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Abstract

We deeply study the LP boundedness of the generalization of Polyno-
mial Carleson Operator. Our main contributions, comparing to previous
works done by Victor Lie and by Pavel Zorin-Kranich, are to verify de-
tails with explicit constructions, modify some part with language of Sparse
Dominance, and provide a heuristic interpretation about the whole treat-
ment in general.

Keywords—Time-Frequency Analysis, Multi-Resolution Analysis, CZO, Sparse Domi-

nance, T'T* method
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1 Introduction

There are three major themes in Harmonic Analysis that ordinary tools in Real
Analysis are weak against:

Singular = Singular Integral Operator
Maximal = Hardy-Littlewood Maximal Operator
Oscillatory = Fourier Integral Operator.

Still, mathematicians have developed tools for individual class of operators

and have gained fruitful understanding. Before becoming overly optimistic, how-
ever, what if there is an instance where the three themes combine together?

Definition 1.0.1 (Carleson Operator).

iNy
pw-/ e_yf(y)dy’-

Cf(:) = sup

NeR
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Indeed, we see that there are:

e Singularity in the integral kernel %y
e Pointwise maximal in the evaluation.
e Oscillation within the integral.

Naturally, we can not expect the tools designed for one particular theme to
be effective against such operator. Maybe, we just need to combine all the
tools in a smart ways. Additionally, we better do so in a way that separate
different features from different themes so that each individual tools can
shine. In hindsight, the missing glue to stick all the tools together is Time-
Frequency Analysis. While, the participation of sparse dominance is a
pleasant surprise.

Of course, this operator is not something mathematicians conjure up just
for fun. To convince the reader that such type of operators arises naturally, we
first introduce some notions.

1.1 Basic Notions

As a preparation for stating the main result, we introduce some definitions and
notations. Throughout this thesis, we only work under Euclidean setting (RP).

Definition 1.1.1.

Qa = {q € Rlz1][x2] -+ - [zp] | degq < d}

Definition 1.1.2 (Standard Kernel).
Given K : RP xRP — C, we say K is a Standard Kernel if given z,y € RP,
we have ”Size Control”:

K (2, 9)| < llo =P

Furthermore, there’s T € (0,1] such that for A € RP satisfying Hlﬂ/‘\l
also have "t-Holder Type Control”:

< 5. we

s A _ A/l =y’
K(z+-y +Kx,y—|—-‘ SV
Kt |+ Ky 0] 1S S

Definition 1.1.3 (Calderon-Zygmund Operator).
Given T € BL(L?, L?), we say T is a Calderon-Zygmund Operator (CZO) if it’s
assoctated to a standard kernel K in the following sense:

Vf,g e C¥, suppfNsuppg =@ = (T'f,g) = /K(wvy)f(y)@dwdy-

Remark. Kernel determines a CZO up to a difference of Multiplication Opera-
tor. That is: Given T, S € BL(L?, L?) be a pair of CZ0s, if T, S are associated
to the same kernel, then

Ime L™ st.VfeL? Tf—Sf=nmf.
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For the rest of the thesis, we fix T € BL(L?, L?) a CZO, denote the corre-
sponding kenerl as K(-,), and use f € C2° to denote a generic function. Now,
we introduce some related operators.

Definition 1.1.4 (Singular Integral Operator).

If the kernel satisfies additional regularity condition:

Vz e RP, lim K(z,y)dy ezists,
€207 Je<la—yl<1

the following limit:
lim K(y)f(y)dy

ol
€07 Je<||—y|

actually defines a CZO associated to K. We call this particular type of CZO
Singular Integral Operator.

Definition 1.1.5 (Maximal Truncated CZO).

/ K9 (y)dy.
r<|-—yll<R

Definition 1.1.6 (Maximal Operator).

M, f(-) = sup|f|B,r
B>:

T.f(-) := sup
r<R

where B denotes a cube and |f|p, = (fg |f|7'd,u)1/r with r € [1,00) and u
the Lebesgue measure. Notice that Hardy-Littlewood Maximal Operator is
essentially the case when r = 1. For convenience, we write:

Mf:=Mf and |f|g:= ‘f|B,1-

Definition 1.1.7 (Polynomial Modulation Invariant CZO).

Caf () = sup [T(e'"f)()]

q€Qq

Definition 1.1.8 (Maximal Truncated Polynomial Modulation Invariant CZO).
Cau () = sup Tu(e"f)(-)
q€Qua

Observation. Due to a version of Cotlar’s Inequality([Duo+01]Lemma 5.15),

we always have:
Tf SMTf+Mf,

and thus,
Caf SMCaf +MFf.

As a result, boundedness of Cy implies boundedness of Cgs.
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1.2 Motivation

We provide some instances where considering such type of operators are relevant.

e Pointwise a.e. Convergence of Fourier Series: In 1915, Luzin con-
jectured that the Foruier series of a L2 function converges almost ev-
erywhere to the function itself. The result is proved fifty years afterward.

Theorem 1.2.1 (Carleson’s Theorem).
Qualitative statement:(Lennart Carleson, 1966 [Car66])

The Fourier Series of L? function converge a.e. to itself.
Quantitative statement:(Charles Fefferman, 1978 [Fef73])
T be Hilbert Transform on' T, ||Cyf|lprery S | fllz2cm-

The original proof was quite complicated. It was not until 1973 that
Fefferman gave a much elegant proof on the quantitative equivalence based
on Stein Maximal Principle and ideas of Time-Frequency Analysis.

e Constant Coefficient PDE: We provide the most elementary case:
Heat equation to illustrate the idea.

{ut(:r,t) — Agu(z,t) = fla,t), t>0

u(z,0) = uo(x),

Due to the linearity of the equation, we reduce to solve the following two
sets of equation:

t *Az 7t =Y, t
{“t(xv) u(z,t) =0, t>0 homogeneous

u(z,0) = up(x)

non-homogeneous.

ug(x,t) — Agu(x,t) = f(x,t), t>0
u(z,0) =0

Suppose we have understood how the regularity of the initial data ug
affects the regularity of the solution u of the homogeneous equation.
We now proceed to investigate how the non-homogeneous term f af-
fects the regularity of the solution u in the sense of Sobolev space
language. To do so, we first assume the following stronger condition:
Given u(-,-), f(+,+) € S(RP x R) that vanishes for ¢ < e with some € > 0,

Ut(l',t) - Axu(‘rat) = f(l',t)
Fourier (27m'T + 47r2|§|2) ul¢, 1) = f(ﬁ, T)

2miT
2miT+4m2|E]?

Lif =31 (m§(f)),

By defining m(&, 1) := and setting
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we expect L;f to solve u;. Notice that m(\, \27) = m(&,7), thus by
setting K := F~1(m), we have:

Kz, \2t) = A" P2 K (2,t).
As we expand Ly f:
ef() =K = f()
dp
D+2 2 d et
/R+ [, Ko 01 = (. #1) . (.0

— [ K@tg@ty[ - (or. ) Lo, b),
sD R4 p

we reduce to control the following operator:

Definition 1.2.2 (Hilbert Transform Along Paraboloid).
2 ) 2P
H(y,s)f(xat) =p.v. Rf((xvt) - (py7p S))?
Denoting Fourier on (Z,t) := (z2,23, - ,Zp,t)” as F, we deduce:
o & —2mi(p?rs+pEg) & g d
§ (Hoof) () = pov. [ 200D — g E1) 2,
R
which can be controlled by Cy with T" be Hilbert Transform:

‘§ (H(y,s)f) ('aév 7—)‘ S C2§f('aé7 T)'

If we have ||Cyf||;2 S ||f|lL2, then using the tensor product structure
of the product measure and Plancherel theorem, we have:

|8 (0 0) ~,§,TH §Hi€f ~,£,r]
N e = |5 (H = 11£llz2 -

This implies that ||Lf| ;2 S [|f]l 2 (There is an analogous statement for
A, u.) As a result, we can use density argument to infer that:

Vf € L*(RP xR,), Ju solving the equation s.t. u;, Ayu € L*(RP xR ),
which can be easily translated to Sobolev space language.

Remark. If D =1, the linear term in the modulation vanishes. This
case is covered by Stein and Wainger’s result in [SW01]

Modulation Symmetries: An operator may possess certain symmetry.
One such instance is polynomial modulation symmetry. We expect
that understanding Cy and Cy. paves the way to the understanding of
some more complicated operators.
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— Explicit Polynomial Modulation Invariance: (Hard but have result
on L? — [P boundedness.)

Ca(ef) =Calf)

q € Qy— {Cd* (eiqf) = Oy, (f)

— Implicit Polynomial Modulation Symmetry: (No good result on
the boundedness of the operator for n > 2)

e [T
i (5 ()= pa- | I 5= esn
S ai = agt) = a() = Ha (69£))_, = éHg ()],
j=1

Indeed, inspired by Fefferman’s proof on the boundedness of Cy, Thiele
and Lacey came up with a much elegant argument using the same
philosophy to prove the boundedness of H(; _;):

Theorem 1.2.3 (Christoph Thiele & Michael Lacey, 1997 [LT97]).
Vp,q,T € (2,00) such that % + % +1=1,

[(Ha,—1(f:9), M < W fllzellgllzellhlz--

p.q,T

Later on, they notice the similarity (similar modulation symmetry)
between C7 and H(; 1) and use their method to prove:

Theorem 1.2.4 (Christoph Thiele & Michael Lacey, 2000 [LT00]).

ICfllz SN fllL2, where T is Hilbert Transform.

It is tempting to believe that there is an implicit correspondence:

Caf, Carf = Hy (fj)?:l'

However, there must be some missing links between the two scenarios.
To elaborate, we present some of the differences:

(=) We need to find a way to convert the multilinear nature of the
operator into products of linear structures. Additionally, we bet-
ter extract the implicit modulation symmetry into the form of
explicit modulation invariance.

(<=) The conversion of C; into H(; _1)-like operator, relies on the Fourier
correspondence between linear modulation and translation.
There is no good notion for polynomial modulation.
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e Detection of the Singularity: It is an idea from one of my colleagues.
Let us compare 1 and Tl\ and its corresponding operators:

Hf()=pv [ = (y)dy
Xf()=pov [ S fW)dy.

Some easy verification shows that:

{||Hf||Lp SNl
X £l o & 1 £ e

As we put in modulation: Fixing Q@ € C*°(R,R), we define:

, Vpe(1,00).

Qf(+) == sup

$EQ

1 .
po. [ = 0 1)y,

we see that the behavior of () is morally governed by the two cases: H
and X. That is, if Q is too large, we can expect the modulation recovers
the absolute value that is:

(X[l <1Qf and, thus, [Qf]l ., ZIfllL». Vp € (1,00).

Otherwise, we have for example: Q := Q; and T := H,

le = Qf anda thus? ||QfHLP 5 ||fHLP7 Vp € (1,00)

The interesting part is to find the borderline between the two cases:

Definition 1.2.5 (Detection of Singularity).
Given T € BL(L?,L?) a CZO, we say Q C C*(RP R) detects the
singularity at p € (1,00) if the operator defined as:

Qf() :=sup [T (") ()]
$EQ
is not bounded at p. That is, ||Qf|l;» L I fll1s-

In other words, Q; does not detect the singularity of Hilbert trans-
form. We think a non-trivial example of Q that detects the singularity
at specific p would give us new light on the understanding of the singu-
larity of an operator.

1.3 Main Result

Stein conjectured that Cy is bounded for suitable K(-,-). In his joint work
with Wainger [SWO01], a restricted case (excluding linear modulation) is
resolved through the technique of stationary phase formula and T7T*-T*T
arguments. While, Lie, after proving the weak(2,2) bound of Cy with T being
Hilber transform on T, proved the Stein conjecture for the following case:

doi:10.6342/N'TU202100160



Theorem 1.3.1 (Victor Lie, 2020 Annals of Mathematics [Lie20]).
T be Hilbert Transform on T,

CafllLe(r) Sd I fllze(my, Vp € (1,00)
P,

Inspired by the proof, Zorin-Kranich extended the result and resolved the
full Stein conjecture:

Theorem 1.3.2 (Pavel Zorin-Kranich, 2019 [Zor19]).
For arbitrary D, T,

[Caxflle < Nfllze, Vp e (1,00).

T,D,d,p

Remark. The precise condition for Theorem 1.5.2 is actually weaker:

1T fllpe S fllge VP € (1,00).
p

That is, even if there is no C.Z.0 associated to the kernel K(-,-), the condition
18 still valid. Alternatively, it infers that polynomials with bouneded degree
cannot detect the singularity of the kernel if T™ is bounded.

By previous observation, it’s tempting to think Cy a more fundamental ob-
ject and try proving its boundedness first. Naturally, we would come up with
our first guess:

Theorem 1.3.3.
If T is a Singular Integral Operator, we always have:

1Caflle < IIfllLe, Vp € (1,00)
T.D.d,p

However, in hindsight, we actually treat Theorem 1.3.3 as a direct corollary
of Theorem 1.3.2. Notice that it’s quite different from the treatment in [Lie20].
The author proves Theorem 1.3.3 for T being Hilbert Transform directly. We
will address what causes the difference in 3.4.
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2 Mathematical Jigsaw Puzzle

In this section, we give a heuristic explanation about how we’ll use Time-
Frequency Analysis to proceed with the proof of Theorem 1.3.2.

2.1

Cut out the Pieces

The idea is to linearize Cy,:

Caxf(-) ~» K(y)e "W fy)dy =: Can f()
ro) S =yll<R()

so that the time-frequency information of f(-) gets transferred to the operator
itself. Since q(.y is encoded with the sheet music—time-frequency portrait

of f(-), Time-Frequency Analysis would be done on Cy, instead of f.

Next, we break Cy, into tiny pieces and treat them as mathematical jigsaw
puzzles. Our goal is to fit those pieces into a ”bounded” box. To do so, we do
the following decomposition:

Scale(s € Z): We break K(-,-) according to scales so that each piece
mimics the behavior of a wavelet. As a result, the s-scale piece of the
operator extracts 2°-resolution features only. In short, we have

K(z,y) ~ Zwavelets(a?—y) A Tuf(-) ~ sup iwaveletS * f()]-

SEL s<8

Temporal block(I C R”): With a fixed scale, we decompose the piece to
separate the support into different temporal position with block-size
matching the scale.

Spectral block(w C Qg): Fixing scale and temporal position, we decom-
pose the piece again so that g fall in distinct spectral position with
block-size respecting some kind of Uncertainty Principle.

That is, a generic piece satisfies:

2% ~ diameter of I ~ diameter of w™?!,

where s is the natural scaling of I X w and is denoted by s;x,.,. In short,

éd*f() ~ Zpiecelxwf(')v

where

with

piece,, f() ~ wavelet,,, , * (€0 f) ()xz,.. ()

Erww ={z€l|qgcew A r, <2<« < R.}.

Naturally, this comes with good properties. For instance, all the pieces have
similar sizes in BL(LP, L?). However, we need finer estimation, and we do so by
tracking the following attributes for each piece:

10
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e Scale : This corresponds to the resolution of features the operator de-
tects/takes in.

e Tile position : This refers to the position of tile P := Ip X wp on the
time-frequency phase plane.

e Density : This measures how large portion of Ip gets sent through q(.
._ |Ep|

to wp within the acceptable scale range. That is, A(P) := T

As an immediate result,

|piecep fllLr < A(P)YP||f] Lo

This provides us with some intuition. By classifying the pieces according to
their density (i.e. A(P) ~ 27™), we just need to remember extracting the 27"-
factor from our arguments. Namely, we shall focus on P, := {P | A(P) = 27"}.
(Details would be made precise in 4.)

2.2 Find Good Configurations

Up till now, we’ve reduced the puzzle to P,, sub-puzzle. To proceed, we need to
know how well pieces can be packed together in BL(L?, LP). Naturally, a good
starting point would be BL(L?, L?). This way, we can use Orthogonality to
help us organize our pieces. As expected, Je > 0, s.t. VP; € P,

{<piecep0f7 piecep f) =0 = FR NP =0 (7.1.3)

|<piece"‘P0 f, piece}‘glf>| < 27" (1 + distancep, p,)” “.

Alternatively, if P C P, cluster at a spot (£,17) € RP x Qg, the cluster

clusterpf := Zpiecepf will extract distinct 2°7-resolution features of f
PeP

={s€eZ|s<s<s

near (£,7n). Therefore, provided that {sp}per . s |s<s<75} , we
VP € P, distancep ¢, <1

have ¢, ~ n as long as x € U Ep is around £, and Multi-Resolution Anal-

PeP
ysis yields

5
|clusterp f| ~ Z wavelet | * (e )| Xo-_dense sot
s=s around ¢ (823)

5 T* (einf)X27"-dense set”

around &

Moreover, by viewing cluster of tiles as a whole, we have analogue of previous
two Orthogonality relation: for P? C IP,, cluster at p; € RP x Q4, we have

(8.3.1)

(clusterpo f, clusterp: f) =0 —= JP'NJP' =g
|(clusterpo f, clusterp: f)] <27 (1 + distancep, p, ) ©.

11
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Combining what have been learned, a reasonable strategy to solve the puzzle
would be to organize P,, into the following two ”good” configurations:

e Sparse Parts: P C P, has few overlaps on R” x Q,4, and Orthogonality
gives strong enough control. (Details are presented in 7)

e Cluster Parts: P C P, consists of multiple clusters but clusters are 2™
apart on RP x Q4 with C' > 1. By combining both Orthogonality and
Multi-Resolution Analysis, we can apply Cotlar-Stein Lemma and
arrive at a suitable control. (Details are presented in 8).

2.3 Combinatorial Wizardry and Analytic Magecraft

Now, to systematically extract those good configurations from P,,, we follow
both [Lie20] and [Zor19] , which follow Charles Fefferman’s idea in [Fef73]. To
elaborate, we equip P, with an ” order-like” relation to reflect their ”incidental
properties”. Consequently, both sparse parts and cluster parts have alternate
interpretations:

e Sparse Parts: Collections of Anti-Chains
e Cluster Parts: Collections of Convex Sets

Therefore, through some Combinatorial methods devised by Fefferman, we
can extract the desired configurations. (Details in 5.3.)

