國立臺灣大學理學院數學系暨研究所碩士論文
 Department of Mathematics
 College of Science National Taiwan University Master Thesis

多項式調變不變奇異積分算子
 Polynomial Modulation Invariant Singular Integral Operator

徐永昌
Yung－Chang Hsu

指導教授：沈俊嚴副教授
Advisor：Chun－Yen Shen，Associate Professor

中華民國110年2月

February 2021

摘要

本文針對多項式卡爾松算子高維推廣在勒貝格空間下的有界性作深入探討。相比於Victor Lie 與Pavel Zorin－Kranich之前的工作，該文章的主要貢獻包含：以具體的構造法束礁認細節論證，用稀疏算子的語言束重新詮释部分證明，及提供一個具教學啟發性的完整誩明。

關鍵詞：時頻分析，多重解析度分析，CZ算子，稀疏壓制，TT＊－T＊T方法

誌謝

作者感謝指尊教授開明的態度以及十足的耐心，促成這漫長的計書以及深度的細部探討。其次作者感謝與多位同事日常討論所激發的需感，造就了諸多論缯的精進。最後，作者想感谢家人以及身䢬每位關心作者的人。

Polynomial Modulation Invariant Singular Integral Operators

Yung-Chang Hsu

Feb. 2021
AbstractWe deeply study the L^{p} boundedness of the generalization of Polyno-mial Carleson Operator. Our main contributions, comparing to previousworks done by Victor Lie and by Pavel Zorin-Kranich, are to verify de-tails with explicit constructions, modify some part with language of SparseDominance, and provide a heuristic interpretation about the whole treat-ment in general.
Keywords-Time-Frequency Analysis, Multi-Resolution Analysis, CZO, Sparse Dominance, TT^{*} method

Contents

1 Introduction 2
1.1 Basic Notions 3
1.2 Motivation 5
1.3 Main Result 8
2 Mathematical Jigsaw Puzzle 10
2.1 Cut out the Pieces 10
2.2 Find Good Configurations 11
2.3 Combinatorial Wizardry and Analytic Magecraft 12
3 Tools and Facts 13
3.1 Local Oscillation of Polynomial 13
3.2 Van der Corput Estimate 14
3.3 Sparse Language and Ambient System 15
3.4 Modified Settings 16
4 Decomposition of the Operator 19
4.1 Reduction and Linearization 19
4.2 Tile Decomposition and Trivial Estimate 20
4.3 Adaptive Christ Grid Construction 22
5 From Incidental Geometry to Order Theory and Combinatorics 24
5.1 Conversion and Basic Operations 24
5.2 Geometric and Analytic Interaction 26
5.3 Feffermann's Trick 30
5.4 Boundary Removal 36
5.5 Separation Upgrade 38
6 Search for Good Trades 39
6.1 Trade-off: Polynomial v.s. Exponential 39
6.2 Charles Fefferman's Exceptional Set 42
6.3 Victor Lie's Stopping Collection 43
6.4 Pavel Zorin-Kranich's Modifications 46
6.5 Explicit Construction of Smooth Carpet 50
7 Sparse Domination of Sparse Parts 53
7.1 Reductions 53
7.2 Sparse Dominance 58
7.3 Density Extraction 60
8 TT* - T*T Arguments for Cluster Parts 64
8.1 Reductions 64
8.2 Pointwise Control on Cluster 67
8.3 Extraction of Separation Factor 73
8.4 Support Restriction and Cross-Level Decay 78
8.5 Row Configuration 80
8.6 Almost Orthogonality 82
8.7 Bateman's Extrapolation Argument 84
References 93

1 Introduction

There are three major themes in Harmonic Analysis that ordinary tools in Real Analysis are weak against:

$$
\begin{cases}\text { Singular } & \Rightarrow \text { Singular Integral Operator } \\ \text { Maximal } & \Rightarrow \text { Hardy-Littlewood Maximal Operator } \\ \text { Oscillatory } & \Rightarrow \text { Fourier Integral Operator. }\end{cases}
$$

Still, mathematicians have developed tools for individual class of operators and have gained fruitful understanding. Before becoming overly optimistic, however, what if there is an instance where the three themes combine together?

Definition 1.0.1 (Carleson Operator).

$$
C f(\cdot):=\sup _{N \in \mathbb{R}}\left|p . v . \int \frac{e^{i N y}}{\cdot-y} f(y) d y\right| .
$$

Indeed, we see that there are:

- Singularity in the integral kernel $\frac{1}{\cdot-y}$.
- Pointwise maximal in the evaluation.
- Oscillation within the integral.

Naturally, we can not expect the tools designed for one particular theme to be effective against such operator. Maybe, we just need to combine all the tools in a smart ways. Additionally, we better do so in a way that separate different features from different themes so that each individual tools can shine. In hindsight, the missing glue to stick all the tools together is TimeFrequency Analysis. While, the participation of sparse dominance is a pleasant surprise.

Of course, this operator is not something mathematicians conjure up just for fun. To convince the reader that such type of operators arises naturally, we first introduce some notions.

1.1 Basic Notions

As a preparation for stating the main result, we introduce some definitions and notations. Throughout this thesis, we only work under Euclidean setting $\left(\mathbb{R}^{D}\right)$.

Definition 1.1.1.

$$
\mathcal{Q}_{d}:=\left\{q \in \mathbb{R}\left[x_{1}\right]\left[x_{2}\right] \cdots\left[x_{D}\right] \mid \operatorname{deg} q \leq d\right\}
$$

Definition 1.1.2 (Standard Kernel).
Given $K: \mathbb{R}^{D} \times \mathbb{R}^{D} \rightarrow \mathbb{C}$, we say K is a Standard Kernel if given $x, y \in \mathbb{R}^{D}$, we have "Size Control":

$$
|K(x, y)| \lesssim\|x-y\|^{-D}
$$

Furthermore, there's $\tau \in(0,1]$ such that for $\Delta \in \mathbb{R}^{D}$ satisfying $\frac{\|\Delta\|}{\|x-y\|} \leq \frac{1}{2}$, we also have " τ-Hölder Type Control":

$$
|K(x+\cdot, y)|_{0}^{\Delta}\left|+|K(x, y+\cdot)|_{0}^{\Delta}\right| \lesssim \frac{(\|\Delta\| /\|x-y\|)^{\tau}}{\|x-y\|^{D}}
$$

Definition 1.1.3 (Calderon-Zygmund Operator).
Given $T \in \mathcal{B L}\left(L^{2}, L^{2}\right)$, we say T is a Calderon-Zygmund Operator (CZO) if it's associated to a standard kernel K in the following sense:

$$
\forall f, g \in C_{c}^{\infty}, \operatorname{supp} f \cap \operatorname{supp} g=\varnothing \Rightarrow\langle T f, g\rangle=\int K(x, y) f(y) \overline{g(x)} d x d y
$$

Remark. Kernel determines a CZO up to a difference of Multiplication Operator. That is: Given $T, S \in \mathcal{B L}\left(L^{2}, L^{2}\right)$ be a pair of $C Z O s$, if T, S are associated to the same kernel, then

$$
\exists m \in L^{\infty} \text { s.t. } \forall f \in L^{2}, T f-S f=m f
$$

For the rest of the thesis, we fix $T \in \mathcal{B} \mathcal{L}\left(L^{2}, L^{2}\right)$ a CZO , denote the corresponding kenerl as $K(\cdot, \cdot)$, and use $f \in C_{c}^{\infty}$ to denote a generic function. Now, we introduce some related operators.

Definition 1.1.4 (Singular Integral Operator).
If the kernel satisfies additional regularity condition:

$$
\forall^{\prime} x \in \mathbb{R}^{D}, \lim _{\epsilon \rightarrow 0^{+}} \int_{\epsilon \leq\|x-y\| \leq 1} K(x, y) d y \text { exists }
$$

the following limit:

$$
\lim _{\epsilon \rightarrow 0^{+}} \int_{\epsilon \leq\|\cdot-y\|} K(\cdot, y) f(y) d y
$$

actually defines a CZO associated to K. We call this particular type of $C Z O$ Singular Integral Operator.

Definition 1.1.5 (Maximal Truncated CZO).

$$
T_{*} f(\cdot):=\sup _{r<R}\left|\int_{r \leq\|\cdot-y\|<R} K(\cdot, y) f(y) d y\right| .
$$

Definition 1.1.6 (Maximal Operator).

$$
M_{r} f(\cdot):=\sup _{B \ni \cdot}|f|_{B, r}
$$

where B denotes a cube and $|f|_{B, r}:=\left(f_{B}|f|^{r} d \mu\right)^{1 / r}$ with $r \in[1, \infty)$ and μ the Lebesgue measure. Notice that Hardy-Littlewood Maximal Operator is essentially the case when $r=1$. For convenience, we write:

$$
M f:=M_{1} f \quad \text { and } \quad|f|_{B}:=|f|_{B, 1}
$$

Definition 1.1.7 (Polynomial Modulation Invariant CZO).

$$
C_{d} f(\cdot):=\sup _{q \in \mathcal{Q}_{d}}\left|T\left(e^{i q} f\right)(\cdot)\right|
$$

Definition 1.1.8 (Maximal Truncated Polynomial Modulation Invariant CZO).

$$
C_{d *} f(\cdot):=\sup _{q \in \mathcal{Q}_{d}} T_{*}\left(e^{i q} f\right)(\cdot)
$$

Observation. Due to a version of Cotlar's Inequality([Duo+01]Lemma 5.15), we always have:

$$
T_{*} f \lesssim M T f+M f
$$

and thus,

$$
C_{d *} f \lesssim M C_{d} f+M f
$$

As a result, boundedness of C_{d} implies boundedness of $C_{d *}$.

1.2 Motivation

We provide some instances where considering such type of operators are relevant.

- Pointwise a.e. Convergence of Fourier Series: In 1915, Luzin conjectured that the Foruier series of a L^{2} function converges almost everywhere to the function itself. The result is proved fifty years afterward.

Theorem 1.2.1 (Carleson's Theorem).
Qualitative statement:(Lennart Carleson, 1966 [Car66])
The Fourier Series of L^{2} function converge a.e. to itself.
Quantitative statement:(Charles Fefferman, 1973 [Fef73])
T be Hilbert Transform on $\mathbb{T},\left\|C_{1} f\right\|_{L^{1}(\mathbb{T})} \lesssim\|f\|_{L^{2}(\mathbb{T})}$.
The original proof was quite complicated. It was not until 1973 that Fefferman gave a much elegant proof on the quantitative equivalence based on Stein Maximal Principle and ideas of Time-Frequency Analysis.

- Constant Coefficient PDE: We provide the most elementary case: Heat equation to illustrate the idea.

$$
\left\{\begin{array}{l}
u_{t}(x, t)-\Delta_{x} u(x, t)=f(x, t), \quad t>0 \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

Due to the linearity of the equation, we reduce to solve the following two sets of equation:

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
u_{t}(x, t)-\Delta_{x} u(x, t)=0, \quad t>0 \\
u(x, 0)=u_{0}(x)
\end{array} \quad\right. \text { homogeneous } \\
\left\{\begin{array}{l}
u_{t}(x, t)-\Delta_{x} u(x, t)=f(x, t), \quad t>0 \\
u(x, 0)=0
\end{array}\right. \text { non-homogeneous. }
\end{array}\right.
$$

Suppose we have understood how the regularity of the initial data u_{0} affects the regularity of the solution u of the homogeneous equation. We now proceed to investigate how the non-homogeneous term f affects the regularity of the solution u in the sense of Sobolev space language. To do so, we first assume the following stronger condition: Given $u(\cdot, \cdot), f(\cdot, \cdot) \in S\left(\mathbb{R}^{D} \times \mathbb{R}\right)$ that vanishes for $t \leq \epsilon$ with some $\epsilon>0$,

$$
\begin{gathered}
u_{t}(x, t)-\Delta_{x} u(x, t)=f(x, t) \\
\stackrel{\text { Fourier }}{\Longleftrightarrow}\left(2 \pi i \tau+4 \pi^{2}|\xi|^{2}\right) \widehat{u}(\xi, \tau)=\widehat{f}(\xi, \tau)
\end{gathered}
$$

By defining $m(\xi, \tau):=\frac{2 \pi i \tau}{2 \pi i \tau+4 \pi^{2}|\xi|^{2}}$ and setting

$$
L_{t} f:=\mathfrak{F}^{-1}(m \mathfrak{F}(f))
$$

we expect $L_{t} f$ to solve u_{t}. Notice that $m\left(\lambda \xi, \lambda^{2} \tau\right)=m(\xi, \tau)$, thus by setting $K:=\mathfrak{F}^{-1}(m)$, we have:

$$
K\left(\lambda x, \lambda^{2} t\right)=\lambda^{-D-2} K(x, t) .
$$

As we expand $L_{t} f$:

$$
\begin{aligned}
& L_{t} f(\cdot):=K * f(\cdot) \\
= & \int_{\mathbb{R}_{+}} \rho^{D+2} \int_{S^{D}} K\left(\rho x, \rho^{2} t\right) f\left(\cdot-\left(\rho x, \rho^{2} t\right)\right) J(x, t) d(x, t) \frac{d \rho}{\rho} \\
= & \int_{S^{D}} K(x, t) J(x, t) \int_{\mathbb{R}_{+}} f\left(\cdot-\left(\rho x, \rho^{2} t\right)\right) \frac{d \rho}{\rho} d(x, t),
\end{aligned}
$$

we reduce to control the following operator:
Definition 1.2.2 (Hilbert Transform Along Paraboloid).

$$
H_{(y, s)} f(x, t):=p \cdot v \cdot \int_{\mathbb{R}} f\left((x, t)-\left(\rho y, \rho^{2} s\right)\right) \frac{d \rho}{\rho}
$$

Denoting Fourier on $(\tilde{x}, t):=\left(x_{2}, x_{3}, \cdots, x_{D}, t\right) "$ as $\tilde{\mathfrak{F}}$, we deduce:

$$
\tilde{\mathfrak{F}}\left(H_{(y, s)} f\right)(\cdot, \tilde{\xi}, \tau)=p \cdot v \cdot \int_{\mathbb{R}} e^{-2 \pi i\left(\rho^{2} \tau s+\rho \tilde{\xi} \cdot \tilde{y}\right)} \tilde{\mathfrak{F}} f\left(\cdot-\rho y_{1}, \tilde{\xi}, \tau\right) \frac{d \rho}{\rho}
$$

which can be controlled by C_{2} with T be Hilbert Transform:

$$
\left|\tilde{\mathfrak{F}}\left(H_{(y, s)} f\right)(\cdot, \tilde{\xi}, \tau)\right| \lesssim C_{2} \tilde{\mathfrak{F}} f(\cdot, \tilde{\xi}, \tau)
$$

If we have $\left\|C_{2} f\right\|_{L^{2}} \lesssim\|f\|_{L^{2}}$, then using the tensor product structure of the product measure and Plancherel theorem, we have:

$$
\begin{gathered}
\because\left\|\tilde{\mathfrak{F}}\left(H_{(y, s)} f\right)(\cdot, \tilde{\xi}, \tau)\right\|_{L^{2}} \lesssim\|\tilde{\mathfrak{F}} f(\cdot, \tilde{\xi}, \tau)\|_{L^{2}} \\
\therefore\left\|H_{(y, s)} f\right\|_{L^{2}}=\left\|\tilde{\mathfrak{F}}\left(H_{(y, s)} f\right)\right\|_{L^{2}} \lesssim\|\tilde{\mathfrak{F}} f\|_{L^{2}}=\|f\|_{L^{2}} .
\end{gathered}
$$

This implies that $\left\|L_{t} f\right\|_{L^{2}} \lesssim\|f\|_{L^{2}}$. (There is an analogous statement for $\Delta_{x} u$.) As a result, we can use density argument to infer that:
$\forall f \in L^{2}\left(\mathbb{R}^{D} \times \mathbb{R}_{+}\right), \exists u$ solving the equation s.t. $u_{t}, \Delta_{x} u \in L^{2}\left(\mathbb{R}^{D} \times \mathbb{R}_{+}\right)$,
which can be easily translated to Sobolev space language.
Remark. If $D=1$, the linear term in the modulation vanishes. This case is covered by Stein and Wainger's result in [SW01]

- Modulation Symmetries: An operator may possess certain symmetry. One such instance is polynomial modulation symmetry. We expect that understanding C_{d} and $C_{d *}$ paves the way to the understanding of some more complicated operators.
- Explicit Polynomial Modulation Invariance: (Hard but have result on $L^{p} \rightarrow L^{p}$ boundedness.)

$$
q \in \mathcal{Q}_{d} \Longrightarrow \begin{cases}C_{d}\left(e^{i q} f\right) & =C_{d}(f) \\ C_{d *}\left(e^{i q} f\right) & =C_{d *}(f)\end{cases}
$$

- Implicit Polynomial Modulation Symmetry: (No good result on the boundedness of the operator for $n>2$)

$$
\begin{gathered}
H_{\vec{\alpha}}\left(f_{j}\right)_{j=1}^{n}(\cdot):=p \cdot v \cdot \int_{\mathbb{R}} \prod_{j=1}^{n} f_{j}\left(\cdot-\alpha_{j} t\right) \frac{d t}{t} \\
\sum_{j=1}^{n} q_{j}\left(\cdot-\alpha_{j} t\right)=q(\cdot) \Longrightarrow H_{\vec{\alpha}}\left(e^{i q_{j}} f_{j}\right)_{j=1}^{n}=e^{i q} H_{\vec{\alpha}}\left(f_{j}\right)_{j=1}^{n}
\end{gathered}
$$

Indeed, inspired by Fefferman's proof on the boundedness of C_{1}, Thiele and Lacey came up with a much elegant argument using the same philosophy to prove the boundedness of $H_{(1,-1)}$:

Theorem 1.2.3 (Christoph Thiele \& Michael Lacey, 1997 [LT97]). $\forall p, q, r \in(2, \infty)$ such that $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=1$,

$$
\left|\left\langle H_{(1,-1)}(f, g), h\right\rangle\right| \underset{p, q, r}{\lesssim}\|f\|_{L^{p}}\|g\|_{L^{q}}\|h\|_{L^{r}}
$$

Later on, they notice the similarity (similar modulation symmetry) between C_{1} and $H_{(1,-1)}$ and use their method to prove:

Theorem 1.2.4 (Christoph Thiele \& Michael Lacey, 2000 [LT00]).

$$
\left\|C_{1} f\right\|_{L^{2, \infty}} \lesssim\|f\|_{L^{2}}, \quad \text { where } T \text { is Hilbert Transform. }
$$

It is tempting to believe that there is an implicit correspondence:

$$
C_{d} f, C_{d *} f \Longleftrightarrow H_{\vec{\alpha}}\left(f_{j}\right)_{j=1}^{n}
$$

However, there must be some missing links between the two scenarios. To elaborate, we present some of the differences:
(\Longrightarrow) We need to find a way to convert the multilinear nature of the operator into products of linear structures. Additionally, we better extract the implicit modulation symmetry into the form of explicit modulation invariance.
(\Longleftarrow) The conversion of C_{1} into $H_{(1,-1)}$-like operator, relies on the Fourier correspondence between linear modulation and translation. There is no good notion for polynomial modulation.

- Detection of the Singularity: It is an idea from one of my colleagues. Let us compare $\frac{1}{\square}$ and $\frac{1}{1.1}$ and its corresponding operators:

$$
\left\{\begin{array}{l}
H f(\cdot):=p \cdot v \int \frac{1}{-y} f(y) d y \\
X f(\cdot):=p \cdot v \int \frac{1}{|-y|} f(y) d y .
\end{array}\right.
$$

Some easy verification shows that:

$$
\left\{\begin{array}{l}
\|H f\|_{L^{p}} \lesssim\|f\|_{L^{p}} \\
\|X f\|_{L^{p}} \mathbb{Z}\|f\|_{L^{p}}
\end{array} \quad, \quad \forall p \in(1, \infty) .\right.
$$

As we put in modulation: Fixing $\mathcal{Q} \subset C^{\infty}(\mathbb{R}, \mathbb{R})$, we define:

$$
Q f(\cdot):=\sup _{\phi \in \mathcal{Q}}\left|p \cdot v \cdot \int \frac{1}{--y} e^{i \phi(y)} f(y) d y\right|,
$$

we see that the behavior of Q is morally governed by the two cases: H and X. That is, if \mathcal{Q} is too large, we can expect the modulation recovers the absolute value that is:

$$
|X f| \leq|Q f| \text { and, thus, }\|Q f\|_{L^{p}} \not \mathbb{Z}\|f\|_{L^{p}}, \quad \forall p \in(1, \infty) .
$$

Otherwise, we have for example: $\mathcal{Q}:=\mathcal{Q}_{1}$ and $T:=H$,

$$
C_{1} f=Q f \text { and, thus, }\|Q f\|_{L^{p}} \lesssim\|f\|_{L^{p}}, \quad \forall p \in(1, \infty) .
$$

The interesting part is to find the borderline between the two cases:
Definition 1.2.5 (Detection of Singularity).
Given $T \in \mathcal{B L}\left(L^{2}, L^{2}\right)$ a CZO, we say $\mathcal{Q} \subset C^{\infty}\left(\mathbb{R}^{D}, \mathbb{R}\right)$ detects the singularity at $p \in(1, \infty)$ if the operator defined as:

$$
Q f(\cdot):=\sup _{\phi \in \mathcal{Q}}\left|T\left(e^{i \phi} f\right)(\cdot)\right|
$$

is not bounded at p. That is, $\|Q f\|_{L^{p}} \mathbb{Z}\|f\|_{L^{p}}$.
In other words, \mathcal{Q}_{1} does not detect the singularity of Hilbert transform. We think a non-trivial example of \mathcal{Q} that detects the singularity at specific p would give us new light on the understanding of the singularity of an operator.

1.3 Main Result

Stein conjectured that C_{d} is bounded for suitable $K(\cdot, \cdot)$. In his joint work with Wainger [SW01], a restricted case (excluding linear modulation) is resolved through the technique of stationary phase formula and $T T^{*}-T^{*} T$ arguments. While, Lie, after proving the weak $(2,2)$ bound of C_{2} with T being Hilber transform on \mathbb{T}, proved the Stein conjecture for the following case:

Theorem 1.3.1 (Victor Lie, 2020 Annals of Mathematics [Lie20]). T be Hilbert Transform on \mathbb{T},

$$
\left\|C_{d} f\right\|_{L^{p}(\mathbb{T})} \underset{p, d}{\lesssim}\|f\|_{L^{p}(\mathbb{T})}, \quad \forall p \in(1, \infty)
$$

Inspired by the proof, Zorin-Kranich extended the result and resolved the full Stein conjecture:

Theorem 1.3.2 (Pavel Zorin-Kranich, 2019 [Zor19]).
For arbitrary D, T,

$$
\left\|C_{d *} f\right\|_{L^{p}} \underset{T, D, d, p}{\lesssim}\|f\|_{L^{p}}, \quad \forall p \in(1, \infty) .
$$

Remark. The precise condition for Theorem 1.3.2 is actually weaker:

$$
\left\|T_{*} f\right\|_{L^{p}} \lesssim\|f\|_{L^{p}}, \quad \forall p \in(1, \infty)
$$

That is, even if there is no C.Z.O associated to the kernel $K(\cdot, \cdot)$, the condition is still valid. Alternatively, it infers that polynomials with bouneded degree cannot detect the singularity of the kernel if T^{*} is bounded.

By previous observation, it's tempting to think C_{d} a more fundamental object and try proving its boundedness first. Naturally, we would come up with our first guess:

Theorem 1.3.3.

If T is a Singular Integral Operator, we always have:

$$
\left\|C_{d} f\right\|_{L^{p}} \underset{T, D, d, p}{\lesssim}\|f\|_{L^{p}}, \forall p \in(1, \infty)
$$

However, in hindsight, we actually treat Theorem 1.3.3 as a direct corollary of Theorem 1.3.2. Notice that it's quite different from the treatment in [Lie20]. The author proves Theorem 1.3.3 for T being Hilbert Transform directly. We will address what causes the difference in 3.4.

2 Mathematical Jigsaw Puzzle

In this section, we give a heuristic explanation about how we'll use TimeFrequency Analysis to proceed with the proof of Theorem 1.3.2.

2.1 Cut out the Pieces

The idea is to linearize $C_{d *}$:

$$
C_{d *} f(\cdot) \rightsquigarrow \int_{r_{(\cdot)} \leq\|\cdot-y\|<R_{(\cdot)}} K(\cdot, y) e^{i q_{(\cdot)}(y)} f(y) d y=: \tilde{C}_{d *} f(\cdot)
$$

so that the time-frequency information of $f(\cdot)$ gets transferred to the operator itself. Since $q_{(\cdot)}$ is encoded with the sheet music-time-frequency portrait of $f(\cdot)$, Time-Frequency Analysis would be done on $\tilde{C}_{d *}$ instead of f.

Next, we break $\tilde{C}_{d *}$ into tiny pieces and treat them as mathematical jigsaw puzzles. Our goal is to fit those pieces into a "bounded" box. To do so, we do the following decomposition:

- $\operatorname{Scale}(s \in \mathbb{Z})$: We break $K(\cdot, \cdot)$ according to scales so that each piece mimics the behavior of a wavelet. As a result, the s-scale piece of the operator extracts 2^{s}-resolution features only. In short, we have

$$
K(x, y) \sim \sum_{s \in \mathbb{Z}} \boldsymbol{w a v e l e t}_{s}(x-y) \wedge T_{*} f(\cdot) \sim \sup _{\underline{s}<\bar{s}} \mid\left(\sum_{s=\underline{s}}^{\bar{s}} \text { wavelet }_{s}\right) * f(\cdot) \mid .
$$

- Temporal block $\left(I \subset \mathbb{R}^{D}\right)$: With a fixed scale, we decompose the piece to separate the support into different temporal position with block-size matching the scale.
- Spectral block $\left(\omega \subset \mathcal{Q}_{d}\right)$: Fixing scale and temporal position, we decompose the piece again so that $q_{(\cdot)}$ fall in distinct spectral position with block-size respecting some kind of Uncertainty Principle.

That is, a generic piece satisfies:

$$
2^{s} \sim \text { diameter of } I \sim \text { diameter of } \omega^{-1}
$$

where s is the natural scaling of $I \times \omega$ and is denoted by $s_{I \times \omega}$. In short,

$$
\tilde{C}_{d *} f(\cdot) \sim \sum \operatorname{piece}_{I \times \omega} f(\cdot),
$$

where

$$
\text { piece }_{I \times \omega} f(\cdot) \sim \operatorname{wavelet}_{s_{I \times \omega}} *\left(e^{i q_{(\cdot)}} f\right)(\cdot) \chi_{E_{I \times \omega}}(\cdot)
$$

with

$$
E_{I \times \omega}:=\left\{x \in I \mid q_{x} \in \omega \wedge r_{x} \leq 2^{s_{I \times \omega}} \leq R_{x}\right\}
$$

Naturally, this comes with good properties. For instance, all the pieces have similar sizes in $\mathcal{B} \mathcal{L}\left(L^{p}, L^{p}\right)$. However, we need finer estimation, and we do so by tracking the following attributes for each piece:

- Scale : This corresponds to the resolution of features the operator detects/takes in.
- Tile position : This refers to the position of tile $P:=I_{P} \times \omega_{P}$ on the time-frequency phase plane.
- Density : This measures how large portion of I_{P} gets sent through $q_{(\cdot)}$ to ω_{P} within the acceptable scale range. That is, $\mathcal{A}(P):=\frac{\left|E_{P}\right|}{\left|I_{P}\right|}$.
As an immediate result,

$$
\left\|\boldsymbol{p i e c e}_{P} f\right\|_{L^{p}} \lesssim \mathcal{A}(P)^{1 / p}\|f\|_{L^{p}} .
$$

This provides us with some intuition. By classifying the pieces according to their density (i.e. $\mathcal{A}(P) \approx 2^{-n}$), we just need to remember extracting the 2^{-n} factor from our arguments. Namely, we shall focus on $\mathbb{P}_{n}:=\left\{P \mid \mathcal{A}(P) \approx 2^{-n}\right\}$. (Details would be made precise in 4.)

2.2 Find Good Configurations

Up till now, we've reduced the puzzle to \mathbb{P}_{n} sub-puzzle. To proceed, we need to know how well pieces can be packed together in $\mathcal{B L}\left(L^{p}, L^{p}\right)$. Naturally, a good starting point would be $\mathcal{B L}\left(L^{2}, L^{2}\right)$. This way, we can use Orthogonality to help us organize our pieces. As expected, $\exists \epsilon>0$, s.t. $\forall P_{j} \in \mathbb{P}_{n}$

$$
\begin{cases}\left\langle\text { piece }_{P_{0}} f, \text { piece }_{P_{1}} f\right\rangle=0 & \Longleftarrow P_{0} \cap P_{1}=\varnothing \tag{7.1.3}\\ \mid\left\langle\text { piece }_{P_{0}}^{*} f, \text { piece }_{P_{1}}^{*} f\right\rangle \mid & \lesssim 2^{-n}\left(1+\text { distance }_{P_{0}, P_{1}}\right)^{-\epsilon} .\end{cases}
$$

Alternatively, if $\mathbb{P} \subset \mathbb{P}_{n}$ cluster at a spot $(\xi, \eta) \in \mathbb{R}^{D} \times \mathcal{Q}_{d}$, the cluster cluster $_{\mathbb{P}} f:=\sum_{P \in \mathbb{P}} \operatorname{piece}_{P} f$ will extract distinct $2^{s_{P}}$-resolution features of f near (ξ, η). Therefore, provided that $\left\{\begin{array}{l}\left\{s_{P}\right\}_{P \in \mathbb{P}}=\{s \in \mathbb{Z} \mid \underline{s} \leq s \leq \bar{s}\} \\ \forall P \in \mathbb{P}, \operatorname{distance}_{P,(\xi, \eta)} \ll 1\end{array}\right.$, we have $q_{x} \sim \eta$ as long as $x \in \bigcup_{P \in \mathbb{P}} E_{P}$ is around ξ, and Multi-Resolution Analysis yields

$$
\begin{align*}
\mid \text { cluster }_{\mathbb{P}} f \mid & \sim \mid\left(\sum_{s=\underline{s}}^{\bar{s}} \text { wavelet }_{s}\right) *\left(e^{i \eta} f\right) \left\lvert\, \begin{array}{c}
\chi_{2-n} \begin{array}{c}
\text {-dense set } \\
\text { around } \xi
\end{array} \\
\\
\lesssim T_{*}\left(e^{i \eta} f\right) \chi_{2-n} \text {-dense set } \\
\text { around } \xi
\end{array}\right. \tag{8.2.3}
\end{align*}
$$

Moreover, by viewing cluster of tiles as a whole, we have analogue of previous two Orthogonality relation: for $\mathbb{P}^{j} \subset \mathbb{P}_{n}$ cluster at $\mathfrak{p}_{j} \in \mathbb{R}^{D} \times \mathcal{Q}_{d}$, we have

$$
\begin{cases}\left\langle\text { cluster }_{\mathbb{P}^{0}} f, \text { cluster }_{\mathbb{P}^{1}} f\right\rangle=0 & \Longleftarrow \bigcup \mathbb{P}^{0} \cap \bigcup \mathbb{P}^{1}=\varnothing \tag{8.3.1}\\ \mid\left\langle\text { cluster }_{\mathbb{P}^{0}}^{*} f, \text { cluster }_{\mathbb{P}^{1}}^{*} f\right\rangle \mid & \lesssim 2^{-n}\left(1+\text { distance }_{\mathfrak{p}_{0}, \mathfrak{p}_{1}}\right)^{-\epsilon} .\end{cases}
$$

Combining what have been learned, a reasonable strategy to solve the puzzle would be to organize \mathbb{P}_{n} into the following two "good" configurations:

- Sparse Parts: $\mathbb{P} \subset \mathbb{P}_{n}$ has few overlaps on $\mathbb{R}^{D} \times \mathcal{Q}_{d}$, and Orthogonality gives strong enough control. (Details are presented in 7)
- Cluster Parts: $\mathbb{P} \subset \mathbb{P}_{n}$ consists of multiple clusters but clusters are $2^{C n}$ apart on $\mathbb{R}^{D} \times \mathcal{Q}_{d}$ with $C \gg 1$. By combining both Orthogonality and Multi-Resolution Analysis, we can apply Cotlar-Stein Lemma and arrive at a suitable control. (Details are presented in 8).

2.3 Combinatorial Wizardry and Analytic Magecraft

Now, to systematically extract those good configurations from \mathbb{P}_{n}, we follow both [Lie20] and [Zor19], which follow Charles Fefferman's idea in [Fef73]. To elaborate, we equip \mathbb{P}_{n} with an "order-like" relation to reflect their "incidental properties". Consequently, both sparse parts and cluster parts have alternate interpretations:

- Sparse Parts: Collections of Anti-Chains
- Cluster Parts: Collections of Convex Sets

Therefore, through some Combinatorial methods devised by Fefferman, we can extract the desired configurations. (Details in 5.3.)

Still, the original argument in [Fef73] has no control over how "high" clusters stack. The author isolates those who stack too high and proves that they have "small supports", which is why "Exceptional Sets" arise in [Fef73]. This prevents us from finer estimate and direct $L^{2} \rightarrow L^{2}$ bound.

One of the innovation in [Lie20] is the clever use of John-Nirenberg inequality. The arguments guarantee that "higher clusters" has "smaller supports". That is, instead of stacking like Jenga, the clusters stack like Eiffel Tower. Consequently, Lie eliminated the use of Exceptional Sets and derived $L^{2} \rightarrow L^{2}$ bound directly. (Details in 6.3.)

On the other hand, Zorin-Kranich simplified the argument and put additional steps to make the system more compatible with certain "temporal dilation". (Details in 6.4.)

Finally, to acquire full $L^{p} \rightarrow L^{p}$ bound, we modify Lie's argument on sparse parts with the language in [LN15] and adopt Zorin-Kranich's treatment on cluster parts. To be more specific, we first derive p-bounds insensitive to density:

- Sparse Parts: We resort to pointwise sparse dominance on sparse parts.
- Cluster Parts: We use the Multi-Resolution Analysis on clusters to derive "localized estimate" and the extrapolation method adopted by Bateman in [BT13] to acquire $L^{p, 1} \rightarrow L^{p, \infty}$ bound. (Detail in 8.7.)
To complete the argument, we interpolate to spread the 2^{-n} factor to $L^{p_{\theta}} \rightarrow L^{p_{\theta}}$ bound and use the geometric decay on density to sum everything up.

3 Tools and Facts

In this section, we establish some tools and some useful facts without proof.
For starters, we borrow part of the setting and language in [Zor19] and [SW01] to quantify the effect of polynomial phases on behavior of oscillatory integrals.

Next, we follow the setting in [LN15] and sum up some useful facts about sparse systems.

At the end of the section, we introduce our modified settings and explain how it relates to the original settings and why the change of the formulation in [Zor19] may be necessary to generalize the result in [Lie20].

Remark. Throughout this thesis, we will sometimes suppress the dependence on κ, κ^{*}, D, d within the $\lesssim, \ll, \subsetneq$ relation.

3.1 Local Oscillation of Polynomial

To apply Cotlar-Stein Lemma, we expect the need for an estimate as the following:

$$
q \in \mathcal{Q}_{d}, \psi \in L^{0} \text { (measurable function) } \Longrightarrow\left|\int e^{i q} \psi d \mu\right| \underset{\substack{\text { Oscillation of } \psi, q \\ \text { on supp } \psi}}{\lesssim} ?
$$

Indeed, when $d=1$, Riemann-Lebesgue Lemma gives us qualitative description: the higher the oscillation, the greater the cancellation. This motivates the need to quantify the oscillation of q within the support of ψ. However, to simplify the matters, we model the support as cubes, and we, therefore, need some related terminology:

Definition 3.1.1 (Attributes of a cube $I \subset \mathbb{R}^{D}$).

- $c_{I} \in \mathbb{R}^{D}$ denotes the center of mass of I.
- ℓ_{I} denotes the side-length of I.
- $|I|:=\ell_{I}{ }^{D}$ denotes the D-volume of I.

In short, $I:=c_{I}+\ell_{I}[-1 / 2,1 / 2)^{D}=c_{I}+\left[-\ell_{I} / 2, \ell_{I} / 2\right)^{D}$.
Definition 3.1.2 (Temporal Dilation).

$$
\forall C \in \mathbb{R}_{+}, C I:=c_{I}+C \ell_{I}[-1 / 2,1 / 2)^{D}=c_{I}+\left[-\frac{C \ell_{I}}{2}, \frac{C \ell_{I}}{2}\right)^{D}
$$

Now, we define a weaker form of " \subset ". Given $I, J \subset \mathbb{R}^{D}$ be cubes,
Definition 3.1.3 (Roughly Contain).

$$
I \subsetneq J \Longleftrightarrow \exists C \in \mathbb{R}_{+} \text {prescribed, s.t. } I \subset C J
$$

Finally, we characterize the local oscillation of $q \in \mathcal{Q}_{d}$ on cube.
Definition 3.1.4 (Seminorm on $\mathcal{Q}_{d}[$ Zor19](4.1.5.)).

$$
\|q\|_{I}:=\sup _{x, y \in I}|q(x)-q(y)| .
$$

As an immediate result, since \mathcal{Q}_{d} is a finite dimensional vector space, all non-trivial(vanishing only on constant) seminorms are equivalent. Therefore, we may unambiguously assign a topology generated by seminorm on \mathcal{Q}_{d}. Still, for our purpose, we need quantitative controls:

Properties 3.1.5 (Embedding Inequality [Zor19]Lemma 4.1.6.).

Such estimate would become important as we do Multi-Resolution Analysis.

