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Abstract

Slice rank methods are new combinatorial tools introduced by Croot, Lev, and Pach [6] in
2016. Many problems in extremal combinatorics are improved by applying the slice rank meth-
ods. In this thesis, we’ll introduce the slice rank methods and their applications. Moreover,
the partition rank and one of its applications are also introduced. Finally, we use slice rank

methods and a random graph theorem to prove the right angles removal lemma.
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1 Introduction

1.1 Background

The slice rank methods are innovative ideas that improve many results in extremal combinatorics.
They are first appeared in the work of Croot, Lev, and Pach [6] in 2016. They use this methods to
obtain an exponential upper bound for progression-free subsets in Zj}. Later that year, Ellenberg and

Gijswijt [8] also used this methods to obtain an exponential upper bound for three-term-progression-

n

o> which is the case for the cap set problem in affine

free subsets, but this time the sets lie in F
geometry if ¢ = 3. Many new applications of this methods are found in these years. Such as finding
solutions of certain linear system and finding upper bounds for right-angle-free sets,... etc. It is no

doubt that this is one of the powerful methods in extremal combinatorics.

In this thesis, we first introduce the slice rank of functions and prove some of its basic properties,
as well as two of its applications. See Section 2] for more details. In Section [3] we introduce the slice
rank of tensors, which is in fact equivalent to that of functions but the basis independent property
helps us to prove more advanced properties of the slice rank. In Section 4l we define the partition
rank of functions, which is similar to the slice rank but it gives better upper bounds than the slice

rank gives. An application of it is also provided.

Finally in section |5} we’ll use the slice rank method to prove the right angle removal lemma.
Roughly speaking, it says that if there are not too many right angles in a given set, then one can
remove reasonable elements from it so that the remaining set is right-angle-free. See Theorem [5.2.1

for more detail.

1.2 General notations

Throughout this thesis, the symbol [L] denotes the set {1,2,..., L} for any positive integer L. For
any set X and any positive integer k, we denote X* the k-fold Cartesian product of X. For any
prime p and any prime power ¢, we denote IF, and F; to be the finite field with order p and g,

respectively. In particular, Fy denotes the n-fold Cartesian product of F,, which can be considered
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as an n dimensional vector space of the field F,.

2 Slice Rank of Functions and Its Applications

The notion of the slice rank can be defined on functions or tensors. We’ll introduce the slice rank

of a function first.

2.1 Slice rank of functions

Definition 2.1.1. Given finite sets X1,..., X, and a field F. Consider a function
F:X;x---x X, —F.

We say F' is of slice rank one if it is non-zero and can be written as

for some i € [k] and functions f: X; = TF, g: X1 x--- X;_1 x Xj41 X --- x X, = F and z; denotes

the (k — 1)-variables (T1,...,Ti—1,Tit1y. -, Tk)-

For general F : X1 x---x X, = T, its slice rank, denoted as slice-rank(F), is the least non-negative

integer r so that F' can be written as a sum of r slice rank one functions.

Thus, for any non-negative integer r, slice-rank(F') < r if and only if

for some f; o : X; = Fand g;o : X1 %+ X;-1 X X341 X+ x X}, — F and the index sets .S; satisfying

[S1]+ -+ S| < 7.

The reason why it is called the “slice rank” is because the function F': X7 x --- X X} — F can be

considered as a hypermatrix whose size is | X1| x - -- X | X}/, and the non-zero function f(z;)g(z;) is
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of slice rank 1 because its “slice” along the i—th dimension is a multiple of g(xz;) as a hypermatrix.
Remark. Under the case of dimension k = 2, the slice rank of F': X; x X5 — F equals to the rank
of the corresponding | X1| X | X3| matrix. Indeed, from a basic property in linear algebra, the rank
of a matrix equals to the dimension of its column space. Using the basis of the column space, we

obtain that slice-rank(F’) equals to the rank of the matrix form of F.

Similar to the rank of a matrix, the slice rank of a function is bounded above by its sizes of each
dimension.

Lemma 2.1.2. Given a function F : X1 X --- X Xy — F, we have

slice-rank(F) < min |X;|.
1<i<k

Proof. For any i € [k], we can write

F(xy,...,x) = Z Toeo, F(21, o0y @im1, 0,541, -, Tk).
aceX;

Since each 14—y, F(21,...,%i—1,a,Ziy1,...,Tk) is of slice rank 1, we have slice-rank(F) < |X;| for

all i € [k].

O
Recall that in linear algebra, it is well known that the rank of a diagonal matrix equals to the number
of non-zero indexes in its diagonal. The following theorem is an analogous result in the slice rank
of a function. It turns out that this is one of the most important theorems in slice rank methods.

Theorem 2.1.3. [71, Lemma 1] Let X be a finite non-empty subset and k > 2 be integers and let

F be a field. Suppose that F : X* — F is diagonal. That is, suppose F can be written as

F(xy,...,x5) = E Calo=g,=gy==a,
a€A

for some A C X where ¢, # 0 for each a € A. Then

slice-rank(F) = |A|.
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Proof. Note that we can restrict F on A* and its slice rank remains the same. By Lemma we

have slice-rank(F') < L. So it suffices to show slice-rank(F') > L.

Without loss of generality, set X = [L]. We’'ll use induction on k. The case k = 2 follows.from the

previous Remark. So we may assume k > 3. By definition of slice rank, we can write

k
F(ay, ... o) = Z Z fia(@i)gisa(;), (1)

i=1 a€S;

for some f; o @ [L] — F and g, : [L]*"! — F and the index sets satisfying [S1| + -+ + S| =
slice-rank(F"). We consider the orthogonal complement H of the vector subspace spanned by the

functions fi o, @ € Sk over F. That is,
L
H={h:[L]>F| Y fral@)h() =0 Va c S;}.
=1

Then it has dimension at least L — |Sk|. So this space must contain an element hg : [L] — F with
ho(x) # 0 for at least L — |Sg| values of « € [L]. Multiply by ho(zx) and take the sum over xy € [L]

to , we have

L k—1
Z ho(zk)F (21, ..., ox) = Z Z fi,a(@i)gisa(@;7,), (2)
=1 i=1 a€S;
where T, denotes (k — 2) variables (z1,...,2%i—1, Tit1,- .., Tk—1) and

L

Gia(T;y) = Z ho(zk)Gi,a(2;)
z=1
for each ¢ and «. Since the left hand side of the equation ([2)) is diagonal with at least L—|Sj| non-zero
diagonal entries, its slice rank is at least L — |Sg| by induction hypothesis. On the other hand, the
right hand side is the sum of |S1| + -+ + |Sk_1]| slice rank one functions. Hence its slice rank is at
most |S1|+---+|Sk—1| by definition. Therefore, we obtain an inequality L—|Sg| < |S1]|+---+|Sk-1],
or equivalently,

L <|S1|+ - +|Sk| = slice-rank(F),

as desired. ]
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Using this theorem, we can prove some results in combinatorics. In the next subsection, we’ll
introduce its application in proving the existence of non-trivial solutions of a given homogeneous

linear system.

2.2 Application 1: Cap set problem

In affine geometry, a cap set is a subset of 'y which contains no lines, or equivalently no non-trivial
arithmetic progressions of length three. We denote r3(n) to be the largest size of cap sets in F%.
The cap set problem is the following;:

Question 2.2.1. How large can r3(n) be?

The trivial bound is r3(n) < 3™. Back in 1987, Frankl Graham, and Rodl [I1] showed that r3(n) =
37’1/

0(3™). Years later, Meshulam [21] used the Fourier method to improve the bound to r3(n) = O(
n
The proof is a direct use of the ideas of Roth, who is famous for its theorem about the largest

371

progression-free subsets in {1,...,n}. This bound is then improved to 0(17—&-0) for some constant
n

¢ > 0 by Bateman and Katz [3]. It turns out that via the slice rank method, we can have an

exponential bound r3(n) = 0(2.756™). This is first proved by Ellenberg and Gijswijt [§].

The proof is short but elegant. It also presents the standard process of the slice rank methods. The
key lemma is the following:

Lemma 2.2.2. [§] Given any non-empty set A C F2. Define a function F : A*> — F3 by

1 ife+y+2=0,
F(z,y,2) = (3)
0 otherwise.

Then

slice-rank(F') < 3 (fz/g + 173 4+ t4/3>

where t = *HT‘/%. In particular, we have slice-rank(F) = 0(2.756™).
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Proof. Fermat’s little theorem states that for all ¢t € F),

1 ift#0,

0 ift=0.