Still, the original argument in [Fef73] has no control over how "high” clusters
stack. The author isolates those who stack too high and proves that they have
”small supports”, which is why ”Exceptional Sets” arise in [Fef73]. This
prevents us from finer estimate and direct L? — L? bound.

One of the innovation in [Lie20] is the clever use of John-Nirenberg in-
equality. The arguments guarantee that "higher clusters” has ”"smaller
supports”. That is, instead of stacking like Jenga, the clusters stack like
Eiffel Tower. Consequently, Lie eliminated the use of Exceptional Sets and
derived L? — L? bound directly. (Details in 6.3.)

On the other hand, Zorin-Kranich simplified the argument and put addi-
tional steps to make the system more compatible with certain ”temporal di-
lation”. (Details in 6.4.)

Finally, to acquire full L? — LP bound, we modify Lie’s argument on sparse
parts with the language in [LN15] and adopt Zorin-Kranich’s treatment on clus-
ter parts. To be more specific, we first derive p-bounds insensitive to density:

e Sparse Parts: We resort to pointwise sparse dominance on sparse parts.

e Cluster Parts: We use the Multi-Resolution Analysis on clusters
to derive ”localized estimate” and the extrapolation method adopted by
Bateman in [BT13] to acquire LP1 — LP»>° bound. (Detail in 8.7.)

To complete the argument, we interpolate to spread the 27" factor to LP¢ — LP?
bound and use the geometric decay on density to sum everything up.

12
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3 Tools and Facts

In this section, we establish some tools and some useful facts without proof.

For starters, we borrow part of the setting and language in [Zorl9] and
[SWO01] to quantify the effect of polynomial phases on behavior of oscillatory
integrals.

Next, we follow the setting in [LN15] and sum up some useful facts about
sparse systems.

At the end of the section, we introduce our modified settings and explain
how it relates to the original settings and why the change of the formulation in
[Zor19] may be necessary to generalize the result in [Lie20].

Remark. Throughout this thesis, we will sometimes suppress the dependence
on Kk, k*, D, d within the <, <, S relation.

3.1 Local Oscillation of Polynomial

To apply Cotlar-Stein Lemma, we expect the need for an estimate as the
following:

~J
D,d
Oscillation of v,q
on suppy

g€ Qq el (measurable function) = ‘/ eiq't/)d,u‘ < ?

Indeed, when d = 1, Riemann—Lebesgue Lemma gives us qualitative descrip-
tion: the higher the oscillation, the greater the cancellation. This motivates the
need to quantify the oscillation of ¢ within the support of ). However, to sim-
plify the matters, we model the support as cubes, and we, therefore, need some
related terminology:

Definition 3.1.1 (Attributes of a cube I C RP).

e c; € RP denotes the center of mass of I.

e /1 denotes the side-length of I.

o |I| :=¢;7 denotes the D-volume of I.
In short, I :=cr +{1[—1/2,1/2)P = c; + [~£;1/2,41/2)P.
Definition 3.1.2 (Temporal Dilation).

cl %)D

VC € Ry, OF = cz+cfz[—1/2,1/2>f’=cf+[‘ 2

Now, we define a weaker form of ”C”. Given I,J C RP be cubes,

Definition 3.1.3 (Roughly Contain).

IS J < 3C € Ry prescribed, st. I C CJ

13
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Finally, we characterize the local oscillation of ¢ € Q4 on cube.

Definition 3.1.4 (Seminorm on Qg4 [Zor19](4.1.5.)).

lallz := sup [q(z) —q(y)].
z,yel

As an immediate result, since Qg is a finite dimensional vector space, all
non-trivial(vanishing only on constant) seminorms are equivalent. Therefore,
we may unambiguously assign a topology generated by seminorm on Q. Still,
for our purpose, we need quantitative controls:

Properties 3.1.5 (Embedding Inequality [Zorl9]Lemma 4.1.6.).
¢ 0\?
r€s—= Pl 5 s 5 (32) lal
7 D.d Dod \ 1

Such estimate would become important as we do Multi-Resolution Analysis.

3.2 Van der Corput Estimate

Continuing previous settings,

Properties 3.2.1 ([Zorl9]Lemma 4.6.1. [SW01|Proposition 2.1.).

Vi € LY, suppy € I = '/eiqd)d,u < sup I — At L1
D.d ||A||<<||q”1>1/d
ey
S sup [ = Tat| Lo |1].
B2k <Cliqllz) /e

where () 1= ﬁ and TAY () == (- — A).

As a immediate corollary, we have a version designed for partition of unity:
For generic ¢ € L°, § > 1, I C RP be cube, we consider a fragment of partition
of unity located around I. That is,

x| f? X1
x € C° s.t.
VXl ,?X&I/fl,

and we have

Corollary 3.2.1.1.

d )
lah ) el e 120 Height of 1
i +
xe'dp| S|
‘/ D,d,5 sup | = Tav|| L 51y  Oscillation of 1.

A
Bl<(llql )/
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3.3 Sparse Language and Ambient System

The Sparse System we refer to is a sub-system of a 2"-adic System satisfying
certain properties. For our purpose, we do not work under usual Dyadic Sys-
tem. Yet, all the language in [LN15] can be easily converted. For starters, we
construct our ambient system:

Definition 3.3.1 (Standard 2"-adic System (D, C)).
D:=| |Ds, where Dy := {2 (¢+1[0,1)") be cube| ¢ € Z"}.
SEZ

We equip D with C as partial order and, for 1 C D, define:

MI:={Icl|}Jelst. ICJ} mazimal elements
Ic:={IeD|3Jelst ICJ} downward envelope.

Also, we denote the parent(immediate predecessor) of I € D as TeD.

Now, given S C D, 1 < A, we call S a Sparse System if it satisfies either of
the following equivalent([LN15] 6.1.) conditions:

Definition 3.3.2 (A-Carleson Condition [LN15] Definition 6.2.).

S is A-Carleson <= VJ € S(or equivalently, D), Z || < AlJ].
Ies, IcJ

Definition 3.3.3 (A~!-Sparse Condition [LN15] Definition 6.1.).

(| < AlE;]|

S is A~'-Sparse <= VI €S, IE; C I measurable s.t. b
FErs are disjoint

With basic terminology established, we provide the following two construc-

M, () = sup w;
-eIeD

Ssw() = ZWIXI('>

IeS

w.
tions. Given D - R,, S A-Carleson, we construct

Through Definition 3.3.3., we relate the two constructions:

Lemma 3.3.4 (Sparse-Maximal Dominance).

(S50 )] <D wr [(xr, 1)

IeS

<X e f 171 < S AIB o f Il

IeS Ies

<SAY | MM fdp < A(M,, Mf)
Ies/ Er
= [Ss.wllr S Al[My[Lr.

~
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3.4 Modified Settings

We introduce a smoothed-out but scale-discretized version of T}, and Cjg,,
which would become major tools later on. For our purpose, we

1. Prescribe np := [2V/D +1] €N, & D>>d 1, ¢ D<<d 27" where the values of

2% € N, 0 € R} would be made clear in the subsequent sections.
2. Fix x € C° satisfying:
X(np+8)[=1,117 < X < X(np42-r—8)[~1,1]P-
3. Define ¢(-) := x(27"%) — x(+) € C°. Note that:
suppp C (—np2® —1,np2" + 1)P\[-np,np|”

As a result, certain shifts Sh:= {z € Z | np < |2| < np2~® + 1}P yield

ze[0,1)P Suppe(z — ) 0,1)2,
<5 ﬁ{suprxb('—%) CJG—SLgH )

and, by our constructions,

-

z, 2 €0,1)? A ye £+00,1) = < <
0, 1) L] &+l0.m o=yl <np—1

£eSh

which is exactly the condition for 7-Hélder Type Control of K. For
convenience, we also define for I € D the following collection and set:

Shp={0€+TeD|{cSh} and I*:=| |Shy.

4. Decompose K into wavelet-like pieces:

K:ZKS

SEZ

where Va,y € RP st. x #y
Ks($7y) = ¢ (275,{(1: - y)) K(Ia y)

Since K inherits the standard kernel properties of K and the support constraint
on ¢, translation and dilation yield the following three properties:

Properties 3.4.1 (L°\Support Control).

Supsz (1'7 )

crI.
suppK, (-, x)

releD, — {
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Properties 3.4.2 (L°\Size Control).

|Ks| f, 275Dm.
D.,d

Properties 3.4.3 (7-Holder Regularity).
Kz, ) — Ko(a',-)] |z — "I\ -
r, 2’ el eD, = K (=, s < ) 17 Y- ().
{Kmm—&mw s ) et
Corollary 3.4.3.1 (Locally 7-Holder Continuity).

Ks )" 7Ks ! _ _
| (l‘ ) ($ )| S (2 sn”x_x/H)'rQ sDrc.

r—a| <2 = "
| | {|Ks('79€)—Ks('7$/)| D.d

Proof. Given |z — z'| S 2°%, we can always find S 1 cubes I; € Dy covering
the straight line joining x and ' with x; € I; on the line, where x = xo and
2’ = x,, such that:

|Ks(z,-) — KS(x/’ I < Z |Ks(zk, ) — Ks(Tp-1,°)]
j=1
(Nl —$k1||>T 1o (o I\ 9—sD
< ———— ) L S (@27 r—= 278,
M;( A L™ < (@7 e — 'l
The dual notion holds similarly. O

With such scale decomposition, we may define:

Definition 3.4.4 (Modified Truncated Maximal CZO).

s<s

T = sp | [ DKL)y

np2F < r

_ , we have:
np2°" <~ R

By tinkering with (s,3,r, R) € Z? x R? so that {

D.d

K(, dy — K (-, d 5 MAF(-).
/rs||~—y|<R G 9)f )y /g (> y)f(y)dy £C)

As a result,

Properties 3.4.5.

ITof =T f| S Mf.
D.d
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Therefore, the LP — LP behaviors of T, and T, are identical. Consequently,
it is relevant to consider:

Definition 3.4.6. _
Caxf() = sup Tu(e"f)(-),

qEQq

and immediately, we have:

Corollary 3.4.6.1.
(Canf — Canf| S MF.
D,d
Eventually, LP — LP behavior of Cy, is governed by €4, and the main result
Theorem 1.3.2 can be reduced to proving:

Theorem 3.4.7.
[€axfllr < Nfllzr, Vp € (1,00)
D.d,p
On the other hand, the main result Theorem 1.3.3 for Singular Integral type
operator cannot be derived directly through such method, since, in general:

Tf():= lim K fw)dy £ 3 [ Kl fdy,
0% Jeg|—y| =
even if:
V2 € RP, lim K(z,y)dy exists.

=0t Je<llz—y|I<1

Unless, K is, for example, Anti-Symmetric: in Lie’s works [Lie08], [Lie20],
D=1, K(z,y) L. If we choose x € C° even, we have:

= f—y .

Vs € Z, /KS(-,y)dy =0.

As a result, by using M.V.T. and D.C.T., we have:

> / Ko(9) f(y)dy

5<5<s

= [ ¥ Kl (5w) - £ dy

s<s5<s

g%:o/ff(wy) (fly) = f() dy
:p~“-/K("y)f(y)dy:Hf(~) =Tf().

In conclusion, for general standard kernel K, we should adopt Zorin-Kranich’s
approach in [Zor19)].
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4 Decomposition of the Operator

In the section, we provide the rigorous version of the following decomposition:
Canf() ~ Zwaveletsp * ("0 f) (xep ()
P

To be more specific, since we’ve established that

1Cafllze S [ fllze <= I€a fIl S 1120

we may shift our focus to €4, for the rest of the arguments. Our goal is to
reduce €4, f into sum and maximum over finite elements, to linearize the
operator, and to do the tile decomposition.

4.1 Reduction and Linearization
For starters, we notice that
Observation. Qg is separable.

That is, by explicitly enumerating rational coefficient polynomials:

{q € Q[z1][x2] - [zp] | degg < d} =: {gn}nen,

Fatou’s Lemma and some limiting arguments yield:

Caf(-) =sup T, (™" f)(-)

neN

neN
s<5

—sup | [ S0 K. (o)™ D f(g)dy

. ign (y) — .
us o aX > Ko(y)e fy)dy| =: Cax, N f()
~N<s<3<N |7 s=s

Finally, by M.C.T.,

1€as fllze = sup [[€as,n fllLr-
NeN
Consequently, we only need to acquire bounds on €4, nf independent of V.
Indeed, €4, v f is a sum and a maximum over finite elements. As a result, we

can do an elementary stopping time argument to linearize €4, y f:

RP 2% (N, -N+1,.-- N -1}
VN eN, 3 ¢ rD ﬂ {~-N+1,--- ,N —1,N} simple and measurable

qaq)
RP — {qn}r]yzl
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such that
509

S ()= | [ 30 Kalap)e o flu)iy

S=5(y

That is, regardless of the choice of N € N, the problem reduces to analyze the
following form of linear operator:

50

ef() =Y /Ks('»y)eiq“(y)f(y)dy,

S=8()

where sy, 5(,), g(, are simple measurable functions.

4.2 Tile Decomposition and Trivial Estimate

To proceed with our 3-step decomposition schemes, we first need to refine the
following relation:

2° ~ diameter of I ~ diameter of w™!.
For our purpose, we adjust the above statement to our modified settings:
e 2°% ig the actual scaling that works well with our analysis.

e I C RP is an element chosen from D, (Standard 2%-adic System) to match
the 2°%-scale.

o w C Qg will be chosen from D}, a Q4-tiling (assumed to exist) that respects
the oscillation of polynomials on I and the Uncertainty Principle:

¢ €w = llg—d¢lr <1

Notice that, by the definition of Dy and the Embedding Inequality, dimensional
analysis yields

25% = ¢; =~ diameter of I
D
I’'s and w’s "diameters” are scale-reversed

Naturally, we follow our convention and denote the natural scaling s as syx.,-
For now, we shall postpone the construction of D} and complete the decompo-
sition first:

efO=3_> >, /Ks(',y)eiq“(y)f(y)dy~XEW(')’

s=s I€D; weD}

S = mag?m
where =€R and Eryxy:={r€l|qg:€w A 8, < Srxw <Sz}-
$:= mins,
z€RP

To further simplify the notation, we shall organize the I-w parings and define:
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Definition 4.2.1 (Tile System).

D:=

Em\

| | {I xwcRP x Qy |w e Dj}

s IeDg

I
%

Definition 4.2.2 (A piece associated to P € D).

Lrf() = /KSP(‘79)€iQ<"(y)f(y)dy “XEp (")

Immediately, support and size controls yield:

Properties 4.2.3 (Single tile estimate).

1Cpfl S 2°PIfli xEps
D.d

”fHLl E
S — ey,

., where I := (nDQ”'H +3)I DI

S

)

Through direct computation, we also have:

lerfli <1705, 1Brl S AP,

1€ fllz S 117, <l e (zpys
(where A(P) := %) and, through interpolation:
Corollary 4.2.3.1 (Trivial Estimate).

1ol S APl

x,D,d,p
On the other hand, given P C D, we set:

Definition 4.2.4.
Spfi= Lpf

PcP
Eventually, we have the succinct expression:
Sf =Lsf =) Lpf
PcD
with each piece behaving ”nicely”. Moreover, since
e f € C2° has compact support,
® 5.y, 5(), q() have finite ranges,

the sum only consists of finitely many non-zero terms. As a result, we may
freely rearrange and reorganize the sum.
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4.3 Adaptive Christ Grid Construction

Before we construct D7, let us list what we expect from the construction:

o D7 tiles Qq, and, when viewed as in (Qg, || - ||1), every piece in D} contains
and is contained in a ball with radius~ 1.

e Given J C I, (w,w') € D} x D¥, we have either wNw' = @ or w C W'

In short, we would like to have a hyper-adic system on Q4. To do so, Zorin-
Kranich follows Michael Christ’s idea on constructing dyadic system on space
of homogeneous type. However, the construction would be much easier since we
only need to consider I € Dy, where s < s <'5. Essentially, we can work our
ways down from the top scale 5. By constructing the finest layer first, the rest
of the arguments become finding the correct ways to group the pieces together.
For starters, we prescribe x* 5>d 1 and, by using the Embedding Inequality, find

K D>>d 1 such that, given J C I be cubes and ¢ € Qg4, we have:

tr<27r = Jalls <27 alr.

We now set ¢ := ﬁ and proceed inductively as follows:

(s=35-0): Forall I € Dy,

(a) we select a maximal collection of polynomials Q; C Qg such that

Vg, € Qr, q#4qd = llq—d|l1 > 1.

Due to maximality,

Qd C UQEQI Bf(qa 1)
Vg,q' € Qr, q#q = Bi(q,1/2) N Bi(¢',1/2) = 2,
where Br(c,r):={q € Qa|llg—cl|1 <r}.
(b) we construct the Qg-tiling D} inductively with each piece assigned a
()

center. That is, 3D} = Q; such that, for all w € D7,

W
Bi(ew,1/2 —¢) C By (¢w,1/2) Cw C By (ew,1) C Br(cy,145).

(s >3 —k): Suppose the construction be completed so that:

(a) for all I € Dy, we have a Qy-tiling D3.
<)

b) we assign for each piece in D% a unique center: dD% = Q;, where
I I )
0

weD] = By(cw,1/2—¢) CwC Br(cy,14¢).
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s=35—k): Given I € D, 4, for all J € D, N 27,
+
(a) we select a maximal collection of polynomials Q; C Qy such that
Vg, € Qs q¢#d = lla—dll; > 1.

Due to maximality,

9 € Uyeo, Bs(a,1)
Vg,q € Q. q#q¢ = Bj(q,1/2)NB;(¢',1/2) = @,

(b) we construct inductively a partition on Q; indexed by Q:
{Chy}yeo, where Vg e Qy, By(q,1/2)NQ; C (hy C By (q,1)NQ;.
(c) we define w(.y, by setting:
D% :={wgtqeq,, where wy:= |_| Wyt

q¢'€Chy

with D% « Q defined naturally. Essentially, Vg € Qj, {wy }qrem,
is the collection of children of w.