3.2 Van der Corput Estimate

Continuing previous settings,
Properties 3.2.1 ([Zor19]Lemma 4.6.1. [SW01]Proposition 2.1.).

$$
\begin{aligned}
\forall \psi \in L^{0}, \operatorname{supp} \psi \subset I \Longrightarrow\left|\int e^{i q} \psi d \mu\right| & \underset{\underset{D, d}{ } \frac{\|\Delta\|}{\ell_{I}}<\left\langle\|q\|_{I}\right\rangle^{1 / d}}{ }\left\|\psi-\tau_{\Delta} \psi\right\|_{L^{1}} \\
& \lesssim \sup _{\frac{\|\Delta\|}{\ell_{I}}<\left\langle\|q\|_{I}\right\rangle^{1 / d}}\left\|\psi-\tau_{\Delta} \psi\right\|_{L^{\infty}}|I|
\end{aligned}
$$

where $\langle\cdot\rangle:=\frac{1}{1+|\cdot|}$ and $\tau_{\Delta} \psi(\cdot):=\psi(\cdot-\Delta)$.
As a immediate corollary, we have a version designed for partition of unity: For generic $\psi \in L^{0}, \delta>1, I \subset \mathbb{R}^{D}$ be cube, we consider a fragment of partition of unity located around I. That is,

$$
\chi \in C_{c}^{\infty} \text { s.t. }\left\{\begin{array}{c}
|\chi| \underset{\delta}{\lesssim} \chi_{\delta I} \\
\|\nabla \chi\| \underset{\delta}{\lesssim} \chi_{\delta I} / \ell_{I}
\end{array}\right.
$$

and we have
Corollary 3.2.1.1.

$$
\left|\int \chi e^{i q} \psi d \mu\right| \underset{D, d, \delta}{\lesssim}|I| \begin{cases}\left\langle\|q\|_{I}\right\rangle^{1 / d}\|\psi\|_{L^{\infty}((1+2 \delta) I)} & \text { Height of } \psi \\ \sup _{\frac{\mid \Delta}{\ell_{I}}<\left\langle\|q\| \|_{I}\right\rangle^{1 / d}}\left\|\psi-\tau_{\Delta} \psi\right\|_{L^{\infty}(\delta I)} & \text { Oscillation of } \psi .\end{cases}
$$

3.3 Sparse Language and Ambient System

The Sparse System we refer to is a sub-system of a 2^{κ}-adic System satisfying certain properties. For our purpose, we do not work under usual Dyadic System. Yet, all the language in [LN15] can be easily converted. For starters, we construct our ambient system:

Definition 3.3.1 (Standard 2^{κ}-adic System $\langle\mathbb{D}, \subset\rangle$).

$$
\mathbb{D}:=\bigsqcup_{s \in \mathbb{Z}} \mathbb{D}_{s}, \text { where } \mathbb{D}_{s}:=\left\{2^{s \kappa}\left(\zeta+[0,1)^{D}\right) \text { be cube } \mid \zeta \in \mathbb{Z}^{D}\right\}
$$

We equip \mathbb{D} with \subset as partial order and, for $\mathbb{I} \subset \mathbb{D}$, define:

$$
\left\{\begin{array}{rll}
M \mathbb{I}:=\{I \in \mathbb{I} \mid \nexists J \in \mathbb{I} \text { s.t. } I \subsetneq J\} & & \text { maximal elements } \\
\mathbb{I}^{C}:=\{I \in \mathbb{D} \mid \exists J \in \mathbb{I} \text { s.t. } I \subset J\} & & \text { downward envelope. }
\end{array}\right.
$$

Also, we denote the parent(immediate predecessor) of $I \in \mathbb{D}$ as $\widehat{I} \in \mathbb{D}$.
Now, given $\mathbb{S} \subset \mathbb{D}, 1 \leq \Lambda$, we call \mathbb{S} a Sparse System if it satisfies either of the following equivalent ([LN15] 6.1.) conditions:

Definition 3.3.2 (Λ-Carleson Condition [LN15] Definition 6.2.).

$$
\mathbb{S} \text { is } \Lambda \text {-Carleson } \Longleftrightarrow \forall J \in \mathbb{S}(\text { or equivalently, } \mathbb{D}), \sum_{I \in \mathbb{S}, I \subset J}|I| \leq \Lambda|J|
$$

Definition 3.3.3 (Λ^{-1}-Sparse Condition [LN15] Definition 6.1.).
\mathbb{S} is Λ^{-1}-Sparse $\Longleftrightarrow \forall I \in \mathbb{S}, \exists E_{I} \subset I$ measurable s.t. $\left\{\begin{array}{l}|I| \leq \Lambda\left|E_{I}\right| \\ E_{I} s \text { are disjoint }\end{array}\right.$.
With basic terminology established, we provide the following two construc-
tions. Given $\mathbb{D} \xrightarrow{\omega_{(\cdot)}} \mathbb{R}_{+}, \mathbb{S} \Lambda$-Carleson, we construct $\left\{\begin{array}{l}M_{\omega}(\cdot):=\sup _{\cdot \in I \in \mathbb{D}} \omega_{I} \\ S_{\mathbb{S}, \omega}(\cdot):=\sum_{I \in \mathbb{S}} \omega_{I} \chi_{I}(\cdot)\end{array}\right.$.
Through Definition 3.3.3., we relate the two constructions:
Lemma 3.3.4 (Sparse-Maximal Dominance).

$$
\begin{aligned}
& \left|\left\langle S_{\mathbb{S}, \omega}, f\right\rangle\right| \leq \sum_{I \in \mathbb{S}} \omega_{I}\left|\left\langle\chi_{I}, f\right\rangle\right| \\
\leq & \sum_{I \in \mathbb{S}}|I| \omega_{I} f_{I}|f| d \mu \leq \sum_{I \in \mathbb{S}} \Lambda\left|E_{I}\right| \omega_{I} f_{I}|f| d \mu \\
\leq & \Lambda \sum_{I \in \mathbb{S}} \int_{E_{I}} M_{\omega} M f d \mu \leq \Lambda\left\langle M_{\omega}, M f\right\rangle \\
\Longrightarrow & \left\|S_{\mathbb{S}, \omega}\right\|_{L^{p}} \underset{p}{\lesssim} \Lambda\left\|M_{\omega}\right\|_{L^{p}}
\end{aligned}
$$

3.4 Modified Settings

We introduce a smoothed-out but scale-discretized version of T_{*} and $C_{d *}$, which would become major tools later on. For our purpose, we

1. Prescribe $n_{D}:=\lceil 2 \sqrt{D}+1\rceil \in \mathbb{N}, \kappa \underset{D, d}{\gg} 1, \delta \underset{D, d}{\ll} 2^{-\kappa}$, where the values of $2^{\kappa} \in \mathbb{N}, \delta \in \mathbb{R}_{+}$would be made clear in the subsequent sections.
2. Fix $\chi \in C_{c}^{\infty}$ satisfying:

$$
\chi_{\left(n_{D}+\delta\right)[-1,1]^{D}} \leq \chi \leq \chi_{\left(n_{D}+2^{-\kappa}-\delta\right)[-1,1]^{D}} .
$$

3. Define $\phi(\cdot):=\chi\left(2^{-\kappa} \cdot\right)-\chi(\cdot) \in C_{c}^{\infty}$. Note that:

$$
\operatorname{supp} \phi \subset\left(-n_{D} 2^{\kappa}-1, n_{D} 2^{\kappa}+1\right)^{D} \backslash\left[-n_{D}, n_{D}\right]^{D}
$$

As a result, certain shifts $\mathrm{Sh}:=\left\{z \in \mathbb{Z}\left|n_{D} \leq|z| \leq n_{D} 2^{\kappa}+1\right\}^{D}\right.$ yield

$$
x \in[0,1)^{D} \Longrightarrow\left\{\begin{array}{l}
\operatorname{supp} \phi(x-\cdot) \\
\operatorname{supp} \phi(\cdot-x)
\end{array} \subset \bigsqcup_{\xi \in \operatorname{Sh}} \xi+[0,1)^{D}\right.
$$

and, by our constructions,

$$
x, x^{\prime} \in[0,1)^{D} \quad \wedge \quad y \in \bigsqcup_{\xi \in \mathrm{Sh}} \xi+[0,1)^{D} \Longrightarrow \frac{\left\|x-x^{\prime}\right\|}{\|x-y\|} \leq \frac{\sqrt{D}}{n_{D}-1} \leq 1 / 2
$$

which is exactly the condition for τ-Hölder Type Control of K. For convenience, we also define for $I \in \mathbb{D}$ the following collection and set:

$$
\mathbb{S h}_{I}:=\left\{\ell_{I} \xi+I \in \mathbb{D} \mid \xi \in \operatorname{Sh}\right\} \quad \text { and } I^{*}:=\bigsqcup \mathbb{S}_{I}
$$

4. Decompose K into wavelet-like pieces:

$$
K=\sum_{s \in \mathbb{Z}} K_{s}
$$

where $\forall x, y \in \mathbb{R}^{D}$ s.t. $x \neq y$

$$
K_{s}(x, y):=\phi\left(2^{-s \kappa}(x-y)\right) K(x, y)
$$

Since K_{s} inherits the standard kernel properties of K and the support constraint on ϕ, translation and dilation yield the following three properties:

Properties 3.4.1 ($L^{0} \backslash$ Support Control).

$$
x \in I \in \mathbb{D}_{s} \Longrightarrow\left\{\begin{array}{l}
\operatorname{supp} K_{s}(x, \cdot) \\
\operatorname{supp} K_{s}(\cdot, x)
\end{array} \subset I^{*}\right.
$$

Properties 3.4.2 ($L^{\infty} \backslash$ Size Control) .

$$
\left|K_{s}\right| \underset{\overline{D, d}}{\lesssim} 2^{-s D \kappa}
$$

Properties 3.4.3 (τ-Hölder Regularity).

$$
x, x^{\prime} \in I \in \mathbb{D}_{s} \Longrightarrow\left\{\begin{array}{l}
\left|K_{s}(x, \cdot)-K_{s}\left(x^{\prime}, \cdot\right)\right| \\
\left|K_{s}(\cdot, x)-K_{s}\left(\cdot, x^{\prime}\right)\right| \\
\underset{D, d}{\lesssim}\left(\frac{\left\|x-x^{\prime}\right\|}{\ell_{I}}\right)^{\tau}|I|^{-1} \chi_{I^{*}}(\cdot) .
\end{array}\right.
$$

Corollary 3.4.3.1 (Locally τ-Hölder Continuity).

$$
\left|x-x^{\prime}\right| \lesssim 2^{s \kappa} \Longrightarrow\left\{\begin{array}{l}
\left|K_{s}(x, \cdot)-K_{s}\left(x^{\prime}, \cdot\right)\right| \quad \underset{D, d}{\left|K_{s}(\cdot, x)-K_{s}\left(\cdot, x^{\prime}\right)\right|}\left(2^{-s \kappa}\left\|x-x^{\prime}\right\|\right)^{\tau} 2^{-s D \kappa} .
\end{array}\right.
$$

Proof. Given $\left|x-x^{\prime}\right| \lesssim 2^{\text {sк }}$, we can always find $\lesssim 1$ cubes $I_{j} \in \mathbb{D}_{s}$ covering the straight line joining x and x^{\prime} with $x_{j} \in I_{j}$ on the line, where $x=x_{0}$ and $x^{\prime}=x_{n}$, such that:

$$
\begin{aligned}
\left|K_{s}(x, \cdot)-K_{s}\left(x^{\prime}, \cdot\right)\right| & \leq \sum_{j=1}^{n}\left|K_{s}\left(x_{k}, \cdot\right)-K_{s}\left(x_{k-1}, \cdot\right)\right| \\
& \underset{D, d}{\lesssim} \sum_{j=1}^{n}\left(\frac{\left\|x_{k}-x_{k-1}\right\|}{\ell_{I_{j}}}\right)^{\tau}\left|I_{j}\right|^{-1} \lesssim\left(2^{-s \kappa}\left\|x-x^{\prime}\right\|\right)^{\tau} 2^{-s D \kappa} .
\end{aligned}
$$

The dual notion holds similarly.
With such scale decomposition, we may define:
Definition 3.4.4 (Modified Truncated Maximal CZO).

$$
\mathfrak{T}_{*} f(\cdot):=\sup _{\underline{s}<\bar{s}}\left|\int \sum_{s=\underline{s}}^{\bar{s}} K_{s}(\cdot, y) f(y) d y\right| .
$$

By tinkering with $(\underline{s}, \bar{s}, r, R) \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{2}$ so that $\left\{\begin{array}{l}n_{D} 2^{\underline{s} \kappa} \sim r \\ n_{D} 2^{\bar{s} \kappa} \sim R\end{array} \quad\right.$, we have:

$$
\left|\int_{r \leq\|\cdot-y\|<R} K(\cdot, y) f(y) d y-\int \sum_{s=\underline{s}}^{\bar{s}} K_{s}(\cdot, y) f(y) d y\right| \underset{\overline{D, d}}{\underset{ }{\infty}} M f(\cdot)
$$

As a result,

Properties 3.4.5.

$$
\left|T_{*} f-\mathfrak{T}_{*} f\right| \underset{\overline{D, d}}{\lesssim} M f
$$

Therefore, the $L^{p} \rightarrow L^{p}$ behaviors of T_{*} and \mathfrak{T}_{*} are identical. Consequently, it is relevant to consider:

Definition 3.4.6.

$$
\mathfrak{C}_{d *} f(\cdot):=\sup _{q \in \mathcal{Q}_{d}} \mathfrak{T}_{*}\left(e^{i q} f\right)(\cdot)
$$

and immediately, we have:

Corollary 3.4.6.1.

$$
\left|C_{d *} f-\mathfrak{C}_{d *} f\right| \underset{\overline{D, d}}{\lesssim} M f
$$

Eventually, $L^{p} \rightarrow L^{p}$ behavior of $C_{d *}$ is governed by $\mathfrak{C}_{d *}$, and the main result Theorem 1.3.2 can be reduced to proving:

Theorem 3.4.7.

$$
\left\|\mathfrak{C}_{d *} f\right\|_{L^{p}} \underset{D, d, p}{\lesssim}\|f\|_{L^{p}}, \forall p \in(1, \infty)
$$

On the other hand, the main result Theorem 1.3.3 for Singular Integral type operator cannot be derived directly through such method, since, in general:

$$
T f(\cdot):=\lim _{\epsilon \rightarrow 0^{+}} \int_{\epsilon \leq\|\cdot-y\|} K(\cdot, y) f(y) d y \neq \sum_{s \in \mathbb{Z}} \int K_{s}(\cdot, y) f(y) d y
$$

even if:

$$
\forall^{\prime} x \in \mathbb{R}^{D}, \lim _{\epsilon \rightarrow 0^{+}} \int_{\epsilon \leq\|x-y\| \leq 1} K(x, y) d y \text { exists. }
$$

Unless, K is, for example, Anti-Symmetric: in Lie's works [Lie08], [Lie20], $D=1, K(x, y)=\frac{1}{x-y}$. If we choose $\chi \in C_{c}^{\infty}$ even, we have:

$$
\forall s \in \mathbb{Z}, \quad \int K_{s}(\cdot, y) d y=0
$$

As a result, by using M.V.T. and D.C.T., we have:

$$
\begin{aligned}
& \sum_{\underline{s}<s \leq \bar{s}} \int K_{s}(\cdot, y) f(y) d y \\
&= \int \sum_{\underline{s}<s \leq \bar{s}} K_{s}(\cdot, y)(f(y)-f(\cdot)) d y \\
& \stackrel{\substack{\bar{s} \backslash \infty}}{\substack{\longrightarrow}} \int K(\cdot, y)(f(y)-f(\cdot)) d y \\
&=p . v . \int K(\cdot, y) f(y) d y=H f(\cdot)=T f(\cdot) .
\end{aligned}
$$

In conclusion, for general standard kernel K, we should adopt Zorin-Kranich's approach in [Zor19].

4 Decomposition of the Operator

In the section, we provide the rigorous version of the following decomposition:

$$
\tilde{C}_{d *} f(\cdot) \sim \sum_{P} \text { wavelet }_{s_{P}} *\left(e^{i q_{(\cdot)}} f\right)(\cdot) \chi_{E_{P}}(\cdot)
$$

To be more specific, since we've established that

$$
\left\|C_{d *} f\right\|_{L^{p}} \lesssim\|f\|_{L^{p}} \Longleftarrow\left\|\mathfrak{C}_{d *} f\right\| \lesssim\|f\|_{L^{p}}
$$

we may shift our focus to $\mathfrak{C}_{d *}$ for the rest of the arguments. Our goal is to reduce $\mathfrak{C}_{d *} f$ into sum and maximum over finite elements, to linearize the operator, and to do the tile decomposition.

4.1 Reduction and Linearization

For starters, we notice that
Observation. \mathcal{Q}_{d} is separable.
That is, by explicitly enumerating rational coefficient polynomials:

$$
\left\{q \in \mathbb{Q}\left[x_{1}\right]\left[x_{2}\right] \cdots\left[x_{D}\right] \mid \operatorname{deg} q \leq d\right\}=:\left\{q_{n}\right\}_{n \in \mathbb{N}}
$$

Fatou's Lemma and some limiting arguments yield:

$$
\begin{aligned}
& \mathfrak{C}_{d *} f(\cdot)=\sup _{n \in \mathbb{N}} \mathfrak{T}_{*}\left(e^{i q_{n}} f\right)(\cdot) \\
&=\sup _{\substack{n \in \mathbb{N} \\
\underline{s}<\bar{s}}}\left|\int \sum_{s=\underline{s}}^{\bar{s}} K_{s}(\cdot, y) e^{i q_{n}(y)} f(y) d y\right| \\
& \operatorname{as~}_{N \rightarrow \infty} \\
& \max _{\substack{n \leq N \\
-N \leq \underline{s}<\bar{s} \leq N}}\left|\int \sum_{s=\underline{s}}^{\bar{s}} K_{s}(\cdot, y) e^{i q_{n}(y)} f(y) d y\right|=: \mathfrak{C}_{d *, N} f(\cdot)
\end{aligned}
$$

Finally, by M.C.T.,

$$
\left\|\mathfrak{C}_{d *} f\right\|_{L^{p}}=\sup _{N \in \mathbb{N}}\left\|\mathfrak{C}_{d *, N} f\right\|_{L^{p}}
$$

Consequently, we only need to acquire bounds on $\mathfrak{C}_{d *, N} f$ independent of N. Indeed, $\mathfrak{C}_{d *, N} f$ is a sum and a maximum over finite elements. As a result, we can do an elementary stopping time argument to linearize $\mathfrak{C}_{d *, N} f$:
$\forall N \in \mathbb{N}, \exists\left\{\begin{array}{l}\mathbb{R}^{D} \xrightarrow{\underline{s}(\cdot)}\{-N,-N+1, \cdots, N-1\} \\ \mathbb{R}^{D} \xrightarrow{\bar{s}_{(\cdot)}}\{-N+1, \cdots, N-1, N\} \\ \mathbb{R}^{D} \xrightarrow{q_{(\cdot)}}\left\{q_{n}\right\}_{n=1}^{N}\end{array} \quad\right.$ simple and measurable
such that

$$
\mathfrak{C}_{d *, N} f(\cdot)=\left|\int \sum_{s=\underline{s}_{(\cdot)}}^{\bar{s}_{(\cdot)}} K_{s}(\cdot, y) e^{i q_{(\cdot)}(y)} f(y) d y\right|
$$

That is, regardless of the choice of $N \in \mathbb{N}$, the problem reduces to analyze the following form of linear operator:

$$
\mathfrak{L} f(\cdot):=\sum_{s=\underline{s}_{(\cdot)}}^{\bar{s}_{(\cdot)}} \int K_{s}(\cdot, y) e^{i q_{(\cdot)}(y)} f(y) d y
$$

where $\underline{s}_{(\cdot)}, \bar{s}_{(\cdot)}, q_{(\cdot)}$ are simple measurable functions.

4.2 Tile Decomposition and Trivial Estimate

To proceed with our 3-step decomposition schemes, we first need to refine the following relation:

$$
2^{s} \sim \text { diameter of } I \sim \text { diameter of } \omega^{-1}
$$

For our purpose, we adjust the above statement to our modified settings:

- $2^{s \kappa}$ is the actual scaling that works well with our analysis.
- $I \subset \mathbb{R}^{D}$ is an element chosen from $\mathbb{D}_{s}\left(\right.$ Standard 2^{κ}-adic System $)$ to match the $2^{s \kappa}$-scale.
- $\omega \subset \mathcal{Q}_{d}$ will be chosen from \mathbb{D}_{I}^{*}, a \mathcal{Q}_{d}-tiling (assumed to exist) that respects the oscillation of polynomials on I and the Uncertainty Principle:

$$
q, q^{\prime} \in \omega \Longrightarrow\left\|q-q^{\prime}\right\|_{I} \lesssim 1
$$

Notice that, by the definition of \mathbb{D}_{s} and the Embedding Inequality, dimensional analysis yields

$$
\left\{\begin{array}{l}
2^{s \kappa}=\ell_{I} \overline{\widetilde{D}} \text { diameter of } I \\
I \text { 's and } \omega \text { 's "diameters" are scale-reversed }
\end{array}\right.
$$

Naturally, we follow our convention and denote the natural scaling s as $s_{I \times \omega}$. For now, we shall postpone the construction of \mathbb{D}_{I}^{*} and complete the decomposition first:

$$
\mathfrak{L} f(\cdot)=\sum_{s=\underline{s}}^{\bar{s}} \sum_{I \in \mathbb{D}_{s}} \sum_{\omega \in \mathbb{D}_{I}^{*}} \int K_{s}(\cdot, y) e^{i q_{(\cdot)}(y)} f(y) d y \cdot \chi_{E_{I \times \omega}}(\cdot),
$$

where $\left\{\begin{array}{l}\bar{s}:=\max _{x \in \mathbb{R}^{D}} \bar{s}_{x} \\ \underline{s}:=\min _{x \in \mathbb{R}^{D}} \underline{s}_{x}\end{array}\right.$ and $E_{I \times \omega}:=\left\{x \in I \mid q_{x} \in \omega \wedge \underline{s}_{x} \leq s_{I \times \omega} \leq \bar{s}_{x}\right\}$.
To further simplify the notation, we shall organize the $I-\omega$ parings and define:

Definition 4.2.1 (Tile System).

$$
\tilde{\mathbb{D}}:=\bigsqcup_{s=\underline{s}}^{\bar{s}} \bigsqcup_{I \in \mathbb{D}_{s}}\left\{I \times \omega \subset \mathbb{R}^{D} \times \mathcal{Q}_{d} \mid \omega \in \mathbb{D}_{I}^{*}\right\}
$$

Definition 4.2.2 (A piece associated to $P \in \tilde{\mathbb{D}}$).

$$
\mathfrak{L}_{P} f(\cdot):=\int K_{s_{P}}(\cdot, y) e^{i q_{(\cdot)}(y)} f(y) d y \cdot \chi_{E_{P}}(\cdot)
$$

Immediately, support and size controls yield:
Properties 4.2.3 (Single tile estimate).

$$
\left\{\begin{array}{ll}
\left|\mathfrak{L}_{P} f\right| & \underset{\widetilde{D, d}}{\lesssim} 2^{\kappa D}|f|_{\tilde{I}_{P}} \chi_{E_{P}} \\
\left|\mathfrak{L}_{P}^{*} f\right| & \underset{\widetilde{D, d}}{\lesssim} \frac{\|f\|_{L^{1}\left(E_{P}\right)}}{\left|I_{P}\right|} \chi_{\tilde{I}_{P}}
\end{array}, \text { where } \tilde{I}:=\left(n_{D} 2^{\kappa+1}+3\right) I \supset I^{*}\right.
$$

Through direct computation, we also have:

$$
\begin{cases}\left\|\mathfrak{L}_{P} f\right\|_{L^{1}} \lesssim|f|_{\tilde{I}_{P}}\left|E_{P}\right| & \lesssim \mathcal{A}(P)\|f\|_{L^{1}\left(\tilde{I}_{P}\right)} \\ \left\|\mathfrak{L}_{P} f\right\|_{L^{\infty}} \lesssim|f|_{\tilde{I}_{P}} & \leq\|f\|_{L^{\infty}\left(\tilde{I}_{P}\right)}\end{cases}
$$

(where $\mathcal{A}(P):=\frac{\left|E_{P}\right|}{\left|I_{P}\right|}$) and, through interpolation:
Corollary 4.2.3.1 (Trivial Estimate).

$$
\left\|\mathfrak{L}_{P} f\right\|_{L^{p}} \underset{\kappa, D, d, p}{\lesssim} \mathcal{A}(P)^{1 / p}\|f\|_{L^{p}\left(\tilde{I}_{P}\right)}
$$

On the other hand, given $\mathbb{P} \subset \tilde{\mathbb{D}}$, we set:

Definition 4.2.4.

$$
\mathfrak{L}_{\mathbb{P}} f:=\sum_{P \in \mathbb{P}} \mathfrak{L}_{P} f
$$

Eventually, we have the succinct expression:

$$
\mathfrak{L} f=\mathfrak{L}_{\tilde{\mathbb{D}}} f:=\sum_{P \in \tilde{\mathbb{D}}} \mathfrak{L}_{P} f
$$

with each piece behaving "nicely". Moreover, since

- $f \in C_{c}^{\infty}$ has compact support,
- $\underline{s}_{(\cdot)}, \bar{s}_{(\cdot)}, q_{(\cdot)}$ have finite ranges,
the sum only consists of finitely many non-zero terms. As a result, we may freely rearrange and reorganize the sum.

4.3 Adaptive Christ Grid Construction

Before we construct \mathbb{D}_{I}^{*}, let us list what we expect from the construction:

- \mathbb{D}_{I}^{*} tiles \mathcal{Q}_{d}, and, when viewed as in $\left\langle\mathcal{Q}_{d},\|\cdot\|_{I}\right\rangle$, every piece in \mathbb{D}_{I}^{*} contains and is contained in a ball with radius ≈ 1.
- Given $J \subset I,\left(\omega, \omega^{\prime}\right) \in \mathbb{D}_{I}^{*} \times \mathbb{D}_{J}^{*}$, we have either $\omega \cap \omega^{\prime}=\varnothing$ or $\omega \subset \omega^{\prime}$.

In short, we would like to have a hyper-adic system on \mathcal{Q}_{d}. To do so, ZorinKranich follows Michael Christ's idea on constructing dyadic system on space of homogeneous type. However, the construction would be much easier since we only need to consider $I \in \mathbb{D}_{s}$, where $\underline{s} \leq s \leq \bar{s}$. Essentially, we can work our ways down from the top scale \bar{s}. By constructing the finest layer first, the rest of the arguments become finding the correct ways to group the pieces together. For starters, we prescribe $\kappa^{*} \underset{D, d}{\gg} 1$ and, by using the Embedding Inequality, find $\kappa \underset{D, d}{\gg} 1$ such that, given $J \subset I$ be cubes and $q \in \mathcal{Q}_{d}$, we have:

$$
\ell_{J} \leq 2^{-\kappa} \ell_{I} \Longrightarrow\|q\|_{J} \leq 2^{-\kappa^{*}}\|q\|_{I} .
$$

We now set $\varsigma:=\frac{1}{2^{\kappa^{*}}-1}$ and proceed inductively as follows:
$(s=\bar{s}-0):$ For all $I \in \mathbb{D}_{s}$,
(a) we select a maximal collection of polynomials $\mathcal{Q}_{I} \subset \mathcal{Q}_{d}$ such that

$$
\forall q, q^{\prime} \in \mathcal{Q}_{I}, q \neq q^{\prime} \Longrightarrow\left\|q-q^{\prime}\right\|_{I} \geq 1
$$

Due to maximality,

$$
\left\{\begin{array}{c}
\mathcal{Q}_{d} \subset \bigcup_{q \in \mathcal{Q}_{I}} B_{I}(q, 1) \\
\forall q, q^{\prime} \in \mathcal{Q}_{I}, \quad q \neq q^{\prime} \Longrightarrow B_{I}(q, 1 / 2) \cap B_{I}\left(q^{\prime}, 1 / 2\right)=\varnothing,
\end{array}\right.
$$

where $B_{I}(c, r):=\left\{q \in \mathcal{Q}_{d} \mid\|q-c\|_{I}<r\right\}$.
(b) we construct the \mathcal{Q}_{d}-tiling \mathbb{D}_{I}^{*} inductively with each piece assigned a center. That is, $\exists \mathbb{D}_{I}^{\stackrel{c}{c} \underset{\omega_{(\cdot)}}{\rightleftarrows}} \mathcal{Q}_{I}$ such that, for all $\omega \in \mathbb{D}_{I}^{*}$,

$$
B_{I}\left(c_{\omega}, 1 / 2-\varsigma\right) \subset B_{I}\left(c_{\omega}, 1 / 2\right) \subset \omega \subset B_{I}\left(c_{\omega}, 1\right) \subset B_{I}\left(c_{\omega}, 1+\varsigma\right)
$$

$(s>\bar{s}-k)$: Suppose the construction be completed so that:
(a) for all $I \in \mathbb{D}_{s}$, we have a $\mathcal{Q}_{d^{-}}$-tiling \mathbb{D}_{I}^{*}.
(b) we assign for each piece in \mathbb{D}_{I}^{*} a unique center: $\exists \mathbb{D}_{I}^{*} \underset{\omega_{(\cdot)}}{\stackrel{c_{(\cdot)}}{\rightleftarrows}} \mathcal{Q}_{I}$, where

$$
\omega \in \mathbb{D}_{I}^{*} \Longrightarrow B_{I}\left(c_{\omega}, 1 / 2-\varsigma\right) \subset \omega \subset B_{I}\left(c_{\omega}, 1+\varsigma\right)
$$

$(s=\bar{s}-k)$: Given $I \in \mathbb{D}_{s+1}$, for all $J \in \mathbb{D}_{s} \cap 2^{I}$,
(a) we select a maximal collection of polynomials $\mathcal{Q}_{J} \subset \mathcal{Q}_{I}$ such that

$$
\forall q, q^{\prime} \in \mathcal{Q}_{J}, q \neq q^{\prime} \Longrightarrow\left\|q-q^{\prime}\right\|_{J} \geq 1
$$

Due to maximality,

$$
\left\{\begin{array}{c}
\mathcal{Q}_{I} \subset \bigcup_{q \in \mathcal{Q}_{J}} B_{J}(q, 1) \\
\forall q, q^{\prime} \in \mathcal{Q}_{J}, \quad q \neq q^{\prime} \Longrightarrow B_{J}(q, 1 / 2) \cap B_{J}\left(q^{\prime}, 1 / 2\right)=\varnothing
\end{array}\right.
$$

(b) we construct inductively a partition on \mathcal{Q}_{I} indexed by \mathcal{Q}_{J} :
$\left\{\mathrm{Ch}_{q}\right\}_{q \in \mathcal{Q}_{J}}$ where $\forall q \in \mathcal{Q}_{J}, B_{J}(q, 1 / 2) \cap \mathcal{Q}_{I} \subset \mathrm{Ch}_{q} \subset B_{J}(q, 1) \cap \mathcal{Q}_{I}$.
(c) we define $\omega_{(\cdot)}$, by setting:

$$
\mathbb{D}_{J}^{*}:=\left\{\omega_{q}\right\}_{q \in \mathcal{Q}_{J}}, \quad \text { where } \omega_{q}:=\bigsqcup_{q^{\prime} \in \mathrm{C}_{q}} \omega_{q^{\prime}}
$$

with $\mathbb{D}_{J}^{*} \xrightarrow{c_{(\cdot)}} \mathcal{Q}_{J}$ defined naturally. Essentially, $\forall q \in \mathcal{Q}_{J},\left\{\omega_{q^{\prime}}\right\}_{q^{\prime} \in \mathrm{Ch}_{q}}$ is the collection of children of ω_{q}.
(d) we characterize the size of each piece in $\mathbb{D}_{J}^{*}:$ pick $q \in \mathcal{Q}_{J}$,

- Exterior:

$$
\begin{aligned}
\omega_{q}: & =\bigsqcup_{q^{\prime} \in \mathrm{Ch}_{q}} \omega_{q^{\prime}} \subset \bigcup_{q^{\prime} \in \mathrm{C}_{q}} B_{I}\left(q^{\prime}, 1+\varsigma\right) \\
& \subset \bigcup_{q^{\prime} \in B_{J}(q, 1)} B_{J}\left(q^{\prime}, 2^{-\kappa^{*}}(1+\varsigma)\right)^{\varsigma} \subset B_{J}(q, 1+\varsigma)
\end{aligned}
$$

- Interior:

$$
\begin{gathered}
\forall q^{\prime} \in B_{J}(q, 1 / 2-\varsigma), \exists!\omega^{\prime} \in \mathbb{D}_{I}^{*} \text { s.t. } q^{\prime} \in \omega^{\prime} \\
\Longrightarrow\left\|c_{\omega^{\prime}}-q\right\|_{J} \leq\left\|c_{\omega^{\prime}}-q^{\prime}\right\|_{J}+\left\|q^{\prime}-q\right\|_{J} \\
<2^{-\kappa^{*}}\left\|c_{\omega^{\prime}}-q^{\prime}\right\|_{I}+1 / 2-\varsigma \\
<2^{-\kappa^{*}}(1+\varsigma)+1 / 2-\varsigma=1 / 2 \\
\Longrightarrow c_{\omega^{\prime}} \in \mathrm{Ch}_{q} \Longrightarrow q^{\prime} \in \stackrel{\omega^{\prime} \subset \omega_{q} \Longrightarrow B_{J}(q, 1 / 2-\varsigma) \subset \omega_{q}}{ }
\end{gathered}
$$

$(\underline{s} \leq s \leq \bar{s})$: In conclusion, we have:

- for every $I \in \mathbb{D}_{s}, \mathbb{D}_{I}^{*}$ tiles \mathcal{Q}_{d} (that is, $\bigsqcup \mathbb{D}_{I}^{*}=\mathcal{Q}_{d}$) and

$$
\omega \in \mathbb{D}_{I}^{*} \Longrightarrow B_{I}\left(c_{\omega}, 1 / 2-\varsigma\right) \subset \omega \subset B_{I}\left(c_{\omega}, 1+\varsigma\right)
$$

- for all $I, J \in \bigsqcup_{s=\underline{s}}^{\bar{s}} \mathbb{D}_{s}$, if $J \subset I$, then, for any $\left(\omega, \omega^{\prime}\right) \in \mathbb{D}_{I}^{*} \times \mathbb{D}_{J}^{*}$, we, by our grouping construction, have either $\omega \cap \omega^{\prime}=\varnothing$ or $\omega \subset \omega^{\prime}$.
Notice that, by setting $\kappa^{*} \underset{D, d}{\gg} 1$, we have $0<\varsigma \underset{D, d}{\underset{\sim}{<}} 1$.
This completes the construction.

5 From Incidental Geometry to Order Theory and Combinatorics

Organizing tiles is essentially an incidental geometric problem. However, due to the hyper-adic properties of $\tilde{\mathbb{D}}$, we can equip $\tilde{\mathbb{D}}$ an order structure to suitably represent its incidental behavior. As a result, we can treat the order theoretical counterpart with some combinatorial tricks.

5.1 Conversion and Basic Operations

We start with some observations: given $I, J \in \mathbb{D}$,

- either $I \cap J=\varnothing$
- or $I \subset J \vee I \supset J$ and, thus, for any $\left(\omega, \omega^{\prime}\right) \in \mathbb{D}_{I}^{*} \times \mathbb{D}_{J}^{*}$,
- either $\omega \cap \omega^{\prime}=\varnothing$
- or $\omega \supset \omega^{\prime} \vee \omega \subset \omega^{\prime}$ respectively.

This motivates the following definition:
Definition 5.1.1 $(\langle\tilde{\mathbb{D}}, \unlhd\rangle)$.

$$
\forall P, P^{\prime} \in \tilde{\mathbb{D}}, P \unlhd P^{\prime} \Longleftrightarrow I_{P} \subset I_{P^{\prime}} \wedge \omega_{P} \supset \omega_{P^{\prime}}
$$

For strict inequality, we write \triangleleft instead.
We see that \unlhd indeed defines a partial order on $\tilde{\mathbb{D}}$. Moreover, it reflects the incidental properties precisely:
$\forall P, P^{\prime} \in \tilde{\mathbb{D}}, E_{P} \cap E_{P^{\prime}}=\varnothing \Longleftarrow P \cap P^{\prime}=\varnothing \Longleftrightarrow P, P^{\prime}$ are \unlhd-incomparable.
As a result, to extract sparse parts(\unlhd-anti-chains), we heavily rely on the following operations:
Definition 5.1.2 (Maximal and minimal elements).

$$
\forall \mathbb{P} \subset \tilde{\mathbb{D}},\left\{\begin{aligned}
M \mathbb{P}:=\{P \in \mathbb{P} & \left.\mid \nexists P^{\prime} \in \mathbb{P} \text { s.t. } P \triangleleft P^{\prime}\right\} \\
m \mathbb{P}:=\{P \in \mathbb{P} & \left.\mid \nexists P^{\prime} \in \mathbb{P} \text { s.t. } P^{\prime} \triangleleft P\right\} .
\end{aligned}\right.
$$

We also define the iterated versions:

$$
\forall k \in \mathbb{N},\left\{\begin{array}{l}
M_{k+1} \mathbb{P}:=M\left(\mathbb{P} \backslash M_{k} \mathbb{P}\right) \\
m_{k+1} \mathbb{P}:=m\left(\mathbb{P} \backslash m_{k} \mathbb{P}\right) .
\end{array}\right.
$$

Notice that, by construction, both $M_{k} \mathbb{P}$ and $m_{k} \mathbb{P}$ are \unlhd-anti-chains.
On the other hand, for cluster parts, we shall define:

Definition 5.1.3 (Convexity).
$\mathbb{P} \subset \tilde{\mathbb{D}}$ is $(\unlhd-)$ convex, if and only if: $\forall P_{j} \in \mathbb{P}, P \in \tilde{\mathbb{D}}$

$$
P_{0} \unlhd P \unlhd P_{1}\left(\text { or equivalently, } P_{0} \triangleleft P \triangleleft P_{1}\right) \Longrightarrow P \in \mathbb{P}
$$

However, due to the nature of Fefferman's Trick, it is necessary to extend our settings to include spectral dilation: given scales $\lambda, \lambda_{j}, \Lambda_{j} \in \mathbb{R}_{+}$and tiles $P:=I \times \omega, P_{j}:=I_{j} \times \omega_{j} \in \tilde{\mathbb{D}}$, we define:

Definition 5.1.4 (Spectral dilation).

$$
\lambda P:=I \times \lambda \omega, \quad \text { where } \lambda \omega:=\left\{\lambda\left(q-c_{\omega}\right)+c_{\omega} \in \mathcal{Q}_{d} \mid q \in \omega\right\} .
$$

Since dilation destroy the hyper-adic structure, there are two variant analogues of \unlhd under such setting:

Definition 5.1.5 (Order and order-like relations on dilated tiles).

$$
\left\{\begin{array}{l}
\lambda_{0} P_{0} \unlhd \lambda_{1} P_{1} \quad \Longleftrightarrow I_{0} \subset I_{1} \wedge \lambda_{0} \omega_{0} \supset \lambda_{1} \omega_{1} \\
\lambda_{0} P_{0} \leq \lambda_{1} P_{1} \quad \Longleftrightarrow I_{0} \subset I_{1} \wedge \lambda_{0} \omega_{0} \cap \lambda_{1} \omega_{1} \neq \varnothing
\end{array}\right.
$$

If, additionally, $I_{0} \subsetneq I_{1}$, we write \triangleleft and $<$ instead. Also, we denote:

$$
\lambda_{0} P_{0} \sim \lambda_{1} P_{1} \Longleftrightarrow\left(\lambda_{0} P_{0} \leq \lambda_{1} P_{1} \wedge \lambda_{0} P_{0} \geq \lambda_{1} P_{1}\right)
$$

Since \leq does not satisfy associative law, some order construction will not work as we expected. Still, it reflects the incidental properties of dilated tiles:

$$
\lambda_{0} P_{0} \cap \lambda_{1} P_{1}=\varnothing \Longleftrightarrow \lambda_{0} P_{0}, \lambda_{1} P_{1} \text { are } \leq \text {-incomparable. }
$$

Moreover, \leq is only a dilation away from \unlhd : by setting $\rho:=\frac{1+\varsigma}{1 / 2-\varsigma}$, we have:
Lemma 5.1.6 (Order Upgrade Lemma).
Suppose the following upgrade condition is satisfied:

$$
(0<) \frac{\Lambda_{1}+\lambda_{1}}{\Lambda_{0} / \rho-\lambda_{0}} \leq 2^{\kappa^{*}\left(s_{P_{1}}-s_{P_{0}}\right)}
$$

we have the following upgrade from order-like relation to true partial order:

$$
\lambda_{0} P_{0} \leq \lambda_{1} P_{1} \Longrightarrow \Lambda_{0} P_{0} \unlhd \Lambda_{1} P_{1}
$$

Proof. Assume the upgrade condition, we see that:

$$
\lambda_{0} P_{0} \leq \lambda_{1} P_{1} \Longrightarrow \exists q \in \lambda_{0} \omega_{0} \cap \lambda_{1} \omega_{1} .
$$

Triangle inequality and Embedding Inequality yield:

$$
\begin{aligned}
& q_{1} \in \Lambda_{1} \omega_{1} \Longrightarrow\left\|q_{1}-c_{\omega_{0}}\right\|_{I_{0}} \leq\left(\left\|q_{1}-c_{\omega_{1}}\right\|_{I_{0}}+\left\|c_{\omega_{1}}-q\right\|_{I_{0}}\right)+\left\|q-c_{\omega_{0}}\right\|_{I_{0}} \\
& \leq 2^{-\kappa^{*}\left(s_{P_{1}}-s_{P_{0}}\right)}\left(\left\|q_{1}-c_{\omega_{1}}\right\|_{I_{1}}+\left\|c_{\omega_{1}}-q\right\|_{I_{1}}\right)+\lambda_{0}(1+\varsigma) \\
& \leq 2^{-\kappa^{*}\left(s_{P_{1}}-s_{P_{0}}\right)}\left(\Lambda_{1}+\lambda_{1}\right)(1+\varsigma)+\lambda_{0}(1+\varsigma) \\
& \leq\left(\Lambda_{0} / \rho-\not \chi_{0}\right)(1+\varsigma)+\lambda_{0}(1+\varsigma) \leq \Lambda_{0}(1 / 2-\varsigma) .
\end{aligned}
$$

Eventually, we have:

$$
\Lambda_{1} \omega_{1} \subset B_{I_{0}}\left(c_{\omega_{0}}, \Lambda_{0}(1 / 2-\varsigma)\right) \subset \Lambda_{0} \omega_{0} \quad \text { i.e. } \Lambda_{0} P_{0} \unlhd \Lambda_{1} P_{1}
$$

Remark. The Order Upgrade Lemma is especially useful when we are allowed to tinker with the size of κ^{*} (,by tuning κ). This is the main reason we, instead of a standard dyadic system, choose to work under a 2^{κ}-adic system.
$\left(I_{0} \subsetneq I_{1}\right):$ Since $\rho \searrow 2$ as $\kappa^{*} \nearrow \infty$, we can always choose large enough κ^{*} to fulfill the upgrade condition as long as the dilation ratio of P_{0} is slightly larger than 2. That is, given:

$$
\frac{\Lambda_{0}}{\lambda_{0}}>2
$$

we always have:

$$
\kappa^{*} \underset{\Lambda_{j}, \lambda_{j}}{\gg} 1 \Longrightarrow\left(\frac{\Lambda_{0}}{\lambda_{0}}>\rho>2 \wedge \frac{\Lambda_{1}+\lambda_{1}}{\Lambda_{0} / \rho-\lambda_{0}} \leq 2^{\kappa^{*}}\right) .
$$

$\left(I_{0}=I_{1}\right):$ Since $2^{\kappa^{*}}$-factor on the $\boldsymbol{R H S}$ of the upgrade condition disappears, we require Λ_{0} to be larger to fulfill the condition:

$$
\frac{\Lambda_{0}}{\lambda_{0}+\Lambda_{1}+\lambda_{1}}>2
$$

Then, tuning κ^{*} yields:

$$
\kappa^{*} \underset{\Lambda_{j}, \lambda_{j}}{\gg} 1 \Longrightarrow \frac{\Lambda_{0}}{\lambda_{0}+\Lambda_{1}+\lambda_{1}} \geq \rho>2 \Longleftrightarrow \frac{\Lambda_{1}+\lambda_{1}}{\Lambda_{0} / \rho-\lambda_{0}} \leq 1 .
$$

Essentially, as long as we only do finitely many upgrades during the rest of the arguments, we only need to check $\left\{\begin{array}{ll}\frac{\Lambda_{0}}{\lambda_{0}}>2 & (<\rightsquigarrow \triangleleft) \\ \frac{\Lambda_{0}}{\lambda_{0}+\Lambda_{1}+\lambda_{1}}>2 & (\leq \rightsquigarrow \unlhd)\end{array}\right.$ without worrying about the size condition on κ^{*}.

5.2 Geometric and Analytic Interaction

We explicitly define a way to measure the distance between a pair of tiles:
Definition 5.2.1 (distance ${ }_{P_{0}, P_{1}}$ factor).

$$
\Delta\left(P_{0}, P_{1}\right):=\inf _{q_{j} \in \omega_{j}}\left\|q_{0}-q_{1}\right\|_{\tilde{I}_{0} \cap \tilde{I}_{1}},
$$

where we set $\|\cdot\|_{\varnothing}:=\infty$ and $\tilde{I}:=\left(n_{D} 2^{\kappa+1}+3\right) I$
This quantify the incidental properties on $\tilde{\mathbb{D}}$ in the following sense:

Properties 5.2.2 (Proximity).

$$
\left(s_{P} \leq s_{P^{\prime}} \wedge \Delta\left(P, P^{\prime}\right) \lesssim \eta\right) \Longrightarrow\left\|c_{\omega}-c_{\omega^{\prime}}\right\|_{I} \underset{\kappa, D, d}{\lesssim} 1+\eta .
$$

Proof. For starters, we note that $I \underset{\kappa, D}{\subsetneq} \tilde{I} \cap \tilde{I}^{\prime} \underset{\kappa, D}{\subsetneq} I^{\prime}$. Therefore, by assumption,

$$
\exists\left(q, q^{\prime}\right) \in \omega \times \omega^{\prime} \text { s.t. } \begin{cases}\left\|q-q^{\prime}\right\|_{I} & \underset{\kappa, D, d}{\lesssim}\left\|q-q^{\prime}\right\|_{\tilde{I} \cap \tilde{I}^{\prime}} \lesssim \eta \\ \left\|q^{\prime}-c_{\omega^{\prime}}\right\|_{I} & \underset{\kappa, D, d}{\lesssim}\left\|q^{\prime}-c_{\omega^{\prime}}\right\|_{I^{\prime}}<1+\varsigma \\ \left\|q-c_{\omega}\right\|_{I} & <1+\varsigma .\end{cases}
$$

In conclusion, triangle inequality implies:

$$
\left\|c_{\omega}-c_{\omega^{\prime}}\right\|_{I} \underset{\kappa, D, d}{\lesssim} \eta+2(1+\varsigma) \lesssim 1+\eta .
$$

Corollary 5.2.2.1 (Spectral packing constraint). Given $P^{\prime} \in \tilde{\mathbb{D}}$ and $I \in \mathbb{D}_{s}$ with $s \leq s_{P^{\prime}}$ and $\tilde{I} \cap \tilde{I}_{P^{\prime}} \neq \varnothing$, we have:

$$
\#\left\{P \in \tilde{\mathbb{D}} \mid I_{P}=I \wedge \Delta\left(P, P^{\prime}\right) \lesssim \eta\right\} \underset{\kappa, D, d}{\lesssim}(1+\eta)^{d D}
$$

where $d D:=\frac{(D+d)!}{D!d!}-1$.
Proof. We first observe that the $\mathbf{L H S}$ equals:

$$
\#\left\{\omega \in \mathbb{D}_{I}^{*} \mid \Delta\left(I \times \omega, P^{\prime}\right) \lesssim \eta\right\}
$$

By Proximity properties, we have: For some $\lambda \underset{\kappa, D, d}{\lesssim} 1+\eta$,

$$
\begin{aligned}
& \left\{\omega \in \mathbb{D}_{I}^{*} \mid \Delta\left(I \times \omega, P^{\prime}\right) \lesssim 1\right\} \\
\subset & \left\{\omega \in \mathbb{D}_{I}^{*} \mid\left\|c_{\omega}-c_{\omega^{\prime}}\right\|_{I}<\lambda\right\} \\
\subset & \left\{\omega \in \mathbb{D}_{I}^{*} \mid B_{I}\left(c_{\omega}, 1 / 2-\varsigma\right) \subset B_{I}\left(c_{\omega^{\prime}}, \lambda+1 / 2-\varsigma\right)\right\} .
\end{aligned}
$$

The problem becomes measuring packing number: the number of disjoint small balls packed inside a larger ball. Yet, due to the homogeneity of $\|\cdot\|_{(\cdot)}$,

$$
\begin{aligned}
& B_{I}\left(c_{\omega}, 1 / 2-\varsigma\right) \subset B_{I}\left(c_{\omega^{\prime}}, \Lambda+1 / 2-\varsigma\right) \\
& \rightsquigarrow B_{[0,1)^{D}}(c, 1) \subset B_{[0,1)^{D}}(0, \Lambda), \text { where } \Lambda=1+\frac{\lambda}{1 / 2-\varsigma} .
\end{aligned}
$$

Since the packing dimension equals $\operatorname{dim} \mathcal{Q}_{d} / \mathbb{R}=d D$, we have:

$$
\text { the packing number } \underset{D, d}{\lesssim} \Lambda^{d D} \underset{\kappa, \widetilde{D}, d}{\lesssim}(1+\eta)^{d D} \text {. }
$$

Thus, the result.