Using this theorem for p = 3, we can rewrite F' as

n

F(z,y,2) = H[l — (i +yi + 2)7,
i=1

where x;, y;, z; denotes the i-th index of the vector x,y, z, respectively. By expanding the product,

we can see that F' is a linear combinations of

dq d, el en o f1 f
Ty xR Y Y, R 2"

for integers d;, e;, f; € {0, 1,2} satisfying the inequality
> (di+ei+ f;) < 2n. (4)

i=1

Thus the slice rank of F' is at most the sum of the slice rank of those terms. From the inequality
(), we know that at least one of these three summations Y | d;, > 1, e; and Y., f; is at most

2n/3. Hence F' can be written as

Flay2)= Y [of ol ag o (v.2)

S d;<2n/3

+ Z 1" - yn] Be,oen (25 2)
> e;<2n/3

+ Z |:Z{1 zgn:| ’Vfl,n-’fn(mvy)'
> fi<2n/3

Therefore the slice rank of F' is at most

31{(dy, ..., dn) € {0,1,2}" : Y " d; < 2n/3},
=1
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which equals to

where P denotes the probability measure of the uniformly random choices of (dy, ..., d,) € {0,1,2}".

For any 0 <t <1, we have

slice-rank(F) < 3'7"P[) _d; < 2n/3]

i=1

< 31+np[td1+-~+dn > t2n/3]

1
S 31+n t2n/3 E[tdl-‘r'“-‘rdn]

1
— 31+n t2n/3 E[tdl] .. -E[tdn]

_gien L (1+t+t2>”

t2n/3 3

_3 (t_2/3 L4173 _|_t4/3)”.

Using basic calculus, we obtain that ¢t = _1+T‘/§ gives us the best bound. This proves the lemma. [J

Theorem 2.2.3. Let r3(n) be the largest size of cap sets in Fy. Then
ra(n) = 0(2.756™).

Proof. Given a cap set A C F§. We define F' as (3). By lemma [2.2.2] we have slice-rank(F) =
0(2.756™). Observe that F' is diagonal since A contains no non-trivial solution for x + y + z = 0.

Hence we can apply theorem and obtain that |A| < slice-rank(F'). Thus |A| = 0o(2.756™). O

2.3 Application 2: Solutions of particular linear systems

Recall that the cap set problem can be considered as finding the size of largest solution-free subset
A C F¥ corresponding to a single equation x +y+ 2 = 0. Now we’ll consider a more general problem.

Rather than one equation, we consider a system of equations.
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Given integers m, k > 1 and a prime p, we consider the following system:

ai1x1 + -+ a1 Tk =0,

Um, 121 + -+ Am kT = 07
where the coefficients a; ; are in F), and the variables x; are in Fj),n € N.
A natural question is to ask how large does A C IF;L need so that there exists a non-trivial solution

(x1,...,21) € AF to the system? We first observe that if the coeflicients satisfying a1 1+ - -+a1 1 # 0,

then we can take

1
x1,2 n
A:{ ) EFp5171,27~-~a171,n€Fp}-
T1,n
In this case, any element (z1,...,x) € A is not a solution of the system. Also, |[A| =p"~! = %|IF$|,

which is the same order as the size of the space F} as n — oo.

Thus we may assume a; 1 +---+a;, =0 for all i =1,...,m. Note that in this case, (z,...,z) is

a solution of the system for any = € A. We say such solutions are trivial.

For later reference, we formulate our question again:

Question 2.3.1. Given integers m,k > 1 and a prime p, we consider the following system:

a1 + - +aypxg = 0,

A 1T1 + -+ + A Ty = 0,

where z; € ]F;L, n € N, and the coefficients a; ; € I, satisfying a; 1 4+---+a;r, =0foralli =1,...,m.

Is it possible to find a constant 1 < Cpx and 1 < 'y, i < p such that if A C F} with [A] >
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Cpm k(Tp,m.i)™, then there exist a non-trivial solution (z; ..., xx) € AF to the system ?

This is in fact one of the fundamental questions in additive combinatorics. Currently, we only know
that the answer is positive under some certain conditions. See [22] 23 28]. The natural number
version of this problem with sets A C [N] is also studied in recent years. [5] 18] [19] 25} 26].

Example 2.3.2. Here’s a example of such system:

Ty — 21‘2 + x3 = O,
To — 2x3+ x4 =0,
r3 — 224 + 5 =0,
Tm — 2Tm+41 + Tmg2 = 0.
We can see the set of all non-trivial solutions (x1,...,ZTms2) are precisely the set of all (m +

2)—terms arithmetic progressions in Fy. Thus one of the special case of Question s to find
an exponential bound for the size of k-term-progression-free subsets in Fy. Many partial results are

studied in [3, [7, 18, [9, [14), [15, (16, [20, [21)], but this is still an open problem in general.

It turns out that under the case k > 2m + 1, the slice rank methods can help us answer the
question. Before showing the result, we first define the constant I, ,, 5, which strictly smaller than
pif k>2m+ 1.

Definition 2.3.3. For a prime p and two positive integers m and k, define the constant

I B R i
pm,k ~— Oriltlgl tm(p—l)/k

14+¢t4...4¢p—1
Remark. The function f(t) = + t;r(p—nJ/rk

this, we observe that lim;_,o+ f(¢) = +00. So there is some small enough €, > 0 such that

for 0 < ¢t <1 indeed attains its minimum. To see

inf f(t)= inf  f(t).

0<t<1 €pom p<t<1
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Since f(t) is continuous and the interval (€, &, 1] is compact, f(t) indeed attains its minimum on
[€p,m, ks 1], hence on (0, 1].

Proposition 2.3.4. Ifk>2m+1, then 1 <T'y p, 1 <p.

Proof. The first inequality follows from the observation

1 >1

T > min ———
Pk = ey gmp—1)/k =

: . . L+t tP!
since m(p — 1)/k > 0. For the second inequality, we let f(t) = pre Py for t > 0. Then by

direct computation, we have f(1) = p and

J) =24 (= )] = polp = D/K) = p(p = )5 — T,

which is positive since k& > 2m + 1. So there is some t < 1 near 1 with f(¢t) < f(1) = p. Hence

Fp,nz,k = min0<t§1 f(t) <p
O

Lemma 2.3.5. [0, [71)] Suppose k > 2m + 1. We consider the system . Given an integer L and

vectors xl(l) € Fy fori € [k] and | € [L]. We define the function f : [L]* — F as

1, if (x(lll), .. 7xgcl’“))is a solution to the system (F]),
Fln,... ) =

0, otherwise.

Then the slice rank of F' has an upper bound:
slice-rank(F) < k (Tpm)" -

Proof. Denote x;(s) the s—th index of the vector z; € Fy, then we can rewrite F' as a polynomial

10

doi:10.6342/NTU202200962



of the variables z;(s) :

if (xgll), ol "))15 a solution to the system (),
F(ly,....ly) = (6)
0, otherwise.

1, if ai,lxgll)(s) +- 4 aka,(f")(s) = Ofor all 7 € [m], s € [n],

I
—~

EN|
~—

0, otherwise.

T111 {1— (@12 (s)+ -+ @i () 1} . (8)
i=1s=1

The last equality holds by the Fermat’s little theorem. The equation is a polynomial of total
degree mn(p — 1) in the kn variables x;(s). Since t* = ¢ for all t € F,,, we can further represent
F(x1,...,2) such that each individual variable appears with degree at most p — 1. Hence every

monomial of can be written as a constant multiple of

k . .
[T @n" el )t
i=1

where integers 0 < dgi), e ,dg) < p — 1 satisfying the inequality

k
S (d 4+ d) <mnp-1),

i=1

Hence for each such monomial, there is some 7 € [k’] such that
1 T n — k . ( )

Using this property, we can sort all the monomials of F' and rewrite it as

li . ! L : I
F(ly,... Z Z [ 1:55 )(n)d gi’dl,wdk(wgl),..., E 11), 5_&1),...,‘%,(6")),
i=1dq,...

where the summation of the d; runs over all the (dy,...,d,) € {0,...,p—1}" satisfying the inequality

11
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@. This shows that the slice rank of F' is at most

: mn(p—1)
k{(dy,....dn) €{0,....p—1}"> d; < —
i=1

We note that this value equals to

" mnp—1)
kp"P di < ——=
P [; i > k ]a
where P is the probability corresponding to the uniformly random choices of d; € {0,...,p—1}. Fix
any 0 < t <1, we have
slice-rank(F) < kp"ﬂ”[zn: d; < m]
B i=1 o k

§ kpnp[td1+---+dn Z tmn(pfl)/k]

n_ 1 dy 4oty
< kR Bl ]
1
— hp—_E[t]. . [t

P tmn(p—1)/k

a1 Tt4- 77 1\"
tmn(p=1)/k »

(Lt TN
- tm(p—1)/k '

Since it holds for all 0 < ¢ < 1, we have

slice-rank(F) < k (Tp i)™

The following problem gives a positive answer to the question under the case k > 2m + 1.
Theorem 2.3.6. [31] Suppose k > 2m + 1, consider the constant Ty, € [1,p) we defined in
Definition m Then for any subset A C F of size |A] > (Tpmi)", the system has a non-

12
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trivial solution (1, ...,x;) € AF.