(d) we characterize the size of each piece in D%: pick ¢ € Q,

e Exterior:
Wy 1= |_| wyg C U Bi(qd',1+5)
q'€Chy q’'€Chy
. S
c U B (%M) C By(g,1+5%)
q'€By(q,1)
e Interior:

Vq' € By(q,1/2 —¢), 3w’ €D} s.t. ¢ €'
= lew —alls < llew = d'lls+ " = alls
<27 lew —d'lli+1/2 =5
< TEEFIH 2= 12
= ¢y €y = ¢ €w Cwy = By(q,1/2—5) Cuw,
(s < s <3): In conclusion, we have:
o for every I € Dy, D7 tiles Qg (that is, | |D} = Qq) and
weD] = Br(cw,1/2—¢) Cw C Br(c,,1+5).

e forall I,J € |_|}D)S7 if J C I, then, for any (w,w’) € D} x D%, we, by

our grouping construction, have either wNw’ = & or w C W'.

Notice that, by setting £* > 1, we have 0 < ¢ < 1.
D,d D,d

This completes the construction.
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5 From Incidental Geometry to Order Theory
and Combinatorics

Organizing tiles is essentially an incidental geometric problem. However,
due to the hyper-adic properties of D, we can equip D an order structure to
suitably represent its incidental behavior. As a result, we can treat the order
theoretical counterpart with some combinatorial tricks.

5.1 Conversion and Basic Operations
We start with some observations: given I,J € D,
e either INJ =9
e or I CJVIDJ and, thus, for any (w,w’) € D} x D%,

— either wNw' =@

— or w D w' V w C w' respectively.

This motivates the following definition:

Definition 5.1.1 (<H3), §l>)

VP,P/ S ]ﬁ), PS]P/ < Ip CIp Nwp D wpr.
For strict inequality, we write <1 instead.

We see that < indeed defines a partial order on D. Moreover, it reflects the
incidental properties precisely:

VP,P' €D, EpNEp =@ <= PNP =@ <= P,P are <-incomparable.

As a result, to extract sparse parts(<-anti-chains), we heavily rely on the
following operations:

Definition 5.1.2 (Maximal and minimal elements).

MP:={PcP |}P cPst PP}

VP C D,
{mP:—{PGP | AP’ € P s.t. P! < P}.

We also define the iterated versions:

Vi c N, Mk+1]P =M (P \ Mkp)
mep1P = m (P\ miP).

Notice that, by construction, both MiP and miP are <-anti-chains.

On the other hand, for cluster parts, we shall define:
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Definition 5.1.3 (Convexity). 5
P C D is (I—)conves, if and only if: VP; € P, P €D

Py <P QP (or equivalently, Ph<<P<1P,) = P€P

However, due to the nature of Fefferman’s Trick, it is necessary to extend
our settings to include spectral dilation: given scales A, A;, A; € Ry and tiles
P:=1xw, Pj:=1; xw; €D, we define:

Definition 5.1.4 (Spectral dilation).
AP =1 x dw, where dw :={A(g—cy)+c, € Qylq€w}

Since dilation destroy the hyper-adic structure, there are two variant ana-
logues of < under such setting:

Definition 5.1.5 (Order and order-like relations on dilated tiles).

MoPy <\ Py <— o C i N Awy D AMwq
Mo <\ Py <~ IpC I N dwoNAws 75 .

If, additionally, Iy C I, we write < and < instead. Also, we denote:
AOPONAlpl <= (AOPO <MP A )\OPOZ)\lpl)

Since < does not satisfy associative law, some order construction will not
work as we expected. Still, it reflects the incidental properties of dilated tiles:

MPoNAMPL =9 <= APy, \{P; are <-incomparable.

1+¢

Tja—c» We have:

Moreover, < is only a dilation away from <: by setting p :=

Lemma 5.1.6 (Order Upgrade Lemma).
Suppose the following upgrade condition is satisfied:

A1+>‘1 n*(s —s )
0<) LT AL on”(sp—smy).
( )AO/P—AO_

we have the following upgrade from order-like relation to true partial order:
MNPy <P, = APy <A Py
Proof. Assume the upgrade condition, we see that:
MPy <M Py = Jdq € Awg N A\ws.
Triangle inequality and Embedding Inequality yield:
@ € Mwr = g1 — cuollre < ([lar — oy 10 + llew, — all1) + 1la — cuoll 1
<270 0) (lgy = ey 1, + lews = alln) + Ao +9)
(A +21) (14+¢) + Xo(1+¢)

< (Ao/p— X0)(1+¢) + A3+TJ < Ag(1/2 — ).

g 27I$* (Spl 78}30)
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FEventually, we have:
Alo.)l C BIO (CWO,Ao(l/Q — C)) C Aowo i.e. AOPO < Alpl-
O

Remark. The Order Upgrade Lemma is especially useful when we are allowed
to tinker with the size of K* (,by tuning k). This is the main reason we, instead
of a standard dyadic system, choose to work under a 2%-adic system.

(Io € I1): Since p \(2 as k* 00, we can always choose large enough * to fulfill

(o

the upgrade condition as long as the dilation ratio of Py is slightly larger
than 2. That is, given:

Ao
— > 2,
Ao
we always have:
Ao AL+ *>
> 1= (—>p>2 AN ————— <2% .
AjAj ()\0 P Ao/p - X

=1I): Since 25" _factor on the RHS of the upgrade condition disappears, we

require Ao to be larger to fulfill the condition:

Ao > 2
Ao+A+ XM
Then, tuning K* yields:
K> 1= — % >p>2 e LT o
Aj A Ao+ A1+ N\ =P Ao/p—>\0 -

Essentially, as long as we only do finitely many upgrades during the rest of the
L2 (<~ <)

A
oy 2 (s 9)

arguments, we only need to check { without worrying

about the size condition on k*.

5.2 Geometric and Analytic Interaction
We explicitly define a way to measure the distance between a pair of tiles:

Definition 5.2.1 (distancep, p, factor).

Ao, Pr) = inf lao = a1l

where we set || - ||g := 00 and I:= (nDQ'f‘H + 3) I

This quantify the incidental properties on D in the following sense:
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Properties 5.2.2 (Proximity).

(sp < spr A A(RP/)S,??) = lew —cullr S 1+
D.,d

K"’

Proof. For starters, we note that I S INT' S I'. Therefore, by assumption,
k,D w,D

lg—dq'llz S la—dllznp S
k,D,d
(g, ) ewxw st. C|l¢d —collr S | —collrr <145
r,D,d
llg — collz < l+g.

In conclusion, triangle inequality implies:

lew —curllr S n+2(1+¢) S1+7.
Kk,D,d

Corollary 5.2.2.1 (Spectral packing constraint).
Given P' € D and I € Ds with s < spr and I N Ip/ # &, we have:
#{Pe]ﬁ)|]p:1 A A(P,P) gn} < (1+n)P,
k,D,d

where dD := (%le)l —1.

Proof. We first observe that the LHS equals:
#{weD] |A(I xw, P') Sn}.

By Proximity properties, we have: For some X\ < 1+ 17,
k,D,d

{webj |A(I xw,P') S 1}

C{weD7 | llew — cwrllr <A}

C{weDj|Br(cw,1/2—=¢) C Br(cw s A+1/2—¢)}.
The problem becomes measuring packing number: the number of disjoint
small balls packed inside a larger ball. Yet, due to the homogeneity of || - || (.,

Br(¢y,1/2 —<) CBr (cors A+1/2 =)

A
1/2—¢

Since the packing dimension equals dim Q4/r = dD, we have:

~ Bg1yp (¢, 1) CB,1yp (0,A), where A =1+

the packing number < AP < (14 n)PL.
D.d k,D,d

Thus, the result. O
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Properties 5.2.3 (Almost comparability).
For any v > 6, we can take k* > 1 such that:
¥

(I()CIl AN A(PQ,Pl)S/l) - ")/P()S]Pl
If, additionally, Iy C Iy, we only require v > 2.
Proof. Given g € wi and q; € wj, triangle inequality yields:
”q - ConIo < Hq - quIo + qu - qOHIO + ||q0 - conIO'
Through Embedding Inequality, we have: for any € > 0,

1+¢ 1+¢

g — a1l < W—FW Iy c
K> 1 = H11<6 IpC L
‘ lar —qolle <27 [lgs — qollf, 27" A(Po, Py) < e
lg0 = cuwollry, <1+
As a result,
3+3c+¢e Iy CI
lo=coolln <14 choe fcn
Therefore,
{BIU (cwpr3+3s+€) C Ftew, Iyl
wyp C
By, (€, 1+ ¢+ 2€) C %wo Lch
Some fine tuning of 0 < € << 1 and k* $> 1 yields:

6<¥te<y LCh
2<%§7 IyC I

and, thus, vPy < Py.

O

Moreover, we see that the geometric characterization interacts well with our

partial order structure:

Properties 5.2.4 (A-monotonicity).
By construction, we have:

PP = A(Po,P) < A(Pl,P)
Specifically, Embedding Inequality yields:

(oI P A L CI) = A(Ry,P) <27 =m0 A (P, P)

Remark. Fssential, the distance factor, though itself does not satisfy triangle

inequality, quantifies the following concepts:
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o The tncidental relation between Iy and 1.

e The spectral distance between wy and wi; measured through smaller
scale of the two.

The last piece of ingredients for Fefferman’s Trick is to incorporate the ge-
ometric structure into the measurement of density. Given a reference of
measurement II C D and a prescribed small constant € € R, we consider:

Definition 5.2.5 (Il-relative density).
An (P) == sup A(m) (A(P,m))",

mell
IpCl,

where we use the convention: sup@ =0 and (-) := ﬁ

The distance factor reflects how far off the measurement is to the targeted

tiles. Therefore, if we have good control on it, A should behavior almost like
A. For instance, we may formulate the control in the following way:

Definition 5.2.6 (P-relevant II-collection).
Mp:={rell|I,SIp N Pd7}.
Properties 5.2.7 (Deunsity recovery).
pclJup = AP) £ An(P).

Proof. By construction, since:

Pdr = AP,m)=0 and #{J €D |IpCcJSIp} <1,
D

spectral packing constraint and inclusion implies:

#1p < 1 and |Ip| = |I].
x,D,d D

As a result,

pcUup = Epc |J E-

w€ellp
= |Ep| < <
[Ep| < ) |Exl < #11p max | Ex|
wellp
Er
= A(P) < max| |<.AH(P).

N,rB,d nellp |I7r‘ -
]

On the other hand, the corresponding monotonicity (with a flip of direction)
follows directly from the construction and the A-monotonicity.

Properties 5.2.8 (Ap-monotonicity).
Py <P = An(P) > An(FPr).
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5.3 Feffermann’s Trick

Continuing previous settings, we now state Fefferman’s Trick:

DP = | | DyP, DyP ~
EP = |_| ExP, < n layers of anti-chains
k<n

LilP 1 < -apart clusters
H;P high anti-chain

1. Start with P ¢ D convex. Due to Ap-monotonicity, we can isolate
tiles with a range of (Il-relative) density without disturbing the convexity
and thus we may WLOG assume:

P € P = upper bound > Ap(P) > lower bound > 27".

2. Organize tiles into layers of anti-chains:

P= |_| M,P.
keN

By construction, VP € Mp1P, 3P; € M;P for j < k such that:
PP, <P 1<---< PPy,
and, by definition, 3m; € II such that:
I C I, N Arry (A (Py,m))" > 27"
Focusing on the distance factor, A-monotonicity yields:
A(Pmy) <275 FA(Py,my) < 277 k(e — 1) < 2/ emrTk,
As long as k > n and suitable k* > ¢!, we always have: A(P,m1) < 1.

3. Fixing A > 2, Almost comparability yields:

P e Lle]ID i 377161_[8.75. /\P<]7T1
kzn
<= dw e MII s.t. \P <.

We, therefore, can safely extract those II-comparable tiles:
DP:={PeP|3Ir e MII s.t. \P <7},

and the rest become < n-layers of anti-chains:

EP = |_| EyP, where EiP:= M,PNP\ DP.

k<n

Notice that, by definition, DP is still convex.
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4. Viewing MTI as a counter, we keep track of the following values:
B(P) :=#{m e MII | \P < 7}.
Given any P € DP and C <1 fixed, we have qualitative bound:

Z XI,

TeMII

1< B(P)< < upper bound < Cm2™ <35 —s.

s

Decompose DIP accordingly, we have:

DP = | | DyP, where DyP:={P € DP|B(P) e [2*7",2")}.

E<m

5. Fixing k € N, we aim to extract 1 <-apart clusters from DyP, where
the two terminologies are explained as the followings:

Definition 5.3.1 (Cluster or Tree in [Lie20], [Fef73], and [Zor19]).
B CD be a cluster at p € D if:

e B is convex.
e Pc'P = AP p.

Definition 5.3.2 (A-apartness).
Given B; C D associated with p; € D, we say Po and *P1 are A-apart if:

{j,k’} = {0, 1} — VP]‘ € ipj, (Ij C ka — A(Pj,pk) > A)
Now, for simplicity, we suppress the notation P: (-)xP ~ (-).

(a) Collect maximal elements under the dilated relation on Dy: given
P, P’ € Dy, we write:

P Rely, P’ <= AP Rel \P’

as a shorthand for previously introduced order-like relations. We now
collect <)-maximal elements in the following sense:

DY :={PeDy|3P €Dy st P<yP}.
(b) Extract high part from low part: fixing v > 2,

Ly ={PeD;|3P €D} st.yP<P'}
Hk = Dk\Lk.

Notice that, by setting A > 2y, Order Upgrade Lemma yields:
’YPO<]P1 — P0<])\P1 — PO <)\P1,

and, thus, L, N D} = @. That is, D,i} C Hj. For now, we can safely
discard unused elements in D,ﬁ‘:

T, :={P €Dy |3P €Ly st yPaP'}.
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()

Check Hj, is an anti-chain: given P, P’ € Hy,

(P" € D): Since v > 2, Order Upgrade Lemma yields:

PaP = yP«P.

(P' ¢ Dy): There is a chain {P;},_, C Dy, such that:

P <y P <) - <xPy<)P €D}
Order Upgrade Lemma yields:
P AP = yP <AP AYAP, <4+ <IYAPy 9yAP; 4 Py

In both cases, PP’ = P € L, =<« P € Hy. As a result, Hy
must be an anti-chain.

Augment closeness into relation on Tj: given PJf € Tx,
P, <P &L 3p e Ly st.yPy<P) A vPy < P,
< APy € Ly st. yPo APy N vPy < P|
The latter temporal equality will never hold. Otherwise, we have:
Pl <~yPy < P
By setting ﬁ > 2, Order Upgrade Lemma yields:
AP} QyPy < Py ~ AP), ie. P <) P,

which contradicts P{ € T}, C Dj.

Closeness implies comparability on Tk:
Py <Pl = P}~ P.

The reason is that % > 2 and Order Upgrade Lemma imply:
YPy <1 Pj = Py <\ P;.

If Py ~x P, then, since P} := I} x wj € T} C Dy, they must be
<)-incomparable(AP] N AP = &). As a result,

vl CIZNIT o dwy N Awy = @,
However, a combinatorial trick yields a contradiction:

2" > B(Py) > B(Py) + B(P{) > 22" =« Py, P] € Dy.
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(f) ~, is an equivalence relation on T;. Reflexivity and Symmetry
are trivial, we check for Transitivity: Suppose P, P’ € T}, and

P~y Pl

By definition, 3P € Ly such that vP <1 P’, but, fixing A > 6, Order
Upgrade Lemma yields:

AP <1 AP < /\ij, i.e. P <y P]f.

Through previous combinatorial trick, we have P) ~) P;. We,
therefore, mod out ~ and denote 7,7; € T := T/~ .

(g) Verify cluster properties of the T];\—indexed configuration:
P,:={PeLy|IP €7 st.yP<aP'}.
o Check convexity: for P; € J3;, we consider:
PeDst P,<P<aP,
(P € D): Since D is convex,
PeB,CcD,CcD . PeD.
(P € Dyi): Order Upgrade Lemma implies:
“Py<ayx Py Py .28 > B(Py) > B(P) > B(P,) > 21
(P € ,): Order Upgrade Lemma implies:
AP €T s.t. yPy <P <ayPy < P

Therefore, P € P,, which means that B, is convex.

e Mark the position of 3, with an arbitrary cover p, € 7: Order
Upgrade Lemma implies:

VP €1, Ap, 9 P'.

As a result,
WP €., 7P < Ap,.

We use Order Upgrade Lemma again:
VP B, AP <ap,.

In conclusion, B3 is a cluster at p..

(h) Identify cross-cluster separation:
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o Check disjointness: Given any P; € ‘B, := B, we see that:
Ph=P = EIPJ( €T st.yPh=vP < Pj{ i.e. Py=<P.
Therefore, if Py NP1 # &, due to (e) and (f), we have:
EIP]{ €7 s.t. Pé ~ Pl/ == 190=71 = Po=P1.
e Verify incomparability: Order Upgrade Lemma yields:
PP < Py P = JP/ €1 st.yPy<ayP < P.
Again, using definition (d) and properties (e), (f), we have:
PhdP, = 19=11 = Po="TP1.

e Prove 1 S-apartness: Given any (P, P{) € Py x 71 such that
Iy C I}, Almost comparability implies:
— If Iy € Ij, since v > 2, we have:

A(Py,P}) <1 = 4Py <P, = 3P, €y st. P} < P|.

By (e) and (f), we see that 7 = 7. That is, Po = B.
— If Iy = I}, since 3y > 6, we have:

A(Py,P]) 1 = Py3yP].
By setting ﬁ > 2, Order Upgrade Lemma implies:
3P} € 19 s.t. \P{ AyPy <P} ~ AP} =< P{ € 7, C Ty, C Dj,
In conclusion, distinct 9B; are 1 S-apart: Given that Pg # Py,
V(Po, P{) € Box i, (IpCly = A(Py,P)21).
(i) Stack the covers: for any P’ € 7, we see that:
P o~y pr T = I, =:1I..
We count how high I.s stack via counting comparable 7s in MTI:
B, :=#{rec MU |3P €1 st. \P' <7} > B(p,) > 2"".