Properties 5.2.3 (Almost comparability).
For any $\gamma>6$, we can take $\kappa^{*} \gg 1$ such that:

$$
\left(I_{0} \subset I_{1} \wedge \Delta\left(P_{0}, P_{1}\right) \lesssim 1\right) \Longrightarrow \gamma P_{0} \unlhd P_{1} .
$$

If, additionally, $I_{0} \subsetneq I_{1}$, we only require $\gamma>2$.
Proof. Given $q \in \omega_{1}$ and $q_{j} \in \omega_{j}$, triangle inequality yields:

$$
\left\|q-c_{\omega_{0}}\right\|_{I_{0}} \leq\left\|q-q_{1}\right\|_{I_{0}}+\left\|q_{1}-q_{0}\right\|_{I_{0}}+\left\|q_{0}-c_{\omega_{0}}\right\|_{I_{0}}
$$

Through Embedding Inequality, we have: for any $\epsilon>0$,

$$
\kappa^{*} \gg 1 \Longrightarrow \begin{cases}\left\|q-q_{1}\right\|_{I_{0}} & \leq \begin{cases}\left\|q-e_{\omega_{1}}\right\|_{I_{1}}+\left\|q_{1}=e_{\omega_{1}}\right\|_{I_{1}} & I_{0}^{1+\varsigma} \subset I_{1} \\ 2^{-\kappa^{*}}\left\|q-q_{1}\right\|_{I_{1}}<\epsilon & I_{0} \subsetneq I_{1}\end{cases} \\ \left\|q_{1}-q_{0}\right\|_{I_{0}} & \leq 2^{-\kappa^{*}}\left\|q_{1}-q_{0}\right\|_{\tilde{I}_{0}} \searrow 2^{-\kappa^{*}} \Delta\left(P_{0}, P_{1}\right)<\epsilon \\ \left\|q_{0}-c_{\omega_{0}}\right\|_{I_{0}} & <1+\varsigma .\end{cases}
$$

As a result,

$$
\left\|q-c_{\omega_{0}}\right\|_{I_{0}}< \begin{cases}3+3 \varsigma+\epsilon & I_{0} \subset I_{1} \\ 1+\varsigma+2 \epsilon & I_{0} \subsetneq I_{1}\end{cases}
$$

Therefore,

$$
\omega_{1} \subset \begin{cases}B_{I_{0}}\left(c_{\omega_{0}}, 3+3 \varsigma+\epsilon\right) \subset \frac{3+3 \varsigma+\epsilon}{1 / 2-\varsigma} \omega_{0} & I_{0} \subset I_{1} \\ B_{I_{0}}\left(c_{\omega_{0}}, 1+\varsigma+2 \epsilon\right) \subset \frac{1+\varsigma+2 \epsilon}{1 / 2-\varsigma} \omega_{0} & I_{0} \subsetneq I_{1}\end{cases}
$$

Some fine tuning of $0<\epsilon \underset{\gamma}{\ll 1}$ and $\kappa^{*} \underset{\gamma, \epsilon}{\gg} 1$ yields:

$$
\begin{cases}6<\frac{3+3 \varsigma+\epsilon}{1 / 2-\varsigma} \leq \gamma & I_{0} \subset I_{1} \\ 2<\frac{1+\varsigma+2 \epsilon}{1 / 2-\varsigma} \leq \gamma & I_{0} \subsetneq I_{1}\end{cases}
$$

and, thus, $\gamma P_{0} \triangleleft P_{1}$.
Moreover, we see that the geometric characterization interacts well with our partial order structure:

Properties 5.2.4 (Δ-monotonicity).
By construction, we have:

$$
P_{0} \unlhd P_{1} \Longrightarrow \Delta\left(P_{0}, P\right) \leq \Delta\left(P_{1}, P\right)
$$

Specifically, Embedding Inequality yields:

$$
\left(P_{0} \unlhd P_{1} \wedge I_{1} \subset I\right) \Longrightarrow \Delta\left(P_{0}, P\right) \leq 2^{-\kappa^{*}\left(s_{P_{1}}-s_{P_{0}}\right)} \Delta\left(P_{1}, P\right)
$$

Remark. Essential, the distance factor, though itself does not satisfy triangle inequality, quantifies the following concepts:

- The incidental relation between I_{0} and I_{1}.
- The spectral distance between ω_{0} and ω_{1} measured through smaller scale of the two.

The last piece of ingredients for Fefferman's Trick is to incorporate the geometric structure into the measurement of density. Given a reference of measurement $\Pi \subset \tilde{\mathbb{D}}$ and a prescribed small constant $\epsilon \in \mathbb{R}_{+}$, we consider:
Definition 5.2.5 (П-relative density).

$$
\mathcal{A}_{\Pi}(P):=\sup _{\substack{\epsilon \in \Pi \\ I_{P} \subset I_{\pi}}} \mathcal{A}(\pi)\langle\Delta(P, \pi)\rangle^{\epsilon},
$$

where we use the convention: $\sup \varnothing=0$ and $\langle\cdot\rangle:=\frac{1}{1+|\cdot|}$.
The distance factor reflects how far off the measurement is to the targeted tiles. Therefore, if we have good control on it, \mathcal{A}_{Π} should behavior almost like \mathcal{A}. For instance, we may formulate the control in the following way:

Definition 5.2.6 (P-relevant Π-collection).

$$
\Pi_{P}:=\left\{\pi \in \Pi \mid I_{\pi} \subsetneq I_{P} \wedge P \unlhd \pi\right\}
$$

Properties 5.2.7 (Density recovery).

$$
P \subset \bigcup \Pi_{P} \Longrightarrow \mathcal{A}(P) \underset{\kappa, \widetilde{D}, d}{ } \mathcal{A}_{\Pi}(P)
$$

Proof. By construction, since:

$$
P \unlhd \pi \Longrightarrow \Delta(P, \pi)=0 \quad \text { and } \#\left\{J \in \mathbb{D} \mid I_{P} \subset J \subsetneq I_{P}\right\} \underset{D}{\lesssim} 1,
$$

spectral packing constraint and inclusion implies:

$$
\# \Pi_{P} \underset{\kappa, D, d}{\lesssim} 1 \text { and }\left|I_{P}\right| \underset{\widetilde{D}}{\widetilde{\widetilde{D}}}\left|I_{\pi}\right|
$$

As a result,

$$
\begin{gathered}
P \subset \bigcup \Pi_{P} \Longrightarrow E_{P} \subset \bigcup_{\pi \in \Pi_{P}} E_{\pi} \\
\Longrightarrow\left|E_{P}\right| \leq \sum_{\pi \in \Pi_{P}}\left|E_{\pi}\right| \leq \# \Pi_{P} \max _{\pi \in \Pi_{P}}\left|E_{\pi}\right| \\
\Longrightarrow \\
\mathcal{A}(P) \underset{\kappa, D, d}{ } \max _{\pi \in \Pi_{P}} \frac{\left|E_{\pi}\right|}{\left|I_{\pi}\right|} \leq \mathcal{A}_{\Pi}(P) .
\end{gathered}
$$

On the other hand, the corresponding monotonicity (with a flip of direction) follows directly from the construction and the Δ-monotonicity.
Properties 5.2.8 ($\mathcal{A}_{\Pi \text {-monotonicity }}$).

$$
P_{0} \unlhd P_{1} \Longrightarrow \mathcal{A}_{\Pi}\left(P_{0}\right) \geq \mathcal{A}_{\Pi}\left(P_{1}\right)
$$

5.3 Feffermann's Trick

Continuing previous settings, we now state Fefferman's Trick:

$$
\mathbb{P} \rightsquigarrow\left\{\begin{array}{l}
D \mathbb{P}=\bigsqcup_{k \lesssim m} D_{k} \mathbb{P}, \quad D_{k} \mathbb{P} \rightsquigarrow \begin{cases}L_{k} \mathbb{P} & 1 \lesssim \text {-apart clusters } \\
H_{k} \mathbb{P} & \text { high anti-chain }\end{cases} \\
E \mathbb{P}=\bigsqcup_{k \lesssim n} E_{k} \mathbb{P}, \quad \lesssim n \text { layers of anti-chains }
\end{array}\right.
$$

1. Start with $\mathbb{P} \subset \tilde{\mathbb{D}}$ convex. Due to $\mathcal{A}_{\Pi \text {-monotonicity, we can isolate }}$ tiles with a range of (Π-relative) density without disturbing the convexity and thus we may WLOG assume:

$$
P \in \mathbb{P} \Longrightarrow \text { upper bound } \geq \mathcal{A}_{\Pi}(P)>\text { lower bound } \geq 2^{-n} .
$$

2. Organize tiles into layers of anti-chains:

$$
\mathbb{P}=\bigsqcup_{k \in \mathbb{N}} M_{k} \mathbb{P}
$$

By construction, $\forall P \in M_{k+1} \mathbb{P}, \exists P_{j} \in M_{j} \mathbb{P}$ for $j \leq k$ such that:

$$
P \triangleleft P_{k} \triangleleft P_{k-1} \triangleleft \cdots \triangleleft P_{2} \triangleleft P_{1},
$$

and, by definition, $\exists \pi_{1} \in \Pi$ such that:

$$
I_{1} \subset I_{\pi_{1}} \wedge \mathcal{A}\left(\pi_{1}\right)\left\langle\Delta\left(P_{1}, \pi_{1}\right)\right\rangle^{\epsilon}>2^{-n} .
$$

Focusing on the distance factor, Δ-monotonicity yields:

$$
\Delta\left(P, \pi_{1}\right) \leq 2^{-\kappa^{*} k} \Delta\left(P_{1}, \pi_{1}\right)<2^{-\kappa^{*} k}\left(2^{n / \epsilon}-1\right)<2^{n / \epsilon-\kappa^{*} k}
$$

As long as $k \gtrsim n$ and suitable $\kappa^{*} \gtrsim \epsilon^{-1}$, we always have: $\Delta\left(P, \pi_{1}\right) \lesssim 1$.
3. Fixing $\lambda>2$, Almost comparability yields:

$$
\begin{aligned}
P \in \bigsqcup_{k \gtrsim n} M_{k} \mathbb{P} & \Longrightarrow \exists \pi_{1} \in \Pi \text { s.t. } \lambda P \triangleleft \pi_{1} \\
& \Longleftrightarrow \exists \pi \in M \Pi \text { s.t. } \lambda P \triangleleft \pi .
\end{aligned}
$$

We, therefore, can safely extract those Π-comparable tiles:

$$
D \mathbb{P}:=\{P \in \mathbb{P} \mid \exists \pi \in M \Pi \text { s.t. } \lambda P \triangleleft \pi\},
$$

and the rest become $\lesssim n$-layers of anti-chains:

$$
E \mathbb{P}=\bigsqcup_{k \lesssim n} E_{k} \mathbb{P}, \quad \text { where } \quad E_{k} \mathbb{P}:=M_{k} \mathbb{P} \cap \mathbb{P} \backslash D \mathbb{P}
$$

Notice that, by definition, $D \mathbb{P}$ is still convex.
4. Viewing $M \Pi$ as a counter, we keep track of the following values:

$$
B(P):=\#\{\pi \in M \Pi \mid \lambda P \triangleleft \pi\}
$$

Given any $P \in D \mathbb{P}$ and $C \lesssim 1$ fixed, we have qualitative bound:

$$
1 \leq B(P) \leq\left\|\sum_{\pi \in M \Pi} \chi_{I_{\pi}}\right\|_{L^{\infty}} \leq \text { upper bound } \leq C m 2^{m} \lesssim \bar{s}-\underline{s} .
$$

Decompose $D \mathbb{P}$ accordingly, we have:

$$
D \mathbb{P}=\bigsqcup_{k \lesssim m} D_{k} \mathbb{P}, \quad \text { where } \quad D_{k} \mathbb{P}:=\left\{P \in D \mathbb{P} \mid B(P) \in\left[2^{k-1}, 2^{k}\right)\right\}
$$

5. Fixing $k \in \mathbb{N}$, we aim to extract $1 \lesssim$-apart clusters from $D_{k} \mathbb{P}$, where the two terminologies are explained as the followings:

Definition 5.3.1 (Cluster or Tree in [Lie20], [Fef73], and [Zor19]). $\mathfrak{P} \subset \tilde{\mathbb{D}}$ be a cluster at $\mathfrak{p} \in \tilde{\mathbb{D}}$ if:

- \mathfrak{P} is convex.
- $P \in \mathfrak{P} \Longrightarrow \lambda P \triangleleft \mathfrak{p}$.

Definition 5.3.2 (Λ-apartness).
Given $\mathfrak{P}_{j} \subset \tilde{\mathbb{D}}$ associated with $\mathfrak{p}_{j} \in \tilde{\mathbb{D}}$, we say \mathfrak{P}_{0} and \mathfrak{P}_{1} are Λ-apart if:
$\{j, k\}=\{0,1\} \Longrightarrow \forall P_{j} \in \mathfrak{P}_{j},\left(I_{j} \subset I_{\mathfrak{p}_{k}} \Longrightarrow \Delta\left(P_{j}, \mathfrak{p}_{k}\right) \geq \Lambda\right)$.
Now, for simplicity, we suppress the notation $\mathbb{P}:(\cdot)_{k} \mathbb{P} \rightsquigarrow(\cdot)_{k}$.
(a) Collect maximal elements under the dilated relation on D_{k} : given $P, P^{\prime} \in D_{k}$, we write:

$$
P \boldsymbol{\operatorname { R e l }}_{\lambda} P^{\prime} \Longleftrightarrow \lambda P \operatorname{Rel} \lambda P^{\prime}
$$

as a shorthand for previously introduced order-like relations. We now collect \leq_{λ}-maximal elements in the following sense:

$$
D_{k}^{\lambda}:=\left\{P \in D_{k} \mid \nexists P^{\prime} \in D_{k} \text { s.t. } P<_{\lambda} P^{\prime}\right\}
$$

(b) Extract high part from low part: fixing $\gamma>2$,

$$
\begin{cases}L_{k} & :=\left\{P \in D_{k} \mid \exists P^{\prime} \in D_{k}^{\lambda} \text { s.t. } \gamma P \triangleleft P^{\prime}\right\} \\ H_{k} & :=D_{k} \backslash L_{k}\end{cases}
$$

Notice that, by setting $\lambda>2 \gamma$, Order Upgrade Lemma yields:

$$
\gamma P_{0} \triangleleft P_{1} \Longrightarrow P_{0} \triangleleft_{\lambda} P_{1} \Longrightarrow P_{0}<_{\lambda} P_{1}
$$

and, thus, $L_{k} \cap D_{k}^{\lambda}=\varnothing$. That is, $D_{k}^{\lambda} \subset H_{k}$. For now, we can safely discard unused elements in D_{k}^{λ} :

$$
T_{k}:=\left\{P^{\prime} \in D_{k}^{\lambda} \mid \exists P \in L_{k} \text { s.t. } \gamma P \triangleleft P^{\prime}\right\}
$$

(c) Check H_{k} is an anti-chain: given $P, P^{\prime} \in H_{k}$,
$\left(P^{\prime} \in D_{k}^{\lambda}\right)$: Since $\gamma>2$, Order Upgrade Lemma yields:

$$
P \triangleleft P^{\prime} \Longrightarrow \gamma P \triangleleft P^{\prime}
$$

$\left(P^{\prime} \notin D_{k}^{\lambda}\right)$: There is a chain $\left\{P_{j}\right\}_{j=1}^{l} \subset D_{k}$ such that:

$$
P^{\prime}<_{\lambda} P_{l}<_{\lambda} \cdots<_{\lambda} P_{2}<_{\lambda} P_{1} \in D_{k}^{\lambda}
$$

Order Upgrade Lemma yields:

$$
P \triangleleft P^{\prime} \Longrightarrow \gamma P \triangleleft \gamma \lambda P^{\prime} \triangleleft \gamma \lambda P_{l} \triangleleft \cdots \triangleleft \gamma \lambda P_{2} \triangleleft \gamma \lambda P_{1} \unlhd P_{1}
$$

In both cases, $P \triangleleft P^{\prime} \Longrightarrow P \in L_{k} \Rightarrow \Leftarrow P \in H_{k}$. As a result, H_{k} must be an anti-chain.
(d) Augment closeness into relation on T_{k} : given $P_{j}^{\prime} \in T_{k}$,

$$
\begin{aligned}
P_{0}^{\prime} \prec P_{1}^{\prime} & \stackrel{\text { def }}{\Longleftrightarrow} \exists P_{0} \in L_{k} \text { s.t. } \gamma P_{0} \triangleleft P_{0}^{\prime} \wedge \gamma P_{0} \unlhd P_{1}^{\prime} \\
& \Longleftrightarrow \exists P_{0} \in L_{k} \text { s.t. } \gamma P_{0} \triangleleft P_{0}^{\prime} \wedge \gamma P_{0} \triangleleft P_{1}^{\prime}
\end{aligned}
$$

The latter temporal equality will never hold. Otherwise, we have:

$$
P_{1}^{\prime} \leq \gamma P_{0} \triangleleft P_{0}^{\prime}
$$

By setting $\frac{\lambda}{2 \gamma+1}>2$, Order Upgrade Lemma yields:

$$
\lambda P_{1}^{\prime} \unlhd \gamma P_{0} \triangleleft P_{0}^{\prime} \sim \lambda P_{0}^{\prime}, \text { i.e. } P_{1}^{\prime}<_{\lambda} P_{0}^{\prime}
$$

which contradicts $P_{1}^{\prime} \in T_{k} \subset D_{k}^{\lambda}$.
(e) Closeness implies comparability on T_{k} :

$$
P_{0}^{\prime} \prec P_{1}^{\prime} \Longrightarrow P_{0}^{\prime} \sim_{\lambda} P_{1}^{\prime} .
$$

The reason is that $\frac{\lambda}{\gamma}>2$ and Order Upgrade Lemma imply:

$$
\gamma P_{0} \triangleleft P_{j}^{\prime} \Longrightarrow P_{0} \triangleleft_{\lambda} P_{j}^{\prime}
$$

If $P_{0}^{\prime} \not \varkappa_{\lambda} P_{1}^{\prime}$, then, since $P_{j}^{\prime}:=I_{j}^{\prime} \times \omega_{j}^{\prime} \in T_{k} \subset D_{k}^{\lambda}$, they must be \leq_{λ}-incomparable $\left(\lambda P_{0}^{\prime} \cap \lambda P_{1}^{\prime}=\varnothing\right)$. As a result,

$$
\because I_{0} \subset I_{0}^{\prime} \cap I_{1}^{\prime} \quad \therefore \lambda \omega_{0}^{\prime} \cap \lambda \omega_{1}^{\prime}=\varnothing .
$$

However, a combinatorial trick yields a contradiction:

$$
2^{k}>B\left(P_{0}\right) \geq B\left(P_{0}^{\prime}\right)+B\left(P_{1}^{\prime}\right) \geq 2 \cdot 2^{k-1} \Rightarrow \Leftarrow P_{0}, P_{j}^{\prime} \in D_{k}
$$

(f) \sim_{λ} is an equivalence relation on T_{k}. Reflexivity and Symmetry are trivial, we check for Transitivity: Suppose $P_{j}^{\prime}, P^{\prime} \in T_{k}$, and

$$
P^{\prime} \sim_{\lambda} P_{j}^{\prime}
$$

By definition, $\exists P \in L_{k}$ such that $\gamma P \triangleleft P^{\prime}$, but, fixing $\Lambda>6 \lambda$, Order Upgrade Lemma yields:

$$
\lambda P \triangleleft \Lambda P^{\prime} \unlhd \lambda P_{j}^{\prime}, \quad \text { i.e. } P \triangleleft_{\lambda} P_{j}^{\prime} .
$$

Through previous combinatorial trick, we have $P_{0}^{\prime} \sim_{\lambda} P_{1}^{\prime}$. We, therefore, \bmod out \sim_{λ} and denote $\tau, \tau_{j} \in T_{k}^{\lambda}:=T_{k} / \sim_{\sim_{\lambda}}$.
(g) Verify cluster properties of the T_{k}^{λ}-indexed configuration:

$$
\mathfrak{P}_{\tau}:=\left\{P \in L_{k} \mid \exists P^{\prime} \in \tau \text { s.t. } \gamma P \triangleleft P^{\prime}\right\} .
$$

- Check convexity: for $P_{j} \in \mathfrak{P}_{\tau}$, we consider:

$$
P \in \tilde{\mathbb{D}} \text { s.t. } P_{0} \triangleleft P \triangleleft P_{1}
$$

$(P \in D)$: Since D is convex,

$$
\because P_{j} \in \mathfrak{P}_{\tau} \subset D_{k} \subset D \quad \therefore P \in D
$$

$\left(P \in D_{k}\right):$ Order Upgrade Lemma implies:

$$
\because P_{0} \triangleleft_{\lambda} P \triangleleft_{\lambda} P_{1} \quad \therefore 2^{k}>B\left(P_{0}\right) \geq B(P) \geq B\left(P_{1}\right) \geq 2^{k-1}
$$

$\left(P \in \mathfrak{P}_{\tau}\right)$: Order Upgrade Lemma implies:

$$
\exists P^{\prime} \in \tau \text { s.t. } \gamma P_{0} \triangleleft \gamma P \triangleleft \gamma P_{1} \triangleleft P^{\prime}
$$

Therefore, $P \in \mathfrak{P}_{\tau}$, which means that \mathfrak{P}_{τ} is convex.

- Mark the position of \mathfrak{P}_{τ} with an arbitrary cover $\mathfrak{p}_{\tau} \in \tau$: Order Upgrade Lemma implies:

$$
\forall P^{\prime} \in \tau, \Lambda \mathfrak{p}_{\tau} \unlhd P^{\prime}
$$

As a result,

$$
\forall P \in \mathfrak{P}_{\tau}, \gamma P<\Lambda \mathfrak{p}_{\tau}
$$

We use Order Upgrade Lemma again:

$$
\forall P \in \mathfrak{P}_{\tau}, \lambda P \triangleleft \mathfrak{p}_{\tau}
$$

In conclusion, \mathfrak{P}_{τ} is a cluster at \mathfrak{p}_{τ}.
(h) Identify cross-cluster separation:

- Check disjointness: Given any $P_{j} \in \mathfrak{P}_{j}:=\mathfrak{P}_{\tau_{j}}$, we see that:

$$
P_{0}=P_{1} \Longrightarrow \exists P_{j}^{\prime} \in \tau_{j} \text { s.t. } \gamma P_{0}=\gamma P_{1} \triangleleft P_{j}^{\prime} \quad \text { i.e. } P_{0}^{\prime} \prec P_{1}^{\prime} \text {. }
$$

Therefore, if $\mathfrak{P}_{0} \cap \mathfrak{P}_{1} \neq \varnothing$, due to (e) and (f), we have:

$$
\exists P_{j}^{\prime} \in \tau_{j} \text { s.t. } P_{0}^{\prime} \sim_{\lambda} P_{1}^{\prime} \Longrightarrow \tau_{0}=\tau_{1} \Longrightarrow \mathfrak{P}_{0}=\mathfrak{P}_{1} .
$$

- Verify incomparability: Order Upgrade Lemma yields:

$$
P_{0} \unlhd P_{1} \Longleftrightarrow P_{0} \triangleleft P_{1} \Longrightarrow \exists P_{1}^{\prime} \in \tau_{1} \text { s.t. } \gamma P_{0} \triangleleft \gamma P_{1} \triangleleft P_{1}^{\prime} .
$$

Again, using definition (d) and properties (e), (f), we have:

$$
P_{0} \unlhd P_{1} \Longrightarrow \tau_{0}=\tau_{1} \Longrightarrow \mathfrak{P}_{0}=\mathfrak{P}_{1} .
$$

- Prove $1 \lesssim$-apartness: Given any $\left(P_{0}, P_{1}^{\prime}\right) \in \mathfrak{P}_{0} \times \tau_{1}$ such that $I_{0} \subset I_{1}^{\prime}$, Almost comparability implies:
- If $I_{0} \subsetneq I_{1}^{\prime}$, since $\gamma>2$, we have:

$$
\Delta\left(P_{0}, P_{1}^{\prime}\right) \lesssim 1 \Longrightarrow \gamma P_{0} \triangleleft P_{1}^{\prime} \Longrightarrow \exists P_{0}^{\prime} \in \tau_{0} \text { s.t. } P_{0}^{\prime} \prec P_{1}^{\prime}
$$

By (e) and (f), we see that $\tau_{0}=\tau_{1}$. That is, $\mathfrak{P}_{0}=\mathfrak{P}_{1}$.

- If $I_{0}=I_{1}^{\prime}$, since $3 \gamma>6$, we have:

$$
\Delta\left(P_{0}, P_{1}^{\prime}\right) \lesssim 1 \Longrightarrow P_{0} \unrhd 3 \gamma P_{1}^{\prime}
$$

By setting $\frac{\lambda}{4 \gamma+1}>2$, Order Upgrade Lemma implies:

$$
\exists P_{0}^{\prime} \in \tau_{0} \text { s.t. } \lambda P_{1}^{\prime} \unlhd \gamma P_{0} \triangleleft P_{0}^{\prime} \sim \lambda P_{0}^{\prime} \Rightarrow \Leftarrow P_{1}^{\prime} \in \tau_{1} \subset T_{k} \subset D_{k}^{\lambda}
$$

In conclusion, distinct \mathfrak{P}_{j} are $1 \lesssim$-apart: Given that $\mathfrak{P}_{0} \neq \mathfrak{P}_{1}$,

$$
\forall\left(P_{0}, P_{1}^{\prime}\right) \in \mathfrak{P}_{0} \times \tau_{1},\left(I_{0} \subset I_{1}^{\prime} \Longrightarrow \Delta\left(P_{0}, P_{1}^{\prime}\right) \gtrsim 1\right)
$$

(i) Stack the covers: for any $P^{\prime} \in \tau$, we see that:

$$
\because P^{\prime} \sim_{\lambda} \mathfrak{p}_{\tau} \quad \therefore I^{\prime}=I_{\mathfrak{p}_{\tau}}=: I_{\tau}
$$

We count how high I_{τ} s stack via counting comparable $\pi \mathrm{s}$ in $M \Pi$:

$$
B_{\tau}:=\#\left\{\pi \in M \Pi \mid \exists P^{\prime} \in \tau \text { s.t. } \lambda P^{\prime} \triangleleft \pi\right\} \geq B\left(\mathfrak{p}_{\tau}\right) \geq 2^{k-1}
$$

By modding out \sim_{λ}, we prevent double counting and acquire:

$$
2^{k-1} \sum_{\tau \in T_{k}^{\lambda}} \chi_{I_{\tau}} \leq \sum_{\tau \in T_{k}^{\lambda}} B_{\tau} \chi_{I_{\tau}} \leq \sum_{\pi \in M \Pi} \chi_{I_{\pi}} \leq C m 2^{m}
$$

In conclusion, the counting function satisfies the following control:

$$
\sum_{\tau \in T_{k}^{\lambda}} \chi_{I_{\tau}} \leq C m 2^{m+1-k},
$$

which measures the height the covers can stack temporally.
(j) Subdivide collections with covers stack too high: This step is not mandatory. Still, it makes estimation cleaner. First off, we have:

$$
k \geq 1+\log _{2} C+\log _{2} m \Longrightarrow \sum_{\tau \in T_{k}^{\lambda}} \chi_{I_{\tau}} \leq 2^{m} .
$$

For $k<1+\log C+\log _{2} m$, with careful selection, we can partition T_{k}^{λ} into $m_{k}:=\left\lceil C m 2^{1-k}\right\rceil$ collections:

$$
T_{k}^{\lambda}=\bigsqcup_{j=1}^{m_{k}} T_{k, j}^{\lambda} \text {, where } \sum_{\tau \in T_{j, k}^{\lambda}} \chi_{I_{\tau}} \leq 2^{m}, \quad \forall j .
$$

We now reorganize the corresponding clusters:

$$
L_{k, j}:=\bigsqcup_{\tau \in T_{k, j}^{\lambda}} \mathfrak{P}_{\tau}
$$

By moving cluster as a whole, we do not destroy any previously established structure. Therefore, $L_{k, j}$ still contains $1 \lesssim$-apart clusters. Lastly, We count the number of layers:

$$
\log _{2}\left(C m 2^{m}\right)-\log _{2} C-\log _{2} m+\sum_{k<1+\log _{2} C+\log _{2} m} m_{k} \lesssim m
$$

As a result, since the number stays morally the same, we might as well renumber the index: $(\cdot)_{k, j} \rightsquigarrow(\cdot)_{k}$ and thus:

$$
\sum_{\tau \in T_{k}^{\lambda}} \chi_{I_{\tau}} \leq 2^{m}, \quad \forall k \lesssim m
$$

Eventually, we summarize that $L_{k} \mathbb{P}$ has the following structure:
Definition 5.3.3 (Λ-apart Ξ-stack or L^{∞} Forest in [Lie20] or Fefferman forest in [Zor19]).
$\mathbb{P} \subset \tilde{\mathbb{D}}$ is a Λ-apart Ξ-stack if it is a collection of clusters:

$$
\mathbb{P}=\bigsqcup_{j} \mathfrak{P}_{j} \wedge \forall j,\left(P \in \mathfrak{P}_{j} \Longrightarrow \lambda P \triangleleft \mathfrak{p}_{j}\right)
$$

which satisfies the following properties:

- Height Control: $\sum_{j} \chi_{I_{\mathfrak{p}_{j}}} \leq \Xi$.
- Cross-Cluster Separation: Given distinct \mathfrak{P}_{j} and \mathfrak{P}_{k},
$-P_{j} \in \mathfrak{P}_{j}$ and $P_{k} \in \mathfrak{P}_{k}$ are \unlhd-incomparable.
- \mathfrak{P}_{j} and \mathfrak{P}_{k} are Λ-apart.

We formulate our current progress as the following lemma:
Lemma 5.3.4 (Fefferman's Trick).
Given $\lambda>18, \mathbb{P} \subset \tilde{\mathbb{D}}$ convex, and $\Pi \subset \tilde{\mathbb{D}}$ such that:

- Lower bound on Π-relative density of \mathbb{P} :

$$
P \in \mathbb{P} \Longrightarrow \text { Const. } \geq \mathcal{A}_{\Pi}(P)>2^{-n}
$$

- Upper bound on temporal overlap of $М \Pi$:

$$
M_{\Pi}:=\sum_{\pi \in M \Pi} \chi_{I_{\pi}} \lesssim m 2^{m}
$$

we may choose $\kappa^{*} \underset{\lambda}{>} 1$ such that \mathbb{P} can be decomposed into:

- $\lesssim n+m$ layers of anti-chains: $\left\{E_{k} \mathbb{P}\right\}_{k \lesssim n}$ and $\left\{H_{k} \mathbb{P}\right\}_{k \lesssim m}$
- $\lesssim m$ layers of $1 \lesssim$-apart 2^{m}-stacks: $\left\{L_{k} \mathbb{P}\right\}_{k \lesssim m}$

5.4 Boundary Removal

To exclude bad behaviors when tiles get temporally dilated (as in the Trivial Estimate) while doing the $T T^{*}-T^{*} T$ argument, we need careful treatment on the following configurations:

Definition 5.4.1 (Interior and Boundary).
Fixing $\varpi \gg 1$ as a buffer, given $\mathfrak{P} \subset \tilde{\mathbb{D}}$ a cluster at $\mathfrak{p} \in \tilde{\mathbb{D}}$, we set:

$$
\mathfrak{P}^{\circ}:=\left\{P \in \mathfrak{P} \mid \varpi \tilde{I}_{P} \subset I_{\mathfrak{p}}\right\} \text { and } \partial \mathfrak{P}:=\mathfrak{P} \backslash \mathfrak{P}^{\circ}
$$

Notice that both \mathfrak{P}° and $\partial \mathfrak{P}$ are cluster at \mathfrak{p} since the temporal operation preserves convexity and location. As a result, we say:

$$
\begin{cases}\mathfrak{P} \text { is an open cluster } & \text { if } \mathfrak{P}=\mathfrak{P} \circ \\ \mathfrak{P} \text { is an boundary cluster } & \text { if } \mathfrak{P}=\partial \mathfrak{P} .\end{cases}
$$

We also extend the terminology to collections of clusters: Given $\mathbb{P} \subset \tilde{\mathbb{D}} a$ collection of clusters:

$$
\mathbb{P}=\bigsqcup_{j} \mathfrak{P}_{j} \wedge \forall j,\left(P \in \mathfrak{P}_{j} \Longrightarrow \lambda P \triangleleft \mathfrak{p}_{j}\right)
$$

we set:

$$
\mathbb{P}^{\circ}:=\bigsqcup_{j} \mathfrak{P}_{j}^{\circ} \text { and } \partial \mathbb{P}:=\bigsqcup_{j} \partial \mathfrak{P}=\mathbb{P} \backslash \mathbb{P}^{\circ}
$$

Similarly, we say \mathbb{P} is open if $\mathbb{P}=\mathbb{P}^{\circ}$.

For convenience, we introduce the following notion to focus on the temporal aspect of the structure.

Definition 5.4.2 (Temporal projection).
Given $\mathbb{P} \subset \tilde{\mathbb{D}}$, we define its temporal projection as:

$$
\mathbb{I}_{\mathbb{P}}:=\left\{I_{P} \in \mathbb{D} \mid P \in \mathbb{P}\right\} \quad \text { and } \mathbb{I}_{\mathbb{P}, s}:=\mathbb{I}_{\mathbb{P}} \cap \mathbb{D}_{s}
$$

Boundary cluster is the culprit we need to deal with. Yet, an easy verification shows the following temporal properties:

Properties 5.4.3 (Tooth configuration).
Given a boundary cluster \mathfrak{P}, there is $s_{\Delta} \underset{\varpi, D}{\bar{\sim}} 1$ such that:

$$
s^{\prime}-s \geq s_{\Delta} \Longrightarrow \forall J \in \mathbb{D}_{s^{\prime}}, \sum_{\substack{I \in \mathbb{I}_{\mathfrak{F}, s} \\ I \subset j}}|I| \leq 2^{-\kappa}|J|
$$

Remark. The name chosen is because of the shape it formed $(D=1)$ when drawing $\mathbb{I}_{\mathfrak{P}, s}$ horizontally and stacking $\mathbb{I}_{\mathfrak{P}, s}$ s vertically.

We see that the tooth configuration almost screams sparsity. As a result, we shall expect the following configurations:
Definition 5.4.4 (Λ-decay stack or Sparse L^{∞} Forest in [Lie20]). $\mathbb{P} \subset \tilde{\mathbb{D}}$ is a Λ-decay stack if:

$$
s^{\prime}-s \geq \Lambda \Longrightarrow \forall J \in \mathbb{D}_{s^{\prime}}, \sum_{\substack{I \in \mathbb{I}_{P}, s \\ I \subset J}}|I| \leq 2^{-\kappa}|J| .
$$

A direct computation shows that $\mathbb{I}_{\mathbb{P}}$ is also $\lesssim \Lambda$-carleson.
Putting things in action, we have:
Lemma 5.4.5 (Boundary removal).
A Λ-apart Ξ-stack \mathbb{P} can be decomposed into:

$$
\mathbb{P} \rightsquigarrow \begin{cases}\partial \mathbb{P} & \underset{\varpi \sim D}{\lesssim} 1+\frac{\log _{2} \Xi}{\kappa} \text {-decay stack } \\ \mathbb{P}^{\circ} & \text { open } \Lambda \text {-apart } \Xi \text {-stack } .\end{cases}
$$

Proof. For starters, we notice that the temporal operation does not affect the spectral behaviors of the clusters nor the covers' configurations. That is, trivially, \mathbb{P}° is an open Λ-apart Ξ-stack. We now check the temporal property of $\partial \mathbb{P}$. Fixing $N:=s_{\Delta}\left\lceil 1+\frac{\log _{2} \Xi}{\kappa}\right\rceil \underset{\varpi, D}{\lesssim} 1+\frac{\log _{2} \Xi}{\kappa}$, an easy computation shows that: Given $s^{\prime}-s \geq N$, due to height control and properties of tooth configuration, we have:

$$
\forall J \in \mathbb{D}_{s^{\prime}}, \sum_{\substack{I \in \mathbb{I}_{\partial \mathbb{P}}, s \\ I \subset J}}|I| \leq \sum_{j}^{\text {up to } \Xi \text { overlaps }} \sum_{\substack{I \in \mathbb{I}_{\partial 夕 丶_{j}}, s \\ I \subset J}}|I| \leq \Xi 2^{-N \kappa}|J| \leq 2^{-\kappa}|J| .
$$

5.5 Separation Upgrade

To compensate for the height the covers stack, we expect to gain enough decay from orthogonality when clusters are mutually far apart. To achieve this, we present the following lemma:

Lemma 5.5.1 (Separation upgrade).
A Λ-apart Ξ-tack \mathbb{P} can be decomposed into:

$$
\mathbb{P} \rightsquigarrow\left\{\begin{array}{cl}
m \mathbb{P} & \text { anti-chain } \\
\mathbb{P} \backslash m \mathbb{P} & 2^{\kappa^{*}} \Lambda \text {-apart } \Xi \text {-Stack }
\end{array}\right.
$$

Proof. Trivially, $m \mathbb{P}$ is, by construction, an anti-chain. On the other hand,

$$
\mathbb{P} \backslash \stackrel{\mathbb{P}^{\prime}:=}{m \mathbb{P}}=\bigsqcup_{j}\left(\mathfrak{P}_{j} \backslash m \mathfrak{P}_{j}\right) .
$$

Excluding possible empty clusters, we notice that the operation does not affect the location (cover \mathfrak{p}_{j}) of the clusters, Incomparablity , and Height Control. Therefore, we only need to verify the Apartness: Since

$$
\forall P_{j}^{\prime} \in \mathfrak{P}_{j}^{\prime}, \exists P_{j} \in m \mathfrak{P}_{j} \text { s.t. } P_{j} \triangleleft P_{j}^{\prime},
$$

by Δ-monotonicity, we have: for any $k \neq j$ such that $I_{j}^{\prime} \subset I_{\mathfrak{p}_{k}}$,

$$
\because I_{j} \subsetneq I_{j}^{\prime} \subset I_{\mathfrak{p}_{k}} \quad \therefore \Delta\left(P_{j}^{\prime}, \mathfrak{p}_{k}\right) \geq 2^{\kappa^{*}} \Delta\left(P_{j}, \mathfrak{p}_{k}\right) \geq 2^{\kappa^{*}} \Lambda .
$$

6 Search for Good Trades

With the tools established in previous sections, we can organize tiles into several well-behaved configurations. Yet, to put things together, we need to:

- Choose suitable collection of $\mathbb{P s}_{s}$ and Ms to start with.
- Combine all the tools smartly.
- Balance the trade-off among different aspects of the control.
- Sum up all the contributions.

In this section, we first demonstrate the delicate phenomenon among the tradeoffs and mention a problem encountered in Fefferman's original treatment [Fef73]. Next, we provide the insight of Lie's solution in [Lie20] and Zorin-Kranich's modification in [Zor19]. Lastly, we construct explicitly the collection of חs through an elementary model.

6.1 Trade-off: Polynomial v.s. Exponential

Let us start from the following assumptions: $\mathbb{P} \subset \tilde{\mathbb{D}}$ convex and $\Pi \subset \tilde{\mathbb{D}}$,

- Π-relative density: $P \in \mathbb{P} \Longrightarrow \mathcal{A}_{\Pi}(P) \in\left(2^{-n}, 2^{1-n}\right]$.
- Temporal overlap: $M_{\Pi}:=\sum_{\pi \in M \Pi} \chi_{I_{\pi}} \lesssim m 2^{m}$.

We combine the three lemmas:

- Fefferman's Trick: with $\kappa \underset{\lambda}{>}$,

$$
\mathbb{P} \rightsquigarrow\left\{\begin{array}{cl}
\bigsqcup_{k \lesssim n} E_{k} \mathbb{P} \sqcup \bigsqcup_{k \lesssim m} H_{k} \mathbb{P} & \lesssim n+m \text { layers of anti-chains } \\
& \bigsqcup_{k \lesssim m} L_{k} \mathbb{P}
\end{array}\right.
$$

- Boundary removal: for all $L_{k} \mathbb{P}$,

$$
L_{k} \mathbb{P} \rightsquigarrow \begin{cases}\partial L_{k} \mathbb{P} & \lesssim 1+\frac{m}{\kappa} \text {-decay stack } \\ L_{k} \mathbb{P}^{\circ} & \text { open } 1 \lesssim \text {-apart } 2^{m} \text {-stack }\end{cases}
$$

- Separation upgrade: for all $L_{k} \mathbb{P}^{\circ}$ (apply iteratively),

$$
L_{k} \mathbb{P}^{\circ} \rightsquigarrow \begin{cases}\bigsqcup_{j \leq l} m_{j} L_{k} \mathbb{P}^{\circ} & l \text { layers of anti-chain } \\ \text { Else }=: L_{k}^{l} \mathbb{P}^{\circ} & \text { open } 2^{l \kappa^{*}} \lesssim \text {-apart } 2^{m} \text {-stack }\end{cases}
$$

As a result, we have the decomposition scheme on (\mathbb{P}, Π) :

- Sparse Parts:
$-\lesssim n+m(l+1)$ layers of anti-chains:

$$
\left\{E_{k} \mathbb{P}\right\}_{k \lesssim n}, \quad\left\{H_{k} \mathbb{P}\right\}_{k \lesssim m}, \quad \text { and } \quad\left\{m_{j} L_{k} \mathbb{P}^{\circ}\right\}_{j \leq l, k \lesssim m}
$$

$-\lesssim m$ layers of $\underset{D}{\lesssim} 1+\frac{m}{\kappa}$-decay stacks: $\left\{\partial L_{k} \mathbb{P}\right\}_{k \lesssim m}$.

- Cluster Parts:
$-\lesssim m$ layers of open $2^{l \kappa} \lesssim$-apart 2^{m}-stacks: $\left\{L_{k}^{l} \mathbb{P}^{\circ}\right\}_{k \lesssim m}$.
A natural strategy is to:
- Extract exponential decay of the density factor $\approx 2^{-n}$ out of all the estimation (as in Trivial Estimate) to absorb polynomial growth of the number of layers and sparsity factor.
- Use large separation to compensate for high temporal overlaps when using $T^{*} T-T T^{*}$ argument.

In summary, we should aim for $m \ll l \lesssim n$. Indeed,

$$
\begin{gathered}
\text { Polynomial } \leftrightarrow \leftrightarrow \text { Exponential } \\
\left\{\begin{array} { l }
{ \# \text { Layers } (B a d) } \\
{ \text { Sparsity } (B a d) }
\end{array} \quad \leftrightarrow \leftrightarrow \left\{\begin{array}{l}
\# \text { Overlaps }(B a d) \\
\text { Density }(\text { Good }) \\
\text { Separation }(\text { Good })
\end{array}\right.\right.
\end{gathered}
$$

It is, for the most part, a good trade:

Decomposition \Longrightarrow Polynomial Growth \times Exponential Decay.

