
doi:10.6342/NTU202100237

 

 

國立臺灣大學生農學院生物機電工程學系 

博士論文 

Department of Biomechatronics Engineering 

College of Bio-Resources and Agriculture 

National Taiwan University 

Doctoral Dissertation 

 

應用無線影像環境感測網路於智慧整合蟲害管理

Intelligent and Integrated Pest Management Using Wireless 

Imaging and Environmental Sensor Networks 

 

羅傑瑞 

Dan Jeric Arcega Rustia 

 

指導教授：林達德 博士 

Advisor: Ta-Te Lin, Ph.D. 

 

 

中華民國 110 年 02 月 

February 2021 



doi:10.6342/NTU202100237

i 

 

國立臺灣大學博士學位論文 

口試委員會審定書 

 

應用無線影像環境感測網路於智慧整合蟲害管理 

Intelligent and Integrated Pest Management Using Wireless 

Imaging and Environmental Sensor Networks 

 

本論文係羅傑瑞君（D05631006）在國立臺灣大學生物

機電工程學系、所完成之碩博士學位論文，於民國 110年 01

月 20 日承下列考試委員審查通過及口試及格，特此證明 

 



doi:10.6342/NTU202100237

ii 

 

Acknowledgements 

I am a firm believer that research and learning have no end. But I believe too that I 

should continue learning on a new path and grow as a person. With heartfelt gratitude, 

I would like to acknowledge all the people that supported me. 

I would like to express my utmost gratitude to my advisor, Prof. Ta-Te Lin, for sharing 

this joy and excitement of doing research and giving ample contributions to the society. 

I am very thankful for all the fruitful discussions and ideas that we have shared. I would 

have not learned a lot of valuable things if it was not for him. 

I would like to thank my lab mates that supported this research: 維哲, 麟雅, and 乙澤, 

and all its hard-working research assistants: Cynthia, Giles, Steven, and Sam. I would 

also like to extend my gratitude to the members of the Tainan District Agricultural 

Research and Extension Station. You made me realize that research can never be 

complete without partners working together to meet a common goal. 

I would like to thank my fellow expats here in Taiwan, Sandra and Ngo Nha, for being 

very supportive and helpful during my studies. 

I would like to thank my family, Jamie, Janine, Miko, and my friends back in the 

Philippines. I am very grateful for the trust that you all have given me as you gave me 

the strength to work hard. All of your support and encouragement are priceless to me. 

Most importantly, thank you God for everything. You are amazing, indeed. 

“Consider it pure joy, whenever you face trials of many kinds, because you know that the testing 

of your faith produces perseverance.” James 1:2-4 



doi:10.6342/NTU202100237

iii 

 

摘要 

為了推動農民使採用智慧化的蟲害整合管理（IPM），本研究開發

了一套可以自動監測農業生產場域中害蟲數量及環境相關資訊的智

慧整合系統。本系統由無線感測器裝置所組成，這些裝置會將黏蟲

紙的影像傳送至遠端伺服器進行分析並回傳訊息給農民作為蟲害整

合管理之應用。本研究同時開發了用於黏蟲紙影像上自動偵測及辨

識害蟲之演算法，該演算法利用卷積神經網路（CNN）深度學習模型

以級聯的方式進行害蟲偵測和分類；分別是由一個負責從黏蟲紙影

像上定位出物件的物件偵測器模型及一個用於辨識所偵測到的物件

種類的分類模型所組成。深度學習模型根據安裝場域的特性分別以

兩種不同的深度學習方法來進行訓練。對於溫室場域應用了半監督

式學習的技術，利用系統新擷取的黏蟲紙影像自動收集害蟲訓練影

像並重新訓練害蟲分類模型。經過一年的持續訓練，分類模型基於

物件層次和影像層次的測試 F1分數都可達到 0.93。至於戶外場域則

是對多個分類模型進行訓練並根據分類學進行級聯，將害蟲影像分

類到物種級別，此級聯演算法基於物件層次和影像層次測試的平均

F1 分數分別為 0.91 和 0.89。本系統已安裝在多個農業生產場域中

驗證與測試並提供農場管理者進行評估與應用於蟲害整合管理。本
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研究並透過數據分析從長期資料中獲取相關資訊開發了警報模型及

生物學模型，將蟲害數量數據整理轉換為有意義的資訊，例如可以

提供蟲害整合管理行動建議的警報級別，以幫助農場管理者進行決

策。在對所有實驗場域的測試中，利用所訓練的生物學模型來描述

害蟲的飛行頻率行為，平均 r2 值可以達到 0.97。這些整理過的資訊

是通過網站和行動 APP 與農場管理者共享以便有效應對蟲害狀況。

根據農場管理者的使用情況及回饋意見顯示，本系統能夠透過量化

的參考依據來協助擬定蟲害整合管理策略，而自動化系統能夠讓研

究人員及專家引導農民進入數據驅動和友善環境的蟲害管理。 

關鍵詞：整合蟲害管理、黏蟲紙、影像辨識、深度學習、無線感測

網路、數據分析 
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Abstract 

To drive farmers into smarter integrated pest management (IPM), an integrated and 

intelligent system that can automatically monitor the number of insect pests and 

measure environmental conditions in agricultural production sites was developed. The 

proposed system is composed of wireless sensor nodes that send images of sticky paper 

traps to a remote server. An algorithm was developed to automatically detect and 

recognize insect pests from the sticky paper trap images. The algorithm features a 

cascaded approach for detection and classification using convolutional neural network 

(CNN) deep learning models. It is composed of an object detector model, which locates 

the objects from the sticky paper trap images, and image classifier models that identify 

the detected objects. The deep learning models were trained using two different deep 

learning methods fitted for each type of installation site. For indoor sites such as 

greenhouses, a semi-supervised learning technique was applied to train a multi-class 

insect classifier model. The proposed technique was used to automatically collect 

training images from newly acquired sticky paper trap images and retrain the classifier 

model. After a year of continuously training the classifier model, F1-scores of 0.93 was 

achieved on testing both by object level and image level. For outdoor sites like orchards, 

multiple classifier models were trained and cascaded taxonomically to classify insect 
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pest images up to the species level. The cascaded algorithm was found to have average 

F1-scores of 0.91 and 0.89 by object level and image level testing, respectively. The 

system was installed in several agricultural production sites for farm managers to 

evaluate and utilize in their IPM routines. Data analytics was applied to extract 

information from the acquired long term data. Alarm models and biological models 

were developed that convert insect pest count data into valuable information such as 

alarm levels that indicate action recommendations for IPM, guiding farm managers in 

decision-making. Upon validation, the biological models were able to describe the 

flight rate behavior of the insect pests with an average r2 of 0.97 based on the fitted 

models of all the experimental sites. The information was shared through a website and 

mobile APP which farm managers used to effectively respond to the present insect pest 

condition. The usage information and feedback given by the farm managers showed 

that the system was able to help them by having quantitative reference for their IPM 

strategies. This research presents different ways an automated system in assisting 

farmers for IPM applications, which can be used by researchers and experts in bringing 

farmers to data-driven and environmentally friendly insect pest management. 

 

Keywords: integrated pest management, sticky paper trap, image recognition, deep 

learning, wireless sensor network, data analytics 
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Chapter 1 Introduction 

1.1 Background of the study 

Integrated pest management, or commonly known as IPM, is one of the most 

sought techniques for agricultural production management (Lamichhane et al., 2016; 

Potamitis et al., 2017). IPM can provide solutions for most common agricultural crop 

problems through systematic management of pests. This includes techniques such as 

insect pest population monitoring, environmental control, pesticide scheduling, and 

more.  

A survey conducted by Parsa et al. (2014), shows that IPM is having a slow 

progression in terms of application and awareness among countries. They were able to 

assess the current status of IPM in different countries which showed that IPM is not 

fully implemented and known by other people. Currently, IPM is only known to 

selected countries due to inefficient orientation and lack of technical support to farmers 

(Parsa et al., 2014). IPM plans in different countries end up in a brainstorming stage 

that were never executed due to government policies, funding shortages, etc. Even in 

developed countries, IPM is still facing a challenge to prove its worth. Therefore, IPM 

technologies and solutions should be capable enough to prove its potential for actual 
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implementation and demonstrate its benefits.  

With the rise of technology and the urgent need for IPM technologies, researchers 

worked on developing IPM solutions that can be widely accepted and used. Most 

researchers focused on discovering and developing efficient ways to identify insect 

pests from traps using image processing, machine learning, and deep learning methods 

(Espinoza et al., 2016; Miranda et al., 2014; Xia et al., 2015; Zhong et al., 2018). 

Following the rising demand of artificial intelligence (AI) in different industries, the 

application of machine learning in agriculture was also widely discussed. Through the 

use of AI, identification of insect pests was done more extensively compared to 

previous methods developed (Ding & Taylor, 2016; Xia et al., 2015). The availability 

of imaging and wireless technology made it more possible to design automatic wireless 

monitoring systems that was found to be useful for wide scale monitoring (Lamichhane 

et al., 2016; López Granado et al., 2012; Rustia et al., 2020b). Identification of insect 

pests and data gathering were carried out by software and in real-time. The integrated 

systems can support the farmers and provide possible solutions to protect their crops 

from potential damage caused by insect pests.  

Data analytics may also help in providing valuable information for the farmers and 

help in their decision-making (Donatelli et al., 2017; Ferguson et al., 2016; Qin et al., 

2017).  A system should include data analytics that transforms numerical data into 
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information that users can easily comprehend. Mathematical models built from 

different data sources can act as references for systems that can control the insect 

population by several ways such as environmental control and pesticide scheduling. It 

can also explain the possible causes of insect pest outbreaks and predict its possibility 

in the future. 

Implementation of smarter IPM in agriculture is a challenge not too far from reality 

due to the efforts of researchers, government agencies, and industries. This research 

aims to contribute to this progress by demonstrating the advantages of having 

quantitative insect pest information through an intelligent and integrated system. This 

study involves not only laboratory tests but also actual distribution of the system to 

farmers that need data-driven IPM information. 

 

1.2 Statement of the problem 

The concept of IPM is still unfamiliar to some farmers all over the world. Crop 

damage and economic loss are usually caused by insect pest outbreaks. However, there 

are times when farm managers cannot respond immediately due to lack of reliable 

quantitative information that can be only obtained through detailed analyses and 

monitoring of insect pest related data. This calls for the need of an automated system 
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that can provide data-driven knowledge to alleviate the problem of farmers in 

conducting IPM. To date, only a few systems meet the over-all objective of IPM, which 

is to develop an integrated system that can not only monitor insect pest population, but 

also to understand their behavior as well. Most of the studies related to IPM systems 

were done based on controlled environments or by simulations. In this work, data from 

uncontrolled environments were collected using an automated monitoring system to 

implement a fully adaptive system for IPM support.  

 

1.3 Significance of the study 

This study provides an automated system for monitoring the insect pest population 

in agricultural production sites. The system can reduce the required time for farmers to 

develop solutions for insect pest related problems. Through the data-driven system, 

holistic integrated pest management strategies can be developed. It will be useful in 

conducting deeper studies on insect pest behavior and assist farmers in addressing their 

insect pest related concerns. 
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1.4 Objectives  

This research aims to develop an intelligent system that can be utilized for IPM 

application through automated insect pest population monitoring and decision-making 

support. The specific objectives to fulfill this goal are as follows: 

- To design a monitoring system, composed of wireless sensor nodes, that can 

acquire sticky paper trap images and measure environmental conditions remotely 

- To develop an algorithm that can automate the detection and recognition of insect 

pests on sticky paper trap images 

- To provide data analytics service to the users of the system, through the use of 

alarm and biological models, for assistance in IPM decision-making 

- To discover the actual benefits of using an intelligent IPM system by data analysis 

and collection of user feedback 
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Chapter 2 Review of Related Literature 

2.1 Integrated pest management (IPM) 

Integrated pest management (IPM) is a holistic and systematized approach for 

managing insect pests by applying multi-disciplinary agricultural techniques. IPM aims 

to optimize agricultural production without causing harm to people and the 

environment. According to Barzman et al. (2015),  IPM can be divided into three key 

components: monitoring, prevention, and intervention. Each component plays an 

important role in an effective IPM program. This section discusses the techniques and 

concepts used in each component as practiced and studied by farmers and researchers.  

 

2.1.1 Monitoring 

The core of an effective IPM program is monitoring. Monitoring intends to 

quantify the population of insect pests in a farm. It is done by strategically placing traps 

on suspected insect outbreak hotspots in a farm. After finding out which kind of insects 

and the number of insect pests exist in the farm, farmers can evaluate the gravity of the 

insect pest situation. Without monitoring, farmers will not have any reference for 

decision-making. This sub-section discusses about common types of insect traps and 
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insect pests found in different agricultural production sites.  