By modding out ~,, we prevent double counting and acquire:

PA Z xr, < Z Brxr, < Z xr, < Cm2™.

TeT) TET) meMII

In conclusion, the counting function satisfies the following control:

Z X]T S Cm2m+1_k7
TET,?

which measures the height the covers can stack temporally.
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(j) Subdivide collections with covers stack too high: This step is not
mandatory. Still, it makes estimation cleaner. First off, we have:

k>1+log, C +log,m = Z xr, <2m.
’TET,?

For k < 1+ log C + log, m, with careful selection, we can partition
T into my, := [Cm2'~*] collections:

mp
T,i‘: |_|Tk)‘7j7 where Z xr, <2™, Vj.

— 2
Jj=1 TETY,

We now reorganize the corresponding clusters:

Ly ;= |_| B

TET,?‘J.

By moving cluster as a whole, we do not destroy any previously es-
tablished structure. Therefore, Ly, ; still contains 1 S-apart clusters.
Lastly, We count the number of layers:

log, (C2™) — log, C—fogym + > me <m

k<1l+log, C+log, m

As a result, since the number stays morally the same, we might as
well renumber the index: (-)g,; ~» (-)r and thus:

Y X, <27 VkSm

Tele

Eventually, we summarize that L;P has the following structure:

Definition 5.3.3 (A-apart E-stack or L> Forest in [Lie20] or Feffer-
man forest in [Zor19]).
P C DD is a A-apart =-stack if it is a collection of clusters:

P=||B; A Vi(PeP, = AP<p,)),
J

which satisfies the following properties:

e Height Control: ZXij <ZE.
J
o Cross-Cluster Separation: Given distinct *B; and By,

— P; € B, and P, € Py, are J-incomparable.
— B, and By are A-apart.
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We formulate our current progress as the following lemma:

Lemma 5.3.4 (Fefferman’s Trick).
Given X > 18, P C D convex, and II C D such that:

e Lower bound on Il-relative density of P:

PeP = Const. > Ap(P) >27"

e Upper bound on temporal overlap of MII:

My = Z X1, Sm2™,
TeMII

we may choose k* > 1 such that P can be decomposed into:
A

o S n+m layers of anti-chains: {EyP}, . and {HpP}, -,

o < m layers of 1 S-apart 2™ -stacks: {LyP}, <,

5.4 Boundary Removal

To exclude bad behaviors when tiles get temporally dilated (as in the Trivial
Estimate) while doing the TT*-T*T argument, we need careful treatment on
the following configurations:

Definition 5.4.1 (Interior and Boundary). .
Fizing w > 1 as a buffer, given T C D a cluster at p € D, we set:

R = {Pefmwip cI,,} and O ==\ T°.

Notice that both SB° and OB are cluster at p since the temporal operation pre-
serves convexity and location. As a result, we say:

B is an open cluster if P =P°
B is an boundary cluster if P = O°P.

We also extend the terminology to collections of clusters: Given P C D a
collection of clusters:

P=||B; A Vi(PeP, = APp)),
j

we set:

P°:=| |B5 and OP:=| |oP =P\ P".
J J

Similarly, we say P is open if P =P°.
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For convenience, we introduce the following notion to focus on the temporal
aspect of the structure.

Definition 5.4.2 (Temporal projection).
Given P C D, we define its temporal projection as:

Ip:={Ip €D | PP} and Ip, :=IpND,.

Boundary cluster is the culprit we need to deal with. Yet, an easy verifi-
cation shows the following temporal properties:

Properties 5.4.3 (Tooth configuration).
Given a boundary cluster 3, there is sa ~ 1 such that:
s'—s>sn = Y eDy, Y |I]<27"J].

I€ly
IcJ

Remark. The name chosen is because of the shape it formed (D = 1) when
drawing Iy s horizontally and stacking I o5 vertically.

We see that the tooth configuration almost screams sparsity. As a result,
we shall expect the following configurations:

Definition 5.4.4 (A-decay stack or Sparse L> Forest in [Lie20]).
P C D is a A-decay stack if:

s —s>AN = VJ €Dy, Z || <277]J].

I€lp,
IcJ

A direct computation shows that Ip is also < A-carleson.
Putting things in action, we have:

Lemma 5.4.5 (Boundary removal).
A A-apart Z-stack P can be decomposed into:

P < 1+ 8= _decay stack
P~ w,D

P°  open A-apart Z-stack.

Proof. For starters, we notice that the temporal operation does not affect
the spectral behaviors of the clusters nor the covers’ configurations. That
is, trivially, P° is an open A-apart Z-stack. We now check the temporal

property of OP. Fixing N := s [1 + %—‘ < 1+%, an easy computation

~

w,D
shows that: Given s’ —s > N, due to height control and properties of tooth
configuration, we have:

up to = overlaps

VIeDy, Y [I|< S <E2 NI < 278

I€lp, s J I€log; s
IcJ IcJ
]
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5.5 Separation Upgrade

To compensate for the height the covers stack, we expect to gain enough decay
from orthogonality when clusters are mutually far apart. To achieve this,
we present the following lemma:

Lemma 5.5.1 (Separation upgrade).
A A-apart Z-tack P can be decomposed into:

P mP  anti-chain
~ *
P\mP 2" A-apart =-Stack

Proof. Trivially, mP is, by construction, an anti-chain. On the other hand,

P= Pi=
P\mP = |_| (B \ m%B,).

Ezxcluding possible empty clusters, we notice that the operation does not affect
the location (cover p;) of the clusters, Incomparablity ,and Height Control.
Therefore, we only need to verify the Apartness: Since

VPJIG‘B;, E'PJ Gmmj s.t. _PJ'<].P]/-7
by A-monotonicity, we have: for any k # j such that Ij’- C Iy,

I QI C Ly, o A (Phpe) > 25 A(Py,pi) > 27 A

38

doi:10.6342/N'TU202100160



6 Search for Good Trades

With the tools established in previous sections, we can organize tiles into several
well-behaved configurations. Yet, to put things together, we need to:

e Choose suitable collection of Ps and Ils to start with.

e Combine all the tools smartly.

e Balance the trade-off among different aspects of the control.
e Sum up all the contributions.

In this section, we first demonstrate the delicate phenomenon among the trade-

offs and mention a problem encountered in Fefferman’s original treatment [Fef73].

Next, we provide the insight of Lie’s solution in [Lie20] and Zorin-Kranich’s mod-
ification in [Zor19]. Lastly, we construct explicitly the collection of IIs through
an elementary model.

6.1 Trade-off: Polynomial v.s. Exponential

Let us start from the following assumptions: P ¢ D convex and II C D,
e Il-relative density: P € P — Ap(P) € (2_",21_”].
e Temporal overlap: My := Z X1, Sm2™.
TeMII

We combine the three lemmas:

e Fefferman’s Trick: with x > 1,
by

|_| E P L |_| HiP < n+m layers of anti-chains

k<n k<m
|_| LyP < m layers of 1 < -apart 2™-stacks
k<m

P~

e Boundary removal: for all L;P,

OLyP <1+ -decay stack
LkP ~ D
LiP° open 1 < -apart 2™-stack

e Separation upgrade: for all LyP° (apply iteratively),
|_|mij]P’° [ layers of anti-chain

LiP® ~ ¢ j<i
Else =: L}P° open 2!*" < -apart 2™-stack
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As a result, we have the decomposition scheme on (P, 1I):
e Sparse Parts:

— <n+m(l+1) layers of anti-chains:
{EkHD}kSn ) {Hkp}k,Sm ’ and {WLJ'L’C]P)O}]'SI7 E<m -

— < m layers of% 1+ “t-decay stacks: {0L;P}, .

e Cluster Parts:
— < m layers of open 2/ <-apart 2™-stacks: {Lﬁc]P’o}]Km.
A natural strategy is to:

e Extract exponential decay of the density factor~ 27" out of all the
estimation (as in Trivial Estimate) to absorb polynomial growth of the
number of layers and sparsity factor.

e Use large separation to compensate for high temporal overlaps when
using T*T-TT* argument.

In summary, we should aim for m < [ < n. Indeed,

Polynomial «~ Exponential

Overl Bad
#Layers(Bad) # ve.r aps(Bad)
S ity (Bad) o~ ¢ Density(Good)
arsi
patsity\ba Separation(Good)

It is, for the most part, a good trade:
Decomposition = Polynomial Growth x Exponential Decay.

However, the assumption itself hides a counteracting theme. To find suitable
(P,II), we need to find balance within the following conflicts:

Temporal overlap =<« 27 "-dense collection
} Mp=><=#P1.

Our first attempt might start with discarding irrelevant 7 € II. In fact, since
the distance factor within the definition of Ap only provides decay, it follows
that we have:

Properties 6.1.1 (Equivalent reference).
Given P,II C D such that P € P = Ap(P) > n, we have:

YP € P, An(P) = A, (P) with 1L, = {r € I | A(r) > n}.
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In our case, we derive a natural assumption:
rell = A(r)>27"
Still, we need to check if trimming down II would actually make My smaller:

Properties 6.1.2 (M-monotonicity).

Iy cIl, cD = My, < M,.
Proof. Suppose the otherwise:

3z € RP s.t. My, (z) > M, ().
By Pigeon-hole principle, there must be distinct mo, )y € M1y such that:

T € Iny N1y #@ A Im € M1y, s.t. m, 7, < 1.
However, since mg, 7, are J-incomparable, we must have:
Cor, € Wr;, C Wy, N Wat = (%)

which is a contradiction. O

Meanwhile, we can locate all the high overlaps:
E:={z e R” | My(z) 2 m2™}.

Naturally, references temporally in E are those who cause the overshoot, and
bad references

we shall exclude them: IIT C II\ {r € II | I, C E}. By Mp-monotonicity, we
can control the temporal overlap:

Mn+ < M\ (ren|1,ce} = Z xr, S m2™.
meMII
I.¢F
However, discarding the bad references would result in a decay of density
when tiles being measured. Therefore, we should modify P:

PTCc{PeP|Ag:+(P)>2""}\{PeP|Ip CE} andisconvex.

By construction, (PT,1IT) satisfies our assumptions and can be treated with
our decomposition scheme. The rest is to derive control on P~ := P\ P*. In
general, we expect that P € P~ has low relative density or is temporally
contained in E. Thus, a good control on E would always be helpful. Yet,
as we trace back its construction: E ~» My ~» MII, we see that a deeper
understanding of the structure of MII is needed. For instance, our natural
assumption, with double counting taken into consideration, actually implies
the 27 "-sparse condition:

I, < 2"|E.| Vre MII
{Ex} remm are disjoint,
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or, equivalently, the 2"-carleson condition:

VIED, Y |L]<2"I]
reMTI
I.CI
This implicitly gives us structures on E:

2"-carleson ~» control on M ~ control on E

and may shade some light on the treatment for P~.

6.2 Charles Fefferman’s Exceptional Set

Using language established, we explain Fefferman’s idea. In [Fef73], Fefferman
analyzed Carleson operator under torus T =~ [0, 1) settings. We first orga-
nized tiles according to D-relative density:

D= | |P, where P, := {P eD | A5(P) € (2*",21*”]}.
neN

Using P,,’s equivalent reference:
II, := {7r eD| A(r) > 2‘"}
paired with previous discussion:

1Ml = Y [al <27,

TeMII,
I.CT

we may apply Markov’s inequality to derive: (Mﬁ L (n, oo]) < 2" /1. There-

n

fore, if we choose 7 = m2™ and define the Exceptional Set as:
Enm = Mﬁnl (m2™,00],

we can exclude II;, ,, := {7 € II,, | Ix C By}, all tiles causing the overshoot,
from II,, and verify that:
Mp+ <m2™, where L, =1, \ I, ..
In conclusion, we have height control on Is not contained in E,, ,, and sup-
port control on FE, ,,. Therefore, as we modify P,, accordingly:
P, ={P€P,|Ip CE,m,m} and IP’:)m =P, \P,

n,m:?
we must have:

PeP’

n,m

= Ap+ (P)=An, (P) € (277,20
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We can apply the decomposition scheme on (P,

n,m?

IT} . )s and expect that:

|&ss,. 7], S w6 mpz- i1

for some small € € Ry and a polynomial p(-,-). On the other hand,
CEn,m

,u(suppSP; N f) < m~lanm,

Combining both in the form of distributional estimate, we get:
-1 -1 —1
2 (\Sxpnfl (77,00]) <p (’%;mf‘ (n, oo}) +pu <‘£p;,mf’ (0,000
2
< <p(n m)2_m ||f||L2> +m~lon—m,
~Y ) 'T’

Unfortunately, through minimizing the RHS, we can only derive L2 — L?~¢
bound. To make matters worse, we rely on the finite measure structure on T
to control the exceptional set. This prevents us an easy adaptation from T
settings to RP settings. Alternatively, this shows that a possible path to tackle
the issue is to localize the analysis on the level set. That is, we aim for good
control on:

In Mﬁj (m2™,00], for various I € D.

6.3 Victor Lie’s Stopping Collection

Continuing previous discussion, our goal is to do finer estimate on the level set.
In [Lie20], Lie’s innovation is the use of the John-Nirenberg inequality on
his inductive construction. We give our interpretation of his treatments. For
starters, we observe that:

Observation. Carlson packing condition implies the boundedness of 2" -adic
BMO norm of the corresponding counting function.

Using similar settings: Given P, C D convex and II,, C D such that
e PeP, = Ap,(P)e (272!,
eecll, = A(r)>27",

we see that {Ir} . is 2"-carleson (counting with multiplicity), and thus,
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for any I € D, we have:

xr (M, — |Mn,|;) = Z Xinf, ~ m/wd/‘ X1
TeMIl, TeMIL,
1D 121
D X, —][ D X diexa
rEMTI, Irem,
I.Cl I.CI
= Z xr, — |71 Z [Ix| - X1
TEMII,, TeMIIL,
I.Cl I.Cl

Therefore, doing another average, we have:

M, = [M, ||, ST Y e <2

TeMIIL,
I.CI

That is, we conclude that: |[Mmn, | zr0, S 2" Now, we may apply John-

Nirenberg inequality: For some ¢; < 1,
k,D

rel| E X1, > 1
TeMII,,
I.CI

<|qzell Y xn—HITN YD k> n-2n
rEMII, rEMII,
Iycl Iycl

<Kz el||Mn,(x)—[Mu,|,| >n—2"}
Se(:0—217722;L ‘I‘ < 600+1/51*2_n77/01 |I| )
Consequently, for any C > c¢1(co + 1), there is A < C such that:

ﬁ‘ﬂ

zel| Z Xz, > Cn2" 3| < e A1),
TeMII,,
I.CI
In particular, if (w,I) € II,, x A, either I, C I or I, NI = @, for example:
A::M{IT;-GD‘//TGHTL}’

we always have:

TN E|<e I|, where E:= Mﬁ: (Cn2"™, ).
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In short, John-Nirenberg inequality yields a much stronger decay and more
localized control than Markov’s inequality does. With that in mind, we now
modify (P,,II,,) accordingly:

I, :={rell, | I, CE} and II} =11, \II,
P, :={Pe€P,|IpCE} and P} :=P,\P,.
In conclusion,
e (PP IL}) can be treated with the decomposition scheme.

e FE can be decomposed into a disjoint collection of 2*-adic cubes:

A~:=M{IeD|IcCE}.

PePf = IpecA“\AC
PeP, = IpecAC
Therefore, if our estimate preserves the structure of the support control
we might be able to benefit from its decay.

e both P;/ and P,, have support control:

e we shall analyze P, with compatible references: II., but some decay of
density might happen. Thus, we need further treatment so that we can
apply our arguments iteratively.

Still, with some tweaking, we can inductively build up the collection of (P, II)s.
The following is a sketch of the method in [Lie20]:

1. Starting with n = 1, we first collect 2~ !-dense tiles:
Presto) i= {P €D | A(P) € 271,1]},
equivalent references, and default cubes:

Hres(o) = {ﬂ' S ]ﬁ) | A(ﬂ') > 2_1} and AO = Dg.

2. Define inductively (Pg, I, Ag) := (Pjes(kfl),ﬂjes(kfl),A,;_l).

3. Due to the decay of density, (P;@s(k_l), H;ﬁs(k_l)) might not satisfy the
assumption for Lie’s arguments. We modify as such:

Pres(k) = {P € ]P);es(kfl) ‘ AH_ (P) > 271}

res(k—1)

and Hres(k) = Hr_es(
the decay of density: Piecayr) = Pr_es(k—l) \ Presi)-

k1) untouched. What remains are those affected by

4. By construction, we have for all k,
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(Pk, %) can be treated with the decomposition scheme.

e Ays posses a cell structure: I := A | \ AL

Tiles in Py are temporally controlled by Ix: P € P, = Ip € I.
e Size of Ay locally posses exponential decay:

Je A, = M(JHUAk) = S 1< e,

IeAy
IcJ

which also screams sparsity.

With temporally restricted references: Pgecayr) has decayed
density less than 271,

5. To deal with Pgecay(x)s, we preserve the Ix-cell structure when collecting
the 272-dense tiles.

Pres(k’o) = {P €D [ Ip € I, A AHres<k,0)(P) € (272,271]} )
where:
Wyes(r,0) == {W eD|I, el A Alr) > 2*2} and Ay :=Agp_;.

The rest is to pass the arguments into every cells and inductively create
finer cells to compensate for the decay of density.

In short, there are natural ways to build nested cells from the level set so
that, within each cell, we have good control on Mps and Ps. Yet, the argument
looks daunting due to the complicated process and indexes.