However, the assumption itself hides a counteracting theme. To find suitable (\mathbb{P}, Π), we need to find balance within the following conflicts:

$$
\begin{aligned}
\text { Temporal overlap } & \Rightarrow \Leftarrow 2^{-n} \text {-dense collection } \\
\downarrow M_{\Pi} & \Rightarrow \Leftarrow \# \mathbb{P} \uparrow
\end{aligned}
$$

Our first attempt might start with discarding irrelevant $\pi \in \Pi$. In fact, since the distance factor within the definition of \mathcal{A}_{Π} only provides decay, it follows that we have:

Properties 6.1.1 (Equivalent reference).
Given $\mathbb{P}, \Pi \subset \tilde{\mathbb{D}}$ such that $P \in \mathbb{P} \Longrightarrow \mathcal{A}_{\Pi}(P)>\eta$, we have:

$$
\forall P \in \mathbb{P}, \mathcal{A}_{\Pi}(P)=\mathcal{A}_{\Pi_{\eta}}(P) \text { with } \Pi_{\eta}:=\{\pi \in \Pi \mid \mathcal{A}(\pi)>\eta\}
$$

In our case, we derive a natural assumption:

$$
\pi \in \Pi \Longrightarrow \mathcal{A}(\pi)>2^{-n}
$$

Still, we need to check if trimming down Π would actually make M_{Π} smaller:
Properties 6.1.2 (M_{Π}-monotonicity).

$$
\Pi_{0} \subset \Pi_{1} \subset \tilde{\mathbb{D}} \Longrightarrow M_{\Pi_{0}} \leq M_{\Pi_{1}}
$$

Proof. Suppose the otherwise:

$$
\exists x \in \mathbb{R}^{D} \text { s.t. } M_{\Pi_{0}}(x)>M_{\Pi_{1}}(x) .
$$

By Pigeon-hole principle, there must be distinct $\pi_{0}, \pi_{0}^{\prime} \in M \Pi_{0}$ such that:

$$
x \in I_{\pi_{0}} \cap I_{\pi_{0}^{\prime}} \neq \varnothing \wedge \exists \pi_{1} \in M \Pi_{1} \text {, s.t. } \pi_{0}, \pi_{0}^{\prime} \unlhd \pi_{1} .
$$

However, since $\pi_{0}, \pi_{0}^{\prime}$ are \unlhd-incomparable, we must have:

$$
c_{\omega_{\pi_{1}}} \in \omega_{\pi_{1}} \subset \omega_{\pi_{0}} \cap \omega_{\pi_{0}^{\prime}}=\varnothing
$$

which is a contradiction.
Meanwhile, we can locate all the high overlaps:

$$
E:=\left\{x \in \mathbb{R}^{D} \mid M_{\Pi}(x) \gtrsim m 2^{m}\right\} .
$$

Naturally, references temporally in E are those who cause the overshoot, and bad references
we shall exclude them: $\Pi^{+} \subset \Pi \backslash\left\{\pi \in \Pi \mid I_{\pi} \subset E\right\}$. By M_{Π}-monotonicity, we can control the temporal overlap:

$$
M_{\Pi^{+}} \leq M_{\Pi \backslash\left\{\pi \in \Pi \mid I_{\pi} \subset E\right\}}=\sum_{\substack{\pi \in M \Pi \\ I_{\pi} \subset \subset}} \chi_{I_{\pi}} \lesssim m 2^{m}
$$

However, discarding the bad references would result in a decay of density when tiles being measured. Therefore, we should modify \mathbb{P} :

$$
\mathbb{P}^{+} \subset\left\{P \in \mathbb{P} \mid \mathcal{A}_{\Pi^{+}}(P)>2^{-n}\right\} \backslash\left\{P \in \mathbb{P} \mid I_{P} \subset E\right\} \quad \text { and is convex. }
$$

By construction, $\left(\mathbb{P}^{+}, \Pi^{+}\right)$satisfies our assumptions and can be treated with our decomposition scheme. The rest is to derive control on $\mathbb{P}^{-}:=\mathbb{P} \backslash \mathbb{P}^{+}$. In general, we expect that $P \in \mathbb{P}^{-}$has low relative density or is temporally contained in E. Thus, a good control on E would always be helpful. Yet, as we trace back its construction: $E \rightsquigarrow M_{\Pi} \rightsquigarrow M \Pi$, we see that a deeper understanding of the structure of $M \Pi$ is needed. For instance, our natural assumption, with double counting taken into consideration, actually implies the 2^{-n}-sparse condition:

$$
\begin{cases}\left|I_{\pi}\right| \leq 2^{n}\left|E_{\pi}\right| & \forall \pi \in M \Pi \\ \left\{E_{\pi}\right\}_{\pi \in M \Pi} & \text { are disjoint }\end{cases}
$$

or, equivalently, the 2^{n}-carleson condition:

$$
\forall I \in \mathbb{D}, \sum_{\substack{\pi \in M \Pi \\ I_{\pi} \subset I}}\left|I_{\pi}\right| \leq 2^{n}|I|
$$

This implicitly gives us structures on E :

$$
2^{n} \text {-carleson } \rightsquigarrow \text { control on } M_{\Pi} \rightsquigarrow \text { control on } E
$$

and may shade some light on the treatment for \mathbb{P}^{-}.

6.2 Charles Fefferman's Exceptional Set

Using language established, we explain Fefferman's idea. In [Fef73], Fefferman analyzed Carleson operator under torus $\mathbb{T} \simeq[0,1)$ settings. We first organized tiles according to $\tilde{\mathbb{D}}$-relative density:

$$
\tilde{\mathbb{D}}=\bigsqcup_{n \in \mathbb{N}} \mathbb{P}_{n}, \quad \text { where } \mathbb{P}_{n}:=\left\{P \in \tilde{\mathbb{D}} \mid \mathcal{A}_{\tilde{\mathbb{D}}}(P) \in\left(2^{-n}, 2^{1-n}\right]\right\}
$$

Using \mathbb{P}_{n} 's equivalent reference:

$$
\Pi_{n}:=\left\{\pi \in \tilde{\mathbb{D}} \mid \mathcal{A}(\pi)>2^{-n}\right\}
$$

paired with previous discussion:

$$
\left\|M_{\Pi_{n}}\right\|_{L^{1}}=\sum_{\substack{\pi \in M \Pi_{n} \\ I_{\pi} \subset \mathbb{T}}}\left|I_{\pi}\right| \leq 2^{n}
$$

we may apply Markov's inequality to derive: $\mu\left(M_{\Pi_{n}}^{-1}(\eta, \infty]\right) \leq 2^{n} / \eta$. Therefore, if we choose $\eta=m 2^{m}$ and define the Exceptional Set as:

$$
E_{n, m}:=M_{\Pi_{n}}^{-1}\left(m 2^{m}, \infty\right]
$$

we can exclude $\Pi_{n, m}^{-}:=\left\{\pi \in \Pi_{n} \mid I_{\pi} \subset E_{n, m}\right\}$, all tiles causing the overshoot, from Π_{n} and verify that:

$$
M_{\Pi_{n, m}^{+}} \leq m 2^{m}, \text { where } \Pi_{n, m}^{+}:=\Pi_{n} \backslash \Pi_{n, m}^{-}
$$

In conclusion, we have height control on $I_{\pi} \mathrm{s}$ not contained in $E_{n, m}$ and support control on $E_{n, m}$. Therefore, as we modify \mathbb{P}_{n} accordingly:

$$
\mathbb{P}_{n, m}^{-}:=\left\{P \in \mathbb{P}_{n} \mid I_{P} \subset E_{n, m}\right\} \text { and } \mathbb{P}_{n, m}^{+}:=\mathbb{P}_{n} \backslash \mathbb{P}_{n, m}^{-}
$$

we must have:

$$
P \in \mathbb{P}_{n, m}^{+} \Longrightarrow \mathcal{A}_{\Pi_{n, m}^{+}}(P)=\mathcal{A}_{\Pi_{n}}(P) \in\left(2^{-n}, 2^{1-n}\right]
$$

We can apply the decomposition scheme on $\left(\mathbb{P}_{n, m}^{+}, \Pi_{n, m}^{+}\right) \mathrm{s}$ and expect that:

$$
\left\|\mathfrak{L}_{\mathbb{P}_{n, m}^{+},} f\right\|_{L^{2}} \lesssim p(n, m) 2^{-\epsilon n}\|f\|_{L^{2}},
$$

for some small $\epsilon \in \mathbb{R}_{+}$and a polynomial $p(\cdot, \cdot)$. On the other hand,

$$
\mu\left(\operatorname{supp} \mathfrak{L}_{\mathbb{P}_{n, m}^{-}} f\right) \leq m^{-1} 2^{n-m} .
$$

Combining both in the form of distributional estimate, we get:

$$
\begin{aligned}
\mu\left(\left|\mathfrak{L}_{\mathbb{P}_{n}} f\right|^{-1}(\eta, \infty]\right) & \leq \mu\left(\left|\mathfrak{L}_{\mathbb{P}_{n, m}^{+}} f\right|^{-1}(\eta, \infty]\right)+\mu\left(\left|\mathfrak{L}_{\mathbb{P}_{n, m}^{-}} f\right|^{-1}(0, \infty]\right) \\
& \lesssim\left(p(n, m) 2^{-\epsilon n} \frac{\|f\|_{L^{2}}}{\eta}\right)^{2}+m^{-1} 2^{n-m}
\end{aligned}
$$

Unfortunately, through minimizing the RHS, we can only derive $L^{2} \rightarrow L^{2-\epsilon}$ bound. To make matters worse, we rely on the finite measure structure on \mathbb{T} to control the exceptional set. This prevents us an easy adaptation from \mathbb{T} settings to \mathbb{R}^{D} settings. Alternatively, this shows that a possible path to tackle the issue is to localize the analysis on the level set. That is, we aim for good control on:

$$
I \cap M_{\Pi_{n}}^{-1}\left(m 2^{m}, \infty\right], \text { for various } I \in \mathbb{D} .
$$

6.3 Victor Lie's Stopping Collection

Continuing previous discussion, our goal is to do finer estimate on the level set. In [Lie20], Lie's innovation is the use of the John-Nirenberg inequality on his inductive construction. We give our interpretation of his treatments. For starters, we observe that:

Observation. Carlson packing condition implies the boundedness of 2^{κ}-adic BMO norm of the corresponding counting function.

Using similar settings: Given $\mathbb{P}_{n} \subset \tilde{\mathbb{D}}$ convex and $\Pi_{n} \subset \tilde{\mathbb{D}}$ such that

- $P \in \mathbb{P}_{n} \Longrightarrow \mathcal{A}_{\Pi_{n}}(P) \in\left(2^{-n}, 2^{1-n}\right]$,
- $\pi \in \Pi_{n} \Longrightarrow \mathcal{A}(\pi)>2^{-n}$,
we see that $\left\{I_{\pi}\right\}_{\pi \in M \Pi_{n}}$ is 2^{n}-carleson (counting with multiplicity), and thus,
for any $I \in \mathbb{D}$, we have:

$$
\begin{aligned}
\chi_{I}\left(M_{\Pi_{n}}-\left|M_{\Pi_{n}}\right|_{I}\right) & =\sum_{\substack{\pi \in M \Pi_{n} \\
I_{\pi} \supseteq I_{n}}} \chi_{I \cap \ell_{\pi}}-f \sum_{\substack{\pi \in M \Pi_{n} \\
I_{\pi} \supsetneq I}} \chi_{I \cap \chi_{\pi}} d \mu \cdot \chi_{I} \\
& +\sum_{\substack{\pi \in M \Pi_{n} \\
I_{\pi} \subset I}} \chi_{\not \subset \cap I_{\pi}}-f_{I} \sum_{\substack{\pi \in M \Pi_{n} \\
I_{\pi} \subset I}} \chi_{\not \subset I_{\pi}} d \mu \cdot \chi_{I} \\
& =\sum_{\substack{\pi \in M \Pi_{n} \\
I_{\pi} \subset I}} \chi_{I_{\pi}}-|I|^{-1} \sum_{\substack{\pi \in M \Pi_{n} \\
I_{\pi} \subset I}}\left|I_{\pi}\right| \cdot \chi_{I} .
\end{aligned}
$$

Therefore, doing another average, we have:

$$
\left|M_{\Pi_{n}}-\left|M_{\Pi_{n}}\right|_{I}\right|_{I} \lesssim|I|^{-1} \sum_{\substack{\pi \in M \Pi_{n} \\ I_{\pi} \subset I}}\left|I_{\pi}\right| \leq 2^{n}
$$

That is, we conclude that: $\left\|M_{\Pi_{n}}\right\|_{B M O_{\Delta}} \lesssim 2^{n}$. Now, we may apply JohnNirenberg inequality: For some $c_{j} \underset{\kappa, D}{\lesssim} 1$,

$$
\begin{aligned}
& \left|\left\{x \in I \mid \sum_{\substack{\pi \in M \Pi_{n} \\
I_{\pi} \subset I}} \chi_{I_{\pi}}>\eta\right\}\right| \\
\leq & \left|\left\{x \in I\left|\sum_{\substack{\pi \in M \Pi_{n} \\
I_{\pi} \subset I}} \chi_{I_{\pi}}-|I|^{-1} \sum_{\substack{\pi \in M \Pi_{n} \\
I_{\pi} \subset I}}\right| I_{\pi} \mid>\eta-2^{n}\right\}\right| \\
\leq & \left|\left\{x \in I\left|\left|M_{\Pi_{n}}(x)-\left|M_{\Pi_{n}}\right|_{I}\right|>\eta-2^{n}\right\} \mid\right.\right. \\
\leq & e^{c_{0}-\frac{\eta-2^{n}}{c_{1} 2^{n}}}|I| \leq e^{c_{0}+1 / c_{1}-2^{-n} \eta / c_{1}}|I|
\end{aligned}
$$

Consequently, for any $C \gg c_{1}\left(c_{0}+1\right)$, there is $\Lambda \underset{\kappa, D}{\bar{\sim}} C$ such that:

$$
\left|\left\{x \in I \mid \sum_{\substack{\pi \in M \Pi_{n} \\ I_{\pi} \subset I}} \chi_{I_{\pi}}>C n 2^{n}\right\}\right| \leq e^{-\Lambda n}|I| .
$$

In particular, if $(\pi, I) \in \Pi_{n} \times \mathbb{A}$, either $I_{\pi} \subset I$ or $I_{\pi} \cap I=\varnothing$, for example:

$$
\mathbb{A}:=M\left\{I_{\pi} \in \mathbb{D} \mid \pi \in \Pi_{n}\right\}
$$

we always have:

$$
|I \cap E| \leq e^{-\Lambda n}|I|, \quad \text { where } E:=M_{\Pi_{n}}^{-1}\left(C n 2^{n}, \infty\right]
$$

In short, John-Nirenberg inequality yields a much stronger decay and more localized control than Markov's inequality does. With that in mind, we now modify $\left(\mathbb{P}_{n}, \Pi_{n}\right)$ accordingly:

$$
\begin{cases}\Pi_{n}^{-}:=\left\{\pi \in \Pi_{n} \mid I_{\pi} \subset E\right\} & \text { and } \Pi_{n}^{+}:=\Pi_{n} \backslash \Pi_{n}^{-} \\ \mathbb{P}_{n}^{-}:=\left\{P \in \mathbb{P}_{n} \mid I_{P} \subset E\right\} & \text { and } \quad \mathbb{P}_{n}^{+}:=\mathbb{P}_{n} \backslash \mathbb{P}_{n}^{-}\end{cases}
$$

In conclusion,

- $\left(\mathbb{P}_{n}^{+}, \Pi_{n}^{+}\right)$can be treated with the decomposition scheme.
- E can be decomposed into a disjoint collection of 2^{κ}-adic cubes:

$$
\mathbb{A}^{-}:=M\{I \in \mathbb{D} \mid I \subset E\}
$$

- both \mathbb{P}_{n}^{+}and \mathbb{P}_{n}^{-}have support control: $\left\{\begin{array}{ll}P \in \mathbb{P}_{n}^{+} & \Longrightarrow I_{P} \in \mathbb{A}^{\subset} \backslash \mathbb{A}^{-\subset} \\ P \in \mathbb{P}_{n}^{-} & \Longrightarrow I_{P} \in \mathbb{A}^{-\subset}\end{array}\right.$. Therefore, if our estimate preserves the structure of the support control we might be able to benefit from its decay.
- we shall analyze \mathbb{P}_{n}^{-}with compatible references: Π_{n}^{-}, but some decay of density might happen. Thus, we need further treatment so that we can apply our arguments iteratively.

Still, with some tweaking, we can inductively build up the collection of (\mathbb{P}, Π) s. The following is a sketch of the method in [Lie20]:

1. Starting with $n=1$, we first collect 2^{-1}-dense tiles:

$$
\mathbb{P}_{r e s(0)}:=\left\{P \in \tilde{\mathbb{D}} \mid \mathcal{A}_{\tilde{\mathbb{D}}}(P) \in\left(2^{-1}, 1\right]\right\}
$$

equivalent references, and default cubes:

$$
\Pi_{r e s(0)}:=\left\{\pi \in \tilde{\mathbb{D}} \mid \mathcal{A}(\pi)>2^{-1}\right\} \quad \text { and } \quad \mathbb{A}_{0}:=\mathbb{D}_{\bar{s}}
$$

2. Define inductively $\left(\mathbb{P}_{k}, \Pi_{k}, \mathbb{A}_{k}\right):=\left(\mathbb{P}_{r e s(k-1)}^{+}, \Pi_{r e s(k-1)}^{+}, \mathbb{A}_{k-1}^{-}\right)$.
3. Due to the decay of density, $\left(\mathbb{P}_{\text {res }(k-1)}^{-}, \Pi_{r e s(k-1)}^{-}\right)$might not satisfy the assumption for Lie's arguments. We modify as such:

$$
\mathbb{P}_{r e s(k)}:=\left\{P \in \mathbb{P}_{r e s(k-1)}^{-} \mid \mathcal{A}_{\Pi_{r e s(k-1)}^{-}}(P)>2^{-1}\right\}
$$

and $\Pi_{r e s(k)}:=\Pi_{r e s(k-1)}^{-}$untouched. What remains are those affected by the decay of density: $\mathbb{P}_{\text {decay }(k)}:=\mathbb{P}_{r e s(k-1)}^{-} \backslash \mathbb{P}_{\text {res }(k)}$.
4. By construction, we have for all k,

- $\left(\mathbb{P}_{k}, \Pi_{k}\right)$ can be treated with the decomposition scheme.
- \mathbb{A}_{k} s posses a cell structure: $\mathbb{I}_{k}:=\mathbb{A}_{k-1}^{\subset} \backslash \mathbb{A}_{k}^{\subset}$
- Tiles in \mathbb{P}_{k} are temporally controlled by $\mathbb{I}_{k}: P \in \mathbb{P}_{k} \Longrightarrow I_{P} \in \mathbb{I}_{k}$.
- Size of \mathbb{A}_{k} locally posses exponential decay:

$$
J \in \mathbb{A}_{k-1} \Longrightarrow \mu\left(J \cap \bigsqcup \mathbb{A}_{k}\right)=\sum_{\substack{I \in \mathbb{A}_{k} \\ I \subset J}}|I| \leq e^{-\Lambda}|J|
$$

which also screams sparsity.

- With temporally restricted references: $\mathbb{P}_{\text {decay }(k)}$ has decayed density less than 2^{-1}.

5. To deal with $\mathbb{P}_{\text {decay }(k) \mathrm{s}}$, we preserve the \mathbb{I}_{k}-cell structure when collecting the 2^{-2}-dense tiles.

$$
\mathbb{P}_{r e s(k, 0)}:=\left\{P \in \tilde{\mathbb{D}} \mid I_{P} \in \mathbb{I}_{k} \wedge \mathcal{A}_{\Pi_{r e s(k, 0)}}(P) \in\left(2^{-2}, 2^{-1}\right]\right\}
$$

where:

$$
\Pi_{r e s(k, 0)}:=\left\{\pi \in \tilde{\mathbb{D}} \mid I_{\pi} \in \mathbb{I}_{k} \wedge \mathcal{A}(\pi)>2^{-2}\right\} \quad \text { and } \quad \mathbb{A}_{k, 0}:=\mathbb{A}_{k-1}
$$

The rest is to pass the arguments into every cells and inductively create finer cells to compensate for the decay of density.

In short, there are natural ways to build nested cells from the level set so that, within each cell, we have good control on $M_{\Pi \mathrm{S}}$ and \mathbb{P} s. Yet, the argument looks daunting due to the complicated process and indexes.

6.4 Pavel Zorin-Kranich's Modifications

Inspired by Lie's arguments, Zorin-Kranich simplified the arguments. Through combining level set estimates from different densities, he first constructed the cell structure fitting for all densities and then classified tiles according to the relative density localized within the cell. This prevents the problem arising from decayed densities since all the decay happens within the cell and the measurement is done after the decay. Additionally, his cell structure interacts well with temporal dilation. This allows him to verify some localized estimates to apply the extrapolation arguments from [BT13]. We present his arguments as two parts: Cell estimate and Mollification. Before the discussion, we first introduce some terminologies:
Definition 6.4.1 (Carpet: collection of disjoint cubes). Consider the following collection:

$$
\mathbb{X}:=\left\{\mathbb{A} \in 2^{\mathbb{D}} \mid \forall I, J \in \mathbb{A},(I \cap J \neq \varnothing \Longrightarrow I=J)\right\}
$$

We call an element $\mathbb{A} \in \mathbb{X}$ a carpet.

Definition 6.4.2 (Covering relation).
We equip \mathbb{X} a partial order relation \prec :

$$
\forall \mathbb{A}, \mathbb{B} \in \mathbb{X},\left(\mathbb{A} \prec \mathbb{B} \Longleftrightarrow \mathbb{A} \subset \mathbb{B}^{C}\right)
$$

Additionally, we define the δ-covering relation as such:

$$
\mathbb{A} \prec \underset{\delta}{ } \mathbb{B} \Longleftrightarrow\left(\mathbb{A} \prec \mathbb{B} \wedge \forall J \in \mathbb{B}, \sum_{\substack{I \in \mathbb{A} \\ I \subset J}}|I| \leq \delta|J|\right)
$$

Typically, we only consider $\delta \in(0,1)$.
Definition 6.4.3 (Smooth carpet). $\mathbb{A} \in \mathbb{X}$ is smooth if: Given $(I, J) \in \mathbb{D} \times \mathbb{A}$,

$$
\left(\ell_{I} \leq 2^{-\kappa} \ell_{J} \wedge \tilde{I} \cap J \neq \varnothing\right) \Longrightarrow \exists J^{\prime} \in \mathbb{A} \text { s.t. }\left(2^{-\kappa} \ell_{J} \leq \ell_{J^{\prime}} \wedge I \subset J^{\prime}\right)
$$

We denote the collection of smooth carpets as \mathbb{X}^{∞}.
Remark. Another way to view smoothness is the following: If $\mathbb{A} \in \mathbb{X}^{\infty}$,

$$
I \notin \mathbb{A} \subset \Longrightarrow \forall J \in \mathbb{A},\left(\tilde{I} \cap J \neq \varnothing \Longrightarrow \ell_{I} \geq \ell_{J}\right)
$$

Heuristically speaking, the size/scale of cubes in a smooth carpet must varies smoothly. Thus, dilated cubes share similar incidental properties with its non-dilated counterpart.

We now present the core estimate:
Lemma 6.4.4 (Cell estimate).
Given $\delta \in(0,1)$ and $\mathbb{A} \in \mathbb{X}$, there is $C \underset{\delta, \kappa, D}{>} 1$ such that we can find $\mathbb{A} \succ_{\delta} \mathbb{A}^{-} \in \mathbb{X}$ locating all the bad references. That is, by removing all references temporally located in $\mathbb{A}^{-\subset}$:

$$
\Pi^{+}:=\left\{\pi \in \tilde{\mathbb{D}} \mid I_{\pi} \in \mathbb{A}^{\subset} \backslash \mathbb{A}^{-\subset}\right\}
$$

its 2^{-n}-dense equivalent reference: $\Pi_{n}^{+}:=\left\{\pi \in \Pi^{+} \mid \mathcal{A}(\pi)>2^{-n}\right\}$ follows:

$$
\forall n \in \mathbb{N}, M_{\Pi_{n}^{+}} \leq C n 2^{n}
$$

Remark. It essentially states that: within certain temporal location, the 2^{-n} dense equivalent reference follows our desired control.

Proof. Considering the temporally localized references:

$$
\Pi_{n}:=\left\{\pi \in \Pi \mid \mathcal{A}(\pi)>2^{-n}\right\}, \text { where } \Pi:=\left\{\pi \in \tilde{\mathbb{D}} \mid I_{\pi} \in \mathbb{A}^{\subset}\right\}
$$

we can locate the high overlaps across all different densities:

$$
E:=\bigcup_{n \in \mathbb{N}} E_{n}, \text { where } E_{n}:=M_{\Pi_{n}}^{-1}\left(C n 2^{n}, \infty\right] .
$$

Applying John-Nirenberg inequality, we have: Given $I \in \mathbb{A}$,

$$
\mu(I \cap E) \leq \sum_{n \in \mathbb{N}} \mu\left(I \cap E_{n}\right) \leq \sum_{n \in \mathbb{N}} e^{-\Lambda n}|I| \leq \frac{|I|}{e^{\Lambda}-1}
$$

We now decompose E into disjoint cubes: $\mathbb{A}^{-}:=M\{I \in \mathbb{D} \mid I \subset E\}$ and take large enough $C \underset{\kappa, D}{\bar{\sim}} \Lambda \underset{\delta}{>} 1$ to verify $\mathbb{A}^{-} \underset{\delta}{\prec} \mathbb{A}$:

$$
\forall J \in \mathbb{A}, \sum_{\substack{I \in \mathbb{A}_{-}^{-} \\ I \subset J}}|I|=\mu(J \cap E) \leq \frac{|J|}{e^{\Lambda}-1} \leq \delta|J|
$$

Meanwhile, we isolate bad reference: $\Pi^{-}:=\left\{\pi \in \Pi \mid I_{\pi} \in \mathbb{A}^{-\subset}\right\}$ and define:

$$
\Pi_{n}^{+}:=\Pi_{n} \backslash \Pi^{-} \text {so that, by construction, } M_{\Pi_{n}^{+}} \leq C n 2^{n} .
$$

To this stage, we have established methods to adapt (\mathbb{P}, Π) s to the cell structure: $\mathbb{A}^{\subset} \backslash \mathbb{A}^{-\subset}$. Yet, before doing so, Zorin-Kranich put additional steps to equip the cells with Smooth structure:

Lemma 6.4.5 (Mollification).
Given $(\mathbb{A}, \mathbb{B}) \in \mathbb{X} \times \mathbb{X}^{\infty}$, if $\mathbb{A} \underset{\delta}{\prec} \mathbb{B}$, we can construct $\beta \mathbb{A} \in \mathbb{X}^{\infty}$ satisfying:

$$
\mathbb{A} \prec \beta \mathbb{A} \underset{\delta^{\prime}}{\prec} \mathbb{B}, \text { where } \delta^{\prime} \underset{\kappa, D}{\bar{\sim}} \delta \text {. }
$$

We postpone the proof and see how the two lemmas help us construct the cell structure and (\mathbb{P}, Π) s. We recall the comparison between Jenga and Eiffel Tower and state our desired result in the following lemma.

Lemma 6.4.6 (Eiffel Tower construction).
Given $\delta \in(0,1)$, we can construct a chain of smooth carpets:

$$
\left\{\mathbb{A}_{\alpha}\right\}_{\alpha \in \mathbb{N}} \subset \mathbb{X}^{\infty} \text { and defaut } \mathbb{A}_{0}:=\mathbb{D}_{\bar{s}} \in \mathbb{X}^{\infty}
$$

such that we have the following:

- δ-covering relation:

$$
\cdots \underset{\delta}{\prec} \mathbb{A}_{\alpha} \underset{\delta}{\prec} \mathbb{A}_{\alpha-1} \underset{\delta}{\prec} \cdots \underset{\delta}{\prec} \mathbb{A}_{1} \underset{\delta}{\prec} \mathbb{A}_{0} .
$$

- Cell structure:

$$
\mathbb{D}_{\bar{s}}^{\subset}=\bigsqcup_{\alpha \in \mathbb{N}} \mathbb{I}_{\alpha}, \text { where } \mathbb{I}_{\alpha}:=\mathbb{A}_{\alpha-1}^{\subset} \backslash \mathbb{A}_{\alpha}^{\subset}
$$

Accordingly, we also have:

$$
\tilde{\mathbb{D}}=\bigsqcup_{\alpha \in \mathbb{N}} \mathbb{P}_{*, \alpha}, \text { where } \mathbb{P}_{*, \alpha}:=\Pi_{\alpha}:=\left\{\pi \in \tilde{\mathbb{D}} \mid I_{\pi} \in \mathbb{I}_{\alpha}\right\}
$$

- Relative density partition:

$$
\mathbb{P}_{*, \alpha}=\bigsqcup_{n \in \mathbb{N}} \mathbb{P}_{n, \alpha}, \text { where } \mathbb{P}_{n, \alpha}:=\left\{P \in \mathbb{P}_{*, \alpha} \mid \mathcal{A}_{\Pi_{\alpha}}(P) \in\left(2^{-n}, 2^{1-n}\right]\right\}
$$

- Temporal overlap control:

$$
M_{\Pi_{n, \alpha}} \underset{\delta, \kappa, D}{\lesssim} n 2^{n}, \text { where } \Pi_{n, \alpha}^{2^{-n} \text {-dense equivalent reference }}:=\left\{\pi \in \Pi_{\alpha} \mid \mathcal{A}(\pi)>2^{-n}\right\} .
$$

Proof.

1. Starting with $\mathbb{A}_{0}:=\mathbb{D}_{\bar{s}} \in \mathbb{X}^{\infty}$, we assume $\mathbb{A}_{\alpha-1} \in \mathbb{X}^{\infty}$ constructed.
2. Through cell estimate, we have: $\mathbb{A}_{\alpha-1}^{-}{ }_{\delta} \mathbb{A}_{\alpha-1}$ and set, accordingly,

$$
\Pi_{n, \alpha}^{+}:=\left\{\pi \in \tilde{\mathbb{D}} \mid \mathcal{A}(\pi)>2^{-n} \wedge I_{\pi} \in \mathbb{A}_{\alpha-1}^{\subset} \backslash \mathbb{A}_{\alpha-1}^{-\subset}\right\}
$$

3. Since $\mathbb{A}_{\alpha-1} \in \mathbb{X}^{\infty}$, we may apply mollification, set $\mathbb{A}_{\alpha}:=\beta \mathbb{A}_{\alpha-1}^{-} \in \mathbb{X}^{\infty}$, and yield a chain of relations:

$$
\cdots \underset{\delta^{\prime}}{\prec} \mathbb{A}_{\alpha} \underset{\delta^{\prime}}{\prec} \mathbb{A}_{\alpha-1} \underset{\delta^{\prime}}{\prec} \cdots \underset{\delta^{\prime}}{\prec} \mathbb{A}_{1} \underset{\delta^{\prime}}{\prec} \mathbb{A}_{0} .
$$

As a result, with a renaming of variable $\delta^{\prime} \rightsquigarrow \delta$, we have δ-covering relation. Additionally, cell structure and relative density partition follow directly from construction. The rest is to verify the temporal overlap control. This follows from cell estimate. Since $\mathbb{I}_{\alpha} \subset \mathbb{A}_{\alpha-1}^{\subset} \backslash \mathbb{A}_{\alpha-1}^{-\subset}$, we have:

$$
\Pi_{n, \alpha} \subset \Pi_{n, \alpha}^{+} \quad \text { and, thus, } \quad M_{\Pi_{n, \alpha}} \leq M_{\Pi_{n, \alpha}^{+}} \underset{\delta, \kappa, D}{\lesssim} n 2^{n} .
$$

Remark. The result matches our settings for decomposition scheme with $n=m$. Moreover, both $\mathbb{P}_{n, \alpha}$ and $\Pi_{n, \alpha}$ are temporally localized inside $\mathbb{A}_{\alpha-1}$ but outside \mathbb{A}_{α}. Due to the nested structure, as long as our analysis reflect these temporal properties, we can benefit from the δ-covering and the smoothness of carpet when treating the operator and its adjoint.

Lastly, with a change of perspective, we can organize the collection as such:

$$
\tilde{\mathbb{D}}=\bigsqcup_{n \in \mathbb{N}} \mathbb{P}_{n}, \quad \text { where } \mathbb{P}_{n}:=\bigsqcup_{\alpha \in \mathbb{N}} \mathbb{P}_{n, \alpha}
$$

so that, by our construction, we also have:

$$
\because \mathbb{P}_{n, \alpha} \subset \Pi_{\alpha} \quad \therefore P \in \mathbb{P}_{n} \Longrightarrow \mathcal{A}(P) \leq \mathcal{A}_{\Pi_{\alpha}}(P) \approx 2^{-n}
$$

6.5 Explicit Construction of Smooth Carpet

We resume to prove the mollification lemma 6.4.5. In the original literature [Zor19], Zorin-Kranich neither gave an explicit construction nor verified the δ covering relation. For the sake of completeness, we present our arguments with explicit construction. A reasonable starting point is to first consider the following question: What is the simplest non-trivial smooth carpet? A direct guess leads us to the next definition:

Definition 6.5.1 (The Ink-bleeding).
Given $A \in \mathbb{D}$, we define the Ink-bleeding of A :

$$
\beta_{A} \in m\left\{\mathbb{A} \in \mathbb{X}^{\infty} \mid\{A\} \prec \mathbb{A}\right\}
$$

as the $\prec-m i n i m a l$ smooth carpet that covers the one cube carpet $\{A\}$ constructed through the following process:

1. For some $s \in \mathbb{Z}, A \in \mathbb{D}_{s}$. We set $\mathbb{A}_{0}:=\{A\} \in \mathbb{X}$ at our initial stage.
2. Suppose we have $\mathbb{A}_{k-1} \in \mathbb{X}$ at $k-1$ th stage, we build $\mathbb{A}_{k} \in \mathbb{X}$ as such:

$$
\begin{aligned}
\mathbb{A}_{k} & :=M\left(\mathbb{A}_{k-1} \cup \bigcup_{J \in \mathbb{A}_{k-1}}\left\{I \in \mathbb{D} \mid \ell_{I} \leq 2^{-\kappa} \ell_{J} \wedge \tilde{I} \cap J \neq \varnothing\right\}\right) \\
& =\mathbb{A}_{k-1} \sqcup\left\{I \in \mathbb{D}_{s-k} \backslash \mathbb{A}_{k-1}^{\subset} \mid \tilde{I} \cap \bigsqcup \mathbb{A}_{k-1} \neq \varnothing\right\}
\end{aligned}
$$

Essentially, we attempt to use greedy algorithm by adding the bare requirement for it to be smoother. Incidentally, the process adds barely smaller layer of cubes on the edge of the carpet.

We define $\beta_{A}:=\bigcup_{k \in \mathbb{N}} \mathbb{A}_{k}$. It is easy to check that $\{A\} \prec \beta_{A} \in \mathbb{X}$:

$$
\{A\} \subset \mathbb{A}_{0} \subset \mathbb{A}_{1} \subset \cdots \subset \mathbb{A}_{k} \subset \cdots \subset \beta_{A} \in \mathbb{X}
$$

By construction, $\beta_{A} \in \mathbb{X}^{\infty}$ since, given $(I, J) \in \mathbb{D} \times \mathbb{A}_{k-1}$, we have:

$$
\left(\ell_{I} \leq 2^{-\kappa} \ell_{J} \wedge \tilde{I} \cap J \neq \varnothing\right) \Longrightarrow \exists J^{\prime} \in \mathbb{A}_{k} \text { s.t. }\left(2^{-\kappa} \ell_{J} \leq \ell_{J^{\prime}} \wedge I \subset J^{\prime}\right)
$$

Figure 1: \mathbb{A}_{3} (with $D=2, \kappa=1$ and I, \tilde{I} : red v.s. J : blue)

Also, minimality is guaranteed by the greedy algorithm. Lastly, we give some quantitative description:

$$
\begin{aligned}
\bigsqcup \beta_{I} & =\left(1+2\left(n_{D} 2^{\kappa}+1\right) \sum_{k \in \mathbb{N}} 2^{-\kappa k}\right) A \\
& =\frac{\left(2 n_{D}+1\right) 2^{\kappa}+1}{2^{\kappa}-1} A \subset C_{D} A, \text { where } C_{D}:=4 n_{D}+3
\end{aligned}
$$

With building blocks constructed, we still need ways to sew things together:
Properties 6.5.2 (Sewing).
Given $\mathbb{Y} \subset \mathbb{X}^{\infty}$ and $\mathbb{B} \in \mathbb{X}$, we have:

$$
(\forall \mathbb{A} \in \mathbb{Y}, \mathbb{A} \prec \mathbb{B}) \Longrightarrow \mathbb{B} \succ \bigvee \mathbb{Y}:=M \bigcup \mathbb{Y} \in \mathbb{X}^{\infty}
$$

Proof. By construction, we only need to verify the smoothness. Given $I \in \mathbb{D}$
and $J \in \bigvee \mathbb{Y}$, since there is $\mathbb{A} \in \mathbb{Y}$ such that $J \in \mathbb{A}$, we have:

$$
\begin{aligned}
& \left(\ell_{I} \leq 2^{-\kappa} \ell_{J} \wedge \tilde{I} \cap J \neq \varnothing\right) \\
\Longrightarrow & \exists J^{\prime} \in \mathbb{A} \text { s.t. }\left(2^{-\kappa} \ell_{J} \leq \ell_{J^{\prime}} \wedge I \subset J^{\prime}\right) \\
\Longrightarrow & \exists J^{\prime \prime} \in \bigvee \mathbb{Y} \text { s.t. }\left(2^{-\kappa} \ell_{J} \leq \ell_{J^{\prime}} \leq \ell_{J^{\prime \prime}} \wedge I \subset J^{\prime} \subset J^{\prime \prime}\right) .
\end{aligned}
$$

As a result, $\mathbb{B} \succ \bigvee \mathbb{Y} \in \mathbb{X}^{\infty}$.
Now we are ready to prove the mollification lemma:
Proof (Lemma 6.4.5). Through sewing Ink-bleedings, we immediately have:

$$
\because \forall A \in \mathbb{A}, \quad\{A\} \prec \beta_{A} \prec \mathbb{B} \quad \therefore \mathbb{A} \prec \beta \mathbb{A} \prec \mathbb{B}, \text { where } \beta \mathbb{A}:=\bigvee_{A \in \mathbb{A}} \beta_{A} \in \mathbb{X}^{\infty}
$$

On the other hand, since $\mathbb{A} \underset{\delta}{\prec} \mathbb{B}$ with $\delta \in(0,1)$, we must have:

$$
\forall(A, B) \in \mathbb{A} \times \mathbb{B},\left(A \subset B \Longrightarrow \ell_{A} \leq 2^{-\kappa} \ell_{B}\right)
$$

Consequently, given $(A, B) \in \mathbb{A} \times \mathbb{B}$, we have $C_{\kappa, D}:=1+2^{-\kappa} C_{D}$ such that:

$$
\exists I \in \beta_{A} \text { s.t. } I \subset B \Longrightarrow B \cap C_{D} A \neq \varnothing \Longrightarrow A \subset C_{\kappa, D} B
$$

We now verify the quantitative covering relation. Given $B \in \mathbb{B}$, since $\mathbb{B} \in \mathbb{X}^{\infty}$ (scale of cubes varies smoothly in \mathbb{B}), previous estimate yields:

$$
\begin{aligned}
& \sum_{\substack{I \in \beta \mathbb{A} \\
I \subset B}}|I| \leq \sum_{\substack{A \in \mathbb{A} \\
A \subset C_{\kappa, D} B}} \sum_{\substack{I \in \beta_{A}}}|I| \leq \sum_{\substack{B^{\prime} \in \mathbb{B} \\
B^{\prime} \cap C_{\kappa, D} B \neq \varnothing}} \sum_{\substack{A \in \mathbb{A} \\
A \subset B^{\prime}}} \mu\left(\bigsqcup \beta_{A}\right) \\
& \underset{\substack{\text {. }}}{\lesssim} \sum_{\substack{B^{\prime} \in \mathbb{B} \\
B^{\prime} \cap C_{\kappa, D} B \neq \varnothing}}|A| \leq \sum_{\substack{A \in \mathbb{A} \\
A \subset B^{\prime}}}|A| B^{\prime}\left|\underset{\substack{B^{\prime} \in \mathbb{B} \\
B^{\prime} \cap C_{\kappa, D} B \neq \varnothing}}{ } \delta\right| B \mid .
\end{aligned}
$$

$7 \quad$ Sparse Domination of Sparse Parts

With Eiffel Tower construction, we have set up for our decomposition scheme. The rest of the work is to provide good control on both sparse parts and cluster parts. Here, we choose the the setting: $l \lesssim m=n$ to do the decomposition and present the argument for sparse parts in the form of sparse form dominance and pointwise sparse dominance.

