of equations. Suppose that

there exists a disjoint partition [k] = J1 ∪ · · · ∪ Jt with |Jh| ≥ 2 for each h such that the following

condition holds: For any choice of l1, . . . , lk ∈ [L] such that (x
(l1)
1 , . . . , x

(lk)
k ) is a solution to the

given system of equations, we have |{lj | j ∈ Jh}| = 1 for all h = 1, . . . , t. Then we must have

L ≤ k · (Γp,m,k)n.
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Proof. Define the function f : [L]k → Fp as

f(l1, . . . , lk) =


1, if (x

(l1)
1 , . . . , x

(lk)
k )is a solution of the given system,

0, otherwise.

By Lemma 2.3.5, we have slice-rank(F ) ≤ k ·(Γp,m,k)n. So it suffices to show that L = slice-rank(F ).

We’ll define some total orderings on [L] such that the support of F is an antichain with respect to

the corresponding product ordering, which allows us to use the Theorem 3.2.4.

For each h ∈ [t], we label the sets Jh = {jh,1, jh,2, . . . , jh,|Jh|}. Since |Jh| ≥ 2, we can define the total

orderings �jh,1 ,�jh,2 on [L] as

1 �jh,1 2 �jh,1 · · · �jh,1 L

and

L �jh,2 L− 1 �jh,2 · · · �jh,2 1.

The remaining orderings �jh,3 , . . . ,�jh,|Jh| can be any arbitrary total orderings on [L]. Given two

distinct elements (l1, . . . , lk), (l′1, . . . , l
′
k) in the support of F. By definition of F, we obtain that

(x
(l1)
1 , . . . , x

(lk)
k ) and (x

(l′1)
1 , . . . , x

(l′k)
k ) are both solutions of the given system. Thus by assumption,

we have

|{lj | j ∈ Jh}| = |{l′j | j ∈ Jh}| = 1

for each h. Since (l1, . . . , lk) and (l′1, . . . , l
′
k) are distinct, there is some i ∈ [k] = J1 ∪ · · · ∪ Jt such

that li 6= l′i. Say i ∈ Jh for some h ∈ [t]. Using |{lj | j ∈ Jh}| = |{l′j | j ∈ Jh}| = 1, we have

ljh,1
= ljh,2

= li 6= l′i = l′jh,1
= l′jh,2

.

There are only two possibilities:


lji,1 �ji,1 l′ji,1 ,

lji,2 6�ji,2 l′ji,2 ,
or


lji,1 6�ji,1 l′ji,1 ,

lji,2 �ji,2 l′ji,2 .
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But either case shows that (l1, . . . , lk) and (l′1, . . . , l
′
k) are not comparable with respect to the product

ordering we’ve constructed. Therefore the support of F is an antichain. By Theorem 3.2.4, we have

slice-rank(F ) = min
S=S1∪···∪Sk

(|π1(S1)|+ · · ·+ |πk(Sk)|) .

By assumption and the definition of F, we know that

F (l, l, . . . , l) = 1

for l ∈ [L]. Thus π1(S1) ∪ · · · ∪ πk(Sk) = [L] for any disjoint unions S1, . . . , Sk of S. This forces

|π1(S1)|+ · · ·+ |πk(Sk)| ≥ L. Together with slice-rank(F ) ≤ L, we obtain that slice-rank(F ) = L.

The above corollary plays an important role in the paper of Sauermann [28]. For reference, she used

this result to prove the following theorem.

Theorem 3.2.6. [28] For any fixed integer m ≥ 1 and k ≥ 3m and a fixed prime p, there exists

constants Cp,m,k ≥ 1 and 1 ≤ Γ∗p,m,k < p such that the following holds: Consider the system (5) with

every m ×m minor of the m × k matrix (aj,i)j,i is invertible. Then for any n ∈ N and any subset

A ⊆ Fnp of size |A| > Cp,m,k · (Γ∗p,m,k)n, the system (5) has a solution (x1, . . . , xk) ∈ Ak such that

the vectors x1, . . . , xk are all distinct.

4 Partition Rank

In this section, we’ll introduce another way to define the rank of functions (and thus tensors), which

we called it the partition rank.

4.1 Definitions and basic properties

Given variables x1, . . . , xn and a subset S ⊆ [n]. Write S = {s1, . . . , sk} with 1 ≤ s1 < · · · < sk ≤ n.

We use ~xS to denote the subset of variables xs1 , . . . , xsk . So for a function g of k variables, g( ~xS)
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denotes g(xs1 , . . . , xsk).

Definition 4.1.1 (Partition). A partition of [n] is a collection P of non-empty, pairwise disjoint,

subsets of [n], satisfying ⋃
S∈P

S = [n].

We say that P is the trivial partition if P only contains one set [n].

Definition 4.1.2 (Partition rank). Given finite sets X1, . . . , Xk and a field F. Consider a function

F : X1 × · · · ×Xk → F.

We say F is of partition rank one if it is non-zero and can be written as

F (x1, . . . , xk) =
∏
S∈P

fS( ~xS)

for some functions fS and a non-trivial partition P of [n].

For general F : X1 × · · · ×Xk → F, its partition rank partition-rank(F ) is the least non-negative

integer r so that F can be written as a sum of r partition rank one functions.