6.4 Pavel Zorin-Kranich’s Modifications

Inspired by Lie’s arguments, Zorin-Kranich simplified the arguments. Through
combining level set estimates from different densities, he first constructed
the cell structure fitting for all densities and then classified tiles according
to the relative density localized within the cell. This prevents the problem
arising from decayed densities since all the decay happens within the cell
and the measurement is done after the decay. Additionally, his cell structure
interacts well with temporal dilation. This allows him to verify some local-
ized estimates to apply the extrapolation arguments from [BT13]. We
present his arguments as two parts: Cell estimate and Mollification. Before
the discussion, we first introduce some terminologies:

Definition 6.4.1 (Carpet: collection of disjoint cubes).
Consider the following collection:

Collection of disjoint cubes
X:={Ac2® | VILJecA(INJ#2 — I=J).
We call an element A € X a carpet.
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Definition 6.4.2 (Covering relation).
We equip X a partial order relation <:

VA,BeX,(A<B < ACBY)

Additionally, we define the 6-covering relation as such:

A<B < |A<B AVJEB, Y [I]<4]J]
o Ieh
IcJ
Typically, we only consider § € (0,1).

Definition 6.4.3 (Smooth carpet).
A € X is smooth if: Given (I,J) €D x A,

(<2t A INT#2) = 3T €hst. (27 <ty AICT).

We denote the collection of smooth carpets as X*°.

Remark. Another way to view smoothness is the following: If A € X*°,
[¢AS — VJEA,(fmJ;AQ — e;z@,).

Heuristically speaking, the size/scale of cubes in a smooth carpet must varies
smoothly. Thus, dilated cubes share similar incidental properties with its
non-dilated counterpart.

We now present the core estimate:

Lemma 6.4.4 (Cell estimate).
Given 6 € (0,1) and A € X, there is C 6>>D 1 such that we can find A ? A~ eX

locating all the bad references. That is, by removing all references temporally
located in A=C: .
I+ .= {weD\IﬂEAC\A_C},

its 27" -dense equivalent reference: I} := {m € IIT | A(7) > 27"} follows:
Vn €N, My, < Cn2".

Remark. [t essentially states that: within certain temporal location, the
27 "dense equivalent reference follows our desired control.

Proof. Considering the temporally localized references:

I, ;= {r €Il | A(w) > 27"}, where l'I::{7r€}]ﬁ~)>|I7r€AC}7
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we can locate the high overlaps across all different densities:
E = U E,, where E, = Mﬁj (Cn2"™, x].
neN

Applying John-Nirenberg inequality, we have: Given I € A,

1]
eh—1°

p(INE) <Y n(INE,) <Y e 1| <
neN neN

We now decompose E into disjoint cubes: A~ :== M {I € D|I C E} and take
large enough C =~ A ?s> 1 to verify A~ ? A:

,{/1

7]
v.J = < < 5|J].
€A Y [l=n(INnE)< 5= <dlJ]
IeA™
IcJ

Meanwhile, we isolate bad reference: 11~ := {r € Il | I, € A=<} and define:
I} :=11, \II™ so that, by construction, M+ < Cn2™.
O

To this stage, we have established methods to adapt (P,II)s to the cell
structure: A<\ A~C. Yet, before doing so, Zorin-Kranich put additional steps
to equip the cells with Smooth structure:

Lemma 6.4.5 (Mollification).
Given (A,B) € X x X, if A ? B, we can construct SA € X*° satisfying:

A < BA < B, where §' = 4.
4’ K,D

We postpone the proof and see how the two lemmas help us construct
the cell structure and (P, II)s. We recall the comparison between Jenga and
Eiffel Tower and state our desired result in the following lemma.

Lemma 6.4.6 (Eiffel Tower construction).
Given § € (0,1), we can construct a chain of smooth carpets:

{Aa} ey € X and defaut Ag := Dg € X
such that we have the following:

e J-covering relation:
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o Cell structure:

DS = |_| Lo, where 1, :=A5 ; \ AS.
aeN

Accordingly, we also have:

D= | |Pra, where Po:=11, := {w eD|I, e Ha}.
a€eN

e Relative density partition:

]P)*,a = |_| ]P)'n,ou where Pn,a = {P c P*,a | AHQ (P) c (2—TL721—7L:|} ]
neN

e Temporal overlap control:

27 "-dense equivalent reference
Mnp, . S n2", where 1L, o := {m €I, | A(7) >27"}.

d,k,D
Proof.

1. Starting with Ag := Dg € X*°, we assume A,_1 € X constructed.

2. Through cell estimate, we have: A _; ? Ay_1 and set, accordingly,
I, = {w eD|A(r) >27" A I, € AS_, \A;El}

3. Since Ay_1 € X, we may apply mollification, set A, := A, _; € X*°,
and yield a chain of relations:

<Ay <AL < <A <A
&’ &’ &’ o’ o’

As a result, with a renaming of variable &' ~ §, we have d-covering relation.
Additionally, cell structure and relative density partition follow directly
from construction. The rest is to verify the temporal overlap control. This
follows from cell estimate. Since L, C AS_; \ A<, we have:

L, o CI}, and, thus, M, , <My < n2™
s k,D

s

O

Remark. The result matches our settings for decomposition scheme with
n = m. Moreover, both P, ., and Il, , are temporally localized inside A,_;
but outside A,. Due to the nested structure, as long as our analysis reflect
these temporal properties, we can benefit from the §-covering and the smooth-
ness of carpet when treating the operator and its adjoint.
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Lastly, with a change of perspective, we can organize the collection as such:

D= |_| P,, where P, := |_| P
neN aeN

so that, by our construction, we also have:

PpoCll, .PeP, = AP)<Ap (P)~27".

6.5 Explicit Construction of Smooth Carpet

We resume to prove the mollification lemma 6.4.5. In the original literature
[Zor19], Zorin-Kranich neither gave an explicit construction nor verified the -
covering relation. For the sake of completeness, we present our arguments
with explicit construction. A reasonable starting point is to first consider
the following question: What is the simplest non-trivial smooth carpet? A
direct guess leads us to the next definition:

Definition 6.5.1 (The Ink-bleeding).
Given A € D, we define the Ink-bleeding of A:

Baem{AeX®|{A} <A}

as the <-minimal smooth carpet that covers the one cube carpet {A} con-
structed through the following process:

1. For some s € Z, A € Ds. We set Ag := {A} € X at our initial stage.

2. Suppose we have Ag_1 € X at k — 1th stage, we build Ay € X as such:

Ap =M | Ap_1 U U {IED‘£[§2_K£J/\iﬁJ#®}
JEAL 1

=AU {I e Dy g \Alg—l ‘ ijAk—l #+ @}

Essentially, we attempt to use greedy algorithm by adding the bare re-
quirement for it to be smoother. Incidentally, the process adds barely
smaller layer of cubes on the edge of the carpet.

We define 84 := UAk. It is easy to check that {A} < B4 € X:
keN

{A}cAyCcAyC---CA,C---CBaeX

By construction, 4 € X*™ since, given (I,J) € D x Ag_1, we have:

(<270 A INT#0) = 3T € by st (2750, <Ly A ICT).
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Figure 1: Ag (with D=2,k =1and I,I: red v.s. J: blue)

Also, minimality is guaranteed by the greedy algorithm. Lastly, we give some
quantitative description:

|_|51 _ (1 +2(np2~ +1) ZQ""’“) A
keEN
2 1)2F +1
:( nD;Jl + A C CpA, where Cp :=4np + 3.

With building blocks constructed, we still need ways to sew things together:

Properties 6.5.2 (Sewing).
Given Y C X*® and B € X, we have:

(VA€Y, A<B) = B> \/Y:=M[JYex™.

Proof. By construction, we only need to verify the smoothness. Given I € D
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and J € \|'Y, since there is A € Y such that J € A, we have:

(e, <o, A INJ# @)
—3J €eAst. (27, <ty NICT)
= 3" e\ Y st (275, <Ly <ty A TCT CJ).
As a result, B >\ Y € X*°.
Now we are ready to prove the mollification lemma:

Proof (Lemma 6.4.5). Through sewing Ink-bleedings, we immediately have:

VA€M, {A} <Ba =B - A=<BA<B, where BA:= \/ B4 €X>.
A€A

On the other hand, since A ? B with 6 € (0,1), we must have:
¥(A,B) €A xB,(ACB = (4 <2 "(p).
Consequently, given (A, B) € A x B, we have C p :=1+27"Cp such that:

dlefast.ICB = BNCpA#@ = ACC,pB.

We now wverify the quantitative covering relation. Given B € B, since
B € X* (scale of cubes varies smoothly in B), previous estimate yields:

S > s Y Y w(lsa)

IeBA AeA  Iefa B’'eB A€A
ICB ACC.,pB B'NC,.pB#@ ACB’
/
S 0D > 4] < > §|B'| < 4|B|.
D pen Ach B'eB oD
B'NC, pB#2 ACB B'NC,,,pB#2
]
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7 Sparse Domination of Sparse Parts

With Eiffel Tower construction, we have set up for our decomposition
scheme. The rest of the work is to provide good control on both sparse parts
and cluster parts. Here, we choose the the setting: [ < m = n to do the
decomposition and present the argument for sparse parts in the form of sparse
form dominance and pointwise sparse dominance.

7.1 Reductions

Definition 7.1.1. ~
Cp = Z XEp, where P CD.
PcP

Definition 7.1.2 (Spectral n-control).
Given P; € D, we define:

PSP = sp, <sp, A A(PQ,Pl) <n
Py 52 P sp, <sp, A A(Po,Pl) S [77,00).

Notice that either relation implies Ip, N Ip, # @ and thus, Ip, C 2Ip,. Addi-
tionally, given P C D and P € D, we define:

PP’<::{P/€]P)|P/§<P}
Pp’zlz{PIEIPWP/SZP}

Lemma 7.1.3 (Tile-tile interaction).
Given Pj € D, we have:
IS}IEPOH =0 <= Py,P, are <-incomparable
* T/d Ip NI
gnendl s @@ P L v,

ToTTir,|
K, s 0 1

Proof. The first relation is trivial since:
Py, P1 <-incomparable — Ep, N Ep, = @.

The second relation follows from estimating the kernel:

£P1’2P0 /KPO,Pl Y )dy7

where the explicit form of Kp, p, is:
K (o) = [ e, (o2 Ko 202 Xy, (o), ()
Ipoﬂlpl

Considering J := fpo NIp, # @ and (z,y) € Ep, X Ep,, we have:

(qquz;) cwp Xwp, .. ||qw QyHIP m[P = A(P()?Pl)
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To apply Van der Corput estimate, we need a way to measures the Oscil-
lation of Yp, p,(-) == Ksp, (7,-)Ksp (y, ). Using kernel’s properties: L>°\Size
Control and Locally T-Holder Continuity(3.4.3.1), we have:

1Al S4; = |[¥p,,p, — TaYP, P, %d(HAH/fJ)TUPo\*l|IP1|71~

Plugging everything into the estimate yields:

|Kpy,p (7, 9)] S sup 9Py, Py — TaVpy. Pyl oo | ]
D dZl<(llae—ayll /¢

T/d -1 -1
S llae —all,)" " e~ ey |7 ||
’jpo ﬂjpl
|IP0| : |IP1"

< (A (Py, )

O

Remark. Comparing to the single tile estimate, we successfully extract the dis-
tance factor and keep all other the good estimate.

Through single tile estimate and tile-tile interaction, we aim to control
the behavior of the sparse part. For starters, we first observe that: Given
P C P, be sparse parts, we have two ways to proceed with our control:

e Pointwise Dominance: Using single tile estimate, we suspect that:
?
186l S D IflrxEe SO | flarx,
PeP Ies

for some large constant A < 1 and S C D p(n)-carleson with p(-) be a
prescribed polynomial. By Sparse-Maximal dominance, we expect:

1€efllpe S P IMFlle S pM)IfllLe, VP € (1, 00).
e L? control: Expanding the L? norm explicitly, we have:

I3 fl7- = (S5, 855 S Y. UEhf L0 F)]

P;eP
SPy<sp,
§< Z |Cp, &5, f 7|f|>~
P;eP

spy<sp,

To control the L? norm is to control the first term in the last expression.
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With Tile-tile interaction, we have:

Do erLh S D0 (AP I T Il (5, )X,

PjEP PjEP
5Py <SP PS> P
d -1
+ > AP T s () R,
PjeP
PoS< Py

1+ n)_T/d ’CPP’YZfop,

< E
P'cP + ’OIP’P/ <f‘ ~
’ 21 pr

~ P

Applying Hélder’s inequality, we get:

2T pr !
Z ’2P1£}0f‘ S Z P |f|2fpl,r XEP/'
P;eP Prep + ’CPpu< of
spy<sp, P

We wish to extract density factor from the {} term. If we can
actually do so with r € (1,2):

oo 1en SR I S27 Y If gy X
P;cP PP
spy<sp;

the RHS is again possible to be dominated by the corresponding sparse
operator with a p(n)-carlson sparse cubes §' C D. This in turn can
further be norm dominated by M, f:

?
Z |f‘21~P/,7' XEP’ S Z |f|AI,r X1

P’eP Ies
=\ D flotpw XEe || SO IMofll 2 S PR f] L2
P’eP L2 T

As a result, through duality, we shall expect:

1€6f 122 S p(0)27"2 |1 f]] 2 -

Suppose everything works as intended, we can easily spread out the 27"¢/2
decay in L? to all LP and sum over n € N to complete the LP control:

Theorem 7.1.4 (L? bound on sparse parts).
Given P C D be the full collection of the sparse parts, we have:

1€efll e S WfllLes VP € (0,00).
p
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For a more precise analysis, we consider the following configuration:

Definition 7.1.5 (Sparse tower or Sparse Forest in [Lie20], Anti-chain
and boundary in [Zorl9]).
Given P C P,,, we say:

tower

. an anti-chain
P s
a < n-decay

ti-chai
= PP, ds o Va € N
' a < n-decay stack

In either case, we call P a sparse tower.

Remark. In our case, using decomposition scheme on Eiffel Tower con-
struction with | < m =n gives us:

< n? anti-chain towers
P, ~ < <n < n-decay towers

A lot of clusters

Therefore, to compensate the polynomial growth of the number of sparse
towers, we shall extract some exponential decay from the estimate of a
sparse tower:

Theorem 7.1.6 (Sparse tower estimate).
Given P C P,, a sparse tower, we have:

1€ £l L2 S p(n)27" [ f] 2,

and we can construct a p(n)-carleson collection S C D such that:

1S f1 S D Iflrxr-

Ies

As a result, we have full control:

H’QIPfHLP g p(n)2—7”7p ”f”Lp I where 7710 > 07 Vp € (]-700)
p

The theorem follows directly from the following two lemmas.

Lemma 7.1.7 (Sparse dominance).
Given P C P, be sparse tower, we can find p(n)-carleson S C D such that:

Z |f|AIp,r XEp < Z |f‘AI,rXI» Vr € [1700)

PeP IeS
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Lemma 7.1.8 (Density extraction).
Given P C P,, be sparse tower, P’ € D, and r € (1,00), we have:

S p(n)

S p(n)27 (L ) @PF/

QIP/ ,’I’" r

‘CIP’P,’Z

2fP/ ,’I‘/

3

‘C]P’P/K

Remark. To apply density extraction to the proof of theorem, we fine tune
n,e € Ry and r € (1,2) so that:

(1 4 U)_T/d + 2—n/r’ (1 + n)(dD—O—e)/T' 5 9—nn2
Before we proceed with the proof of the lemmas, we present our plan:

1. Prove the lemmas with P C P,, , be an anti-chain.

2. For any < n-decay stack P C P, ,, we can construct a decomposition
on P with respect to a decomposition on its temporal projection to
encode the decay property. We first recall that there is so = n such that:

s’ —s>spn = VJeDy, Z [I] <27"[J].

I€lps
IcJ

We now reorganize the collection by modding out s on the scaling:
Ip = | |H, where I :=| |Iponers,
Jj=1 teZ
and do the following canonical decomposition into carpets:

I =| |Mj,, where M}, :=M (I[%\ L] M§1> €X, VkeN.
keN <k

By coustruction, if (I,J) € (DS N M%’,k+1> X (]D)S/ N Mé,7k), then:

s’ —s

IcJ = € N.

SA
Therefore, we can verify the following covering condition:

VIeDynNML,, > = Y S

IeMi SEL IeD,NM

P, k41 o s P, k41
cJ N IcJ
s 1
s K —
by decay property, < Z 27w Y| = T 1|J|.
/SEZ
5 =S eN

SA
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That is, we have:

J J J J -
< Mp, < Mg, ;, < - < Mg, < Mp,, Vj=1n~sa.
2R —1 2R —1 2k —1 2K —1 2Kk —1

As a direct consequence, ]I{g, is < l-carleson. Correspondingly, we define:

SA
P=| | [|P with Bl={PeP|Ipecmi,}.
j=1keN
Notice that ]P’is are anti-chains. With the the = -chain structure,
=T

estimate from individual anti-chain P} can be sum up to similar order.

3. For P C IP,, be an sparse tower, we decompose the collection with respect
to the level/cell structure:

P=||P“, where P :=PNP,,.
a€eN

d-covering relation among A,s should allow us to sum everything up.

7.2 Sparse Dominance
Following our plan, we split the proof in three parts:

Claim (Anti-chain sparse dominance).
Giwen an anti-chain P C P, o, we can construct S € X a carpet, which is
1-carleson by definition, such that S C Ip C I, and:

S lasms Xer < S| flar, xas Vr € [1,00).
PeP Ies

Proof (Anti-chain sparse dominance). Since <-incomparability implies dis-
jointness, {Ep}pcp are mutually disjoint. We can first collapse all the tiles
sharing the same temporal block:

E |flarp,rXE, = E |flar,rXE;, where Ep:= |_| Ep.
Pep Tel Pep
Ip=I

Still, since {E1} ¢y, are mutually disjoint, we have:
> | flarexe; (x) < sup | flars < sup |flary, VoeRP
Tt Ielp I€lp
zeEr xzel

Notice that, since Ip C I, C DS \]D)g, the supremum is actually just a maxi-
mum. It is now valid to collect all the cubes that reach maximum for every
point x € | JIp and define:

S:zM( U Sx>, where Sy =< Jelp|zed A |f\AJ,r:IIneaﬁ;§|f|A1m

zeRP zel

98

doi:10.6342/N'TU202100160



By construction, S € X and S C Ip C I,. Most importantly, we have:

Z |flarprxEe(2) < max | flarr = Z |flarrxi(z), Vo eRP.
PeP vl Ies

O

Claim (< n-decay stack sparse dominance).
Given a S n-decay stackP C P, o, we can construct a S n-carleson collection
S cIp C 1, such that:

Z |f|A1P77- XEP S Z |f|AI,r XI, VT € [L OO)

PeP IeS

Proof (< n-decay stack sparse dominance). Following our plan, we apply anti-
chain sparse dominance on Pj. As a result, we have S], € X satisfying

Si C HP?; = M%,k and the following relation:
Z |flazpr XEp < Z \flarex1, ¥r€[1,00).
PeP] Ies]

We now sum over j, k and have:

Z |flazrp.r XEp < ZmAerj, Vr € [1,00), where S:zl_lSi.