7.1 Reductions

Definition 7.1.1.

$$
C_{\mathbb{P}}:=\sum_{P \in \mathbb{P}} \chi_{E_{P}}, \text { where } \mathbb{P} \subset \tilde{\mathbb{D}}
$$

Definition 7.1.2 (Spectral η-control).
Given $P_{j} \in \tilde{\mathbb{D}}$, we define:

$$
\left\{\begin{array}{l}
P_{0} \lesssim<P_{1} \quad \Longleftrightarrow s_{P_{0}} \leq s_{P_{1}} \wedge \Delta\left(P_{0}, P_{1}\right)<\eta \\
P_{0} \lesssim \geq P_{1}
\end{array} \Longleftrightarrow s_{P_{0}} \leq s_{P_{1}} \wedge \Delta\left(P_{0}, P_{1}\right) \in[\eta, \infty)\right.
$$

Notice that either relation implies $\tilde{I}_{P_{0}} \cap \tilde{I}_{P_{1}} \neq \varnothing$ and thus, $I_{P_{0}} \subset 2 \tilde{I}_{P_{1}}$. Additionally, given $\mathbb{P} \subset \tilde{\mathbb{D}}$ and $P \in \tilde{\mathbb{D}}$, we define:

$$
\left\{\begin{array}{l}
\mathbb{P}_{P,<}:=\left\{P^{\prime} \in \mathbb{P} \mid P^{\prime} \lesssim<P\right\} \\
\mathbb{P}_{P, \geq}:=\left\{P^{\prime} \in \mathbb{P} \mid P^{\prime} \lesssim \geq P\right\}
\end{array}\right.
$$

Lemma 7.1.3 (Tile-tile interaction).
Given $P_{j} \in \tilde{\mathbb{D}}$, we have:

$$
\begin{cases}\left|\mathfrak{L}_{P_{1}}^{*} \mathfrak{L}_{P_{0}} f\right|=0 & \Longleftarrow P_{0}, P_{1} \text { are } \unlhd \text {-incomparable } \\ \left|\mathfrak{L}_{P_{1}} \mathfrak{L}_{P_{0}}^{*} f\right| & \underset{\kappa, D, d}{\lesssim}\left\langle\Delta\left(P_{0}, P_{1}\right)\right\rangle^{\tau / d} \frac{\left|\tilde{I}_{P_{0}} \cap \tilde{I}_{P_{1}}\right|}{\left|I_{P_{0}}\right| \cdot\left|I_{P_{1}}\right|}\|f\|_{L^{1}\left(E_{P_{0}}\right)} \chi_{E_{P_{1}}} .\end{cases}
$$

Proof. The first relation is trivial since:

$$
P_{0}, P_{1} \unlhd \text {-incomparable } \Longrightarrow E_{P_{0}} \cap E_{P_{1}}=\varnothing .
$$

The second relation follows from estimating the kernel:

$$
\mathfrak{L}_{P_{1}} \mathfrak{L}_{P_{0}}^{*} f(\cdot)=\int K_{P_{0}, P_{1}}(\cdot, y) f(y) d y
$$

where the explicit form of $K_{P_{0}, P_{1}}$ is:

$$
K_{P_{0}, P_{1}}(x, y)=\int_{\tilde{I}_{P_{0}} \cap \tilde{I}_{P_{1}}} e^{i\left(q_{x}-q_{y}\right)(z)} K_{s_{P_{1}}}(x, z) \overline{K_{s_{P_{0}}}(y, z)} d z \cdot \chi_{E_{P_{1}}}(x) \chi_{E_{P_{0}}}(y)
$$

Considering $J:=\tilde{I}_{P_{0}} \cap \tilde{I}_{P_{1}} \neq \varnothing$ and $(x, y) \in E_{P_{1}} \times E_{P_{0}}$, we have:

$$
\because\left(q_{x}, q_{y}\right) \in \omega_{P_{1}} \times \omega_{P_{0}} \quad \therefore\left\|q_{x}-q_{y}\right\|_{\tilde{I}_{P_{0}} \cap \tilde{I}_{P_{1}}} \geq \Delta\left(P_{0}, P_{1}\right)
$$

To apply Van der Corput estimate, we need a way to measures the Oscillation of $\psi_{P_{0}, P_{1}}(\cdot):=K_{s_{P_{1}}}(x, \cdot) \overline{K_{s_{P_{0}}}(y, \cdot)}$. Using kernel's properties: $L^{\infty} \backslash$ Size Control and Locally τ-Hölder Continuity(3.4.3.1), we have:

$$
\|\Delta\| \lesssim \ell_{J} \Longrightarrow\left|\psi_{P_{0}, P_{1}}-\tau_{\Delta} \psi_{P_{0}, P_{1}}\right| \underset{\kappa, D, d}{\lesssim}\left(\|\Delta\| / \ell_{J}\right)^{\tau}\left|I_{P_{0}}\right|^{-1}\left|I_{P_{1}}\right|^{-1}
$$

Plugging everything into the estimate yields:

$$
\begin{aligned}
\left|K_{P_{0}, P_{1}}(x, y)\right| & \underset{\underset{D, d}{ }}{\lesssim} \sup _{\underset{\kappa, D}{\ell_{J}}<\left\langle\left\|q_{x}-q_{y}\right\| \|_{J}^{1 / d}\right.}\left\|\psi_{P_{0}, P_{1}}-\tau_{\Delta} \psi_{P_{0}, P_{1}}\right\|_{L^{\infty}}|J| \\
& \quad\left\langle\left\|q_{x}-q_{y}\right\|_{J}\right\rangle^{\tau / d}\left|I_{P_{0}}\right|^{-1}\left|I_{P_{1}}\right|^{-1}|J| \\
& \leq\left\langle\Delta\left(P_{0}, P_{1}\right)\right\rangle^{\tau / d} \frac{\left|\tilde{I}_{P_{0}} \cap \tilde{I}_{P_{1}}\right|}{\left|I_{P_{0}}\right| \cdot\left|I_{P_{1}}\right|}
\end{aligned}
$$

Remark. Comparing to the single tile estimate, we successfully extract the distance factor and keep all other the good estimate.

Through single tile estimate and tile-tile interaction, we aim to control the behavior of the sparse part. For starters, we first observe that: Given $\mathbb{P} \subset \mathbb{P}_{n}$ be sparse parts, we have two ways to proceed with our control:

- Pointwise Dominance: Using single tile estimate, we suspect that:

$$
\left|\mathfrak{L}_{\mathbb{P}}\right| \lesssim \sum_{P \in \mathbb{P}}|f|_{\tilde{I}_{P}} \chi_{E_{P}} \stackrel{?}{\lesssim} \sum_{I \in \mathbb{S}}|f|_{\Lambda I} \chi_{I},
$$

for some large constant $\Lambda \lesssim 1$ and $\mathbb{S} \subset \mathbb{D} p(n)$-carleson with $p(\cdot)$ be a prescribed polynomial. By Sparse-Maximal dominance, we expect:

$$
\left\|\mathfrak{L}_{\mathbb{P}} f\right\|_{L^{p}} \lesssim p(n)\|M f\|_{L^{p}} \lesssim p(n)\|f\|_{L^{p}}, \quad \forall p \in(1, \infty)
$$

- L^{2} control: Expanding the L^{2} norm explicitly, we have:

$$
\begin{aligned}
\left\|\mathfrak{L}_{\mathbb{P}}^{*} f\right\|_{L^{2}}^{2} & =\left\langle\mathfrak{L}_{\mathbb{P}}^{*} f, \mathfrak{L}_{\mathbb{P}}^{*} f\right\rangle \lesssim \sum_{\substack{P_{j} \in \mathbb{P} \\
s_{P_{0}} \leq s_{P_{1}}}}\left|\left\langle\mathfrak{L}_{P_{0}}^{*} f, \mathfrak{L}_{P_{1}}^{*} f\right\rangle\right| \\
& \leq\left\langle\sum_{\substack{P_{j} \in \mathbb{P} \\
s_{P_{0}} \leq s_{P_{1}}}}\right| \mathfrak{L}_{P_{1}} \mathfrak{L}_{P_{0}}^{*} f|,|f|\rangle
\end{aligned}
$$

To control the L^{2} norm is to control the first term in the last expression.

With Tile-tile interaction, we have:

$$
\begin{aligned}
\sum_{\substack{P_{j} \in \mathbb{P} \\
s_{P_{0}} \leq s_{P_{1}}}}\left|\mathfrak{L}_{P_{1}} \mathfrak{L}_{P_{0}}^{*} f\right| & \lesssim \\
& \sum_{\substack{P_{j} \in \mathbb{P} \\
P_{0} \lesssim \geq P_{1}}}\left\langle\Delta\left(P_{0}, P_{1}\right)\right\rangle^{\tau / d}\left|I_{P_{1}}\right|^{-1}\|f\|_{L^{1}\left(E_{P_{0}}\right)} \chi_{E_{P_{1}}} \\
& +\sum_{\substack{P_{j} \in \mathbb{P} \\
P_{0} \lesssim<P_{1}}}\left\langle\Delta\left(P_{0}, P_{1}\right)\right\rangle^{\tau / d}\left|I_{P_{1}}\right|^{-1}\|f\|_{L^{1}\left(E_{P_{0}}\right)} \chi_{E_{P_{1}}} \\
& \lesssim \sum_{P^{\prime} \in \mathbb{P}}\left\{\begin{array}{ll}
& (1+\eta)^{-\tau / d} \\
+ & \left|C_{\mathbb{P}_{P^{\prime}, \geq}} f\right|_{2 \tilde{I}_{P^{\prime}}} \\
& \left|C_{\mathbb{P}_{P^{\prime},<}} f\right|_{2 \tilde{I}_{P^{\prime}}}
\end{array}\right\} \chi_{E_{P^{\prime}}}
\end{aligned}
$$

Applying Hölder's inequality, we get:

$$
\sum_{\substack{P_{j} \in \mathbb{P} \\
s_{P_{0}} \leq s_{P_{1}}}}\left|\mathfrak{L}_{P_{1}} \mathfrak{L}_{P_{0}}^{*} f\right| \lesssim \sum_{P^{\prime} \in \mathbb{P}}\left\{\begin{array}{c}
\left.\left.(1+\eta)^{-\tau / d}\right|_{C_{\mathbb{P}_{P^{\prime}}, \geq}}\right|_{2 \tilde{I}_{P^{\prime}, r^{\prime}}} \\
+\left|C_{\mathbb{P}_{P^{\prime},<}}\right|_{2 \tilde{I}_{P^{\prime}}, r^{\prime}}
\end{array}\right\}|f|_{2 \tilde{I}_{P^{\prime}, r}} \chi_{E_{P^{\prime}}}
$$

We wish to extract density factor from the $\{\cdots\}$ term. If we can actually do so with $r \in(1,2)$:

$$
\sum_{\substack{P_{j} \in \mathbb{P} \\ s_{P_{0}} \leq s_{P_{1}}}}\left|\mathfrak{L}_{P_{1}} \mathfrak{L}_{P_{0}}^{*} f\right| \lesssim 2^{-n \epsilon} \sum_{P^{\prime} \in \mathbb{P}}|f|_{2 \tilde{I}_{P^{\prime}}, r} \chi_{E_{P^{\prime}}}
$$

the RHS is again possible to be dominated by the corresponding sparse operator with a $p(n)$-carlson sparse cubes $\mathbb{S}^{\prime} \subset \mathbb{D}$. This in turn can further be norm dominated by $M_{r} f$:

$$
\begin{aligned}
& \sum_{P^{\prime} \in \mathbb{P}}|f|_{2 \tilde{I}_{P^{\prime}}, r} \chi_{E_{P^{\prime}}} \stackrel{?}{\lesssim} \sum_{I \in \mathbb{S}^{\prime}}|f|_{\Lambda I, r} \chi_{I} \\
\Longrightarrow & \left\|\sum_{P^{\prime} \in \mathbb{P}}|f|_{2 \tilde{I}_{P^{\prime}}, r} \chi_{E_{P^{\prime}}}\right\|_{L^{2}} \lesssim p(n)\left\|M_{r} f\right\|_{L^{2}} \underset{r}{\lesssim} p(n)\|f\|_{L^{2}} .
\end{aligned}
$$

As a result, through duality, we shall expect:

$$
\left\|\mathfrak{L}_{\mathbb{P}} f\right\|_{L^{2}} \lesssim p(n) 2^{-n \epsilon / 2}\|f\|_{L^{2}}
$$

Suppose everything works as intended, we can easily spread out the $2^{-n \epsilon / 2}$ decay in L^{2} to all L^{p} and sum over $n \in \mathbb{N}$ to complete the L^{p} control:

Theorem 7.1.4 (L^{p} bound on sparse parts).
Given $\mathbb{P} \subset \tilde{\mathbb{D}}$ be the full collection of the sparse parts, we have:

$$
\left\|\mathfrak{L}_{\mathbb{P}} f\right\|_{L^{p}} \lesssim\|f\|_{L^{p}}, \quad \forall p \in(0, \infty)
$$

For a more precise analysis, we consider the following configuration:
Definition 7.1.5 (Sparse tower or Sparse Forest in [Lie20], Anti-chain and boundary in [Zor19]).
Given $\mathbb{P} \subset \mathbb{P}_{n}$, we say:

$$
\left.\begin{array}{rl}
\mathbb{P} \text { is }\left\{\begin{array}{l}
\text { an anti-chain } \\
a \lesssim n \text {-decay }
\end{array}\right. \text { tower }
\end{array}\right\} \begin{aligned}
& \Longleftrightarrow \mathbb{P} \cap \mathbb{P}_{n, \alpha} \text { is }\left\{\begin{array}{l}
a n \text { anti-chain } \\
a \lesssim n \text {-decay stack }
\end{array} \quad \forall \alpha \in \mathbb{N}\right.
\end{aligned}
$$

In either case, we call \mathbb{P} a sparse tower.
Remark. In our case, using decomposition scheme on Eiffel Tower construction with $l \lesssim m=n$ gives us:

$$
\mathbb{P}_{n} \rightsquigarrow\left\{\begin{array}{l}
\lesssim n^{2} \text { anti-chain towers } \\
\lesssim n \lesssim n \text {-decay towers } \\
\text { A lot of clusters }
\end{array}\right.
$$

Therefore, to compensate the polynomial growth of the number of sparse towers, we shall extract some exponential decay from the estimate of a sparse tower:

Theorem 7.1.6 (Sparse tower estimate).
Given $\mathbb{P} \subset \mathbb{P}_{n}$ a sparse tower, we have:

$$
\left\|\mathfrak{L}_{\mathbb{P}} f\right\|_{L^{2}} \lesssim p(n) 2^{-n \eta_{2}}\|f\|_{L^{2}},
$$

and we can construct a $p(n)$-carleson collection $\mathbb{S} \subset \mathbb{D}$ such that:

$$
\left|\mathfrak{L}_{\mathbb{P}} f\right| \lesssim \sum_{I \in \mathbb{S}}|f|_{\tilde{I}} \chi_{I} .
$$

As a result, we have full control:

$$
\left\|\mathfrak{L}_{\mathbb{P}} f\right\|_{L^{p}} \underset{p}{\lesssim} p(n) 2^{-n \eta_{p}}\|f\|_{L^{p}}, \quad \text { where } \quad \eta_{p}>0, \quad \forall p \in(1, \infty) \text {. }
$$

The theorem follows directly from the following two lemmas.
Lemma 7.1.7 (Sparse dominance).
Given $\mathbb{P} \subset \mathbb{P}_{n}$ be sparse tower, we can find $p(n)$-carleson $\mathbb{S} \subset \mathbb{D}$ such that:

$$
\sum_{P \in \mathbb{P}}|f|_{\Lambda I_{P}, r} \chi_{E_{P}} \leq \sum_{I \in \mathbb{S}}|f|_{\Lambda I, r} \chi_{I}, \quad \forall r \in[1, \infty) .
$$

Lemma 7.1.8 (Density extraction).

Given $\mathbb{P} \subset \mathbb{P}_{n}$ be sparse tower, $P^{\prime} \in \tilde{\mathbb{D}}$, and $r \in(1, \infty)$, we have:

$$
\left\{\begin{array}{l}
\left|C_{\mathbb{P}_{P^{\prime}}, \geq}\right|_{2 \tilde{I}_{P^{\prime}}, r^{\prime}} \\
\left|C_{\mathbb{P}_{P^{\prime},<},}\right|_{2 \tilde{I}_{P^{\prime}}, r^{\prime}} \underset{r}{\underset{r}{~}} p p(n) 2^{-n / r^{\prime}}(1+\eta)^{(d D+\epsilon) / r^{\prime}}
\end{array}\right.
$$

Remark. To apply density extraction to the proof of theorem, we fine tune $\eta, \epsilon \in \mathbb{R}_{+}$and $r \in(1,2)$ so that:

$$
(1+\eta)^{-\tau / d}+2^{-n / r^{\prime}}(1+\eta)^{(d D+\epsilon) / r^{\prime}} \lesssim 2^{-n \eta_{2}}
$$

Before we proceed with the proof of the lemmas, we present our plan:

1. Prove the lemmas with $\mathbb{P} \subset \mathbb{P}_{n, \alpha}$ be an anti-chain.
2. For any $\lesssim n$-decay stack $\mathbb{P} \subset \mathbb{P}_{n, \alpha}$, we can construct a decomposition on \mathbb{P} with respect to a decomposition on its temporal projection to encode the decay property. We first recall that there is $s_{\Delta} \approx n$ such that:

$$
s^{\prime}-s \geq s_{\Delta} \Longrightarrow \forall J \in \mathbb{D}_{s^{\prime}}, \sum_{\substack{I \in \mathbb{P}_{p} s \\ I \subset J}}|I| \leq 2^{-\kappa}|J|
$$

We now reorganize the collection by modding out s_{Δ} on the scaling:

$$
\mathbb{I}_{\mathbb{P}}=\bigsqcup_{j=1}^{s_{\Delta}} \mathbb{I}_{\mathbb{P}}^{j}, \quad \text { where } \mathbb{I}_{\mathbb{P}}^{j}:=\bigsqcup_{t \in \mathbb{Z}} \mathbb{I}_{\mathbb{P}, s_{\Delta} t+j}
$$

and do the following canonical decomposition into carpets:

$$
\mathbb{I}_{\mathbb{P}}^{j}=\bigsqcup_{k \in \mathbb{N}} \mathbb{M}_{\mathbb{P}, k}^{j}, \quad \text { where } \mathbb{M}_{\mathbb{P}, k}^{j}:=M\left(\mathbb{I}_{\mathbb{P}}^{j} \backslash \bigsqcup_{l<k} \mathbb{M}_{\mathbb{P}, l}^{j}\right) \in \mathbb{X}, \quad \forall k \in \mathbb{N}
$$

By construction, if $(I, J) \in\left(\mathbb{D}_{s} \cap \mathbb{M}_{\mathbb{P}, k+1}^{j}\right) \times\left(\mathbb{D}_{s^{\prime}} \cap \mathbb{M}_{\mathbb{P}, k}^{j}\right)$, then:

$$
I \subset J \Longrightarrow \frac{s^{\prime}-s}{s_{\Delta}} \in \mathbb{N}
$$

Therefore, we can verify the following covering condition:

$$
\left.\left.\begin{array}{rl}
\forall J \in \mathbb{D}_{s^{\prime}} \cap \mathbb{M}_{\mathbb{P}, k}^{j}, & \sum_{\substack{I \in \mathbb{M}_{p, k+1}^{j} \\
I \subset J}}|I|
\end{array}\right) \sum_{\substack{s \in \mathbb{Z} \\
\frac{s^{\prime}-s}{s \Delta} \in \mathbb{N}}} \sum_{\substack{ \\
s_{\Delta} \in \mathbb{D}_{s} \cap \mathbb{M}_{p, k+1}^{j} \\
I \subset J}}|I|\right] .
$$

That is, we have:

$$
\cdots \underset{\frac{1}{2^{K^{-1}}}}{\prec} \mathbb{M}_{\mathbb{P}, k, k}^{j} \underset{2^{1}-1}{\prec} \mathbb{M}_{\mathbb{P}, k-1}^{j} \underset{\frac{1}{2^{\kappa}-1}}{\prec} \cdots \underset{\frac{2^{\kappa}-1}{\prec}}{\prec} \mathbb{M}_{\mathbb{P}, 2}^{j} \underset{\frac{1}{2^{\kappa}-1}}{\prec} \mathbb{M}_{\mathbb{P}, 1}^{j}, \quad \forall j=1 \sim s_{\Delta} .
$$

As a direct consequence, $\mathbb{I}_{\mathbb{P}}^{j}$ is $\lesssim 1$-carleson. Correspondingly, we define:

$$
\mathbb{P}=\bigsqcup_{j=1}^{s_{\Delta}} \bigsqcup_{k \in \mathbb{N}} \mathbb{P}_{k}^{j} \text { with } \mathbb{P}_{k}^{j}:=\left\{P \in \mathbb{P} \mid I_{P} \in \mathbb{M}_{\mathbb{P}, k}^{j}\right\}
$$

Notice that \mathbb{P}_{k}^{j} S are anti-chains. With the the $\underset{\frac{1}{2^{\hbar}-1}}{\prec}$-chain structure, estimate from individual anti-chain \mathbb{P}_{k}^{j} can be sum up to similar order.
3. For $\mathbb{P} \subset \mathbb{P}_{n}$ be an sparse tower, we decompose the collection with respect to the level/cell structure:

$$
\mathbb{P}=\bigsqcup_{\alpha \in \mathbb{N}} \mathbb{P}^{(\alpha)}, \quad \text { where } \mathbb{P}^{(\alpha)}:=\mathbb{P} \cap \mathbb{P}_{n, \alpha}
$$

δ-covering relation among \mathbb{A}_{α} should allow us to sum everything up.

7.2 Sparse Dominance

Following our plan, we split the proof in three parts:
Claim (Anti-chain sparse dominance).
Given an anti-chain $\mathbb{P} \subset \mathbb{P}_{n, \alpha}$, we can construct $\mathbb{S} \in \mathbb{X}$ a carpet, which is 1 -carleson by definition, such that $\mathbb{S} \subset \mathbb{I}_{\mathbb{P}} \subset \mathbb{I}_{\alpha}$ and:

$$
\sum_{P \in \mathbb{P}}|f|_{\Lambda I_{P}, r} \chi_{E_{P}} \leq \sum_{I \in \mathbb{S}}|f|_{\Lambda I, r} \chi_{I}, \quad \forall r \in[1, \infty)
$$

Proof (Anti-chain sparse dominance). Since \unlhd-incomparability implies disjointness, $\left\{E_{P}\right\}_{P \in \mathbb{P}}$ are mutually disjoint. We can first collapse all the tiles sharing the same temporal block:

$$
\sum_{P \in \mathbb{P}}|f|_{\Lambda I_{P}, r} \chi_{E_{P}}=\sum_{I \in \mathbb{I}_{\mathbb{P}}}|f|_{\Lambda I, r} \chi_{E_{I}}, \quad \text { where } \quad E_{I}:=\bigsqcup_{\substack{P \in \mathbb{P} \\ I_{P}=I}} E_{P}
$$

Still, since $\left\{E_{I}\right\}_{I \in \mathbb{I}_{\mathbb{P}}}$ are mutually disjoint, we have:

$$
\sum_{I \in \mathbb{I}_{\mathbb{P}}}|f|_{\Lambda I, r} \chi_{E_{I}}(x) \leq \sup _{\substack{I \in \mathbb{I}_{\mathbb{P}} \\ x \in E_{I}}}|f|_{\Lambda I, r} \leq \sup _{\substack{I \in \mathbb{I}_{\mathbb{P}} \\ x \in I}}|f|_{\Lambda I, r}, \quad \forall x \in \mathbb{R}^{D}
$$

Notice that, since $\mathbb{I}_{\mathbb{P}} \subset \mathbb{I}_{\alpha} \subset \mathbb{D}_{\bar{s}}^{\subset} \backslash \mathbb{D}_{\underline{s}}^{\subset}$, the supremum is actually just a maximum. It is now valid to collect all the cubes that reach maximum for every point $x \in \bigcup \mathbb{I}_{\mathbb{P}}$ and define:
$\mathbb{S}:=M\left(\bigcup_{x \in \mathbb{R}^{D}} \mathbb{S}_{x}\right)$, where $\mathbb{S}_{x}:=\left\{\left.J \in \mathbb{I}_{\mathbb{P}}|x \in J \wedge| f\right|_{\Lambda J, r}=\max _{\substack{I \in \mathbb{I}_{\mathbb{P}} \\ x \in I}}|f|_{\Lambda I, r}\right\}$.

By construction, $\mathbb{S} \in \mathbb{X}$ and $\mathbb{S} \subset \mathbb{I}_{\mathbb{P}} \subset \mathbb{I}_{\alpha}$. Most importantly, we have:

$$
\sum_{P \in \mathbb{P}}|f|_{\Lambda I_{P}, r} \chi_{E_{P}}(x) \leq \max _{\substack{I \in \mathbb{I} \\ x \in I}}|f|_{\Lambda I, r}=\sum_{I \in \mathbb{S}}|f|_{\Lambda I, r} \chi_{I}(x), \quad \forall x \in \mathbb{R}^{D}
$$

Claim ($\lesssim n$-decay stack sparse dominance).
Given $a \lesssim n$-decay stack $\mathbb{P} \subset \mathbb{P}_{n, \alpha}$, we can construct $a \lesssim n$-carleson collection $\mathbb{S} \subset \mathbb{I}_{\mathbb{P}} \subset \mathbb{I}_{\alpha}$ such that:

$$
\sum_{P \in \mathbb{P}}|f|_{\Lambda I_{P}, r} \chi_{E_{P}} \leq \sum_{I \in \mathbb{S}}|f|_{\Lambda I, r} \chi_{I}, \quad \forall r \in[1, \infty)
$$

Proof ($\lesssim n$-decay stack sparse dominance). Following our plan, we apply antichain sparse dominance on \mathbb{P}_{k}^{j}. As a result, we have $\mathbb{S}_{k}^{j} \in \mathbb{X}$ satisfying $\mathbb{S}_{k}^{j} \subset \mathbb{I}_{\mathbb{P}_{k}^{j}}=\mathbb{M}_{\mathbb{P}, k}^{j}$ and the following relation:

$$
\sum_{P \in \mathbb{P}_{k}^{j}}|f|_{\Lambda I_{P}, r} \chi_{E_{P}} \leq \sum_{I \in \mathbb{S}_{k}^{j}}|f|_{\Lambda I, r} \chi_{I}, \quad \forall r \in[1, \infty)
$$

We now sum over j, k and have:

$$
\sum_{P \in \mathbb{P}}|f|_{\Lambda I_{P}, r} \chi_{E_{P}} \leq \sum_{I \in \mathbb{S}}|f|_{\Lambda I, r} \chi_{I}, \quad \forall r \in[1, \infty), \quad \text { where } \mathbb{S}:=\bigsqcup_{j, k} \mathbb{S}_{k}^{j}
$$

The rest is an easy verification of the Carleson packing condition:

$$
\forall J \in \mathbb{D}, \sum_{\substack{I \in \mathbb{S} \\ I \subset J}}|I| \leq \sum_{\substack{I \in \mathbb{I}_{\mathbb{P}} \\ I \subset J}}|I| \lesssim n|J| .
$$

Proof (Sparse dominance). For the general case, we start by constructing $p(n)$-carleson collection $\mathbb{S}_{\alpha} \subset \mathbb{I}_{\alpha}$ such that:

$$
\sum_{P \in \mathbb{P}^{(\alpha)}}|f|_{\Lambda I_{P}, r} \chi_{E_{P}} \leq \sum_{I \in \mathbb{S}_{\alpha}}|f|_{\Lambda I, r} \chi_{I}, \quad \forall r \in[1, \infty), \alpha \in \mathbb{N}
$$

Again, summing over $\alpha \in \mathbb{N}$ yields:

$$
\sum_{P \in \mathbb{P}}|f|_{\Lambda I_{P}, r} \chi_{E_{P}} \leq \sum_{I \in \mathbb{S}}|f|_{\Lambda I, r} \chi_{I}, \quad \forall r \in[1, \infty), \quad \text { where } \mathbb{S}:=\bigsqcup_{\alpha \in \mathbb{N}} \mathbb{S}_{\alpha}
$$

The rest is to show the Carleson packing condition. Given $J \in \mathbb{S}$, we set
$\alpha_{0} \in \mathbb{N}$ such that $J \in \mathbb{S}_{\alpha_{0}}$. As we expand the following expression:

$$
\left.\begin{array}{rl}
\sum_{\substack{I \in S \\
I \subset J}}|I| & =\sum_{\substack{I \in \mathbb{S}_{\alpha} \\
I \subset J}}|I|+\sum_{\alpha>\alpha_{0}} \sum_{\substack{I \in \mathbb{S}_{\alpha} \\
I \subset J}}|I| \\
& \lesssim p(n)|J|+\sum_{\alpha>\alpha_{0}} \sum_{\substack{\prime \\
J^{\prime} \in \mathbb{A}_{\alpha}}} \sum_{I \in \mathbb{S}_{\alpha}}|I| \\
& \lesssim p(n)|J|+\sum_{\alpha>\alpha_{0}} \sum_{\substack{J^{\prime} \in \mathbb{A}_{\alpha} \\
J^{\prime} \subset J}} p(n)\left|J^{\prime}\right|
\end{array}\right\}
$$

7.3 Density Extraction

Again we split the proof into three parts:
Claim (Anti-chain density extraction).
Given $\mathbb{P} \subset \mathbb{P}_{n, \alpha}$ be anti-chain, $P^{\prime} \in \tilde{\mathbb{D}}$, and $r \in(1, \infty)$, we have:

$$
\left\{\begin{array}{l}
\left\|C_{\mathbb{P}_{P^{\prime}, \geq}}\right\|_{L^{r^{\prime}}}<\mu\left(\bigcup \mathbb{I}_{\mathbb{P}_{P^{\prime}}, \geq}\right)^{1 / r^{\prime}} \\
\left\|C_{\mathbb{P}_{P^{\prime},<}}\right\|_{L^{r^{\prime}}} \\
\vdots
\end{array} \bigcup_{r} \mu\left(\mathbb{P}_{\mathbb{P}_{P^{\prime}},<}\right)^{1 / r^{\prime}} 2^{-n / r^{\prime}}(1+\eta)^{(d D+\epsilon) / r^{\prime}} .\right.
$$

Proof (Anti-chain density extraction). The first relation is obvious since for any anti-chain $\mathbb{P}^{\prime} \subset \tilde{\mathbb{D}}$, we always have:

$$
\because \bigsqcup_{P \in \mathbb{P}^{\prime}} E_{P} \subset \bigcup \mathbb{I}_{\mathbb{P}^{\prime}} \quad \therefore\left\{\begin{array}{l}
\sum_{P \in \mathbb{P}^{\prime}} \mu\left(E_{P}\right) \leq \mu\left(\bigcup \mathbb{I}_{\mathbb{P}^{\prime}}\right) \\
\sum_{P \in \mathbb{P}^{\prime}} \chi_{E_{P}} \leq \chi_{\cup \mathbb{P}_{P^{\prime}}},
\end{array}\right.
$$

Interpolation yields:

$$
\left\|C_{\mathbb{P}^{\prime}}\right\|_{L^{r^{\prime}}} \leq \mu\left(\bigcup \mathbb{I}_{\mathbb{P}^{\prime}}\right)^{1 / r^{\prime}}
$$

Clearly, $\mathbb{P}_{P^{\prime}, \geq}$ is still an anti-chain and, thus, the result. The harder part is to actually extract density factor $2^{-n}(1+\eta)^{d D+\epsilon}$ from the L^{1} estimate of $C_{\mathbb{P}_{P^{\prime}},<}$. The rest just follows from interpolation. The idea is to look into the definition of $\mathcal{A}_{\Pi_{\alpha}}$ see what kind of control benefits our purpose:

$$
\forall P \in \mathbb{P}, \mathcal{A}_{\Pi_{\alpha}}(P)=\mathcal{A}_{\Pi_{n, \alpha}}(P):=\sup _{\substack{\pi \in \Pi_{n, \alpha} \\ I_{P} \subset I_{\pi}}} \mathcal{A}(\pi)\langle\Delta(P, \pi)\rangle^{\epsilon} \in\left(2^{-n}, 2^{1-n}\right] .
$$

Suppose we have good control on $\Delta(P, \pi)$, then we automatically get a collection of roughly 2^{-n}-dense tiles from $\Pi_{n, \alpha}$-relative references. If we can further recover $E_{P} s$ with $E_{\pi} s$, we can bound the collection with a factor from density and distance. As a result, we shall analyze $C_{\mathbb{P}_{P^{\prime}},<}$ with as high temporal resolution as possible, so that we only need the coarsest spectral control to complete the estimate. We start by setting up the resolution we analyze on:

$$
\mathbb{J}:=M\left\{J \in \mathbb{I}_{\mathbb{P}_{P^{\prime},<}^{\subset}}^{\subset} \mid \forall P \in \mathbb{P}_{P^{\prime},<}, \quad I_{P} \not \subset J\right\} \in \mathbb{X}
$$

Since, by construction, $\bigcup \mathbb{I}_{\mathbb{P}_{P^{\prime},<}}=\bigsqcup \mathbb{J}$, our goal reduces to the following:

$$
\forall J \in \mathbb{J}, \sum_{P \in \mathbb{P}_{P^{\prime},<}} \mu\left(E_{P} \cap J\right)=\sum_{\substack{P \in \mathbb{P}_{P^{\prime}},<\\ J \subsetneq I_{P}}} \mu\left(E_{P} \cap J\right) \lesssim ?
$$

$$
\exists P_{J} \in \mathbb{P}_{P^{\prime},<} \text { s.t. } I_{P_{J}} \subset \widehat{J} \subset I_{P}, \quad \text { and, thus }, \quad \widehat{J} \in \mathbb{I}_{\alpha} .
$$

To recover $E_{P} \cap J$ while temporally locked onto $\widehat{J} \in \mathbb{I}_{\alpha}$, we find:

$$
\exists!\pi_{J, P} \in \Pi_{n, \alpha} \text { s.t. } I_{\pi_{J, P}}=\widehat{J} \wedge \pi_{J, P} \unlhd P
$$

Indeed, we verify that:

$$
\because \omega_{\pi_{J, P}} \supset \omega_{P} \quad \therefore E_{P} \cap J \subset E_{P} \cap \widehat{J} \subset E_{\pi_{J, P}}
$$

Moreover, by Δ-monotonicity, we have:

$$
\because \pi_{J, P} \unlhd P \lesssim<P^{\prime} \quad \therefore \Delta\left(\pi_{J, P}, P^{\prime}\right) \leq \Delta\left(P, P^{\prime}\right)<\eta, \text { i.e. } \pi_{J, P} \lesssim<P^{\prime}
$$

which tells us where to locate the needed reference with respect to P^{\prime}. On the other hand, to acquire density control, we need to quantify the distance between P_{J} and $\pi_{J, P}$. First, by Embedding Inequality, we see that:

$$
\Delta\left(P_{J}, \pi_{J, P}\right) \lesssim\left\|c_{\omega_{P_{J}}}-c_{\omega_{\pi_{J, P}}}\right\|_{I_{P_{J}}} \leq\left\|c_{\omega_{P_{J}}}-c_{\omega_{P^{\prime}}}\right\|_{I_{P_{J}}}+\left\|c_{\omega_{P^{\prime}}}-c_{\omega_{\pi_{J, P}}}\right\|_{I_{\pi_{J, P}}}
$$

The RHS can be controlled:

$$
\because P_{J}, \pi_{J, P} \lesssim<P^{\prime} \quad \therefore \Delta\left(P_{J}, P^{\prime}\right), \Delta\left(\pi_{J, P}, P^{\prime}\right)<\eta
$$

$$
\text { by proximity, }\left\|c_{\omega_{P_{J}}}-c_{\omega_{P^{\prime}}}\right\|_{I_{P_{J}}},\left\|c_{\omega_{P^{\prime}}}-c_{\omega_{\pi_{J, P}}}\right\|_{I_{\pi_{J, P}}} \lesssim 1+\eta
$$

In conclusion, we have: $\Delta\left(P_{J}, \pi_{J, P}\right) \lesssim 1+\eta$ and, thus,

$$
\begin{aligned}
\frac{\left|E_{\pi_{J, P}}\right|}{|\widehat{J}|}=\mathcal{A}\left(\pi_{J, P}\right) & \lesssim \mathcal{A}\left(\pi_{J, P}\right)\left\langle\Delta\left(P_{J}, \pi_{J, P}\right)\right\rangle^{\epsilon}(1+\eta)^{\epsilon} \\
& \leq \mathcal{A}_{\Pi_{n, \alpha}}\left(P_{J}\right)(1+\eta)^{\epsilon} \leq 2^{1-n}(1+\eta)^{\epsilon}
\end{aligned}
$$

Now, we shall sum over $P \in \mathbb{P}_{P^{\prime},<}$. To do so, we collect the needed references:

$$
\Pi_{J}:=\left\{\pi \in \Pi_{n, \alpha} \mid I_{\pi}=\widehat{J} \wedge \exists P \in \mathbb{P}_{P^{\prime},<} \text { s.t. } \pi \unlhd P\right\}
$$

By spectral packing constraint, we see that:

$$
\because \forall \pi \in \Pi_{j}, \Delta\left(\pi, P^{\prime}\right)<\eta \quad \therefore \# \Pi_{J} \lesssim(1+\eta)^{d D} .
$$

As a result, we have:

$$
\sum_{\substack{P \in \mathbb{P}_{P^{\prime},<}^{J \subsetneq I_{P}}}} \mu\left(E_{P} \cap J\right) \leq \sum_{\pi \in \Pi_{J}} \mu\left(E_{\pi}\right) \leq \# \Pi_{J} \cdot \sup _{\pi \in \Pi_{J}}\left|E_{\pi}\right| \lesssim 2^{-n}(1+\eta)^{d D+\epsilon}|J|
$$

Summing over $J \in \mathbb{J}$ completes the proof.
Claim ($\lesssim n$-decay stack density extraction).
Given $\mathbb{P} \subset \mathbb{P}_{n, \alpha}$ be $\lesssim n$-decay stack, $P^{\prime} \in \tilde{\mathbb{D}}$, and $r \in(1, \infty)$, we have:

$$
\left\{\begin{array}{l}
\left\|C_{\mathbb{P}_{P^{\prime}, \geq}}\right\|_{L^{r^{\prime}}} \underset{r}{\lesssim} n \mu\left(\bigcup \mathbb{I}_{\mathbb{P}_{P^{\prime}}, \geq}\right)^{1 / r^{\prime}} \\
\left\|C_{\mathbb{P}_{P^{\prime},<}}\right\|_{L^{r^{\prime}}} \underset{r}{\lesssim} n \mu\left(\bigcup \mathbb{I}_{\mathbb{P}_{P^{\prime},<}}\right)^{1 / r^{\prime}} 2^{-n / r^{\prime}}(1+\eta)^{(d D+\epsilon) / r^{\prime}}
\end{array}\right.
$$

Proof $\left(\lesssim n\right.$-decay stack density extraction). Since $\mathbb{P}_{P^{\prime}, \geq}$ and $\mathbb{P}_{P^{\prime},<}$ are still $\lesssim n$-decay stacks, we can apply the canonical decomposition. By previous claim, we now have:

$$
\forall j, k,\left\{\begin{array}{l}
\left\|C_{\mathbb{P}_{P^{\prime}, \geq, k}^{j}}\right\|_{L^{r^{\prime}}} \quad \underset{r}{\lesssim} \mu\left(\bigsqcup \mathbb{I}_{\mathbb{P}_{P^{\prime}, \geq, k}^{j}}\right)^{1 / r^{\prime}} \\
\left\|C_{\mathbb{P}_{P^{\prime},<, k}^{j}}\right\|_{L^{r^{\prime}}} \lesssim \mu\left(\bigsqcup \mathbb{I}_{r}{ }_{P_{P^{\prime},<, k}^{j}}\right)^{1 / r^{\prime}} 2^{-n / r^{\prime}}(1+\eta)^{(d D+\epsilon) / r^{\prime}}
\end{array}\right.
$$

As we sum over j, k, for \mathbb{P}^{\prime} be $\mathbb{P}_{P^{\prime}, \geq}$ or $\mathbb{P}_{P^{\prime},<,}$, we have:

$$
\left\|C_{\mathbb{P}^{\prime}}\right\|_{L^{r^{\prime}}} \leq \sum_{j, k}\left\|C_{\mathbb{P}_{k}^{\prime j}}\right\|_{L^{r^{\prime}}}
$$

We only need to check:

$$
\sum_{j, k} \mu\left(\bigsqcup \mathbb{I}_{\mathbb{P}_{k}^{\prime j}}\right)^{1 / r^{\prime}}=\sum_{j, k} \mu\left(\bigsqcup \mathbb{M}_{\mathbb{P}^{\prime}, k}^{j}\right) \stackrel{?}{\lesssim} n \mu\left(\bigcup \mathbb{I}_{\mathbb{P}^{\prime}}\right)^{1 / r^{\prime}}
$$

To do so, we first represent $\bigcup \mathbb{I}_{\mathbb{P}^{\prime}}$ with a carpet:

$$
\bigcup \mathbb{I}_{\mathbb{P}^{\prime}}=\bigsqcup \mathbb{J}, \quad \text { where } \mathbb{J}:=M \mathbb{I}_{\mathbb{P}^{\prime}} \in \mathbb{X}
$$

By the $\underset{\frac{1}{2^{\hbar}-1}}{\prec}$-chain structure on $\mathbb{M}_{\mathbb{P}^{\prime}, k}^{j}$:

$$
\cdots \underset{\frac{1}{2^{\kappa}-1}}{\prec} \mathbb{M}_{\mathbb{P}^{\prime}, k}^{j} \underset{\frac{1}{2^{\kappa}-1}}{\prec} \mathbb{M}_{\mathbb{P}^{\prime}, k-1}^{j} \underset{\frac{1}{2^{\kappa}-1}}{\prec} \cdots \underset{\frac{1}{2^{\kappa}-1}}{\prec} \mathbb{M}_{\mathbb{P}^{\prime}, 2}^{j} \underset{\frac{1}{2^{\kappa}-1}}{\prec} \mathbb{M}_{\mathbb{P}^{\prime}, 1}^{j} \prec \mathbb{J},
$$

we have:

$$
\forall J \in \mathbb{J}, \quad \mu\left(J \cap \bigsqcup \mathbb{M}_{\mathbb{P}^{\prime}, k}^{j}\right)=\sum_{\substack{I \in \mathbb{M}_{\mathbb{P}^{\prime}, k}^{j} \\ I \subset J}}|I| \leq\left(2^{\kappa}-1\right)^{1-k}|J|
$$

After summing over $J \in \mathbb{J}$, a direct computation shows that:

$$
\begin{aligned}
\sum_{j, k} \mu\left(\bigsqcup \mathbb{I}_{\mathbb{P}_{k}^{\prime j}}\right)^{1 / r^{\prime}} & =\sum_{j=1}^{s_{\Delta}} \sum_{k \in \mathbb{N}} \mu\left(\bigsqcup \mathbb{M}_{\mathbb{P}^{\prime}, k}^{j}\right)^{1 / r^{\prime}} \\
& \leq \sum_{j=1}^{s_{\Delta}} \sum_{k \in \mathbb{N}}\left(2^{\kappa}-1\right)^{\frac{1-k}{r^{\prime}}} \mu(\bigsqcup \mathbb{J})^{1 / r^{\prime}} \\
& \underset{r}{\delta} \sum_{j=1}^{s_{\Delta}} \mu(\bigsqcup \mathbb{J})^{1 / r^{\prime}} \lesssim n \mu\left(\bigcup \mathbb{I}_{\mathbb{P}^{\prime}}\right)^{1 / r^{\prime}}
\end{aligned}
$$

which completes the proof.
Proof (Density extraction). For the same reason in $\lesssim n$-decay stack density extraction, we only need to verify the following sum:

$$
\sum_{\alpha \in \mathbb{N}} \mu\left(\bigcup \mathbb{I}_{\mathbb{P}^{\prime}(\alpha)}\right)^{1 / r^{\prime}} \stackrel{?}{\lesssim}\left|2 \tilde{I}_{P^{\prime}}\right|^{1 / r^{\prime}}
$$

where \mathbb{P}^{\prime} can be $\mathbb{P}_{P^{\prime}, \geq}$ or $\mathbb{P}_{P^{\prime},<}$. We first recall that $\mathbb{I}_{\mathbb{P}^{\prime}(\alpha)} \subset \mathbb{I}_{\alpha}:=\mathbb{A}_{\alpha-1}^{\subset} \backslash \mathbb{A}_{\alpha}^{\subset}$. As we replace every layer with carpets:

$$
\mathbb{J}_{\alpha}:=M \mathbb{I}_{\mathbb{P}^{\prime}(\alpha)} \in \mathbb{X} \quad \text { and } \mathbb{J}:=M\left\{I \in \mathbb{D} \mid I \subset 2 \tilde{I}_{P^{\prime}}\right\} \in \mathbb{X}
$$

we reduce to show that:

$$
\sum_{\alpha \in \mathbb{N}} \mu\left(\bigsqcup \mathbb{J}_{\alpha}\right)^{1 / r^{\prime}} \leq \sum_{J \in \mathbb{J}} \sum_{\alpha \in \mathbb{N}} \mu\left(J \cap \bigsqcup \mathbb{J}_{\alpha}\right)^{1 / r^{\prime}} \stackrel{?}{\lesssim} \sum_{J \in \mathbb{J}}|J|^{1 / r^{\prime}} \lesssim\left|2 \tilde{I}_{P^{\prime}}\right|^{1 / r^{\prime}}
$$

We now fix $J \in \mathbb{J}$ and find the $\alpha_{J} \in \mathbb{N}$ such that $J \in \mathbb{I}_{\alpha_{J}}$. Since $\mathbb{J}_{\alpha} \prec \mathbb{J}$ and $\mathbb{J}_{\alpha} \prec \mathbb{A}_{\alpha-1}$ for all $\alpha \in \mathbb{N}$, the δ-covering relation on \mathbb{A}_{α} s implies:

$$
\mu\left(J \cap \bigsqcup \mathbb{J}_{\alpha}\right)=\sum_{\substack{I \in \mathbb{J}_{\alpha} \\ I \subset J}}|I| \begin{cases}=0 & \alpha-\alpha_{J}<0 \\ \leq|J| & \alpha-\alpha_{J}=0 \\ \leq \delta^{\alpha-\alpha_{J}-1}|J| & \alpha-\alpha_{J}>0 .\end{cases}
$$

Summing over $\alpha \in \mathbb{N}$ yields:

$$
\begin{aligned}
& \sum_{\alpha \in \mathbb{N}} \mu\left(J \cap \bigsqcup \mathbb{J}_{\alpha}\right)^{1 / r^{\prime}}=\sum_{\alpha \geq \alpha_{J}}\left(\sum_{\substack{I \in \mathbb{J}_{\alpha} \\
I \subset J}}|I|\right)^{1 / r^{\prime}} \\
\leq & |J|^{1 / r^{\prime}}+\sum_{\alpha>\alpha_{J}} \delta^{\frac{\alpha-\alpha_{J}-1}{r^{\prime}}}|J|^{1 / r^{\prime}} \underset{r}{\lesssim}|J|^{1 / r^{\prime}} .
\end{aligned}
$$

Summing over $J \in \mathbb{J}$ completes the proof.