Remark. We remark that a non-zero F : X1 × · · · × Xk → F has partition rank 1 if and only if it

can be written as

F (x1, . . . , xn) = f( ~xS)g( ~xT )

for some f, g and some disjoint S, T 6= ∅ with S ∪ T = [n]. Furthermore, if either |S| = 1 or |T | = 1,

then F is of slice rank 1. Hence when the dimension k is less than or equal to 3, the partition rank

coincides with the partition rank. For general positive integer k, we have the following inequality

partition-rank(F ) ≤ slice-rank(F ) ≤ min
i
|Ai|.

Example 4.1.3. In some case, the partition rank and the slice rank can differ a lot. For example,

if X is a finite set and F : X4 → F is defined as

F (x1, x2, x3, x4) = 1x1=x2
1x3=x4

,
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or equivalently,

F (x1, x2, x3, x4) =


1 if x1 = x2and x3 = x4,

0 otherwise.

Then partition-rank(F ) = 1, while slice-rank(F ) = |X| since its support is an antichain and we can

apply Theorem 3.2.4.

A key observation is that the analogous result of Theorem 2.1.3 also holds for partition rank.

Theorem 4.1.4. [24] Let X be a non-empty finite set, k ≥ 2 be integers and let F be a field. Suppose

that F : Xk → F is diagonal, that is,

F (x1, . . . , xk) =
∑
a∈A

ca1a=x1=···=xn (13)

for some A ⊆ X where ca 6= 0. Then

partition-rank(F ) = |A|.

Proof. Let r = partition-rank(F ). By the inequality partition-rank(F ) ≤ slice-rank(F ) and Theo-

rem 2.1.3, we have r ≤ slice-rank(F ) = |A|. So our goal is to prove r ≥ |A|. We’ll use induction

on k. When k = 2, the slice rank is equivalent to the partition rank, so the result follows from

Theorem 2.1.3. Assume k ≥ 3. Since partition-rank(F ) ≤ slice-rank(F ) ≤ mini |Ai| we can write:

F (x1, . . . , xn) =
r∑
i=1

fi(~xSi
)gi(~xTi

), (14)

where Si, Ti are non-empty sets with Si ∩ Ti = ∅ and Si ∪ Ti = [n]. By switching the labeling if

needed, we may assume that |Si| ≤ n/2 for each i. We consider two cases:

Case 1: |Si| ≥ 2 for each i.

By taking the summation
∑
x1∈X to both sides of the equation (14), we have

∑
x1∈X

∑
a∈A

ca1a=x1···=xn =
∑
x1∈X

F (x1, . . . , xn) =

r∑
i=1

f̃i(~xSi\{1})g̃i(~xTi\{1}),
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where

f̃i(~xSi\{1}) :=


∑
x1∈X fi(~xSi) if 1 ∈ Si,

fi(~xSi) if 1 6∈ Si,

and g̃i(~xTi\{1}) is defined similarly. Observe that

∑
x1∈X

∑
a∈A

ca1a=x1···=xn
=
∑
a∈A

ca1a=x2=···=xn
,

So
∑
a∈A ca1a=x2=···=xn

has partition rank at most r. By induction hypothesis, its partition rank is

precisely |A|. Thus |A| ≤ r.

Case 2: |Si| = 1 for some i.

Then we have Si = {j} for some j ∈ [n]. Let U = {u ∈ [r] : Su = {j}}. Define the following vector

space

V = {h : X → F :
∑
xj∈X

fu(xj)h(xj) = 0 ∀u ∈ U}.

This vector space has dimension at least |X|−|U |. Let v be an element in V whose support supp(v) :=

{x ∈ X : v(x) 6= 0} has the largest cardinality among elements in V. Then

|supp(v)| ≥ dimV ≥ |X| − |U |.

Multiplying both sides of (13) by v(xj) and sum over xj ∈ X, we obtain

∑
xj∈X

v(xj)F (x1, . . . , xn) =
∑
a∈A

v(a)ca1a=x1=···=xj−1=xj+1=···=xn .

By induction hypothesis, the partition rank of this diagonal function is the number of a ∈ A such

that v(a)ca 6= 0. Thus

partition-rank

∑
xj∈X

v(xj)F (x1, . . . , xn)

 = |supp(v)∩A| ≥ |supp(v)|+ |A|−|X| ≥ |A|−|U |. (15)

On the other hand, we can do the similar operation on (14). Since
∑
xj∈X fu(xj)v(xj) = 0 for all
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u ∈ U, we have

∑
xj∈X

v(xj)F (x1, . . . , xn) =
r∑

i=1,i6∈U

∑
xj∈X

v(xj)cifi(~xSi
)gi(~xTi

).

Since Si and Ti are disjoint for each i, every
∑
xj∈X v(xj)cifi(~xSi)gi(~xTi) are of partition rank at

most 1. Thus

partition-rank

∑
xj∈X

v(xj)F (x1, . . . , xn)

 ≤ r − |U |. (16)

By (15) and (16), we have |A| ≤ r, as desired.

Remark. Using the inequality partition-rank(F ) ≤ slice-rank(F ), we can see that the above Theorem

is stronger than Theorem 2.1.3. In practice, if we construct a function F : X × · · · × X → F for

some finite set X, and F is diagonal with all its diagonal indexes are non-zero when X satisfies some

constraint. Then both slice rank methods and partition rank methods can give us an upper bound

for |X|. However, every upper bound we obtained from slice rank can be obtained from the partition

rank. Thus the partition rank methods are better when we are dealing with diagonal functions.