Proof. Given A C F?, we defined F : Ak F, as

p

1, if (z1,...,zk)is a solution to the system 7

0, otherwise.

By Lemma we have slice-rank(F) < k(T'p,,)" . If the all solutions (z1,...,zx) € A to
are trivial, then F is diagonal. Hence slice-rank(F) = |A| by Theorem [2.1.3] This shows that
|A] < k(Tpmi)" . To remove the coefficient k, we consider the system [5| except the variables are

now in F**, where t € N, and we replace A with A* C F}*. Then the above argument still holds,

and this time we obtain the inequality |A|* < k (Tpm)" for all t € N, ic.
Al < K (Cpmi)”

for all ¢t € N. Taking ¢t — oo, and we obtain that |A| < (Tpmk)" - O

2.4 Application 3: Largest right-angle-free subsets of F)

Another application of slice rank methods is also an extremal problems in combinatorics. Let g be
an odd prime power. We'll use the slice rank to obtain a polynomial bound on the size of the largest
right-angles-free subsets in vector space F. We denote (-,+) as the dot product in Fy.

Definition 2.4.1 (Right angle). A right angle in IFy is a triple (z,y,z) € Fy xFy xFy of distinct
elements satisfying

(x —z,y—2)=0.

We say a set A contains a right angle if (x,y, z) is a right angle for some x,y, z € A.

In 2015, Bennett [4] proved that any subset A C [y of size

n+2

|A| > 4q" 5

13
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contains a right angle. One year later, Ge and Shangguan [I2] used the slice rank methods to

improve this result for large n. They showed that if A C F} satisfying

4] > (fo) +3, (10)

then it contains a right angle. Another year later, Naslund [24] also used the slice rank methods
and slightly improved the bound:

Theorem 2.4.2. [2]] Let q be an odd prime power. If A CFy satisfies

n+gq n+q—2
A 2 —
| ><q1)+ ( q—3 )

then A contains a right angle.

We'll follow Naslund’s proof.

Proof. Consider the function F': Fy x Fy x Fy — Fy' defined by
F(m,y,z) = (1 - ]lm:y =T — ]lyzz)(]- - <{E — %Y= Z>q71)'
Then F' is an indicator for distinct right angles since

-2 fe=y=z¢
F(z,y,2)=q1 if (z,y, z)is a right angle,

0 otherwise.

If AC Fy has no right angle, then Flaxaxa is a diagonal function since ¢ is odd. Thus by
Theorem [2.1.3

|A| = slice-rank(F|axaxa) < slice-rank(F).

On the other hand, we will obtain an upper bound on slice-rank(F) by rewriting F(z,y, z) into a

14
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linear combination of slice rank 1 functions. Note that

]lm:z . (]- - <£U —Z2,Y— Z>Q71) = ]lx:z7

Ty—. - 1—(z—2z2y— 2)a71) = 1,—,

thus both of them are of slice rank 1.

For the remaining part, we note that

(1= (z—zy-2)7")

can be written as a linear combination of terms of the form

d d, e en fo f1 n
R I T T 1 Z7jz )
where x;,y;, z; denotes the ith coordinate of x,y, z, for i = 1,...,n respectively, zo denotes (27 +

-++ 4 22), and each d;, ej, fr are non-negative integers satisfying that

dy+da+---+d, <qg-1,
ettert+--te, <g-—1,

fot it t+fn <qg-1

Thus (1 — 1,—y)(1 — (z — 2,y — 2)971) can be written as a linear combination of terms of the form

g(z,y)h(z), where h is a polynomial in the space

Polyy_; (Fy) := spang, {(z +---20) 2" --- 20" | fx € 220, ) fi <q—1}.
k=0

Thus
slice-rank(F') < 2 4+ dim Polyg_1 (Fg)-

We use the following lemma:

15
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Lemma 2.4.3. [2] Let F be a field and d,n be positive integers, then
n+d n+d—1

dim Poly7(F") = :

mpai3e) = ("5 1)+ ("1

Then we have

—1 -9
|A| < slice-rank(F) <2+ <n—|—q ) 4 <n—|—q )
qg—1 q—2

n—+gq n+q—2
= 2_
(q—1>+ ( q-3 )

by the binomial identity (":;'Ezl) + (":352) + (7?3;2) = (ij)

O

Remark. In later section, we’ll show the analogous result for “k-right corner”. See Theorem [4.3.2

for more detail.

3 Slice Rank of Tensors

Recall that in the previous section, we define the slice rank of functions, which can also be considered

as hypermatrices. But both of them are basis dependent. It turns out that the slice rank of tensors

would be basis independent. Using such definition, some properties of slice rank becomes much easier

to prove. Before introducing the slice rank of tensors, we introduce the term “tensor product” first.

3.1 Tensor product of vector spaces

We first consider the tensor product between two vector spaces.

Definition 3.1.1 (Tensor product of 2 vector spaces). Given two vector spaces V,W over the same

field B, the tensor product V QW is a vector space over F generated by the elements v ® w, where

v €V and w € W, subject to the constrain that the following operation is bilinear:

(v,w) = v w.
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Thus every elements in the tensor product V Q W are of the form

N
E V; Q@ w;
i=1

where v; € V,w; € W and N € N U {0}. The bilinear constrains allow us to do the following
operations:

e (V14 V) Rw =1 QW+ v2 ®w,

e V® (w1 +wz) =vRw +v® ws,

e ()Rw=v® (cw) =c(vw),

for v,v1,v2 € V,w,wy,ws € W and c € F.

Note that in the definition of the tensor product, it is no need to specify the basis of the vector space V'
and W. But if we specify the basis, the elements in the tensor product would have a unique expression
corresponding to the given basis. Say the vector spaces V, W have basis {vy ..., v,},{w1,...,wn},

respectively, then the tensor product V' Q) W has basis
{viow;:1<i<nand1<j<m}.

So the elements in the tensor product V@ W can be uniquely written as

n m
> > cigui ®wy,
i=1 j=1

and this can be considered as a function F': [n] x [m] = F with F'(4,j) = ¢; ; or an n x m matrix
whose (7, j)-index is ¢; ;. Notice that if we choose different basis for V' and W, the corresponding

matrix would be different, but those matrices are mutually similar.

Now we consider the tensor product of k vector spaces. We’ll define the slice rank of tensors in these
space.
Definition 3.1.2 (Tensor product of k vector spaces). Given wvector spaces Vi,...,Vy over the

same field F, the tensor product Vi Q- Q Vi, = ®f:1 Vi is a vector space over F generated by all
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the elements v1 ® - -+ ® vg, where v; € V;, subject to the constrain that the following operation is
multilinear:

(vl,...,vk)»—>vl®~-®vk.

Thus every elements in ®f:1 V; are of the form
N
Z’Ul»j ® P ® Uk‘,ja
j=1
where v; ; € V; and N € NU {0}. Similar to the k = 2 case, we can do the following operations:
° U1®"'®(U1‘+U£)®"'®Uk:(Ul®"'®W®"'®’Uk)+(vl®"'®U2®"'®Uk),
¢ R @ () @ QU =c(v1 @ D g),

for v;,v; € V; and ¢ € F.

We also don’t need to specify the basis of the vector space V; here. But if we specify the basis, the
elements in the tensor product would have a unique expression. Say the vector spaces V; have basis

{vi1...,vi4,} for each ¢, then the tensor product ®f:1 V; has basis
{vi, ® - Qupy, : 1 <t; <dfor each i}.

So the elements in the tensor product ®f:1 V; can be uniquely written as
dq dk
Z e Z Cty,...,t. V1t X Vk,ty, 5
t1=1 tp=1
and this can be considered as a function F' : [dq] X -+ X [dx] — F or an dy X --- X dj hypermatrix
(Ctl,...,tk)tl,...,tk'

In the tensor product ®f:1 Vi, we can define an operation: for each 1 < j < k, we have the smaller

tensor product &, ;< it V; and the jth tensor product
k
;:Vix & ViRV

1<i<k,i#j i=1
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which defined as the unique F-bilinear operation satisfying that
v ®; (Ul®"'®vj—1®vj+1®"'®'Uk):'U1®"'®Uk

for all v; € V;.

3.2 Slice rank of tensors

Now we can define the slice rank of tensors.
Definition 3.2.1 (Slice rank of tensors). Given vector spaces Vi,...,V} over the same field F. We

say a non-zero element v in the tensor product ®f=1 Vi is of slice rank one if it is of the form
V=05 Q5 s

for some j € [k], v; € V; and v; € Q1 <icp iy Vi-

The slice rank of any element v € ®f:1 V; is the least non-negative integer r = slice-rank(v) such
that v can be written as a sum of r slice rank one elements.