8 TT* - T*T Arguments for Cluster Parts

We recall our settings: After Eiffel Tower construction, we choose $l \lesssim m=n$ for our decomposition scheme. In previous section, we have dealt with all the sparse parts. The rest is to control all the cluster parts.

8.1 Reductions

We build our arguments from small structure towards large structure, and we do so in a way to exploit both the Pointwise control and the Orthogonality structure of the L^{2} settings. We lay out our plan:

1. Encode density factor into the pointwise control on a single cluster.
2. Control the continuity/oscillation of the adjoint of a single cluster.
3. Extract apartness through orthogonality between a pair of clusters.
4. Exploit δ-covering relation to control interaction across $\mathbb{A}_{\alpha} \mathrm{s}$.
5. Organize clusters into open $2^{l \kappa}$-apart 1-stacks.
6. $T T^{*}-T^{*} T$ arguments for L^{2} estimate to extract density factor.
7. Modify $T T^{*}-T^{*} T$ arguments for extrapolation.

With a plan in mind, we introduce some terminology and basic properties. We start by observe the kernel of a operator. Given $\mathbb{P} \subset \tilde{\mathbb{D}}$, we can collapse everything except oscillation into the kernel:

$$
\mathfrak{L}_{\mathbb{P}} f(\cdot)=\int K_{\mathbb{P}}(\cdot, y) e^{i q_{(\cdot)}(y)} f(y) d y, \quad \text { where } \quad K_{\mathbb{P}}(x, y):=\sum_{P \in \mathbb{P}} K_{s_{P}}(x, y) \chi_{E_{P}}(x)
$$

For simplicity, we also denote $E_{\mathbb{P}}:=\bigcup_{P \in \mathbb{P}} E_{P}$ the support of the operator. Naturally, we expect some structures from \mathbb{P} will be reflected in $K_{\mathbb{P}}$:

Properties 8.1.1 (Kernel structure of a convex set). Given $\mathbb{P} \subset \tilde{\mathbb{D}}$ convex, there are simple measurable functions $\underline{s}_{\mathbb{P}(\cdot)}$ and $\bar{s}_{\mathbb{P}(\cdot)}$ from \mathbb{R}^{D} to $\mathbb{Z} \sqcup\{-\infty, \infty\}$ such that we have the following kernel expression:

$$
K_{\mathbb{P}}(x, y)=\chi_{E_{\mathbb{P}}}(x) \cdot \sum_{s=\underline{s}_{\mathbb{P}_{x}}}^{\bar{s}_{\mathbb{P} x}} K_{s}(x, y)=\sum_{s=\underline{s}_{\mathbb{P}_{x}}}^{\bar{s}_{\mathbb{P} x}} K_{s}(x, y)
$$

Remark. This is what we have said the consecutive scaling. Since a cluster is convex, it gives us hints to control a cluster with \mathfrak{T}.

Proof. For fix $x \in E_{\mathbb{P}}$, we first verify the consecutive scaling. Given $P_{j} \in \mathbb{P}$ with $s_{P_{0}}<s_{P_{1}}$ such that $x \in E_{P_{j}}$, we have:

$$
\because\left\{\begin{array}{l}
q_{x} \in \omega_{P_{1}} \subset \omega_{P_{0}} \\
x \in I_{P_{0}} \subset I_{P_{1}}
\end{array} \quad \therefore P_{0} \triangleleft P_{1} .\right.
$$

For any $s \in \mathbb{Z}$ such that $s_{P_{0}}<s<s_{P_{1}}$, we construct a tile as such:

$$
\exists!I \in \mathbb{D}_{s} \text { s.t. } x \in I \text { and, then, } \exists!\omega \in \mathbb{D}_{I}^{*} \text { s.t. } q_{x} \in \omega \text {. }
$$

We define $P:=I \times \omega$ and verify that:

$$
\because\left\{\begin{array}{l}
x \in E_{P} \\
I_{P_{0}} \subsetneq I \subsetneq I_{P_{1}} \quad \therefore P_{0} \triangleleft P \triangleleft P_{1} \\
\omega_{P_{0}} \supsetneq \omega \supsetneq \omega_{P_{1}}
\end{array}\right.
$$

By convexity, $P \in \mathbb{P}$ and thus verify the consecutive scaling. We now explicitly define $\underline{s}_{\mathbb{P} x}$ and $\bar{s}_{\mathbb{P} x}$ for $x \in E_{\mathbb{P}}$:

$$
\left\{\begin{array}{l}
\underline{s}_{\mathbb{P} x}:=\min \left\{s_{P} \in \mathbb{Z} \mid P \in \mathbb{P} \wedge x \in E_{P}\right\} \\
\bar{s}_{\mathbb{P} x}:=\max \left\{s_{P} \in \mathbb{Z} \mid P \in \mathbb{P} \wedge x \in E_{P}\right\} .
\end{array}\right.
$$

For $x \notin E_{\mathbb{P}}$, we assign $\min \varnothing:=\infty$ and $\max \varnothing:=-\infty$ as our convention so that the definition conveniently gives us empty sum. Lastly, since $q_{(\cdot)}, \underline{s}_{(\cdot)}$, and $\bar{s}_{(\cdot)}$ are simple measurable, $\underline{s}_{\mathbb{P}(\cdot)}$ and $\bar{s}_{\mathbb{P}(\cdot)}$ must also be by construction.

Now, we demonstrate the benefit we pick cluster as our building block. Given $\mathfrak{p} \in \tilde{\mathbb{D}}$, we set $q_{\mathfrak{p}}:=c_{\omega_{\mathfrak{p}}}$ and decompose the oscillation term:

$$
e^{i q_{x}(y)}=e^{i\left(q_{x}-q_{\mathfrak{p}}\right)(x)}\left\{\begin{array}{c}
e^{\left.i\left(q_{\mathfrak{p}}-q_{x}\right)\right|_{y} ^{x}}-1 \\
+1
\end{array}\right\} e^{i q_{\mathfrak{p}}(y)}
$$

We view the first term as an error correction and the second term as the main oscillation from \mathfrak{p}. To control the error term, we use an elementary inequality:

$$
\left|e^{i \text { radian }}-1\right|=\mid \text { displacement }|\leq| \text { radian } \mid
$$

and, then, bound with a local oscillation on polynomial. As an important example, we have the following:

Properties 8.1.2 (Error correction of the oscillation). Given $P, \mathfrak{p} \in \tilde{\mathbb{D}}$ such that $\lambda P \triangleleft \mathfrak{p}$, we have:

$$
(x, y) \in E_{P} \times \Lambda I_{P} \Longrightarrow\left|e^{\left.i\left(q_{\mathfrak{p}}-q_{x}\right)\right|_{y} ^{x}}-1\right| \leq\left.\left|\left(q_{\mathfrak{p}}-q_{x}\right)\right|_{y}^{x}\right|_{\Lambda, \lambda, \kappa, D, d} \underset{\ell_{I_{P}}}{\lesssim}
$$

Proof. Fix $(x, y) \in E_{P} \times \Lambda I_{P}$, we define $I_{x, y}$ the smallest cube containing x, y. Embedding Inequality implies:

$$
\begin{aligned}
&\left|e^{\left.i\left(q_{\mathfrak{p}}-q_{x}\right)\right|_{y} ^{x}}-1\right| \leq\left|\left(q_{\mathfrak{p}}-q_{x}\right)\right|_{y}^{x} \mid \leq\left\|q_{\mathfrak{p}}-q_{x}\right\|_{I_{x, y}} \\
& \underset{D, d}{\lesssim} \frac{\ell_{I_{x, y}}}{\ell_{\Lambda I_{P}}}\left\|q_{\mathfrak{p}}-q_{x}\right\|_{\Lambda I_{P}} \underset{\Lambda, \kappa, D, d}{\lesssim} \frac{\|x-y\|}{\ell_{I_{P}}}\left\|q_{\mathfrak{p}}-q_{x}\right\|_{I_{P}} .
\end{aligned}
$$

Since $\lambda P \triangleleft \mathfrak{p}$, we have:

$$
\left\|q_{\mathfrak{p}}-q_{x}\right\|_{I_{P}} \leq\left\|q_{\mathfrak{p}}-q_{P}\right\|_{I_{P}}+\left\|q_{P}-q_{x}\right\|_{I_{P}} \underset{\kappa}{\lesssim} \lambda+1
$$

which completes the proof.
The above-mentioned properties are the rigorous justification for choosing cluster as our building block. In short, we expect that a cluster should:

- Behave like \mathfrak{T}.
- Temporally localized on $I_{\mathfrak{p}}$.
- Spectrally modulated to $e^{i q_{\mathfrak{p}}}$.

From now on, we fix a (open) cluster $\mathfrak{P} \in \mathbb{P}_{n, \alpha}$ at $\mathfrak{p} \in \mathbb{P}_{n, \alpha}$ and investigate the inner structure of the corresponding operator.

Definition 8.1.3 (Inner structure of a cluster). We introduce the following notions:

- Modulation operators: $\left\{\begin{aligned} \mu_{\mathfrak{p}} f(y) & :=e^{i q_{\mathfrak{p}}(y)} f(y) \\ \mu f(x) & :=e^{i q_{x}(x)} f(x) .\end{aligned}\right.$
- Model operators:

$$
\Omega_{\mathfrak{P}} f(x):=\left\{\begin{aligned}
\Phi_{\mathfrak{P}} f(x):= & \int K_{\mathfrak{P}}(x, y)\left(e^{\left.i\left(q_{\mathfrak{p}}-q_{x}\right)\right|_{y} ^{x}}-1\right) f(y) d y \\
& + \\
\Psi_{\mathfrak{P}} f(x):= & \int K_{\mathfrak{P}}(x, y) f(y) d y
\end{aligned}\right.
$$

A direct consequence is that: $\mathfrak{L}_{\mathfrak{P}}=\mu \mu_{\mathfrak{p}}^{*} \Omega_{\mathfrak{P}} \mu_{\mathfrak{p}}=\mu \mu_{\mathfrak{p}}^{*} \Phi_{\mathfrak{P}} \mu_{\mathfrak{p}}+\mu \mu_{\mathfrak{p}}^{*} \Psi_{\mathfrak{P}} \mu_{\mathfrak{p}}$.
As a result, the boundedness of $\mathfrak{L}_{\mathfrak{F}}$ is completely governed by $\Phi_{\mathfrak{P}}$ and $\Psi_{\mathfrak{P}}$. One the other hand, the spectral behavior of $\mathfrak{L}_{\mathfrak{P}}$ hides inside the modulation. We need to consider the adjoint to flip it outside and extract the separation factor. In the next part, we use Multi-resolution Analysis to treat the pointwise control of the operator.

8.2 Pointwise Control on Cluster

The idea is to work under suitable resolution and preserve the density information encoded in $E_{P} \mathrm{~s}$. To proceed, we consider the following:

Definition 8.2.1 (\mathfrak{P}-fine setting).
We construct the following carpet:

$$
\mathbb{J}_{\mathfrak{P}}:=M\left\{J \in \mathbb{I}_{\mathfrak{P}}^{\subset} \mid \forall P \in \mathfrak{P}, I_{P} \not \subset J\right\} \in \mathbb{X}
$$

so that $\bigcup \mathbb{I}_{\mathfrak{P}}=\bigsqcup \mathbb{J}_{\mathfrak{P}}$. Additionally, for each $J \in \mathbb{J}_{\mathfrak{F}}$, we assign references:

$$
\Pi_{J}:=\left\{\pi \in \Pi_{\alpha} \mid I_{\pi}=\widehat{J} \wedge \exists P \in \mathfrak{P} \text { s.t. } \pi \unlhd P\right\}
$$

and the corresponding set:

$$
E_{J}:=J \cap \bigcup_{P \in \mathfrak{P}} E_{P} .
$$

We expect that under suitable assumption, $E_{J} \mathrm{~S}$ would carry some properties from $E_{P} \mathrm{~s}$. Indeed, if we consider a cluster, we have the following:

Properties 8.2.2 (Density preservation).
The \mathfrak{P}-fine setting satisfies:

$$
\frac{\left|E_{J}\right|}{|J|} \lesssim 2^{-n}, \quad \forall J \in \mathbb{J}_{\mathfrak{P}} .
$$

Proof. Fix $J \in \mathbb{J}_{\mathfrak{P}}$, we follow mostly anti-chain density extraction:

- By maximality, there is $P_{J} \in \mathfrak{P} \subset \mathbb{P}_{n, \alpha}$ such that $I_{P_{J}} \subset \widehat{J}$.
- For any $\pi \in \Pi_{J}, \pi$ should be relatively close to $\mathfrak{p} \in \mathbb{P}_{n, \alpha}$ since:

$$
\exists P \in \mathfrak{P}, \text { s.t. } \begin{cases}\pi=P & \text { and, thus, } \quad \lambda \pi \triangleleft \mathfrak{p} \\ \pi \triangleleft P & \text { and, thus, } \quad \lambda \pi \triangleleft \lambda P \triangleleft \mathfrak{p} .\end{cases}
$$

As a result, by spectral packing constraint, $\# \Pi_{J} \underset{\lambda, \kappa, D, d}{\lesssim} 1$.

- On the other hand, since $\lambda P_{J} \triangleleft \mathfrak{p}$, Embedding Inequality and triangle inequality implies:

$$
\Delta\left(P_{J}, \pi\right) \leq\left\|q_{P_{J}}-q_{\mathfrak{p}}\right\|_{\tilde{I}_{P_{J}}}+\left\|q_{\mathfrak{p}}-q_{\pi}\right\|_{\tilde{\tilde{J}}} \underset{\lambda, \kappa, D, d}{\lesssim} 1 .
$$

- Through the definition of $\mathcal{A}_{\Pi_{n, \alpha}}$, we have density control:

$$
\mathcal{A}(\pi) \underset{\epsilon, \lambda, \kappa, D, d}{\lesssim} \mathcal{A}(\pi)\left\langle\Delta\left(P_{J}, \pi\right)\right\rangle^{\epsilon} \leq \mathcal{A}_{\Pi_{\alpha}}\left(P_{J}\right)=\mathcal{A}_{\Pi_{n, \alpha}}\left(P_{J}\right) \lesssim 2^{-n}
$$

- Π_{J} actually recovers E_{J} in the following sense:

$$
\begin{aligned}
& \because E_{J}=J \cap \bigcup_{\substack{P \in \mathfrak{P} \\
\widehat{J} \subset I_{P}}} E_{P} \subset \bigsqcup_{\pi \in \Pi_{J}} E_{\pi} \\
& \therefore \frac{\left|E_{J}\right|}{|J|} \lesssim \sum_{\pi \in \Pi_{J}} \frac{\left|E_{\pi}\right|}{|\widehat{J}|} \leq \# \Pi_{J} \cdot \sup _{\pi \in \Pi_{J}} \mathcal{A}(\pi) \underset{\epsilon, \lambda, \kappa, D, d}{\lesssim} 2^{-n} .
\end{aligned}
$$

Now, we proceed to estimate the contribution of error correction in $\Phi_{\mathfrak{P}} f$ and bound $\Psi_{\mathfrak{P}} f$ with $\mathfrak{T} f$.

Lemma 8.2.3 (Cluster estimate).

Both Model Operators have pointwise control:

$$
\left\{\begin{array}{l}
\left|\Phi_{\mathfrak{F}} f\right| \lesssim \sum_{J \in \mathbb{J}_{\mathfrak{P}}}\left(\inf _{J} M f\right) \chi_{E_{J}} \\
\left|\Psi_{\mathfrak{P}} f\right| \lesssim \sum_{J \in \mathbb{J}_{\mathfrak{P}}}\left(\inf _{J} \mathfrak{T} f+\inf _{J} M f\right) \chi_{E_{J}}
\end{array}\right.
$$

Consequently, we have:

$$
\left|\mathfrak{L}_{\mathfrak{P}} f\right| \lesssim \sum_{J \in \mathbb{J}_{\mathfrak{P}}}\left(\inf _{J} \mathfrak{T} \mu_{\mathfrak{p}} f+\inf _{J} M f\right) \chi_{E_{J}}
$$

Remark. Since E_{J} s preserve density, a direct consequence is:

$$
\begin{aligned}
\left\|\mathfrak{L}_{\mathfrak{P}} f\right\|_{L^{p}} & \underset{p}{\lesssim}\left(\sum_{J \in \mathbb{J}_{\mathfrak{P}}}\left|\inf _{J} \mathfrak{T} \mu_{\mathfrak{p}} f+\inf _{J} M f\right|^{p}\left|E_{J}\right|\right)^{1 / p} \\
& \lesssim\left(2^{-n} \sum_{J \in \mathbb{J}_{\mathfrak{P}}}\left|\inf _{J} \mathfrak{T} \mu_{\mathfrak{p}} f+\inf _{J} M f\right|^{p}|J|\right)^{1 / p} \\
& \leq 2^{-n / p}\left\|\mathfrak{T} \mu_{\mathfrak{p}} f+M f\right\|_{L^{p}\left(I_{\mathfrak{p}}\right)} .
\end{aligned}
$$

Proof. We verify the control for each $J \in \mathbb{J}_{\mathfrak{P}}$. Starting with $\Phi_{\mathfrak{P}}$, since \mathfrak{P} is a cluster at \mathfrak{p}, we have $P \in \mathfrak{P} \Longrightarrow \lambda P \triangleleft \mathfrak{p}$. Error correction of the oscillation implies the following control:

$$
\forall P \in \mathfrak{P},\left((x, y) \in E_{P} \times \tilde{I}_{P} \Longrightarrow\left|e^{\left.i\left(q_{\mathfrak{p}}-q_{x}\right)\right|_{y} ^{x}}-1\right| \lesssim \frac{\|x-y\|}{\ell_{I_{P}}}\right)
$$

Yet, with a change of perspective, we can choose the best bound for each $x \in E_{J}$. That is, we consider the following collection:

$$
\mathfrak{P}_{x}:=\left\{P \in \mathfrak{P} \mid x \in E_{P}\right\} .
$$

Since for each scale $s \in \mathbb{Z}$ there is unique $P \in \tilde{\mathbb{D}}$ such that $\left(x, q_{x}\right) \in I_{P} \times \omega_{P}$ and $s_{P}=s$, we see that:

$$
\underline{s}_{\mathfrak{P} x} \leq s \leq \bar{s}_{\mathfrak{P} x} \Longrightarrow \exists!P_{s} \in \mathfrak{P}_{x} \text { s.t. } s_{P_{s}}=s
$$

We, therefore use the following estimate:

$$
\forall y \in \tilde{I}_{P_{\bar{s}_{\mathfrak{F}} x}},\left|e^{\left.i\left(q_{\mathfrak{p}}-q_{x}\right)\right|_{y} ^{x}}-1\right| \lesssim \frac{\|x-y\|}{\ell_{I_{P_{\bar{s}} x}}}=2^{-\bar{s}_{\mathfrak{F} x} \kappa}\|x-y\|
$$

As a result, since:

$$
\forall P \in \mathfrak{P}_{x}, J \subsetneq I_{P} \subset I_{P_{x}},
$$

the estimate can be used universally when dealing with the collection \mathfrak{P}_{x}. Combined with support and size control on kernel K, we have:

$$
\begin{aligned}
\left|\Phi_{\mathfrak{P}} f(x)\right| & \leq \sum_{P \in \mathfrak{P}_{x}} \int\left|K_{s_{P}}(x, y)\right| \cdot\left|e^{\left.i\left(q_{\mathfrak{p}}-q_{x}\right)\right|_{y} ^{x}}-1\right| \cdot|f(y)| d y \\
& \lesssim \sum_{s=\underline{s}_{\mathfrak{F} x}}^{\bar{s}_{\mathfrak{F} x}} \int \frac{\chi_{\tilde{I}_{P_{s}}}(y)}{\left|I_{P_{s}}\right|} \frac{\|x-y\| \|^{\ell_{I_{P_{s}}}}}{\ell_{I_{P_{\mathfrak{S}_{\mathfrak{F}} x}}}|f(y)| d y} \\
& \lesssim \sum_{s=\underline{s}_{\mathfrak{F} x}}^{\bar{s}_{\mathfrak{F} x}} 2^{\left(s-\bar{s}_{\mathfrak{P} x}\right) \kappa} \cdot \sup _{\substack{P \in \mathfrak{F} \\
J \subsetneq I_{P}}} f_{\tilde{I}_{P}}|f| d \mu \lesssim \inf _{J} M f .
\end{aligned}
$$

This completes the estimate for $\Phi_{\mathfrak{P}}$. For $\Psi_{\mathfrak{P}}$, we use the following principle:

Upper bound on $J \leq$ Lower bound on $J+$ Oscillation on J.

Thus, we shall first measures the oscillation: Given arbitrary $(x, \xi) \in E_{J} \times J$,

$$
\left|\Psi_{\mathfrak{P}}(x)-\int \sum_{s=\underline{s}_{\mathfrak{F} x}}^{\bar{s}_{\mathfrak{F} x}} K_{s}(\xi, y) f(y) d y\right| \leq \sum_{\substack{P \in \mathfrak{P}_{x} \\\left(J \subsetneq I_{P}\right)}} \int\left|K_{s_{P}}(\cdot, y)\right|_{\xi}^{x}|\cdot| f(y) \mid d y
$$

$$
\tau \text {-Hölder regularity implies } \lesssim \sum_{\substack{P \in \mathfrak{P}_{x} \\\left(J \subsetneq I_{P}\right)}}\left(\frac{\|x-\xi\|}{\ell_{I_{P}}}\right)^{\tau} \int \frac{\chi_{\tilde{I}_{P}}(y)}{\left|I_{P}\right|}|f(y)| d y
$$

$$
\because \sum_{\substack{P \in \mathfrak{P}_{x} \\
\left(J \subsetneq I_{P}\right)}}\left(\ell_{J} / \ell_{I_{P}}\right)^{\tau} \lesssim 1 \therefore{\underset{\tau}{\tau}}_{\lesssim}^{\substack { \tau \\
\begin{subarray}{c}{P \in I_{P} \\
J \subsetneq I_{P}{ \tau \\
\begin{subarray} { c } { P \in I _ { P } \\
J \subsetneq I _ { P } } }\end{subarray}} f_{\tilde{I}_{P}}|f| d \mu \lesssim \inf _{J} M f .
$$

On the other hand,

$$
\forall \epsilon>0, \exists \xi \in J \text { s.t. }\left|\int \sum_{s=\underline{s}_{\mathfrak{F} x}}^{\bar{s}_{\mathfrak{F} x}} K_{s}(\xi, y) f(y) d y\right| \leq \mathfrak{T} f(\xi)<\inf _{J} \mathfrak{T} f+\epsilon
$$

Triangular inequality yields:

$$
\begin{aligned}
\left|\Psi_{\mathfrak{P}}(x)\right| & \leq\left|\int \sum_{s=\underline{s}_{\mathfrak{F} x}}^{\bar{s}_{\mathfrak{F} x}} K_{s}(\xi, y) f(y) d y\right|+\left|\Psi_{\mathfrak{P}}(x)-\int \sum_{s=\underline{s}_{\mathfrak{F} x}}^{\bar{s}_{\mathfrak{F} x}} K_{s}(\xi, y) f(y) d y\right| \\
& \lesssim \inf _{J} \mathfrak{T} f+\notin+\inf _{J} M f
\end{aligned}
$$

which completes the proof.
As we have mentioned earlier, we also need the control on its adjoint. To complete the argument, we introduce an operator which arises naturally in our analysis on the adjoint:
Definition 8.2.4 (Auxiliary maximal operator).
Recall the buffer $\varpi \gg 1$ used in the definition of openness of a cluster, we consider the following maximal operator:

$$
M_{\mathfrak{P}}^{*} f(y):=\sup _{\substack{P \in \mathfrak{F} \\ y \in \varpi \tilde{I}_{P}}}\left|I_{P}\right|^{-1} \int_{E_{P}}|f| d \mu
$$

Properties 8.2.5.

$$
\left\|M_{\mathfrak{P}}^{*} f\right\|_{L^{p}} \lesssim\left(\sup _{P \in \mathfrak{P}} \mathcal{A}(P)\right)^{1 / p^{\prime}}\|f\|_{L^{p}}, \quad \forall p \in(1, \infty]
$$

Proof. It is easy to see that:

$$
\left\|M_{\mathfrak{P}}^{*} f\right\|_{L^{\infty}} \leq \sup _{P \in \mathfrak{P}} \mathcal{A}(P)\|f\|_{L^{\infty}}
$$

To verify the full range of the property, we only need to acquire:

$$
\left\|M_{\mathfrak{P}}^{*} f\right\|_{L^{1, \infty}} \lesssim\|f\|_{L^{1}}
$$

and interpolate to finish the proof. For $t \in \mathbb{R}_{+}$, we consider the following set:

$$
\mathfrak{P}_{t}:=\left\{P \in \mathfrak{P}\left|t<\left|I_{P}\right|^{-1} \int_{E_{P}}\right| f \mid d \mu\right\}
$$

By construction, we have:

$$
\begin{aligned}
& \because\left|M_{\mathfrak{P}^{*}}^{*} f\right|^{-1}(t, \infty]=\bigcup_{P \in \mathfrak{P}_{t}} \varpi \tilde{I}_{P}=\bigcup_{P \in M \mathfrak{P}_{t}} \varpi \tilde{I}_{P} \\
& \therefore \mu\left(\left|M_{\mathfrak{P}}^{*} f\right|^{-1}(t, \infty]\right) \underset{\varpi, \kappa, D}{\lesssim} \sum_{P \in M \mathfrak{P}_{t}}\left|I_{P}\right| \\
& \quad \leq t^{-1} \sum_{P \in M \mathfrak{P}_{t}} \int_{E_{P}}|f| d \mu=t^{-1} \int_{E_{M \mathfrak{P}_{t}}}|f| d \mu \leq t^{-1}\|f\|_{L^{1}}
\end{aligned}
$$

which completes the proof.

Remark. Due to the definition of the open cluster, we see that if \mathfrak{P} is an open cluster at \mathfrak{p}, we have:

$$
\because \forall P \in \mathfrak{P}, \varpi \tilde{I}_{P} \subset I_{\mathfrak{p}} \quad \therefore \operatorname{supp} M_{\mathfrak{P}}^{*} f \subset I_{\mathfrak{p}}
$$

Additionally, if furthermore $\mathfrak{P} \subset \mathbb{P}_{n, \alpha} \subset \Pi_{\alpha}$, we have:

$$
\mathcal{A}(P)=\mathcal{A}(P)\langle\Delta(P, P)\rangle^{\epsilon} \leq \mathcal{A}_{\Pi_{\alpha}}(P)=\mathcal{A}_{\Pi_{n, \alpha}}(P) \lesssim 2^{-n}
$$

Therefore, $\left\|M_{\mathfrak{P}}^{*} f\right\|_{L^{p}}=\left\|M_{\mathfrak{P}}^{*} f\right\|_{L^{p}\left(I_{\mathfrak{p}}\right)} \lesssim 2^{-n / p^{\prime}}\|f\|_{L^{p}\left(I_{\mathfrak{p}}\right)}$.
After the necessary setup, we investigate the properties of the adjoint operator. We expect that the adjoint should reflect some properties from the kernel, and, indeed, we have the following:
Lemma 8.2.6 (Adjoint local τ-Hölder continuity).
Given a cube $L \subset \mathbb{R}^{D}$ satisfying the following: For any $P \in \mathfrak{P}$,

$$
I_{P}^{*} \cap L \neq \varnothing \Longrightarrow \ell_{L} \underset{\varpi, \kappa, D}{\lesssim} \ell_{I_{P}} \bar{\sim} \operatorname{dist}\left(L, I_{P}\right)
$$

we then have:

$$
\forall y, \eta \in L,\left|\Omega_{\mathfrak{P}}^{*} f\right|_{\eta}^{y} \left\lvert\, \lesssim\left(\frac{\|y-\eta\|}{\ell_{L}}\right)^{\tau} \inf _{L} M_{\mathfrak{P}}^{*} f\right.
$$

Remark. The condition on L is designed to fully exploit the local τ-Hölder continuity of $K_{s} s$.

Proof. Given $y, \eta \in L$, we evaluate the difference:

$$
\begin{aligned}
\left|\Omega_{\mathfrak{P}}^{*} f\right|_{\eta}^{y} \mid & =\left|\sum_{\substack{P \in \mathfrak{P} \\
I_{P}^{*} \cap L \neq \varnothing}} \int_{E_{P}}\left(K_{S_{P}}(x, \cdot) e^{\left.\left.i\left(q_{\mathfrak{p}}-q_{x}\right)\right|_{(\cdot)} ^{x}\right)}\right)\right|_{\eta}^{y} f(x) d x \mid \\
& \leq \sum_{\substack{P \in \mathfrak{P} \\
I_{P}^{*} \cap L \neq \varnothing}} \int_{E_{P}}\left|K_{s_{P}}(x, \cdot)\right|_{\eta}^{y}|\cdot| e^{i\left(q_{\mathfrak{p}}-q_{\mathfrak{R}}\right)(y)}|\cdot| f(x) \mid d x \\
& +\sum_{\substack{P \in \mathfrak{P} \\
I_{P}^{*} \cap L \neq \varnothing}} \int_{E_{P}}\left|K_{s_{P}}(x, \eta)\right| \cdot\left|e^{\left.i\left(q_{\mathfrak{p}}-q_{x}\right)\right|_{(\cdot)} ^{x} \mid}\right|_{\eta}^{y}|\cdot| f(x) \mid d x .
\end{aligned}
$$

For now, we fix $P \in \mathfrak{P}$ with $I_{P}^{*} \cap L \neq \varnothing$. By assumption, we have:

$$
\|y-\eta\| \lesssim \ell_{L} \lesssim \ell_{I_{P}}=2^{s_{P} \kappa}
$$

As a result, local τ-Hölder continuity and size control of $K_{s} s$ implies:

$$
\forall x \in E_{P}, \begin{cases}\left|K_{s_{P}}(x, \cdot)\right|_{\eta}^{y} \mid & \lesssim\left|I_{P}\right|^{-1}\left(\frac{\|y-\eta\|}{\ell_{I_{P}}}\right)^{\tau} \\ \left|K_{s_{P}}(x, \eta)\right| & \lesssim\left|I_{P}\right|^{-1}\end{cases}
$$

On the other hand, error correction on oscillation yields:

$$
\forall x \in E_{P},\left|e^{\left.i\left(q_{\mathfrak{p}}-q_{x}\right)\right|_{(\cdot)} ^{x}}\right|_{\eta}^{y}\left|=\left|e^{-\left.i\left(q_{\mathfrak{p}}-q_{x}\right)\right|_{\eta} ^{y}}-1\right| \lesssim \frac{\|y-\eta\|}{\ell_{I_{P}}} .\right.
$$

Combine estimate on kernel and oscillation, we get:

$$
\left.\left|\Omega_{\mathfrak{P}}^{*} f\right|_{\eta}^{y}\left|\lesssim \sum_{\substack{P \in \mathfrak{P} \\ I_{P}^{*} \cap L \neq \varnothing}}\left[\left(\frac{\|y-\eta\|}{\ell_{I_{P}}}\right)^{\tau}+\frac{\|y-\eta\|}{l_{I_{P}}}\right]\right| I_{P}\right|^{-1} \int_{E_{P}}|f| d \mu .
$$

To sum over such Ps, we need to make sure that there are only $\lesssim 1$ tiles Ps with the same scales in the sum. This is guaranteed by the assumption:

$$
\begin{aligned}
& \because 2^{s_{P} \kappa}=\ell_{I_{P}} \overline{\operatorname{dist}\left(L, I_{P}\right),} \\
& \therefore \forall s \in \mathbb{Z}, \#\left\{P \in \mathfrak{P} \mid s_{P}=s \wedge I_{P}^{*} \cap L \neq \varnothing\right\} \lesssim 1
\end{aligned}
$$

Therefore, we can safely sum over those Ps and acquire:

$$
\begin{aligned}
\left|\Omega_{\mathfrak{P}}^{*} f\right|_{\eta}^{y} \mid & \lesssim \sum_{\substack{P \in \mathfrak{P} \\
I_{P}^{*} \cap L \neq \varnothing}}\left(\frac{\|y-\eta\|}{\ell_{I_{P}}}\right)^{\tau} \sup _{\substack{P \in \mathfrak{P} \\
I_{P}^{*} \cap L \neq \varnothing}}\left|I_{P}\right|^{-1} \int_{E_{P}}|f| d \mu \\
& \lesssim \sum_{\substack{s \in \mathbb{Z} \\
\ell_{L} \lesssim 2^{s \kappa}}}\left(\frac{\|y-\eta\|}{2^{s \kappa}}\right)^{\tau} \sup _{\substack{P \in \mathfrak{P} \\
L \subset \varpi \tilde{I}_{P}}}\left|I_{P}\right|^{-1} \int_{E_{P}}|f| d \mu \\
& \lesssim\left(\frac{\|y-\eta\|}{\ell_{L}}\right)^{\tau} \inf _{L} M_{\mathfrak{P}}^{*} f .
\end{aligned}
$$

This gives us hint on how high the resolution we shall analyze on:
Definition 8.2.7 (\mathfrak{P}-fine dual setting).
We define the following carpet:

$$
\begin{gathered}
\mathbb{L}_{\mathfrak{P}}:=M\left\{L \in \mathbb{S} h_{\mathfrak{P}}^{\subset} \mid \forall I \in \mathbb{S}_{\mathfrak{P}}, I \not \subset L\right\} \in \mathbb{X} \\
\text { where } \mathbb{S}_{\mathfrak{P}}:=\left\{\ell_{I_{P}} \xi+I_{P} \in \mathbb{D} \mid(P, \xi) \in \mathfrak{P} \times \mathrm{Sh}\right\}=\bigcup_{P \in \mathfrak{P}} \mathbb{S}_{I_{P}}
\end{gathered}
$$

so that, by construction, we have $\bigcup \mathbb{S}_{\mathfrak{P}}=\bigsqcup \mathbb{L}_{\mathfrak{P}}$.
Remark. This comes from the original construction:

$$
I^{*}:=\bigsqcup \mathbb{S}_{I}=\bigsqcup_{\xi \in \mathrm{Sh}} \ell_{I} \xi+I
$$

By construction, we guarantee that:

$$
\forall(L, P) \in \mathbb{L}_{\mathfrak{P}} \times \mathfrak{P},\left(I_{P}^{*} \cap L \neq \varnothing \Longrightarrow \exists \xi \in \mathrm{Sh} \text { s.t. } L \subsetneq \ell_{I_{P}} \xi+I_{P}\right)
$$

Yet, recall that $\mathrm{Sh}:=\left\{z \in \mathbb{Z}\left|n_{D} \leq|z| \leq n_{D} 2^{\kappa}+1\right\}^{D}\right.$. This entails that:

$$
\exists \xi \in \mathrm{Sh} \text { s.t. } L \subsetneq \ell_{I_{P}} \xi+I_{P} \Longrightarrow \ell_{L}<\ell_{I_{P}} \underset{\kappa, D}{\bar{\sim}} \operatorname{dist}\left(L, I_{P}\right),
$$

which is exactly our condition for Adjoint local τ-Hölder continuity.
As a direct consequence, we have:

Lemma 8.2.8 (Adjoint cluster estimate).

Adjoint of the Model Operator has pointwise control:

$$
\left|\Omega_{\mathfrak{P}}^{*} f\right| \lesssim \sum_{L \in \mathbb{L}_{\mathfrak{P}}}\left(\inf _{L}\left|\Omega_{\mathfrak{P}}^{*} f\right|+\inf _{L} M_{\mathfrak{P}}^{*} f\right) \chi_{L}
$$

Also, we recover that:

$$
\left|\mathfrak{L}_{\mathfrak{P}}^{*} f\right| \lesssim \sum_{L \in \mathbb{L}_{\mathfrak{B}}}\left(\inf _{L}\left|\mathfrak{L}_{\mathfrak{P}}^{*} f\right|+\inf _{L} M_{\mathfrak{P}}^{*} f\right) \chi_{L}
$$

Remark. The density information is packed inside $\inf _{L}\left|\Omega_{\mathfrak{P}}^{*} f\right|$ and $\inf _{L} M_{\mathfrak{P}}^{*} f$.
Proof. Fixing $L \in \mathbb{L}_{\mathfrak{P}}$, adjoint local τ-Hölder continuity implies:

$$
\forall y, \eta \in L,\left|\Omega_{\mathfrak{P}}^{*} f\right|_{\eta}^{y} \left\lvert\, \lesssim\left(\frac{\| y-\eta \nVdash}{\ell_{L}}\right)^{\top} \inf _{L} M_{\mathfrak{P}}^{*} f .\right.
$$

On the other hand, we use the same trick:

$$
\forall \epsilon>0, \exists \eta \in L \text { s.t. }\left|\Omega_{\mathfrak{P}}^{*} f(\eta)\right|<\inf _{L}\left|\Omega_{\mathfrak{P}}^{*} f\right|+\epsilon .
$$

Thus, triangle inequality yields:

$$
\left|\Omega_{\mathfrak{P}}^{*} f(y)\right| \leq\left|\Omega_{\mathfrak{P}}^{*} f\right|_{\eta}^{y}\left|+\left|\Omega_{\mathfrak{P}}^{*} f(\eta)\right| \lesssim \inf _{L}\right| \Omega_{\mathfrak{P}}^{*} f \mid+\notin+\inf _{L} M_{\mathfrak{P}}^{*} f,
$$

which completes the proof.

8.3 Extraction of Separation Factor

Finally, with adjoint local τ-Hölder continuity. We are ready to extract the separation/apartness factor. We first observe that, given cluster $\mathfrak{P}_{j} \subset \mathbb{P}_{n, \alpha}$ at $\mathfrak{p}_{j} \in \mathbb{P}_{n, \alpha}$, we can write:

$$
\left\langle\mathfrak{L}_{\mathfrak{P}_{0}}^{*} f_{0}, \mathfrak{L}_{\mathfrak{P}_{1}}^{*} f_{1}\right\rangle=\int e^{i\left(q_{\mathfrak{p}_{0}}-q_{\mathfrak{p}_{1}}\right)} \Omega_{\mathfrak{P}_{0}}^{*} f_{\mathfrak{p}_{0}} \cdot \overline{\Omega_{\mathfrak{P}_{1}}^{*} f_{\mathfrak{p}_{1}}} d \mu,
$$

where $f_{\mathfrak{p}_{0}}:=\mu_{\mathfrak{p}_{0}} \mu^{*} f$ and $f_{\mathfrak{p}_{1}}:=\mu_{\mathfrak{p}_{1}} \mu^{*} f_{1}$. This is exactly the form of Van der Corput estimate if we view $q:=q_{\mathfrak{p}_{0}}-q_{\mathfrak{p}_{1}}$ and $\psi:=\Omega_{\mathfrak{P}_{0}}^{*} f_{\mathfrak{p}_{0}} \cdot \overline{\Omega_{\mathfrak{p}_{1}}^{*} f_{\mathfrak{p}_{1}}}$. Yet, since we only have adjoint local τ-Hölder continuity, we should apply the version adapted to a partition of unity. On the other hand, there is always some location where the local oscillation of polynomial is small. We need to find some balance in our analysis.

Lemma 8.3.1 (Apartness control).
Given $\mathfrak{P}_{j} \subset \mathbb{P}_{n, \alpha}$ open cluster at $\mathfrak{p}_{j} \in \mathbb{P}_{n, \alpha}$, if \mathfrak{P}_{0} and \mathfrak{P}_{1} are Λ-apart, then:

$$
\left|\left\langle\mathfrak{L}_{\mathfrak{P}_{0}}^{*} f_{0}, \mathfrak{L}_{\mathfrak{P}_{1}}^{*} f_{1}\right\rangle\right| \lesssim \Lambda^{-\epsilon} 2^{-n}\left\|f_{0}\right\|_{L^{2}}\left\|f_{1}\right\|_{L^{2}}
$$

Remark. The estimate we acquire is actually a little bit different compared to the one in [Lie20] or in [Zor19] since we extract the density factor and separation factor simultaneously. Still, this improvement only indicates that the separation factor only need to serve the role to compensate the temporal overlaps of the covers.

