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Abstract

According to the report from Ministry of the health and welfare in 2020[1], cancer
ranked first in the cause of death statistics. Among all cancer cause of death, cancers of
trachea, bronchus and lung were placed first for a long time. Apparently, it’s important
to have an early detection in order to lead to cure and enhance the survival rate since
lung cancer is a force to be reckoned with. Early-stage lung adenocarcinoma nodules
often manifest as ground-glass opacity (GGO) which is defined as lesions showing
hazy, increased attenuation that does not obscure underlying bronchial structures or
pulmonary vessels. In 2011, the International Association for the Study of Lung Cancer
(IASLC), the American Thoracic Society(ATS), and the European Respiratory Society
(ERS) classified lung adenocarcinomas manifest as GGO into three groups of type:

(1) pre-invasive lesions, including atypical adenomatous hyperplasias (AAH) and
adenocarcinoma on situ (AlS), (2) minimally invasive adenocarcinoma (MIA), and

(3) invasive adenocarcinoma (1A)[2]. The lung adenocarcinomas from each groups
are suggested for different therapeutic strategy. AIS and MIA can be tracked at first or
treated with sublobar resection (wedge or segmental resection) with a 100% or nearly
100% of 5-year survival-rate[3]. On the other hand, the invasive adenocarcinoma causes

a reduction in survival-rate (Which depends on the subtype of the adenocarcinoma). As
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stated above, classifying AIS and MIA from IA which manifest as GGO on computed

tomography is crucial that either gives the doctors an option to track first or to perform

the operation.

In this study, the inclusion criteria are the maximum diameter is less than 3 cm and

the solid ratio of the ground-glass nodules must be less than 0.25 which judged by the

doctor, indicates the ratio of max diameter of the solid lesion to max diameter of the

whole lesion need to be less than 0.25. Furthermore, AIS and MIA are classified as non-

invasive adenocarcinoma while 1As are invasive adenocarcinoma. The purpose of the

study is to use radiomics and deep learning to build up classification model so as to

make a precise precision to the classification problem.

Keywords: Lung computed tomography scan, ground glass nodule ,low solid ratio,

classification of the invasiveness of the ground glass nodules, radiomics and deep

learning
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B 2L e g A e T AR e P 153 o International Association for the Study
of Lung Cancer (IASLC) = # X713 37 cro3 g & ) 4295 B 37 TNM & 55 5% £ —2017
& - % d American Joint Commission on Cancer (AJCC) % Union for International
Cancer Control (UICC)# % 41 keng ~oax[6] 5] 2> L % 1.1 % ~ixikdg 2010
EQRITEERRESDPE (F- %) £ RS e pans B - o
B 702018 & — 7 B4R %5 o TNM & 8 ¢ chprimary tumor (T) © 2 4345 & 4
WAL s (SRR B BcE A B 5 CTO, Tis, T1, T2, T3, T4 ) ~ regional
lymphnodes (N) : R E 288 F 3 BB 2&)j° (BEP®RFPOT R LS 7
- fk 4 B 1 NO, N1, N2, N3) ~ & 7 distant metastasis (M) @ L2 8 F 7 =48 #
(# FAeh - %75 3 k4% 0 MO, Mla, M1b, M1c) » &1 £ ¥ fE = - primary
tumor(T) ~ regional lymph nodes(N) ~ distant metastasis(M) » & B& % I g & 14 2] 2
Wopens dp L (d EMTI BT ) 1AL IA2, 1A3, LA, LA, IB, 1B, IlIB, HIC, IVA,
IVB » 4r# 1.2 #7577 o

# L1TNM 4 it 5+ % %[6]
TNM # i+ F_& -Definition for TNM descriptors

T (primary tumor)

TO No primary tumor
Tis Carcinoma in situ (squamous or adenocarcinoma)
T1 Tumor <3cm
T1lmi Minimally invasive adenocarcinoma
Tla Superficial spreading tumor in central airways*
Tla Tumor <1cm
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T1b Tumor>1but < 2cm

Tlc Tumor >2 but <3cm
T2 Tumor>3 but <5 cm or tumor involving: visceral pleura,} main
bronchus (not carina), atelectasis to hilumf
T2a Tumor >3 but <4cm
T2b Tumor >4 but <5cm
T3 Tumor >5 but <7 cm or invading chest wall, pericardium, phrenic

nerve; or separate tumor nodule(s) in the same lobe

Tumor > 7 c¢cm or tumor invading: mediastinum, diaphragm, heart,
T4 great vessels, recurrent laryngeal nerve, carina, trachea, esophagus,
spine; or tumor nodule(s) in a different ipsilateral lobe

N( regional lymph nodes)

NO No regional node metastasis

N1 Metastasis in ipsilateral pulmonary or hilar nodes

N2 Metastasis in ipsilateral mediastinal or subcarinal nodes

N3 Metastasis in contralateral mediastinal, hilar, or supraclavicular nodes

M (distant metastasis)

MO No distant metastasis

Ml Malignant pleural or pericardial effusionf or pleural or pericardial
nodules or separate tumor nodule(s) in a contralateral lobe

M1b Single extrathoracic metastasis

Mlc Multiple extrathoracic metastases (1 or>1 organ)

*Superficial spreading tumor of any size but confined to the tracheal or bronchial wall. }Atelectasis or
obstructive pneumonitis extending to hilum; such tumors are classified as T2a if >3 and <4 cm, T2b
if >4 and <5 cm. }Pleural effusions are excluded that are cytologically negative, nonbloody,

transudative, and clinically judged not to be due to cancer.
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ic VB wve we e
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AT AT ER 2 SRR AT A 2] e gy ¢ S0 SUR, > £ 2 H 3% primary
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(invasive adenocarcinoma , 1A) » i& i Fi¥ B e9% Hﬁg&«a’ ¥ J'rs B LB B
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14~ B 15) %34 m?;,%;—‘%’rsﬁ AlISipl » 5 P2 FF 72 ﬁﬂ,ﬁ%éﬁ?ﬁ# MIA Zz
T2 & ) e s F lepidic s #T A - T € AR R lepidic st o ¥R )
%2 0.5 2 4~ ¢hinvasive component ( i E_H & &137 4) acinar, papillary,

micropapillary, solid, colloid, ... ) » ‘,/TT RN | EE 0 H f&i‘j‘u’iﬁ‘ 1A (B

1.6)-

% 1L3AIS = %[7]

& =% Adenocarcinoma in situ (AIS)

Pathologic criteria

- Asmall tumor < 3cm

- Asolitary adenocarcinoma

- Pure lepidic growth

- No stromal, vascular, or pleural invasion

- No pattern of invasive adenocarcinoma (such as acinar, papillary,
micropapillary, solid, colloid, enteric, fetal, or invasive mucinous
adenocarcinoma)

- No spread through air spaces

- Cell type mostly nonmucinous (type Il pneumocytes or Clara cells), rarely
may be mucinous (tall columnar cells with basal nuclei and abundant
cytoplasmic mucin, sometimes resembling goblet cells)

- Nuclear atypia is absent or inconspicuous

- Septal widening with sclerosis/elastosis is common, particularly in
nonmucinous adenocarcinoma in situ
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% LAMIA Z_&[7]

Minimally Invasive Adenocarcinoma (MIA)

Pathologic criteria
- Asmall tumor 3 cm
- Asolitary adenocarcinomaa
- Predominantly lepidic growth
- Invasive component 0.5 cm in greatest dimension in any one focus
- Invasive component to be measured includes
1. Any histologic subtype other than a lepidic pattern (such as acinar,
papillary, micropapillary, solid, colloid, fetal, or invasive mucinous
adenocarcinoma)
2. Tumor cells infiltrating myofibroblastic stroma
- The diagnosis of minimally invasive adenocarcinoma is excluded if the tumor
1. Invades lymphatics. blood vessels, air spaces, or pleura
2. Contains tumor necrosis,
3. Spread through air spaces
- The cell type in most cases consists of nonmucinous (type Il pneumocytes or
Clara cells), but rarely may be mucinous (tall columnar cells with basal
nuclei and abundant cytoplasmic mucin, sometimes resembling goblet cells)

1.5 MIA 5 2 F[7]
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(IA) e SR M2 S (R FOLAGF 2 RPEES) [3] e #100FE
PR P TR 4 da L S B S gLag ik iR e R 0 SUR Y R T SUR SR B R
AANRA T G FA LR PR R R Y TR R SR
FE APy ERDE -

B 1.7 = g3k b CT B

Dt O

B 1.8 # § i "% CT Hl

B e g ¢ T SRR 2 2 RTRE T AR AR 2 A AT
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3t 2019 & > FanLi[8]% * 4| * radiomics features k& = ~» #g £ iz e & 2 £
EREER B h s R A A R L R Pl e
¢ 7 atypical adenomatous hyperplasia (AAH)  ® i A &%+ solid ratio 3 4% %) e
o o ,sz % i ICC ~ p-value ~ coefficient correlation 2 % least absolute shrinkage
and selection operator ( Lasso ) logistic regression = %i% 21 a3 i & & M3 paE >
Ao @ ied BAEACY K p GLCM » & 5] % cluster tendency £2 correlation » #3%
IR R 0 Y g R 2 Rl E 0 B Y - 5 intra-class validation cohort £
@ ‘e external cohort > = % 4w f2 5 5 0 90.8% ~ 84.0% ~ 88.1% > AR -
97.5% ~ 82.2% ~ 85.7% - £ & : 94.4% ~ 86.7% ~ 89.8% > AUC : 0.971 ~ 0.942 ~
0.936 - ** 2020 & > Hwan-ho Cho [9] % 4 » J* "k~ 2 2D 7 & & B4 &
radiomics £ fx > ¥ ¥ b F{E B ) iz #7% P 2_ marginal radiomics feature = = B -
4 d A A~ grradimoics features ¥4:% 417 BaFHc 0 4 B 5 @ Range ~ GLCM-
entropy ~ ISZM-size zone variability ~ density ~ mass » £ 4c » marginal radiomics
features § 1% £ M43 » i€ iF logistic regression 4 #g B {8 3| vk i I FR S~ F AT
B~FERE AUC £ 9 5 1 91.49% ~ 89.47% ~ 100% ~ 0.9825 » @ J* & ¥+t part-
solid GGN =solid #% 4 *24] 2 < 5mm ° F & > Linyu Wu [10] % £ = &k 4~ % pure-
£ part-solid GGN # & je 44 4 - iz X P! F AL 47 part solid 6% shsolid 374 & &
R A B o LB 2 ;;M:J—ﬁ:ﬂ@%_ﬁ; ARg 2T B ek AR 2mm 2§ [ i radiomics
B P~ > B 16 SMOTE #-3 s Tl et 53 £ 337 11> & & * mRMR $43E 11 B
EApBE Y B AR 20 B A ATE ~ lasso F BB E N A M endd e o Bt Hpcr d
J¢_lasso 3+ B ) ke h Boiagp 3k {8 2 %4p 4o 2~ logistic regression s #g o H ¢ 12
RN R I - AN F L 2 HBME TSRS HRES &
TFEE 5 188.6% > ZAcE 180% #FR AR 192% 2 AUC 5 10876 & ¥ —
B )I% » Guangyao Wu[11] % + » H_4*¥f part solid 2_ "8 % i& (= §_F £ &)= s
Boom bR )l%js Frul#-pure GGN JEF 4L & ¢ $e 41 > 12 44 part solid 2 #6 7%; &

10
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747 ¥ bt B iy 4 solid partion & {7 1] > 1F 02 b B S5 48
12-50HU § TR E > A %A 2 -50HU 12 b e[ (solid part) % 12T 5
(ground glass part) & > #& P~ - # [l radiomics +fcié i& 17 boruta #+ & -
B {6 1% 4 random forest 4 4 SRR (F Flehg R e B DS ~ AR - FE RS
AUC » %] 5 1 93% ~98% ~78% ~0.9800 - ¥ #t » I * FRE Y BB i * FR
BVl g > 2 TR AFTApM 2 2 2~ Lﬁk;’; 3 - kK 2020 £ 4 Jing

Gong [12]% * & I * FRE Y PR B HEF LF & & aag o BT

24 44%F solid ratio ] L TR G RIS BLIR Y ]2 20 2 MR
BT LNELET o P2 }I?c i# * 2 7] ¥_3 > residual learning-based 7 CNN

network :& {7 12 :2 » & AUC ey b e i 71092 £ 0.03cmc %k » &5 & 7 3ckf
7}47;5 B 2T % 1Tt fies B 5092 £ 0.03220.90 +£ 0.03 - * ¢ & > Xianwu Xia[13]
AR NZEEFREY BB E 03 2 k¥ non-invasive £ invasive A
B0 ped § IR O R S pGGN (pure ground glass nodule ) ¥* sGGN
(part-solid ground glass nodule ) » # = ;= % L 41 #* & 23] U-net 478 7% 8 7 B~
Mo RBRFENT-HEF A BINAS - FERFFR PN 2 ¥R radiomics # e &
AT P HE B~ (B P 20 B A e » SYVM T AR 0 ¥ - BR] ¢ tranfer »

HEA 2B E DA 2 FA R (fine-tune) » & 18 %3 BIER D kb

WIFRELE AR EREINEFEEABIEITLI RSIERES > AUC 2
0.9040.03 » i F& % : 80.3% o
d »t solid ratio 3+ 2|47 8 F L e - wend|¥ra 4 o o@ b i \Q;J;Jq

* ¥ W) -3 solid ratio & (7 4> 0 & - FRir xgle;‘;i«:’?m’ AT A B R e
e 2 e et T AL REE L IFRE Y R RERTHE
PeE U] solid ratio< 0.25% FEd < B[S0 N A2 FHREBEFARE O F Y
ARFT b R A B EIRRE Y h 2 > W i e FEk o
WA 0 & { f~‘¢p5§FFIFE Rk g R g g F ]2 025 ¢ o]
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= 2m st gk R er sl (AIS) ~ iz sUk (MIA) &2 Bk (IA) §
AT MR BUE SRR TR b S T A M2 B A D B R 2
#ris 20 025 T AIS & MIA fF3E 5 7 & f,%ja'}iﬁﬂ#aﬁl:)% v @ A B E &)
e R 0 F PR 5 0.25 24P A8 K F Lemima 2[14-15] - 2 B o
ALY RS BRR S Y 0D 2 ML R R UR R A L B R b

LIRS IR~ BEHPRET S DR FIFEE LR 7 R R

12
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LR A A

dOTITBE K ST RS PR R S B R R & R s
BARAE AR S AT A AR RAR Y IE R o BT Yy

PP R L RS 0 AR G RS S FREY R R
ERSME SRR Y A SRk > AL TRA TRORRAAH S L E

BHHI T SO SRR Y KA T R v R IR
£ TR a2 R A AT T

WHME D A RT LA A B IR (1) R WP AR GAAs 7
FRA 0 LAFAF ORI R L B 0 WL AT RETR IR D RN R B A R
Fe0 (2) #4542 D ke B AR B 0 A F R enradiomics ihE R I 4
grey level co-occurrence matrices (GLCM ) ~ grey level run-length matrices
(GLRLM) ~ grey level size-zone matrices (GLSZM) & & - F# # ik
(Histogram) ... % % » FARRENCE I T SR Ve Sl b gl R E oy i3
(3) JEh & T4 B ) e e i 0 B 0 ST T A G ] 4 e (4)
W FE PR L A it 2] HERE AN 0 3 Y g
B2 FTHLA AR Ch o B 2 @ g i 2 3¢ (lasso, forward
selection, ... ) & {538 {74 K h4 5 F (SVM, Logistic regression,... ) % %+ ¢
FEFA R BRI VR LR L A G kSR DT -

2019 & > Fan Li[8]% + 4/ * radiomics features & = % s sgHcd] > P a0
Bl G R R A ko a2 ;I%i N g E
SAROIMS LA EG BREZEREe 722 AlS FF pre-invasive lesion ¢

atypical adenomatous hyperplasia - ¥ #F » f 44414435 = G > (T $30 0 » chF L

f

iXF 4%t solid ratio sfE B LA > R H R A L RIS BIF2 BT LG

13
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BRI Ak o < ¢ radiomics ﬁﬂ;ﬁrﬁtﬁﬁ %% i MATLAB 2014a P~ 41 ke &
7 355 1 o PeiF e 3V E L A intraclass correlation coefficients (ICC) >
0.75 2 p-values<0.05 dFpc £ #-5 5 3 40 M Lok