 

2.1.1.1 Insect pest traps 

There are three common kinds of insect traps: pheromone traps, light traps and 

sticky paper traps (Böckmann & Meyhöfer, 2017; Stukenberg et al., 2015; Witzgall et 

al., 2010). Each kind of insect trap is designed based on the visual and olfactory sensual 

cues that attract insects.  

A pheromone trap is a species-specific insect trap that uses chemical attractants 

released by an insect’s gender counterpart (Yin & Maschwitz, 1983). A simple 

pheromone trap design is an open container that includes a pheromone with its interior 

covered with adhesive material. Insects are attracted by the pheromone forcing them to 

fly or crawl towards the inside of the container (Witzgall et al., 2010). Another design 

is composed of an anti-insect net hung on a tree or post with a pheromone inside. Using 

nets can be used for trapping more specific sizes of insect pests (Miluch et al., 2013). 

In some cases, a pheromone trap is used for controlling insect populations instead of 

pesticides since it can be used for a long period of time (Witzgall et al., 2010). Most 

importantly, it is an environmentally friendly approach since it does not require the use 

of harmful chemicals. It may also help in preventing an outbreak of insect pests that 
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have developed immunity against pesticides. However, while selectivity is considered 

as its advantage, it becomes a disadvantage for other kinds of crops (Lewis et al., 1997; 

Yin & Maschwitz, 1983). Other types of crops attract more than one species of insect 

pests making other insect pests not detectable by pheromone traps. In such case, the use 

of light traps or sticky paper traps is recommended. 

A light trap targets the visual photoreception of insects. Like any other animal, 

insect pests are attracted by specific wavelengths of light (Shimoda & Honda, 2013; 

Stukenberg et al., 2015). A light trap is placed near plants to attract and zap the insects 

as they touch the light trap’s cage. A light trap is commonly found in a household to 

trap mosquitoes and flies. Such kind of trap uses ultraviolet light because common 

household insect pests have positive attraction to it (Shimoda & Honda, 2013). In other 

cases, specific wavelengths of light are used. In the work of Chu et al. (2003), lime-

green (530 nm) LEDs were installed inside plastic cup traps for monitoring whiteflies, 

one of the most sought greenhouse insect pests. A similar study was done by Stukenberg 

et al. (2015) which showed that using green (517 nm) light emitting diodes (LEDs) with 

ultraviolet (368 nm) LED support had the highest efficiency in trapping whiteflies 

compared to other color combinations of LEDs. Similar to pheromone traps, the use of 

light traps can be an alternative to spraying pesticides as well. Its only disadvantage is 

its reliance to power sources which are not commonly available in some farms. It is 
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also less precise compared to pheromone traps since most insects are nocturnal and 

easily attracted to light. In worst cases, it may affect the growth of other plants that may 

wilt due to excessive exposure to light. But unlike other types of insect traps, it is widely 

available in local stores and convenient for home use. 

The use of sticky paper traps is the most cost-effective and commonly used insect 

pest monitoring method (Martin & Moisan, 2017; Moreau & Isman, 2011; Sampson et 

al., 2018). A sticky paper trap is a paper or board coated with adhesive material on either 

side. Similar to light traps, sticky paper traps have different colors such as blue or 

yellow based on the colors that the target insect pests are attracted to. The most 

commonly used sticky paper trap color is yellow. Yellow sticky paper traps attract insect 

pests such as whitefly, aphid, thrips, midges, and more. Due to the variety of insect 

pests it can attract, it is a more generalized option compared to light traps and 

pheromone traps. Using sticky paper traps does not completely affect the behavior of 

the insect pests in the farm; making it applicable for research purposes. Moreau and 

Isman (2011) compared the reliability of using sticky papers and trap crops for trapping 

whiteflies. Their study showed that whiteflies had better response and attraction to the 

sticky paper traps. Prema et al. (2018) analyzed the effects of different sticky paper trap 

colors for attracting thrips, a major pest of cotton. It was found in their study that thrips 

were most attracted to yellow sticky paper traps next to blue and white sticky paper 
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traps. Their results proved that the use of sticky paper traps can be used for 

understanding the behavior of thrips in response to visual stimuli. Due to its 

applicability for both on-field and research applications, the use of sticky paper traps 

was used as the trapping method of the proposed system in this study. 

 

2.1.1.2 Insect pests 

An insect pest is a kind of insect that can inflict damage or transmit diseases to 

crops. Species of insect pests vary from place to place depending on the crops grown. 

For an instance, tomato, one of the high-value crops in the world, is a host crop of insect 

pests such as whitefly, thrips, and aphid (Navas-Castillo et al., 2011). One of the most 

devastating diseases of tomatoes inflicted by such insect pests is tomato chlorosis virus 

(TCV). TCV causes shrinking of tomato fruit yields and brittleness of leaves that 

eventually kills the plant. TCV is very common in Asian countries such as Taiwan and 

Japan (Navas-Castillo et al., 2011). Meanwhile, a common disease that damages flower 

crops is tomato chlorotic spot virus (TCSV). TCSV mainly affects flower crops such as 

calla lilies, Phalaenopsis, and Lisianthus. TCSV can cause wilting and deformation of 

leaves; making flower crops unmarketable (Jones, 2005). Most diseases, including the 

aforementioned, are transmitted within a day or two by insect pests. This means that 
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properly identifying the insect pests can prevent the occurrence of the diseases and 

avoid economic loss. Knowing which kind of insect pests are attracted to a specific crop 

will help farmers in decision-making. A list of major insect pests of economically 

important crops globally (Csizinszky et al., 1995; Hazarika et al., 2009; Navasero & 

Navasero, 2015) is presented in Table 2-1. 

 

2.1.2 Prevention 

Prevention aims to manage the population of insect pests through a cultural, 

physical, or biological approach. Some of the most effective prevention methods are 

selection of crop varieties, environmental control, and introduction of parasitoids.  

In the study of Pelgrom et al. (2014),wild variants of cabbage crops were tested for 

resistance from cabbage whiteflies. Their results revealed that wild cabbage species 

have high levels of resistance and immunity against damages of cabbage whiteflies as 

compared to other cabbage species. Mirnezhad et al. (2010) also had similar findings 

by testing wild species of tomato for resistance and immunity to thrips damage while 

cultivated tomatoes did not. Rossetto et al. (2017) searched for mango plant varieties 

that are resistant to fruit fly damage. Their work showed that local varieties from Brazil 

such as Alfa, Espada Varmelha, and a few more, were resistant. It was also found that  
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Table 2-1. Major flying insect pests of economically important crops. 

Insect name Order and family Host crop/s 

Whitefly Hemiptera: Aleyrodidae Tomato 

Cucumber 

Cabbage 

Potato  

Orchids 

Tea 

Thrips Thysanoptera: Thripidae Tomato 

Mango 

Cucumber 

Pepper 

Cabbage 

Potato 

Onion 

Orchids 

Tea 

Aphid Hemiptera: Aphididae Tomato 

Cucumber 

Pepper 

Cabbage 

Orchids 

Tea 

Leafhopper Hemiptera: Cicadellidae Tea 

Rice 

Gnat Diptera: Sciaridae Orchids 

Fruit fly Diptera: Tephritidae Mango 

Cucumber 

Guava 

Diamondback moth Lepidoptera: Plutellidae  Cabbage 
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the resistance of mango varieties was correlated to the amount of milk volume that can 

be extracted from the cut fruits. The cited works demonstrate the selection of crop 

varieties to prevent thrips damage. It was observed that choosing wild species of tomato 

can be a very efficient way to prevent damage of insect pests. However, this may be 

subject to availability as not all countries may have the specific crop variety.  

An alternative and safe approach for preventing insect pest damages in indoor 

agricultural production sites is through environmental control. By setting the 

temperature and humidity levels in a greenhouse or orchard, insect pest reproduction 

can be controlled. van Lenteren and Martin (1999) mentioned that greenhouse design 

specifications such as its size, height, shape, cladding materials, and other factors, 

largely affect the environmental condition and the behavior of insect pests. By properly 

considering the development requirement of insect pests and the crops grown, a balance 

can be achieved in which crops grow well while insect pests rarely show up. According 

to them, this is also the same when considering the incidence of plant disease infection.  

Another approach for prevention is by introducing parasitoids in the agricultural 

site (van Lenteren & Martin, 1999). Parasitoids are insects that feed on targeted host 

insect pests. One example of a parasitoid is the Encarcia Formosa, which feeds on 

greenhouse whiteflies. Upon release, E. formosa preys on whitefly larvae found on 

plant leaves (van Lenteren et al., 1996). The use of parasitoids for whitefly control was 
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found capable of reducing the population of whiteflies in a farm. Murai and Loomans 

(2001) mass-reared Ceranisus menes, a parasitoid of thrips. They performed 

experiments to optimize the reproduction of C. menes such that the population of thrips 

in a farm can be completely controlled. This describes one constraint in using 

parasitoids for insect pest control. Apparently, there should be an adequate number of 

parasitoids introduced to an agricultural production site to effectively exterminate 

selected insect pests.  

All the prevention methods presented involved safe and environmentally friendly 

approaches for insect pest population control. However, in extreme cases in which these 

solutions are not applicable, IPM proposes the use of intervention methods. 

 

2.1.3 Intervention  

The intervention component of IPM aims to exterminate insect pests by means of 

chemical control. This includes the use of pesticides, fungicides, and repellants. 

Applying intervention techniques are very effective for totally controlling the 

population of insect pests but may cause several negative ecological implications. 

According to Lewis et al. (1997), there is a so-called treadmill in which farmers 

highly rely on intervention techniques to solve their insect pest issues. The most 
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common intervention technique applied by farmers is spraying pesticides. However, 

conventional pesticide spraying can cause disruption in the ecosystem and may also 

cause insect pests to gain resistance to pesticides. This means that an effective IPM 

strategy should not often come to a point in which intervention is required. Intervention 

should be conducted only for extreme scenarios such as when the population of insect 

pests can no longer be controlled by natural methods. They also compared the amount 

of pesticides used by IPM and by conventional methods which showed that there was 

around 80-90% improvement in terms of efficiency in spraying pesticides. This proved 

that IPM did not only prevent damages to the environment, but also reduced the budget 

used for controlling insect pests. 

To make spraying pesticides more efficient, pesticide scheduling can be proposed. 

Jones et al. (2016) demonstrated a method for optimal pesticide scheduling using 

control theory. A control model was developed based on previous pesticide schedules 

to know the best times for spraying pesticides. However, it was mentioned in their work 

that problems still occurred whenever the model notified the user prematurely. Their 

results show a significant reduction in the frequency of pesticide application. To further 

improve the method, it was suggested that real-time data should be used to update and 

optimize the schedule from time to time.  
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2.2 Artificial Intelligence of Things (AIoT) in IPM 

A novel concept called Artificial Intelligence of Things (AIoT) has been 

introduced in the recent years to assist in accelerating the development of smart farming. 

It combines the power of connectivity from Internet of Things (IoT) and the data-driven 

knowledge obtained from AI. AIoT rose due to the increasing popularity of AI as 

modern devices started to be capable of performing more complex and high-speed 

computations for many different applications. With the convergence of IoT and AI, 

more advanced and smarter systems can be developed. 

IoT is a system composed of devices or machines that are connected and working 

together without human intervention. In the past decade, IoT has been introduced as a 

way to invite researchers, government agencies, farm owners, and other related parties, 

to work together in solving agricultural challenges. Lamichhane et al. (2016), highly 

suggested using IoT to address common challenges in agriculture, specifically IPM. 

They were convincing people to form a collaborative network to discuss and share 

information about IPM. IPM networking was also proposed from an article written by 

Parsa et al. (2014). They mentioned that if more people became aware of the benefits 

of IPM, the usage of IPM will be shared to fully utilize IPM. This was demonstrated 

from the scenario presented by McKee (2011) which showed that coordinated insect 
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pest management decisions among farmers helped in preventing insect pest outbreaks. 

Farmers worked together by regularly inspecting their own crops and informing other 

farmers if there was a possibility of having a whitefly outbreak in their farms. IoT has 

a very important role in conducting IPM by being a platform to unite the ideas of 

farmers and experts for convincing more people to apply IPM. 

Wireless sensor networks (WSN) serve as the ears and eyes of IoT. A WSN is a 

group of wirelessly connected devices that records spatial and temporal data. In 

agriculture, the basic function of a WSN is to measure different environmental 

conditions such as temperature, humidity, soil moisture, CO2 levels, and a lot more. A 

WSN can also be used for counting insect pests for IPM application. Potamitis et al. 

(2017) presented several WSN systems that count insect pests from traps using 

detection sensors. The systems mentioned in their work used optical sensors, such as 

photodiodes, that were triggered whenever an insect pest fell into a pitfall trap. 