4.2 Distinctness indicator function

We introduce a special function, which we called the distinctness indicator function. In previous

sections, we’ve introduced the functions F : Xk → F whose slice ranks or partition ranks are related

to |X|. The distinctness indicator functions however, are functions whose partition rank is bounded

above by a function of dimension k, instead of |X|.

Definition 4.2.1 (Distinctness indicator function). Let X be a finite set, k ≥ 2 be an integer and

F be a field whose characteristic is at least k. We define the distinctness indicator function

Hk : Xk → F as

Hk(x1, . . . , xk) =


1 if x1, . . . , xkare all distinct,

(−1)k(k − 1)! if x1 = · · · = xk,

0 otherwise.
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The functions Hk can also be defined from the permutations in symmetric groups. Denote Sk to be

the symmetric group of degree k. For any permutation σ ∈ Sk, we define

fσ : Xk → F

to be the function that is 1 if (x1, . . . , xk) is a fixed point of σ, and 0 otherwise. We also let Cyck ⊂ Sk

be the set of all k−cycles in Sk. Then |Cyck| = (k − 1)! by direct computation. Then we have the

following equality:

Proposition 4.2.2. [24] For k ≥ 2, we have

Hk(x1, . . . , xk) =
∑

σ∈Sk,σ 6∈Cyck

sgn(σ)fσ(x1, . . . , xk),

where sgn(σ) is the sign of the permutation σ.

Proof. Note that the right hand side can be written as

∑
σ∈Sk

sgn(σ)fσ(x1, . . . , xk)−
∑

σ∈Cyck

sgn(σ)fσ(x1, . . . , xk).

By definition of fσ, we have

∑
σ∈Sk

sgn(σ)fσ(x1, . . . , xk) =
∑

σ∈Sk,σ∈Stab(~x)

sgn(σ),

where Stab(~x) := {σ ∈ Sk : (x1, . . . , xk)is a fixed point of σ} is the stabilizer of ~x. Since the stabilizer

is a product of symmetric groups, the number of even cycle equals to the number of odd cycle if it
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is not the trivial group. Hence

∑
σ∈Sk

sgn(σ)fσ(x1, . . . , xk) =


1 if Stab(~x)is the trivial group,

0 otherwise.

=


1 if x1, . . . , xkare distinct,

0 otherwise.

(17)

Now we consider the remaining part

∑
σ∈Cyck

sgn(σ)fσ(x1, . . . , xk).

If σ ∈ Cyck, then (x1, . . . , xk) is a fixed point of σ if and only if x1 = · · · = xk. Also, for every

k-cycle σ ∈ Cyck, we have sgn(σ) = (−1)k−1. Thus

∑
σ∈Cyck

sgn(σ)fσ(x1, . . . , xk) =


∑
σ∈Cyck

sgn(σ) if x1 = · · · = xk,

0 otherwise.

=


(−1)k−1(k − 1)! if x1 = · · · = xk,

0 otherwise.

(18)

Hence by (17) and (18), we get our desired equality.

Using this property, we can obtain an upper bound for the partition rank of Hk. We denote 1 to be

the indicator function defined by

1( ~xS) =


1 if ~xS = (xs1 , . . . , xs|S|)with xs1 = · · · = xs|S| ,

0 otherwise.

For convenience, we set 1( ~xS) = 1 if |S| = 1.
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Proposition 4.2.3. [24] For each k ≥ 2, the function Hk can be written as

Hk(x1, . . . , xk) =
∑
P∈Pk

cP
∏
A∈P

1(~xA), (19)

where Pk denotes the set of non-trivial partitions of [k] and cP are constants. Moreover, we have

partition-rank(Hk) ≤ 2k−1 − 1.

Proof. For each σ ∈ Sk, the function fσ can always be written as a product of indicator functions

corresponding to the cycle notation of σ. For example, the function fσ with σ = (1)(23)(456) ∈ S6

can be written as

f(1)(23)(456)(x1, . . . , x6) = 1(x1)1(x2, x3)1(x4, x5, x6).

If σ 6∈ Cyck, then all the length of cycles in σ are strictly less than k. So each fσ can be written as

fσ(x1, . . . , xk) =
∏
A∈P

1(~xA)

for the corresponding non-trivial partition P of [k]. By Proposition 4.2.2, we have

Hk(x1, . . . , xk) =
∑
P∈Pk

cP
∏
A∈P

1(~xA),

for some constants cP .

Now we claim the second part. For each non-trivial partition P ∈ Pk, there is a unique A1 ∈ P with

1 ∈ A1 ( [k]. Thus we obtain that

∏
A∈P

1(~xA) = 1(~xA1)
∏

A∈P,A6=A1

1(~xA)

for such A1. By sorting the terms of (19) for various A1 satisfying 1 ∈ A1 ( [k], we have

Hk(x1, . . . , xk) =
∑

σ∈Sk,σ 6∈Cyck

sgn(σ)fσ(x1, . . . , xk) =
∑

1∈A1([k]

1(~xA1
)gA1

(~x[k]\A1
)
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for some functions gA1 . Since the partition rank of each 1(~xA1)gA1(~x[k]\A1
) is at most 1, we obtain

that

partition-rank(Hk) ≤ |{A1 : 1 ∈ A1 ( [k]}| = 2k−1 − 1.