(correlation coefficient > 0.6) £# > 11> AR B o 6 $4iF
It 28 1% 3% #ci% iF least absolute shrinkage and selection operator (Lasso) #¢: i
B 502 & E & MHand B pE = logistic regression #-73) - B BaEgcE K p
GLCM » & w5 R 43 ket & 1) e cluster tendency #2 X,y,z #h'# 1B low-pass filter
2_ wavelet ¥ i3+ & e correlation » H & g ﬁff 5 12307 4+ 4.995 %
correlation — 7.660 X cluster tendency ° @ & f < }’§ A - BB T AR
PLRRE YRR 2 03 T 0 PR A W 5 - % intra-class validation cohort %
= 4 external cohort » = 2 {F F|enit Fr ¥ &2 %W 5 1 90.8% ~ 84.0% ~ 88.1% > & AT A&
w5 1 87.5% ~82.2% ~85.7% > H R RR 5 1 94.4% ~ 86.7% ~ 89.8% > m AUC
4w E_ 10971~ 0.942 ~ 0.936 -

2020 £ 5 = k& Qé\?’iﬂﬁlﬁ%a@ £ & e i edp B ?I‘Jc ' B A% - K d Hwan-
ho Cho [9] % + & dién > B R e s P B A LR 0 B 2 B # IA K MIA/AIS
Bk ¥ b gk 2 o8 SHF R part-solid o solid 284 U] S <

S5mm - 2 3+ solid ratio 3% 4 ¥ A 3% I H g IF—*‘? - 2w g (189
L) REHHAIE Y - wplEE (47 4) PREZ R b A F 1S 2 2 {03 s
Bk o2h< ,:;J%?Eﬁ R epiidap)l R o SR I S R h I A R R

FRBGRFE o 5 - E2D Bl A BB engfics § 40 B > H 4]y

e T:f g * A Aeoradoimics Hac (v fft ~ FE ~ AR~ AMFRHFRL L 19
BERXEEFHGCLCM £ 16 B ~ ISZM £ 2 ) *b > B x7H - =45 marginal

radiomics feature » & B2 _k p ,F_ﬁ PR EBI AR R Rk S RAEA
o - AR TR E R (2 ¢ F 5 well-defined tumor ) » § % Fi 4 %) v 2D
7om ¢ MR IR A B 2. 5/100, 35/100, 65/100, 95/100 i it E e E 0 H A 4

14
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g A FF B MPIES > T E AF - BARERE BT ERE R AR MO
B 2 pixel #® ¢ B EA pixel HF vt b5 H S B4 A F 3ol CDF » i3
g it COF & T R 3 BARMA R EF Il v b5 e~ s £ 0 W
BRRF A FIS R AR APt S BRERF DFERIP) V- T
Mg g (2 ¢ fiill-definedtumor) 2 2 4 2 CDFRIE g 5% 4 > 7
Fo- B ARSEMDE L F BN A EA T R R L TR
FAIMASARFERE AR FRN DR BRRAF AT IEKBL > SR
RPAFL TN The B THREET RS ELE > L marginal
radiomics feature - 3% B~ % jicis » F P EF T 4o B h 2 ff"'ﬁ £ * LASSO
7 NS R 440 B E ARG iE T B £ 4 (Range, GLCM-entropy,

ISZM-variability, density, mass) & 4c » % & & I'| 2_ 74+ #c—marginal radiomics

ke

features » 3% » = f8 7% I ea §F B TR 74 47 ?ﬁ LR S et o %
B 47 e logistic regression 2 #g B k> T AESF ~ AR ~HF R R E AUC A H G
91.49% ~ 89.47% ~ 100% ~ 0.9825 - #p i+ & 4c » marginal radiomics feature
TRES C BAE ~FBRREE AUC £ W 5 1 89.36% ~ 89.47% -~ 88.89% ~ 0.9766 7
- TR R e
BFE %= o d LinyuWU10]% A 428 dens g d o 4R & FALR O~ pure

GGN % part-solid =% » iz X5 P Feid= partsolid @ isolid & B Hp #h5 vt
CURRIRE I a5 R R MRS J B IR AR I G =) QI‘H\F’F‘&‘" Rl R
EE2RRET %“th37oniao§hgﬁ%#”§ N IR e v e vh 3R 4
PR Bk A ACE B A 4 > H S R T R R N AT A s Rk
i PRy S A S E S RIS AP ik TAR F R R R
"‘:’”ﬁiﬁﬁi%?*@s‘%ﬁ? C BIERET - B P AR X BE 0 3G R
* ICC e AR B:E §° ]2 4 ficAp 4 12 > 2818 R 0t miﬁ“@{;‘z—%& FTF Bl4F 2. A 4 o TR
# % AK R s P18 3D WOk 2mm {8 chde [l y (TR R b ihde [ 0 T iﬁa;}g%
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S A RS AE KR ¥ S ST s SR L R
e4F 3 histogram, form-factor, GLCM, GLRLM g jic » o e 50 3 en 4F
Wi g E £ > #Tn € A * synthetic minority over-sampling (SMOTE ) 7 383
P2 A R R 3T Ll S R R E 0 Y DS R e
B B R S SR R e R B TR R B TR A~ )
% ooom B kg e ¢ £ 41 minimum redundancy maximum relevance
(MRMR) » 45 d1 8| s < 4p R e 20 Bt & > £ # LASSO::E 15 B &
LM g X 3 lasso fAZ 8 Bl e B A e A Bl B e ARk s Ap 4 0 B
i f radiomic-score - @ {s #-radiomic-score *z » logistic regression ¥ ] # AUC -
B (S RISE B B I MR N IR W% R R IR Y A R TS 2 DT
TRES WA 1 82.9% ~ 77.1% ~ 88.6% > &AcAE 1 90% ~ 80% ~80% 0 #FR A& :
80% ~ 76% ~ 92% - # AUC % :0.852 ~ 0.820 ~ 0.876 -

B {é— & > 4 Guangyao Wu[11] % + ”Lrie&b,iv;l% BN NP LR N B
% 3 part solid - lung adenocarcinoma - %>t pure GGN 2. *.7 ¢ #-H 34 > 7 ¢
TAFEEE Y 0 ¥ chsolidratio » R PR o B R ¢]I§J€t’ (R
P (2294) 2 plEf (68 L) i (72 ple# o ?‘1,%%3% AU 5

w4417 %5 solid part *2 2 ground glass part £~ radiomics 4 #c > £ P4 & v £
M s e 2 2o 58] 0 ¥ ¢ #-H ¥ clinical model ~ volumetric model 2 % & * %
Ie 4= Bl 4% B~2_ radiomics feature 2 * cfCA] 8 Fox sk vt o H A HCR] 1R 5
X ETATER E-B0HU » #-475 Mh ® A 8 B> A W 5 Ground glass region
(-50HU 17 * %3¢ ) 2 % solid region (-50HU 2 F %3 ) » i% iF RadiomiX
Discovery Toolbox » 44 B~5 % B e fic » PR (S8 FHHATE D » lF—*‘ E g
HE B3 3% % ICC ~ correlation 12 2 boruta » i — i B ehPpeiE 15 0 B8 K solid
part R4 PeiE 7 = B (1) B kA y,z #hi high-pass filter 2 X g i low-
pass filter {s » j¥_NGTDM ( neighborhood gray tone difference matrix ) # 2~¢n

16
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contrast iz > (2) B 3% x #hiza high-pass filter 2 y,z fihta low-pass filter {8 » &
GLDZM (gray-level distance zone matrix ) # B~ DZV ( distance-zone variance )
e 12 (3) B HaY y #hia high-pass filter 2 X,z #hia low-pass filter 18 5 j&_
GLDZM (gray-level distance zone matrix ) # B~ DZV (distance-zone variance )
F < ; @ ground glass region P+ :E 1w B e (1) GLRLM # SRLGE (short
run low gray Level emphasis) > (2) 82>t X y,z i low-pass filter {8 > 18 3] =3
10" percentile =% ¢ & > (3) compacteness2 1 2 (4) B4 XY,z #hia low-pass
filter i » 3+ & e local intensity peak » »2 + 3 = = B & = 1) invasive ¥ non-
invasive sn& 3] > TR B %S FAR - FBRE AUC £ 9 5

93% ~ 98% -~ 78% -~ 0.9800 -
22 L gz RERLEFREY

RS GEE 2 W SRR AR IR S
XA R BEG FHRG FAEFRP 0 0 A AR 7 ek S iF back
propagation ¢ 3% % 7 5 bt SR ATR KR D A 2 N & A R ST
FREYVRA PR IERED - BREFL PR KA B H TP
2. B 18 S R Bk o o

2020 # 4 Jing Gong [12] & 4 & A1 * JRR & ¥ 0HCA] 7 4 K H L gag o o
“’:]U%-*@F{@E Bl as gE o LG o;]%mp HpriEteiEmi it e o (F
% 32§ -4 solid ratio # FITH] > A AL E R LG L pE R SRR R oo 2
¢ & ) B0 28 B4 & A residual learning-based CNN network (B 2.1) % i&
Figec BRAABF e e E s AR E R AR DERE > X
RMSprop i it & % & > cross-entropy 3+ & i chaloss » @ iy 2 e Bl h 03]
»input 7 84 s F B A8 H 3D VOI i 730 3 > @ §#-F & 35 _coronal

view, sagittal view 12 32 axial view % *7 i - &% F '8 %; e 64*64 region of interest >
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T #-ig =z 5k 2D ROl 38 427 = — 52 RGB 2 it 2 » #53] ¢ 2t ¥.¢b » 509

SR S L S SN SIERE AR R A SR

4% 90,180,270 & ~ %+ % ¢ T sik ~ =4 fr gamma, Logarithmic 4.0+ sk
ToHLE A 4 auBE T (overfitting) % o P B F AR E 2 AR IIRFA

BOAEEIL G B NAERIR SR T )]?c Farg- BHCAI T % 102 £ external

‘F_k

validation cohort 3 Fip|3E & K ARBA D ek > 7 3 AUC ¥ 11:£ 1092 +
0.03ch& IR o ptoh > 2 P 5 2 PR PEEDpy PRFA B &5 15 # 5% 6 &
Rl ffﬂézﬁyﬁi%&ﬁ KT A 5 enZ%T > 2 %7k 5 solid portion » b vt A% < & T A%
7€ 5 1A 2 ¢ solidratio chf2 & x ¥ 12 ek = T A ratings j&] B & ik i
% 1 <20% (Highly unlikely) ~ 20%~40% ( Moderately unlikely) -~ 40%~60%
(Indeterminate ) ~ 60%~80% ( Moderately suspicious) ~ > 80% (Highly
suspicious ) » # & ¥| % % % rating & 1~3 B2 F4L % non-IA> @ 45 % 1A J
Bl 4 TR 0 T IR S R R e Al R eha g4 e g e

AUC : 092+0.03 > a ¥ - if*_’?ik'wﬁiﬁgéﬁ %% 5 AUC: 090+ 0.03 -

§
<
_’"\\

> =)

s | [E £
o

,,+w§ﬂ§ﬁ§

3 o

mil

64x64x3 gt/ &
el gl
5%
! I g
19}

B 2.1 Residual learning-based CNN network [12]
23 2B BRESERMHBETEREFEREY

2020 # > d Xianwu Xia[13]% A H N B EFRE Y B s g oh 2 R
non-invasive ( MIAJAIS) £ invasive (1A) &% » & > @fFfJec‘ ORI DT
% stage-| =% H;}}% » B CT 821t & 3R pGGN (pure ground glass nodule ) ¢

SGGN (part-solid ground glass nodule ) » I ® & + & j /i 3t 3mm~3cm 2 & - d
18
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SHERG A B Rk T AP - B kR g T training £ validation set -

Y- B RROFAHLE (Ftestingset 0 M BkEHE & 2 3 F ki o T R22 2 2 E

A2 B -
CT Image
e
| Transfer Learning . |
| U-Net Method Deep Learning Model |
| |
I_ ___________ =
| r ~
I . .
| Radiomics I_:eature | Risk Score
Extraction |
| E \, J
| | a |
| : gg I
= Inf ti
| | Feature Selection | & & I nrormation
| o n | Fusion Method
| 3 | T
| 5 ! |
m 4 N\
|
Il suMcClassifier |+ RiskScore
I | J
- ]

BB 2.2 Flowchart[13]

BRI N2 2 R A S 2 AR o g R AT* A U-net 0 3D recurrent
residual convolutional neural network (RRCNN) £ % 2 GGN s &) » @ 2155 L
G- M E KA B PR > R F* LIDC-IDRI 2 B FHE B 6 h i
FRFARH T KA AP R E o RRCNN 2" R« loss £_i¢ * dice coefficient » 4
dice " #caA% ¥ % 5+ ground truth 2 precition £ fp R 4% F - & Pk 4%4F > V=
RRCNN £& 9= Z pre-train model » 3 F 38 » % = 304 » 5 - Mip A X FREY
EOCHAE A B2 R PRET o FR Y ¥t 7 # U-net $7) i feature
extraction 3R i» e & & {7 transfer learning > %% = % CNN-pooling » {4 & £ 4¢
rA R 2 PR R E DA S R F T AT b O AR HER) R 1 fine-

tune > ﬁxfb%} VA AR o ¥k s BB 0 2 ] B oG = 2. RRCNN
model & &) 4 keniE & § T T d ) 0 T RHERR N R Pk s B A Hee &
z 7 laplacian of Gaussian ~ - A #& 3 ~ — & (E > B)~ A% ~ ¥ (¢ 2
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GLCM, GLDM-gray level dependence matrix, GLRLM, GLSZM ) # iz - & 4| *

ANOVA F-value 77 ;N i B 2 & $Ficd:E o PriE = 20 B {82~ SVM & 7 4 4F o

FRe E@r25 28 5- ARERRAI LGN RIERIZ AL EY Fh S
BE o B fERARE > BH ] B RS 0 B2 F LA SR

&

MLmodeI,‘T‘&g 0.9 dﬁﬁif{_#g%c B letti b2 @E S A EN KRN E

\\\?{r

Yo LG AR 0 A RE0L1 3 093%F - % DLmodel &% i 0.1 R

£5~ ML model £ DL model 2| %7 <naf Bl i ¢ cd & &1 5 B fs en % > AUC :
090+0.03: FFr¥ :803% @ H&ig* 2 E > 2RISR FREY on
AUC g% 5 1 0.87+0.04~083+£0.05> @ H gk s 23 Zocbf 1 F 6 GO0

HY - (wenpmr® 5 67.7% 0 ¥ - =% 70.9% o
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Y2RFET YR

31 A7 HR

AR AR E AL AR o X FRE G Fleo Qo hip e g8 (1) R
A
=

+ % %k 4 lung window T % 2 E_pure ground glass nodule £ E_part solid

ground glass nodule ( % 3% - 2+t )12 T e solid part) (2) F F+ (solid ratio ) »

,T}‘q»\CTE Ig\l—ﬁi‘a ’Fﬁm LA R g%?ﬁ mﬁ,\—\,{;‘_‘s‘_fﬁ?l— Tie » &R
30250 FlE A Sl ARG G TINA AR EARE  RP L Tl AR R

L AR CSCR S IOkl FF ok

T

Pk AR R R e 3 (3) R
b3 aa o 5 TNM A Y s 5 T=TLavis (4) CT 5 s B slice
thickness /i ** 0.62~1.5mm -

*EFTACTRHGE - 75 <] T.ffi §_512*512 » KVP 4 ** 100~140 z_ & ~ X-
Ray tube current (in pA) # Fl$A - & 19 3] 647 2. & - convolution kernel = 7
18 #& 7 I e 5% (B, B20f, B40f, B40s, B50f, B75f, BONE, CHST, FC08, FC08-H,
FC51, 1407\3, 150f\3, L, LUNG, STADARD, YA, YB) > @ & & it FHFH> & 23t
A AR E S HE T HU B2 A7 > 4B 3.1 e