Meanwhile, Iqbal et al. (2019) demonstrated an automatic fly monitoring system for 

greenhouses. Their device used a Hall effect sensor which was triggered by flies that 

were attracted to a light source. Parsons et al. (2019) wrote an article about several 

commercially-available IPM WSN systems. One of the products they featured included 

Trapview, a system that uses cameras for capturing images inside a pheromone-based 

trap. The insect pest counts recorded by the system are all sent to a remote server so 
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that users can view their data through a user interface. Another product was the Spensa 

Z-trap, which is also a pheromone-based trap that included a series of electrified rods 

that electrocutes insect pests. The trap lures insect pests to fall into a bucket and are 

counted using bioimpedance sensors. The cited examples are systems that were 

designed for counting specific kinds of insect pests. In other cases, it is necessary to 

identify more kinds of insect pests. This is the time AI steps in to improve current insect 

pest monitoring systems.  

AI is a field in computer science that simulates human intelligence through 

machines such as computers. AI encompasses other specific fields in computer science 

such as machine learning and deep learning. Nowadays, AI has been a very useful tool 

for image analysis replacing and/or improving traditional image processing methods. 

AI has been used in IPM to develop algorithms for detection and recognition of multiple 

insect species (Espinoza et al., 2016; Rustia et al., 2019; Zhong et al., 2018). Together 

with IoT, image-based insect pest monitoring systems were built with the support of AI. 

Zhong et al. (2018) used AI to count and recognize outdoor flying insect pests from 

wireless imaging devices. Miranda et al. (2014) used Kohonen self-organizing maps 

neural network for recognizing insect pests in a rice field. Their system included 

multiple wireless cameras which sends images of sticky paper traps to a remote server 

for processing. We also applied AI in our previous work for detecting and recognizing 
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greenhouse insect pests through convolutional neural networks (CNN) (Rustia et al., 

2019; Rustia et al., 2018).  

AI can also be used for interpreting patterns and extracting more information than 

statistical methods. As a matter of fact, AI was used to create forecasting models for 

predicting occurrences of insect pest outbreaks (Cai et al., 2019b; Lu et al., 2019; Xiao 

et al., 2019) In the work of Cai et al. (2019b), multi-dimensional data from a 

meteorological station was used to raise alarms of possible insect outbreaks. They 

trained a model to predict and classify insect pest damages into four different alarm 

levels. On the other hand, Skawsang et al. (2019) developed a method for predicting 

the rice insect pest population as measured using light traps. They trained an artificial 

neural network (ANN) model based on meteorological data and satellite-derived plant 

variables. From the examples, AI was able to utilize the collected data through IoT and 

form more meaningful interpretations useful for decision-making in IPM. AI get rids of 

the limitations of IoT as it builds a bridge between the users and the information they 

will need.  

 

2.3 Automatic insect pest detection and recognition  

Normally, insect pests on sticky paper traps are counted by manual inspection. But 
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since insects are relatively small to the naked eye, people tend to assume the 

approximate number of insects captured from the traps. Not everyone can recognize 

which kind of insect pests are found from the traps. Human errors are always possible 

and may lead to risky insect pest management decisions. This is also a trouble for 

agricultural government agencies in conducting farm inspections (Pundt, 2013). 

Regardless of the insect trap used, monitoring is considered as a very cumbersome and 

time-consuming routine. This inspired a lot of researchers to develop automatic insect 

pest detection and recognition methods to obtain accurate quantitative data. 

Numerous methods for automatic insect pest detection and recognition in sticky 

paper traps had already been done in the past. Cameras were used to obtain images of 

the sticky paper traps or of the plant leaves. In other works, flatbed scanners were used 

to obtain images with higher resolution (Cho et al., 2007; Xia et al., 2015). Algorithms 

were developed based on these different image acquisition methods which involve the 

use of several automatic image analysis methods such as image processing, machine 

learning, and deep learning. This section discusses concepts and examples of applying 

the different methods for automatic insect pest detection and recognition. 
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2.3.1 Image processing and machine learning methods 

Image processing is a technique for image analysis which involve operations that 

are used to extract information from images. In insect pest detection and recognition, 

image processing can be used to perform operations such as image segmentation, 

feature extraction, and image classification.  

Image segmentation is an operation for separating the background and foreground 

of an image using threshold values based on its color components. As applied on a 

sticky paper trap image, image segmentation is used to remove the yellow background 

of the image and obtain the location of the target insect pest objects based on its non-

zero pixels (Barbedo, 2014; Qiao et al., 2008; Rustia et al., 2018). In the work of Cho 

et al. (2007), image segmentation was performed by static color thresholding. Removal 

of the yellow background was carried out by using pre-set threshold values. The insect 

pest objects in the image were detected and classified based on their size, color, and 

morphological features by object analysis. Meanwhile, Miranda et al. (2014) applied 

background subtraction for image segmentation. Background subtraction is an 

operation that computes the difference between an input image and a reference image. 

Unlike thresholding, this is a simpler approach since it does not require tuning of any 

threshold value. However, the bottleneck of using image segmentation for detection is 

the presence of impurities in the image. Images from recent studies were taken from 



doi:10.6342/NTU202100237

22 

 

controlled lighting environments which means that the sticky paper traps may not 

contain dirt or other foreign objects. This should be taken in consideration in real 

applications that will require more adaptive approaches for insect pest detection.  

After getting the locations of the insect pest objects from a sticky paper trap image, 

feature extraction and image classification is performed. Feature extraction is used to 

convert the RGB pixel data of an image into features such as color, size, shape, and 

others. A machine learning model is fit based on the features for image classification. 

Kumar et al. (2010) presented a method for automatic classification of whiteflies and 

greenflies using Gabor filters, histogram of gradients (HoG), and color features. The 

selected features were able to withstand differences in image acquisition lighting 

condition. Meanwhile, Mundada and Gohokar (2013) used shape and morphological 

features as input to a support vector machine (SVM) classifier model for classifying 

whiteflies and aphids. The image features used in their work were image entropy, mean 

pixel values, contrast, and more. In our previous work, we tested image features such 

as size, color, shape, and morphological features for classifying segmented objects from 

a sticky paper trap image into insect or non-insect (Rustia et al., 2017). The features 

were fitted to an SVM model that had a classification accuracy of 0.85. However, we 

observed that the features of the objects changed from time to time and were dependent 

on the image acquisition condition. As a more adaptive approach, RGB pixel values 
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were used as input features to boost the accuracy up to 0.93 (Rustia et al., 2020b).  

It was shown from the cited works that image processing is a useful tool for 

detecting and recognizing insect pests from sticky paper trap images. But, there are still 

some instances that it is not adequate. In cases in which the appearance of the insect 

species on the sticky paper traps are too similar, classifying the insects by size, color, 

and other features may be more difficult. Therefore, more complex operations such as 

the use of deep learning techniques is recommended as a robust and adaptive approach. 

 

2.3.2 Deep learning methods 

Deep learning has been very effective for insect pest detection and recognition as 

it can be used to further improve the accuracy of current algorithms (Espinoza et al., 

2016; Rustia et al., 2019). Unlike in image processing or machine learning, object 

detection, feature extraction, and image classification can be performed in deep learning 

by merely training a neural network model to do such tasks. This get rids of the trouble 

in developing feature extraction techniques or segmentation methods. It also makes the 

algorithm more robust to variations in the image samples. 

The challenge in deep learning is selecting the appropriate neural network structure 

for the target application. This includes tuning and optimization of the network 
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parameters such as size, complexity, number of layers, and more. In object detection, 

some of the well-known structures are Faster Region-based convolution neural network 

(R-CNN) (Ren et al., 2015), Single Shot Multibox Detector (SSD) (Liu et al., 2016), 

and YOLO (Redmon & Farhadi, 2018). Object detection model structures are different 

in terms of their detection algorithm approaches. The detection approach affects the 

models’ computation speed and accuracy. SSD uses a so-called MultiBox strategy in 

proposing bounding boxes and detecting objects with a single step. It performs 

classification by computing the class scores for each detected object. In contrast, Faster 

R-CNN initially extracts features from the image using a convolutional layer followed 

up by a region proposal network (RPN). The RPN is a network that slides through the 

extracted feature map while detecting and classifying the objects. This makes SSD 

faster than Faster R-CNN by optimizing the detection speed with a few sacrifices in 

accuracy due to potentially missed detections. On the other hand, YOLO divides an 

image into grid cells. For each grid cell, bounding boxes are predicted and class 

probability are computed. Compared to the two other object detector structures 

mentioned, YOLO is the fastest as it was developed intentionally for real-time detection.  

For insect pest detection and recognition, the object detection models are trained 

to detect custom objects such as of insect pests. The usual approach in doing so is to 

detect and classify the insect pests using a single network model. Ding and Taylor (2016) 
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used this approach for automatic detection of moths from trap images. They trained a 

convolutional neural network (CNN) model for detecting and classifying moths using 

a sliding window approach. Similarly, Fuentes et al. (2017) trained a model for 

detection of insect pests and diseases on plant leaves. The model architecture they used 

for object detection and classification was Faster R-CNN (Ren et al., 2015), with VGG-

16 (Simonyan & Zisserman, 2014) as feature extractor. In the work of Partel et al. 

(2019), a system was designed for monitoring Asian citrus psyllids in orchards. They 

used CNN to detect and count insect pests from a viewing board that holds a sticky 

paper trap in place. Their results showed that using CNN produced reliable results even 

as used on a moving system. Hong et al. (2020) tested several object detection models 

for detection of moths from pheromone traps. It was found from their results that Faster 

R-CNN has the highest accuracy compared to other architectures tested. From the 

related works, it shows that deep learning produced satisfactory results that are reliable 

for different environments and devices. The only downside of using a single stage or 

model object detection and recognition model is the preparation of training samples and 

the time required for training. Normally, training samples for object detection models 

are prepared by annotating or marking the objects in input images. In large-scale 

applications, this is very time consuming and confusing. A solution to this problem is 

to separate the detection and recognition components of the model and train two 
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separate models, which is an alternative approach for insect pest detection and 

recognition using deep learning. 

By using separate models for detection and recognition, the detection model can 

be used as a black box detector, same strategy as when image segmentation by image 

processing is done. On the other hand, the recognition model can be retrained easily 

based on newly sorted images to improve the current model or add new classes. Some 

of the famous neural networks structures for image recognition are AlexNet 

(Krizhevsky et al., 2017), VGG (Simonyan & Zisserman, 2014) and Inception 

(Canziani et al., 2016).The difference between neural network structures is their levels 

of deepness, which is based on the number of convolution layers a neural network has. 

For faster computation, AlexNet may be a good option since it only has 8 layers. On 

the other hand, Inception, which has 48 layers, may be more capable of classifying 

complex images but will need a longer processing time. Depending on the input images, 

it is recommended to use a neural network suitable for the application (Chevalier et al., 

2016).  

The strategy of using a separate object detection model and image recognition 

model for insect pest detection and recognition was seen from the work of Zhong et al. 

(2018). They used You Only Look Once (YOLO) model for detecting flying insect pests 

in sticky paper trap images, while using SVM as classifier model. The locations of the 
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insect pests were obtained through the trained object detection model. The global 

features of each insect pest image were extracted as input to the classifier model. 

Through this approach, they were able to classify up to 6 different kinds of flying insects 

with an average accuracy of 0.90, higher than using the object detection model for both 

detection and recognition. In our previous work, we also used the same approach by 

using Tiny YOLO v3, as object detection model, and two low resolution CNN classifier 

models for greenhouse insect pest detection and recognition in sticky paper trap images 

(Rustia et al., 2019). First, the object detector model was used to detect the objects from 

the sticky paper trap image. The first stage CNN model classifies the objects into insect 

or non-insect to exclude impurities and foreign objects from classification. The second 

stage CNN model then classifies the insect objects according to five kinds of 

greenhouse insect pests. In the same work, we also applied an online learning approach 

in which the second stage classifier was retrained from time to time to collect new 

samples and continuously improve the accuracy of the model. This allowed the system 

to continuously learn from the new insect pest images acquired.  

 Another factor to consider in deep learning is the learning strategy. In most cases, 

deep learning models are trained by so-called supervised learning. In supervised 

learning, all the training samples of the model are prepared manually. But as used in 

uncontrolled environments, an adaptive approach such as by self-supervised learning is 
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more recommended. Self-supervised learning is a deep learning strategy for 

continuously collecting training samples for updating a deep learning model without 

human supervision. A study on online self-supervised learning for the automatic 

segmentation of dynamic objects was demonstrated by Guizilini and Ramos (2015). 

Their work proposes a method for autonomously collecting images using an 

uncalibrated moving camera for training a segmentation model. This is a method used 

for self-driving vehicles that need to continuously learn from unpredictable 

environments. In medicine, self-supervised learning has been applied by Chen et al. 