Notice the estimate is trivial if $\Lambda \lesssim 1$ or $I_{\mathfrak{p}_{0}} \cap I_{\mathfrak{p}_{1}}=\varnothing$, thus, we shall assume $\Lambda \gg 1$ and $I_{\mathfrak{p}_{0}} \subset I_{\mathfrak{p}_{1}}$. Also, due to the openness, we only need to evaluate the integral on $I_{\mathfrak{p}_{0}}$. Eventually, we reduces to show the following:

Lemma 8.3.2 (Extraction of separation factor).
Given Λ-apart $\mathfrak{P}, \mathfrak{P}^{\prime} \subset \tilde{\mathbb{D}}$ open clusters at $\mathfrak{p}, \mathfrak{p}^{\prime} \in \tilde{\mathbb{D}}$ respectively with $I_{\mathfrak{p}} \subset I_{\mathfrak{p}^{\prime}}$,

$$
\left|\int e^{i\left(q_{\mathfrak{p}}-q_{\left.\mathfrak{p}^{\prime}\right)}\right.} \Omega_{\mathfrak{P}}^{*} f \overline{\Omega_{\mathfrak{P}^{\prime}}^{*} g} d \mu\right| \lesssim \Lambda^{-\epsilon_{p}}\left\|\left|\Omega_{\mathfrak{P}}^{*} f\right|+M_{\mathfrak{P}}^{*} f\right\|_{L^{p}\left(I_{\mathfrak{p}}\right)}\left\|\left|\Omega_{\mathfrak{P}^{\prime}}^{*} g\right|+M_{\mathfrak{P}^{\prime}}^{*} g\right\|_{L^{p^{\prime}}\left(I_{\mathfrak{p}}\right)}
$$

Proof. To separate Major oscillation from Noise, we first set $q:=q_{\mathfrak{p}}-q_{\mathfrak{p}^{\prime}}$, pick $\varrho<1<\delta \underset{\kappa, D}{\ll} C \underset{\kappa, D}{\ll} \varpi$, and consider the following collection:

$$
\mathfrak{M}:=\left\{P \in \mathfrak{P} \cup \mathfrak{P}^{\prime} \mid\|q\|_{I_{P}} \geq \Lambda^{\varrho}\right\} \text { and } \mathfrak{N}:=\left(\mathfrak{P} \cup \mathfrak{P}^{\prime}\right) \backslash \mathfrak{M} .
$$

We fist notice that, apartness implies:

$$
\forall P \in \mathfrak{P}, \quad \because I_{P} \subset I_{\mathfrak{p}} \subset I_{\mathfrak{p}^{\prime}} \quad \therefore \Delta\left(P, \mathfrak{p}^{\prime}\right)>\Lambda
$$

If $\Lambda \underset{\varrho, \lambda}{\gg} 1$, any $P \in \mathfrak{P}$ satisfies:

$$
\|q\|_{I_{P}} \approx\|q\|_{\tilde{I}_{P}} \gtrsim\left\|q_{\mathfrak{p}^{\prime}}-q_{P}\right\|_{\tilde{I}_{P}}-\left\|q_{P}-q_{\mathfrak{p}}\right\|_{\tilde{I}_{P}} \gtrsim \Delta\left(P, \mathfrak{p}^{\prime}\right)-\lambda \gtrsim \Lambda
$$

Alternatively, any $P \in \mathfrak{P}^{\prime}$ with $I_{P} \subset I_{\mathfrak{p}}$ must also satisfy:

$$
\|q\|_{I_{P}} \approx\|q\|_{\tilde{I}_{P}} \gtrsim\left\|q_{\mathfrak{p}}-q_{P}\right\|_{\tilde{I}_{P}}-\left\|q_{P}-q_{\mathfrak{p}^{\prime}}\right\|_{\tilde{I}_{P}} \gtrsim \Delta(P, \mathfrak{p})-\lambda \gtrsim \Lambda
$$

As a direct result of monotonicity of the semi-norm, another $P^{\prime} \in \mathfrak{P}^{\prime}$ with $I_{P^{\prime}} \supset I_{\mathfrak{p}} \supset I_{P}$ would also satisfy $\|q\|_{I_{P^{\prime}}} \geq\|q\|_{I_{P}} \gtrsim \Lambda$. This poses quite a lot restriction on the configuration of \mathfrak{N}. In short, for large Λ, we always have $\mathfrak{P} \subset \mathfrak{M}$ and the following characterization:

$$
\mathfrak{N}=\mathfrak{P}^{\prime} \backslash \mathfrak{M}=\left\{P \in \mathfrak{P}^{\prime} \mid\|q\|_{I_{P}}<\Lambda^{\varrho}\right\} \subset\left\{P \in \mathfrak{P}^{\prime} \mid I_{P} \cap I_{\mathfrak{p}}=\varnothing\right\} .
$$

For the Major oscillation in \mathfrak{P}^{\prime}, we denote $\mathfrak{Q}:=\mathfrak{P}^{\prime} \cap \mathfrak{M}$. We now investigate the properties of the decomposition $\mathfrak{P}^{\prime}=\mathfrak{Q} \sqcup \mathfrak{N}$. Due to the semi-norm structure: Given $P_{j} \in \mathfrak{Q}$ and $P \in \tilde{\mathbb{D}}$,

$$
P_{0} \triangleleft P \triangleleft P_{1} \Longrightarrow\left(P \in \mathfrak{P}^{\prime} \wedge \Lambda^{\varrho} \leq\|q\|_{I_{P_{0}}} \leq\|q\|_{I_{P}}\right) \Longrightarrow P \in \mathfrak{Q} .
$$

Similarly, for $P_{j} \in \mathfrak{N}$ and $P \in \tilde{\mathbb{D}}$,

$$
P_{0} \triangleleft P \triangleleft P_{1} \Longrightarrow\left(P \in \mathfrak{P}^{\prime} \wedge\|q\|_{I_{P}} \leq\|q\|_{I_{P_{1}}}<\Lambda^{\varrho}\right) \Longrightarrow P \in \mathfrak{N} .
$$

By preserving the convex structure, \mathfrak{D} and \mathfrak{N} are both open clusters at \mathfrak{p}^{\prime}. We now reduce to analyze the two integrals:

$$
\left|\int_{I_{\mathfrak{p}}} e^{i q} \Omega_{\mathfrak{P}}^{*} f \overline{\Omega_{\mathfrak{P}}^{*}} d \mu\right| \leq\left\{\begin{array}{cl}
\left|\int e^{i q} \Omega_{\mathfrak{P}}^{*} f \overline{\Omega_{\mathfrak{Q}}^{*} g} d \mu\right| & \text { Major } \text { oscillation } \\
+ & \\
\int_{I_{\mathfrak{p}}}\left|e^{i \not g}\right|\left|\Omega_{\mathfrak{P}}^{*} f\right| \cdot\left|\Omega_{\mathfrak{N}}^{*} g\right| d \mu & \text { Noise } .
\end{array}\right.
$$

To locate the different features from Major oscillation, we do a Whitney-like decomposition on \mathbb{R}^{D} :

$$
\mathbb{L}:=M\left\{L \in \mathbb{D} \mid \forall(P, \xi) \in \mathfrak{M} \times \mathrm{Sh}, \ell_{I_{P}} \xi+I_{P} \not \subset C L\right\} \in \mathbb{X}
$$

so that any element $L \in \mathbb{L}$ satisfies the following:

- Locate Major oscillation:

$$
\begin{aligned}
& \because \exists(P, \xi) \in \mathfrak{M} \times \mathrm{Sh}, \text { s.t. } \ell_{I_{P}} \xi+I_{P} \subset C \widehat{L}, \\
& \therefore \Lambda^{\varrho} \leq\|q\|_{I_{P}} \bar{\sim}\|q\|_{\tilde{I}_{P}} \bar{\sim}\|q\|_{\ell_{I_{P}}} \xi+I_{P} \leq\|q\|_{C L} \bar{\sim}\|q\|_{L}
\end{aligned}
$$

- Condition for Adjoint local τ-Hölder continuity: Given $P \in \mathfrak{M}$,

$$
3 \delta L \cap I_{P}^{*} \neq \varnothing \Longrightarrow \ell_{L} \lesssim \ell_{I_{P}} \bar{\sim} \operatorname{dist}\left(L, I_{P}\right)
$$

This follows from the fact that $3 \delta L \cap I_{P}^{*} \neq \varnothing$ implies:

$$
\exists \xi \in \mathrm{Sh}, \text { s.t. } 3 \delta L \cap \ell_{I_{P}} \xi+I_{P} \neq \varnothing .
$$

Yet, if $\ell_{3 \delta L} \geq 3 \delta \ell_{I_{P}}$ (or equivalently $\ell_{L} \geq \ell_{I_{P}}$), then, by choosing $C \geq$ $3 \delta+2$, we have the following:

$$
\begin{aligned}
& \because \forall x \in \ell_{I_{P}} \xi+I_{P},\left\|x-c_{L}\right\|_{\infty} \leq 3 / 2 \delta \ell_{L}+\ell_{I_{P}} \leq(3 / 2 \delta+1) \ell_{L}, \\
& \therefore \ell_{I_{P}} \xi+I_{P} \subset C L \Rightarrow \Leftarrow \in \mathbb{L}
\end{aligned}
$$

Therefore, we must have $\ell_{3 \delta L} \leq 3 \delta \ell_{I_{P}}$, and, additionally, $\operatorname{dist}\left(3 \delta L, I_{P}\right) \approx$ $\operatorname{dist}\left(\ell_{I_{P}} \xi+I_{P}, I_{P}\right) \approx \ell_{I_{P}}$ as long as $C \underset{D}{>} 1$.

- Slow varying scaling: Given $L^{\prime} \in \mathbb{L}$, then $\delta L^{\prime} \cap \delta L \neq \varnothing \Longrightarrow \ell_{L} \underset{\kappa}{\approx} \ell_{L^{\prime}}$. The reason is that $\delta L^{\prime} \cap \delta L \neq \varnothing$ implies:
$\forall x \in C \widehat{L},\left\|x-c_{L^{\prime}}\right\|_{\infty} \leq\left\|x-c_{L}\right\|_{\infty}+\left\|c_{L}-c_{L^{\prime}}\right\|_{\infty} \leq \frac{\left(C 2^{\kappa}+\delta\right) \ell_{L}+\delta \ell_{L^{\prime}}}{2}$.
If, additionally, we have $\frac{C 2^{\kappa}+\delta}{C-\delta} \ll \frac{\ell_{L^{\prime}}}{\ell_{L}}$, then:

$$
\because \forall x \in C \widehat{L},\left\|x-c_{L^{\prime}}\right\|_{\infty} \leq C \ell_{L^{\prime}} \quad \therefore C \widehat{L} \subset C L^{\prime} \Rightarrow \Leftarrow L^{\prime} \in \mathbb{L} .
$$

Due to these properties on \mathbb{L}, we can safely construct a adaptive partition of unity $\left\{\tilde{\chi}_{L}\right\}_{L \in \mathbb{L}}$ satisfying:

$$
\forall L \in \mathbb{L}, \tilde{\chi}_{L} \in C_{c}^{\infty} \text { s.t. }\left\{\begin{array}{c}
\left|\tilde{\chi}_{L}\right| \underset{\delta}{\lesssim} \chi_{\delta L} \\
\left\|\nabla \tilde{\chi}_{L}\right\| \underset{\delta}{\lesssim} \chi_{\delta L} / \ell_{L} .
\end{array}\right.
$$

Applying the Van der Corput estimate, adjoint local τ-Hölder continuity, and the adjoint cluster estimate, we have:

$$
\begin{aligned}
& \left|\int \tilde{\chi}_{L} e^{i q} \Omega_{\mathfrak{P}}^{*} f \overline{\Omega_{\mathfrak{Q}}^{*} g} d \mu\right| \\
\lesssim & \Lambda^{-\varrho \tau / d}\left(\inf _{3 \delta L}\left|\Omega_{\mathfrak{P}}^{*} f\right|+\inf _{3 \delta L} M_{\mathfrak{P}}^{*} f\right)\left(\inf _{3 \delta L}\left|\Omega_{\mathfrak{Q}}^{*} g\right|+\inf _{3 \delta L} M_{\mathfrak{Q}}^{*} g\right)|L|
\end{aligned}
$$

This is almost the form we want. We only need to replace the \mathfrak{Q} on the $\boldsymbol{R H S}$ with \mathfrak{P}^{\prime}. To do so, since $\mathfrak{Q} \subset \mathfrak{P}^{\prime}$, by the definition of our auxiliary maximal operator, we can dominate $M_{\mathfrak{Q}}^{*} g$ with $M_{\mathfrak{P}^{\prime}}^{*} g$. The rest is to estimate the loss caused by $\Omega_{\mathfrak{N}}^{*} g=\Omega_{\mathfrak{P}^{\prime}}^{*} g-\Omega_{\mathfrak{Q}}^{*} g$. We notice that:

- We only need to focus on $L \in \mathbb{L}_{+}:=\left\{I \in \mathbb{L} \mid 3 \delta I \subset I_{\mathfrak{p}}\right\}$ since, otherwise,

$$
3 \delta L \not \subset I_{\mathfrak{p}} \Longrightarrow 3 \delta L \not \subset \bigcup_{P \in \mathfrak{P}} \varpi \tilde{I}_{P} \Longrightarrow \inf _{3 \delta L}\left|\Omega_{\mathfrak{P}}^{*} f\right|=\inf _{3 \delta L} M_{\mathfrak{P}}^{*} f=0
$$

- Temporal size constraint on Noise: Given $(L, P) \in \mathbb{L}_{+} \times \mathfrak{R}$,

$$
L \cap I_{P}^{*} \neq \varnothing \Longrightarrow \ell_{I_{P}} \bar{\sim} \ell_{L} .
$$

The reason is that Noise must lie temporally outside $I_{\mathfrak{p}}$:

$$
3 \delta L \cap I_{P} \subset I_{\mathfrak{p}} \cap I_{P}=\varnothing
$$

Therefore, if I_{P} is too small:

$$
\ell_{I_{P}} \leq \ell_{\tilde{I}_{P}} \leq \ell_{L} \Longrightarrow \operatorname{dist}\left(L, \tilde{I}_{P}\right)>\delta-1 \Longrightarrow L \cap I_{P}^{*}=\varnothing \text {, }
$$

which forces the lower bound on the size. On the other hand, if $L \cap I_{P}^{*} \neq \varnothing$ but $\ell_{I_{P}}>\ell_{L}$, Embedding Inequality implies:

$$
\Lambda^{\varrho} \lesssim\|q\|_{L} \ll\|q\|_{\tilde{I}_{P}} \approx\|q\|_{I_{P}} \Rightarrow \Leftarrow P \in \mathfrak{N} .
$$

- Recall that \mathfrak{N} is still a cluster, thus, due to spectral packing constraint and temporal size constraint, we must have:

$$
\forall L \in \mathbb{L}_{+}, \quad \#\left\{P \in \mathfrak{N} \mid L \cap I_{P}^{*} \neq \varnothing\right\} \lesssim 1
$$

Fixing $L \in \mathbb{L}_{+}$and choosing $\varpi \gg 1$, the above three properties and single tile estimate imply the following:

$$
\sup _{L}\left|\Omega_{\mathfrak{N}}^{*} g\right| \lesssim \sum_{\substack{P \in \mathfrak{N} \\ L \cap I_{P}^{*} \neq \varnothing}}\left|I_{P}\right|^{-1} \int_{E_{P}}|g| d \mu \lesssim \sup _{\substack{P \in \mathfrak{N} \\ L \subset \varpi \tilde{I}_{p}}}\left|I_{P}\right|^{-1} \int_{E_{P}}|g| d \mu \lesssim \inf _{L} M_{\mathfrak{N}}^{*} g .
$$

As a immediate result, we have:

$$
\inf _{3 \delta L}\left|\Omega_{\mathfrak{Q}}^{*} g\right| \leq \inf _{L}\left|\Omega_{\mathfrak{Q}}^{*} g\right| \leq \inf _{L}\left|\Omega_{\mathfrak{P}^{\prime}}^{*} g\right|+\sup _{L}\left|\Omega_{\mathfrak{N}}^{*} g\right| \lesssim \inf _{L}\left|\Omega_{\mathfrak{P}^{\prime}}^{*} g\right|+\inf _{L} M_{\mathfrak{N}}^{*} g
$$

As we dominate $M_{\mathfrak{N}}^{*} g$ with $M_{\mathfrak{P}^{\prime}}^{*} g$ and replace $3 \delta L$ with L, we have:

$$
\begin{aligned}
& \left|\int \tilde{\chi}_{L} e^{i q} \Omega_{\mathfrak{P}}^{*} f \overline{\Omega_{\mathfrak{Q}}^{*} g} d \mu\right| \\
\lesssim & \Lambda^{-\varrho \tau / d}\left(\inf _{L}\left|\Omega_{\mathfrak{P}}^{*} f\right|+\inf _{L} M_{\mathfrak{P}}^{*} f\right)\left(\inf _{L}\left|\Omega_{\mathfrak{P}^{\prime}}^{*} g\right|+\inf _{L} M_{\mathfrak{P}^{\prime}}^{*} g\right)|L| .
\end{aligned}
$$

Summing over $L \in \mathbb{L}_{+}$, we get:

$$
\begin{aligned}
\left|\int e^{i q} \Omega_{\mathfrak{P}}^{*} f \overline{\Omega_{\mathfrak{Q}}^{*} g} d \mu\right| & \lesssim \Lambda^{-\varrho \tau / d} \int\left(\left|\Omega_{\mathfrak{P}}^{*} f\right|+M_{\mathfrak{P}}^{*} f\right)\left(\left|\Omega_{\mathfrak{P}^{\prime}}^{*} g\right|+M_{\mathfrak{P}^{\prime}}^{*} g\right) d \mu \\
& \leq \Lambda^{-\varrho \tau / d}\left\|\left|\Omega_{\mathfrak{P}}^{*} f\right|+M_{\mathfrak{P}}^{*} f\right\|_{L^{p}\left(I_{\mathfrak{p}}\right)}\left\|\left|\Omega_{\mathfrak{P}^{\prime}}^{*} g\right|+M_{\mathfrak{P}^{\prime}}^{*} g\right\|_{L^{p^{\prime}\left(I_{\mathfrak{p}}\right)}} .
\end{aligned}
$$

For the Noise, we consider the carpet $\mathbb{L}_{\mathfrak{P}} \in \mathbb{X}$ instead. Due to the construction of \mathfrak{N}, the element $L \in \mathbb{L}_{\mathfrak{P}}$ satisfies the following:

- Size control:

$$
\forall P \in \mathfrak{N},\left(L \cap I_{P}^{*} \neq \varnothing \Longrightarrow \Lambda^{\frac{1-\varrho}{d}} \ell_{I_{P}} \lesssim \ell_{L}\right)
$$

Otherwise, since $L \in \mathbb{L}_{\mathfrak{P}}$, there is $\left(P_{L}, \xi_{L}\right) \in \mathfrak{P} \times$ Sh such that $\ell_{I_{P_{L}}} \xi_{L}+$ $I_{P_{L}} \subset \widehat{L}$, if there is $P \in \mathfrak{N}$ such that $\Lambda^{\frac{1-\varrho}{d}} \ell_{I_{P}} \gg \ell_{L}$, we have:

$$
\Lambda \lesssim\|q\|_{\tilde{I}_{P_{L}}} \overline{ }\|q\|_{\ell_{I_{P_{L}}} \xi_{L}+I_{P_{L}}} \lesssim\|q\|_{\widehat{L}} \ll\|q\|_{\Lambda \frac{1-\varrho}{d} I_{P}} \lesssim \Lambda^{1-\varrho}\|q\|_{I_{P}}
$$

which contradict with the condition $\|q\|_{I_{P}}<\Lambda^{\varrho}$.

- Packing constraint:

$$
\forall s \in \mathbb{Z}, \#\left\{P \in \mathfrak{N} \mid L \cap I_{P}^{*} \neq \varnothing \wedge s_{P}=s\right\} \underset{\lambda, \kappa, D, d}{\lesssim}\left(2^{-s \kappa} \ell_{L}\right)^{D-1}
$$

This follows from the configuration of \mathfrak{N} and the fact that \mathfrak{P} is open:

$$
\begin{aligned}
& \because P \in \mathfrak{N} \Longrightarrow L \cap I_{P} \subset I_{\mathfrak{p}} \cap I_{P}=\varnothing \\
& \therefore \forall P \in \mathfrak{N},\left(L \cap I_{P}^{*} \neq \varnothing \Longrightarrow \partial L \cap \tilde{I}_{P} \neq \varnothing\right)
\end{aligned}
$$

which forces the packing to concentrate on the boundary of L. Also, since \mathfrak{N} is a cluster at \mathfrak{p}^{\prime}, spectral packing constraint only gives a factor of $\underset{\kappa, D, d}{\lesssim}(1+\lambda)^{d D}$ for those sharing the same temporal blocks.

Using adjoint cluster estimate on $\Omega_{\mathfrak{P}}^{*} f$ and single tile estimate on $\Omega_{\mathfrak{N}}^{*} g$, we have for all $L \in \mathbb{L}_{\mathfrak{P}}$,

$$
\int_{L}\left|\Omega_{\mathfrak{P}}^{*} f\right| \cdot\left|\Omega_{\mathfrak{N}}^{*} g\right| d \mu \lesssim\left(\inf _{L}\left|\Omega_{\mathfrak{P}}^{*} f\right|+\inf _{L} M_{\mathfrak{P}}^{*} f\right) \sum_{\substack{P \in \mathfrak{N} \\ L \cap I_{P}^{*} \neq \varnothing}} \frac{\left|L \cap I_{P}^{*}\right|}{\left|I_{P}\right|} \int_{E_{P}}|g| d \mu
$$

For the summation part, we notice that:

$$
\begin{aligned}
\sum_{\substack{P \in \mathfrak{N} \\
L \cap I_{P}^{*} \neq \varnothing}} \frac{\left|L \cap I_{P}^{*}\right|}{\left|I_{P}\right|} \int_{E_{P}}|g| d \mu \leq \sum_{\substack{P \in \mathfrak{N} \\
L \cap I_{P}^{*} \neq \varnothing}} \int_{L} \chi_{L \cap I_{P}^{*}} M_{\mathfrak{N}}^{*} g d \mu \\
\text { Hölder's inequality } \leq\left\|M_{\mathfrak{N}}^{*} g\right\|_{L^{p^{\prime}}(L)} \sum_{\substack{P \in \mathfrak{N} \\
L \cap I_{P}^{*} \neq \varnothing}}\left|I_{P}\right|^{1 / p} .
\end{aligned}
$$

Using the size control and packing constraint, the summation on the right can be further reduced to:

$$
\begin{aligned}
& \sum_{\substack{P \in \mathfrak{N} \\
L \cap I_{P}^{*} \neq \varnothing}}\left|I_{P}\right|^{1 / p} \sum \sum_{\substack{s \in \mathbb{Z} \\
2^{s \kappa}} \Lambda^{\frac{\underline{-1}}{d}} \ell_{L}}\left(2^{-s \kappa} \ell_{L}\right)^{(D-1) / p} 2^{s \kappa D / p} \\
& \leq \ell_{L}^{(D-1) / p} \sum_{\substack{s \in \mathbb{Z}\\
}} 2^{s \kappa / p} \lesssim \Lambda^{\frac{\varrho-1}{d p}}|L|^{1 / p} . \\
& 2^{s \kappa} \lesssim \Lambda^{\frac{Q-1}{d}} \ell_{L}
\end{aligned}
$$

As we recombine and sum over $L \in \mathbb{L}_{\mathfrak{P}}$, we have:

$$
\begin{aligned}
& \int\left|\Omega_{\mathfrak{P}}^{*} f\right| \cdot\left|\Omega_{\mathfrak{N}}^{*} g\right| d \mu \lesssim \Lambda^{\frac{\varrho-1}{d p}} \sum_{L \in \mathbb{L}_{\mathfrak{P}}}\left(\inf _{L}\left|\Omega_{\mathfrak{P}}^{*} f\right|+\inf _{L} M_{\mathfrak{P}}^{*} f\right)|L|^{1 / p}\left\|M_{\mathfrak{N}}^{*} g\right\|_{L^{p^{\prime}}(L)} \\
\leq & \Lambda^{\frac{Q-1}{d p}}\left(\sum_{L \in \mathbb{L}_{\mathfrak{P}}}\left(\inf _{L}\left|\Omega_{\mathfrak{P}}^{*} f\right|+\inf _{L} M_{\mathfrak{P}}^{*} f\right)^{p}|L|\right)^{1 / p}\left(\sum_{L \in \mathbb{L}_{\mathfrak{P}}}\left\|M_{\mathfrak{N}}^{*} g\right\|_{L^{p^{\prime}}(L)}^{p^{\prime}}\right)^{1 / p^{\prime}} \\
\leq & \Lambda^{\frac{Q-1}{d p}}\left\|\left|\Omega_{\mathfrak{P}}^{*} f\right|+M_{\mathfrak{P}}^{*} f\right\|_{L^{p}\left(I_{\mathfrak{p}}\right)}\left\|M_{\mathfrak{N}}^{*} g\right\|_{L^{p^{\prime}}\left(I_{\mathfrak{p}}\right)} \\
\leq & \Lambda^{\frac{\varrho-1}{d p}}\left\|\left|\Omega_{\mathfrak{P}}^{*} f\right|+M_{\mathfrak{P}}^{*} f\right\|_{L^{p}\left(I_{\mathfrak{p}}\right)}\left\|\left|\Omega_{\mathfrak{P}^{\prime}}^{*} g\right|+M_{\mathfrak{P}^{\prime}}^{*} g\right\|_{L^{p^{\prime}}\left(I_{\mathfrak{p}}\right)}
\end{aligned}
$$

The rest is to fine-tune $\varrho \in(0,1)$ so that $\frac{1-\varrho}{d p}=\frac{\varrho \tau}{d}=: \epsilon_{p}$.

8.4 Support Restriction and Cross-Level Decay

We have been working within $\mathbb{P}_{n, \alpha}$ for a while. Let us investigate the interaction across $\mathbb{P}_{n, \alpha}$ and $\mathbb{P}_{n, \beta}$ with $\beta>\alpha$. Given a cluster $\mathfrak{P} \subset \mathbb{P}_{n, \alpha}$ at $\mathfrak{p} \in \mathbb{P}_{n, \alpha}$ and an open cluster $\mathfrak{P}^{\prime} \subset \mathbb{P}_{n, \beta}$ at $\mathfrak{p}^{\prime} \in \mathbb{P}_{n, \beta}$, we have:

$$
\begin{cases}\left|\left\langle\mathfrak{L}_{\mathfrak{P}} f, \mathfrak{L}_{\mathfrak{P}^{\prime}} g\right\rangle\right|=\left|\left\langle\mathfrak{L}_{\mathfrak{P}} f, \chi_{E_{\mathfrak{F}^{\prime}}} \mathfrak{L}_{\mathfrak{P}^{\prime}} g\right\rangle\right| & =\left|\left\langle\chi_{\sqcup \mathbb{A}_{\beta-1}} \mathfrak{L}_{\mathfrak{P}} f, \mathfrak{L}_{\mathfrak{P}^{\prime}} g\right\rangle\right| \\ \left|\left\langle\mathfrak{L}_{\mathfrak{P}}^{*} f, \mathfrak{L}_{\mathfrak{P}^{\prime}}^{*} g\right\rangle\right|=\left|\left\langle\mathfrak{L}_{\mathfrak{P}}^{*} f, \chi_{I_{\mathfrak{p}^{\prime}}} \mathfrak{L}_{\mathfrak{P}^{\prime}}^{*} g\right\rangle\right|=\left|\left\langle\chi_{\sqcup \mathbb{A}_{\beta-1}} \mathfrak{L}_{\mathfrak{P}}^{*} f, \mathfrak{L}_{\mathfrak{P}^{\prime}}^{*} g\right\rangle\right| .\end{cases}
$$

To acquire good control is to understand the behavior of operators restricted to $\bigsqcup \mathbb{A}_{\beta-1}$. As we expend the operator:

$$
\left\{\begin{aligned}
\chi_{\sqcup \mathbb{A}_{\beta-1}}\left|\mathfrak{L}_{\mathfrak{P}} f\right| & \lesssim \sum_{J \in \mathbb{J}_{\mathfrak{P}}}\left(\inf _{J} \mathfrak{T} \mu_{\mathfrak{p}} f+\inf _{J} M f\right) \chi_{E_{J} \cap \sqcup \mathbb{A}_{\beta-1}} \\
\chi_{\sqcup \mathbb{A}_{\beta-1}}\left|\mathfrak{L}_{\mathfrak{P}}^{*} f\right| & \lesssim \sum_{L \in \mathbb{L}_{\mathfrak{P}}}\left(\inf _{L}\left|\mathfrak{L}_{\mathfrak{P}}^{*} f\right|+\inf _{L} M_{\mathfrak{P}}^{*} f\right) \chi_{L \cap \sqcup \mathbb{A}_{\beta-1}},
\end{aligned}\right.
$$

we immediately spot an almost trivial control:
Lemma 8.4.1 (Support restriction control).
Given \mathfrak{P} be an open cluster at \mathfrak{p}, and a measurable set $A \subset \mathbb{R}^{D}$, we have:

$$
\left\{\begin{array}{l}
\left\|\chi_{A} \mathfrak{L}_{\mathfrak{P}} f\right\|_{L^{p}} \lesssim\left(\sup _{J \in \mathbb{J}_{\mathfrak{P}}} \frac{\left|E_{J} \cap A\right|}{|J|}\right)^{1 / p}\left\|\mathfrak{T} \mu_{\mathfrak{p}} f+M f\right\|_{L^{p}\left(I_{\mathfrak{p}}\right)} \\
\left\|\chi_{A} \mathfrak{L}_{\mathfrak{P}}^{*} f\right\|_{L^{p}} \lesssim\left(\sup _{L \in \mathbb{L}_{\mathfrak{P}}} \frac{|L \cap A|}{|L|}\right)^{1 / p}\left\|\left|\mathfrak{L}_{\mathfrak{P}}^{*} f\right|+M_{\mathfrak{P}}^{*} f\right\|_{L^{p}\left(I_{\mathfrak{p}}\right)} .
\end{array}\right.
$$

Proof. Using the (adjoint) cluster estimate, we have:

$$
\left\{\begin{aligned}
\left\|\chi_{A} \mathfrak{L}_{\mathfrak{P}} f\right\|_{L^{p}} & \lesssim\left[\sum_{J \in \mathbb{J}_{\mathfrak{P}}} \frac{\left|E_{J} \cap A\right|}{|J|}\left(\inf _{J} \mathfrak{T} \mu_{\mathfrak{p}} f+\inf _{J} M f\right)^{p}|J|\right]^{1 / p} \\
\left\|\chi_{A} \mathfrak{L}_{\mathfrak{P}}^{*} f\right\|_{L^{p}} & \lesssim\left[\sum_{L \in \mathbb{L}_{\mathfrak{P}}} \frac{|L \cap A|}{|L|}\left(\inf _{L}\left|\mathfrak{L}_{\mathfrak{P}}^{*} f\right|+\inf _{L} M_{\mathfrak{P}}^{*} f\right)^{p}|L|\right]^{1 / p} .
\end{aligned}\right.
$$

An elementary use of Hölder's inequality yields the result.
We now can expect the δ-covering relation to play an essential role.
Properties 8.4.2 (Cross-Level Decay).
Given $\mathfrak{P} \subset \mathbb{P}_{n, \alpha}$ and $\Delta \in \mathbb{N}$, we have:

$$
(J, L) \in \mathbb{J}_{\mathfrak{P}} \times \mathbb{L}_{\mathfrak{P}} \Longrightarrow \frac{\left|J \cap \bigsqcup \mathbb{A}_{\alpha+\Delta}\right|}{|J|}, \frac{\left|L \cap \bigsqcup \mathbb{A}_{\alpha+\Delta}\right|}{|L|} \lesssim \delta^{\Delta}
$$

Through iterative use of the δ-covering relation, the above property can be derived from the following claim:

Claim.

Given $\mathfrak{P} \subset \mathbb{P}_{n, \alpha}$, we have:

$$
(I, J, L) \in \mathbb{A}_{\alpha} \times \mathbb{J}_{\mathfrak{P}} \times \mathbb{L}_{\mathfrak{P}} \Longrightarrow\left\{\begin{array}{l}
I \subset J \vee I \cap J=\varnothing \\
I \subset L \vee I \cap L=\varnothing
\end{array}\right.
$$

Proof. Fix $(I, J, L) \in \mathbb{A}_{\alpha} \times \mathbb{J}_{\mathfrak{P}} \times \mathbb{L}_{\mathfrak{P}}$.

- Suppose $J \subsetneq I$, then the construction of $\mathbb{J}_{\mathfrak{F}}$ implies:

$$
\exists P \in \mathfrak{P} \text { s.t. } I_{P} \subset \widehat{J} \subset I \in \mathbb{A}_{\alpha} \Rightarrow \Leftarrow I_{P} \in \mathbb{I}_{\alpha} .
$$

- Suppose $L \subsetneq I$, then the construction of $\mathbb{L}_{\mathfrak{B}}$ implies:

$$
\exists(P, \xi) \in \mathfrak{P} \times \text { Sh s.t. } \ell_{I_{P}} \xi+I_{P} \subset \widehat{L} \subset I \in \mathbb{A}_{\alpha} .
$$

In other words, we have:

$$
\exists P \in \mathfrak{P} \text { s.t. }\left(\tilde{I}_{P} \cap I \neq \varnothing \wedge \ell_{I_{P}} \leq \ell_{I}\right) \text {. }
$$

However, for such $P \in \mathfrak{P}$,

$$
\because \mathbb{A}_{\alpha} \in \mathbb{X}^{\infty} \quad \therefore \exists I^{\prime} \in \mathbb{A}_{\alpha} \text { s.t. } I_{P} \subset I^{\prime} \Rightarrow \neq I_{P} \in \mathbb{I}_{\alpha}
$$

Combining the two lemmas, we have:

Also, the inner product form:

$$
\left\{\begin{array}{l}
\left|\left\langle\mathfrak{L}_{\mathfrak{P}} f, \mathfrak{L}_{\mathfrak{B}^{\prime}} g\right\rangle\right| \quad \lesssim \min \left(\delta^{\frac{\beta-\alpha-1}{2}}, 2^{-n / 2}\right) 2^{-n / 2}\|f\|_{L^{2}}\|g\|_{L^{2}} \\
\left|\left\langle\mathfrak{L}_{\mathfrak{P}}^{*} f, \mathfrak{R}_{\mathfrak{\not}}^{*}, g\right\rangle\right| \\
\lesssim \delta^{\frac{\beta-\alpha-\alpha}{2}} 2^{-n}\|f\|_{L^{2}}\|g\|_{L^{2}} .
\end{array}\right.
$$

8.5 Row Configuration

With clusters being thoroughly examined, we build from them a larger structure to exploit the temporal aspect of the control.

Definition 8.5.1 (Row).

- A row is an open ∞-apart 1 -stack. That is, \mathfrak{R} is a row if:

$$
\mathfrak{R}=\bigsqcup_{j} \mathfrak{P}_{j} \wedge \forall j, \begin{cases}\mathfrak{P}_{j} & \unlhd \text {-convex } \\
P \in \mathfrak{P}_{j} & \Longrightarrow\left\{\begin{array}{l}
\lambda P \triangleleft \mathfrak{p}_{j} \\
\tilde{I}_{P} \subset I_{\mathfrak{p}_{j}}
\end{array}\right. \\
k \neq j & \Longrightarrow I_{\mathfrak{p}_{j}} \cap I_{\mathfrak{p}_{k}}=\varnothing\end{cases}
$$

- Two rows are Λ-apart if the collection of clusters are Λ-apart.
- An open Λ-apart Ξ-stack is actually Ξ rows that are both mutually Λ-apart and mutually \unlhd-incomparable.

Remark. Due to the disjointness of the supports of the corresponding operators of open clusters in a row, all the preceding estimates have direct adaptations replacing open clusters with rows.

Lemma 8.5.2 (Row estimates).
Given $\mathfrak{R}_{\alpha}, \mathfrak{R}_{\alpha}^{\prime} \subset \mathbb{P}_{n, \alpha}$ and $\mathfrak{R}_{\beta} \subset \mathbb{P}_{n, \beta}$ three rows and a measurable set $A \subset \mathbb{R}^{D}$, we have the following estimates:

- Single row estimate:

$$
\left\|\mathfrak{L}_{\mathfrak{R}_{\alpha}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}=\left\|\mathfrak{L}_{\mathfrak{R}_{\alpha}}^{*}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)} \lesssim 2^{-n}
$$

- In-level interaction:

$$
\begin{cases}\left\|\mathfrak{L}_{\mathfrak{R}_{\alpha}^{\prime}} \mathfrak{L}_{\mathfrak{R}_{\alpha}}^{*}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)} \lesssim \Lambda^{-\epsilon} 2^{-n} & \mathfrak{R}_{\alpha} \text { and } \mathfrak{R}_{\alpha} \text { are } \Lambda \text {-apart } \\ \left\|\mathfrak{L}_{\mathfrak{R}_{\alpha}^{\prime}}^{*} \mathfrak{L}_{\mathfrak{R}_{\alpha}}\right\|_{\mathcal{B} \mathcal{L}\left(L^{2}, L^{2}\right)}=0 & \mathfrak{R}_{\alpha} \text { and } \mathfrak{R}_{\alpha} \text { are } \unlhd \text {-incomparable }\end{cases}
$$

- Cross-level interaction:

$$
\left\{\begin{array}{lll}
\left\|\mathfrak{L}_{\mathfrak{R}_{\beta}} \mathfrak{L}_{\mathfrak{R}_{\alpha}}^{*}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)} & \lesssim \delta^{\frac{\beta-\alpha-1}{2}} 2^{-n} & \\
\| \operatorname{lin}\left(\delta^{\frac{\beta-\alpha-1}{2}}, 2^{-n / 2}\right) 2^{-n / 2} & & \alpha<\beta \\
\left\|\mathfrak{L}_{\mathfrak{R}_{\beta}}^{*} \mathfrak{L}_{\mathfrak{R}_{\alpha}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)} & \lesssim \min
\end{array}\right.
$$

Proof. We consider the following natural decomposition:

$$
\mathfrak{L}_{\mathfrak{R}_{\alpha}} f=\sum_{j} \mathfrak{L}_{\mathfrak{P}_{\alpha, j}} f=\sum_{j} \chi_{E_{\mathfrak{P}_{\alpha, j}}} \mathfrak{L}_{\mathfrak{P}_{\alpha, j}} \chi_{I_{\mathfrak{p}_{\alpha, j}}} f .
$$

Since $E_{\mathfrak{P}_{\alpha, j}}$ s are disjoint and so are $I_{\mathfrak{p}_{\alpha, j}}$ s, we have:

$$
\begin{aligned}
\left\|\mathfrak{L}_{\mathfrak{R}_{\alpha}} f\right\|_{L^{2}}^{2} & =\sum_{j}\left\|\mathfrak{L}_{\mathfrak{P}_{\alpha, j}} \chi_{I_{\mathfrak{p}_{\alpha, j}}} f\right\|_{L^{2}\left(E_{\mathfrak{F}_{\alpha, j}}\right)}^{2} \\
& \lesssim 2^{-n} \sum_{j}\|f\|_{L^{2}\left(I_{\mathfrak{p}_{\alpha, j}}\right)}^{2} \leq 2^{-n}\|f\|_{L^{2}}^{2} .
\end{aligned}
$$

This completes the single row estimate. For \mathfrak{R}_{α} and $\mathfrak{R}_{\alpha}^{\prime}$ being Λ-apart, we
extract separation factor. By setting $\mathfrak{U}_{\mathfrak{P}}:=\left|\mathfrak{L}_{\mathfrak{P}}^{*}\right|+M_{\mathfrak{P}}^{*}$, we have:

$$
\begin{aligned}
& \left|\left\langle\mathfrak{L}_{\mathfrak{R}_{\alpha}}^{*} f, \mathfrak{L}_{\mathfrak{R}_{\alpha}^{\prime}}^{*} g\right\rangle\right| \\
& \leq \sum_{j, k}\left|\int_{I_{\mathfrak{p}_{\alpha, j}} \cap I_{\mathfrak{p}_{\alpha, k}^{\prime}}} \mathfrak{L}_{\mathfrak{P}_{\alpha, j}}^{*} \chi_{E_{\mathfrak{P}_{\alpha, j}}} f \cdot \overline{\mathfrak{L}_{\mathfrak{P}_{\alpha, k}^{\prime}}^{*} \chi_{E_{\mathfrak{P}_{\alpha, k}^{\prime}}^{\prime}} g} d \mu\right| \\
& \lesssim \Lambda^{-\epsilon_{2}} \sum_{j, k}\left\|\mathfrak{U}_{\mathfrak{P}_{\alpha, j}} \chi_{E_{\mathfrak{P}_{\alpha, j}} f} f\right\|_{L^{2}\left(I_{\mathfrak{p}_{\alpha, j}} \cap I_{\mathfrak{p}_{\alpha, k}^{\prime}}\right)}\left\|\mathfrak{U}_{\mathfrak{P}_{\alpha, k}^{\prime}} \chi_{E_{\mathfrak{F}_{\alpha, k}^{\prime}} g} g\right\|_{L^{2}\left(I_{\mathfrak{p}_{\alpha, j}} \cap I_{\mathfrak{p}_{\alpha, k}^{\prime}}\right)} \\
& \leq \Lambda^{-\epsilon_{2}}\left(\sum_{j}\left\|\mathfrak{U}_{\mathfrak{P}_{\alpha, j}} \chi_{E_{\mathfrak{P}_{\alpha, j}}} f\right\|_{L^{2}\left(I_{\mathfrak{p}_{\alpha, j}}\right)}^{2}\right)^{1 / 2}\left(\sum_{k}\left\|\mathfrak{U}_{\mathfrak{P}_{\alpha, k}^{\prime}} \chi_{E_{\mathfrak{P}_{\alpha, k}^{\prime}}} g\right\|_{L^{2}\left(I_{\mathfrak{p}_{\alpha, k}^{\prime}}\right)}^{2}\right)^{1 / 2} \\
& \lesssim \Lambda^{-\epsilon_{2}} 2^{-n}\left(\sum_{j}\|f\|_{L^{2}\left(E_{\mathfrak{P}_{\alpha, j}}\right)}^{2}\right)^{1 / 2}\left(\sum_{k}\|g\|_{L^{2}\left(E_{\mathfrak{P}_{\alpha, k}^{\prime}}\right)}^{2}\right)^{1 / 2} \\
& \leq \Lambda^{-\epsilon_{2}} 2^{-n}\|f\|_{L^{2}}\|g\|_{L^{2}} .
\end{aligned}
$$

The other in-level interaction is trivial since the support of the operators are disjoint. Lastly, cross-level interaction is reduced to the following:

$$
\left\{\begin{array}{l}
\left\|\chi_{\sqcup \mathbb{A}_{\beta-1}} \mathfrak{L}_{\mathfrak{R}_{\alpha}} f\right\|_{L^{2}} \lesssim \min \left(\delta^{\frac{\beta-\alpha-1}{2}}, 2^{-n / 2}\right)\|f\|_{L^{2}} \\
\left\|\chi_{\sqcup \mathbb{A}_{\beta-1}} \mathfrak{L}_{\mathfrak{R}_{\alpha}}^{*} f\right\|_{L^{2}} \lesssim \delta^{\frac{\beta-\alpha-1}{2}} 2^{-n / 2}\|f\|_{L^{2}}
\end{array}\right.
$$

Using the natural decomposition and an analogue of the single row argument, we can extend the result from clusters to rows.