Remark. Compare to the definition of slice rank of functions (Definition . They are actually
compatible. More specifically, given a function f : X3 X -+ x X — F, where X; = [d;] are finite

sets and F is a field. We can consider the tensor product

k
X;
@,
=1

and let the element

v = Z f($1,...,xk)e;11)®...®e¥z)’

1<z;<d;,1<i<k

where {egi), e e‘(;gil} is any fixed basis of the vector space FIXil. Then the slice rank of the function
f equals to the slice rank of the tensor v. Conversely, by specifying any basis of V;, we can construct

a corresponding function for any tensor element and their slice ranks are the same.

This allows us to switch the objects whenever we want and it makes the proof of properties of slice
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rank much easier to achieve. They have their own advantages: Functions on finite sets are easier to
visualize and compute, while tensors are elements in a vector space, so we can use tools in linear

algebra.

The following proposition states some characterization of the slice rank of tensors.
Proposition 3.2.2. [29] Given vector spaces Vi, ..., Vi over the same field F. For any v € ®f:1 Vi

and any non-negative integer r, the following statements are equivalent:
(i) slice-rank(v) < r.

(ii) The element v can be written as

v = Z Va,j Qj Vg 5,
j=1 (IGS]'

for some v j € Vi, v, 5 € Q1 <icp iz Vi with [Si]+ -+ +[Sk[ <.
(i1i) We have

k
’UeZUj®j ® Vil,
j=1

1<i<k,i#j
where Uj is a vector subspace of V; for each j with dimU; + - - - 4+ dimUy, < r and we view the

tensor product U; ®; (®1§i§k,i;&j Vi) as a subspace of ®f:1 Vi in the obvious fashion.

(iv) There exist subspaces W; of the dual space V;* for each i € [k] respectively such that
dimWy + - - - + dimWj; > dimVj + -+ - + dimVy — r
and v is orthogonal to ®f:1 W; in the sense that
(w1 ® - Quwg,v) =0 Yw; € W,

where the dual pair (-,-) : ®f:1 Vi x ®f:1 V; — F is the obvious pairing.

Proof. The equivalence between (i) and (ii) follows from the definition of the slice rank of tensors.
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We suppose (ii) is true. For each j € [k]|, we let U; be the subspace of V; generated by the elements

Va,j, & € Sj. Then
k k
j=1 j=1

Also, by our construction of Uj;, we obtain that

Z Va,j ®j Vg5 € U; ®; ® Vi

aEs; 1<i<k,i#j

Hence v € 5, Uy @5 (@<icnin; Vi) - So (i) implies (i),

On the other hand, we suppose (iii) is true. Then we take a basis of U;. Say {v1j,...,vdaimuv, j} is

a basis of U;, we set S; = {1,...,dim U;}. Then we have
k k
Z |Sj‘ = ZdimUj S T.
j=1 j=1

and every elements in U; ®; (®1<i<k’i¢j VZ-) can be written as

dim U;
E Va,j @j Vg5
a=1

for some vq,; € Vj, and v, 5 € @ ;<< ix; Vi- Thus (ili) implies (ii).
Now we suppose (iii) is true. For each i € [k], we let W, be the annihilator of U;. That is, the
subspace consists of all elements in V;* that are orthogonal to U;, which can be written as

W; = {U/Z S V;* | <U}7,,u7,> =0Vu; € Uz},

where (-, ) denotes the dual pair. Then dim W; = dim V* — dim U; = dim V; — dim U;. Hence

k k k
> dimW; =) (dimV; —dimU;) > > dimV; — 7.
=1

i=1 i=1
By definition, W; is orthogonal to U; for each ¢ w.r.t to the dual pair, so ®f=1 W; is orthogonal to
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U; ®; (®1<i<k it V¢) for each j. Since v is generated by the elements in U; ®; (®1<i<k it Vi)

with j € [k], ®f:1 W; is orthogonal to v. So (iii) implies (iv).

Finally, we suppose (iv) is true. In this case, we let U; be the annihilator of W;. Then dimU; =
dim V* — dim W; = dim V; — dim W;. Hence
k k

> dimU; =Y (dim V; — dim W;) <.

i=1 i=1
Recall a result in linear algebra [I7, Page 27, Exercise 8(c)], which states that if V3 and V3 are
subspaces of a finite dimensional vector space V, and V°, Vi are the annihilator of V1, V5 respectively.
Then

(Vinve)® =Vy+Vy. (11)

Since U; = W7 for each j, we have

U; ®; ® Vil =W, ®; ® Vi

1<i<k,ij 1<i<k,ij

Thus by 7

k ° k
veE{w @ - Quy | w; € W;}° = ij@)j ® Vi ZZUj®j ® Vil,
j=1 =1

1<i<k,ij 1<i<k,i#j

as desired. 0

Using the above characterizations of the slice rank of tensors, we can generalize Theorem [2.1.3]
First, we recall the definition of an antichain.

Definition 3.2.3 (antichain). Given a partial order < on a set S. A subset A C S is called an
antichain if any two distinct elements in A are not comparable, that is, for all distinct x,y € A,
we have both x Ay and y A .

Theorem 3.2.4. [29] Let L,k € N and let F be a field. Fiz k total ordering <',..., =¥ on [L] and

we consider the corresponding product partial ordering < on [L)¥, i.e. (a1,...,a;) = (by,...,by) iff
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a; ' b; for each i =1,... k. Suppose that F : [L)* — F is a function with its support
S = {(Elavék) € [L]k : F(gla"wgk) 7é 0}
is an antichain w.r.t to <, Then
lice-rank(F) = i
Slice-rank(F) = _win. - (m1(81)] + -+ + [ma (1)),

where m; : [L)* — [L] is the ith projection. That is, m;(¢1,...,4) = {; for each i.

Proof. Consider the vector space F¥ over F with standard basis e1, ..., er, and let
v = Z Fly,....0p)eq, ® - ey,
(1,...,01)€E[L]*
= Z F(£17-~-,€k)€el®"'®€ek~ (12)
(€1,....0x)ES

Then v is an element in the tensor product ®f:1 FZ and slice-rank(v) = slice-rank(F). Given any

partition S = S; U--- U Sk, we have

for some Vsq, € ®1§i§k7i¢j FL. Thus we have an upper bound
slice-rank(v) < |my(S1)| + -+ + |76 (Sk)|-

Note that this inequality also holds if S is not an antichain. Now it suffices to show
slice-rank(v) > |m1(S1)| + -+ + |76 (Sk)|

for some partition S = S, U---USy. Without loss of generality, assume the total orderings < are all

defined as 1 <* ... <% L for each i. Let r = slice-rank(v). By the statement (iv) of Propositionm
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there exist subspaces W; of the dual space (FL)* for each i = 1,...,k so that v is orthogonal to

®f:1 W; and

k
dimWy + -+ + dimWy, > > dimF» — r = kL — 1.
i=1
Let d; := dimW,. By Gaussian elimination, we can find basis {w; 1,...,w;q,} of W so that they’re
in the row echelon form with respect to the standard dual basis e},..., e} of (FL)*. Hence there

exists indexes

1§ti,1<"'<ti,di§L

so that w; ; is a linear combination of ey, ey, 11,..., e}, and the coefficient of e, is 1. We claim that

SﬂHfZl{tm, ..., tia,} = 0. Suppose not, then there exist 1 < r; < d; such that (t1,,,...,t1,,) € S.

Since v is orthogonal to ®f:1 Wi, we have
<w177‘1 ®-® wk,Tk’U> =0.

On the other hand, the element w; ,, ® -+ @ wg -, is e;‘“l ®...® e’[k . plus a linear combination

of those e}, ® ... ® e}, with
1 k

(s tl) > By oy by )-

Since S is an antichain and (¢1 4, ..., t1,r,) € S, we obtain that (¢],...,t},) € S. Hence F(#},...,t},) =
0. This shows that the coefficient of ey ® ... ® ey in is 0 for all (#),...,8.) > (F1,005 - bl )-

Therefore
0= (w1 @ @ Wgyr,, V) = <6:1_,1 R...Q e;“k‘w,w =F(t1ryy - thr),

which implies (¢1,r,,...,tkr,) & S, a contradiction. Therefore SN Hle{tm, oo oytig ) = 0 is true.

Since SN Hle{tm, ooyt } =0, we may let

Si = {(fl,...,fk) €S gz ¢ {ti,la"'ati,di}}
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for each 4. Then S = S;U---USy and |m;(S;)| < L — d; for each 4, which implies that
k
|1 (S| + -+ + |76 (Sk)| < Z(L —d;)) <kL—(kL—r)=r,
i=1

as desired. O

Remark. The above theorem is stronger than Theorem Indeed, suppose k& > 2 and we define

the total orderings <! and <2 as
1=<t...<'L  and L=<%...<%1
and the remaining orderings < are defined arbitrary. If F': [L]* — F is diagonal, then its support
Sc{l,....,0)e[L)k:te|L]}
is an antichain w.r.t the corresponding product partial order, and for any partition S = S;U---USk,
S| = [m1(S)l + -+ + |me(Sk)1,

which implies that slice-rank(F) = |S].