4.3 Application 4: Largest k-right-corner-free subsets of Fn
p

Recall that in Section 2.4, we use the slice rank methods to show that if q is an odd power and

A ⊆ Fnq is large enough, then A contains a right angle. In this section, we’ll generalize the notion of

right angle, which we call it the k-right corner, and prove the analogous result of Theorem 2.4.2.

Definition 4.3.1. Given k ≥ 2. An ordered pair of vectors (x1, . . . , xk+1) ∈
(
Fnq
)k+1

is called a k-

right corner if they are distinct and the k-vectors x1−xk+1, . . . , xk−xk+1 are mutually orthogonal.

In other words, (x1, . . . , xk+1) is a k-right corner if and only if x1, . . . , xk+1 are distinct and

〈xi − xk+1, xj − xk+1〉 = 0 ∀i, j ∈ [k], i 6= j.

We say a set A contains a k-right corner if (x1, . . . , xk+1) is a k-right corner for some x1, . . . , xk+1 ∈

A.

Naslund used the partition rank methods to obtain a bound, polynomial in n, for the size of the

largest subset of Fnq that does not contain a k-right corner.

Theorem 4.3.2. [24] Let k ≥ 3 be given, and let q = pr be a prime power with p > k. If A ⊆ Fnq

satisfies

|A| >
(
n+ (k − 1)q

(k − 1)(q − 1)

)
,

then A contains a k-right corner.
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Proof. Define the function Rk+1 :
(
Fnq
)k+1 → Fq by

Rk+1(x1, . . . , xk) =


1 x1 − xk+1, . . . , xk − xk+1are mutually orthogonal,

0 otherwise.

It can also be written as

Rk+1(x1, . . . , xk) =
∏

1≤i<j≤k

(
1− 〈xi − xk+1, xj − xk+1〉q−1

)
.

Note that x1, . . . , xk+1 are not required to be distinct. So this is not the indicator function of k-

right corner yet. To handle this issue, we multiply it by the distinctness indicator function from

Section 4.2, and define

Jk = Hk+1Rk+1.

Then the function Jk can be written as

Jk(x1, . . . , xk+1) =


1 if (x1, . . . , xk+1)is a k-right corner,

(−1)kk! if x1 = · · · = xk+1,

0 otherwise.

If A ⊆ Fnq doesn’t contain any k-right corner, then Jk|Ak+1 is a diagonal function. Note that the

diagonal indexes (−1)kk! are non-zero in Fq since p > k. Thus by Theorem 4.1.4, we have

|A| ≤ partition-rank(Jk).

So it suffices to show that partition-rank(Jk) ≤
(
n+(k−1)q
(k−1)(q−1)

)
. By Proposition 4.2.3, we could write

Jk as a linear combination of the functions of the following form:

Rk+1(x1, . . . , xk+1)
∏
A∈P

1(~xA), (20)

where P is a non-trivial partition of [k+ 1]. The following lemma allows us to rewrite it into a lower
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degree polynomial.

Lemma 4.3.3. [24] Let P = {A1, . . . , Ar} be a non-trivial partition of [k+ 1]. Suppose without loss

of generality that k + 1 ∈ Ar, we let ar = k + 1. For each i = 1, . . . , r − 1, we let ai = minAi be the

minimal element of Ai. Then

Rk+1(x1, . . . , xk+1)
∏
A∈P

1(~xA) = Rr(xa1 , . . . , xar )
r∏
i=1

1(~xAi)Π
P
2 , (21)

where

ΠP
2 =

∏
|Ai|≥2,i6=r

(
1− 〈xai − xar , xai − xar 〉q−1

)
.

Proof. By the definition of Rk+1, (20) can be written as

(
r∏
i=1

1(~xAi)

) ∏
1≤j<l≤k

(
1− 〈xj − xar , xl − xar 〉q−1

) . (22)

Observe that for a set A, a ∈ A and a function Q on |A| variables, we have 1(~xA)Q(~xA) = 1(~xA)Q̃(a)

for a single variable function Q̃ defined by Q̃(a) = Q(a, . . . , a). Using this property and the equality

(1− 〈x, y〉q−1)2 = (1− 〈x, y〉q−1),

we can rewrite (22) into

(
r∏
i=1

1(~xAi
)

) ∏
1≤j<l≤r

(
1− 〈xaj − xar , xal − xar 〉q−1

) r−1∏
i=1,|Ai|≥2

(
1− 〈xai − xar , xai − xar 〉q−1

) .

The second product is just the function

Rr(xa1 , . . . , xar )

and the third product is the definition of ΠP
2 . So the lemma holds.

Let Poly2
d(Fnq ) be the polynomial space defined in the proof of Theorem 2.4.2, and we also define
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another polynomial space Polyd(Fnq ) as the space of n−variable polynomials over the field Fq of total

degree at most d. Then

dim Polyd(Fnq ) =

(
n+ d

d

)
. (23)

Applying the equation (21), we have the following lemma

Lemma 4.3.4. [24] Let P = {A1, . . . , Ar} be a non-trivial partition of [k+ 1]. Suppose without loss

of generality that k + 1 ∈ Ar, we let ar = k + 1. For each i = 1, . . . , r − 1, we let ai = minAi be the

minimal element of Ai. Then

Rk+1(x1, . . . , xk+1)
r∏
i=1

1(~xAi
) =

∑
j

[
r∏
i=1

1(~xAi
)Qi,j(xai)

]
,

where for each 1 ≤ i ≤ r − 1,

Qi,j ∈


Polyd(Fnq )with d = (r − 2)(q − 1) if |Ai| = 1,

Poly2
d(Fnq )with d = (r − 1)(q − 1) if |Ai| ≥ 2.