8.6 Almost Orthogonality

We specify our constructions: $l=m=n$ and $\delta=2^{-4}$,

$$
\forall \alpha \in \mathbb{N}, \mathbb{P}_{n, \alpha} \rightsquigarrow\left\{\begin{array}{l}
\text { some sparse parts } \\
\lesssim n \text { open } 2^{n \kappa} \lesssim \text {-apart } 2^{n} \text {-stacks }
\end{array}\right.
$$

We interpret the open $2^{n \kappa} \lesssim$-apart 2^{n}-stacks as 2^{n} rows with additional structure. Therefore, we naturally would consider the following configuration:

Definition 8.6.1 (Cluster tower or BMO Forest in [Lie20]).
Given $\mathbb{P} \subset \mathbb{P}_{n}$, we say \mathbb{P} is a cluster tower if, in every level $\alpha \in \mathbb{N}$, we have:

$$
\mathbb{P} \cap \mathbb{P}_{n, \alpha}=\bigsqcup_{j=1}^{2^{n}} \mathfrak{R}_{\alpha, j}, \quad \text { where }\left\{\mathfrak{R}_{\alpha, j}\right\}_{j=1}^{2^{n}} \quad \text { are }\left\{\begin{array}{l}
\text { rows } \\
\unlhd \text {-incomparable } \\
2^{n \kappa} \lesssim \text {-apart } .
\end{array}\right.
$$

We see that \mathbb{P}_{n} consists of $\lesssim n$ cluster towers. Therefore, we only need to obtain a bound with an exponential decay to compensate the polynomial growth of the the number of cluster tower in \mathbb{P}_{n} as we sum over $n \in \mathbb{N}$. As we apply the Cotlar-Stein lemma $\left(T T^{*}-T^{*} T\right.$ argument), we have:

Theorem 8.6.2 (Cluster tower L^{2} estimate).
Given $\mathbb{P} \subset \mathbb{P}_{n}$ a cluster tower, as long as $\kappa \geq 2 / \epsilon_{2}$, we have:

$$
\left\|\mathfrak{L}_{\mathbb{P}} f\right\|_{L^{2}} \lesssim n 2^{-n / 2}\|f\|_{L^{2}} .
$$

Proof. Decomposing everything into rows, we have

$$
\mathbb{P}=\bigsqcup_{\alpha \in \mathbb{N}} \mathbb{P} \cap \mathbb{P}_{n, \alpha}=\bigsqcup_{\alpha \in \mathbb{N}} \bigsqcup_{j=1}^{2^{n}} \Re_{\alpha, j}=\bigsqcup_{\gamma=0}^{2 n-1} \bigsqcup_{\alpha \in 2 n \mathbb{N}+\gamma} \bigsqcup_{j=1}^{2^{n}} \Re_{\alpha, j}
$$

We verify the condition for Cotlar-Stein Lemma (TT** $T^{*} T$ argument): For fixed $\alpha \in 2 n \mathbb{N}+\gamma$ and $1 \leq j \leq 2^{n}$, we have:

$$
\begin{aligned}
& \sum_{\beta \in 2 n \mathbb{N}+\gamma} \sum_{k=1}^{2^{n}}\left\|\mathfrak{L}_{\mathfrak{R}_{\beta, k}} \mathfrak{L}_{\mathfrak{R}_{\alpha, j}}^{*}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}^{1 / 2} \\
= & \left\|\mathfrak{L}_{\mathfrak{R}_{\alpha, j}} \mathfrak{L}_{\mathfrak{R}_{\alpha, j}}^{*}\right\|_{\mathcal{B} \mathcal{L}\left(L^{2}, L^{2}\right)}^{1 / 2}+\sum_{\substack{1 \leq k \leq 2^{n} \\
k \neq j}}\left\|\mathfrak{L}_{\mathfrak{R}_{\alpha, k}} \mathfrak{L}_{\mathfrak{R}_{\alpha, j}}^{*}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}^{1 / 2} \\
+ & \sum_{\beta \in \underset{\substack{2 n \mathbb{N}+\gamma \\
\beta \neq \alpha}}{ } \sum_{k=1}^{2^{n}} \| \mathfrak{L}_{\mathfrak{R}_{\beta, k}} \mathfrak{L}_{\mathfrak{R}_{\alpha, j}}^{*}}^{l} \|_{\mathcal{B} \mathcal{L}\left(L^{2}, L^{2}\right)}^{1 / 2} \\
\lesssim & 2^{-n / 2}+2^{-n \kappa \epsilon_{2} / 2} 2^{-n / 2} \cdot\left(2^{n}-1\right)+\sum_{\beta-\alpha \in 2 n \mathbb{Z} \backslash\{0\}} 2^{1-|\beta-\alpha|} 2^{-n / 2} 2^{n} \\
\lesssim & 2^{-n / 2} .
\end{aligned}
$$

For the dual estimate we have:

$$
\begin{aligned}
& \sum_{\beta \in 2 n \mathbb{N}+\gamma} \sum_{k=1}^{2^{n}}\left\|\mathfrak{L}_{\mathfrak{R}_{\beta, k}}^{*} \mathfrak{L}_{\mathfrak{R}_{\alpha, j}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}^{1 / 2} \\
= & \left\|\mathfrak{L}_{\mathfrak{R}_{\alpha, j}}^{*} \mathfrak{L}_{\mathfrak{R}_{\alpha, j}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}^{1 / 2}+\sum_{\substack{1 \leq k \leq 2^{n} \\
k \neq j}}\left\|\mathfrak{L}_{\mathfrak{R}_{\alpha, k}^{*}} \mathfrak{L}_{\mathfrak{R}_{\alpha, j}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}^{1 / 2} \\
+ & \sum_{\beta \in 2 n \mathbb{N}+\gamma}^{\beta \neq \alpha} \\
& \sum_{k=1}^{2^{n}}\left\|\mathfrak{L}_{\mathfrak{R}_{\beta, k}}^{*} \mathfrak{L}_{\mathfrak{R}_{\alpha, j}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}^{1 / 2} \\
\lesssim & 2^{-n / 2}+0+\sum_{\beta-\alpha \in 2 n \mathbb{Z} \backslash\{0\}} \min \left(2^{1-|\beta-\alpha|}, 2^{-n / 4}\right) 2^{-n / 4} 2^{n} \\
\lesssim & 2^{-n / 2} .
\end{aligned}
$$

As a result, we have:

$$
\left\|\mathfrak{L}_{\mathbb{P}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)} \leq \sum_{\gamma=0}^{2 n-1}\left\|\sum_{\alpha \in 2 n \mathbb{N}+\gamma} \sum_{j=1}^{2^{n}} \mathfrak{L}_{\mathfrak{R}_{\alpha, j}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)} \lesssim n 2^{-n / 2}
$$

Theorem 8.6.3 (L^{2} bound on cluster parts).
Let $\mathbb{P} \subset \tilde{\mathbb{D}}$ be the full collection of the cluster parts, we have:

$$
\left\|\mathfrak{L}_{\mathbb{P}} f\right\|_{L^{2}} \lesssim\|f\|_{L^{2}}
$$

Proof. We break $\mathbb{P} \cap \mathbb{P}_{n}$ into $\lesssim n$ cluster towers and apply the cluster tower L^{2} estimate:

$$
\left\|\mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n}} f\right\|_{L^{2}} \lesssim n^{2} \cdot 2^{-n / 2}\|f\|_{L^{2}}
$$

As we sum over $n \in \mathbb{N}$, we finally have:

$$
\left\|\mathfrak{L}_{\mathbb{P}} f\right\|_{L^{2}} \lesssim \sum_{n \in \mathbb{N}} n^{2} \cdot 2^{-n / 2}\|f\|_{L^{2}} \lesssim\|f\|_{L^{2}}
$$

which completes the full argument.

8.7 Bateman's Extrapolation Argument

In order to recover full L^{p} bound for the cluster parts while exploiting the orthogonality structure of $\mathcal{B} \mathcal{L}\left(L^{2}, L^{2}\right)$, Zorin-Kranich adopted an extrapolation argument used in [BT13] by refining/localizing the L^{2} estimate. Yet, his argument requires a reorganization of the full collection of the tiles including the sparse parts. We come up with a similar idea without altering the configuration of the sparse parts. For starters, we state the extrapolation method matching our L^{2} settings:

Lemma 8.7.1 (L^{2} Extrapolation).
Fix $p>2$ and an operator T mapping $L^{p, 1}$ qualitatively to $L^{p, \infty}$. Suppose for any $G, H \subset \mathbb{R}^{D}$ measurable we can find measurable subset $G^{\prime} \subset G$ and $H^{\prime} \subset H$ such that:

- Error loss control:

$$
\left(\frac{\left|G \backslash G^{\prime}\right|}{|G|}\right)^{1 / p}+\left(\frac{H \backslash H^{\prime}}{H}\right)^{1 / p^{\prime}} \leq \epsilon<1
$$

- Testing condition:

$$
\left\|\chi_{H^{\prime}} T\left(\chi_{G^{\prime}} f\right)\right\|_{L^{2}} \leq \Lambda\left(\frac{|H|}{|G|}\right)^{1 / 2-1 / p}\left\|\chi_{G^{\prime}} f\right\|_{L^{2}}
$$

we then have the following quantitative control:

$$
\|T f\|_{L^{p, \infty}} \lesssim \frac{\Lambda}{1-\epsilon}\|f\|_{L^{p, 1}}
$$

Our goal now is to extrapolate a $L^{p, 1} \rightarrow L^{p, \infty}$ bound that does not necessary have a exponential decay for a cluster tower in \mathbb{P}_{n}. This is still okay since we can first extrapolate a bit further and interpolate with the L^{2}
bound to spread the exponential decay. Also, for $p \in(1,2)$, we just switch to control the adjoint. With that been said, we still need to find a systematic way to choose the subset G^{\prime}, H^{\prime} for given G, H. Zorin-Kranich made the following observation:

Observation. Given measurable set $A \subset \mathbb{R}^{D}$ and $\rho \in(0,1)$, we have:

$$
I \not \subset M \chi_{A}^{-1}(\rho, \infty] \Longrightarrow \frac{|I \cap A|}{|I|} \leq \rho
$$

This is equivalent to say:

$$
I \subset M \chi_{A}^{-1}(\rho, \infty] \Longleftarrow f_{I}\left|\chi_{A}\right| d \mu=\frac{|I \cap A|}{|I|}>\rho .
$$

That reminds us the support restriction control. As we explore the idea, we would naturally come up with the following settings:

Definition 8.7.2.

Given measurable $A \subset \mathbb{R}^{D}$, we set:

$$
A_{\rho}:=M \chi_{A}^{-1}(\rho, \infty], \text { where } \rho \in(0,1)
$$

For a collection of tiles $\mathbb{P} \subset \tilde{\mathbb{D}}$, we set:

$$
\left\{\begin{array}{l}
\mathbb{P}_{A, \rho}:=\left\{P \in \mathbb{P} \mid I_{P} \not \subset A_{\rho}\right\} \\
\mathbb{P}_{A, \rho}^{*}:=\left\{P \in \mathbb{P} \mid \tilde{I}_{P} \not \subset A_{\rho}\right\} .
\end{array}\right.
$$

Due to our construction, we have the following:
Lemma 8.7.3 (Density Manipulation).
Given $\mathbb{P} \subset \tilde{\mathbb{D}}$, a measurable set $A \subset \mathbb{R}^{D}$, and $\rho \in(0,1)$, we have:

$$
I \in \mathbb{J}_{\mathbb{P}_{A, \rho}} \cup \mathbb{L}_{\mathbb{P}_{A, \rho}} \cup \mathbb{J}_{\mathbb{P}_{A, \rho}^{*}} \cup \mathbb{L}_{\mathbb{P}_{A, \rho}^{*}} \Longrightarrow \frac{|I \cap A|}{|I|} \lesssim \rho
$$

Proof. By construction, we have:

$$
\begin{aligned}
& I \in \mathbb{J}_{\mathbb{P}_{A, \rho}} \cup \mathbb{L}_{\mathbb{P}_{A, \rho}} \cup \mathbb{J}_{\mathbb{P}_{A, \rho}^{*}} \cup \mathbb{L}_{\mathbb{P}_{A, \rho}^{*}} \\
\Longrightarrow & \exists P \in \mathbb{P}_{A, \rho} \cup \mathbb{P}_{A, \rho}^{*} \text { s.t. } \tilde{I}_{P} \underset{\kappa, D}{\subsetneq} I \\
\Longrightarrow & \exists \Lambda \underset{\kappa, D}{\lesssim} 1 \text { s.t. } \tilde{I}_{P} \subset \Lambda I \not \subset A_{\rho}=M \chi_{A}^{-1}(\rho, \infty] \\
\Longrightarrow & \frac{|I \cap A|}{|I|} \leq \Lambda \frac{|\Lambda I \cap A|}{|\Lambda I|} \leq \Lambda \rho .
\end{aligned}
$$

From this, we derive:

Corollary 8.7.3.1 (In-level localized estimate).
For an open cluster $\mathfrak{P} \subset \mathbb{P}_{n, \alpha}$ at $\mathfrak{p} \in \mathbb{P}_{n, \alpha}$, we have:

$$
\begin{cases}\left\|\chi_{A} \mathfrak{L}_{\mathfrak{P}} \chi_{A_{\rho}^{c}} f\right\|_{L^{p}} & \lesssim \min \left(2^{-n / p}, \rho^{1 / p}\right)\left\|\chi_{A_{\rho}^{c}} f\right\|_{L^{p}\left(I_{\mathfrak{p}}\right)} \\ \left\|\chi_{A} \mathfrak{L}_{\mathfrak{P}}^{*} \chi_{A_{\rho}^{c}} f\right\|_{L^{p}} & \lesssim 2^{-n / p^{\prime}} \rho^{1 / p}\left\|\chi_{A_{\rho}^{c}} f\right\|_{L^{p}\left(I_{\mathfrak{p}}\right)}\end{cases}
$$

Similarly, for a row $\mathfrak{R} \subset \mathbb{P}_{n, \alpha}$, we have:

$$
\begin{cases}\| \chi_{A} \mathfrak{L}_{\mathfrak{R}} \chi_{A_{\rho}^{c}} f & \lesssim \min \left(2^{-n / p}, \rho^{1 / p}\right)\left\|\chi_{A_{\rho}^{c}} f\right\|_{L^{p}} \\ \| \chi_{A} \mathfrak{L}_{\mathfrak{R}}^{*} \chi_{A_{\rho}^{c}} f & \lesssim \|_{L^{p}} \\ \lesssim 2^{-n / p^{\prime}} \rho^{1 / p}\left\|\chi_{A_{\rho}^{c}} f\right\|_{L^{p}}\end{cases}
$$

Lastly, for an open $2^{n \kappa}$-apart 2^{n}-stack $\mathbb{P} \subset \mathbb{P}_{n, \alpha}$, we have:

$$
\left\|\chi_{A} \mathfrak{L}_{\mathbb{P}} \chi_{A_{\rho}^{c}} f\right\|_{L^{2}},\left\|\chi_{A} \mathfrak{L}_{\mathbb{P}}^{*} \chi_{A_{\rho}^{c}} f\right\|_{L^{2}} \lesssim \rho^{1 / 2}\left\|\chi_{A_{\rho}^{c}} f\right\|_{L^{2}}
$$

as long as $\kappa \geq 2 / \epsilon_{2}$.
Proof. We observe that:

$$
\begin{cases}\chi_{A} \mathfrak{L}_{\mathfrak{P}} \chi_{A_{\rho}^{c}} f & =\chi_{I_{\mathfrak{p}} \cap A} \mathfrak{L}_{\mathfrak{P}_{A, \rho}^{*}} \chi_{I_{\mathfrak{p}} \cap A_{\rho}^{c}} f \\ \chi_{A} \mathfrak{L}_{\mathfrak{P}}^{*} \chi_{A_{\rho}^{c}} f & =\chi_{I_{\mathfrak{p}} \cap A} \mathfrak{L}_{\mathfrak{P}_{A, \rho}}^{*} \chi_{I_{\mathfrak{p}} \cap A_{\rho}^{c}} f .\end{cases}
$$

Since both $\mathfrak{P}_{A, \rho}$ and $\mathfrak{P}_{A, \rho}^{*}$ are open cluster at \mathfrak{p}, applying support restriction control on $\chi_{I_{\mathfrak{p}} \cap A} \mathfrak{L}_{\mathfrak{P}_{A, \rho}^{*}}$ and $\chi_{I_{\mathfrak{p}} \cap A} \mathfrak{L}_{\mathfrak{P}_{A, \rho}}^{*}$ gives the desired control. As a immediate result, natural decomposition yield the estimate for row configuration. To control an open $2^{n \kappa}$-apart 2^{n}-stack, we discard irrelevant tiles:

$$
\begin{cases}\chi_{A} \mathfrak{L}_{\mathbb{P}} \chi_{A_{\rho}^{c}} f & =\chi_{A} \mathfrak{L}_{\mathbb{P}_{A, \rho}^{*}} \chi_{A_{\rho}^{c}} f \\ \chi_{A} \mathfrak{L}_{\mathbb{P}}^{*} \chi_{A_{\rho}^{c}} f & =\chi_{A} \mathfrak{L}_{\mathbb{P}_{A, \rho}}^{*} \chi_{A_{\rho}^{c}} f\end{cases}
$$

and proceed in the following two ways:

- To control $\chi_{A} \mathfrak{L}_{\mathbb{P}_{A, \rho}^{*}}$, we exploit the density manipulation to improve the extraction of separation factor. That is, given an open cluster $\mathfrak{P} \subset \mathbb{P}_{n, \alpha}$ at $\mathfrak{p} \in \mathbb{P}_{n, \alpha}$, we have:

$$
\begin{aligned}
& \left\|\left|\mathfrak{L}_{\mathfrak{P}_{A, \rho}^{*}}^{*} \chi_{A} f\right|+M_{\mathfrak{P}_{A, \rho}^{*}}^{*} \chi_{A} f\right\|_{L^{2}\left(I_{\mathfrak{p}}\right)} \\
\lesssim & \left\|\chi_{A} \mathfrak{L}_{\mathfrak{P}_{A, \rho}^{*}}\right\|_{\mathcal{B} \mathcal{L}\left(L^{2}, L^{2}\right)}\|f\|_{L^{2}\left(I_{\mathfrak{p}}\right)}+\left(\sup _{P \in \mathfrak{P}_{A, \rho}^{*}} \frac{\left|E_{P} \cap A\right|}{\left|I_{P}\right|}\right)^{1 / 2}\|f\|_{L^{2}\left(I_{\mathfrak{p}}\right)} \\
\lesssim & \min \left(2^{-n / 2}, \rho^{1 / 2}\right)\|f\|_{L^{2}\left(I_{\mathfrak{p}}\right)}
\end{aligned}
$$

As a result, for open clusters $\mathfrak{P}, \mathfrak{P}^{\prime} \subset \mathbb{P}_{n, \alpha}$ at $\mathfrak{p}, \mathfrak{p}^{\prime} \in \mathbb{P}_{n, \alpha}$ respectively that are Λ-apart and \unlhd-incomparable, we have:

$$
\left|\left\langle\mathfrak{L}_{\mathfrak{P}_{A, \rho}^{*}}^{*} \chi_{A} f, \mathfrak{L}_{\mathfrak{P}_{A, \rho}^{\prime *}}^{*} \chi_{A} f\right\rangle\right| \lesssim \Lambda^{-\epsilon_{2}} \min \left(2^{-n}, \rho\right)\|f\|_{L^{2}\left(I_{\mathfrak{p}} \cap I_{\mathfrak{p}^{\prime}}\right)}^{2} .
$$

Therefore, for Λ-apart rows $\mathfrak{R}, \mathfrak{R}^{\prime} \subset \mathbb{P}_{n, \alpha}$, we also have:

$$
\left\|\chi_{A} \mathfrak{L}_{\mathfrak{R}_{A, \rho}^{\prime *}} \mathfrak{L}_{\mathfrak{R}_{A, \rho}^{*}}^{*} \chi_{A}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)} \lesssim \Lambda^{-\epsilon_{2} / 2} \min \left(2^{-n / 2}, \rho^{1 / 2}\right) .
$$

This gives us the desired control to apply the Cotlar-Stein Lemma(TT*$T^{*} T$ argument): We first decompose $\mathbb{P}_{A, \rho}^{*}$ into rows $\left\{\mathfrak{R}_{j}\right\}_{j=1}^{2^{n}}$ and verify the following:

$$
\begin{aligned}
& \sum_{k=1}^{2^{n}}\left\|\chi_{A} \mathfrak{L}_{\mathfrak{R}_{k}} \mathfrak{L}_{\Re_{j}}^{*} \chi_{A}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}^{1 / 2} \\
= & \left\|\chi_{A} \mathfrak{L}_{\mathfrak{R}_{j}} \mathfrak{L}_{\mathfrak{R}_{j}}^{*} \chi_{A}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}^{1 / 2}+\sum_{\substack{1 \leq k \leq 2^{n} \\
k \neq j}}\left\|\chi_{A} \mathfrak{L}_{\mathfrak{\Re}_{k}} \mathfrak{L}_{\mathfrak{\Re}_{j}}^{*} \chi_{A}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}^{1 / 2} \\
\lesssim & \min \left(2^{-n / 2}, \rho^{1 / 2}\right)+2^{-n \kappa \epsilon_{2} / 2} \min \left(2^{-n / 2}, \rho^{1 / 2}\right) \cdot\left(2^{n}-1\right) \\
\lesssim & \min \left(2^{-n / 2}, \rho^{1 / 2}\right) .
\end{aligned}
$$

For the dual estimate, \unlhd-incomparability implies:

$$
\begin{aligned}
& \sum_{k=1}^{2^{n}}\left\|\mathfrak{L}_{\mathfrak{R}_{k}}^{*} \chi_{A} \mathfrak{L}_{\mathfrak{R}_{j}}\right\|_{\mathcal{B} \mathcal{L}\left(L^{2}, L^{2}\right)}^{1 / 2} \\
= & \left\|\mathfrak{L}_{\mathfrak{R}_{j}}^{*} \chi_{A} \chi_{A} \mathfrak{L}_{\mathfrak{R}_{j}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}^{1 / 2}+\sum_{\substack{1 \leq k \leq 2^{n} \\
k \neq j}}\left\|\mathfrak{L}_{\mathfrak{R}_{k}}^{*} \notin A \mathfrak{L}_{\mathfrak{R}_{j}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}^{1 / 2} \\
\lesssim & \min \left(2^{-n / 2}, \rho^{1 / 2}\right) .
\end{aligned}
$$

Combining the two, we have:

$$
\left\|\chi_{A} \mathfrak{L}_{\mathbb{P}_{A, \rho}^{*}} f\right\|_{L^{2}} \lesssim \min \left(2^{-n / 2}, \rho^{1 / 2}\right)\|f\|_{L^{2}} .
$$

- To control $\chi_{A} \mathfrak{L}_{\mathbb{P}_{A, \rho}}^{*}$, we use orthogonality directly. After decomposing $\mathbb{P}_{A, \rho}$ into rows $\left\{\mathfrak{R}_{j}\right\}_{j=1}^{2^{n}}$, we can control its adjoint:

$$
\begin{aligned}
\left\|\mathfrak{L}_{\mathbb{P}_{A, \rho}} \chi_{A} f\right\|_{L^{2}}^{2} & =\sum_{j=1}^{2^{n}}\left\|\mathfrak{L}_{\mathbb{R}_{j}} \chi_{A} f\right\|_{L^{2}}^{2} \\
& \leq \sum_{j=1}^{2^{n}}\left(\left\|\chi_{A} \mathfrak{L}_{\mathbb{R}_{j}}^{*}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)} \cdot\|f\|_{L^{2}}\right)^{2} \\
& \lesssim 2^{n} \cdot\left(2^{-n / 2} \rho^{1 / 2}\|f\|_{L^{2}}\right)^{2}=\rho\|f\|_{L^{2}}^{2} \\
\Longrightarrow\left\|\chi_{A} \mathfrak{L}_{\mathbb{P}_{A, \rho}}^{*} f\right\|_{L^{2}} & \lesssim \rho^{1 / 2}\|f\|_{L^{2}} .
\end{aligned}
$$

We now present the analogue for a cluster tower:
Lemma 8.7.4 (Cluster tower localized L^{2} estimate).
Given $\mathbb{P} \subset \mathbb{P}_{n}$ a cluster tower, as long as $\kappa \geq 2 / \epsilon_{2}$, we have:

$$
\left\|\chi_{A} \mathfrak{L}_{\mathbb{P}} \chi_{A_{\rho}^{c}} f\right\|_{L^{2}},\left\|\chi_{A} \mathfrak{L}_{\mathbb{P}}^{*} \chi_{A_{\rho}^{c}} f\right\|_{L^{2}} \lesssim n\left(1-\log _{2} \rho\right) \rho^{1 / 2}\left\|\chi_{A_{\rho}^{c}} f\right\|_{L^{2}}
$$

Proof. For starters, we take $N:=\left\lceil\frac{n}{2}\left(1-\log _{2} \rho\right)\right\rceil$ and decompose \mathbb{P} :

$$
\mathbb{P}=\bigsqcup_{\alpha \in \mathbb{N}} \mathbb{P} \cap \mathbb{P}_{n, \alpha}=\bigsqcup_{\alpha \in \mathbb{N}} \bigsqcup_{j=1}^{2^{n}} \Re_{\alpha, j}=\bigsqcup_{\gamma=0}^{N-1} \bigsqcup_{\alpha \in N \mathbb{N}+\gamma} \bigsqcup_{j=1}^{2^{n}} \Re_{\alpha, j}
$$

We again verify the condition for Cotlar-Stein Lemma but, this time, view a stack as a whole. We start with estimating $\chi_{A} \mathfrak{L}_{\mathbb{P}} \chi_{A_{\rho}^{c}}$. Given $\alpha \in N \mathbb{N}+\gamma$, we have:

$$
\begin{aligned}
& \sum_{\beta \in N \mathbb{N}+\gamma}\left\|\chi_{A} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \beta}} \chi_{A_{\rho}^{c}} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}}^{*} \chi_{A}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}^{1 / 2} \\
& =\left\|\chi_{A} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}} \chi_{A_{\rho}^{c}} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}^{*}}^{*} \chi_{A}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}^{1 / 2} \\
& +\sum_{\substack{\beta \in N \mathbb{N}+\gamma \\
\beta \neq \alpha}}\left\|\chi_{A} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \beta}} \chi_{A_{\rho}^{c}} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}}^{*} \chi_{A}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}^{1 / 2} \\
& \leq\left\|\chi_{A} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}} \chi_{A_{\rho}^{c}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)} \\
& +\sum_{\substack{\beta \in N \mathbb{N}+\gamma \\
\beta<\alpha}}\left(\sum_{k=1}^{2^{n}}\left\|\chi_{A} \mathfrak{L}_{\mathfrak{R}_{\beta, k}} \chi_{A_{\rho}^{c} \cap \sqcup \mathbb{A}_{\alpha-1}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}\left\|\chi_{A_{\rho}^{c}} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}^{*}}^{*} \chi_{A}\right\|_{\mathcal{B} \mathcal{L}\left(L^{2}, L^{2}\right)}\right)^{1 / 2} \\
& +\sum_{\substack{\beta \in N \mathbb{N}+\gamma \\
\beta>\alpha}}\left(\left\|\chi_{A} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \beta}} \chi_{A_{\rho}^{c}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)} \sum_{k=1}^{2^{n}}\left\|\chi_{A_{\rho}^{c} \cap \sqcup \mathbb{A}_{\beta-1}} \mathfrak{L}_{\mathfrak{R}_{\alpha, k}}^{*} \chi_{A}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}\right)^{1 / 2} \\
& \lesssim \rho^{1 / 2}+\sum_{\substack{\beta \in N \mathbb{N}+\gamma \\
\beta \neq \alpha}} 2^{1-|\beta-\alpha|}\left(\min \left(2^{-n / 2}, \rho^{1 / 2}\right) \cdot 2^{n} \cdot \rho^{1 / 2}\right)^{1 / 2} \lesssim \rho^{1 / 2} .
\end{aligned}
$$

For the dual condition, we have:

$$
\begin{aligned}
& \sum_{\beta \in N \mathbb{N}+\gamma}\left\|\chi_{A_{\rho}^{c}} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \beta}^{*}} \chi_{A} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}} \chi_{A_{\rho}^{c}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}^{1 / 2} \\
& =\left\|\chi_{A_{\rho}^{c}} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}}^{*} \chi_{A} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}} \chi_{A_{\rho}^{c}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}^{1 / 2} \\
& +\sum_{\substack{\beta \in N \mathbb{N}+\gamma \\
\beta \neq \alpha}}\left\|\chi_{A_{\rho}^{c}} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \beta}}^{*} \chi_{A} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}} \chi_{A_{\rho}^{c}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}^{1 / 2} \\
& \leq\left\|\chi_{A} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}} \chi_{A_{\rho}^{c}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)} \\
& +\sum_{\beta \in N \mathbb{N}+\gamma}\left(\sum_{k<\alpha}^{2^{n}}\left\|\chi_{A_{\rho}^{c}} \mathfrak{L}_{\mathfrak{R}_{\beta, k}}^{*} \chi_{A \cap \sqcup \mathbb{A}_{\alpha-1}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}\left\|\chi_{A} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}} \chi_{A_{\rho}^{c}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}\right)^{1 / 2} \\
& +\sum_{\beta \in N \mathbb{N}+\gamma}\left(\left\|\chi_{A_{\rho}^{c}} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \beta}}^{*} \chi_{A}\right\|_{\mathcal{B} \mathcal{L}\left(L^{2}, L^{2}\right)} \sum_{k=1}^{2^{n}}\left\|\chi_{A \cap \sqcup \mathbb{A}_{\beta-1}} \mathfrak{L}_{\Re_{\alpha, k}} \chi_{A_{\rho}^{c}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}\right)^{1 / 2} \\
& \lesssim \rho^{1 / 2}+\sum_{\substack{\beta \in N \mathbb{N}+\gamma \\
\beta \neq \alpha}}\left(\min \left(2^{2-2|\beta-\alpha|}, 2^{-n / 2}, \rho^{1 / 2}\right) \cdot 2^{n} \cdot \rho^{1 / 2}\right)^{1 / 2} \lesssim \rho^{1 / 2}
\end{aligned}
$$

Therefore, we have:

$$
\begin{aligned}
\left\|\chi_{A} \mathfrak{L}_{\mathbb{P}} \chi_{A_{\rho}^{c}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)} & \leq \sum_{\gamma=0}^{N}\left\|\sum_{\alpha \in N \mathbb{N}+\gamma} \chi_{A} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}} \chi_{A_{\rho}^{c}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)} \\
& \lesssim N \rho^{1 / 2} \lesssim n\left(1-\log _{2} \rho\right) \rho^{1 / 2}
\end{aligned}
$$

To estimate $\chi_{A} \mathfrak{L}_{\mathbb{P}}^{*} \chi_{A_{\rho}^{c}}$, we follow similar arguments:

$$
\begin{aligned}
& \quad \sum_{\beta \in N \mathbb{N}+\gamma}\left\|\chi_{A} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \beta}^{*}}^{*} \chi_{A_{\rho}^{c}} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}} \chi_{A}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}^{1 / 2} \\
& =\left\|\chi_{A} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}}^{*} \chi_{A_{\rho}^{c}} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}} \chi_{A}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}^{1 / 2} \\
& +\sum_{\substack{\beta \in N \mathbb{N}+\gamma \\
\beta \neq \alpha}}\left\|\chi_{A} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \beta}}^{*} \chi_{A_{\rho}^{c}} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}} \chi_{A}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}^{1 / 2} \\
& \leq\left\|\chi_{A} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}^{*}}^{*} \chi_{A_{\rho}^{c}}\right\|_{\mathcal{B} \mathcal{L}\left(L^{2}, L^{2}\right)} \\
& +\sum_{\beta \in N \mathbb{N}+\gamma}^{\beta<\alpha}\left(\sum_{k=1}^{2^{n}}\left\|\chi_{A} \mathfrak{L}_{\mathfrak{R}_{\beta, k}}^{*} \chi_{A_{\rho}^{c} \cap \sqcup \mathbb{A}_{\alpha-1}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}\left\|\chi_{A_{\rho}^{c}} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}} \chi_{A}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}\right)^{1 / 2} \\
& +\sum_{\beta \in N \mathbb{N}+\gamma}\left(\left\|\chi_{A} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \beta}}^{*} \chi_{A_{\rho}^{c}}\right\|_{\mathcal{B} \mathcal{L}\left(L^{2}, L^{2}\right)} \sum_{k=1}^{2^{n}}\left\|\chi_{A_{\rho}^{c} \cap \sqcup \mathbb{A}_{\beta-1}} \mathfrak{L}_{\mathfrak{R}_{\alpha, k}} \chi_{A}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}\right)^{1 / 2} \\
& \lesssim \\
& \lesssim \rho^{1 / 2}+\sum_{\beta \in N \mathbb{N}+\gamma}\left(\min \left(2^{2-2|\beta-\alpha|}, 2^{-n / 2}\right) \rho^{1 / 2} \cdot 2^{n} \cdot \rho^{1 / 2}\right)^{1 / 2} \lesssim \rho^{1 / 2} .
\end{aligned}
$$

For the dual condition, we have:

$$
\begin{aligned}
& \quad \sum_{\beta \in N \mathbb{N}+\gamma}\left\|\chi_{A_{\rho}^{c}} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \beta}} \chi_{A} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}^{*}}^{*} \chi_{A_{\rho}^{c}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}^{1 / 2} \\
& =\left\|\chi_{A_{\rho}^{c}} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}} \chi_{A} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}^{*}}^{*} \chi_{A_{\rho}^{c}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}^{1 / 2} \\
& +\sum_{\substack{ \\
\beta \neq N+\alpha}}\left\|\chi_{A_{\rho}^{c}} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \beta}} \chi_{A} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}^{*}}^{*} \chi_{A_{\rho}^{c}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}^{1 / 2} \\
& \leq\left\|\chi_{A} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}^{*}}^{*} \chi_{A_{\rho}^{c}}^{c}\right\|_{\mathcal{B} \mathcal{L}\left(L^{2}, L^{2}\right)} \\
& +\sum_{\beta \in N \mathbb{N}+\gamma}\left(\sum_{k=1}^{2^{n}}\left\|\chi_{A_{\rho}^{c}} \mathfrak{L}_{\mathfrak{R}_{\beta, k}} \chi_{A \cap \sqcup \mathbb{A}_{\alpha-1}}\right\|_{\mathcal{B} \mathcal{L}\left(L^{2}, L^{2}\right)}\left\|\chi_{A} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}}^{*} \chi_{A_{\rho}^{c}}^{c}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)}\right)^{1 / 2} \\
& +\sum_{\beta \in N \mathbb{N}+\gamma}\left(\left\|\chi_{A_{\rho}^{c}} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \beta}} \chi_{A}\right\|_{\mathcal{B} \mathcal{L}\left(L^{2}, L^{2}\right)}^{2^{n}} \sum_{k=1}\left\|\chi_{A \cap \sqcup \mathbb{A}_{\beta-1}} \mathfrak{L}_{\mathfrak{R}_{\alpha, k}}^{*} \chi_{A_{\rho}^{c}}^{c}\right\|_{\mathcal{B} \mathcal{L}\left(L^{2}, L^{2}\right)}\right)^{1 / 2} \\
& \lesssim \rho^{1 / 2}+\sum_{\beta \in N \mathbb{N}+\gamma}\left(\min \left(2^{2-2|\beta-\alpha|}, \rho^{1 / 2}\right) \cdot 2^{-n / 2} \cdot 2^{n} \cdot \rho^{1 / 2}\right)^{1 / 2} \lesssim \rho^{1 / 2} .
\end{aligned}
$$

Therefore, we have:

$$
\begin{aligned}
\left\|\chi_{A} \mathfrak{L}_{\mathbb{P}}^{*} \chi_{A_{\rho}^{c}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)} & \leq \sum_{\gamma=0}^{N}\left\|\sum_{\alpha \in N \mathbb{N}+\gamma} \chi_{A} \mathfrak{L}_{\mathbb{P} \cap \mathbb{P}_{n, \alpha}^{*}} \chi_{A_{\rho}^{c}}\right\|_{\mathcal{B L}\left(L^{2}, L^{2}\right)} \\
& \lesssim N \rho^{1 / 2} \lesssim n\left(1-\log _{2} \rho\right) \rho^{1 / 2}
\end{aligned}
$$

This completes the proof.
We now use such localized estimate to extrapolate our estimate:
Theorem 8.7.5 (Cluster tower weak estimate).
Given $\mathbb{P} \subset \mathbb{P}_{n}$ a cluster tower, as long as $\kappa \geq 2 / \epsilon_{2}$, we have:

$$
\left\|\mathfrak{L}_{\mathbb{P}} f\right\|_{L^{p, \infty}},\left\|\mathfrak{L}_{\mathbb{P}}^{*} f\right\|_{L^{p, \infty}} \underset{p}{\lesssim} n\|f\|_{L^{p, 1}}, \quad \forall p \in(2, \infty)
$$

Proof. Let T denote either $\mathfrak{L}_{\mathbb{P}}$ or $\mathfrak{L}_{\mathbb{P}}^{*}$. We intend to use L^{2} Extrapolation.

- For measurable sets $G, H \subset \mathbb{R}^{D}$. We want to find suitable measurable subsets $G^{\prime} \subset G$ and $H^{\prime} \subset H$ satisfying both error loss control and testing condition.
- To match the form, we should set: $\rho \bar{\sim} \frac{|H|}{|G|}$. That is, we will fine tune a constant $C \in \mathbb{R}_{+}$and set $\rho:=C \frac{|H|}{|G|}$.
- We define $G^{\prime}:=G \backslash H_{\rho}$ and $H^{\prime}:=H$ and verify the error loss control:

$$
\begin{aligned}
& \left(\frac{\left|G \backslash G^{\prime}\right|}{|G|}\right)^{1 / p}+\left(\frac{\left|H \backslash H^{\prime}\right|}{|H|}\right)^{1 / p^{\prime}}=\left(\frac{\left|G \cap H_{\rho}\right|}{|G|}\right)^{1 / p} \leq\left(\frac{\left|H_{\rho}\right|}{|G|}\right)^{1 / p} \\
\leq & \left(\frac{\rho^{-1}\|M\|_{L^{1} \rightarrow L^{1, \infty}}|H|}{|G|}\right)^{1 / p}=\left(\frac{\|M\|_{L^{1} \rightarrow L^{1, \infty}}}{C}\right)^{1 / p}=: \epsilon<1
\end{aligned}
$$

as long as $C>\|M\|_{L^{1} \rightarrow L^{1, \infty}} \gtrsim C$.

- To verify the testing condition, we see that:
- If $\rho \gtrsim 1$, we may just apply cluster tower L^{2} estimate:

$$
\begin{aligned}
&\left\|\chi_{H^{\prime}} T \chi_{G^{\prime}} f\right\|_{L^{2}} \leq\left\|T \chi_{G^{\prime}} f\right\|_{L^{2}} \lesssim n 2^{-n / 2}\left\|\chi_{G^{\prime}} f\right\|_{L^{2}} \\
& \lesssim n \rho^{1 / 2-1 / p}\left\|\chi_{G^{\prime}} f\right\|_{L^{2}} \underset{p}{\lesssim} n\left(\frac{|H|}{|G|}\right)^{1 / 2-1 / p}\left\|\chi_{G^{\prime}} f\right\|_{L^{2}} .
\end{aligned}
$$

- If $\rho \ll 1$, we use cluster tower localized L^{2} estimate:

$$
\begin{aligned}
&\left\|\chi_{H^{\prime}} T \chi_{G^{\prime}} f\right\|_{L^{2}}=\left\|\chi_{H} T \chi_{H_{\rho}^{c}} \chi_{G^{\prime}} f\right\|_{L^{2}} \\
& \lesssim n\left(1-\log _{2} \rho\right) \rho^{1 / 2}\left\|\chi_{H_{\rho}^{c}} \chi_{G^{\prime}} f\right\|_{L^{2}} \\
& \lesssim n \rho^{1 / 2-1 / p}\left\|\chi_{G^{\prime}} f\right\|_{L^{2}} \underset{p}{\lesssim} n\left(\frac{|H|}{|G|}\right)^{1 / 2-1 / p}\left\|\chi_{G^{\prime}} f\right\|_{L^{2}} .
\end{aligned}
$$

- L^{2} Extrapolation yields:

$$
\|T f\|_{L^{p, \infty}} \underset{p}{\lesssim} n\|f\|_{L^{p, 1}},
$$

which completes the proof.
As a direct corollary, through interpolation, we have:
Corollary 8.7.5.1 (Cluster tower strong estimate).
Given $\mathbb{P} \subset \mathbb{P}_{n}$ a cluster tower, as long as $\kappa \geq 2 / \epsilon_{2}$, we have:

$$
\left\|\mathfrak{L}_{\mathbb{P}} f\right\|_{L^{p}} \underset{p}{\lesssim} n 2^{-n \eta_{p}}\|f\|_{L^{p}}, \quad \text { where } \quad \eta_{p}>0, \quad \forall p \in(1, \infty)
$$

Corollary 8.7.5.2 (L^{p} bound on cluster parts).
Given the full collection of the cluster parts $\mathbb{P} \subset \tilde{\mathbb{D}}$, we have:

$$
\left\|\mathfrak{L}_{\mathbb{P}} f\right\|_{L^{p}} \underset{p}{\lesssim}\|f\|_{L^{p}}, \quad \forall p \in(1, \infty)
$$

Remark. Through our method, instead of rearranging the whole collection as in [Zor19], we recover the result in [Lie20]. That is, the decomposition itself is effective enough for the $L^{p} \rightarrow L^{p}$ bound. Still, the formulation in [Lie20] is similar to a decoupling inequality, which contains more information about the structure of the L^{p} estimate.

As we combine the estimation of sparse tower and cluster tower, we prove the main result in the following reduced form:

Theorem 8.7.6 (Main theorem for the linearized operator).

$$
\left\|\mathfrak{L}_{\mathbb{P}_{n}} f\right\|_{L^{p}} \underset{p}{\lesssim} p(n) 2^{-n \eta_{p}}\|f\|_{L^{p}}, \quad \text { where } \eta_{p}>0, \quad \forall p \in(1, \infty)
$$

Summing over $n \in \mathbb{N}$ yields:

$$
\|\mathfrak{L} f\|_{L^{p}} \underset{p}{\lesssim}\|f\|_{L^{p}}, \quad \forall p \in(1, \infty) .
$$

References

[Car66] Lennart Carleson. "On convergence and growth of partial sums of Fourier series". In: Acta Math. 116 (1966), pp. 135-157. DOI: 10. 1007/BF02392815. URL: https://doi.org/10.1007/BF02392815.
[Fef73] Charles Fefferman. "Pointwise Convergence of Fourier Series". In: Annals of Mathematics 98.3 (1973), pp. 551-571. ISSN: 0003486X. URL: http://www.jstor.org/stable/1970917.
[LT97] Michael Lacey and Christoph Thiele. "Lp Estimates on the Bilinear Hilbert Transform for $2<p<\infty$ ". In: Annals of Mathematics 146.3 (1997), pp. 693-724. ISSN: 0003486X. URL: http://www. jstor.org/ stable/2952458.
[LT00] Michael Lacey and Christoph Thiele. "A proof of boundedness of the Carleson operator". In: Mathematical Research Letters 7 (July 2000), pp. 361-370. DOI: 10.4310/MRL. 2000.v7.n4.a1.
[Duo+01] J. Duoandikoetxea et al. Fourier Analysis. American Mathematical Society, 2001. ISBN: 9780821821725. URL: https://books.google. com.tw/books?id=6fgRCgAAQBAJ.
[SW01] Elias M. Stein and Stephen Wainger. "Oscillatory integrals related to Carleson's theorem". In: Mathematical Research Letters 8.6 (2001), pp. 789-800. DOI: $10.4310 / \mathrm{mrl} .2001 . \mathrm{v} 8 . \mathrm{n} 6$. a9. URL: https: //doi.org/10.4310\%2Fmrl. 2001.v8.n6.a9.
[Lie08] Victor Lie. The (weak-L²) Boundedness of The Quadratic Carleson Operator. 2008. arXiv: 0710.2168 [math. CA].
[BT13] Michael Bateman and Christoph Thiele. "Lp estimates for the Hilbert transforms along a one-variable vector field". In: Analysis \& PDE 6.7 (Dec. 2013), pp. 1577-1600. ISSN: 2157-5045. DOI: $10.2140 /$ apde.2013.6.1577. URL: http://dx.doi.org/10.2140/apde. 2013.6.1577.
[LN15] Andrei K. Lerner and Fedor Nazarov. Intuitive dyadic calculus: the basics. 2015. arXiv: 1508.05639 [math.CA].
[Zor19] Pavel Zorin-Kranich. Modulation invariant operators. 2019. arXiv: 1902.10577 [math.CA].
[Lie20] Victor Lie. "The Polynomial Carleson operator". In: Annals of Mathematics 192.1 (2020), pp. 47-163. ISSN: 0003486X, 19398980. URL: https://www.jstor.org/stable/10.4007/annals.2020.192.1. 2.