(2019) in training models for the detection and segmentation of medical images. They 

developed an image context restoration strategy that can learn mapping from paired 

images to automatically annotate unlabeled medical images. We also presented a 

method for self-supervised learning in our previous work for automatically training 

image recognition models of our insect pest monitoring system. Our method uses a pre-

trained convolutional neural network for automatically sorting and classifying and 

insect pest images and updating the classifier model on each cycle (Rustia et al., 2019).  

From the cited works, it was proven that deep learning is a more reliable and 

adaptive approach for detection and classification of insect pest images. Unlike image 

processing and machine learning, deep learning reduces the time in developing models 

without sacrificing the performance of the algorithm. 
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2.4 Decision support system (DSS) for IPM 

A decision support system (DSS) is one of the most important components of an 

insect pest monitoring system. By the use of statistical and machine learning methods, 

the data obtained from the system can be further transformed into information that most 

users can comprehend. This section discusses about how a DSS is developed using 

techniques in data analytics for defining alarms and developing biophysical models that 

allow users of the system make data-driven decisions.  

 

2.4.1 Alarm model development 

One way to extract meaningful data from the recorded insect pest counts is through 

the development of an alarm model. An alarm model transforms the insect pest count 

into several alarm levels that specify different suggested actions for insect pest 

management. Up-to-date, there is no standard way for defining alarm levels for insect 

pest counts collected from sticky paper traps (Pinto-Zevallos & Vänninen, 2013). 

Guidelines are provided by several agricultural agencies but not all are suitable for 

different farm environments and conditions.    

Cohen et al. (2008) proposed a method for defining alarms and action 

recommendations for Mediterranean fruit fly control. A decision tree was defined based 
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on the trap counts manually collected from different farm regions and temperature 

thresholds for reproduction of fruit flies. They provided different recommendation 

levels for spraying pesticides and evaluated the reliability of the recommendations 

based on the users’ feedback. It shows that the farmers agreed with the 

recommendations of the system 56% of the time. Ferguson et al. (2016) proposed a 

threshold determination method for pollen beetle management. They used the historical 

data, recommended threshold values of government agencies, and public weather data 

for defining threshold levels that indicate possible migration of pollen beetles. Miranda 

et al. (2019) presented a system that uses an automated insect pest monitoring system 

for developing a DSS for olive fruit fly management. They used the collected trap count 

data, weather data, and tree information for determining the risk of fruit fly infestation. 

Their proposed system also sent out recommended spraying times for an automated 

tractor. The system was able to reduce the amount of pesticides used for controlling the 

population of the olive fruit flies. 

There were also several attempts on automatically defining alarm thresholds for 

decision making. Zhang et al. (2018) used K-means clustering, an unsupervised 

machine learning technique, for grouping automatically collected insect pest counts 

into four different levels. They used the four different levels to develop an insect 

outbreak severity forecasting method using multivariate data. In medicine, Guagliardo 
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et al. (2018) proposed and compared mathematical methods that define thresholds for 

public response to monkeypox. It was found from their work that computing the 

cumulative sum was the most adaptive method for defining threshold values as 

compared to other methods such as a method provided by the World Health 

Organization and a so-called Cullen method. They concluded that it was too simplistic 

to use a single method for defining the threshold values. Burr et al. (2013) compared 

different parametric distribution functions for finding anomaly thresholds in process 

monitoring. Their results showed that normal, lognormal, or a mixture of normal 

functions produced reasonable anomaly threshold values. They also recommended 

probability values of 0.001 or 0.025 for maintaining a low false alarm probability. The 

study showed that a common problem in defining alarm thresholds is finding out 

reasonable threshold levels that can actually help in decision-making. 

Apparently, there were only selected works on developing an automated insect pest 

monitoring system with DSS capability. This calls for the development of a holistic 

system that can both monitor the population of insect pests and provide 

recommendations to the farmers (Böckmann et al., 2015).  
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2.4.2 Biophysical model development 

A biophysical model is used to describe the behavior of biological systems through 

the use of mathematical models. In IPM, biophysical modelling is a helpful tool for 

knowing the possible influences of the environment, control methods, and other 

external factors so that farmers can plan insect pest management strategies more 

effectively.  

It was shown in recent studies that one of the factors that has the most influence 

to insect pest behavior is temperature. Temperature largely affects the reproduction, 

development, and flight activity of insect pests (Damos & Savopoulou-Soultani, 2012; 

Haridas et al., 2016; Kingsolver et al., 2015). It was found by Bonsignore (2015) that 

whiteflies are most active at temperature levels 25°C to 30°C. It was also found that 

whiteflies had no activity at temperature levels below 12°C. On the other hand, aphids 

and thrips were most active at temperature levels from 28°C to 30°C (Ramalho et al., 

2015) and 27°C (Rhainds et al., 2007), respectively. It can be noticed that the three 

common greenhouse insect pests had close active temperature requirements. 

Meanwhile, studies show that outdoor insect pests had similar characteristics. 

According to a study by Wang et al. (2012), most fruit fly species had development and 

survival temperature requirements of 18°C to 30°C. Leafhoppers had a narrower range 
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of 30°C to 35°C, as found from an experiment by Rigamonti et al. (2014) performed in 

vineyards.  

It was found in most of the related works that insect pests cannot survive under 

extreme levels of temperature. It was commonly seen that this phenomenon can be best 

described through skewed non-linear functions (Damos & Savopoulou-Soultani, 2012). 

Wang et al. (2012) found that the development rate of fruit flies appeared to slowly 

increase from 10°C to 30°C but immediately declined to zero probability at 34°C. They 

fitted the relationship using a non-linear extreme value model. In our previous work, a 

double Weibull function was used to describe the relationship between the increase in 

the whitefly count obtained by our insect pest monitoring system and the measured 

ambient temperature inside a greenhouse (Rustia & Lin, 2019). Through the fitted 

model, it was found that whiteflies drastically have a higher flight probability as it 

increases from 9°C to 26°C but reaches a sharp decrease at 27°C.  

Differently, humidity was found to have less effect to the reproduction rate of 

insect pests as compared to temperature (Butler et al., 1988). It was found from recent 

studies that effects of humidity to the reproduction rate of insect pests were only found 

at extreme levels. Sengonca and Liu (1999) performed experiments analyzing the 

effects of different humidity levels to the reproduction rate of whiteflies. They were 

able to find out that at constant temperature and extreme humidity levels, the 
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development time of whiteflies increased from 20 days to 30-40 days. A study 

conducted by Yee (2013) showed a different phenomenon as some species of fruit fly 

emerged more frequently at high humidity levels. The study also shows that at 

extremely low humidity levels, fruit flies flied less frequently and moderately at normal 

levels of humidity.  

Light, which has a direct relation to the time of day, was also found to have a direct 

effect to the flight activity of insect pests (Shimoda & Honda, 2013). In a study by Jha 

et al. (2009), it was shown that thrips have specific flight peak times of around 10:00 

AM and 2:00 PM. It was found that thrips were generally inactive without the presence 

of light. Close findings were also found in the study of (Liang et al., 2010) about the 

flight behavior of thrips where it was found that thrips were most active at light 

intensities from 4000 lux to 6000 lux. On the other hand, whiteflies were more active 

during the morning from 6:00 AM to 9:00 AM and less active during the afternoon and 

at night (Butler et al., 1988). However, this was found different in the case of fruit flies. 

An experiment was conducted by Rieger et al. (2007) where the activity of fruit flies 

were compared during the morning and at night. In both cases, the results of the 

experiment show that fruit flies were more active when there was almost no presence 

of light, specifically at 10 lux. This means that outdoor in a fruit orchard, fruit flies tend 

to infest the crops more often at early dawn or late dusk. These works show that insect 
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pest have different diel flight activity and flying patterns depending on the presence of 

a light source. 

The related works confirm the seasonal effects and other external factors to the 

over-all behavior of insect pests. It showed the importance of studying such 

relationships to be able to effectively control the population of insect pests. 

Unfortunately, most of the models developed were dependent on the datasets and 

methods of collections used. The model should be adaptive and applicable for different 

environments. The proposed automated monitoring system in this work can help in 

solving this problem by gathering on-field data that can be used to develop models that 

describe the insect pest behavior regardless of the location.  
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Chapter 3 Methodology 

3.1 System overview 

An integrated system called Intelligent and Integrated Pest and Disease 

Management (I2PDM) System was developed in this research. A general overview of 

the I2PDM system is illustrated in Fig. 3-1. 

 

 

Fig. 3-1. General architecture of the I2PDM system. 
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The main component of the I2PDM system is the monitoring system. It is 

responsible for collecting and sending data from the installation sites to the server which 

include sticky paper trap images and environmental sensor data. In the server back-end, 

the sticky paper trap images were processed through an insect pest detection and 

recognition algorithm while a spatio-temporal voting method was applied for post-

processing. The resulting insect pest counts and environmental data were analyzed 

using data analytics which include methods such as time series analysis, alarm 

modelling, biological modelling, and more. Finally, end-users accessed their data and 

information in the server front-end via website or mobile APP. Technical considerations 

and discussions regarding the components of the I2PDM system and their 

corresponding sub-components are discussed in the next sections. 

 

3.2 Monitoring system 

The monitoring system is composed of sensor nodes that automatically acquire 

images of sticky paper traps and measure relevant environmental conditions. Indoor 

and outdoor versions of the sensor node were designed to accommodate different 

agricultural production setups. It realizes the monitoring component of IPM; to collect 

quantitative data that can be used to extract information from the insect pest condition 
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in a farm. This section discusses about the hardware design and development of the 

sensor node. 

 

3.2.1 Indoor sensor node  

The indoor version of the sensor node is made up of a Raspberry Pi 4 single-board 

computer, Raspberry Pi v2 camera, SHT20 temperature and humidity sensor, and 

BH1750 light intensity sensor, as illustrated in the block diagram in Fig. 3-2.  

 

 

Fig. 3-2. Indoor sensor node functional block diagram. 
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Raspberry Pi 4 is an ARM-based single-board computer that includes a 64-bit quad 

core processor with a clock frequency of up to 1.4 GHz. It runs on Linux-based 

operating systems and is capable of acquiring images, collecting sensor data, and other 

low memory processing operations. The Raspberry Pi v2 camera, an 8-megapixel RGB 

camera with a maximum resolution of 3280 x 2464 pixels, was connected to the 

Raspberry Pi 4 via camera serial interface (CSI). The environmental sensors, SHT20 

and BH1750, were connected via I2C interface. The device was powered by a 5V 3A 

USB power supply connected to an AC power source. An actual setup of the sensor 

node in a greenhouse is shown in Fig. 3-3. 

The sensor node was enclosed in a plastic box. An arm made out of 1 mm stainless 

steel was screwed to the box for holding the sticky paper trap in place. An A5-sized 

(14.8 x 21.0 cm) sticky paper trap was placed over a flat board and secured by 

transparent clips to flatten the trap, assuring clear acquisition of the sticky paper trap 

image. The camera was protected by a glass cover and was positioned approximately 8 

cm away from the sticky paper trap, allowing a field of view covering 11.5 cm x 15 cm 

of the sticky paper trap. Based on initial testing, it was found to be the best image 

acquisition setup that can maximize the number of insects detected without sacrificing 

the quality of the images. The 3D schematic diagrams illustrating the image acquisition 

setup of the sensor node is shown in Fig. 3.4. 
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Fig. 3-3. Actual setup of the sensor node in a greenhouse. 

 

Fig. 3-4. 3D schematic diagram of the image acquisition setup of the sensor node. a) 

Distance from camera to sticky paper trap; b) Camera field of view. 
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The temperature humidity sensor was installed below the box to minimize the 

effects dealt by sunlight to the sensor readings. The light intensity sensor was screwed 

to a PCB board attached to the Raspberry Pi 4 board, facing the top of the box, while a 

glass covers it. A 3 mm red LED indicator was installed below the box to show whether 

the device was on, sending data, or ready for device configuration via Bluetooth. 

Placements of the sensors and the LED is illustrated in a 3D schematic diagram in Fig. 

3-5, while the specifications of the environmental sensors are shown in Table 3-1. 

 

 

Fig. 3-5. 3D schematic diagram of the sensor node showing the sensor locations. 
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Table 3-1. Specifications of the environmental sensors. 

Specification SHT20 (Sensirion) BH1750 (ROHM Semiconductor) 

Resolution Temperature: 0.01⁰C 

Relative humidity: 0.04% 

1 lux 

Accuracy Temperature: ± 0.3⁰C 

Relative humidity: ± 3.0% 

1.2 (Sensor out/Actual lux) 

Range Temperature: -40 to 125⁰C 

Relative humidity: 0 to 100% 

1-65535 lux 

The sensor node was installed in an indoor environment by hanging it using a 

carabiner hooked to a rope or chain, 8-10 cm above the plants. The distance of the 

device and the plants was determined based on the height of the crops as they grow. 