PeP IesS J,k

The rest is an easy verification of the Carleson packing condition:

VIeD, > 1< I Snll
IesS Ielp
ICJ IcJ

O

Proof (Sparse dominance). For the general case, we start by constructing
p(n)-carleson collection S, C I, such that:

Z |f|A[P77~XEP S Z |f|AI,rXI> VTE [1700)7 CYEN.

PeP(e) IeS,

Again, summing over o € N yields:

S U flazpw XEe < D _flare X1, ¥r€[1,00), where S:= | | S..

PeP Ies a€eN

The rest is to show the Carleson packing condition. Given J € S, we set
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ao € N such that J € Sy,. As we expand the following expression:

D=0 U+ Y Y

Ics I1€8a, a>ap I1€S,
IcJ IcJ 1cJ

Sem)lI+ D0 >0 DM

a>ao J €A, I€Sq
J'cg ICJ

Sem)lJ+ Y0 D pm)l |

a>ao J' €A,
J'cJ

by d-covering relation, <p(n) <|J| + Z 5o‘_a°_1|J|> < p(n)lJ].

a>aq

7.3 Density Extraction
Again we split the proof into three parts:

Claim (Anti-chain density extraction).
Given P C P, o be anti-chain, P’ € D, and r € (1,00), we have:

1/r’
L G (U HPP“Z)

1/r’ , ,
Lo S (U ]IPP’,<) 2=n/7' (1 4 ) (dD+e)/r,

o

o

Proof (Anti-chain density extraction). The first relation is obvious since for
any anti-chain P’ C D, we always have:

I_l U ZM (Ep) <p (UMN)
N Epc| |1p - d PP

PcP’ Z XEp < XU Tps
PP/

Interpolation yields:
1/r'
||CP’HL7"/ SM(UHP/) .

Clearly, Pp: > is still an anti-chain and, thus, the result. The harder part is
to actually extract demsity factor 27"(1 + n)®P*¢ from the L' estimate of
Cp,, _. The rest just follows from interpolation. The idea is to look into the
definition of Ar, see what kind of control benefits our purpose:

VP €P, An, (P)=An, . (P):= sup A(r)(A(P,m)) € (27",2"7"].
melly, o
IpCl,
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Suppose we have good control on A(P,7), then we automatically get a collection
of roughly 27" -dense tiles from I1,, ,-relative references. If we can further
recover Eps with E.s, we can bound the collection with a factor from density
and distance. As a result, we shall analyze Cp,, . with as high temporal
resolution as possible, so that we only need the coarsest spectral control to
complete the estimate. We start by setting up the resolution we analyze on:

J ::M{J €l5, |YPePp ., Ipd J} €X.

Since, by construction, | JIp,, - = UJ, our goal reduces to the following:

Vviel, Y wEpn)= > p(EpnJ)L?
PEPP’,< PE]P’P/’<
JCIp

Observe that, given J € J and P € Pp/  such that J C Ip, we have:

dP; € Ppr « s.t. Ip, C Jc Ip, and, thus, Je I,,.
To recover Ep N J while temporally locked onto Je I, we find:

ryp €lng st In,, =J A wsp<P.
Indeed, we verify that:
We,p Dwp L EpNJCEpNJTC En,,.
Moreover, by A-monotonicity, we have:
mgp PSP A(mgp,P)<A(P,P)<n, ie myp S< P,

which tells us where to locate the needed reference with respect to P'. On
the other hand, to acquire density control, we need to quantify the distance
between Py and mjp. First, by Embedding Inequality, we see that:

A(PJJTJ,P) S HCwPJ - wa‘,yPHIP‘, < chPJ - pr/HIPJ + ”cwp/ - CwWJYPHI”,P-

The RHS can be controlled:
Py, myp S< PO APy, P, A(mgp,P') <n
by prozimity, |cu,, — Cop e, lCop = Cop, L., S1+0.

TP

In conclusion, we have: A(Py,m;p) S 1+n and, thus,

E‘ITJP € €
| ‘j‘ | = A(msp) SA(msp) (A (Pr,myp))" (1+1)
<Am, . (Py)(1+4n) <271 +n)"
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Now, we shall sum over P € Pp: . To do so, we collect the needed references:
My i={m€Mpallr=J A 3PEPpc st. TP}
By spectral packing constraint, we see that:
oV elly, A(m, Py <n L #10; <(1+n)™.

As a result, we have:

S wEBend) < Y (B < #1L - sup [Eo| 27 (14 n)P ],

PePp/ welly mEll,
JCIp
Summing over J € J completes the proof. [

Claim (S n-decay stack density extraction).
Given P C P, o be S n-decay stack, P’ € D, and r € (1,00), we have:

1/7'
, S np (l JH]P’P/ >>
Ly =

1/T/ N /
S (Ut ) e

HC]P)P/YZ

HC]PP/<

L

Proof (< n-decay stack density extraction). Since Pp/ > and Ppr « are still
< n-decay stacks, we can apply the canonical decomposition. By previous
claim, we now have:

1/r'
Su <|_|I[]P>j, )
P P>k

1/”” ’ "
sl ) o

HC’PJ
k

e

P/ <k

V3,

P/ <k

As we sum over j, k, for P’ be Pp/ > or Pp: , we have:

Il <D | e
Jik

L

We only need to check:
()" = w0 ) ()
Jik j.k

To do so, we first represent | JIp: with a carpet:

1/r'

Ute = | |J, where J:= MIp € X.

By the = -chain structure on M%,, K-

PIE=SY

J J J J
< Mp, < Mp, < -0 < My, < Mg, <,

2k —1 2k —1 2k —1 2k —1 2k —1
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we have:

viel, p(rn| M) = > = -n
et

After summing over J € J, a direct computation shows that:

%u (UHM)UW ZSZAZM (|_|Mj/’k>1/rl

j=1keN

<SS -0 oY

j=1keN
1/r!

<3 (U9) s (Un)"
Y2

which completes the proof. ]
Proof (Density extraction). For the same reason in < n-decay stack den-
sity extraction, we only need to verify the following sum:

1/r 7 1/r'

Z 7 (U ]I]P”(a)) < [21p ,

a€eN

where P can be Ppr > or Pp, .. We first recall that Ipia) C Iy := AS_; \ AS.
As we replace every layer with carpets:

Jo = MIpw € X and J;:M{Ieﬂ)ucﬂp,} €X,

we reduce to show that:
Su(s)" <SS (a5 ek
a€eN JeJ aeN Jel

We now fix J € J and find the oy € N such that J € I,,,. Since Jo < I and
Jo < Ay_1 for all a € N, the §-covering relation on A,s implies:

1/r'

=0 a—ay<0
w(I03) = D11 S <1l a—a;=0
—ay—1
€le < g g a—ay>0.
Summing over a € N yields:
1/r’

Zu(mUJQ)W -y [T

aeN a>ay \ I€]y
IcJ
’ a—ay—1 ’ ’
S‘JP/T + Z 5 2 |J|1/r S; |J|1/r )
a>ag r
Summing over J € J completes the proof. O
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8 TT* - T*T Arguments for Cluster Parts

We recall our settings: After Eiffel Tower construction, we choose l <m =n
for our decomposition scheme. In previous section, we have dealt with all
the sparse parts. The rest is to control all the cluster parts.

8.1 Reductions

We build our arguments from small structure towards large structure, and we
do so in a way to exploit both the Pointwise control and the Orthogonality
structure of the L? settings. We lay out our plan:

1. Encode density factor into the pointwise control on a single cluster.
2. Control the continuity /oscillation of the adjoint of a single cluster.
Extract apartness through orthogonality between a pair of clusters.
Exploit -covering relation to control interaction across A,s.
Organize clusters into open 2/*-apart 1-stacks.

TT*-T*T arguments for L? estimate to extract density factor.

Nos ok W

Modify TT*-T*T arguments for extrapolation.

With a plan in mind, we introduce some terminology and basic properties. We
start by observe the kernel of a operator. Given P C D, we can collapse
everything except oscillation into the kernel:

'S]P’f() = /K]P’('ay)eiq(')(y)f(y)dyv where K]P’(Iay) = Z KSP ('r7y)XEP (gj)
PeP

For simplicity, we also denote Fp := U FEp the support of the operator. Nat-

PeP
urally, we expect some structures from P will be reflected in Kp:

Properties 8.1.1 (Kernel structure of a convex set).
Given P C D convex, there are simple measurable functions Sp(y and Sp(.y

from RP to Z 11 {—o0,00} such that we have the following kernel expression:

SPa Spx
K]P’(xvy) = XEP(x) : Z KS(I7y) = Z Ks('r’y)
S=5py S=3py

Remark. This is what we have said the consecutive scaling. Since a cluster
is convex, it gives us hints to control a cluster with X.
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Proof. For fix x € Ep, we first verify the consecutive scaling. Given P; € P
with sp, < sp, such that x € Ep,, we have:

.'.P0<]P1.

)4z Ewp, Cwp,
' .TEIPOCIPI

For any s € Z such that sp, < s < sp,, we construct a tile as such:
N €D sit. x € I and, then, Jw € D] s.t. ¢, € w.
We define P := I x w and verify that:

x € Ep
Ipoclglpl S Ph<P< Py

=

Wpy 2 W 2 Wpy

=

By convexity, P € P and thus verify the consecutive scaling. We now
explicitly define sp, and Spy for x € Ep:

Spy =min{sp €Z|PeP A z € Ep}
Spr :=max{sp €EZ|PEP A z € Ep}.

For x ¢ Ep, we assign min @ := 0o and max & := —o0 as our convention so
that the definition conveniently gives us empty sum. Lastly, since q(.), sy, and
5(.y are simple measurable, Sp(y and Sp(.y must also be by construction. [

Now, we demonstrate the benefit we pick cluster as our building block.
Given p € D, we set g, := ¢, and decompose the oscillation term:

i(qp—qa)ly _
ei=(y) — i(de—ap)(@) ettt 1 0%r (¥)
+1

We view the first term as an error correction and the second term as the main
oscillation from p. To control the error term, we use an elementary inequality:

| piradian _ 1| = |displacement| < |radian|

and, then, bound with a local oscillation on polynomial. As an important
example, we have the following:

Properties 8.1.2 (Error correction of the oscillation).
Given P,p € D such that AP < p, we have:

x

Y

- =yl

(5,9) € Bp x Alp = |- 1] < |(g—q)l;| <
axmDd  LIp
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Proof. Fiz (x,y) € Ep x Alp, we define I, the smallest cube containing
xz,y. Embedding Inequality implies:

eilap—a=)ly _ 1’ < ’(Qp _ q“)|z

< ”CIP - qm”]w,y

lr, lz —yll
< ™Y _ < a— Jh
~ q q ~
DoalArp lgp = dollar, AanDd L

7H7 k)

HQP - quIP .

Ip

Since AP <1p, we have:
o — azll;, <llaw —apll;, +llap — @l S A+,
K

which completes the proof. ]

The above-mentioned properties are the rigorous justification for choosing
cluster as our building block. In short, we expect that a cluster should:

e Behave like .
e Temporally localized on I,,.
e Spectrally modulated to e%.

From now on, we fix a (open) cluster ¢ € P, , at p € P, , and investigate
the inner structure of the corresponding operator.

Definition 8.1.3 (Inner structure of a cluster).
We introduce the following notions:

e f(y) ='W f(y)

o Modulation operators: ,
! {uf(x) = ) f (),

e Model operators:

Py f(x) = [Kyplz,y) (ffi (ap=a)ly — 1) fy)dy
quf(x) = +
Uy fz) = [ Ky, y)f(y)dy.

A direct consequence is that: £g = ppyQppiy = iy Poppip + ot U piy -

As a result, the boundedness of £ is completely governed by ®q and Wys.
One the other hand, the spectral behavior of £y hides inside the modulation.
We need to consider the adjoint to flip it outside and extract the separation
factor. In the next part, we use Multi-resolution Analysis to treat the
pointwise control of the operator.
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8.2 Pointwise Control on Cluster

The idea is to work under suitable resolution and preserve the density in-
formation encoded in Eps. To proceed, we consider the following:

Definition 8.2.1 (P-fine setting).
We construct the following carpet:

Jos ::M{JeﬂgB VP e, IP¢J}eX
so that |JIyp = | |Jg. Additionally, for each J € Jg, we assign references:
m, = {wenam:f A EIPE‘BS.t.wglP}
and the corresponding set:

E;:=JnN U Ep.
pPep

We expect that under suitable assumption, F ;s would carry some properties
from Eps. Indeed, if we consider a cluster, we have the following:

Properties 8.2.2 (Deunsity preservation).
The B-fine setting satisfies:

|Eg| oo
—=S27", VJ ey,
/]

Proof. Fiz J € Iy, we follow mostly anti-chain density extraction:

e By maximality, there is Py € B C Py, o such that Ip, C J.

o For any m € Il;, m should be relatively close to p € P, o, since:

m =P and, thus, Aw <p

dP 9B, s.t.
T AP and, thus, Am < AP <p.

As a result, by spectral packing constraint, #I11; < 1.
A\r,D,d

On the other hand, since AP; <p, Embedding Inequality and triangle
inequality implies:

APym) < llaps = allp,, +llae —axlly 51

)K:7 ’

Through the definition of An we have density control:

n,a’

A(m) £ A (A(Py, 7)) < An, (Py) = An

~

e\, k,D,d

s\ R, Ly

(Py)y <2 ™.

n,o
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o II; actually recovers Ej in the following sense:

Ey=JN U Ep C |_| E,

PeB nelly
jclp
E E
ﬁ| J‘ :5 j{: | /f‘ < #II; - sup “4(ﬂj :5 9—n
‘J| well s |J| mell; e\ k,D,d

O

Now, we proceed to estimate the contribution of error correction in ®y f
and bound Wy f with Tf.

Lemma 8.2.3 (Cluster estimate).
Both Model Operators have pointwise control:

o5 fl S Y (inf MS) e,

Jelyp

Wy f| < Jgp (i§f¢f+ir}fo) X5, -

Consequently, we have:
S0 f1 S JXJJ (inf Sppf +inf M) x5,
Elyp

Remark. Since E;s preserve density, a direct consequence is:

1/p
p

I3l S | D2 |inf Supf +inf M f| 1By

p PASIBY

1/p
P
<[o-n . :
S 2 Z ‘H}fi,upf—ku}fo‘ |J]

JEIyp

<27/ [Tpp f + MfHLp(]p) :

Proof. We verify the control for each J € Jgp. Starting with ®sg, since P is a
cluster at p, we have P € = AP <p. Error correction of the oscillation
implies the following control:

VP € P, ((m,y) €EpxIp = | @=wl _ 1‘ < ”m[y”> .
Ip

Yet, with a change of perspective, we can choose the best bound for each
x € Ej. That is, we consider the following collection:

B, :={PeP|xecEp}.
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Since for each scale s € 7 there is unique P € D such that (,q:) € Ip X wp
and sp = s, we see that:

Spe <8 < Spr = P, € B, s.t. sp, = s.

We, therefore use the following estimate:

vy c ngm; ei(‘lp“]m)‘f, -1 S mi;y” — 27@31&”% o y”
Psga

As a result, since:
VPG‘BQC, Jgfp CIPI,

the estimate can be used universally when dealing with the collection B,. Com-
bined with support and size control on kernel K, we have:

Opf@) < 3 / Ko (2,9)] -

PeY,

et @ —ax)ly _ 1‘ | f ()| dy

Crp,

322 Xip, W) |lz—gil"
$ 3 [ £ (w)ldy

4r
Psgyy

Spa
S >0 2 sup o |fldu S inf M
s=s Pep JIp 7
Spa JCIp

This completes the estimate for ®sy. For Wy, we use the following principle:
Upper bound on J < Lower bound on .J + Oscillation on J.
Thus, we shall first measures the oscillation: Given arbitrary (x,§) € Ej x J,

Sy

wn) - [ 3 Ko< 3 [ K Gl wly
s=§fﬁm PE‘Bx
(ICIp)
T-Holder regularity implies < Z <”z — §|) /Xf” W) |f(y)|dy
Jot lrp | Zp|
(ISR
S (/) 51 o Ssw f (flduSing My
PEP. T T Pep JIip J
(JCIp) J&Ip
On the other hand,
Sy
Ve >0, 3¢ € J s.t. / Z K& y)f(y)dy <Tf(E) < 11}fo+6.
S=8q3,
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Triangular inequality yields:

(o)l <| [ S K€ fl)dy| + o) / S K6 f)dy

S:§q37‘
gir}fif-l-;f—%-ir}fo,
which completes the proof. O

As we have mentioned earlier, we also need the control on its adjoint. To
complete the argument, we introduce an operator which arises naturally in
our analysis on the adjoint:

Definition 8.2.4 (Auxiliary maximal operator).
Recall the buffer w > 1 used in the definition of openness of a cluster, we
consider the following mazximal operator:

M f(y) = sup |Ip|”" / fldp.
Pep Ep
yewlp

Properties 8.2.5.