This theorem can also help us understand the structure of the solutions of linear system we discussed
in Section 2.3

Corollary 3.2.5. [28, Corollary 3.7] Suppose we are given a linear system of equations with coeffi-

cients in [, and constant terms in Fy,

! 1
@0, 2D)

consisting of m > 1 equations in k > 2m + 1 variables. Let
€ (Fg)k Jorl=1...,L be solutions in ¥} to this system of equations. Suppose that
there exists a disjoint partition [k] = Jy U --- U Jp with |Jn| > 2 for each h such that the following

Ix)

condition holds: For any choice of ly,...,ly € [L] such that (xgll), ... 7335c ) is a solution to the

gwen system of equations, we have |{l; | j € Jp}| = 1 for all h = 1,...,t. Then we must have

L<k-(Tpmu)
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Proof. Define the function f : [L]¥ — F, as

1, if (xgll), .. ,xg’“))is a solution of the given system,
flly, .. 0lg) =

0, otherwise.

By Lemma we have slice-rank(F) < k- (I'p m 1)™- So it suffices to show that L = slice-rank(F’).
We'll define some total orderings on [L] such that the support of F' is an antichain with respect to

the corresponding product ordering, which allows us to use the Theorem [3.2.4

For each h € [t], we label the sets Jy = {jn,1,Jn,2:- - -, Jn, || }- Since |J,| > 2, we can define the total
orderings <7m1, <Jn2 on [L] as

1 <Jn1 9 <in1 ... et g,

and

[ <In2 [, 1 <Ir2 ... <In2 1,

The remaining orderings =<7»:3, ... <Jnluu can be any arbitrary total orderings on [L]. Given two
distinct elements (l1,...,0x), ({1,...,{}) in the support of F. By definition of F, we obtain that
(mgll), e ,azg’“)) and (xgll), e ,x,(cl’“)) are both solutions of the given system. Thus by assumption,
we have

{l 1€ =Rl 15 €}l =1

for each h. Since (ly,...,l) and (I},...,1}) are distinct, there is some ¢ € [k] = J; U--- U J; such

that [; # [}. Say i € Jy, for some h € [t]. Using [{l; | j € Ju}| = [{l} | j € Jn}| = 1, we have
Ly =ljn, =L #1l; = l;w = l;m.
There are only two possibilities:

. Ji1 ]/ . Ji,1 ]!
lﬂiyl =7 ljz,,l’ l]ixl ﬁ ’ lji,l’
or

. Ji2 ]/ . Ji2 I
Lo 27205, L, 2002 1)
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But either case shows that (1,...,l;) and (I1,...,l},) are not comparable with respect to the product

ordering we’ve constructed. Therefore the support of F' is an antichain. By Theorem we have

slice-rank(F') = ggmin (|1 (S| + - + | (Sk)]) -

By assumption and the definition of F, we know that

for I € [L]. Thus 7m1(S1) U -+ Um(Sk) = [L] for any disjoint unions Sy,...,S; of S. This forces

|71(S1)| 4+ - -+ + |7k (Sk)| > L. Together with slice-rank(F') < L, we obtain that slice-rank(F') = L.

O

The above corollary plays an important role in the paper of Sauermann [28]. For reference, she used
this result to prove the following theorem.

Theorem 3.2.6. [28] For any fized integer m > 1 and k > 3m and a fized prime p, there exists
constants Cpm > 1 and 1 <T'7 . < p such that the following holds: Consider the system with
every m x m minor of the m x k matriz (a;;);; is invertible. Then for any n € N and any subset

A CFy of size |Al > Cpmi - (T

sk the system has a solution (x1,...,x;) € AF such that

the vectors x1,...,x are all distinct.

4 Partition Rank

In this section, we’ll introduce another way to define the rank of functions (and thus tensors), which

we called it the partition rank.

4.1 Definitions and basic properties

Given variables x1,...,z, and a subset S C [n]. Write S = {s1,...,s,} with 1 < 51 <--- < s < n.

We use g to denote the subset of variables ., ..., x5, . So for a function g of k variables, g(zg)
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denotes g(zs,, ..., Ts, ).
Definition 4.1.1 (Partition). A partition of [n] is a collection P of non-empty, pairwise disjoint,

subsets of [n], satisfying

U s =1

SepP
We say that P is the trivial partition if P only contains one set [n].

Definition 4.1.2 (Partition rank). Given finite sets X1,..., Xy and a field F. Consider a function
F:X;x---x X, —F.
We say F is of partition rank one if it is non-zero and can be written as

F(xl,...,xk) = H fs(fs)

Sep
for some functions fs and a non-trivial partition P of [n].

For general F : X1 x --- x X, — F, its partition rank partition-rank(F') is the least non-negative
integer r so that F' can be written as a sum of r partition rank one functions.
Remark. We remark that a non-zero F' : Xy x --- x X, — F has partition rank 1 if and only if it

can be written as

F(x1,...,z,) = f(x5)9(@T)

for some f, g and some disjoint S, T # () with SUT = [n]. Furthermore, if either |S| =1 or |T| =1,
then F is of slice rank 1. Hence when the dimension k is less than or equal to 3, the partition rank

coincides with the partition rank. For general positive integer k, we have the following inequality
partition-rank(F') < slice-rank(F') < min |A4;]|.
K3

Example 4.1.3. In some case, the partition rank and the slice rank can differ a lot. For example,

if X is a finite set and F : X* — T is defined as

F(l‘l, 1‘2,$3,$4) = ]1I1:$2]1I3:$47
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or equivalently,

1 if 1 = zoand z3 = x4,
F(I15z23x37x4) =

0 otherwise.

Then partition-rank(F') = 1, while slice-rank(F') = | X| since its support is an antichain and we can

apply Theorem[3.27)

A key observation is that the analogous result of Theorem [2.1.3] also holds for partition rank.
Theorem 4.1.4. [Z]] Let X be a non-empty finite set, k > 2 be integers and let F be a field. Suppose

that F : X* — T is diagonal, that is,

F(xy,...,x5) = Z Calomgy = ma,, (13)
acA

for some A C X where ¢, # 0. Then
partition-rank(F') = | A|.

Proof. Let r = partition-rank(F'). By the inequality partition-rank(F') < slice-rank(F’) and Theo-
rem we have r < slice-rank(F') = |A|. So our goal is to prove r > |A|. We'll use induction
on k. When k = 2, the slice rank is equivalent to the partition rank, so the result follows from

Theorem Assume k > 3. Since partition-rank(F') < slice-rank(F') < min; |A;| we can write:

Flxi,..own) = Y fil@s,)9:(T,), (14)

i=1

where S;, T; are non-empty sets with S; N T; = () and S; UT; = [n]. By switching the labeling if

needed, we may assume that |S;| < n/2 for each i. We consider two cases:
Case 1: |5;| > 2 for each i.

By taking the summation leeX to both sides of the equation , we have

Z Z Caﬂa:wlv--:;rn = Z F(-rh cee 73;71) = Zﬁ(fsl\{l})gl(le\{l})’

x1€X a€A z1€X i=1
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where
: oL domex fil@s) i1€S8;,
fi(Zsn\1y) =
fi(@s,) if1¢9;,

and g;(Z7,\ 1) is defined similarly. Observe that

§ § Ca]la:wlmzwn = E Ca]la:a;2:~~~:a:nv

z1€EX a€A ac€A

S0 > uca Calla=zy=...—¢, has partition rank at most r. By induction hypothesis, its partition rank is

precisely |A|. Thus |A] <.
Case 2: |S;| =1 for some 1.