The installation setup is illustrated in Fig. 3-6. 

 

Fig. 3-6. Schematic diagram of the indoor installation setup of the sensor node. 
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Tests performed based on the Ingress Protection Rating standards showed that the 

sensor node can be rated up to IP66 in terms of protection from dust and water.  

 

3.2.2 Outdoor sensor node 

The outdoor sensor node performs similar functions as the indoor sensor node but 

focusing on minimizing its power consumption. Raspberry Pi Zero was used as the 

processing unit instead of Raspberry Pi 4 since it has less power consumption with a 

lower maximum clock frequency of up to 1GHz. Raspberry Pi Zero consumes a 

maximum of 0.85W (5V, 170mA) while Raspberry Pi 4 consumes 2.7W (5V, 510mA). 

The functional block diagram of the outdoor sensor node is shown in Fig. 3-7. 

 

Fig. 3-7. Outdoor sensor node functional block diagram. 
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The outdoor version of the sensor node had a similar dustproof and waterproof 

hardware design as the indoor version. In contrast, the stainless-steel arm holder 

included a roofing that protects the sticky paper trap from rain droplets. The box was 

connected to a telescopic rod that can be extended up to 1.5 m in height. A water filled 

pole base, with a maximum weight of 10 kg, was used as the device stand that prevents 

the device from falling or be driven away by strong gusts of wind. The outdoor sensor 

node was designed in such manner so that the farm managers can move the device 

depending on their preferred location, height of the trees, and terrain. The actual device 

setup of the outdoor sensor node and its three-dimensional setup schematic diagram are 

shown in Fig. 3-8 and Fig. 3-9, respectively. 

 

 

Fig. 3-8. Actual setup of the sensor node in an orchard. 
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Fig. 3-9. Schematic diagram of the outdoor installation setup of the sensor node. 

The power source of the outdoor sensor node came from a 12V 26Ah lead acid 

battery which was simultaneously charged by an 18V 100W solar panel connected to a 

solar charge controller module. The connection of the power source and the outdoor 

sensor node was controlled by a power controller device which includes a Raspberry Pi 

4 and 5V latching relay. The power controller device was enclosed in an IP67 graded 
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waterproof and dustproof box and has the same set of power source as the outdoor 

sensor node. The power controller device triggered the relay that connects the power 

source of the outdoor sensor node based on pre-set time periods. Through this power 

control strategy, a single outdoor sensor node can last up to 5 days without being 

charged by the solar panel. Schematic diagram of the outdoor sensor node and the 

power controller device is shown in Fig. 3-10. 

 

 

Fig. 3-10. Outdoor sensor node power control schematic diagram. 
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3.2.3 Network configuration  

Each sensor node was wirelessly connected to the internet via Wi-Fi using 

different network topologies depending on the size of the installation site. In smaller 

sites, the system followed a star topology in which the sensor nodes were connected to 

a single internet-enabled Wi-Fi router, as shown in Fig. 3-11a. But in larger sites, a mesh 

topology was used similar to Fig. 3-11b which consisted of a single internet-enabled 

Wi-Fi router with several Wi-Fi signal extenders connected to it. Through mesh 

topology, the sensor nodes connected to the router with the best signal quality and 

strength. In sites where internet connection was unavailable, a 4G LTE router was used 

as main Wi-Fi router. 

 

Fig. 3-11. Monitoring system network topologies: a) Star; b) Mesh. 



doi:10.6342/NTU202100237

48 

 

3.2.4 Device configuration and data transmission 

One essential step in IoT is to configure the identity of a device. Each sensor node 

had to be configured to determine its location and number. This was carried out by 

running a program in the sensor node that automatically turns on its Bluetooth and waits 

for a smart phone to pair with it. A user can use a smart phone and open the I2PDM 

mobile APP to scan for configurable sensor nodes. The user can input information such 

as the WiFi router SSID the sensor node will connect to and its password, location name, 

and number. The sensor node receives the configuration via Bluetooth serial interface 

and checks for program updates in Docker Hub, as described in more detail in the next 

section. 

After receiving the updates, the sensor node registers itself to the server. The 

sensor node sends a registration packet, which includes the sensor node location and 

number, to the server via User Datagram Protocol (UDP). UDP is a low-latency 

communication protocol for sending small packets of data through the internet. A self-

defined handshake protocol was developed to secure the throughput of data received 

and transmitted. After registration, it begins the data transmission routine. The 

environmental data such as temperature, humidity, and light intensity were sent via UDP. 

Meanwhile, the images were sent to the server via Transmission Control Protocol (TCP). 
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TCP is a slower sending protocol compared to UDP but is more secure and reliable 

since it also requests a response from the server after transmission. The data 

transmission frequency configuration of the sensor node in an indoor and outdoor 

environment is shown in Table 3-2. 

The sensor node sends the environmental data less frequently outdoors. This was 

done to decrease its energy consumption. Moreover, the outdoor environment condition 

does not change as fast as the indoor environment. Indoors, the environmental data was 

measured in shorter intervals, since some farm owners apply several environmental 

control strategies. The image data was sent every hour since the number of insect pests 

detected does not change abruptly, as found from previous tests. The program ran by 

the sensor node was written using Python 3.5. 

Table 3-2. Data transmission frequency of the sensor node. 

Device Data Protocol Frequency 

Indoor Temperature 

Humidity 

Light intensity 

UDP Every 10 minutes  

 Image TCP Every hour from 5AM to 7PM 

Outdoor Temperature 

Humidity 

Light intensity 

UDP Every hour  

 Image TCP Every hour from 5AM to 7PM 
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3.3 Server architecture 

The server was responsible for storing all the data collected by the monitoring 

server and distributing it to the end-users. A block diagram illustrating the server 

architecture is shown in Fig. 3-12.  

 

Fig. 3-12. Server architecture block diagram. 
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The environmental data, sensor node information, location information, user 

account information, etc. were saved in the MySQL database of the server. MySQL is 

an open-source relational database management system currently used by well-known 

software companies such as Facebook, Twitter, and YouTube. Meanwhile, image data 

were stored locally into the server. Data processors, written in Python 3.5 programming 

language, were used to pre-process, clean, and analyze the collected data.  

The monitoring system follows a remote update protocol via Docker 

containerization. A Docker container was set-up using the server. A Docker container 

is a standalone software package that may include applications, codes, libraries, and 

files, to be run on another device. This prevents users from hacking or modifying the 

source codes of the sensor nodes as it was installed in a site.  Most importantly, it allows 

the server to initiate a system update to the sensor nodes without accessing each node 

individually. This was done by pushing the Docker container to the Docker Hub, a 

public repository for storing Docker containers.  

Finally, the system was distributed to the end-users via mobile APP and website. 

The mobile APP is downloadable in both APP store for iOS and Google Play Store for 

Android. Users may also access the website using any web browser. The server is 

running under Windows 10 operating system, with an Intel Core i7-7700 CPU @ 3.60 

GHz, 16 GB RAM, and Nvidia GTX 1070 GPU. 
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3.4 Experimental sites 

The system has been installed in 10 indoor sites and 1 outdoor site. The 

approximate geographical locations of the experimental sites are shown in Fig. 3-13 

while basic information on each site is shown in Table 3-3.  

 

 

Fig. 3-13. Geographical locations of the experimental sites. 
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Table 3-3. Basic information on the installation sites. 

Farm 

name 

Geographical 

location 

Land 

area (m2)  
Crops 

Installation 

duration 

(days) 

Number of 

sensor nodes 

TS1 Chiayi, Taiwan 529 Tomato 

seedlings 

1260  7 

TS2 Yunlin, Taiwan 2208 Tomato 

seedlings 

970  10 

TS3 Yunlin, Taiwan 600 Tomato 

seedlings 

382  6 

T1 Nantou, Taiwan 630 Tomato 268  8 

T2 Nantou, Taiwan  1673 Tomato 268  8 

O1 Yunlin, Taiwan 550 Eustoma 851  8 

O2 Tainan, Taiwan 500 Phalaenopsis 674  6 

O3 Tainan, Taiwan 250 Eustoma 786  6 

S1 Nantou, Taiwan 550 Strawberry 654  8 

C1 Taipei, Taiwan 100 Cabbage 601  4 

M1 Tainan, Taiwan 10000 Mango 645  8 

The experimental sites were all independent of each other in terms of crops grown, 

management strategies, weather, etc. In each site, the number of installed devices vary 

depending on the farm area, insect pest management strategy of the farmers, and the 

number of suspected insect pest hotspots in the farm. Most of the crops grown by each 

farm are major economic crops in Taiwan (Lee et al., 2020). As shown previously in 

Table 2-1, major insect pests such as whiteflies, thrips, and aphids are attracted by the 

crops listed in Table 3-3. Farms O3, M1, and C1 were managed by our research group 
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and the Tainan District Agricultural Research and Extension Station (TDARES), 

Council of Agriculture, Taiwan ROC. The installation setup maps of each location are 

shown in Figs. 3-14 to 3-24. 

 

Fig. 3-14. Installation setup map of Farm TS1. 

 

Fig. 3-15. Installation setup map of Farm TS2. 
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Fig. 3-16. Installation setup map of Farm TS3. 

 

Fig. 3-17. Installation setup map of Farm T1. 

 

Fig. 3-18. Installation setup map of Farm T2. 
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Fig. 3-19. Installation setup map of Farm O1. 

 

Fig. 3-20. Installation setup map of Farm O2. 

 

Fig. 3-21. Installation setup map of Farm O3 
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Fig. 3-22. Installation setup map of Farm S1. 

 

Fig. 3-23. Installation setup map of Farm M1. 

 

Fig. 3-24. Installation setup map of Farm C1. 
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3.5 Insect pest detection and recognition algorithm 

The images were acquired by the monitoring system and were sent via internet to 

the server for batch processing. Each image was processed with an insect pest detection 

and recognition algorithm composed of three major stages: object detection, insect vs. 

non-insect classification, and multi-class insect classification. An overview of the 

algorithm is shown in Fig. 3-25. 

 

Fig. 3-25. Insect pest detection and recognition algorithm flowchart. 
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First, the object detector obtains the bounding box coordinates of the objects from 

the sticky paper trap image. The bounding box coordinates were used to locate the 

objects to be later classified as insect or non-insect. The identified non-insect objects 

were ignored and the insects were classified into their corresponding type. The main 

advantage of the presented multi-stage approach is that additional classes may be easily 

added to the multi-class insect classifier if necessary. For instance, a next classification 

stage can be added after classifying the flies by reclassifying the flies to the species 

level. The presented method is a more convenient and modular approach rather than a 

one-step detection and classification method; it can even be faster and more accurate 

since each part of the algorithm can be finely optimized. The algorithm was written 

using Python 3.5 with the support of OpenCV Deep Neural Network (DNN) library 

(Bradski, 2000), Tensorflow GPU v1.11 (Abadi et al., 2016), and Keras v2.2.4 deep 

learning libraries. The next sub-sections describe the technical considerations and the 

processes involved in each stage. 

 

3.5.1 Object detector 

Based on previous studies involving automatic insect pest counting, one source of 

error was the influence of external factors such as varying lighting condition and the 
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presence of non-insect objects in the image (Wen & Guyer, 2012; Zhong et al., 2018). 

To reduce the errors produced by such factors, a CNN-based object detector was used 

in this work. Compared to traditional segmentation methods, such as background 

subtraction and color clustering, CNN-based object detectors are less affected by object 

scale, color, and size. This was demonstrated in the study by Zhong et al. (2018), in 

which connected components labeling (CCL) was compared with a You Only Look 

Once (YOLO) object detection model in detecting flying insects. Their work 

demonstrated that using YOLO had a better counting accuracy compared to CCL. 

The objects from the sticky paper trap images were detected using a series of 

operations, as shown in Fig. 3-26. First, the original 3280 x 2464 RGB image was 

resized to 3200 x 2400 using cubic interpolation to make it separable into equal parts. 