1/p
36571, S (509 AP)) U7l W€ (1oc)
Pep
Proof. It is easy to see that:

My, < A(P oo -
M5l < sup AP

To verify the full range of the property, we only need to acquire:

[ Mg f]] e S SNl
and interpolate to finish the proof. Fort € Ry, we consider the following set:

‘Bt:_{Pefp|t<lp|1/

Ep

|f du} :
By construction, we have:

o Mgs) T = | wip= | wlp
PG‘,Bt PEM(,Bt

(s eel) SN el

@,k,D PeMP,

<t S [ =t [ <
P MPB4

PeMR,

which completes the proof. ]
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Remark. Due to the definition of the open cluster, we see that if B is an

open cluster at p, we have:
VP eP, wilp C I, . suppMyf C 1.
Additionally, if furthermore B C P, o C Il,, we have:
A(P) = A(P)(A(P, P))" < Ap, (P) = An, ,(P) S 27"

Therefore, |M‘§3fHLp = HM‘E}fHLP(]F) N 9—n/p’ ||f||L1>(Ip).

After the necessary setup, we investigate the properties of the adjoint oper-
ator. We expect that the adjoint should reflect some properties from the kernel,

and, indeed, we have the following:

Lemma 8.2.6 (Adjoint local 7-Hdélder continuity).
Given a cube L C RP satisfying the following: For any P € B,

IpNL#A90 = { < {4, ~dist(L,Ip),

~Y
w,k,D

we then have:

Vy,n € L,

me’n’ ~ ( ‘5 HLlmef

Remark. The condition on L is designed to fully exploit the local T-Hélder

continuity of Ks.

Proof. Given y,n € L, we evaluate the difference:

Yy

f(z)de

n

‘Q%fm: 3 /E (Kap () =110

Pep
IHNL#£D

<2,

pep
ILNL#2

ettt | f(a)de

KSP (.’L‘, )|Z

For now, we fix P € P with I, N L # &. By assumption, we have:
ly =l S lo < i, =2°77.

As a result, local T-Holder continuity and size control of Kys implies:

—1 _ T
Koplali] Sl (B2)

Vr € Ep, {‘ .
|KSP(I777)| S |IP| :
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On the other hand, error correction on oscillation yields:

Y

Vx € Ep,

o :wfu%wgm_w<Hy—nﬂ

~ ZIP

i(gp—a2)If,) ‘

n

Combine estimate on kernel and oscillation, we get:

o fY| < Iy—77||>T ly (], 71/ .
sl s X2 (L= i e L L
I5NLAD

To sum over such Ps, we need to make sure that there are only < 1 tiles Ps

with the same scales in the sum. This is guaranteed by the assumption:

' QSPK=€]P ~ diSt(L,[p),
S Vs€eZ, #{PeP|sp=s AN IpNL#2} <1

Therefore, we can safely sum over those Ps and acquire:

* y— i —
s Y (”””) sup 171" [ Ifla
Pep Pey Ep

lr, )
I5NL#D IpnL#o

|y - 77||)T —1/
< E - sup |Ip du
( 25k Pep > Ep i

SEZ ~
£ 528" LCwlIp

< ns *
S ( 7 inf My f.

This gives us hint on how high the resolution we shall analyze on:

Definition 8.2.7 (P-fine dual setting).
We define the following carpet:

Ly = M{L eS| VI €Sy, [ ¢ L} X,

where Shy := {{1,{+Ip €D | (P,§) € P x S} = U Shrp
pPey

so0 that, by construction, we have | JShyp = | | L.

Remark. This comes from the original construction:

o= sy = | | us+1

£€Sh

By construction, we guarantee that:

V(L,P)E]ng xB,IpNL#£P = 3§€$S.t.LgfIPE—|—Ip).
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Yet, recall that Sh:= {2z € Z | np < |z| < np2* + 1}P. This entails that:

3¢ e Sh os.t. L - I€IP£+IP — I < g]P :D d’ist(L,Ip),

which is exactly our condition for Adjoint local T-Hdolder continuity.

As a direct consequence, we have:

Lemma 8.2.8 (Adjoint cluster estimate).
Adjoint of the Model Operator has pointwise control:

%D (irLlny;Bf|+irL1fM;Bf) L.
LE]L\p
Also, we recover that:

EYIEDY (i%fysggfyﬂ%fmf) L.

LE]L‘p

Remark. The density information is packed inside irLlf |Q;3f| and irng%}f,

Proof. Fizing L € Ly, adjoint local T-Holder continuity implies:

ly — .
< *
Yy,n € L, S inf Mg f.

%1,

On the other hand, we use the same trick:

Ve >0, In € L st | f(n)] <inf[Q5f|+e.
Thus, triangle inequality yields:
s )] < | Q12|+ 195 F0)] S inf Q4] + ¢+ inf Mg f,

which completes the proof.

8.3 Extraction of Separation Factor

Finally, with adjoint local 7-Holder continuity. We are ready to extract the
separation/apartness factor. We first observe that, given cluster 3, C P,, ,,

at p; € P, o, we can write:

<£€§30f0, 2%1f1> — /ei(qpr%l)g%ofpo . Q?jglfmd#a

where fp, = ppop* f and fp, := pp, p* f1. This is exactly the form of Van der
Corput estimate if we view ¢q := gp, — qp, and ¢ = Q%Ofpo . Q%lfpl- Yet,
since we only have adjoint local 7-Ho6lder continuity, we should apply the
version adapted to a partition of unity. On the other hand, there is always
some location where the local oscillation of polynomial is small. We need

to find some balance in our analysis.
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Lemma 8.3.1 (Apartness control).
Given B; C Py, o open cluster at p; € Py, «, if PBo and P1 are A-apart, then:

(€30 for L, O] S A27 | foll e || full e

Remark. The estimate we acquire is actually a little bit different compared to
the one in [Lie20] or in [Zor19] since we extract the density factor and sep-
aration factor simultaneously. Still, this improvement only indicates that
the separation factor only need to serve the role to compensate the temporal
overlaps of the covers.

Notice the estimate is trivial if A < 1 or I, N1, = &, thus, we shall assume
A>1and I,, C I,,. Also, due to the openness, we only need to evaluate the
integral on Ip,,. Eventually, we reduces to show the following:

Lemma 8.3.2 (Extraction of separation factor).
Given A-apart B, P’ C D open clusters at p,p’ € D respectively with I, C I,

+Myg

‘/ei(‘]pqw)ﬁ%fﬂ*l‘gdu SA*EP|||Q§53f’—|—M§3f||LP(Ip) (|29 |LP'(1p)'

Proof. To separate Major oscillation from Noise, we first set q := g, — gy,
pick o <1 <9 <<D C <<D w, and consider the following collection:
K, K,

M:={PePUR|lgll;, > A°} and N:=(PUF)\M
We fist notice that, apartness implies:
VPeR, IpCl,Cly . APp)>A

If A >>/\ 1, any P € P satisfies:
o,

lallze = llallz, 2 lay —apllz, = lap = @ollz, 2 APP) = A Z A
Alternatively, any P € P' with Ip C I, must also satisfy:
lallze = llallz, 2 llap — apllz, = llap = apllf, 2 A(PP) = A Z A

As a direct result of monotonicity of the semi-norm, another P’ € P’ with
Ipr D 1, D Ip would also satisfy ||q||1,, > ||lqllr, 2 A. This poses quite a lot
restriction on the configuration of M. In short, for large A, we always have
P C M and the following characterization:

N=P\M=A{P P ||lglr, <A} C{P P |IpN], =2}

For the Major oscillation in B', we denote Q := P’ NM. We now investi-
gate the properties of the decomposition B = QUN. Due to the semi-norm
structure: Given P; € Q and P € D,

PoaP<aP = (PeP A A <|qllip <llgll1,) = Peq.
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Similarly, for P; € M and P € D,
PoaP<aPr = (PP A gl <llgllrp, <A?) = Pe.

By preserving the convex structure, ® and 0N are both open clusters at p’.
We now reduce to analyze the two integrals:

|f eti%fQBng Major oscillation
< +
o 1|9 f| - |9gl dp Noise.

To locate the different features from Magjor oscillation, we do a Whitney-like
decomposition on RP :

/ e 105 f Q5 gdp

Iy

L:=M{LeD|V(PE& eMxSh, {;,6+Ipg CL} X
so that any element L € 1L satisfies the following:
e Locate Major oscillation:
S AP EMx S, st b+ 1p CCL,
A<l = Nlallz, = lallere+10 < llallcr = llgllc-
e Condition for Adjoint local T-Hélder continuity: Given P € I,
LNIp#+20 = b <Ay, ~ dist(L, Ip).
This follows from the fact that 36L N I} # @ implies:
I e€h, st.30LNLi e+ 1Ip #O.

Yet, if lssr, > 3845, (or equivalently £y, > {1, ), then, by choosing C >
30 + 2, we have the following:

o Vx EE]P§+IP, ||$7(2L||00 < 3/2§€L +€[P < (3/25+1)£L,
S Apé+Ip CCL=«Lel.

Therefore, we must have {35y, < 3001, and, additionally, dist(36L,1p) ~
dist(;,€ + Ip,Ip) =~ {1, as long as C >D> 1.

e Slow wvarying scaling: Given L' € L, then L' N0L #+ & = {p = l.
The reason is that L' N 0L # @ implies:

I C2% +6)¢ 0y,
VCUGCL, H.’L‘—CL/HOO S ||:L'—CLHOO+||CL_CL,||OO S ( + )2L+ L )

If, additionally, we have Cgig‘s < EELL' , then:

Yz €CL, ||z —cploo <Cly - CLCCL ==L €L.
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Due to these properties on 1L, we can safely construct a adaptive partition of
unity {Xr} o satisfying:

IXL] f? X5L

VLeL, g € C s.t. )
IVxell §X5L/€L.

Applying the Van der Corput estimate, adjoint local 7-Hdélder continu-
ity, and the adjoint cluster estimate, we have:

[ facs gl
—or/d [ : * . % . * . *
saer (;,g%\%f | +;,2£Mmf) (§?£|99~9| + inf Mag) 21

This is almost the form we want. We only need to replace the Q on the RHS
with P’'. To do so, since Q C P, by the definition of our auxiliary mazximal
operator, we can dominate Mg with M%,g. The rest is to estimate the loss
caused by %9 = Q?iyg —Q8g. We notice that:

o We only need to focus on L € Ly :={I €L |36] C I,} since, otherwise,

3L ¢ I, = 35L¢PL€Jq3wIp — %m;ﬂ = inf My f =0.

o Temporal size constraint on Noise: Given (L, P) € Ly xR,
LNIp #0 = {1, =~ {L.
The reason is that Noise must lie temporally outside I,:
3LNIpCcl,Nnlp=02.
Therefore, if Ip is too small:
lrp <Af, <l = dis(L,Ip) >0 -1 = LNIp =2,

which forces the lower bound on the size. On the other hand, if LNI} # &
but £y, > {1, Embedding Inequality implies:

A S llalle < llallz, = llallzp == P .

o Recall that N is still a cluster, thus, due to spectral packing constraint
and temporal size constraint, we must have:

VLeL,, #{PeN|LnIp#2} <1
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Fizing L € Ly and choosing w > 1, the above three properties and single tile
estimate imply the following:

suplol S S Vel [ laldn S sup Vel [ lald S inf Mg
PeM P 4 P
Lﬁ[?*-,;éz LCwl,

As a tmmediate result, we have:

inf Q59| < inf Q59| < inf |QF Qg < inf | g| + inf M.
zl’jle‘ Qg|—HL1| Dgl—”}/‘ 9 +Slip| m9|~HL1‘ ‘139|+1rL1 g

As we dominate Mg with My, g and replace 30L with L, we have:
[ tucs g

SAaer/d (nLlf | f| + inf Mgaf) (irLlf |29

+inf Mgyg) L],

Summing over L € L, we get:

[ e 0] A [ (9071 + 3055) (9

<A || f] + MS}fHLP(I,,) 1259

+ Mi,g) du

+ My g

|Lpl(1p) '

For the Noise, we consider the carpet Lsp € X instead. Due to the construction
of N, the element L € Ly satisfies the following:

e Size control:

VP e, (Lﬂ]};;ﬁ@ — A%%PSQ).

Otherwise, since L € Lsy, there is (Pr,€1) € P x Sh such that £y, &1 +
Ip, C E, if there is P € N such that Al%dggjp > {r,, we have:

A S lals,, = laller,, es1m, S lallz < llall 122, S A lall,

which contradict with the condition ||q||1, < A°.

e Packing constraint:
Vs€Z #{PERNILNIE#D A sp=s} (2772,) 77"
This follows from the configuration of Mt and the fact that B is open:
" PeNM = LNnlpCclynilp=0,
S YPem, (Lm[;;é@ — 9LNIp 7&@),
which forces the packing to concentrate on the boundary of L. Also,

since N is a cluster at p’, spectral packing constraint only gives a

factor of < (14+ X for those sharing the same temporal blocks.
k,D.,d
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Using adjoint cluster estimate on Qy f and single tile estimate on 59,
we have for all L € Ly,

LNI;
/|Q§%f‘.|Q§Ig|du§(irLlf’Q%f’—i-irng%f) | I |P|/ lgld.
L Pem
LOIL#2

For the summation part, we notice that:

LﬂI

Pe‘n Pen
LN #£2 LN #£2
Hoélder’s inequality < |Mggll Z |Ip|!/P.
Pen
LN 42

Using the size control and packing constraint, the summation on the right
can be further reduced to:

Z |IP|1/p 5 Z (Q—SKKL)(D_l)/p stD/p

PeMm SEL
* —1
LN #2 aencntite,

SE(LD_l)/p Z 2sn/p SA"T;I|L|1/1)

SEZ
2”‘<A ZL

As we recombine and sum over L € Ly, we have:

o—1 . * . * *
[ 19571 9l dn S 55 (it |51 +int M ) (L2 [ Mgl

L€Lsy
1/p 1/p’

o— . % . * p * '

SATpl Z <11£f|me|+1I£qu3f> |L| Z ||Mmg||§p/(L)
LE]LQQ LeLq}

AT || f |+ M|y 109 2 1y

e-1 * * * *
<A [ f] + M ] oy, 11950 9] + Mivgll g, -

The rest is to fine-tune o € (0,1) so that ld;pg =& =¢,.

8.4 Support Restriction and Cross-Level Decay

We have been working within P, ,, for a while. Let us investigate the interaction
across P, o and P, g with 8 > . Given a cluster g C P,, o, at p € P,, , and an

open cluster P’ C P, g at p’ € P,, g, we have:

[(Cpf, Ly g)| = ‘<Emf, XE‘I;//S‘B/9>’ = [{xas_. Spf Sy 9)|
(257 o)l = (85500, 8500)| = |(xins 25 S509)].
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To acquire good control is to understand the behavior of operators restricted to
| JAg_1. As we expend the operator:

Xl_lA{i—l |£€]3f\ 5 J%]: (iI}fTMpf + H}fo) XE.]OL]Aﬁ_l
B

s (%] S5 30 (85| + 90 S) xarisns
B

we immediately spot an almost trivial control:

Lemma 8.4.1 (Support restriction control).
Given B be an open cluster at p, and a measurable set A C RP, we have:

EJﬂA|

1/p
|
”XAE‘Bf”LP f/ (sup ”T:U‘Pf + MfHLP([F)
JEIp

1/p
syl < <p|L> ISV STy I

Proof. Using the (adjoint) cluster estimate, we have:

r 1/p
E;NnA| g, . P
beasufl, < | 30 B0 Gnesp, s + infar ) 1)
|| J J

Jelyp

r 1/p
Ieasisll,, S | 32 = (flehr] +mtMgr) |

_LG]qu

An elementary use of Holder’s inequality yields the result. [

We now can expect the d-covering relation to play an essential role.

Properties 8.4.2 (Cross-Level Decay).
Given P C P, o and A € N, we have:

TN UAsal L0 Aaral
g

(J,L) € Jp x Ly = < 64,

Through iterative use of the d-covering relation , the above property can
be derived from the following claim:

Claim.
Given P C Py, o, we have:

IcJviInJ=g

I,J,L) € Ay x Jopg X Ly —>
( ) Tp Loy {ICL\/IOL:@.

Proof. Fiz (I,J,L) € Ay x Jp x L.

79

doi:10.6342/N'TU202100160



o Suppose J C I, then the construction of Jp implies:

HPest.t.IpcfcIeAa:x:IpeHa.

o Suppose L C I, then the construction of Ly implies:
P, ePxShst by, 4+IpCLCIEA,.
In other words, we have:
3P € P sit. (ipmm&@ Al ge,).

However, for such P €3,

AL eX® - Td'eA, st IpCl ==1Ipel,.

Combining the two lemmas, we have:

B—a—1

IxUass S S S min (57527777 ) £l

B—a—1
e 27| £l

xuas 2 L5, S 6

Also, the inner product form:

B—a—1

2772) 2772 | £l gl
* * Boa—l,
(eaf. S| SO F 27 | fll e Nl e

{<£q3f» Lyrg)] < min ((5

8.5 Row Configuration

With clusters being thoroughly examined, we build from them a larger struc-
ture to exploit the temporal aspect of the control.

Definition 8.5.1 (Row).

e A row is an open oco-apart 1-stack. That is, R is a row if:

B <-convex
) AP <p,
R= i ANV PeP, = (- I
|7|§’BJ J B; {IP c ij

k#j = I,NI, =2.

e Two rows are A-apart if the collection of clusters are A-apart.

e An open A-apart =Z-stack is actually Z rows that are both mutually
A-apart and mutually <-incomparable.
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Remark. Due to the disjointness of the supports of the corresponding oper-
ators of open clusters in a row, all the preceding estimates have direct adap-
tations replacing open clusters with rows.

Lemma 8.5.2 (Row estimates).
Given Rq, R, C P, o and Rz C P, g three rows and a measurable set A C RP,
we have the following estimates:

e Single row estimate:
”’QD‘MHB[:(LQ,LZ) = H’g‘i;%a ||B£(L2,L2) SJ 27"

o In-level interaction:

||£9g/ Lx., HBL(L2 L2y S SAT2™" R, and R, are A-apart
|25, 2.