B PE = anF 4L P Invasive adenocarcinoma # & £_75 £ > Non-Invasive

adenocarcinoma #& #_175 % > A 5 5 31770 £ 3.1 Z S fgn T A o

& i Mean CT Value solid ratio < 0.25

numbers
numbers

6 8 10 12 14 16 18 20 22 24 26 28 30 -850 -800

-750 -700 -850 -600
max diameter(mm) HU
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B 3.1 & =+ & /&2 mean CT value » # [

23 1A F42 CT 482 5~ 2 /& ~ mean CT value +* # %

AIS / MIA(non-1A) 1A
g 175 75
BSELE
. 12.6 + 3.8 142+ 5.1
%2 % (mm)
T 3= HU —726.8 +50.1 —706.3 +48.3
CT*wm <] 512 %512 512 %512
B, B20f, B40f, B40s,
B50f, B75f, BONE,
Convolution CHST, FC08, FC08-H, B, B40f, B40s, CHST, 1403,
kernel FC51, 140f\3, 150A3, L, STANDARD
LUNG, STADARD, YA,
YB
KVP 100, 110, 120 100, 110, 120, 130
X-Ray tube
20~640 29~458
current
32 B3 ik

AR RPN G 2 8 AdaBoost i B 2 PEA iR R Y A kL g
AR R T EE R G etk g > iz 5 AdaBoost Model ¢ ot & & ¢ L g4
AdaBoost ;& & 2 (T4 3 0 £ R EEFTHE 2 B D AT i mJR RGP > T4
- 5= []{J%—AdaBoost-CNN: An adaptive boosting algorithm for convolutional neural
networks to classifiy multi-class imbalanced datasets using transfer learning 5 34 # 4-
fr #- AdaBoost f& * 7 deep learning > B {8 £ £MF AT T ATiE P IR EHEE 4o

v o adaboost & & #A - H drEfE o
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3.2.1. Adaboost ;& X ;*

Adaboost ¥ - B2 (N jF B2 0 A R o FIDRF AR E § Flw

— AR E L FHRIFR DR GOt NET R { FE A ERLD

R
e

AL 2 A SR T AR AT LGS 0 o] ) e [16] o @ i

i

ALt 5 ¥ - B NGB R E 2 YRR AR T
VIR A EAF R B> FISE LR AR E § SRR S P TR
FooArrihedk R L FAORE RS (0 AR - BASE Y SR
Bt )0 TRE AR BN S ApE RS o IR iR ARG R T - B AR

AP E TS Y [17] 0 F - S e A B (TR A TR

B EARMGEBANFEDL Y Rp 5 BANEIELFLI AHEI REE (F

e
4
i
<l
3
T
frh
i
k4
o
9
@
b
Sk
:
R

7 3] d S e %7 o Adaboost Jn 42 B 4o
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1. Initial weights: 1/,

@ 06  ©

Data 1 Data 2 Data 3 Datan
weight = 1/11 weight = 1/, weight = 1/, weight = l/n

| J
|

2. Classification

A A
o ‘e °e
@ @ Wrong predlctlons} )
OO @ @ correct predictions .. @ Ap—
e® @ e® ¢
Classifier Classifier

\ 4

@ Data weight T
@ Data weight <,

3. Update the data weights

( 4. Modified data distribution by new data weights )

S1914ISSB[D Yeam )|
91e2.0 0} oW} ) Jeaday

Original dataset
*The higher the weight, the bigger the data. New dataset

5. The strong classifier with k weak classifiers

Classifier 1  Classifier2 ... = Classifier k

l J
|

Final result

%] 3.2 Adaboost ;& & /% jin 42 B

AR TR R T N F S SR T 0 LR T
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2 ;F'r% — @ EREA D RS KT i b dp R 2 R e
DICOM #§ % #% +» = g -] & Volume of interest (VOI) ¥ i f e Bt 7 392 B

o PR L B AR BN B Yona o d SIFRE Y A

data driven - f& > ;¢ > U F R < BTORLEF AR > T E R H
B E O R RDTET DR § P iR

peeh o B AP EHF & @ DR B 3 A0 binary mask o #
Phhrdls EZ3 o7 88 @i 21 REELpH Mo N EE R RS L
AENAV R o rCER TR B Ak R F 3 attention 0 53 10 H B Mg A IR B e

M o
3.2.2.1 B ik AR

d A7 2 DICOM B M kih? - 240k > @ R & kp 3 18 BArdp iz
CT ¥ f%’»ﬁ-*‘fﬂ e g A e edpdk Sl ok S8t § 7 & DICOM R4t (tag)
PRI AR ORI R & I SRR R TR iR T R
BA R AR FFE o A LH] 0 H ARk o

A AHE FIEERAE - 7 %P1 DICOM ¥ & B4 : pixel spacing &
slice thickness » # & %] (X £ B2 ik X~y 3w P enifE BFIES 260 » |+ AdFdh pF
ltm BB > BiEies BIRRT L B ijoresize & B h R AT Y -2 I
ffpri— resize 1 0.6+ 0.6+ 0.6 ° 7 Fx MEELS » & 424 ik B is-
¥ - o E R R lic B S CT @ (HU &)+ ¢t pF 78 #2 B~ 41 Rescale Slope
#7 Rescale Intercept & i & 4% & g4 > H 3 o ;4438 (3.1) ¢

CT = Rescale Slope * raw image value + Rescale Intercept (3.2)
FoHhEER o d M HU B2 A F R L (-1024~3071) > &R G € B
i%HUE%JM%’j%+%0ﬁﬁ%o~%%l&%l’% A

Bt O~1 2 o ffs » £ B Benslice 2 7 B 1164 * 64 % 640
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voxel » i® 5 #2732 ‘ﬁmﬁﬂ Bk o

3.2.2.2 B2l

HRET R - S MR
VoL R~ A Rk o 2 E SR T E-T00HU § (FRE iR (A

w7 ] o 3 3% iF connected component i i e 8B (F Bk il R 0L 1 T

A
=

EEL_

I OAREE BRI FRRREAS L F I FAMFEZER

F.

R OE RN e A d] > 2B 2 A frangi ¢ 5% 0 B8 frangi filter 1 ip)
Bl 7 53 gt fa 29 Hessian matrix - = Ff i #es ¥
B RN H I IR AR TR S E A AR 2 SlcE R
mop kAL G h= B oeigenvalue(dy ~ A; ~ Ag) B F T I DA 2 00 |4, >

24| > |A3] = |Ap] > v 2187 g (Rd ) o 3% 0 B HEBIL 2 17 level set i

>

B2 0 HARRiAEEF BRTACEORARAATE RO v EER > FHAR

=k

D AT RSB DOAIE AL TR T ARG B G AR EFPN 0 &R AR
#R F~ﬁ§{<’%/“%%ﬁ%&ﬁﬁﬁ%éivﬁﬁ%@&%gﬁw,

BEIEAE S N RRER ) B NS R R g AR

N
ﬂf‘é

TAE R 0 B IR NSRS E IR AR o 5w levelset BE 2 Ry

#]?]b% E#;)Ef’:—\‘

"m}.v

A A ﬁfﬁa‘r“ﬁ% Hoo B g EEchi= ¥ o 1 (F B MR A
B E EHA GBS R TS o BIE R ERE R 0 o R R A

o USRS o TR BN TR (F33 F34):

Bl 3.3 R 47 iR
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B 3.4 B 3.3z 4 |H

3223 FTHHE

Deep learning % — &7 & ~ £ "R F M KB F2HH2 2 > d 209 RHEF] 0

EALS R HY R RRRET R PR

\\\?‘;r

B AT S B R T Y
FRLFFAERITNEY > RS A4 over-fitting (IR % o &%%%21’;\1 B~

Fed 7' FR FRETRBE D NRE L g PRE G RURIE Y A

Fengiife KA FH 2 B R AR o

AFT 7 i 4 (Shift) 22%dE (Rotation) % & 4 37enfl > 2> 6 3
X Yy zZZgh¥ A 0 B AP A X B YA R AT HE 2 L5 4pixels &
8pixels ip¥E z v A # 2 H & 5 3slices 22 5slices » BRIR AX YT #HH 4
pixels » B z ¥ # %> 3slices > B x v Hdz 7l s L (X y>2):(4-0>
0)~(-4-0-0)~(0-4-0)~(0--4>0)~(0-0-3)~(0-0--3)~(4-4>
0)~(-4>-4>0)~(4>-4>0)~(-4:4>0)~(4>4>3)~(-4-4>3)~(4>-4>
3)~(4245>-3)~(-4>-4>3)~(4s-4>-3)~(-4:4>-3)~(-4>-45-3)~(4>
0:3)~(-4-0:3)~(4>0:-3)~(-4>0--3)~(0-4-3)~(0>-4-3)~(0>

45-3)~(0>-4>-3) £ 2646+ 4o B
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/L,fi P }'/i
ARl

e G e
=0 O RV
PR T4 B RV 2 71 E
W = W |

i | | i 7 wF
T TR — X #dl
Ve O Y Wn

;—/ “““““ L x_,l

slices (2) x~y:8pixels>z:5slices: ¥ & fHFx—- X MFwfa= v Uik

FRE 0 A s A D900~ 180° ~ 270° ~ 360° 0 i i A A TR bR H £ TR AT

st Ap 23 2(A At )« 26( 267 » )« 4(adE e B & R)

20848 -
d ot Rdea BB TR 5 317 4t RATRA 5 fold 15 > @ fold
HT U TR e r S RS T R T AL 2 BB TG W B3 30T

e PR B~ A B
323 WAHH

FREVEZ 20 A RV TR BIFE O ¥ - FERARH Hbﬁ} LA
R ? 0 3 dF ik B~ (Convolution layer » max pooling layer ) > Aﬁjﬁ%ﬁ@?]
~ zhenlayer 3Bk ehdF e 5 5 oscale $io] e~ ) ke & (low-level
features) » A% ~ & ~HR T E > A AT S (AEFA ) o BT AR
o & o low-level feature + > R {iE > F Y e B0 { L F5F & LR (R
% engF e 3 (high-level features ) ; 3] % - FEELens * > -5 - FFE P2
Py wikdy 0 1817 p 4 anke 4 (fully connected layer )

PR LA R D R R AR P AR B 0 8
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¢ A #HIE 4~ W5 Depth-wise Convolution ( Convolution layer ) ~ max/ global
average pooling layer ~ fully connected layer ~ activation function ~ squeeze and
excitation layer - attention layer » 7 ji# & & ZEfpens s 8 £ /1 5 AR TR M

£ BT 2 f#—AdaBoost Model -

3.2.3.1 Depth-wise Convolution Layer

B -4 4t AL & ch Convolution layer R IZ P {8 > AT T 2 B35 %
1 ¢ «hdepth-wise convolution & 4 & - Convolution layer &_d = i # Zgorle = @
LN “Fi%—ﬁg, » 3 K e ijest B_feature map &2 &t g B & e kernel (2
Fifilter) wap ff > v dp A B Pt L 4 feature map fdd goihik B o

Convolution layer 2. # 5 ;% 40 34(3.2) :

x} = f (Siem, xl™* # klj + b}) (32)
M; ¥ M; i feature map
xi % | & - feature map + & F| % i ¥.¢2 kernel p 4%
xf xR B g %
kt % Ak e kernel
b} bias
O i S i

BEEM2PFTE & % dcd & 5 Kernel number £ kernel size < kernel number
PR S feature map ¥ ff chkernel ¥ HE R EHFFE ALY

% e feature map # £ 4p ¥ - B $-¥c kernel size > 5 kernel & ¥ e o] > =

AL BT R Y R RS o ST E U oR) 35
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1 [ 170011

1 ¥ e -

1 1 e
= —— * =

1 xS -

0 1 | B e

001|111

(a) (b) (c)

#] 3.5 Convolution % 38 & (a) &R 4> 4 4*4 > (b) 5 kernel > (C) 5 A de @ iz Ef2 % %

W 3.5 (a) £_4*4 s feature map (x/7') - 3 FdF AR B 15 A ip e 2

feature map -

&7 LA M opadding (TR S hE > M2 4 BT AR )

apmwmwﬁiaﬁﬁﬁﬁ&%?%@ﬁﬁﬁo@Jé@@wﬁéiﬁ’%&

kernel &

74 4% o (b) kernel (kj;) - (c) feature map #a% % f# e % x/

Depth-wise convolution[18] (= #i% separate convolution) P cHE_Aa % ¥

BHp Ak RT RS EE R W A A 4 28 depth-wise convolution £2

point-wise convolution o i £2 — 4% 4p £ e > 3t v & feature map 7

channel & =

kernel & 7

I5/% » 35§24 & B channel - feature map ﬁﬁg EN I AES N

(5% - & 2 : Depthwise convolution) » £ concatenate # 47

fi# e feature map 15 :& 7 - = 1*1*1 cH¥ f# & & - depth-wise convolution # + g

gla‘[;{"' lligﬁ il rf—;@_gf%;;j ‘/)é“"’@;"f

ek

HiF (¥ § b 4o 3.6

(1*1*1)
filters

—

3D voxel of size C feature maps 3D feature
(w,h,l,c) Are concatenated map of size
Can be splitinto ¢ Into one single (w,h,l,c)
Feature maps L — - Feature map of
C*(3*3*3) Size (w,h,l,c)
filters
C*(w,h,l,1) C*(w,h,1,1)
Feature maps Feature maps
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B8] 3.6 Depth-wise Convolution[18]

* A&7 3 depth-wise convolution & & 3% ¢ %3+ batch normalize £ activation

function » " FE R HCH € X AT @ AT R8T £ F 3 T iR o
3.2.3.2 Max /Global Average Pooling Layer

w1 R e i ?r’:izuﬁi%] » e feature map =% ol RUARY RTER N
Fifco s R DRSS T2 FEFY & ffaB i @ o feature map < < 45
PR e AR Y Rl RPREERY - LA AR A

FRY AP R AR RS A BT

F_&
=N

I

BA B CRERS N ELHE - 5 kernel & feature map b F
oo R HBFBERS A I pE g (L F kernel + /[ 5 2%2 Hdi 20 FRE
AL HES Z 1) T8 R R - &P kernel (s F R B E 0 TR Bl

® 3.7 :
4 2|2 3
0 -2-1 1 4 3
1/0[0 0 = 4 |5
3/ 4|5 -3
® 3.7 Maxpooling 7 3, ]
Dhs T K[19] 0 Bk i i R AR b e S Bt - R kernel § AR T

B 0 e kernel eh+ -] & & B channel # feature map <= -] > ~ yj&{kernel =
fh— i i e ¢ #— B channel 42575 58 2 - BHcE > @ P HcE Hd 230
Ho g chT o R e p Y *{ﬁﬁl »xpen+ o] Zwxh=channel » P]#@z > B » it {8
e+ ] %1% 1+channel 2 & # it & jp s flatten ¥ 02 > 2@ pE R DT em g
BB o R R R o doin ] 3.8
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L) N
d=3

Bl 3. 8 Global Average Pooling
% https://www.cnblogs.com/hutao722/p/10008581.html 1) 4 @

3.2.3.3 Fully Connected Layer

S HR K fos v R 12 > i g flatten (2 &_global average pooling) ¢ # &

3 genfeaturemap B B & % ] Z (wxhx*1xc)eh- 2+ £ (= global
average pooling & < -] Rl 5 ¢c) » & - aﬂﬁ‘l&jﬁi ¢ 70 HA D LI E Y 1 eiE &
foz B E > B F g e v i~ fully connected layer (24 ) 24 5~
gom - e A G AT R MG s SV RGN SRl
[20] > #t 2 K 24k @ BB BB 5 B AU HP DR A DD F e ki T
AEgdk o A R RAZEEL e RORA c H AL LA F DTG F

DRI STER SIS S ST RN EIE S PNTE  NEEY S
55 P ARA S adE u Bl T3 i {8 o B8 (7 4 2 ghactivation function (s S

) EI A E ek o 1 E 9(33)% F 3.9 4o “in

xj(x) = FEr, Wikx) + bj) (3.3)

Wik Ay j-kE2EE Pk=j-1
X 5 % K & 2 neuron
b; = ] & 2 bias
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https://www.cnblogs.com/hutao722/p/10008581.html

v;?—Ji

Xk VV}kv Xj

Bl 3. 9 Fully connected layer

3.2.3.4 Batch Normalize ~ Activation function

Batch normalize %2 € %+-+ B batch =7 output feature B~18 > IR enT 5@
(£(B4)) R # (43B5)) {4 » %% i feature map Bt 2 T 5% ‘f 11 3 )

BRI FEAT > - T BRI R AR > 74(3.6) -

1 .
IJ' = Z ?=1Zl (3.4)
o= Tl - 35)
7 = Zl;# (36)
n - & batch 42 5 7 FL i
z! ERER !