Then, the resized image was tiled into 12 images of 880 x 880 resolution. Tiling is a 

technique in object detection that optimizes the detection accuracy of the object detector 

by dividing a high-resolution image into several parts to reduce the size of the object 

detector input image. This is often done especially for detecting small objects (Huang, 

2019; Unel et al., 2019). The image tiling resolution of 880 x 880 was set so that the 

resizing ratio is only halved before each image was used as an input to the object 

detector, avoiding excessive image distortion. After tiling, the 880 x 880 images were 

resized again into 416 x 416 images as individual inputs to the object detector model.  
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Fig. 3-26. Object detector model flowchart. 
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The object detector model used in this research was based on Tiny YOLO v3, a 

smaller version of YOLO v3, that uses less convolutional layers to improve 

computation speed and is adapted for less complex images (Ma et al., 2018; Redmon 

& Farhadi, 2018; Yi et al., 2019). Tiny YOLO v3 was chosen instead of YOLO v3 since 

it was found from prior testing that both models did not have too different performances 

in detecting the objects in the sticky paper trap images. The possible reason for this was 

the sticky paper trap images had a simple and fixed background of yellow color; thus a 

very deep or complex object detector was found unnecessary. It detects the objects from 

the image by splitting the image into a grid and generating bounding boxes with each 

object’s corresponding class probabilities. The output bounding boxes were retranslated 

to fit the scale of the original 880 x 880 tiled images. Non-max suppression (NMS) was 

applied on each tiled image to remove the excess candidate bounding boxes using NMS 

thresholding with values ranging from 0 to 1.0, where values close to 1.0 lead to more 

retained bounding boxes and fewer boxes were retained with values closer to 0. Similar 

overlapping objects were merged into single objects using Intersection over Union IoU 

(Ding & Taylor, 2016), using Eq. 3-1: 

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑢𝑛𝑖𝑜𝑛 (𝐼𝑜𝑈) =
𝑎𝑟𝑒𝑎(𝐵1 ∩ 𝐵2 ∩ … 𝐵𝑜)

𝑎𝑟𝑒𝑎(𝐵1 ∪ 𝐵2 ∪ … 𝐵𝑜)
 (3-1) 
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where Bo is the bounding box coordinates of the object with o as the object index. Each 

Bo contains four coordinates: x1, y1, x2, y2 of the object where x1 and y1 belong to the x 

y vertex coordinates of the box and x2 and y2 belong to the vertex opposite to x1 and y1. 

IoU measures the area of overlap over the area of union of several objects based on 

their bounding box coordinates. IoU is measured from 0 to 1.0, where values close to 

1.0 have highly matched box coordinates. Thus, if the overlapping objects have IoU 

values greater than or equal to 0.95, only a single set of coordinates was retained among 

the objects. In this work, only a single class was defined as the target for detection, the 

object class. The object class includes all insect objects found on the sticky paper traps. 

However, some of the objects may be non-insect objects. This problem was solved later 

on in the insect vs. non-insect object classifier stage. 

 

3.5.2 Cascaded multi-class insect classifiers 

Using the box coordinates obtained from the object detector, the images were 

cropped out from the original image for classification. The images were resized into 

128 x 128 by cubic interpolation, which was found to be the average size of the insects 

found from the sticky paper trap images; minimizing image distortion. Objects with 

cropping coordinates of m x n sizes were made equal by following the larger distance 
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between the box length and width such as cropping the images with n x n sizes. The 

cropped images were used as input to the CNN image classifier, as shown in Fig. 3-27.  

The CNN image classifier architecture shown in Fig. 3-27 is a sequential neural 

network used for general image classification and fitted for low-resolution images. 

Three convolutional layers (CL) with a single max pooling layer on each end are used 

to extract low (CL1), medium (CL2), and high (CL3) level features from the raw RGB 

pixel values of the 128 x 128 input image. Deep features were obtained from the 

previously extracted features by the fully connected layer (FCL) using rectified linear 

units (ReLU) as activation function. The softmax layer (SL) outputs the prediction 

probability for each defined class. The prediction probabilities were used to determine 

the class of the image based on a pre-defined classification threshold. 

 

 

Fig. 3-27. CNN image classifier architecture. 
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Prior to this study, several network architectures, such as MobileNet and Inception 

v3, were tested and it was found that the CNN classifier in Fig. 3-27 exceeds the 

performance of the mentioned network architectures (Rustia et al., 2018). Other works 

also show that low to medium resolution images do not require a very complex image 

classifier (Cai et al., 2019a; Chevalier et al., 2016). Thus, the presented classifier 

structure was adequate for the application, most especially in consideration of 

complexity and computational cost. 

A cascaded approach in classification was implemented in this research. The 

classification output of each CNN classifier shown in Fig. 3-27 was sequentially 

connected to recognize an image from a general class to a specific class. This approach 

was inspired by how insects are taxonomically classified. The first model of the 

cascaded insect classifier is the insect vs. non-insect model. The insect vs. non-insect 

model classifies the objects detected by the object detector into two classes: insect or 

non-insect. The non-insect objects include dirt, water droplets, or glare. The non-insect 

objects were occasionally stuck on the sticky paper traps due to operations conducted 

inside the greenhouse or to the weather. Prior to this work, it was found that most 

misclassified cases are due to the non-insect objects and thus should be filtered out to 

optimize the algorithm efficiency (Rustia et al., 2020a; Rustia et al., 2020b). The output 

class of the insect vs. non-insect model was based on the highest classification 
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probability p. Thus, if there was a higher p that the object was an insect, it was further 

classified later on with the multi-class insect classifier for insect recognition, or ignored 

otherwise. 

Two different combinations of multi-class insect classifiers were developed for 

insects found in indoor sites and outdoor sites. Using different classifiers optimizes the 

classification performance for the two type of sites since it was found that the insects 

found indoors and outdoors were different. Combining the samples from the two types 

of sites only caused more false positive errors in classification.   

The multi-class indoor insect classifier consists of a single insect recognition stage 

with 8 types of insects: cranefly, fly, gnat, midge, mosquito, mothfly, thrips, and 

whitefly, as shown in Fig. 3-28. The insects shown in Fig. 3-28 were the most 

commonly found insects in the sticky paper images of the indoor sites. The output class 

of the multi-class insect classifier model was also based on the highest output p. A 

classification probability threshold THCNN was used to screen the classified insect. 

Insect objects classified with the highest p lower than the set THCNN were classified into 

others (Geng et al., 2018; Jain et al., 2014). Some of the other insects found in the 

greenhouses were beetles and spiders. However, such insects cannot fly, rarely seen, 

and do not inflict considerable damage to the crops. 
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Fig. 3-28. Multi-class indoor insect classifier flowchart. 



doi:10.6342/NTU202100237

68 

 

Meanwhile, the multi-class outdoor insect classifier has two insect recognition 

stages as shown in Fig. 3-29. The first stage, Stage 1, classifies an insect image into 

Diptera, Cicadellidae, or thrips. The images classified as Diptera were further 

classified by the Stage 2A model into fly, gnat, or mothfly, which were under the insect 

order Diptera. Similarly, images classified as Cicadellidae were re-classified by the 

Stage 2B model into mango leafhopper or leafhopper. Lastly, images labelled as fly 

were re-classified into fruitfly or oriental fruitfly in the Stage 3 model. This shows the 

advantage of the presented cascaded classifier approach as it can further classify insects 

into more specific insect types. This approach also enhances the performance of the 

entire cascaded classifier since it initially groups the insect images based on their 

taxonomic order, which also matches their physical appearances.  

Both the indoor and outdoor insect classifiers face the problem of open set 

recognition. Open set recognition refers to the classification of images that are outside 

the scope of the training images of a classifier model. One solution in open set 

recognition is to train a classifier model with a negative class, such as an others class, 

to avoid misclassification (Bendale & Boult, 2016; Zhong et al., 2018). Unfortunately, 

it only caused confusion to the classifier in this case. In particular, adding the others 

class reduces the performance of the classifier in identifying the target insect types that 

are more relevant than the other insects. This occurs since some of the other insect types  
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Fig. 3-29. Multi-class outdoor insect classifier flowchart. 
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may resemble the target insect types such as a gnat or fly appearing as a spider to the 

classifier model. Another workaround is to ignore the low probability classification 

results (Bendale & Boult, 2016); however, this method loses the insect count 

information since the objects are already classified as insect objects in the first place. 

Thus, the classification strategy of applying a classification probability threshold in 

classifying the others class was considered a plausible solution for this open set 

recognition problem; thus, not losing the count information. 

 

3.5.3 Spatio-temporal voting method 

The performance of the insect pest detection and recognition algorithm was 

enhanced using a spatio-temporal voting method (STVM). STVM utilizes the previous 

detection and recognition results obtained from the images of the similar sticky paper 

trap of a sensor node. The theory of STVM is based on similar techniques for object 

tracking (Feichtenhofer et al., 2017). In image recognition, it improves classification 

performance using the spatio-temporal information of images, if available. It has been 

applied by Pourdarbani et al. (2019) in detecting plum fruits in gardens. Majority voting 

(M-voting) was used to determine the final classification label from different classifiers. 

Sample output of the STVM as applied in this work is shown in Fig. 3-30. 



doi:10.6342/NTU202100237

71 

 

 

Fig. 3-30. Spatio-temporal voting method (STVM) sample flowchart. 

First, the box coordinates of the detected objects of images of time t-Nimages were 

matched to the image of time t by checking their IoU, using Eq. 3-1, where Nimages is 

the present number of collected images. The index of the image of which the object was 

detected and classified was recorded. The image index was used as a reference for 

retaining the classification labels of that object or not. The classification labels of the 

matched box coordinates were added and considered as votes. Majority voting, was 

performed on the votes to get the final classification label, using Eq. 3-2: 

 

𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑖𝑛𝑔 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙 = argmax
1

𝐼𝑓 − 𝐼𝑖
∑ (𝐶𝐿1, 𝐶𝐿2, … , 𝐶𝐿𝑐)

𝐼𝑓−𝐼𝑖

 (3-2) 
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where CLc is the number of classification label votes of class c, Ii is the initial image 

index the object was found, and If is the final image index the object was found. In the 

case of missed detections, no votes were added but the classification labels were 

retained. The classification results were discarded if the difference of Ii and If  was below 

the sum of the number of classification label votes the object has. The retention of 

classification labels prevents missed detections due to sudden changes in lighting 

condition. This technique is usually used for solving occlusion problems in multiple 

object tracking applications (Israni & Mewada, 2018). 

 

3.6 Image data collection and preparation 

The collected 3280 x 2464 sticky paper trap images were separated into two 

datasets according to location type: indoor and outdoor. Each dataset was partitioned 

into training set, validation set, and testing set. The summary of the data partition is 

shown in Table 3-4. The indoor image dataset consists of sticky paper trap images 

collected from the 10 indoor installation sites. Each sticky paper image contained at 

least more than 50 insect pests. The images were separated randomly into 80% and 20% 

for model training and validation, respectively. Testing sets 1 and 2 were prepared from 

the most recent sticky paper trap images of all installation sites, 6 months ago. Testing 
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Table 3-4. Sticky paper trap image dataset partition information. 

Location 

type 

Image 

dataset 

Source Total # of 3280 x 2464 

images 

Data coverage 

Indoor Base model 

training and 

validation 

All sites 

except 

M1 

617  2 years 

 Semi-

supervised 

learning 

105 Recent year  

 Testing 1 40 Recent 6 months 

Outdoor Training and 

validation 2 

M1 only 41 1 year and 6 

months 

 Testing 2 18 Recent 6 months 

set 1 was also used as the classification performance reference of the semi-supervised 

learning applied on the multi-class insect classifier. The prepared testing sets were used 

to prove whether the insect pest detection and recognition algorithm worked over time.  

Each image was prepared by annotating the box coordinates of the target objects 

using LabelImg, a graphic image annotation tool. The images were resized into 12 

images of 880 x 880 resolution for training the object detector. The trained object 

detector model was used to crop out the insect and non-insect objects programmatically, 

based on the detection results. The insect vs. non-insect objects were sorted manually 

for training the insect vs. non-insect models. The insect objects were then sorted 

according to the defined insect classes, with the assistance of experts and entomologists. 

A summary of the images collected for each stage is shown in Table 3-5 and Table 3-6. 
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Table 3-5. Indoor insect pest detection and recognition model training, validation, and testing image dataset statistics. 

Model name Training method Class Total Training Validation Testing set 1 

Indoor object detector Supervised Object 1377 80% of total 20% of total 312 

Insect vs. non-insect 

(Stage 0) 

Supervised Insect 5536 1987 

 Non-insect 2158 1522 

Indoor insect classifier 

(Stage 1)* 

Semi-supervised Cranefly 25 10 

 Fly 359 78 

 Gnat 1824 232 

 Midge 356 122 

 Mosquito 47 11 

 Mothfly 440 183 

 Thrips 668 211 

 Whitefly 1817 331 

*Samples of this model are the samples of the semi-supervised learning base model (BM) and are not of the final model. 
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Table 3-6. Outdoor insect pest detection and recognition model training, validation, and testing image dataset statistics. 