Then we have S; = {j} for some j € [n]. Let U = {u € [r] : S, = {j}}. Define the following vector
space

V={h:X>F: Y fulzj)h(z;)=0 YuecU}.
r;€X

This vector space has dimension at least | X|—|U|. Let v be an element in V' whose support supp(v) :=

{z € X : v(x) # 0} has the largest cardinality among elements in V. Then
|[supp(v)| > dimV > |X| — |U].
Multiplying both sides of by v(z;) and sum over z; € X, we obtain

Z v(zj)F(z1,...,2n) = Z v(a)callamzy= =2, 1 =a; 1= =an-

r;€X acA

By induction hypothesis, the partition rank of this diagonal function is the number of a € A such

that v(a)e, # 0. Thus
partition-rank Z v(zj)F(z1,...,2,) | = [supp(v)NA| > [supp(v)|+|A|—|X| > |A|—|U]|. (15)
r;€X

On the other hand, we can do the similar operation on (I4). Since ijeX fulz;j)v(z;) = 0 for all
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u € U, we have

S vl@)F(e,. . a) = Y>> vlag)eifi(@s,)gi(Er,)-

r;€X i=1,i¢U x;€X

Since S; and T; are disjoint for each i, every 3 , . v(w;)cifi(Zs,)gi(Zr,) are of partition rank at

most 1. Thus
partition-rank Z v(z;)F(z1,...,zn) | <7 —|U| (16)
r;E€X
By and (16)), we have |A| < r, as desired. O

Remark. Using the inequality partition-rank(F') < slice-rank(F’), we can see that the above Theorem
is stronger than Theorem In practice, if we construct a function F' : X x --- x X — F for
some finite set X, and F' is diagonal with all its diagonal indexes are non-zero when X satisfies some
constraint. Then both slice rank methods and partition rank methods can give us an upper bound
for | X|. However, every upper bound we obtained from slice rank can be obtained from the partition

rank. Thus the partition rank methods are better when we are dealing with diagonal functions.

4.2 Distinctness indicator function

We introduce a special function, which we called the distinctness indicator function. In previous
sections, we’ve introduced the functions F' : X* — F whose slice ranks or partition ranks are related
to | X|. The distinctness indicator functions however, are functions whose partition rank is bounded
above by a function of dimension k, instead of | X|.

Definition 4.2.1 (Distinctness indicator function). Let X be a finite set, k > 2 be an integer and

F be a field whose characteristic is at least k. We define the distinctness indicator function

Hy: X* S F as
1 if z1,...,zpare all distinct,
Hy(x1,. . zn) = (= DF(k = 1)1 if g =+ = 2y,
0 otherwise.
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The functions Hy, can also be defined from the permutations in symmetric groups. Denote Sj to be

the symmetric group of degree k. For any permutation o € Sk, we define
fr: XF¥ S F

to be the function that is 1 if (x1, ..., x) is a fixed point of o, and 0 otherwise. We also let Cyc,, C Sk
be the set of all k—cycles in S;. Then |Cyc,| = (k — 1)! by direct computation. Then we have the
following equality:

Proposition 4.2.2. [Z]] For k > 2, we have

Hi(zq,...,25) = Z sen(o) fo(z1,. .. 2k,

0€Sy,0¢Cycy,

where sgn(o) is the sign of the permutation o.

Proof. Note that the right hand side can be written as

ngn(a)fﬁ(rl,...,xk)f Z sgn(o) fo(x1, ..., TL).

€Sk o€Cycy,

By definition of f,, we have

Z Sgn(CT)fg(l'l,...,l'k) = Z SgH(O’),

o€S 0 E€Sy,0E€Stab (&)

where Stab(Z) := {0 € Sy : (z1,...,x)is a fixed point of o} is the stabilizer of Z. Since the stabilizer

is a product of symmetric groups, the number of even cycle equals to the number of odd cycle if it
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is not the trivial group. Hence

1 if Stab(Z)is the trivial group,

S sgn(o)folar,... ) =

oESk 0 otherwise.
1 if xq,...,xrare distinct,
— (17)
0 otherwise.
Now we consider the remaining part
S sen(o)fo e, . ).
o€Cycy,
If 0 € Cycy, then (z1,...,zk) is a fixed point of o if and only if 1 = -+ = z. Also, for every
k-cycle o € Cycy, we have sgn(o) = (—1)*~1. Thus
Y ooccye, Sgn(o) if xp = = xy,
Z Sgn(o)fU(xla"'7xk): Yok
o€Cycy, 0 otherwise.
(—DFYE-1) ifxy = =mxp,
- (18)
0 otherwise.
Hence by and (18], we get our desired equality. 0O

Using this property, we can obtain an upper bound for the partition rank of Hi. We denote 1 to be

the indicator function defined by

1 i a5 = (Tsyy ooy T g )With z5, = -+ = 25 ¢,

0 otherwise.

For convenience, we set 1(zg) =1 if |S| = 1.
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Proposition 4.2.3. [2]] For each k > 2, the function Hy can be written as

Hy(zy,...,z) = Y ep [ 1(Ea), (19)

PePy AeP

where Py, denotes the set of non-trivial partitions of [k] and cp are constants. Moreover, we have
partition-rank(Hj) < 2¥71 — 1.

Proof. For each o € Sj, the function f, can always be written as a product of indicator functions
corresponding to the cycle notation of o. For example, the function f, with o = (1)(23)(456) € Sg

can be written as

fay@syase) (w1, - -+, w6) = L(21)L(z2, 23) 1 (74, 75, 76)-

If o & Cyc,, then all the length of cycles in o are strictly less than k. So each f, can be written as

folwr, .. oae) = [ 1@Ea)

AeP

for the corresponding non-trivial partition P of [k]. By Proposition we have

Hk(.’tl,...,l'k) = Z cp H ]l(fA),

PePy AeP
for some constants cp.

Now we claim the second part. For each non-trivial partition P € Py, there is a unique A; € P with

1 € Ay C [k]. Thus we obtain that

[T 1@ =1Es) [ 1@a)

AeP A€EP,A#A,

for such A;. By sorting the terms of for various A; satisfying 1 € A; C [k], we have

Hk(xlv"'vzk) = Z Sgn(a)fd(xlv"'axk) = Z ]]'(fAl)gAl(f[k]\Al)

0€Sk,0¢ZCycy, 1€A; ClK]

34

doi:10.6342/NTU202200962



for some functions ga,. Since the partition rank of each 1(Za,)ga, (Z[k)\ 4,) is at most 1, we obtain
that

partition-rank(Hy) < [{A;: 1€ A} C [k]}| =2F"1 —1.

4.3 Application 4: Largest k-right-corner-free subsets of F}

Recall that in Section [2:4] we use the slice rank methods to show that if ¢ is an odd power and
A C Ty is large enough, then A contains a right angle. In this section, we’ll generalize the notion of

right angle, which we call it the k-right corner, and prove the analogous result of Theorem [2.4:2]

Definition 4.3.1. Given k > 2. An ordered pair of vectors (x1,...,xp+1) € (]Fg)kH is called a k-
right corner if they are distinct and the k-vectors x1 — k41, ..., Tr —Tk+1 are mutually orthogonal.
In other words, (x1,...,xx+1) is a k-right corner if and only if x1,...,xp11 are distinct and

(r; — Tpy1, 05 — 1) =0 Vi, j € [k], i # J.
We say a set A contains a k-right corner if (z1,...,Tk41) is a k-right corner for some x1,...,Tk41 €

A.

Naslund used the partition rank methods to obtain a bound, polynomial in n, for the size of the
largest subset of Fy that does not contain a k-right corner.

Theorem 4.3.2. [2])] Let k > 3 be given, and let ¢ = p" be a prime power with p > k. If A C Fy

n+ (k—1)q
141> <<k— (g - 1))’

satisfies

then A contains a k-right corner.
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Proof. Define the function Ryyq : (IF;L)]H_1 — F, by

1 21 —Zk41,. .., 2 — Txr1are mutually orthogonal,
Rk+1(1’1, ey (Ek) =
0 otherwise.

It can also be written as

Rk-‘,—l(l'l;u-,xk) = H (1— <:I:i — Tk41,T5 —$k+1>q_1) .
1<i<j<k

Note that z1,...,zr+1 are not required to be distinct. So this is not the indicator function of k-
right corner yet. To handle this issue, we multiply it by the distinctness indicator function from
Section and define

Ji = Hgy1Riy-

Then the function Ji can be written as

1 if (x1,...,Tky1)is & k-right corner,
Je(@1, - Tr1) = Q (DFE ifzy = = 2py,
0 otherwise.

If A C Fy doesn’t contain any k-right corner, then Jk|ar+1 is a diagonal function. Note that the

diagonal indexes (—1)*k! are non-zero in F, since p > k. Thus by Theorem we have
|A] < partition-rank(.J).

So it suffices to show that partition-rank(.Jy) < ((zfgl;(_ql_)f)) By Proposition , we could write

Ji as a linear combination of the functions of the following form:

Riqa (21, Tpt) H 1(Z4), (20)
Aep

where P is a non-trivial partition of [k + 1]. The following lemma allows us to rewrite it into a lower
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degree polynomial.