Activation function 3 % % &4 > [ & & ¥ @& * corelu ~ sigmoid ~ leaky
relu... » A8 7 B ¥ 4 & & batch normalize & e & B 84E 4% relu[21] - @)
A54c@ 3.10 0 B OERF & EGRRA 0 38(3.7) © relu +t 4= sigmoid % i backpropagation
SPEET UL RFASRES P EE S R HE (EF K % FETE
it ) Ay fully connected layer 75 & $4p: 3 P % ficsf ] <houtput 5 & €
WoiE - B s Sfic—softmax o 4058 (3.8) 0 W oA S nld B A - B PR T

B Bl THES K E B g N (THCASERI PP AT
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-

B 3.10relu

f(x) = max(x,0)
f(z) = ﬁ

Batch normalize £ activation function id ¥ ¢ & ¥ & (& &

(3.7)
(3.8)

M 2 opend A

— B batch Tl far it > R B T30 2 0~ 2 ,a Len¥ i aiv 0 &

% i »~ activation function #:& » = feature map fjgcis > 5 A S B 4o 2L D

BE i g A4 ] P B R R AR T SPYRRE VRS 0 - KR

& > 4r@ 311 -
(Datarom)
| abatch : - _z—p
| 1= ~
: @ | a =@ max(0, z;) )
|
I ]
: @ ! 2= :@ max(0, ;) \
|
| | &
| - | .
I . ' .
| : 5 = Zn—Hu
: @ | ! a LFZ“\ max((),z";) A
n
|\ ’! Vw L4
l_
W o

] 3.11 Batch Normalize ¥2 Activation layer

3.2.3.5 Squeeze and Excitation Net

RSO0

Squeeze and Excitation Net ( #§ #- SEnet) [22]4 & 0P h 5 £ ¥ 7 F channel

EpeaE R NEFHADERE A H fé-i;‘éi!‘m&r LALE 78 B H B squeeze

™ % excitation s8R A o

F & » #j » e feature map {1 * global average pooling #-# -

i# channel e

feature map B~ 5% = - B iE > € {Fh Achx [ wxhs*channeld# 5 1 %1 =
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channelsh# fics £ - 4 5 % - 9 3¢ © squeeze g o B F e EEFE 2
A E2AaM ok Y 5 - B channel & p € £ 42K > W 5 excitation >
# B % & B channel e & & 415 #-p4 1 1 * channelsd fics €23+ w B4 w*h
channel = -] » 12 if 22— B o3& ~ o0 feature map #Ap 3k > k%= & % channel »t
SEnet v #+# ¥ Plethi pEE > 147 H - K ficE & 12 o SEnet 4o ] 3.12
SR

|:|:|]:|:|:|:|:|]:|:| excitation I |:I:|:|:|]

‘y Lelec 1e1ec Qﬂj’

A H
| 4

multiply

) 3.12 SE net[22]

3.2.3.6 Attention Layer

A3 G - BE &I EHL attention layer - 1% B AILRF A 2 O s 2
&% (binary mask) k4vas BAIE Y o d AT PR 4B solid ratio< 0.25
2 E IR R 0 T GETA e B RS B R 4oBI 313 9
PR Y Rt SRR o B g L $HR 4e9 BURCA ¢ feature map 3
binary mask 14 £t #8302 Rlbe s Y 0 T g o (i > R
FE. ) FENEE AL FAL S o o R %LEF { high-level i etk

B o
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B 3. 13 = gk rd

WA HRE A E P oo attention layer & € * S =0 o 4 W[4 AR B

= i# max pooling layer & & > 4™ §] 3.14 :

Attention Attention

(151 @// /.

m Depth-wise Convolution /Flatten

Max pooling / Fully connected layer

-~ ___"

—_———— e e —

B) 3.14 AdaBoost model

3.2.3.7 Proposed Model

1995 3.23.1~323.6 ¢ #75 ] & 1 B2 A AR FRFE > T UEI A
2 FRACA 0 {5 PR WA Bl4o B 3.15 0 12 max pooling layer % 5 ¥
I > A&~ 57 i block -

B A input 2 - B2 247 57 64%64%64 < VOl B2 i 0 i H0A] 15 € 13 filter
number % 4 = depth-wise convolution » I »*id i max pooling #-22 % & < He) is
£7 binary mask # attention » #-5 & 78 Y | R 1 b engein % A F £

Y m N IRF M o @ {5iE ~ Block 2 e SEnet > #-% 1 channel & p § % 3| ehE
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& f2 & 87 Jp & e feature map #afp %k o ﬂi%] 41 e feature map Fe £ i€ 1§ filter number
% 4 e depth-wise convolution ~ max pooling £ attention - Block 3 22 Block 2 4p £
e 2 3t depth-wise convolution £ max pooling 2 & 3 % 4c » — & SEnet ; £ %
i& » erBlock 4 - f&d filter number 5 4 < depth-wise convolution ~ SEnet ~ max
pooling #7 = > 7 & w i Block ¥ 2 A Bo et > B F € B X B A T
Fe B o 1% i Flatten 3 A& ¢ feature map & = — BendFjee & > T8~ fully
connected layers s s 4 #F » i€ iF softmax s output ) K el & B T ¥ B &
B TF R B £ TERI AT ] o AT e 2 W0 28 2 i #- filter number 4%
Kae— Byl adcp 48 G0 RS E d A TR B2 TR G K
5o S R Sl EREHE DA R B o R R EOTARRRE
%7 & E#FO] g filter number o BREHCR] R S F 9476 B YR Sk o

Attention Attention
Mask

@U 1. Y

Image size 64*64%64 32*32%32 16*16*16 g*g*g

Filter numbers

4 4 4

Neuron numbers 32 10 2

Block 1 Block 2 Block 3 Block 4 Block 5

Depth-wise Convolution / Flatten

m Max pooling / Fully connected layer

Parameters: 9476

E S ——

] 3.15 Adaboost Model
324, FRFEILAMFTHEEL

#- AdaBoost & * i A& & ¥ &304 & 4% Taherkhani, 2020 [23]iz /; < % %
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dv 12 en o Adaboost & B & H j*q\ensemble 3 5N s A NanEfee 7

SRS TS S SR R IRE-N RS SUE RS Sl U SRR Y

N
»"

VR RRE A B e M B R 2 GO B B R S B

Z

BRI E 2 R - #3F R £ 4 9 AdaBoost CNN + 4= i# %51 AdaBoost

%

e ¥

= »

Woood A SALE T M T AR T R A b X TR T R R

o

4
|l

e F AL o

P
M
A~

E

= »
¢

, ¥
T ez A% - Al (C™1) pisd s A F - LR
(xL.oxn; BHBENE el onsn 29 9EATHEE 27 Kégs) - #
R E (dl,.dn) > 4 R no B3 e e EB B R R LR
PRI R R PR € FI - BENSE Kas £ L -
Bag s ARl S (P(x) = [p(xpd) k=1, , K )2 #10 B 5 BB i 5 Echsg v

L B RO TR Nk PR B AT o R B SRV 0 g A BB - =

WA A kg3 LAY - RPREETT VR AR E o H (i E
F 408 (3.9) Mt = d}"exp( a—yl log(Pm(xl))) 1,..,n (3.9)
a Iearning rate
Vi RN R R
P™(x;) a~ I BFEEy mBGh- B)EIFFEREESE

$oo A 5% SAMMER i B2 [24] > U SRRl S R L ATE LR E
& exponential 5 § - #1i> Ld & B 2Apsk ¢~y log(P™(x) > FHy i ¥
BEHEFFEUe R B FEFIBTHAD - BEAFRS S £ § F a0y
P B @B log S el do— B BLE E0 R

FF o S S B log St de b - T f R R s
AR F e B g g BT o —yllog(P™(x;)) P #% %
dvf L€ v o] o -H Beif exponential 2 18 & kP RApehig £ @yj}ug RS R A h
HE B —yiTlog(Pm(xi))yjfug 7P~ #iE o i~ exponential £ 3k R4
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3 EHEET S T S TS HE RS
BAS R AR TR SR TR AR B E L AT § MATIEE WD R 5 @

BERIS 10 TR G LATRE - £ 2~ - BEAY - g EFR

f
27 transfer learning c9= 2 > ¥ PPl A= ARz AP0 R X E ATV BRECA

Bew - BRI R R B i h i transfer T ATAORCA] G A ok o GRAT

SN PR L - GO ST T S L i e R

b K AR E A R AF S URIE K i weight o RURE B Y i oAz
)4 3.16 :

| initiaize D, = {d; = 12} \—»  UpdateD,={d)  —— | UpdateDy = (d] \

‘ Train the 1% model: C}(x) F_:I‘;a_nsf;_r# Train the 2" model: C%(x) F_'_r;a_l;s_f;_‘i- cee ‘ Train the Mth model: CV(x)

BB 3.16 AdaBoost CNN Flowchart[23]

d 2> Adaboost £_ensemble = j2 o A7 TEH P N3 B A BHCIRRLS & 02

IF'IT

0 HiiE50(3.10) &
C(x) = argmax 2.¥_, h*(x) (3.10)
k

29 R(x) S 2 (3.11)

RE() = (K — 1) (log(p (1) = 2 2., log(p* () (3.11)

X input
P™(x) k™ element of the output vector of the m™ model
RS E A HANEE TV EIRETER P -

rET Y TR v‘)l%t‘ { AT £ 0 ;800 2 transfer learning 3384 > i #* 3¢
B H#A S ERIF DT ABEEAR ] ~ V7 a;g—np‘} L E 4ex U T - B
ARVHET AR 2 B Y o ¥ transfer learning e VIR =D AT OO

2o o FRE LA - S S transfer 3 ATORCR] o AT LR

[EN
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- BHEATE P AT BEY R (AR E N FE e s 2 FanF > § 4
&ﬁ%ﬁ@&%&&%ﬂoﬁlé vﬂmi&ﬁi AT EBLATR DR
o RATTRT A G B o RV IR R R A TG g S A - LRk p
IR SR Y LA B Y DR A D Do T R BRI FTR NeA
e  BEH e NGB FLEE BIPHRADIBELEE - § BWIRE L FE TG R
AEEAFLERES L A ERREV AR E R FTINEE BRADB S
Bo| ks ok MAdiE AT+ 7 B0 €4 %4£010203035005 i3
I REEETT AL AT BEE :[O0,0.1),[0.10.3),[0.3, 0.6), [0.6, 0.95), [0.95,

1) s T e O~1 2 BAgiss- Bl £ g BEBET - BERA
(P MR HRAFTHRAEEARL > BRI ]2 AL > PIR ¢ P
JERA) TRI LS HRFIURE FRI IR A Y 5 2R 1S £ 47 B 1500

o HFILE SEDIOR TR A R A 2 bR g 3 e 1500 LT 0 2 B AT
SRR AR 0 E - S R g R AT M EE A 2 F B X PoR740 1500 £

FAL o 3 Bt A e B R ARACT B 3.17 ¢
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Training Data weights

@06 e

Datal:p, Data2:p, Data3:p; Data n: p,

1. Generate intervals from data weights

Intervals: [0, p;) [py, p1#P,) [P1+Pa Pi+etPs) .. [Pi+Pny1)
2. Get arandom number fromOto 1 Da—

3. Add data to the training dataset -
(0]
If p;+py., < random number < p;+..+p, ,1<k<n ?
[0, p1) [p1 P1+P2) .. [P1* +Pi1s P1+*py) - - - [Pt Pr1) 2
=
random number H

Data 1 Data 2 Data k Data k Data n

‘ After m iterations

New training dataset

B) 3.17 AdaBoost Model & B~& & /i 42.8)

3.3 ¥z e

331 &4

R A A SRS R Y # Y Rl B4R (1) TS
(Accuracy) ~ (2) #&#c& (Sensitivity) ~ (3) # £ & (Specificity) » @ iz = 7 4y
Bz P EAEEAEEETA D AT Rt 8 g 2 u 5 BB (True
positive, TP ) ~ 7 K 1+ (False positive, FP) ~ & 21+ (True negative, TN ) ~ iz [& |+

(False negative, FN ) » izw @m0 % a2 (B 3.18) k& 7
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Confusion Actual
matrix Positive Negative
+ | Positive | True positive | False positive
;s
2
A+ | Negative | False negative | True negative

B 3.18 &% st

AETHEZEBMEL T REER ?JiF‘K % Invasive Adenocarcinoma

~ B 5 % 23 E_Non-Invasive Adenocarcinoma ( minimally invasive
adenocarcinoma/adenocarcinoma on situ ) ~ iz K&+ 5 F % 5 Invasive
Adenocarcinoma iz 3¢ B 41 % &1-2_Non-Invasive Adenocarcinoma ( minimally
invasive adenocarcinoma/adenocarcinoma on situ ) » % i 5 }+¢ % % Non-Invasive
Adenocarcinoma ( minimally invasive adenocarcinoma/adenocarcinoma on situ ) e 3¢
7] % % 4_Invasive Adenocarcinoma « {1 * igw fAfHR T EBW G 4 P hz IE
i

(1) mrd (Accuracy): ¥ I FEFERIA B S hiv 4 » T FZEFRAP R (7

% Invasive Adenocarcinoma st F’K % Non-Invasive Adenocarcinoma) it =t

—,}s ;E/?.J‘x—ﬁl;% L By 0 * T & 3% (312) :

Accuracy = S — (3.12)
TP+TN+FP+FN
(2) %Atk (Sensitivity) : £ 7 &% % % % % Invasive Adenocarcinoma = &
e *FEAR IR P B 0 54(3.13) -
e . TP
Sensitivity = " (3.13)

(3) #3P£ B (Specificity) : % 77 &9 % % % 5 Non-Invasive Adenocarcinoma =~

BAE Y T AR S b 2 (3.14) :

Sensitivity = il (3.14)

TN+FP
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oo By - HER TR RT L 20 IREE R R A )
Area Under Curve(AUC) » o % 3+ & o 4 (Receiver operator characteristic curve,
ROC curve) T sha # & 46 # 9t &) » BcfE /3 0~1 2 & - @ ROC curve sh#_
& A_t & AR 4 (discrimination threshold ) = » vt g 2 5 5 (Sensitivity or
recall, Y ) 2 2 B % (1-Specificity, X #ih) 2. FFensg it » & B M gt At W - B
Bho AR AN Mo b R ARRT S &gk (0,1) F L IR
BB g FIE P B E B F Ao GBS IS g AUC L 1PF -
Foom FAIT LR F R EIRR O A 05~1 2 0 & 7 AP RSN R A
T AL B HEra 4 5 50 AUC 4 i 0~0.5 0 R & m BRI TR RIS R AR R R
WIERERT LG ST E -

B AFT LWL R RIE R F T R A R TR A ERY YO
A > 4% * 1§ _b-fold cross validation » » rj&{:ﬁ-? FLEEAT 5 B R & kiR
R A Bw ERd BP g TR ERA - B ARERRA R - RS
RIFEFRA - 2 F B 615301 BY BB RIRAT ARG RIS
Beddehs FUGFAL 0 0E - R ENE A ERE R A RIS

BRT UHT RRIE R A R G 4T B 319 47

Dataset

«|

Fold 1 Training validation Testing

Fold 2 Training validation Testing Training

Fold 3 =38 validation Testing Training

Fold 4 validation Testing Training

Fold 5 Testing Training validation
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B) 3.19 5-fold cross validation

AEEE 2 RAFALE 250 £ 5 #¢ 175 5 5 NonlA (AIS/MIA) ~ 754 %
A> A7 BEEGEE- BEEET 155 NonlA % 35 & IA - hskid B 2 plid
BHA LA G 50X TA YRR TS T R4p150 LR > B ERGEER