Model name Training method Class Total Training Validation Testing set 2 

Outdoor object detector Supervised Object 147 80% of total 20% of total 53 

Insect vs. non-insect  

(Stage 0) 

Insect 4078 1348 

Non-insect 1404 621 

Outdoor insect classifier 

(Stage 1) 

Diptera 2705 920 

Cicadellidae 251 91 

Thrips 1122 337 

Diptera classifier  

(Stage 2A) 

Fly 514 155 

Gnat 1069 428 

Mothfly 1122 337 

Cicadellidae classifier  

(Stage 2B) 

Mango leafhopper 95 29 

Leafhopper 156 62 

Fly classifier  

(Stage 3) 

Fruitfly 432 130 

Oriental fruitfly 82 25 
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3.7 Semi-supervised learning method 

From previous experiences in running the proposed system, it was found that the 

image samples collected over time from different locations were not always similar to 

each other. This caused the performance of the insect pest detection and recognition 

algorithm vary due to several reasons such as varying lighting condition, greenhouse 

operations, and presence of rare insects in the sticky paper traps. Due to this, an online 

semi-supervised learning method was developed as an adaptive solution. Semi-

supervised learning is a method for training deep learning models by applying feature 

extraction, image collection, model training, model selection, and other related learning 

tasks with partial human supervision to continuously improve a pre-existing model 

(Baucum et al., 2017). This is an ideal solution for biological image monitoring systems 

since few images can be usually obtained from open source datasets (Amorim et al., 

2019). Although semi-supervised learning is a very challenging task, it can be an 

efficient way in designing image monitoring systems to avoid laborious labeling effort 

required in supervised learning. 

The pipeline of the proposed method is shown in Fig. 3-31. Throughout this text, 

a semi-supervised learning cycle is referred to as performing online image data 

collection down to model update and selection at each time t, where t ∈ {1, 2, 3, …, n} 
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can be defined in units of days, weeks, months or years. The procedures and technical 

considerations of each part of the method are presented in the succeeding sub-sections. 

 

3.7.1 Base model building 

Building the base model (BM) is a supervised step that involves training of an 

image classifier model with manually labelled image samples. The BM has a structure 

similar to as shown previously in Fig. 3-27 and was trained with insect images that were 

cropped out from the 3280 x 2464 sticky paper trap images and resized into 128 x 128 

pixels by cubic interpolation. The BM serves two purposes: image pseudo-labelling and 

image feature extraction. It is an important component of the semi-supervised learning 

method since it contains the relevant representation knowledge, including the number 

of target classes and basic features of the images to be pseudo-labelled later on. 

 

3.7.2 Online image data collection 

On each semi-supervised learning cycle, online image data collection was 

performed. In each time t, the last sticky paper trap image was selected from the images 

collected of each node from t-1 to t. An object detector model, as mentioned in Section 
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Fig. 3-31. Semi-supervised learning method flowchart. 
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3.5.1, was trained to obtain the coordinates of the objects found from the newly received 

sticky paper trap images. The object coordinates were used to crop out the objects from 

the images. The cropped-out objects were classified using an insect vs. non-insect 

classifier model; with the non-insect objects ignored while the insect objects undergo 

unsupervised pseudo-labelling. 

 

3.7.3 Unsupervised pseudo-labelling algorithm 

The most important component of semi-supervised learning is pseudo-labelling. 

Pseudo-labelling is an automatic method for labelling, sorting, or grouping sets of 

unlabeled image data through machine learning methods (Kwasnicka & Paradowski, 

2010; Lee, 2013). The critical part of pseudo-labelling is the proper selection of image 

data (Veit et al., 2017). In a given set of unlabeled image data, there is always a 

possibility that a classifier model will falsely classify an image with high confidence, 

while it actually belongs to a different or undefined class. These labels are often called 

noisy labels. In testing by Karimi et al. (2020), adding noisy labels in a set of training 

images may degrade the performance of a model to a certain extent. The proposed 

pseudo-labelling algorithm resolves this problem by following a sequential strategy 

inspired by how the samples are sorted and classified with human supervision. The 
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pseudo-labelling algorithm is made up of three steps: image labelling, label 

reconfirmation, and sample cleaning, as shown in Fig. 3-32.  

After the insect images were cropped out in the online image data collection step, 

the insect images were labelled through image classification using the BM. The initial 

pseudo-label L1 of each insect image was determined based on the maximum softmax 

probability output p of the BM. Each labelled image was grouped into its corresponding 

class.  

Next, label reconfirmation was done by initially extracting the features of each 

insect image using the last layer of the BM, and then encoding the extracted features 

into two dimensions: PC1 and PC2, using principal component analysis (PCA). PCA is 

an unsupervised, non-parametric technique for dimensionality reduction and is often 

used in image compression, noise filtering, and data visualization since it can compress 

data with minimal information loss (García-Fernández et al., 2013). The projection of 

the PCs corresponding to the insect image features was plotted to obtain the cluster 

centroid of each class. The Euclidean distance d between each encoded point and the 

class centroid in the PCA projection plane was calculated using Eq. 3-3: 

 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑑) =  √(𝑥 − 𝑥�̅�)2 + (𝑦 − 𝑦�̅�)2 

 

(3-3) 
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Fig. 3-32. Unsupervised pseudo-labelling method flowchart 
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where x and y are the encoded PC1 and PC2 value of the image, respectively, while 𝑥𝑐  

and 𝑦
𝑐
 are the average of the encoded PC1 and PC2 values of class c, respectively. The 

nearest class centroid of each encoded point in the PCA projection plane was used to 

determine its second label L2. All the images with the same labelling results L1 and L2 

were retained as new model training samples; otherwise, the images were discarded.  

Lastly, confidence cluster ellipses were fitted onto each class of the BM training 

samples using Gaussian Mixture Model (GMM) clustering. GMM clustering is an 

unsupervised algorithm that utilizes an expectation-maximization algorithm to fit a 

Gaussian model that represents the cluster ellipse of a group of points. In many 

applications, GMM is used as a technique for detecting outliers from fitted cluster 

ellipses (Zong, 2018). Through GMM clustering, a covariance matrix A was computed 

from the training samples of each class. Singular value decomposition (SVD) was 

applied to calculate the eigenvalues and normalized eigenvectors of the covariance 

matrix. The covariance matrix A, after performing SVD, is in the form of Eq. 3-4:  

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 (𝐴)  =
[
𝑣1𝑥 𝑣2𝑥

𝑣1𝑦 𝑣2𝑦
]

𝑈

[
𝑅𝑥,𝑐

𝑅𝑦,𝑐
]

𝐷

 
(3-4) 

where D includes the singular eigenvalues Rx and Ry, and the x and y radii of the cluster 

ellipse of class c, while U is a matrix composed of singular vectors v1x, v2x, v1y, and v2y. 
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The left singular vectors v1x, v1y were used to find the cluster ellipse angle of rotation θc 

by Eq. 3-5: 

𝐸𝑙𝑙𝑖𝑝𝑠𝑒 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 (𝜃𝑐) =
180 𝑎𝑟𝑐𝑡𝑎𝑛(

𝑣1𝑦

𝑣1𝑥
)

𝜋
 

(3-5) 

The radii and angle of the cluster ellipse were used to exclude pseudo-labelled 

samples based on the inequality equation of a point inside an ellipse (Eq. 3-6), modified 

from Larson and Falvo (2011): 

[
( 𝑥 − 𝑥𝑐̅̅̅) 𝑐𝑜𝑠(𝜃𝑐) − ( 𝑦 − 𝑦�̅�)𝑠𝑖𝑛 (𝜃𝑐)

(𝜔𝑅𝑥,𝑐)
2 ]

2

+ [
( 𝑥 − 𝑥𝑐̅̅̅)𝑠𝑖𝑛(𝜃𝑐) − ( 𝑦 − 𝑦�̅�)𝑐𝑜𝑠 (𝜃𝑐)

(𝜔𝑅𝑦,𝑐)
2 ]

2

≤ 1 (3-6) 

where values of points smaller than, or equal to, 1 are inside the ellipse and values 

greater than 1 are outside the ellipse. A scaling factor ω was introduced in Eq. 3-6. The 

scaling factor ω is an arbitrary parameter of the pseudo-labelling algorithm that defines 

the confidence level of the cluster ellipse for sample cleaning. In theory, rx and ry are 

equal to the x and y standard deviation of the cluster ellipse, respectively (Larson & 

Falvo, 2011). Through the scaling factor ω, the size of the cluster ellipse can be adjusted. 

The value of ω was computed from the square root of the probability of a chosen 

confidence level found on a Chi-Square probability table (Milton & Arnold, 2004). 



doi:10.6342/NTU202100237

84 

 

3.7.4 Unsupervised model fine-tuning 

Fine-tuning without human supervision was performed on the BM by including the 

pseudo-labelled images to the current image dataset. Fine-tuning is a transfer learning 

technique that is done by freezing the first few layers of a neural network model while 

leaving the last layer, the deep feature extraction layer, for training. Fine-tuning aims to 

dynamically learn from new samples by partially changing the layer weights of the 

neural network model. In this work, fine-tuning was used since it can preserve the basic 

features learned from the first few layers, while it only learns more specific features of 

new image samples collected at different times and locations.  

 

3.7.5 Model update and selection 

Under online system operation, an adaptive model (AM) was selected after each 

semi-supervised learning cycle. It was called as adaptive model since it continuously 

learns from the incoming image data of each location. It is the actual model used by the 

monitoring system. In each semi-supervised learning cycle, the fine-tuned AMs are 

tested by stratified k-fold cross validation. Stratified k-fold is a validation strategy that 

splits training images into k number of folds and ensures that the proportion of training 
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samples per class are identical. It avoids biases whenever there was an imbalanced 

number of samples. The precision, recall, and F1-score per class were calculated in each 

fold as follows:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 (𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑟 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛)
 (3-7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑡𝑟𝑢𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 (𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑟 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛)
 (3-8) 

𝐹1-𝑠𝑐𝑜𝑟𝑒 =  2 (
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
) (3-9) 

where TP are true positive detections and/or true positive classifications later on in the 

classifier stage. F1-score is a classification performance metric that considers both 

precision and recall (Rustia et al., 2020a). The value of F1-score ranges from 0 to 1, 

where values closer to 1 reflect better classification performance. Since this work 

involves multi-class classification, the average F1-scores shown in the results are the 

macro-average of the F1-scores, the sum of the F1-score per class divided by the number 

of classes.  

In selecting the new AM after each semi-supervised learning cycle, the validation 

F1-score of the current AM was compared with the next unsupervised model at t+t 

(UMt+t), as shown in Fig. 3-31. If the F1-score of the UM was higher than the F1-score 

of the AM, the AM was replaced with the new unsupervised model and the pseudo-
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labelled samples were added to the semi-supervised training dataset. Otherwise, the AM 

was retained and the new pseudo-labelled samples were discarded. This strategy 

ensures that the noisy pseudo-labels, that can possibly cause a decline in the F1-score 

and contamination of the semi-supervised training dataset, are avoided.  

 

3.8 Algorithm evaluation 

The evaluation of the algorithm was broken into several parts. First, the 

performance of the object detector model was measured by image level. Evaluating by 

image level refers to the evaluation of the algorithm as tested on each 3280 x 2464 

sticky paper trap image, as a whole. A BM, containing images from the indoor sites, 

was trained by supervised learning and evaluated in an object level, which evaluates 

the performance of the classifiers regardless of the number of insects found on each 

sticky paper trap image. As the BM was evaluated from the previous step, it was 

continuously evaluated using metrics developed for measuring the performance of the 

semi-supervised learning method. Meanwhile, the supervised classifier model for the 

outdoor site was also evaluated in an object level. These evaluation methods were 

designed to impartially assess the performance of each stage of the algorithm. This 

section explains about the evaluation methods involved in each stage of the algorithm. 
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3.8.1 Object detector image level evaluation 

For measuring the performance of the object detector, several metrics were used 

for evaluation (Rustia et al., 2020a): 

𝑀𝑖𝑠𝑠 𝑟𝑎𝑡𝑒 (𝑀𝑅) =  
𝑚𝑖𝑠𝑠𝑒𝑑 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑟𝑢𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 (𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠)
 (3-10) 

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝐹𝑃𝑅) =  
𝑤𝑟𝑜𝑛𝑔 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 (𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠)
 (3-11) 

This also includes the metric, F1-score (Eq. 3-9). The object detector was tuned based 

on the validation images and evaluated on the testing sets on an image level. For 

programmatically checking the detection results, the bounding box coordinates of the 

annotated objects were matched with the detected objects using IoU. If the IoU value 

measured from the compared objects was higher than 0.5, the object was considered a 

correct detection. A wrong detection was determined when the detected object does not 

match any of the annotated objects, and a missed detection, otherwise.  

 

3.8.2 Image classifier object level evaluation 

Both the insect vs. non-insect and multi-class insect classifiers were evaluated by 

the object level. Based on the F1-score definition in Eq. 3-9, the image classifiers were 
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evaluated using the average of the F1-scores per class. The modified equation for F1-

score is shown in Eq. 3-12: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 F1-𝑠𝑐𝑜𝑟𝑒 =
∑ 𝐹1𝑠𝑐𝑜𝑟𝑒𝑐

𝐶
𝑐=1

𝐶
 (3-12) 

where c is the class index and C is the number of target classes of the classifier. The 

average F1-score was used as the main metric for image classifier model evaluation as 

it considers the false positives and false negatives of the classifier, unlike other basic 

metrics. 