Proof. By expanding the product of (21), we may write

Rr(xa1 , . . . , xar )
r∏
i=1

1(~xAi
)ΠP

2 =
∑
j

[
r∏
i=1

1(~xAi
)Qi,j(xai)

]

for some polynomials Qi,j . Recall that

Rr(xa1 , . . . , xar ) =
∏

1≤j<l≤r−1

(
1− 〈xaj − xar , xal − xar 〉q−1

)
.

For any 1 ≤ i ≤ r− 1, there are exactly r− 2 terms each of degree q− 1 in the product definition of

Rr that contain xai , namely
(
1− 〈xaj − xar , xal − xar 〉q−1

)
for i = j or i = l. If |Ai| = 1, then xai

doesn’t appear in ΠP
2 , which implies that degQi,j ≤ (r − 2)(q − 1) and hence

Qi,j ∈ Polyd(Fnq )with d = (r − 2)(q − 1)if |Ai| = 1.
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If |Ai| ≥ 2, then the product ΠP
2 will contain an additional term that contains xai , namely

(
1− 〈xai − xar , xai − xar 〉q−1

)
.

If we expand the it in terms of the (n + 1) variables xai,1, . . . , xai,n and x2ai,1 + · · · + x2ai,n, then it

will have degree q − 1 only. Thus

Qi,j ∈ Poly2
d(Fnq )with d = (r − 1)(q − 1)if |Ai| ≥ 2.

Using this lemma, we can obtain an upper bound for partition-rank(Jk).

Proposition 4.3.5. [24] Let Pk+1 be the set of non-trivial partitions of [k + 1]. Suppose that

B1, . . . , Bl is a sequence of non-empty subsets of [k] such that for every P ∈ Pk+1, there exists

A ∈ P with k + 1 6∈ A and A = Bi for some i. For each i, set

ri = max{|P | : P ∈ Pk+1, Bi ∈ P, and Bj 6∈ P for j < i}. (24)

and let

Vi =


Poly(ri−2)(q−1)(F

n
q ) if |Bi| = 1,

Poly2
(ri−1)(q−1)(F

n
q ) if |Bi| ≥ 2.

Then we have

partition-rank(Jk) ≤
l∑
i=1

dimVi. (25)

Proof. For any P ∈ Pk+1 there exists some index j such that Bj ∈ P by assumption. Let i be the

minimal index such that Bi ∈ P. Then |P | ≤ ri by definition of ri. Together with Lemma 4.3.4, we

have

Rk+1(x1, . . . , xk+1)
∏
A∈P

1(~xA) =
∑
j

1(~xBi
)Qj(xbi)Tj(~x[k+1]\Bi

),

where for each j, Qj(xbi) ∈ Vi. and Tj consists of the product
∏
A∈P,A6=Bi

1(~xA). Thus Jk is a linear
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combination of the terms of the form

1(~xBi
)Q(xbi)T (~x[k+1]\Bi

),

where Q ∈ Vi. Note that T (~x[k+1]\Bi
) involves only the variables xi for i ∈ [k + 1]\Bi. Since Bi is

a non-empty proper subset of [k + 1], each 1(~xBi
)Q(xbi)T (~x[k+1]\Bi

) is of partition rank at most 1.

Together with Q(xbi) ∈ Vi, this implies (25).

Now we can complete the proof of Theorem 4.3.2. Let the sequence of subsets B1, . . . , B2k−1 be

defined by listing all the non-empty subsets of [k] in order by their cardinality with tie broken by

lexicographical order of the elements of the set. That is,

B1 = {1}, B2 = {2}, . . . , Bk = {k}, Bk+1 = {1, 2}, . . . , B2k−1 = {1, . . . , k}.

By Proposition 4.3.5, (23) and Lemma 2.4.3, we have the upper bound

partition-rank(Jk)

≤
l∑
i=1

dimVi

=
k∑
i=1

dim Poly(ri−2)(q−1)(F
n
q ) +

2k−1∑
i=k+1

dim Poly2
(ri−1)(q−1)(F

n
q )

=
k∑
i=1

(
n+ (ri − 2)(q − 1)

(ri − 2)(q − 1)

)
+

2k−1∑
i=k+1

[(
n+ (ri − 1)(q − 1)

(ri − 1)(q − 1)

)
+

(
n+ (ri − 1)(q − 1)− 1

(ri − 1)(q − 1)− 1

)]
,

where ri is defined in (24). To obtain the value of ri, we shall find the largest partitions P ∈ Pk+1

with the property in the definition of ri. For i = 1, the partition P = {{1}, {2}, . . . , {k+1}} satisfies

the criteria B1 ∈ P and this is the partition with the largest cardinality, so r1 = k + 1.

For i = 2, . . . , k, since B1, . . . , Bi−1 can not contained in the partition, it can only has at most

k + 1− (i− 1) singletons {i}, {i+ 1}, . . . , {k + 1}. The first i− 1 elements 1, . . . , i− 1 can form at

most b i−12 c pairs. Thus

ri ≤ (k + 1)− (i− 1) + b i− 1

2
c ≤ k.
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Thus we can bound the first sum:

k∑
i=1

(
n+ (ri − 2)(q − 1)

(ri − 2)(q − 1)

)
≤
(
n+ (k − 1)(q − 1)

(k − 1)(q − 1)

)
+ (k − 1)

(
n+ (k − 2)(q − 1)

(k − 2)(q − 1)

)
. (26)

Consider i ≥ k + 1, say |Bi| = j ≥ 2. Then the partition can not contain any sets of size less than j

that do not contain k + 1. Thus

ri ≤ 1 + bk
j
c.