WG AL DT TG ¢ B NonlA D A B 5 37 It TR - Asi

FP e T 43257 B fold &% - training B & A R~ B - BIEOE
Figg -
% 32 & fold & p et ~ %3 ~ RIHE TR
Foldl Fold2 Fold3 Fold4 Fold5
Training 4047 4047 4047 4047 4047
Validation 50 50 50 50 50
Testing 50 50 50 50 50

WAL 222 6 % S BI YT B REARY SETHLATRE
A0AT £ FHL Y ruB~ {5 e e 4 B 1500 £ F A 2 IR E 0 SF I

2_¢b o 2 Hrentraining #c 37 5 5547 -
3.3.2 Wik~ 1}% hiz2 33

O EZ ROTRIIZT R 2 RN AR D ORIt Y 58 AR A 48 il
B ST GRS E S FRIILRIY A L TR LA U L
P R G R X ﬁl’*?ﬂ ‘AT PRE AT TR L F
T % AFER F] o

¥ - v k2019 # o FanLi[8]% % i - il B AP IR B AR 1S E T2 HUk
00 R et B 4 e GLCM 4 f—cluster tendency ¥7 X,y,z $ih'¥ #iE low-pass
filter z-owavelet 8> %3+ 5 2. GLCM # #ic—correlation » o v~ ¢ 3% 2 i55 B4k

B - wenk R 4 o H3H 2 % A 45 g contrast-enhanced £ external
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validation cohort £ _non-contrast ¢ external/intra-class validation cohort 5 3 24+
i AApy L AAPBER TR T AP I 8 Ak 2
logistic regression ] » # * 5-fold cross validation » 3+ % 5 fold z_ pl:2 & &% -
TR 3.20 : fI* A7 T2 ROC curve - if # < cut-off value 5 0.2799 » H 3+
Y2 oS s %Atk ~FERE AUC & 4| 5 55.20% ~ 57.33% ~ 54.29% -
0.5545 > Aprat gt i < k2 % (H13.21) nAgs & ¢ 90.8% -~ 84.0% - 88.1% >
AR - 97.5% ~ 82.2% ~ 85.7% > R & : 94.4% ~ 86.7% ~ 89.8% > AUC :

0.971 ~ 0.942 ~ 0.936 P FEH 3% ©

1

09 J i
p Tl
0.8 - -
0.7 r “
—
06 _ . o 4
05 A Cut-off value: 0.2799
— 1

0af o AUC: 0.5545
03 ’J f i Accuracy: 55.20%
zr i Sensitivity: 57.33%
S : Specificity: 54.29%

0 1

0 01 02 0.3 0.4 05 06 0.7 08 09 1

B 3.20 ~# 3 FAL£4F Fan Li [8]% « 41§ = 2 2 ROC curve

- I ’—1
r
@
b=
@
P
£
B
@
e
&
w
-
P
o~ |
o Primary cohort
Intracross validation cohort
Independent validation cohort 1
— Independent validation cohort 2
o
T T
0 02 0.4 06 08 1

1 - Specificity
Bl 3.21 Fan Li [8] ¥ + 3% 1§ * ;2 2z ROC curve

KO )[% oo i’t‘—‘ﬁ:}%lﬁ Lim % 4 [25]3* & 1A 2 mean CT % #-507HU &2 # = 3

T 3w gt Y o 4§ e i mean CTvalue - ™ & 3.3 5 %

45

doi:10.6342/NTU202201042



primary cohort ~ intra-cross validation cohort % = i@ external validation cohort = #g %|
7 4 cimean CT value * CT value standard deviation > % NonlA 338 i» 2 T iaig
7% 7-622 HU ~-586 HU 2. & » IA P15 %-398 HU ~ -466HU > % #75 cohort ¢ =
BT CTvalue ¥ § BEE 4B » @ A7 72 IAmean CT value 3 -704.3 ~
NonlAmean CT value 5 -726.8 > 4r% 3.4 > &  #r 4 » enF 4 & mean CT 1+ 2

t A SR il

TS

THFLE Xy @se R nlidp G A0 &R
JRIERA i & R F o

# 3.3 Fan Li [8]% 4 #= 7 ¥ # mean CT value '* $&

Non-Invasive Invasive
Prime cohort —586.4 +104.6 —424.7 4+ 151.6
Intra-cross validation cohort —587.7 £ 110.5 —408.4+ 161.1
External validation cohort 1 —601.9 + 90.0 —466.4+ 111.6
External validation cohort 2 —622.1+126.5 —398.+161.3
# 3.4 ~# 73 742 mean CT value
Non-Invasive Invasive
My data —726.8 £ 50.1 —706.3.+48.3

2020 # > Hwan-ho Cho [9] % 4 i%:iF lasso =2~ ;% j&_40 % radiomics features %
BB L& ManT B3 #c—Range, GLCM-entropy, ISZM-size zone variability, density,

mass » I ] * = f& 4 # £ : SVM ~ logistic regression ~ Random forest 3 & #

-

L R TR S SR R S A o

# I e marginal features » 12 2D *» 5 ¥ %5 p

'ﬂ\1«

F¥ & 2. 5/100, 35/100, 65/100,

95/100 T4 2B enF i » e A B EA NI BE L v 228 45 - BAMRBET
BERE R A B MO gt B 2 pixel B bR LR pixel BB vt Gl A R A
* afcCOF > SW= A FAF B > HEBd ABAFLIE N7 5w B

Ho Tio s R F R 2R AL 0 T 5 marginal features 0 -5 % lasso iE 42 T
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f# 4 g marginal features fr PF2cr = B A B B % - TA 355 iFF2 B

% H 7 Model 1l E A * lasso if ! eh7 B 4FpuE = A~ 8% % > @ Model 2 B
% 7 4v > marginal features #7i¥ 3| cha 5 % > F UELE I = A4 5 % & Model 2

ha Jg i Ap§ Model 1 375 73+ > H @ 12 logistic regression g % B it
FRES ~ AR ~ R R & AUC & %) 89.36% ~ 89.47% -~ 88.89% ~ 0.9766 #%
< 3 91.49% -~ 89.47% ~ 100% ~ 0.9825 - <~ )gJec‘ 7 4% % j8_lasso iF J 2 T B e
G i AR B P[26] 0 BT KA AR 0 2 4k & 4 2 B-fold

cross validation » vt g 41 * T i 43 e 4 » marginal features {5 4 %] * % & & 55 B

AU R B o o d ] 3.22F 0 d G K e~ marginal 03] %
random forest ch4 % 5% % B4F » H B/ ~ §A7A ~ H B A AUC 4 4 4
59.20% ~ 60% -~ 58.86% ~ 0.6221 » H %% 27~ [f% AR ¥V - F 5 A HAA)
A KE R T A ST L 4~ 7 marginal features 14 5 2 3RePA SR % W 1T

(B 323) = —*ﬁ’év’?AUC #0731 0.6000 > #ra ¥ AT 2ZF AT A r AR

T AL ZFTEAT LM L RE g

Adjusted
Accuracy Sensitivity Specificity AUC P value
R-squared
Training
classifier
Model 1 0.6613 0.5909 0.7245 0.7490 0.1757 1.5725E-09
LR
Model 2 0.6828 0.6250 0.7347 0.7507 0.1781 1.1879E-09
Model 1 0.6935 0.7159 0.6735 0.7767 0.2201 4.8897E-11
SVM
Model 2 0.7419 0.7841 0.7041 0.8291 0.3085 8.1370E-16
Model 1 1.0000 1.0000 1.0000 1.0000 0.9326 6.3055E-110
RF
Model 2 1.0000 1.0000 1.0000 1.0000 0.9366 2.2911E-112
Validation
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classifier

Model 1 0.8936 0.8947 0.8889 0.9766 0.2806 7.6634E-05
LR
Model 2 0.9149 0.8947 1.0000 0.9825 0.2700 1.0832E-04
Model 1 0.8085 0.7895 0.8889 0.8450 0.1907 3.5768E-03
SVM
Model 2 0.8511 0.8421 0.8889 0.9240 0.3323 5.1925E-05
Model 1 0.8298 0.8158 0.8889 0.9211 0.4264 3.9296E-07
RF
Model 2 0.8723 0.8684 0.8889 0.9678 0.6078 6.4906E-11
n.a il az‘a 08
T T . . N . |
s ‘ J | Cut-offvalue: 03166 I i T Cut-offvalue:  0.2689 s /1 Cutoffvalue: 0.3000
04 A 0.6200 04 T e 0.5039 04 T A 0.6221 |
03 i Accuracy: 59.60% 03 , ! Accuracy: 55.60% 03 Ny 3 Accuracy: 59.20% 1
02 ; E Sensitivity: 65.33% 02 JF i sensitivity: 53,330 02t s i Sensitivity: 60.0% 1
UIL L i Specificity: 57.14% q“ v ! i Specificity: 56.57% orrd | Specificity: 58.86% |
‘OgiS“C ' : o h 5:};\” o : ) " e nRr;: : o h ‘
Bl 3.22model 1 2 4 2. %%
. <] 0
07 _l . 7 r 7 —
::"”””””:;:_. Cut-off value:  0.3109 | SRR atoffvalue:  0.2690 : """""" "W cuteoffvalue:  0.3000
04 i E AUC: 05931 . i AUC: 0.5448 a EAUC: 0.5888
03 ! E Accuracy: 58.0% 3 , -~ i Accuracy: 55.20% ? . iAccuracy: 53.20%
o2 1 E Sensitivity: 58.67% ‘ i Sensitivity:  49.33% S i Sensitivity: s4.67%
I | Specificity:  57.71% : i | Specificity:  57.71% ; e i Specificlty:  52.57%
1] 01 02 0.3 0.4 IOQETS";JE o7 08 09 1 o 01 02 03 0.4 S\U/?\A 0.6 or 08 [1X:] 1 0 01 02 0.3 04 ‘JRJF 08 0.7 08 0.9 1
B 3.23 model 2 2 4 2. %%

224

= [;Jr FREET

validation % % % - .r

g B SVM 2 ogistic regression et R % vt

,l)

(Ea- Fﬁﬁg‘

ETIR

validation cohort enF A 5 &8 12 1A

| » validation cohort =7 |A #4p # 3% training cohort % » #1r2 A w2 w2 § - B
o ¥ b A #&£ % validationcohort » #& % > H At enE &4 ) i RAcd 3.6
BB AEDRE BRFEFIFTH P IREFALAL A AL 2NFTRAIASDINRE
E<lem3 434 1em < E 8 <2cm7F 124 ¥ >2cm < 2 /% < 3cmF 8 £ > nonlA
P EE<lemt 194 1cm< /8 <2cm} 454 > 2cm < ® /< 3cmt 114
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ii;‘;i”ﬁ PrAGEI A 2R B ) ek 3T ATRRG A AL R
3.6 @ REETYIRE B R T A A [9]

Training(n=186)  Validation(n=47)

<1 31 5
1<<2 108 22

Tumor size (cm)
2<<3 41 13
>3 6 7
NonlA 98 9

Histopathology
IA 88 38

# 37 AL TS FER 2B A E LA

IA(n=75) Non-1A(n=175)
<1 43 19
1<<2 124 45
Tumor size (cm)
2<<3 8 11

>3 0 0

fe & Linyu Wu [10] 3 4 » 1% 562 & 8 22 5% & R0 0R 2mm 2§ B ids ik
B~ 3k P~ o %) 3 histogram, form-factor, GLCM, GLRLM - 2 4 = #Fjicis 3oL
¢ %3 SMOTE 77 ;4 8- 57 T30 2 4217 Ll ot B 0 38 {7 i - mRMR
#2 LASSO > 4 LASSO iz ¢ A4 & BREAH R iaE > EP 0 thl? 5 0 2 4
B BEACE e GlAp Ik (8 2304p 4 ¥ @ 3 Tradiomics score | 14 1% iR 0 A #c
il 3§ logistic regression 17 3 # {6 A sl K o 2 )*k v = F8 7 I e radiomics score
HoY - B R AR A 4 2 AR F L oot 42 F| 0 intra-nodular
radiomics score 12 & % Fg AR H SR 2mm g T A 4 2 B D TR AR
7 $]2_ peri-nodular radiomics score » ¥ & f& # ke pF3 7 (8 2|2 gross radiomics

score > H & wlehit frd 5 1 82.9% ~ 77.1% ~ 88.6% 0 & AT AR 1 90% ~ 80% ~ 80% >
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FRAR

radiomics score & §| er

# #+ & &1 eh gross radiomics score 1 boxplot - d BT BLE T % vt

- 80% ~ 76% ~ 92% - 2 AUC z :

0.852+0.820-0.876> H # 14 %

= F4 gross

k% 5 B i o B] 3.24 5 training cohort £ validation cohort =

i# cohort *

label 5 1 (1A) ehiE % 3% ii'?r;‘]?i“ label % 0 CAIS/MIA) e+ o {85 — {R&4 44

A7z

e #%1L F 5-fold cross validation = ;NB~FH oage & > # 38

training ¥ validation 48 3] &~ % B 5 B85 W] ahs # R

B 3.27 -

W R AR L 2 LA Y R B

B ¥ AUC 4 4] 5%

£ 2

58.67% ~50.29% ~ 0.5493 > & {& fe pF it * *

58.67% ~ 57.71% ~ 0.5972 » j¥ =

m H i AR

Radscore

o
X

Wilcoxon, p = 6.6e-08

-

R
B
.
.
O
.
L&
.o

0
Label

training set

Label

Blo

BB o AR Bl e R b

Radscore

%%%ék%%ﬁ

o

T B~ GLCM ~ GLRLM ~ GLSZM 12 2 Hostogram # #c14 € 4F /];Jq R2PE3

WAy R fold &

LB 3.25 ~ ] 3.26 -

4 5-fold T e kS« Rk B

@ 5-fold T3acht e ~ Ak ~ F R R AUC » 5] 5

Bt R P2 R 4L 105493 -

Wilcoxon, p = 0.0061

—“‘FfL AUC 3 & iz

0 1
Label

validation set

- 57.60% ~ 64% ~ 54.86% ~ 0.5928 » @ & * #h ek IN A 4 2 i

: 52.80% -~

58.0% ~

- 0.5972 >

Label

o

B 3.24 = )ﬁ% gross radimoics score 31 st & £ ) & 2 44 7] BI[10]
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Radscore

Radscore

Fold 5 Training SMOTE
o

Fold 5 Training

Fold 5 Testing

;, y 1 T 15
T [ $% | J
= I = I
° N é ° g o
(e) Fold5
1 T A
.H"J—]
0.9 e .
0.8 ‘_‘_, — a
0.7 ~
!
0.6 :-?f
o
05 i Cut-off value:
J ,
04 s ! AUC:
0.3 4 '
' Hf ! Accuracy:
0.2 - 1 ape s
! Sensitivity:
0.1
f : Specificity:

0 0.1 02 03 04 05 06 07 08 09

f ROC
W 3.25 (2)~(e) » 11 s 352 # LA+ oz 3 Fold 1 3 Fold 5 4 &l &% SMOTE 2
training data & #g 4 # 453 B ~ /& 45 training data & #f 4 # 44 %] B] - testing data & #F 4 % 45 3] B(f)
% b-fold 2. ROC

Fold 1 Training SMOTE

Fold 1 Training

Radscore
)

N 2
g .
2 i |
1 L.
o ;
B of

Radscore
)

o] o
o 5 o
Invasive Nonlnvasive Invasive Nonlnvasive
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1 3.26 (2)~(€) > 11 "8+ #5244 + fr it # Fold 1 3 Fold 5 4 v
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071
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04r
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i !