Lemma 4.3.3. [2]] Let P = {A1,..., A} be a non-trivial partition of [k + 1]. Suppose without loss
of generality that k +1 € A,., we let a, =k + 1. For eachi=1,...,r — 1, we let a; = min.A; be the

minimal element of A;. Then

Rici(@r, o ozpnn) [] 1E4) = Ro(@ay, - o a,) [] 1Ea )5, (21)
Aep =1
where
Hg = H (1 - <‘rai —Za,yLa; — xar>q71) :
|Ai|>2,ir

Proof. By the definition of Ry1, can be written as

(Hn(@g) I - —ze,2—2.)7") ] (22)

1<j<i<k

Observe that for a set A, a € A and a function Q on |A| variables, we have 1(Z4)Q(£4) = 1(Z4)Q(a)

for a single variable function Q defined by Q(a) = Q(a, .. .,a). Using this property and the equality

(1=, =1~ (,y)""),

we can rewrite (22)) into

r r—1
(H ]l(fAi)> H (1 - <33aj — ZayTa; — xar>q_1) H (1 —(Ta; — Ta,, Ta; — xar>q_1)
i=1 1< <i<r i=1,|A;|>2
The second product is just the function
R (xayy---,%a,)
and the third product is the definition of ITI}’. So the lemma holds. O

Let Polyfl(Fg‘) be the polynomial space defined in the proof of Theorem and we also define
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another polynomial space Poly, (IF;‘) as the space of n—variable polynomials over the field F, of total

degree at most d. Then

dim Poly,,(F") = <” ;r d> . (23)

Applying the equation , we have the following lemma

Lemma 4.3.4. [2]] Let P = {Ay,..., A,} be a non-trivial partition of [k + 1]. Suppose without loss
of generality that k+1 € A,., we let a, = k+ 1. For eachi=1,...,r — 1, we let a; = min A; be the

minimal element of A;. Then

Rk+1(x17 s 7xk+1) H]l(fAi) = Z [Hﬂ(fAi>Qisj(xai)1 )

i=1 j

where for each 1 <i<r—1,

Poly,(F)with d = (r —2)(¢ — 1) if |4y = 1,
Qij €
Poly;(F?)with d = (r — 1)(g — 1) if |A;| > 2.

Proof. By expanding the product of , we may write

RT(xa1a s 71:047‘) H ]l(fAz)Hg - Z [H ]l(quz)Qiyj (’Iai)‘|

J

for some polynomials @; ;. Recall that

R (Tayy-- s Ta,) = H (1 —(Ta; — Ta,, Tay — xar>q_1) .

1<i<i<r—1

For any 1 <i < r —1, there are exactly r — 2 terms each of degree ¢ — 1 in the product definition of
R, that contain z,,, namely (1 — (¥, — Ta,,%a, — Ta,)?" ") for i = j or i = 1. If |A;| = 1, then z,,

doesn’t appear in I1Z’, which implies that deg @Q; ; < (r — 2)(q — 1) and hence

Qi,; € Poly (F)with d = (r — 2)(¢q — 1)if |4;] = 1.
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If |A;| > 2, then the product 1§ will contain an additional term that contains x,,, namely
(1 - <xai — Za,yLa; — xa'r>q71) .

If we expand the it in terms of the (n + 1) variables x4, 1, .., Zq,,n and 951,1 + .- +22 _ then it

ai,n?

will have degree ¢ — 1 only. Thus

Qi,; € Poly;(F)with d = (r — 1)(q — 1)if |4;] > 2.

Using this lemma, we can obtain an upper bound for partition-rank(J).

Proposition 4.3.5. [Z]] Let Pii1 be the set of non-trivial partitions of [k + 1]. Suppose that
By,...,By is a sequence of non-empty subsets of [k] such that for every P € Pyi1, there exists

Ae P withk+1¢ A and A = B; for some i. For each i, set
r; = max{|P|: P € Pxy1,B; € P,and B; ¢ Pfor j < i}. (24)

and let
POIY(W—Q)([I—D (FZ) if |Bz| = 1,

P =

Poly{,, _1yq-1)(Fg) if [Bi] > 2.

Then we have
l

partition-rank(Jy) < Z dim V. (25)

i=1
Proof. For any P € P11 there exists some index j such that B; € P by assumption. Let ¢ be the
minimal index such that B; € P. Then |P| < r; by definition of r;. Together with Lemma we

have

Riea(zy,. . ziar) [[ 1@Ea) =D 1(&6,)Q; (20T (Er 1 5,):
AepP J

where for each j, Q;(xs,) € Vi. and Tj consists of the product [[4cp 4xp, 1(Za). Thus J is a linear
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combination of the terms of the form

(&g, )Q(wb, ) T (T g1\ B, )

where @ € V;. Note that T'(Z],41)\p,) involves only the variables x; for i € [k + 1]\B;. Since B; is
a non-empty proper subset of [k + 1], each 1(Zp,)Q(zp, )T (Z]p+1)\B,) is of partition rank at most 1.
Together with Q(xp,) € V;, this implies . O

Now we can complete the proof of Theorem .32] Let the sequence of subsets Bi, ..., Bor_y be
defined by listing all the non-empty subsets of [k] in order by their cardinality with tie broken by

lexicographical order of the elements of the set. That is,

Bi={1},By={2},..., By = {k}, Bos1 = {1.2}, ... Bor 1 = {1,.... k}.

By Proposition and Lemma we have the upper bound

partition-rank(.Jy)

-

i=1

k 2k _1
= dimPoly(, 5 1(Fg)+ Y dimPolyf, 1), 1)(Fy)

i=1 i=k+1
(-2 | = [ - Dg- D) | (- 1)(g-1) -~ 1
‘Z( (ri—2)(q—1) >+_§[< (ri—1)(g—1) )*( (i =1)(g—1)~1 )]

where r; is defined in . To obtain the value of r;, we shall find the largest partitions P € Py
with the property in the definition of r;. For ¢ = 1, the partition P = {{1},{2},...,{k+1}} satisfies

the criteria B; € P and this is the partition with the largest cardinality, so r; =k + 1.

For ¢ = 2,...,k, since By,...,B;_1 can not contained in the partition, it can only has at most
k+1—(i—1) singletons {i},{i+1},...,{k+ 1}. The first i — 1 elements 1,...,i — 1 can form at

most | 5] pairs. Thus
1—1
2

ri<(k+1)—(GE—-1)+| | <k.
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Thus we can bound the first sum:

Y+ (ri—2)(g—1) n+(k—1)(qg—1) n+ (k—2)(q - 1)
Z( (ri— 2)(g— 1) >§< (k—1)(g—1) )“’“”( (k—2)(q = 1) > (29)

=1

Consider ¢ > k + 1, say |B;| = j > 2. Then the partition can not contain any sets of size less than j
that do not contain k£ + 1. Thus

J

Thus we can bound the second sum
(e ) (e )

i=k+1
(Y (e ]

()
We use the following weak bound for convenience.
(e ) (e )= ()

This gives us an upper bound for the second sum

(e ) (e I e ()T ) e

i=k—+1 j=2

To combine the upper bound of these two sums, we use the Vandermonde identity, which states that

for any non-negative integers a, b, ¢, we have

()-200)

Let a=kb=n+(k—1)(¢—1)—1and c= (k—1)(g — 1), we have

((Z " %) - i (f) (n e 1)’ (28)

7=0
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where the sum ends at k since (];) = 0 for j > k. The terms for j = 0,1 can be written as

Qs 1§Eq I R AT

(") e (e et )

which is an upper bound for the first sum by . For k> 3 and 5 > 2, we claim that
k .
L;J(q— D<(k=1g-1) - (29)

k
For k>3 and 2 <j <k —1, we have |~ | < k — j and thus
J

L?J(q—l) Sk=eg-D=Ek-D-D-0G-Dg-D)<(k-1(g-1) -

For k > 3 and j = k, we also have

L?J(q—1)=q—1§(k—2)(q—1)§(k—1)(q—1)—j

since ¢ —1 > k = j by assumption. Therefore for every k > 3 and j > 2, we can apply the inequality
and obtain that

n+1+[%(¢-1) n+1+(k—1)(g—1)—j
( E(g—1) >S< (k= 1)(g—1)~j )

Together with , and , we have

partition-rank(Jy) < Zdim V; < (

%

n—l—(k—l)q)
(k=1)(¢-1))

This completes the proof. O]
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5 Right Angle Removal Lemma

5.1 Background

In graph theory, the triangle removal lemma of Ruzsa and Szemerédi [27] states that any graph on
n vertices with o(n?) triangles can be made triangle-free by removing o(n?) edges. This lemma can
be proved by the Szemerédi regularity lemma [10, B0]. Green [I3] proved the analogous theorem for
abelian group. Let G be an abelian group with cardinality N, and let A C G. A triple (z,y, z) € A3
is called a triangle if x + y + z = 0. Then the arithmetic triangle removal lemma states that

Theorem 5.1.1. [13] Suppose that A C G is a set with o(N?) triangles. Then we may remove o(N)

elements from A to leave a set which is triangle-free.

In fact, Green’s result is more general:

Theorem 5.1.2. [13] Let k > 3 be a fized integer, and suppose that Ai,..., Ay are subsets of G
such that there are o(Nk_l) solutions to the equation a1 + - -- + ap = 0 with a; € A; for all i. Then
we may remove o(N) elements from each A; so as to leave sets Al such that there are no solutions

to al,...,a) =0 with a; € A for each i.