Thus we can bound the second sum

2k−1∑
i=k+1

[(
n+ (ri − 1)(q − 1)

(ri − 1)(q − 1)

)
+

(
n+ (ri − 1)(q − 1)− 1

(ri − 1)(q − 1)− 1

)]

≤
k∑
j=2

(
k

j

)[(
n+ bkj c(q − 1)

bkj c(q − 1)

)
+

(
n+ bkj c(q − 1)− 1

bkj c(q − 1)− 1

)]
.

We use the following weak bound for convenience.

(
n+ bkj c(q − 1)

bkj c(q − 1)

)
+

(
n+ bkj c(q − 1)− 1

bkj c(q − 1)− 1

)
≤
(
n+ 1 + bkj c(q − 1)

bkj c(q − 1)

)
,

This gives us an upper bound for the second sum

2k−1∑
i=k+1

[(
n+ (ri − 1)(q − 1)

(ri − 1)(q − 1)

)
+

(
n+ (ri − 1)(q − 1)− 1

(ri − 1)(q − 1)− 1

)]
≤

k∑
j=2

(
k

j

)(
n+ 1 + bkj c(q − 1)

bkj c(q − 1)

)
. (27)

To combine the upper bound of these two sums, we use the Vandermonde identity, which states that

for any non-negative integers a, b, c, we have

(
a+ b

c

)
=

c∑
j=0

(
a

j

)(
b

c− j

)
.

Let a = k, b = n+ (k − 1)(q − 1)− 1 and c = (k − 1)(q − 1), we have

(
n+ (k − 1)q

(k − 1)(q − 1)

)
=

k∑
j=0

(
k

j

)(
n+ (k − 1)(q − 1)− 1

(k − 1)(q − 1)− j

)
, (28)
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where the sum ends at k since
(
k
j

)
= 0 for j > k. The terms for j = 0, 1 can be written as

(
n+ (k − 1)(q − 1)− 1

(k − 1)(q − 1)

)
+ k

(
n+ (k − 1)(q − 1)− 1

(k − 1)(q − 1)− 1

)
=

(
n+ (k − 1)(q − 1)

(k − 1)(q − 1)

)
+ (k − 1)

(
n+ (k − 1)(q − 1)− 1

(k − 1)(q − 1)− 1

)
,

which is an upper bound for the first sum by (26). For k ≥ 3 and j ≥ 2, we claim that

bk
j
c(q − 1) ≤ (k − 1)(q − 1)− j. (29)

For k ≥ 3 and 2 ≤ j ≤ k − 1, we have bk
j
c ≤ k − j and thus

bk
j
c(q − 1) ≤ (k − j)(q − 1) = (k − 1)(q − 1)− (j − 1)(q − 1) ≤ (k − 1)(q − 1)− j.

For k ≥ 3 and j = k, we also have

bk
j
c(q − 1) = q − 1 ≤ (k − 2)(q − 1) ≤ (k − 1)(q − 1)− j

since q−1 ≥ k = j by assumption. Therefore for every k ≥ 3 and j ≥ 2, we can apply the inequality

(29) and obtain that

(
n+ 1 + bkj c(q − 1)

bkj c(q − 1)

)
≤
(
n+ 1 + (k − 1)(q − 1)− j

(k − 1)(q − 1)− j

)
.

Together with (26), (27) and (28), we have

partition-rank(Jk) ≤
∑
i

dimVi ≤
(
n+ (k − 1)q

(k − 1)(q − 1)

)
.

This completes the proof.

42



doi:10.6342/NTU202200962

5 Right Angle Removal Lemma

5.1 Background

In graph theory, the triangle removal lemma of Ruzsa and Szemerédi [27] states that any graph on

n vertices with o(n3) triangles can be made triangle-free by removing o(n2) edges. This lemma can

be proved by the Szemerédi regularity lemma [10, 30]. Green [13] proved the analogous theorem for

abelian group. Let G be an abelian group with cardinality N, and let A ⊆ G. A triple (x, y, z) ∈ A3

is called a triangle if x+ y + z = 0. Then the arithmetic triangle removal lemma states that

Theorem 5.1.1. [13] Suppose that A ⊆ G is a set with o(N2) triangles. Then we may remove o(N)

elements from A to leave a set which is triangle-free.

In fact, Green’s result is more general:

Theorem 5.1.2. [13] Let k ≥ 3 be a fixed integer, and suppose that A1, . . . , Ak are subsets of G

such that there are o(Nk−1) solutions to the equation a1 + · · ·+ ak = 0 with ai ∈ Ai for all i. Then

we may remove o(N) elements from each Ai so as to leave sets A′i, such that there are no solutions

to a′1, . . . , a
′
k = 0 with a′i ∈ A′i for each i.

5.2 Main result and its proof

Throughout this section, the number q denotes a prime power and the logarithm function log is

of base 2. We consider Fnq , which is an n-dimensional vector space over the finite field Fq. Denote

N = |Fnq | = qn. Our main result is the following.