=0 R, and R, are J -incomparable
BL(L2,L?)

e Cross-level interaction:

| Lo, L5, HM(LQ Ly SO0 27" a< B
Hﬂmﬁ < min ((5[37;71,2_”/2) 272 a<f

BL(L2,L2)
Proof. We consider the following natural decomposition:

S f =Y Lp.,f =D xpy, Syp.x |
; ;

Since By, . s are disjoint and so are I, s, we have:
2J «@,J

2
2
€0, fll72 = }: (i

LQ(Ema,j )

S2T "ZIIfHLz ) S 27Nz

This completes the single row estimate. For R, and R, being A-apart, we
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extract separation factor. By setting iUy := |£§3 + Mg, we have:

NI,/

<> /
gk |7 v ey
AT

J.k

2‘33(1,.7‘ XE‘%,J‘ f ' Wdﬂ

u‘pa,j XEq_;u'j f‘

Upr  XE ‘
r2(1, NI, H B X ‘%,kg
Poi' TPL g

1/2

2
Uy XEy, 9]
L*(Iy, ;) (%:H PosXByy I

L2 (Ipa,jmp,u k)

) 1/2
Iy, )

<A™ Z Hﬂpr,jXqua,j f‘
J
1/2

1/2
—€ —n 2 2
<A™ > 112 (2, ) (E 91122z, k)>
j 3 k‘ o, R

SATE27 2 N9l o -

The other in-level interaction is trivial since the support of the operators are
disjoint. Lastly, cross-level interaction is reduced to the following:

B—a—1

{llmﬁlsmfllm S min (0557, 2772 | s
XU s Lo, Fll e S22 |f] e

Using the natural decomposition and an analogue of the single row argu-
ment, we can extend the result from clusters to rows. O

8.6 Almost Orthogonality
We specify our constructions: [ =m =n and § = 274,

some sparse parts
Vo eN, P, o~ P p

< n open 2"" < -apart 2"-stacks
We interpret the open 2% <-apart 2"-stacks as 2" rows with additional
structure. Therefore, we naturally would consider the following configuration:

Definition 8.6.1 (Cluster tower or BMO Forest in [Lie20]).
Given P C P,,, we say P is a cluster tower if, in every level « € N, we have:

on rows
PNP, o= |_| Ra,j, where {Rq; }3=1 are { <-incomparable
j=1 2n% < _apart.

We see that P,, consists of < n cluster towers. Therefore, we only need to
obtain a bound with an exponential decay to compensate the polynomial
growth of the the number of cluster tower in P,, as we sum over n € N. As
we apply the Cotlar-Stein lemma (T7*-T*T argument), we have:
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Theorem 8.6.2 (Cluster tower L? estimate).
Given P C P, a cluster tower, as long as k > 2/ea, we have:

I1€efllze S n27" || fl e -

Proof. Decomposing everything into rows, we have

o an—1 2m
P=||PnPua=|][|%s= ] || |]%es
aeN aeNj=1 v=0 ae2nN+~vy j=1

We verify the condition for Cotlar-Stein Lemma (TT*-T*T argument): For
fized o € 2nN + v and 1 < 57 < 2™, we have:

>y .
Loy S,
B «@,J P
P it BL(L2,L?)
1/2 1/2
= ||, L5 + HE LR,
H Ra,j “Ra, BL(L2,12) 1<§<:2n Ra,k “NRa, BL(L2,L2)
ks
2'IL . 1/2
D DD ) [0 s
BE2nN—+ k=1 ’
B#a

52777,/2 + 2777,&62/227774/2 . (277, _ 1) + Z 21*|5*0¢|27n/22n
B—ae2nZ\{0}

52—n/2'

For the dual estimate we have:

>y -
L. Lo,
B,k o,
Be2nN+v k=1 BL(L?,L2)
1/2 12
H Ra,; ~Ra,j BL(L2,L?) 1<;2" R ~Ra,j BL(L2.12)
g
2" " 1/2
* Z Z‘Smf’*ksm“’j BL(L2,L2)

BeE2nN+v k=1
Ba

527?7,/2 +O+ Z min (217|,3704\’27n/4) 27?7,/42?7,
B—ae2nZ\{0}

52—71/2.

As a result, we have:

2n—1 2"

Ieellpcianm < D || D D L, Sn2/ O
v=0 ||a€2nN+~v j=1 BL(L2,12)
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Theorem 8.6.3 (L? bound on cluster parts).
Let P C D be the full collection of the cluster parts, we have:

1€l L2 S I1fllze-

Proof. We break PNP,, into < n cluster towers and apply the cluster tower
L? estimate:

|€ep, fllp2 S n?- 2772 | 2.

As we sum over n € N, we finally have:

I1€efllze S D0 272 fllez S I1f o2,

neN

which completes the full argument. O

8.7 Bateman’s Extrapolation Argument

In order to recover full LP bound for the cluster parts while exploiting the
orthogonality structure of BL(L?, L?), Zorin-Kranich adopted an extrapola-
tion argument used in [BT13] by refining/localizing the L? estimate. Yet,
his argument requires a reorganization of the full collection of the tiles in-
cluding the sparse parts. We come up with a similar idea without altering
the configuration of the sparse parts. For starters, we state the extrapolation
method matching our L? settings:

Lemma 8.7.1 (L? Extrapolation).

Fiz p > 2 and an operator T mapping L' qualitatively to LP*>°. Suppose for
any G, H C RP measurable we can find measurable subset G' C G and H' C H
such that:

e Error loss control:

|G\G/| 1/p H\H/ 1/p'
—_ < 1
( o ) "\H =eTh

e Testing condition:

H| 1/2—1/p
|WMTWGﬁMp§A<WO e Fllze,

we then have the following quantitative control:

< A

~1l—c¢

1T £ oo £l -

Our goal now is to extrapolate a LP! — LP»> bound that does not neces-
sary have a exponential decay for a cluster tower in P,. This is still okay
since we can first extrapolate a bit further and interpolate with the L2
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bound to spread the exponential decay. Also, for p € (1,2), we just switch
to control the adjoint. With that been said, we still need to find a system-
atic way to choose the subset G, H' for given G, H. Zorin-Kranich made the
following observation:

Observation. Given measurable set A C RP and p € (0,1), we have:

17N Al
<

I¢ Mx,' (p,oo] = e

This is equivalent to say:

[T NA|
|

1C MG (o] = f xaldn =
I
That reminds us the support restriction control. As we explore the idea,
we would naturally come up with the following settings:

Definition 8.7.2.
Given measurable A C RP, we set:

A, = Mx," (p,o0], where p € (0,1).
For a collection of tiles P C D, we set:
{]P)Ayp ={PeP|IpZ Ay}
Py, = {PeP|IpgA,}.
Due to our construction, we have the following:

Lemma 8.7.3 (Density Manipulation).

Given P C D, a measurable set A CRP, and p € (0,1), we have:

[INA| <5
I

Ielp,,ULlp,, Ulp, ULp, =

Proof. By construction, we have:

I e JIP’A,p U LPA,# UJPEW U ]L]P’jj‘,p

=3P €Pa,UPY , st. Ip S T
k,D

—3A S 1st. IpCAI ¢ A, = Mx,* (p, ]

k,D
[T NA| AT N A|
1] AT
O
From this, we derive:
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Corollary 8.7.3.1 (In-level localized estimate).
For an open cluster B C P, o, at p € P, o, we have:

, i -n/p_,1/ )
leagsnd], S min @) fea]

* ) —n/p’ 1/
HXA%XA;JCHLP S27P P

Lr(Iy)

XAﬁfHLp(g,)'

Similarly, for a row R C P, o, we have:

i —n/p 1/
Xalowxagfll < min (277, p p)‘XAgf‘

e
xaSixasd|| S 20 x|

e
Lastly, for an open 2""-apart 2"-stack P C P, ., we have:

/2

* 1
HXASPXA;J”HLZ, HXASIPXAgf‘LQ S ‘XAgf‘

L2
as long as k > 2/e;.
Proof. We observe that:
xalypxasf =xrnalyy Xrnagf
xaLpxagf =x1,nay, X1nagf.
Since both P a,, and %Z,p are open cluster at p, applying support restriction
control on x1,naLqy , and X1, ﬂAS?i?A.p gives the desired control. As a imme-
diate result, natural decomposition yield the estimate for row configuration.
To control an open 2% -apart 2" -stack, we discard irrelevant tiles:
xafexasf =xaley, xagf
xaLpxagf =xalp, xagf
and proceed in the following two ways:

e To control xaLps, , we exploit the density manipulation to improve
the extraction of separation factor. That is, given an open cluster
PPy atp Py, we have:

Il xat |+ 205t

1/2
|Ep N A|
+ sup ——
||fHL2(1,,) (Peqﬁ Ip] ||f||L2(I,,)

A,p

< x
~ HXAS%M BL(L?,L?)

< min (27"/2,/)1/2) 1121, -

As a result, for open clusters B, B’ C P, at p,p’ € Py, o respectively
that are A-apart and <-incomparable, we have:

* * —€ . -n 2
(5085 S0 )
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Therefore, for A-apart rows R, R’ C P, ., we also have:
. x < A—€2/2 - —n/2 1/2)
HXAEmAvpgmAmXAHBL(LZ,L?) SA i (2 P '

This gives us the desired control to apply the Cotlar-Stein Lemma(TT*-
T*T argument): We first decompose P% , into rows {%j}?zl and verify
the following:

2" 1/2
Con i, X |
;HXA R, XA BL(L2?,L2?)
. 1/2 . 1/2
- HXASmj 3, XAHBL(L2 L2) HXAS:SR’“QERJ'XAHBAL? L?)
’ 1<k<2™ ’
ko

Smin (27n/2,p1/2) + 277’“‘%62/2 min (27’”/2;,01/2) . (27’L _ 1)
< min (27"/2, p1/2) :

For the dual estimate, <-incomparability implies:

on
Z €5, xa L, HlB/LQ L2,L?)
k=1
1/2 * 1/2
I BL(L?,L?) ;2" HWHBE(LZ L2)
Tk#j

< min (2_”/2, ,01/2) .

Combining the two, we have:

[xagey s, S min (27772,02) | ]|
e To control xaLp, ,» we use orthogonality directly. After decomposing
P4, into rows {SR } 1, we can control its adjoint:

2n
||2PA,pXAfH2Lz = Z ||2R,~XAfH2Lz
=1

2m 2
<3 (oo oy 17122)
J:

n —n/2 1/2 2 2
<2 (2720 2 S e = ol £

< ,1/2
20

= [xaci.,
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We now present the analogue for a cluster tower:

Lemma 8.7.4 (Cluster tower localized L? estimate).
Given P C P, a cluster tower, as long as k > 2/ea, we have:

agixasd]| , S0 (1085 0) 0 2xas e

HXASIPXAgf ’L2 ;

Proof. For starters, we take N := [%(1 — log, pﬂ and decompose P:

on N—-1 an
P:upﬂpmaiuuma,j: |_| |_| U%a,j

a€eN a€eNj=1 v=0 a€ NN+~ j=1

We again verify the condition for Cotlar-Stein Lemma but, this time, view a
stack as a whole. We start with estimating XASPXA;;~ Given o € NN + v, we
have:

1/2

Z HXAEPmJPn,ﬁXAgEEmPn,QXAH .
BENN+y BL(L?,L?)
1/2

_ *
- HXASPHP”'“XAPEWPMXAHBL(LZ,L?)

1/2
+ Z HXAEWPTL,B XAsLpap, XA H
BE NN+~
BFa

BL(L2,L?)

< HXAS]P’ﬂPn,aXAg L2

1/2

o
+ Y <ZHXA£mﬂ,kxAgmuAal . ‘XAESI’EQPWXAHM(LQ L2)>

BENN+y \k=1
B<a
gn 1/2
*
+ Z <Hx,4£zwwx,4; BE(LQQH)Z HXAgnLlAgI/QmkaAHBL(Lz’Lz)>
BE NN+ k=1
B>a
1/2
Spl/Z + Z 9l-|B—al (min(2_"/2,p1/2) .2n.p1/2) §p1/2.
BENN+y

BF#a
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For the dual condition, we have:

1/2

E HXAgEIEmPW XALPAP,, o X AS

BL(L2,L2
BENN+y ( )

1/2

_ *
- HXA? LB, o XALPNP,, 0 X A7 BL(L2,L2)

1/2

+ 0y HXAg%mu»n,ﬁXASPmPn,QXAC

M
BENN+~
BFa

BL(L2,L?)

< HXAS]P’HIP’,L,QXAE BL(12.1%)

on
+ 0y <Z“XA2£;RB7,CXAH|_|AQ_1 o) ‘XA»QIP’OIP’”,ULXA,CJ Bﬁ(pﬂ))

Bc(Lz,L2)>

BENN+vy \k=1

B<a

2n

§ /‘ *

" (HXASQP“PWXA HBz:(LZ,H) 2 meu aoa e X5
BENN+y k=1

B>a
1/2
§p1/2 + Z (min (22—2|,8—a\72—n/27p1/2) on _p1/2> / §p1/2.
BENN+y
BFo

Therefore, we have:

N
Br(L L < Z Z XALPAE, o X A¢
(L2,L%) v=0 ||a€ NN+~

HXAQPXAg
BL(L2,1?)
SNp'? Sn(1—logy p) p'/2.
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To estimate XASff»XAg, we follow similar arguments:

1/2

> HXAEH%PR,&XA;SWP”,QXAH
BENN+~ BL(L?,L?)
1/2

*
=|xa¥ Ac Lprp, AH
HX PP 0 XA X BL(L2,L2)

1/2
+ Z HXAQ%P",,;XA; Lpap, o XA H

BENN+y
BFa

BL(L2,L?)

.
= HXASPF‘P"'O‘XAS BL(L2,L2)

o 1/2
+ Z (ZHXASM*XA?“UAQI BL(L2,L?) ‘XAZEPQP"’O‘XAHBL(LZ,L2))

BENN+y \k=1
B<a
on 1/2
+ Z <HXA2P“PW’XAZ BL(L2,L2)ZHX‘45”|—|AB12%“*XAHBL(L2,L2)>
BENN+~ k=1
B>a
1/2
5,01/2 n Z (min (22—2|L’3—a\72—n/2) p1/2_2n.p1/2) 5p1/2.
BENN+y
B

For the dual condition, we have:

1/2

*
> HXA;SPHP,L,BXAQPWWXAC

*llBL(L2, L2
BE NN+ ( )

1/2

*
=||x4cLpnp,  XAL X Ac
H g * BB a2\l g (2,12

1/2

+ Z HXA;; EPmPn,ﬁXAS];nPnﬂXAg

BENN+
BF#a

BL(L2,L?)

= HXASE;HP"""XAS BL(L2,L?)

1/2

1/2

271
: fessso. st xn
Z ( . XAgAR5 1k XAN[ ] A1 BL(L2.12) XA~PAP, o XAg BL(L2.L?)
BENN+y

BENN+~ \k=
BL(L2,L2)>
B>a

B<a
§pl/2 1 Z (min (2272|ﬂ7(1\7p1/2> .9—n/2 on p1/2>1/2 < p1/2_
BENN+y
B#a

on
+ Z <HXA;£]P’NM,;;XAHB£(L2 L2) Z HXAmUAﬁ_lﬂQ;{a,kXAg
’ k=1
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Therefore, we have:

N
’ v=0 ||a€ NN+~ BL(L2,1?)
SNpY? S n(1—logy p) p'/?.
This completes the proof. ]

We now use such localized estimate to extrapolate our estimate:

Theorem 8.7.5 (Cluster tower weak estimate).
Given P C P, a cluster tower, as long as k > 2/ea, we have:

1o f Nl ooe s 121N oo SN FlI Lo s VP € (2,00).
p

Proof. Let T denote either £p or £5. We intend to use L? Extrapolation.

e For measurable sets G,H C RP. We want to find suitable measurable
subsets G' C G and H' C H satisfying both error loss control and
testing condition.

e To match the form, we should set: p = % That is, we will fine tune a

constant C' € Ry and set p := C%.

o We define G' := G\ H, and H' := H and verify the error loss control:
(G\G’|>1/p+ (|H\H’>”P’ _ (Gmﬂp)”p . (|Hp>””
|G| |H| |G| —\ G

_ 1 1
(P I g 1IN UM N
= q c

as long as C > ||M||;1 ;1.0 2 C.
o To verify the testing condition, we see that:

— If p = 1, we may just apply cluster tower L? estimate:

IxaTxer fll 2 < 1Txar flle S 0272 lIxar £l e

1/2—1 |H| 1/2_1/p
<np 212 e fll e < 1 (G|> e £l e
P

— If p < 1, we use cluster tower localized L* estimate:

Xt Txc fllp = HXHTXH;XG/J"

L2
<n (1 —log, p) p*/? HXH;XG'f’ 12
1/2-1 H| e
Snpt/Flp Ixa fll: Sn (G|> Ixc flip-
P p
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e L? Extrapolation yields:

ITfll e S 2l fllpes s
p

which completes the proof. O
As a direct corollary, through interpolation, we have:

Corollary 8.7.5.1 (Cluster tower strong estimate).
Given P C P, a cluster tower, as long as k > 2/ea, we have:

1€ fll e < n27"" [[fll e, where ny >0, Vp € (1,00).
p

Corollary 8.7.5.2 (L? bound on cluster parts).
Given the full collection of the cluster parts P C D, we have:

1€efll e SN f s> VP € (1,00).
p

Remark. Through our method, instead of rearranging the whole collection as
in [Zorl19], we recover the result in [Lie20]. That is, the decomposition itself
is effective enough for the LP — LP bound. Still, the formulation in [Lie20]
is similar to a decoupling inequality, which contains more information about
the structure of the LP estimate.

As we combine the estimation of sparse tower and cluster tower, we
prove the main result in the following reduced form:

Theorem 8.7.6 (Main theorem for the linearized operator).

€6, fllLr S P(R)27"" || fll s, where mp >0, Vp € (1,00).
p

Summing over n € N yields:

1€£0 e S Ifllge VP € (1,00).
p
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