( |

/ |
U."l 01‘2 0?3 Uj4 U‘I U.IE 017 0“8 0‘9
f ROC

Cut-off value: 0.4468

AUC: 0.5493

Accuracy: 52.80%

Sensitivity: 58.67%

Specificity: 50.29%
2

s SMOTE 2

training data = #5 4 # 3 21 B -~ /& 4o training data & #F 4 % 45 ] B) ~ testing data & #F 4~ # 45 3] ()
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W1 3.27 (a)~(e) & 1 #3082 b 302 $r £ 4 < ki £ Fold 1 3 Fold 5 4 % & 4= SMOTE
Z_ training data & #g 4 % 45 % @] ~ J 4> training data & #g 4 % 45 7] B - testing data = #E 4 # 45 3| B
(f) % 5-fold 2. ROC

e TE I E AT A gk s A §letah e & gross radiomic signature
dvor Bk B TR (7 A 4F G training et A 7 & e (AUC 4£.0.869 ] 0.917) -
% validation ehig & RI&2 il 4o » S < E f2enig % 27 5 > AUCHR 5 0876 - #5777
B2 FTHAIATLSE T 51424 5.1(mm) > NonlA B] 5 12.6 £3.8(mm) > & 2
¢ etraining set IA T'35% j£: 14.81+5.86 ~ NonlA 5 : 11.72+ 6.1311 2
validation set I1A: 14.62 + 4.88 ~ NonlA : 936 +4.11 > fp# A 7 FTH LFES
<o TP AAEE A2 nonlAH <] bt’v/‘k; Fliprt ik > @ i ¥ AR K AR
FE LA E- A sy FetanT 3 [27-29] > #10uW v d 2 HE <) 4pig o
- BAMRGEEREELEAEE -

2020 # » Guangyao Wu[11]% * » &4 $F 8 F & B M enfdify o 4f F 3R Beeh
SVAERK AR B E-50HU v Rty MR R S A a8 B8 A %) 5 Ground glass
region (-50HU 2 %3 ) 2 % solid region (-50HU 12 }+ % ¢ ) » i% i RadiomiX
Discovery Toolbox » %P5 R i fic » HP RSB FHAEP > T k- 3 8
PR {6 0 B {8 solid part et A P A = B A (1) B2t y,z $hia high-
pass filter 2 X $ihiza low-pass filter {5 - J¥_NGTDM # B~ contrast # #c > (2) 21
*+ X #hi high-pass filter 2 y,z #hia low-pass filter & » &_GLDZM # P~ DZV #
Mo 13 (3) Bty b high-pass filter 2 X,z b low-pass filter {8 » j&_
GLDZM # 2~ DZV #4x ; @ ground glass region P #4:% d1w Bt (1)
GLRLM s SRLGE » (2) # %2t X,z #hia low-pass filter 5 » 8 3] = 10"
percentile =% F+ i& » (3) compacteness2 2 2 (4) B2 %3t X y,z shiza low-pass filter
{6 > 3+ 5 e local intensity peak » b Bk - B aFA BRI L8RS IEST &
AR ~FR R AUC £ 55 1 93% ~ 98% ~ 78% ~ 0.9800 - T'F—‘Fk, ELAIC R A
clinical model ~ volumetric model 2 2 i * % [~ § 4% B~2_ radiomics feature 2 *
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HCAE R ok kot H o Bkt HHaed 3.8

L 3.8 % xR 0 1)

Model AUC Accuracy Sensitivity Specificity
Clinical-sematic 0.90 0.74 0.66 0.94
| volumetric |
GTV 0.87 0.74 0.68 0.89
GG&S 0.90 0.74 0.64 1
Radiomics
GTV 0.88 0.72 0.64 0.94
Gound glass 0.96 0.9 0.88 0.94
region
Solid region 0.82 0.75 0.72 0.83
Perino'dular 0.66 0.54 0.54 0.56
region
GG&S 0.98 0.93 0.98 0.78
GTV&P 0.90 0.72 0.64 0.94
GG&S&P 0.95 0.88 0.90 0.93

2P GTV i hysrdm R 0 GG 5 #R-50HU ™ chf i ~ S 5 "A-50HU 12 F enTess S P 3

¥R LY R Bmm 0 B o

BT ok g )guz‘t 41 2. GG&S volumetric model 2 2 ground glass lesion 14

% solid region #* ) &k e~ i 4 paE = chradiomics model > A8 7 FALiE 7 5-
fold cross validation =27 2= *i& I [F*J%i:sé% At g @ od J];f E AR B}
R AR AR O R A Y solid region e i H v gk

Py @ e E D -190HU ~ -290HU fik F ¥ ook “,ITT 1o Ay 4 solid
ratio<0.25 z_ FALE F PRt > & € de r LA g ?5 EF PYi% 15 30 % solid ratio>0.25 2.
FARPR o EEFHE SR > 40T £ 39
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239 AELTHER Jro i B

Model AUC Accuracy Sensitivity Specificity

volumetric

GG&S(-190HU) 0.5151 0.4804 0.5200 0.4686

GG&S(-290HU) 0.5157 0.5080 0.5333 0.4971
GG&S(-190HU) * 0.5659 0.5335 0.5147 0.5459
GG&S(-290HU) * 0.5742 0.5820 0.6176 0.5556
Radiomics

GG&S(-190HU) 0.5938 0.6000 0.6000 0.6000

GG&S(-290HU) 0.6039 0.6160 0.5733 0.6343
GG&S(-190HU)* 0.5577 0.6114 0.6047 0.6133
GG&S(-290HU)* 0.5843 0.5648 0.6579 0.5467

Z. ¢ *i% & 4e > solid ratio>0.25 2. 3L % %

395 % k5 » 7 3% H2-190HU B £-290HU % i+4 & - % solid
ratio<0.25 2 F 14 2 A PP FAL AT D) Koy % R 2 ;,;%g;&&%f:f% PR ist g
¥ L;Jqpf\ql—'u 2 AR TR AR 0 A W solid portion 11 2 T3 HU B2
hiEfFEL o

[ER ?'F—"Ff’ﬁ # B4k & T4l arsolid partion 2 2 2D attenuation » ££32 2 zgie

FAHE AT TR L 40T £ 310

# 310 & F FR g2 g0 solid portion 2 attenuation st %

Solid portion attenuation
IA 43% -293.2
Paper’s data
Non-1A 61% -448.9
1A <25% -704.3
Our research’s data
Non-1A <25% -726.8

#4310 ¢ F o e g AL @ E-50HU 4 2] 2 shsolid part ikt A g
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¥>40% > F LE AT FHAIAZ non-lA v R ApEST A T TR A b
wE e 0 ¥ Ck K _attenuation i& B A HE x » WA IApIRT B RF S
SRS S A LSRN St VIR A

part solid 2. #@ % - 4] * ground glass region £ solid region » %] #% B~ fic3 & = #

3> #F % 5 partsolid GGN » @ % i & pure GGN enF sl » s & F s # 1+
FEAR 2 @A FRENHLE L F o RO AT L F ¢ solid ratio #
M2 FREFAH w3 £8 -

2020 # Jing Gong [12] & ~ » #EFAE ¥ 0> V&7 IAZ non-1A ch4 5§ >
Hiaz 2 #0328 4 & A residual learning-based CNN network % it {7 i3 #c »
VR s ek S 8 A eninput A £ % F A A 3D VOl TR 0 @
#5343 _coronal view, sagittal view 12 2 axial view & 7 di - 5B &% F R ih
64*64 region of interest » ¥ #-iz = 5% 2D 7ROl a2 fp2) = - 3% RGB > =z §
FEH R 1S TR T HCAPIM o v g i en 2 B - ] 102 4 external
validation cohort § 7R3 & KA D g%, » 2 AUC Y i F] 092 +
0.03e74 3 > & /&5 ~ Fl-score ~ weighted average F1-score 4 %] 5 : 83.3% -~

74.6% ~83.3% o g ¢h » 2 ¢ Jr 2 P RIEERy PREABd B3 156 £ G%E 6

—\
G

E S éﬁ’?iﬁaﬁi%ﬁ EF & 5 solid portion ki {7 A 5 end|¥r > K o 5 T 5
Fle g% ¢ A rating 5 1~3 2 Tl ﬁp: =non-lA> @ 4~5 %5 A > 4L%E R

¥ 4 ;ﬁJ:hlﬁ‘{%;;zg’rﬁ’;Ej-;fi%éFF fadend| e Al g chd| ¥4 EAp g o 4

"."_"l

AUC :0924+003> @ ¥ - w%zkffﬁifﬁm*%ﬁAUC 090+ 0.03 > = ¥
ROC 4r® 3.28 - 5 £~ )EJ% €2 > ¢ R~ 7 2 T4 A = - ¥ training
validation ~ testing data » {1 * < jpt4% 2 2 3158 7 - A S PIRUE & AT
2ot FEF s FAR ~FRE R AUC 5 05829+ 0.04 ~ 0.52+0.03 -

0.5640 +£ 0.03220.5749+ 0.01 > &&= )gkﬁﬂﬁ-;ﬁljf:;:ﬁ FETiE A 0 4rB] 3.29 o
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—e— Our Model
AUC=0.92+0.03 95%CI:[0.85, 0.96]

Without Residual Model
0.3 AUC=0.82+0.05 95%CI:[0.71, 0.90]
—e— Senior Radiologist

AUC=0.92+0.03 95%CI:[0.85,0.96]
0.1 —e— Junior Radiologist
AUC=0.90+0.03 95%CI:[0.82, 0.95]

0 0.2 0.4 0.6 0.8 1
False Positive Rate

F13.28 i3] & § f7 2)¥r2. ROC # 4 [11]

]

0.9t

081

L 1

05k . | Cut-off value: 0.3511
sl do ! AuC: 0.5733
03 i 1 Accuracy: 56.0%
021 ‘J— i 1 Sensitivity: 66.67%
oap | i | Specificity: 51.43%

0.

B 329 A# 3 RlFF 2 ROC & &

d 2 sl R 8 g solid portion rd At 2 & 311 kg HFEH T &

* {f;;_r;ptﬁlgr; % solid part %,}m I S *uﬁiP&ng ¥ i i ] %7 solid portion #1
$F AT F ] AUC 0.92 4 0.03£270.90 4+ 0.03:5%F 5 % » % 57 solid part $+3*
Hgrrdg 5 IA & E_NonlA - 24 € & endfpih > w3t 2447 7 #F solid ratio 7 #7

24 4>t solid ratio< 0.25 0 Ap Rt =2 ;F*Jei FALRER (T W o

3 311 »cdtft 7 4 GGN A 4 15 2 [12]

Likelihood of GGN being

Percentage of solid portion A Rating
<20% Highly unlikely 1
(20%,40%] Moderately unlikely 2
60

doi:10.6342/NTU202201042



(40%, 60%] Indeterminate 3

(60%, 80%] Moderately suspicious 4

> 80% Highly suspicious 5

B {4 - K Xianwu Xia[13]% 4 > g & 1 MM ELIRAF Y 2 2 kw7 LTE
B Bmpediana g > A A2 2 RRONN 538 (74 2] > @ 350 cha 2407
¢ % o feature extraction eZE BB E T G h it 2 A B 2BIF R ¥ S 45

PR o e A REZ TREFEDIR O B PIRTREHEERER S V- 5

% > ¢ 7 e RRCNN 22 = 2 & 2H-A1 4 2 § TR EFVER#F - 19952 4 3§
R4 % N 3038 (7 4 ek P~ 0 17 1) laplacian of Gaussian ~ /] &3 ~ — FF (2

B) 25k % (¢ 3 GLCM ~ GLDM ~ GLRLM ~ GLSZM) #jc > £ 1 *
ANOVA F-value e ;8 i B 8 2 acde:E > P45 20 B~ SVM B 7 4 3 o &
* 4% DL model £ radiomics model s FF 1 Ho FOFRBRAme > 7 Hhi
Fré G EES F R 2Rl %Y (P58 i RIS 5 i final prediction =
max(radiomics model prediction, DL model prediction) - AUC : 0.90+ 0.03 > =
FE% 180.3% > @ H ¥ * radiomics i H i * deep learning 17 AUC % % & %]
% 1087+0.04-083+005> ¥ » H2%, &5 if_%;:éfﬁﬂi?ﬁa: ot o Hod

- RS G 67.7% 0 ¥ - =5 70.9% - B 3.30 5 ROC curve :

10
| I

0.9 4

0.8 1

0.7 4

0.6 1

0.5 4

True Positive Rate

0.4 1

0.3
= TFusion Model AUC:0.90

0.2+ e —— DL Model AUC:0.83
yd —— Radiomics Model AUC:0.87
o Senior Radiologist
e ~®— Junior Radiologist
0.0 +-

00 01 02 03 04 05 06 07 08 09 L0
False Positive Rate

] 3.30 Radiomics #-3] &2 % & & ¥ #-3] 4 2 fusion model 22 ROC # #1[13]
BRI 27 2 ?%Fijiﬁ?');%féiiz‘: ' e éf’%i— g 2B FHE LIDC-
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IDRI 4 23] ' R > £ 82 20 gudd g € transfer 3] 4 $genficd] @ > 10 1@
5-fold cross validation i& {7 fine-tune » A& B~ IREF A & > d ST AP T AT
*EF AL A iﬁh”ﬁ e s BIR] 0 TrOR-E i Y R A DA B %R 7 ik
B~ o foradiomics 3R A 0 HOA| A SAOIERIE RS~ RACR - #F 8RR 2 AUC £ Y
» 1 62% ~64% ~ 61.14% ~ 0.6143 ; AFARF Y R4 o HPRIRENG % L/
FogmAR ~FRRE AUC £ %) 5 1 58.40% ~ 61.33% ~ 57.14% ~ 0.6089 ; ¥
oA R f‘%? % 7 ot blpe & FR F Y 03] & radiomics -3 TR 2 B
o B EE AUC 20t b 5 0 BB IERIE = SRR BA]FERIE * 0.4 + radiomics
BAGERIE «0.6 » H:md ~ a0k ~ #E A% AUC # 5] 5 @ 58.80% -

68.0% - 54.86% ~ 0.6318 > ™ § 3.31 & = 4 ROC curve :

, ROC curve

0.9 o

0.8
07
0.6 &
0.5

0.4

0.3

0.2 ——— Fusion Model AUC: 063177
Radiomics Model AUC: 0.61432

0.1 pj; DL Model AUC: 0.60891

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Bl 3.31 & 7 ¥ Radiomics #-3] &2 77 & & ¥ #-3) 14 2 fusion model 2z ROC & 4t

e oo T FIIHE o~ T2 mean CT value - % training dataset 1A
£2 non-1A srmean CT value % —439 + 138 —533 + 116 > i testing dataset | 4+
W s —381+182%—553+142 > 4w 3.32 - fp >t A7 7 4L (B 3.33) &k
Bt solid part # 5 et & > & ¥ i AFE T I AR v),?v RRCE SR EUE R

% R ] o
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A Training and Validation Dataset B Testing Dataset

—— ¢
—100 - 0-
¢
=200 - * =100 -
u —300 o 2007
= = —_—
= S -300
= —400 - =
5 400 3]
E E —400
= —500 - =
=500
—600 - ~600 -
=700 —— =700 1
T T T T
IA non-I1A IA non-1A
Histopathology Type Histopathology Type

B 3.32 (a) testing 1< % validation mean CT value (b) testing data mean CT value 4 %] B][13]

All data
600 _ ‘
[
| |
| |
650 [ I }
|
!
o !
ERLS
[
>
G \
& 750 F [
L \
= | T
| !
800 I }
-
1
-850
n
1A nonlA

) 3.33 ## 7 ¥4 mean CT value 4 3] &l
Foebood vyt v g E U7 testing data 2 45 i AUC 12 P4 B

fusion = 3¢ > e ATt A 3V 5 s B0 K| 0 AR 0 s A7 7 - radimoics model
% 474 = training, validation, testing data » I i% i radiomics model ¥ deep learning
model ¢ :F validation data E# & & = 5% » £ £ * I testing data - radiomics #-3] 2
VRFHLPLEAPRERF A IS - FAAE -FRERE AUC L5 G

55.20% -~ 58.67% ~ 53.71% ~ 0.5566 - ** validation data ® JE{F & %2 & ¥ #4 & &
FRE R D RMIRRIE = FR BRI TRRE + 0.2 + radiomics #-3] TR E « 0.8

Hirmy ~ gack ~FE RE AUC £ %] 5 1 60.0% ~ 65.33% ~ 57.71% ~ 0.6376 >
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Begtge £ 3V E % 3 testing data ¥ £l 2 % % & 56.0% ~ 61.33% ~ 53.71% -