Theorem 5.2.1 (Right angle removal lemma). Suppose that X,Y, Z are subsets of Fnq such that

there are o(N3(logN)−(4q−4)/3) solutions to the equation 〈x−z, y−z〉 = 0, with x ∈ X, y ∈ Y, z ∈ Z.

Then we may remove o(N) elements from each X,Y, Z so as to leave sets X ′, Y ′, Z ′, respectively,

such that there are no solutions to 〈x′ − z′, y′ − z′〉 = 0, with x′ ∈ X ′, y′ ∈ Y ′, z′ ∈ Z ′.

Note that this is similar to Theorem 5.1.2 except that we replace the linear equation a1+· · ·+ak = 0

with a non-linear equation 〈x−z, y−z〉 = 0, where 〈·, ·〉 denotes the dot product in the vector space

Fnq . Recall that we say the triple (x, y, z) is a right angle if x, y, z are distinct and satisfy the equation.
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Thus we called this result the “right angle removal lemma.”

To prove this result, we introduce some definitions and notations.

Definition 5.2.2. We say a triple (x, y, z) ∈ Fnq × Fnq × Fnq is a weak right angle if

〈x− z, y − z〉 = 0.

Remark. Note that the definition of weak right angle is similar to right angle (Definition 2.4.1)

except that x, y, z are not required to be distinct here.

For X,Y, Z ⊆ Fnq , we define

η(X,Y, Z) = |{(x, y, z) ∈ X × Y × Z | (x, y, z)is a weak right angle.}|

to be the number of all the weak right angles in X ×Y ×Z. The following theorem is a quantitative

version of our main result Theorem 5.2.1. We’ll prove this statement.

Theorem 5.2.3. Given any 0 < ε < 1. Let δ = ε3 and let n be a large integer so that

(2q − 5)/3 < n and (n+ (2q − 5)/3)(2q−2)/3 ≤ 11

36
εqn. (30)

Denote N = |Fnq | = qn. If X,Y, Z ⊆ Fnq satisfying

η(X,Y, Z) ≤ δCq
N3

(logN)(4q−4)/3
,

where Cq is a positive constant depend only on q. Then there exist X ′ ⊆ X,Y ′ ⊆ Y, Z ′ ⊆ Z with

|X\X ′|+ |Y \Y ′|+ |Z\Z ′| ≤ εN

such that

η(X ′, Y ′, Z ′) = 0.
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Remark. The constant Cq can be chosen to be

Cq =
1

243

(
log q

2

)(4q−4)/3

.

Note that η(X,Y, Z) is greater than or equal to the number of all (not necessarily weak) right

angles in X × Y × Z. But the theorem can be applied to right angles too. Indeed, the number

of triples (x, y, z) with x, y, z are not all distinct is less than 3N2, which increases slower than

Θ(
N3

(logN)(4q−4)/3
) as n → ∞. Thus the theorem is still valid if replace “weak right angle” with

simply “right angle.”

Theorem 5.2.4. Given any 0 < ε < 1. Let δ = ε3 and let n be an integer satisfying (30). Denote

N = |Fnq | = qn. Let m be an integer with m > εN. Let X = {x(i)}mi=1, Y = {y(i)}mi=1, Z = {z(i)}mi=1

be three subsets of Fnq with m elements. If for each i ∈ {1, . . . ,m}, we have

(x(i), y(i), z(i))is a weak right angle,

then

η(X,Y, Z) > δCq
N3

(logN)(4q−4)/3
.

We can prove Theorem 5.2.3 if Theorem 5.2.4 holds.

Proof of Theorem 5.2.3 assuming Theorem 5.2.4. Suppose we can not remove εN elements from

X,Y, Z ⊆ Fnq so that there are no weak right angle triples (x, y, z) remain, then there are more than

εN weak right angles (x(i), y(i), z(i)) ∈ X × Y × Z with |{x(i)}mi=1| = |{y(i)}mi=1| = |{z(i)}mi=1| = m.

By Theorem 5.2.4,

η(X,Y, Z) ≥ η({x(i)}mi=1, {y(i)}mi=1, {z(i)}mi=1) > δCq
N3

(logN)(4q−4)/3
.

This proves Theorem 5.2.3.

Hence it suffices to prove Theorem 5.2.4. The following lemma uses the slice rank methods.

Lemma 5.2.5. Given a collection of triples {(x(i), y(i), z(i))}mi=1 in Fnq such that for i, j, k ∈ {1, . . . ,m},
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we have

(x(i), y(j), z(k))is a weak right angle if and only if i = j = k.

Then the size of the collection satisfies the bound

m ≤ 3

(
n+ (2q − 5)/3

(2q − 2)/3

)
≤ 3(n+ (2q − 5)/3)(2q−2)/3.

Proof. Let X,Y and Z to be the sets {x(1), . . . , x(m)}, {y(1), . . . , y(m)} and {z(1), . . . , z(m)} respec-

tively. Consider the function F :
(
Fnq
)3 → Fnq defined by

F (x, y, z) =


1 if (x, y, z)is a weak right angle,

0 otherwise.