5.2 Main result and its proof

Throughout this section, the number ¢ denotes a prime power and the logarithm function log is

of base 2. We consider F?

o> which is an n-dimensional vector space over the finite field F;. Denote

N = [F7| = ¢". Our main result is the following.

Theorem 5.2.1 (Right angle removal lemma). Suppose that X,Y,Z are subsets of Fy such that
there are o( N®(log N)~(44=4/3) solutions to the equation (x—z,y—2) = 0, withx € X,y € Y,z € Z.
Then we may remove o(N) elements from each X,Y,Z so as to leave sets X', Y', Z'  respectively,

such that there are no solutions to (x' — 2’y — 2’y =0, with 2’ € X",y €Y', 2/ € Z'.

Note that this is similar to Theorem [5.1.2| except that we replace the linear equation a1 +---4ar =0
with a non-linear equation (x — z,y — z) = 0, where (-, -) denotes the dot product in the vector space

[Fy- Recall that we say the triple (z,y, z) is a right angle if x, y, z are distinct and satisfy the equation.
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Thus we called this result the “right angle removal lemma.”

To prove this result, we introduce some definitions and notations.

Definition 5.2.2. We say a triple (x,y,z) € Fy x Fy x Fy is a weak right angle if
(x —z,y—2z)=0.

Remark. Note that the definition of weak right angle is similar to right angle (Definition [2.4.1)

except that x,y, z are not required to be distinct here.

For XY, Z C F, we define
n(X,Y,Z) = |{(z,y,2) € X xY x Z | (x,y, 2)is a weak right angle.}|

to be the number of all the weak right angles in X x Y x Z. The following theorem is a quantitative
version of our main result Theorem We'll prove this statement.

Theorem 5.2.3. Given any 0 < € < 1. Let § = €% and let n be a large integer so that

11
(2¢—5)/3<n and (n+ (2q—5)/3)2172/3 < T (30)

Denote N = |Fp| = ¢". If X, Y, Z C Fy satisfying

NB

n(X,Y,Z) < 5CqW,

where Cy is a positive constant depend only on q. Then there exist X' C X, Y' CY, Z' C Z with
X\X| + [V\Y'] + |2\7'] < eN

such that

n(X',Y',Z") = 0.
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Remark. The constant C; can be chosen to be

o 1 (logg (49—4)/3
7943\ 2 ’

Note that n(X,Y, Z) is greater than or equal to the number of all (not necessarily weak) right

angles in X x Y x Z. But the theorem can be applied to right angles too. Indeed, the number

of triples (z,y,2) with x,y,z are not all distinct is less than 3N?, which increases slower than
N3

O og Wyaa—a73)

simply “right angle.”

as n — o0o. Thus the theorem is still valid if replace “weak right angle” with

Theorem 5.2.4. Given any 0 < € < 1. Let § = €3 and let n be an integer satisfying . Denote
N = [F2| = q". Let m be an integer with m > eN. Let X = {a@}m Y = {yO}yn, 7 = {z(0}m,

be three subsets of By with m elements. If for each i € {1,...,m}, we have
(2,4 20)is a weak right angle,

then
N3

We can prove Theorem [5.2.3] if Theorem [5.2.4] holds.

Proof of Theorem[5.2.3 assuming Theorem[5.2.7) Suppose we can not remove eN elements from
X,Y,Z C Fy so that there are no weak right angle triples (z,y, z) remain, then there are more than
eN weak right angles (2", y®, 2()) € X x Y x Z with [{z@} | = {y@ .| = {2V, | = m.

By Theorem [5.2.4]

N3

(XY, Z) = n({z D}y, {y O (200 ) > 6CQW'

This proves Theorem [5.2.3 O

Hence it suffices to prove Theorem The following lemma uses the slice rank methods.

Lemma 5.2.5. Given a collection of triples {(zV,y®, 2} | in F? such that fori, j, k € {1,...,m},
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we have

(ac(i),y(j)7 z(k))is a weak right angle if and only if =7 = k:

Then the size of the collection satisfies the bound

"= 3(n @fq ;)?;,/3> < 3(n+ (2q - 5)/3)2a /3,

Proof. Let X,Y and Z to be the sets {z(), ... 2™} {y(D . 4™} and {z(, ...

tively. Consider the function F' : (F2)3 — Iy defined by

1 if (x,y, 2)is a weak right angle,
F(z,y,2) =

0 otherwise.

, 2™} respec-

Then F|xxyxz is diagonal by assumption. Thus m < slice-rank(F’). On the other hand, F' can be

written as

F(I,y,Z) :17<I727y72>q717

whose expansion is a linear combination the following monomials

d dy, e en f1 .
xll...xn'ﬂyll...ynnzl ...ZT{L’
where x;,y;, z; denotes the ith coordinate of x,y, z, for i« = 1,...,n respectively, and each d;, e;, f

are non-negative integers satisfying

Ddi+d e+ fi<2Aq-1).
=1 =1 1=1
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Thus F' can be written as

dy d

Fla,y,2) = [ e, (9:2) +

(]

> di<(2¢-2)/3

S Y] Berren (3,2) +

> ei<(29-2)/3

S st )
>° fi<(29-2)/3

So
slice-rank(F) < 3{(ds, . ., d) : zn;di < (24— 2)/3)
()
< 3(n+ (2q —5)/3)24=2/3,
as desired. .

Now we use a particular property in graph theory. A three-uniform hypergraph is a hypergraph
whose edges contain exactly 3 distinct vertices. For a hypergraph H, we denote a(H) to be the size
of the largest independent set (i.e., a set of vertices containing no edges). We will use the following
lemma. The proof uses probability method.

Lemma 5.2.6. [1] Every three-uniform hypergraphs H = (V, E) with |E| > |V|/3 satisfy the in-

equality

Proof. Let H' = (V', E’) be a random subhypergraph of H induced by V' C V, where every vertices
occurred in V has independent probability p to be in V'. The probability p € [0, 1] will be determined

later. Since H' is induced by the vertices set V', we have

E[V']=|Vlp and E[E']=|El]p".
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By deleting one vertex from each edge, the remaining vertices will be an independent set. Thus

a(H) > Ela(H")] > E[|[V'] - E[|E'] = |VIp - |Elp’

v
for all 0 < p < 1. By differentiate it with respect to p, we obtain that p = 3||E|| € [0,1] gives us

an extreme value. Thus

3
3/2
o(H) > Eja(H")] > |V |V|_|E|< |V||> v

3|E| 3Bl ) 3\BIE|

Now we have all the tools to prove Theorem

Proof of Theorem[5.2.], We define a three-uniform hypergraph H = (V, E). Let the vertex set be

V ={=£1,...,£m}. In particular, |V| = 2m. The edge set is defined as follow:
E = {{i,7,k} | (z)3,9)j|, 2|x|)is a weak right angle and 4, j, kare distinct.}

We note that only ¢, j, k needs to be distinct, so ¢ = —j is allowed. Since every weak right angles in

X x Y x Z contribute at most 23 = 8 pairs to the edge set, we have the inequality
|E| < 8n(X.,Y, Z). (31)
For convenience, let
7(n,q) == 3(n + (2q — 5)/3) 217275,
which is the upper bound appeared in Lemma Hence second condition of shows that

11 11
~v(n,q) < EeN < gm (32)

Consider the set {1,2,...,7(n,q)+ 1} C V. By Lemma it contains at least one edge. Without

loss of generality, say it is {1,2,3}. We then consider the set {2,3,...,v(n,q) + 2}. Continue this
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process, we obtain m — y(n, q) edges in {1,...,m}. Note that if {i,j,k} € E with i, j,k > 0, then
{e1i,e2j,esk} € E for all ey, eq,e3 € {£1}. Thus, we have
2m Vv
121> 8(m —5(n,) > 2 = V],
3 3
where the second inequality follows from the condition (32). This allows us to use Lemma and

obtain the following inequality

VIR, (33)

3V3IE]

For any independent set I C V, If {i, j,k} € I such that (z;,y);,2x|) is a weak right angle, then

li| = |j] = |k|. Thus by Lemma again, we have

1
Sa(H) < 5(n.q). (34
By and , we have
3
27y(n, q)?

Using |V| = 2m = 2eN and the inequality of |E|, we obtain

e3N3

W < 77(X7Y,Z)-

Use the inequality (30), we have n + (2¢ — 5)/3 < 2n and thus

3 N3 3 N3 5 <logq> (49—4)/3 N3
(

XY, 72)> < S S N
XY 2) 2 s n (2q=5)/3)0a 075 ~ 243 (2n)(a—/5 — 213 \ 2 log N) (=175

as desired. O
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