0.5927 » 2 % #41|* testing = ;
data #7 {7 | ch% % chFE € K 2

FIR A SR o R

testing data -

1% g 4k
B 18 R

& Ao o

1
=

>
v

ROC curve

09

0.8

0.7

0.6

0.5

0.4

0.3

0.2

01

= Fusion Model AUC: 0.59269
== Radiomics Model AUC: 0.55665
DL Model AUC: 0.60891

01

0.2

03 0.4

0.5 0.6 07 08 09

B13.34 7 515 ch= B H2 ROC o 41

1

T & chid % ;*F*‘u’ﬁ T A 0 PTIE B 44 testing
errperformance » ROC w 4t 4] 3.34 » #7025

validation data i& 7 f& & = s\ enptig > L 2% 3

P R SRRl AR 2 TRERAG R 2 S5 0 M

#0312 @ RS AT E R R 2 B S A
Accuracy Sensitivity Specificity AUC
90.8% 97.5% 94.4% 0.971
< )]§J< 84% 82.2% 86.7% 0.942
Fan Li [8]
88.1% 85.7% 89.8% 0.936
E 2y 55.2% 57.33% 54.29% 0.5545
Hwan-ho Cho < 91.49% 89.47% 100% 0.9825
[9] rET T 59.20% 60% 58.86% 0.6221
2 )ﬁ% 88.6% 80% 92% 0.876
Linyu Wu [10]
Y 58% 58.67% 57.71% 0.5972
Guangyao ik 93% 98% 78% 0.98
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Wu[11] RFE g 60% 60% 60% 0.5938

(-190H  ;
290HU =) 61.60% 57.33% 63.43% 0.6039
Jing Gong ¥Rk 83.3% 0.92+0.03
[12] T 56.4%:3.3% 0.5749:0.09
Xianwa Xia ¥ 80.3% 0.9+0.03
[13] g 58.40% 0.6089

333 *EFIEZUR

AR AL g A radiomics B AUFARF Y 22 F R - LHFE Rk
1

Gt RRAD E FEOH B 2 AR

b

FHBEH A2 T D2 4R o
3.3.3.1. Genetic CNN

=52 B d A Fiw &2 (Genetic Algorithm ) [30]sh# 4 @ & » A Fiw & %2 k
WAPEY DR A ST NG BRI LG RRRERY §F L ZEESR
RAFERI G I FL LR FRAFERERFE - ALRIT D N RAE L R0
FBFF > APRAET ’iﬁg*ﬁ TRE A P EFRR AL RS
HELERBT AL ASEF LB R DRE Y BT o

AR RAFUFEZ DR g 2% AFREY SREL o d A AR &
PR AR Y T E Y FlendE i € 5 A R gt 2 2 R e JE 1‘#\ #4210 =% o
B3+ B R A S % (BEAE £ )0 £ 1% validation data 3+ % #-3) ¢ loss #

Rt BHEAEEER  EAST TR Gow e BREZE tranfer learning
Rstize BRASFTD R A F T B 48 B E AT Sl AT
B0 ¥ ebw R A crossover o { Crossover e3R8 A F s AE i - IR EEL
3 NNV - BETEE o B AT T SR Y e B convolution kernel
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IR gL :]Aﬂig kernel number % 4 - feature map ~ -] & 32 B »

convolution kernel T* 32*%32*32%4> @ dvfE i wn X E {5 L W iR P i 32%32*%32*2>
FRGHL LR e Y e R L TR E AR Y - BT

convolution kernel &2 # is chi T 32> (B3| R0 £ > B 3.35 ~ B 3.36 5 = & Cross
Over % 3¢ o - A O AT FHCE JE LI H = RIS DR B
— =t ¢ generation 4- @) 3.37 ' % T 1 generation %;rjag ST A B generation

¢ iF ) validation loss & | ch§ iFix & fold o] » 32 » jplzs f Bcdp 5 4 % -

Attention Attention

18 1118:418,27:-
18 11810109-908,22:-

-

(100007

|

|

I

Max pooling Fully connected layer :
|
I
1

——

B 3.35 Combine &= ;% » AB 2T R B > T % HE P — & convolution kernel 2 combine = ;% » A

# = = i convolution kernel ¢ * — fe= Vg 75 &
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Attention Attention

@ 1F110090.27--
{8 118:008918,27-

Attention Attention
N L
|

@‘ \_@ E‘ mf m%//. .
Attention Attention

7 N
f \_ﬁ Convolution / Flatten :
I

| !
| @ Max pooling / Fully connected layer :
|

| !
| |
\ !

Squeeze and Excitation net

B 3.36 Average e~ X - AR AT % B > R IHE P — B convolution kernel 2. average = ;% > A& H

# = i convolution kernel ¢ * — fken Vg T & L5

Genetic CNN flowchart

Generation 1

/ ~N
\
( Model 157; |
| /I Model 2(2) |
| Model 1 Model 7 = Model 3(3) |
|t s, Model3 el
5 +» Mode . .
: 5 ¥ Model 8 (R DO {E L/ NossATHEE » Model 6 : — Generation 2—> ... — Generation 5
| 5 | FI Ty E o U {@l ficrossover » Model 7 |
| Model 10 . v 55/ 1 Model 8 |
| . i Model9 |
\ Model 10 /
N e
VA - *crossover Ji%1: &%

filter numbers

; *crossover /j;£:2: *{-¥
L) Jzfilter sizes

B 3.37 geneticCNN

7

oL i e g B 3 o filter numbers 5 2 g % o B F RIS filter
number % 4~ 816 v* ¥ HcR e R 0 £ 313 5 = HYRR B R K
¢ v g 1) o kernel number b ofEC) PE O RO Ay it Y 2 ST (B AP RO
& g -] #hrvalidation loss 1% % » & (s #7:F T| <2 generation " AR R N s I
kernel number % 8, 16 st i i & i Tl # @ 1 generation » = IT"-—»Z*‘\ TR I A
KA ST R R IR R 0 - 2 G s ETE A Sl AR o
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TR b entraining set kA REEE PR > T F R L BRI o R

kernel number sF;=™ » 2 AUC 4 % 5 : 0.6329 ~ 0.5745 ~ 0.6000 -

% 3.13 T o€ 2 i kA

Kernel number 4 8 16
Fold 1
5/5 2/2 1/4
Generation/Model
Fold 2
5/2 1/5 1/7
Generation/Model
Fold 3
5/3 4/2 2/5
Generation/Model
Fold 4
5/5 4/1 2/1
Generation/Model
Fold 5
4/5 1/3 2/8
Generation/Model
Accuracy 62% 62% 57.20%
Sensitivity 66.67% 58.67% 60%
Specificity 60% 63.43% 56%
AUC 0.6329 0.5745 0.6000

% 3.14 | * & & € & (7 crossover i #-kernel number 3% %_3 4 #7852 &
oo Hoxk Ap ot ToRE KRG 2 HF 0 hfold2 g fold5 % 237 55
FiE Pl generation2 & 1 A {S G R T LG { AFamek o AUC 2w W5

0.5432 -

# 314 $ 4L 2 2y it A

Kernel number 4

Fold 1 412
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Generation/Model

Fold 2
2/5
Generation/Model
Fold 3
5/8
Generation/Model
Fold 4
5/1
Generation/Model
Fold 5
1/2
Generation/Model
Accuracy 56.40%
Sensitivity 49.33%
Specificity 59.43%
AUC 0.5432

3.3.3.2. & % ® CNN model dense % 2 feature i& » ML

TR oRE AR WA R RO 0 AR S PIRERE P T R
F] % 35 )3 — #k e local minimum @ & 4 % e end e o #7008 § =0 training #23)
e or DI AR B (S - K dense 2 B 5% § (FATR M B & ipuk FHi P
H-4p Bt 8258 (correlation coefficient > 95%) e ¥ 4 = - ‘e > 374 jc > £ 5
-~ W R PE S S NENRE N A S RET AN 4B 3380
EPCERCAIRE 0 AR RPES N - A TR AR RS S )’j-*u{
i P~ validation loss #i i e 3k jp| & testing set » ¥ — fE R E % = B =R 2%i ¢ B oD
AR ,T&:{validation data & I sensitivity + Specificity + accuracy &, fod B 7%
g E NpliEtestingset o ¥ - fA 7 N B KB HE A A 4 D s 8
Forward selection ;& & ;2% 218 % - i » £ il i% Principle component analysis(PCA)
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F R B TERENEFACE N LAA KR H IS GNE BB RS
AUC 4~ %] 5 57.60% -~ 60.0% ~ 56.57%%2 0.6072 ; @ % = f&a > ;& 4 2 - i

% i forward selection % &1+ > £ f* 582 2 & N Gz B T

SVM # 3|z P e ~ &Aack ~ 2 2% AUC » %] 5 59.60% -~ 58.67% -~ 60.0% ¢

0.6010 -
Attention Attention
44 4
//
Model 1 — /4
V| | ///
4 F
¢ e
T
* ; Feature selection
. = +
Attention Attention . e classification
L]
Model 20 HEE @‘ |‘ @—} ﬂ/% t
Bl 3.38 % & #°7) dense R 4 Hriadd b &2 A 5

3.3.3.3. Pre-train model

d 3 AFTy 2 FRLE G 250 £ > $t datadriven siE AR Y REFTHE R
PR A AT SR T AT AR R S - B A BT g
i pretrain 77 ;8 AR F B AT B F IR IR L R P RFTHREF
finetune - & 4L £ & § i pretrain 74 T} £ §_image net[31] > 1 * % 5k p RP
PR EEFFREE - BRE T A 0 - ik B4 _image net 3% & 2D ¥
f%»ﬁe?l o A FT g 20 3D B Mo 2 I pretrain 27 0 ]t A pretrain TR g
#PER* 2@ e FHE LIDC-IDRI (Lung Image Database Consortium and
Image Database Resource Initiative ) 7% #13i& {7 pretrain » fo ¥ $ 38 38 {7 3405
BRI AR 4 0 @ opretrain (0P G A SMEB L LM 0 K Y B E A MR
L EPRBER A - LRI EN s PR EAFELTE R R R
chiF e T B 3.39 5§ 5 iAW o Pretrain shit R AR C GACRE - FRE R
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AUC 4 3R 5 : 80% ~ 66.67% ~ 93.33% ~ 0.8044 » ‘53§ ~#7 7 2 F 42 finetune i&

fSr S ~ AR ~F R R E AUC 5 1 56.18% ~ 64.44% ~ 51.55% ~ 0.6311 -

Pretrain malignancy

or
benign
weight
LIDC-IDRI v
) Invasive

Finetune

or

Non-Invasive

My data

] 3.39 pretrain % finetune i % ;428
3.3.3.4. Ensemble learning

Ensemble learning[32] et 4¢ At = 5 B 4 8 B S Ap OV H — B3] o

&% kehk b > f ensemble learning * GURAF Y T F @ * 3 b iR F P

BFRLpeiER o 29 A €8 PRREL BTE A NS R
T3 & b ’Félﬁ‘jl@wl B fSEERIE S o AT I A BRAE FIRT
L IIERE % o @ PHCA e B] 3.40 -

Convolution ASPP Flatten Fully Fully Fully
SEnet Max pooling Max pooling connected connected connected
layer layer layer
(@) Model 1
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Residual

- Residual

[
|
I
I
I
I
I
I
|
I
|

Convolution  fireblock

e ' SEnet Max pooling Flatten Fully Fully Fully
Convolution Max pooling connected connected connected
layer layer layer
(b) Model 2

i 3.40 Ensemble -7 7 4 (a) model 1 (b) model 2

»* Model 1 5 # * — i =+ 7 £ ASPP(Atrous Spatial pyramid pooling)[33] - ¢ +
FH NP R F R AP ERE S 3k S 2K (Atrous convolution) - k3 57
CRAL  FERPLERE A FRORETR O A 2 F S AK LS E RS
e convolution kernel # & » 5 i ( %-#c Dilate rate 7 33 fFfl 2 % ch ] ) & 4
AR BT R T EI AR X TP o B 341

Dilated rate = 1 Dilated rate = 2 Dilated rate =3

.

(a) Atrous convolution
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Kernel: 3*3

Kernel: 3*3 Rate: 5
Kernel: 3*3 Rate: 3 . . .
Rate: 1 . . .

H B B
— H B BN
Rate=3
Rate =5
. J
Y

/)

Feature map

(b) Atrous spatial pyramid pooling
B 3.41 (a) Atrous convolution (b) Atrous spatial pyramid pooling

¥ ¢ & Model 2 § & & = 2 #£4 =] & _residual block ¢ fire block » # ¢
residual block £_5 7 @it & i 4 R AR A 2 P[34] 0 Btk T R AR

convolution + activation &3 3§ ¢+ » R A 4 7 - ERJTHE 0 = BRULT € 58

TR AL o @ FE BRIl houtput AR AR BF SR g E 0 TR
P2 LA g e cndd T R4 § B4R PF > gradient # AL w iR T — K e0RT AR o
4o 3.42 - ¥ +k & fire block » ¢+ =+ ZE &k i >t squeeze net[35] - # B 5 R
feature map s ] S SBcR 4 0 EARY FZ BAHR D F A ALEL
1xlend Rl F e £ 40% 1« 1% 1223+ 3x3enkernel i2 7 5 ff » B is -2
¥ ## % % concatenate % - 4= > 7 % Bl4-® 3.43 -

X

!

Convolution

!

iActivat'on function

) 3.42 Residual block
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1+1x1
convolution

1+1+1 3«33
convolution convolution

~__

B) 3.43 fireblock

Model 1 3"tz 2t FasF ~ ATk ~ 8 B2 AUC » %) 5 © 56.18% ~
64.44% ~ 51.55% ~ 0.5902 » Model 2 R E_: 56.97% -~ 62.22% -~ 54.04% ~ 0.5969 -
i% i ensemble learning #H= ;N ¥ d BRCYFER S ST I IHE I 2 IR ES D
FES ~ AR ~ #F R R2 AUC 5 :55.78% ~ 64.44% ~ 50.93% ~ 0.5831 > p* % %

AT A BRI R PR B E9H > A E Earensemble learning ¥ 4t IR

-8
o
o
=
&
o=
ey
!
=@ »
o
F_&
—_—
N
b
(s
¥
~zh
o
o
|

F_end| i 4 W 0 Fensemble learning £

3.3.3.5. #4c » feature map # training

AP RREFEAFVICIDIRE  JERR T PEEY S S AHG L
#8IA 2 non-1A 2 i > Ft & 8P A B o3 4] 2 feature map 2. VOI
FpEE o~ B P SR v,% AT AT PE 2 RSk L i
¥ 2 - prape 2 A % F H0 high grade 77 3 913 B~ 20 e 0 B4 F Bh i

55§ < 73 k8~ VOl 435 0 = 4 3.15 5 %t #3145~ VOI -

% 3.15 fi’j{lﬁ%] » 2_ feature map
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=R

1 4B e
2 Cluster shade
3 Entropy
4 Energy
5 Homogenity
6 Percentile75
| 7 | Sum of squares |

P A E R fold T AT BRECAIZ VIR 0 F - BRI input & p ok

»H e - ﬁ_ﬁi%l »~ VOI » ¥ ¥ [ $k % & adaboost 2. = ;¢ { === B #-3] H % & sample
weight 14 % 3% i sample weight 2 2 2 % ¥ 4 B~ 1000 £ F L £ transfer 2 & p 4+
L R - AR Aot EAFT R (PR EFSYE AR B2
VRE SR 3.44) - BloldaiR LK EBRY &P B BT 5 E

Boism B fold2 $%ieisty > 837 B fold ¥ 2die > » ¢L 58S B fold

1

2RV E Ry (RS S GaA FEAZ AUC) H 8 % 40T £ 316

&

Transfer the best weight
And change sample weight + add 1000 data

1 i | 4 J * output
mage .