Then F |X×Y×Z is diagonal by assumption. Thus m ≤ slice-rank(F ). On the other hand, F can be

written as

F (x, y, z) = 1− 〈x− z, y − z〉q−1,

whose expansion is a linear combination the following monomials

xd11 · · ·xdnn ye11 · · · yenn zf11 · · · zfnn ,

where xi, yi, zi denotes the ith coordinate of x, y, z, for i = 1, . . . , n respectively, and each di, ej , fk

are non-negative integers satisfying

n∑
i=1

di +

n∑
i=1

ei +

n∑
i=1

fi ≤ 2(q − 1).
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Thus F can be written as

F (x, y, z) =
∑

∑
di≤(2q−2)/3

[
xd11 · · ·xdnn

]
αd1,...,dn(y, z) +

∑
∑
ei≤(2q−2)/3

[ye11 · · · yenn ]βe1,...,en(x, z) +

∑
∑
fi≤(2q−2)/3

[
zf11 · · · zfnn

]
γf1,...,fn(x, y).

So

slice-rank(F ) ≤ 3|{(d1, . . . , dn) :
n∑
i=1

di ≤ (2q − 2)/3}|

≤ 3

(
n+ b(2q − 2)/3c − 1

b(2q − 2)/3c

)
≤ 3(n+ (2q − 5)/3)(2q−2)/3,

as desired.

Now we use a particular property in graph theory. A three-uniform hypergraph is a hypergraph

whose edges contain exactly 3 distinct vertices. For a hypergraph H, we denote α(H) to be the size

of the largest independent set (i.e., a set of vertices containing no edges). We will use the following

lemma. The proof uses probability method.

Lemma 5.2.6. [1] Every three-uniform hypergraphs H = (V,E) with |E| ≥ |V |/3 satisfy the in-

equality

α(H) ≥ 2|V |3/2

3
√

3|E|
.

Proof. Let H ′ = (V ′, E′) be a random subhypergraph of H induced by V ′ ⊆ V, where every vertices

occurred in V has independent probability p to be in V ′. The probability p ∈ [0, 1] will be determined

later. Since H ′ is induced by the vertices set V ′, we have

E[|V ′|] = |V |p and E[|E′|] = |E|p3.
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By deleting one vertex from each edge, the remaining vertices will be an independent set. Thus

α(H) ≥ E[α(H ′)] ≥ E[|V ′|]− E[|E′|] = |V |p− |E|p3

for all 0 < p < 1. By differentiate it with respect to p, we obtain that p =

√
|V |
3|E|

∈ [0, 1] gives us

an extreme value. Thus

α(H) ≥ E[α(H ′)] ≥ |V |

√
|V |
3|E|

− |E|

(√
|V |
3|E|

)3

=
2|V |3/2

3
√

3|E|
.

Now we have all the tools to prove Theorem 5.2.4.

Proof of Theorem 5.2.4. We define a three-uniform hypergraph H = (V,E). Let the vertex set be

V = {±1, . . . ,±m}. In particular, |V | = 2m. The edge set is defined as follow:

E = {{i, j, k} | (x|i|, y|j|, z|k|)is a weak right angle and i, j, kare distinct.}

We note that only i, j, k needs to be distinct, so i = −j is allowed. Since every weak right angles in

X × Y × Z contribute at most 23 = 8 pairs to the edge set, we have the inequality

|E| ≤ 8η(X,Y, Z). (31)

For convenience, let

γ(n, q) := 3(n+ (2q − 5)/3)(2q−2)/3.

which is the upper bound appeared in Lemma 5.2.5. Hence second condition of (30) shows that

γ(n, q) ≤ 11

12
εN <

11

12
m (32)

Consider the set {1, 2, . . . , γ(n, q) + 1} ⊆ V. By Lemma 5.2.5, it contains at least one edge. Without

loss of generality, say it is {1, 2, 3}. We then consider the set {2, 3, . . . , γ(n, q) + 2}. Continue this
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process, we obtain m − γ(n, q) edges in {1, . . . ,m}. Note that if {i, j, k} ∈ E with i, j, k > 0, then

{e1i, e2j, e3k} ∈ E for all e1, e2, e3 ∈ {±1}. Thus, we have

|E| ≥ 8(m− γ(n, q)) >
2m

3
=
|V |
3
,

where the second inequality follows from the condition (32). This allows us to use Lemma 5.2.6 and

obtain the following inequality

2|V |3/2

3
√

3|E|
≤ α(H). (33)

For any independent set I ⊆ V, If {i, j, k} ∈ I such that (x|i|, y|j|, z|k|) is a weak right angle, then

|i| = |j| = |k|. Thus by Lemma 5.2.5 again, we have

1

2
α(H) ≤ γ(n, q). (34)

By (33) and (34), we have

|V |3

27γ(n, q)2
≤ |E|.

Using |V | = 2m = 2εN and the inequality (31) of |E|, we obtain

ε3N3

27γ(n, q)2
≤ η(X,Y, Z).

Use the inequality (30), we have n+ (2q − 5)/3 < 2n and thus

η(X,Y, Z) ≥ ε3

243

N3

(n+ (2q − 5)/3)(4q−4)/3
>

ε3

243

N3

(2n)(4q−4)/3
=

δ

243

(
log q

2

)(4q−4)/3
N3

(logN)(4q−4)/3
,

as desired.
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[13] B. Green, A Szemerédi-type regularity lemma in abelian groups, with applications, Geom.

Funct. Anal., 15 (2005), pp. 340–376.

50



doi:10.6342/NTU202200962

[14] B. Green and T. Tao, An inverse theorem for the Gowers U3(G) norm, Proc. Edinb. Math.

Soc. (2), 51 (2008), pp. 73–153.
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