Transfer the best weight

Featurel ’ » W -+ e And change sample weight + add 1000 data
entropy
Feature6 s L, L, o Transfer the best weight

Sum of . And change sample weight + add 1000 data
squares

P— saverret wurn 16°16°16 .
' ' 4
R D EEmEEEa

2 10 2

Bl 3. 44 & w &8 (72 oA HUE
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% 3.16 R4t 5 feature map ﬁia?] INES- 1S -3

b B e R R 2N B
Accuracy 0.6425 + 0.027 0.5387 £ 0.021
Sensitivity 0.6533 + 0.031 0.5333+ 0.013
Specificity 0.6222 £+ 0.020 0.5410 + 0.024

| AUC | 0.6667 £+ 0.049 0.5663 + 0.008 |
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©3237 8 A AT e RIELHA R AR SR B A
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%
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ot R RO R A E RO B TS g g

T 7R tsolid ratio e B & vt e o

41 $#HA A BHOFTHEFFEEY = 7 0

\

EERH AR ENRIFHATREFFELRY 02N 5 - BAS
g - A A #E S % R4 24k & sample weight s $39559(3.9)3 B iE ~

T BREARRZ S > F - LFTREEE AR > L FE LSS VR BT

FLo @ RIF DRSS o) fEE L S B LBk E R {Fﬁ#i@_)\ﬂ:, B R 2
TAARRBIRES R ATOEL AR RS R R A0 12

gl HYBER AT A RE BN (A5 ¥ 1000 ~ 1500 ~ 2000
POLERE ) L F R RAGR AT > A N HRRED ELF T b8 He
0 TN RERS DT HEFRFRAED B P PR F AR o e P RTR
BELEADRES §LATR LA R PRE (& AL

VEE S LR JET N TF 20 % OHE ER IEE S F YRR L RN
SR 23 P EREAT - BRASEEFTRIPELS A RBETHE o
FoOEF - R S AN GBI AT R TREBELATR LA REL

F R A FsELBF R -

WH - AW HT AL R s ;N E4F 8 7 = =« 5-fold cross validation
IAUC 2% % 1 0.6240 £ 0.015 5 % = 41 *  seehFT B E ifh A 4o B 58
H £ P~ 1000 ~ 1500 ~ 2000 & F#Lie {7 = = 5-fold cross validation 4 %] &% 35
AUC % :0.5922 +0.023 ~ 0.5958 + 0.007 ~ 0.6065 + 0.013 > = ﬂ\ AUC it
R R A EELu o A d P ERARY S - AR TR LR T e R
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TR EERFDOES D S ARF{RBEEM BTG N A 248 SR
RTEI BTk o d 5 - B URET 3 e B icg 2 AUC 2
PR A FE  ffegt 2 8T 4 PR AR Banfic® 4 %) 5 1 1000 ~ 1500
2000 » H »* = =t ¢r15-fold cross validation 2" 3 = 2. T 2 AUC 4 %] % 0.5955 +
0.014 ~ 0.6425 £+ 0.027 ~ 0.6095 + 0.029 > == 'ﬁ FERILRUA AR 2
E T ORAT LR AR R Y 2 R EFE N ,—_'ﬁlfbﬁx %Ak

419 2424 4.2 5B H8%2 PREF S AR SELR o

>‘_.

o
A

s
S
0.

b
¢
&
[
R
Rt
=

(-
(S

B - R R [ BT 0 b r X SR

FHRFRDEAL S TR XS RFREREY RADTHRERY RFOT

ALE I R R > EREES T

# 41 REERAFDRAZFBFEEY 7 02 AUC B %

o> TATECE g 3 E - SEC 2=
1000 0.5922 £ 0.023 0.5955+ 0.014
1500 0.5958 £ 0.007 0.6425 + 0.027
2000 0.6065 £ 0.013  0.6095 £ 0.029

: 0.6240 + 0.015 : :

%\42”’/2‘;§’»l’i—;’f24:-iﬂﬁ$‘%; *iﬂ/i

Accuracy Sensitivity Specificity

0.6533 + 0.031 0.6222 + 0.020 0.6667 + 0.049

4.2 kernel number #cg ¢ 38

kernel number » &8 8430 B % ch- BETF) > 7 #i3] X B kernel
number pF € ¥ & IR EBre & 0 ERCAE DL FFRAF AT wd A
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TEUNRF A BEARATHET NEEVR F R A DRk EF TR

B F O ERGEHIFAE L o T SR PIR S BR  e A IRE 2 ES
FEH R kernel number #® 0 AL BB ET G PR G {FTRE IR
s erc] o 444 kernel number X B F 4816 F ¥ fe R 4e 1500 & TR 2 B

RRHEEt R TAA43 LGSR

# 4.3 % = kernel number z_ AUC % %

AUC Kernel number 4 8 16
AUC 0.6425+ 0.027  0.619940.023  0.6026 + 0.057
Accuracy 0.6533+0.031  0.59404+0.020 0.5920 +0.028
Sensitivity 0.6222+0.020  0.5934+0.010 0.5867 + 0.038
Specificity 0.6667 + 0.049  0.5943+0.024 0.5943 +0.024

»+ kernel number % 8 2 16 2. % % i—p Bl s AL B AUC &~ 9]
%0.6199 + 0.023 ~ 0.6026 + 0.057 » =¥ g3 & kernel number 3 4 pF > H
FE i 52064251+ 0.027 0 ¢t 2% £ A0 K Kernel number s E ¥ 7 @ A

F D L F e o sF#-Kkernel number 3% ¥ F 4 B AIRS S8E
4.3 Attention layer ¢h€ & |4

AR Y R IEZ A P - 3 %4 5 attention layer - i B 5 % f?%ﬁ" WAL F
TR IR Y o A&t (1) 23 4~ attention layer A& (2) 3
‘v ~ attention layer s3] # % = =t 5-fold cross validation 0’ % - @ attention
layer *x % ez % 2 Pt % — B block 22 % = B block % L e =& » & H k3=

1 # 511%’?%}& » hotr Bl 4.1 SR o
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(1) No Attention layer

Mask (2) Attention Attention

@ (b1 ﬁ// >

Image size 4*54*54 32%32%32 16* 16* 16 a*g*g

Filter numbers

Neuron numbers 32 10 2

Block 1 Block 2 Block 3 Block 4 Block 5

Parameters: 9476

——— e

B 4.1 Attention layer i~ %

L3 4v o~ attention layer # #CA| 5 ¥ dmik L 2 2 45 > A EF D2 B % & AUC 0
%% 5 104983 10.027 ; block 1,2 {5 $84c » attention layer ¥ 5 & § 3+ 4.1 &
2SR E ] 0.6425 1 0.027 o KUEF T BRI 4 » attention layer H
BEBE e AT o K AATHET 23 055AUCHE L 3 064250 o 7
4r attention layer $++ i jp] = gt k%A - BE L P AP RS WET B

2

RGP T R ET CUER AR D B A e
UREESS TE LN CEIIDES S RS SR L R Y S o

IV i%? 13 7: C;;j;;;%v}j}7 )ifl;ﬂ;]‘l\}%, L= ]v} B E By r,}r;& )'z E] rﬁ;}‘i‘ﬁﬁ;o
4.4 B> ])s

4r 4.3 & > AFE 3 A% *E g0 binary mask & 7 attention & 3% 2 oA $0 LR
PR Y sk o SErL A Rl SRR e~ B R R Mg T A 2 VO

FHA BEE S 00 EBREE 2 VOl ke Bl 42 957
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B 42 R4:-VOI () &2 r 3 s 2 VOl (T #)

TR ZREVOl & W5 mmRA BT R L 02 VOIFIaggs 29 F
BURTIFE T A H R 5 02 VOI§ (8~ 2 B R T > 525 $HE e
B oxic§ fTH{ 4 o HETH B R - LR DT AGEBAEFEY o R
HALZEFEFREFRGEGVOIEFEY & #$aBERh e 8y 5- &4
# 384 > 4 2 binary mask #t feature map i {7 attention » 4 § fdFchg % o

% 4.4 Rde VOl & i85 Higite 2 VOI 5% v #2 Fl

R NS 4 R R 3R B T

Accuracy 0.6425 + 0.027 0.5387 £ 0.021
Sensitivity 0.6533 £ 0.031 0.5333+0.013
Specificity 0.6222 £ 0.020 0.5410 + 0.024

| AUC | 0.6667 £+ 0.049 | 0.5663 + 0.008 |

4.5 fusion

2.3 &5 & 3] Xianwu Xia[13] % £ #T4£ 8 - 2 IFF% Z_f1* deep learning
model £ radiomics model B~ HCA|FE RS % TRk & § (FE S PIERE A A
332 &Y k¥ Ay FTALAF Y pRIFE % HHAL (S deep learning model 73!
B B PO R AR ET AT S 2 D10k - B A S I AT TR
21 4% 15 2 03] 28 27 radiomics model ;& {7 pk & 0 £ ¥ iR EHR S 0 NEF
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i - radiomics ¢ 4 = training, validation, testing i i% i§ validation data & & & -3

8 AUC kB e &2 VL 2% 3 testingdata 2 2% o AR AR B ¥ 0335

<

R e 4l #77 » AUC 5 0.6425 + 0.027 ; ¥ ¢ 5 %12 radiomics i& 74 $048 £ eh

Bl E S %40332 %77 5 1 55.20% ~ 58.67% ~ 53.71% -~ 0.5566 -
B WG RADVOL (P g F R F) 07 - S Renica] 2
validation data ¥+ deep learning model £ radimoics model & {7 g & » ¥ $l& & AUC

. v .

s VA T IER FAISERIE * 0.8 + radiomics #-3FE B E * 0.2 » AUC E

Rt

0.7092 » # ¥ j¢_validation $* ) 47 e £ 2 N £ % 7 testing (¥ 3| e/ ~ F AT

B~#FE R AUC » 5 5 1 60.80% ~ 62.67% ~ 60.00% ~ 0.6384 - 2 AUC

%
i

R

B @I kL A 4piT 0 2 F AUC 1 e 4.3

ROC curve
m— Fusion Madel AUC: 0.6384
0.9 Radiomics Model AUG: 0.55665
DL Model AUG: 0.6336
: ,rrl_/_/_'

0.7

0.6

0.5

0.4

0.3

0.2

01

B 4.3 éi%l B ikch R 4o B thz & & > radiomics ~ fusion 3] ROC & s

=

ERA IR A [;Je% g 3% i¢ * testing data :& {7 g & » A #7 7 #-radiomics 47 4

= training, validation £2 testing i 2 3= sy 35 » 12 ¥t fusion 23] v 5 —

\\Xr

4 @ i fs AUC v 5§ & jicdk o
4.6 Solid ratio g 5

>3 rrﬂf 1§44 (1) 27 T4 solid ratio<0.25 #7i% F| 2. & % (histogram
> ir4e@l 4.4 (@) & (2) F#e 7 solidratio >0.25 2 5% % (histogram 4 i# 4v ]
44 (D)) At SELETHEER v E S (2) 28582 > Vg
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#_(3) ¢ 7 solidratio > 0.25 er#73 FA4LP P& (1) 4ok & 2 1A~ Non-
A 27 JAEH HU &4 G485 5~ Non-1A B1:E # HU & 4p 4 < eh 3o
(histogram &~ W 4-Bl 4.4 (C)) > — A2 T S v o Ay @ * solid ratio <
0.25 enF L% ¢ Invasive Adenocarcinoma = 32 CT value % —704.3 +
48.3(—860.1,—604.2) - Non-Invasive Adenocarcinoma - = CT value 5 —726.8 +
50.1(—826.0,—606.7) ; @ & % solid ratio >0.25 2. T4+ # |A L 5 CT value 3
—649.9 + 79.1(—843.4,—422.0) - Non-lA £ 3= CT value 3 —701.1 £+
61.4(—818.6,—542.9) ; ¥ *t » figzFenFHRH A L35 CT value 5 —595.9 +
61.4(—664.2,—422.0) > Non-IA = 35 CT value % —719.3 +
46.7(—818.6,—638.0) - (1) £ (2) 2 HU »“ #& » 7 % & IA & £_non-1A H T 35
By p kT wd AT vPE § IR GGO 2 R v A7 T 35 CT value 7%

#-400 17T > = —'F%L HU %38 % 45~ = & 7 1A £ Non-l1A i szt L % 4.6 -

Mean CT Value solid ratio < 0.25 0 Mean CT Value with s I d ratio > 0.25 Mean CT Value with extreme data
3 . . v ) 0

numbers
o 8
b

(a) (b) (b)
] 4.4 mean CT value histogram
# 45 = T2 mean CT value st

Limitation Solid ratio < 0.25 No limitation Extreme data

—704.3 + 48.3 —649.9 + 79.1 ~595.9 + 61.4
(—860.1,—604.2) (—843.4,—422.0)  (—664.2,—422.0)

1A

NomIA —726.8 +50.1 ~701.1+ 61.4 ~719.3 + 46.7
(—826.0,—606.7) (—818.6,—542.9)  (—818.6,—638.0)

*HEHLP A (o) HU & &+ HU &)

# 46 = AF A2 IA~ NonlA 3 #cvt
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Solid ratio < 0.25 No limitation Extreme data

1A 75 136 75

Non-1A 175 207 175

FL41*+ solid ratio < 0.25 sHF 51 PUAR 4 I STHCA] By » 5 S R AR VO
# AUC 5 ¢ 0.64254 0.027 » »* E_#-4F4c » 2 % '] solid ratio sH3F K 12 48 Fe 1

> EHCAE P 0 @ d 24 2 P4 solid ratio sRFE LIS o A s R AL

=

Bl IR AT BB R Sl 0 W RenEk iR % 5 1 0.673840.014 - B2
& 1A 2 NonlA 4c » 7 *24] solid ratio =3 # {4 & mean CT value i 4p thchiic &
F AR FFR A I NF A > ke T U EEA Rk F R s 4
FOTH G % pew i B2 mean CT value & # £ iE45 % » ¥ 2 mean CT value $
WP L HETR G - RARR RS R PE D2 2 G solid ratio "
1P BE 3 FFuEe T E T AUC 5 1 09164+ 0.016 0 ¥ L0 E Z 2 sk

EpA AR L FRE AR A s A HU L AR AR S

Solid ratio < 0.25 No limitation Extreme data
AUC 0.6425 £ 0.027 0.6738 + 0.014 0.9164 £+ 0.016
Accuracy 0.6533 + 00.031 0.6501 £ 0.013 0.8347 £ 0.015
Sensitivity 0.6222 + 0.020 0.6569 + 0.023 0.8267 + 0.013
Specificity 0.6667 + 0.049 0.6457 £ 0.035 0.8381 + 0.017
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LFFEAEr 52 LR LT ST FR

Foosolidratio 122 B B S Y AHEWAFET L RO E- BRLLD
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8 solidratio <0.25 ¥ .4 3 /&<3cmz £ I EF o BEE 2 FERE Y H3
G AR TR LT L RE R A8 o AT 7 AdaBoost A AT A
fho PR AT USRI FORGELEY o TRET - w0
RESDBEELDRTHOREE > TR FEEATORES 2 ELHA0F 1
Fen® @ £ A2 - BUEH ] o P RF A @ 1500 % £47 0 1§ EEAR
SR A AR e e r PR R B 6 RICA) S Y o b
kernel number £ # ¢ » ¢ EHfo] hlc® 0 RFEL 2R A7 b2 TR
T3 E 0 B2 EO5EKE R S BFLERERT PR TRNER - &
BRSP4 ¥ 2B s 2 kernel number B 4% 4 ﬁ}“? AR PIARSF S R o ¥
‘b 43t attention layer $3 4 £ rc gk B A ¥ B F 0 4L G 40 » attention layer

27 4¢ » attention 1% % H AUC ¥ 12 j£.0.4983 # = 3 0.6425 > % = chitg B 1%+ >
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)1
e

A A 220G (S enfles o Bfs solid ratio 3t A dE e B A4
L ga ko e osolid ratio < »Y 0.25 2 MR (TR 0 PRIEREE T R H
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5, H AUC H 1 j£.0.6425 %2 1 0.9164 > ¥ & solid ratio 5 — £ & H|47%]F o
ARG R FREE F R #5 datadriven iER B Y R 0 doie 4 TR
B AHAT %0 AT R RS R S RUTRAE Y LR
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() #Ff 0 Borfch L FHRET 250 2 0 $UUER S Y RRTHES £
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