 

3.8.3 Integrated algorithm evaluation 

The integrated algorithm was evaluated in both image and object levels. In object 

level evaluation of the integrated algorithm, the 128  128 images were extracted from 

the original 3280  2464 images and sorted for testing. Using the sorted images, the F1-

scores of each class (Eq. 3-9) and the average F1-score (Eq. 3-12) were computed based 

on the confusion matrix results. 

In the image level, two metrics were measured: F1-score and mean counting 

accuracy ACC. Image level F1-score was computed from the precision and recall similar 

to Eq. 3-12, but in a per class and per sticky paper trap image basis. For measuring the 
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correctness of the automatic counts based on its relative difference to the manual counts, 

average counting accuracy ACC was used and computed using Eq. 3-13: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =
1 − ∑ |

𝑀𝑛 − 𝐴𝑛

𝑀𝑛
|

𝑁𝑖𝑚𝑎𝑔𝑒𝑠,𝑐

𝑛=1

𝑁𝑖𝑚𝑎𝑔𝑒𝑠,𝑐
 

(3-13) 

where n is the image index, Nimages,c is the total number of images of class c, M is the 

manual count and A is the automatic count by the algorithm. 

 

3.8.4 Semi-supervised learning evaluation  

The semi-supervised learning method was evaluated both visually and numerically. 

In visual evaluation, the extracted final CNN layer features of each image were encoded 

using PCA and plotted onto a two-dimensional plane to observe the variation and 

distribution of the image sample features. PCA was used since it is clear enough to be 

explained by human observation. Unlike other methods, PCA is non-parametric and 

non-probabilistic, making it very consistent (García-Fernández et al., 2013).  

In numerical evaluation, two sets of metrics were computed after each semi-

supervised learning cycle: online and offline. Online metrics are the values that can be 

monitored while the system was running; they can provide the approximate real-time 
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performance of the trained models. The calculated online metrics were as follows: 

validation F1-score, cluster density CD, and silhouette score SS. The validation F1-score 

was calculated based on the average F1-score of each class from the stratified 5-fold 

split of the entire pseudo-labelled dataset, similar to Eq. 3-9. To measure the relative 

amount of data that each cluster contains, the cluster density CD was calculated: 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝐶𝐷) =
𝑁𝑝𝑠𝑒𝑢𝑑𝑜,𝑐

2𝜋𝑟𝑥𝑟𝑦
 (3-14) 

where Npseudo,c is the total number of pseudo-labelled images of class c; the divisor was 

derived from the formula for the area of an ellipse (Larson & Falvo, 2011). The value 

of CD was used to measure the relative probability that a group of points can be 

clustered. Meanwhile, the silhouette score SS was calculated using its standard formula, 

as follows (Palacio-Niño & Galiano, 2019):  

𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 𝑠𝑐𝑜𝑟𝑒 (𝑆𝑆) =  
1

𝑛
∑

𝑏(𝑖) − 𝑎(𝑖)

max(𝑎(𝑖), 𝑏(𝑖))

𝑛

𝑖=1

 
(3-15) 

where b(i) is the minimum average distance between the samples, but not containing 

the analyzed sample i, a(i) is the average distance of all samples to their own cluster, 

and n is the number of samples. The terms b(i) and a(i) are also called separation and 

cohesion, respectively. The value of SS ranges from -1 to 1 where values close to 1 
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mean that the points are grouped accordingly to their own cluster and not to neighboring 

clusters.  

The offline metrics are values that can only be computed after manual analysis of 

the data. This includes the pseudo-labelling accuracy ACCpseudo,c, where c is the class 

label, and testing F1-score. The pseudo-labelled images were inspected manually and 

the number of clean and noisy pseudo-labels were counted for computation as follows: 

𝑃𝑠𝑒𝑢𝑑𝑜-𝑙𝑎𝑏𝑒𝑙𝑙𝑖𝑛𝑔 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶𝑝𝑠𝑒𝑢𝑑𝑜,𝑐) =  
𝑁𝑐𝑙𝑒𝑎𝑛,𝑐 

𝑁𝑝𝑠𝑒𝑢𝑑𝑜,𝑐  
 (3-16) 

where Nclean,c is the number of clean pseudo-labelled images and Npseudo is the total 

number of pseudo-labelled images. ACCpseudo,c measures the correctness of the pseudo-

labelling algorithm. Meanwhile, testing F1-score uses a similar definition as Eq. 3-9. 

  

3.9 System performance indicators 

Besides the algorithm performance, the system was evaluated based on two other 

performance indicators: data throughput and insect pest trapping efficacy. Detailed 

discussion about the indicators is presented in the next sub-sections. 
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3.9.1 System data throughput 

Data throughput is used to measure the reliability of a data collection system in 

terms of the data sent by the sensor nodes and data received by the system. It reflects 

how reliable the system is regardless of the environment it was installed in. A set of 

data was defined as received if a sensor node was able to send at least 50% of the data 

it is expected to send and lost, otherwise. In this context, an indoor sensor node should 

be able to send at least 48 environmental data packets while an outdoor node should 

send at least 12 environmental data packets. Each sensor node should send at least 7 

sticky paper trap images. Using this condition, the data throughput was computed using 

Eq. 3-17: 

𝐷𝑎𝑡𝑎 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (%) =  100 ∗  
𝐷𝑎𝑡𝑎 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝐷𝑎𝑡𝑎 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 (3-17) 

 On the other hand, data loss was computed using Eq. 3-18: 

𝐷𝑎𝑡𝑎 𝑙𝑜𝑠𝑠 (%) = 100 ∗ 
𝐷𝑎𝑡𝑎 𝑙𝑜𝑠𝑡

𝐷𝑎𝑡𝑎 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 (3-18) 

3.9.2 System insect pest trapping efficacy 

One of the key goals of this research is to replace manually set sticky paper traps 

with an automated device such as the sensor node. An evaluation was necessary to 
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determine if a sensor node, with a sticky paper trap attached, was able to attract as many 

insects as a sticky paper trap separated from the sensor node. This goal can be achieved 

if similar data trends were obtained from both methods. 

An experiment was designed with the assistance of TDARES in which a cylindrical 

separate sticky paper trap was put below each sensor node of Farms TS1, TS2, and TS3. 

The sticky paper trap was rolled into a cylinder since it was found from previous studies 

that it is the most effective trap shape that can attract most insects (Ghani et al., 2012). 

TDARES manually counted the selected insect pests from the sticky paper traps such 

as whitefly and thrips. Only the two insect pest types were counted since they are 

relatively more harmful compared to the other insect pest types that the system can 

detect and recognize. The experimental setup is shown in Fig. 3-33. 

 

Fig. 3-33. Sensor node trapping efficacy experimental setup. 
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In this evaluation, the automatic insect pest count IC of the flat sticky paper trap 

held by the sensor node is referred to as ICauto, while its manually determined insect 

pest count is referred to as ICdevice. The manual insect pest count of the sticky paper trap 

below the sensor node is referred to as ICbelow. The insect pest counts obtained from all 

insect trapping setups were normalized into values from 0 to 1 to evaluate the system 

regardless of scale. Normalization removes the bias in comparing two related variables. 

Normalization of the insect pest counts was done in the form of Eq. 3-19: 

𝐼𝐶∗ =
𝐼𝐶 − min (𝐼𝐶)

max(𝐼𝐶) − min (𝐼𝐶)
 (3-19) 

 

3.10 Data analytics 

The proposed system is incomplete without providing data analytics that can 

concisely explain the insect pest condition in their farms. Unlike scholars or researchers, 

not all users of the system are familiar with the meaning of the numerical data shown 

to them. The only way to make the system useful to them is to interpret and transform 

data into information. This section discusses about the theory of the different data 

analytics techniques applied in the proposed system. 
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3.10.1 Insect pest count alarm model development 

Based from the feedback of the users during the first few months of running the 

system, it was found that the insect pest counts data was not adequate to assist the 

farmers in decision-making. The users had difficulty in interpreting the data since they 

had no idea of how many insect pests detected can be considered critical in their farm. 

The proposed solution to this problem was to develop an alarm model. An alarm model 

was used to automatically compute for threshold values that can be used to determine 

which decisions can be recommended under certain values of the input data. The alarm 

model in this work aims to adaptively convert the increase in insect pest count ∆IC per 

day into an equivalent alarm level using alarm thresholds in the form of TH∆ICa, where 

a is the alarm level number, with 1 and 5 having the lowest and highest priority, 

respectively. The flowchart of the alarm model is shown in Fig. 3-34. 

First, it was checked whether there were crops in the farm or not. If there were, the 

historical ∆IC data was retrieved from the server and the number of unique values (u) 

was counted. In this research, u was set to 20, a value found after tuning on different 

datasets. If the number of unique values was less than the value of u, only the insect 

counts were shown to the users; such as not to cause confusion by delivering invalid 

alarms to the users. Otherwise, the SEVERE alarm threshold TH∆IC5 was computed 
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using isolation forest. Isolation forest is an unsupervised learning technique that is used 

to detect anomalies or outliers from a dataset. Unlike any other techniques, isolation 

forest attempts to isolate the fewer and different points instead of finding the normal 

points in a dataset. It iteratively builds isolation trees, with a similar structure as binary 

search trees, to form decision trees that split the dataset into normal and anomalous 

points. Each data point was fed to each tree of the trained isolation forest model and a 

so-called anomaly score S was computed using Eq. 3-20 (Liu et al., 2008): 

𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑠𝑐𝑜𝑟e (𝑆) = 2
−

𝐸
𝑐(𝑛) (3-20) 

where E is the average path length h(k,m,Ntrees), computed using Eq. 3-21: 

𝐼𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑒𝑠𝑡 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ (𝐸) =

∑ {
∑ 1𝑀

𝑗=1 ,                              𝑘 = 1

∑ 1𝑀
𝑗=1 + 𝑐(𝑘),       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   
𝑁𝑡𝑟𝑒𝑒𝑠
𝑖=1

𝑁𝑡𝑟𝑒𝑒𝑠

 
(3-21) 

where Ntrees is the total number of isolation trees, M is the total number of binary splits, 

and k is the total number of data points in the exit node. Meanwhile, c(n) is the 

unsuccessful search average path length, defined using Eq. 3-22: 

𝑈𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑐(𝑛) = 2(ln(𝑛 − 1) + 𝜀) − 2(
𝑛 − 1

𝑛
) (3-22) 
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Fig. 3-34. Insect count alarm model flowchart. 
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where n is the number of data points in the dataset and ε is the Euler constant with a 

value 0.5772156649. Anomalies were determined from the values of S, where a lower 

value of S means higher tendency of being an anomaly. An anomaly threshold THIF was 

set to determine at which values of S, as matched to each value of ∆IC, were considered 

as anomalies. In this research, the S value of a corresponding value of ∆IC lower than 

THIF = -0.1 was considered as an anomaly. The said value also represents the 

hypothetical percentage of anomaly values in relation to the input dataset.  

Afterwards, the ∆IC data lower than TH∆IC5 were fit to an exponential distribution 

function using Eq. 3-23:  

𝑦 = 𝜆𝑒−𝜆∆𝐼𝐶 (3-23) 

where λ is the scale parameter of an exponential distribution. The optimal value of λ 

was estimated using Levenberg-Marquadt (LM) method (Haefner, 2005). The estimated 

value of λ was used to compute for the ∆IC threshold value of alarm level a TH∆ICa 

using Eq. 3-24: 

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑖𝑛𝑠𝑒𝑐𝑡 𝑐𝑜𝑢𝑛𝑡 𝑎𝑙𝑎𝑟𝑚 𝑙𝑒𝑣𝑒𝑙 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑇𝐻∆𝐼𝐶𝑎) = −
log (𝐶𝐼)

𝜆
 (3-24) 

where CI is the defined confidence interval or probability of the specified alarm level. 

It was used to obtain the thresholds of alarm levels 2 (GUARDED), 3 (MODERATE), 
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and 4 (HIGH), using CI values of 0.50, 0.20, 0.01, respectively.  

The exponential distribution function was chosen for model fitting since it was 

observed from prior analysis that the frequency distribution of the historical ∆IC data 

resembles an exponential distribution. It was reasonable since there were very few 

insect pests found on the sticky paper traps most of the time since the farm managers 

continuously control the insect pest population. On the other hand, the frequency of 

experiencing insect pest outbreaks was very low, which was found to be due to the times 

that the farm managers sometimes do not immediately respond to the insect pest 

condition. Based on these observations, it was assumed that if the computed coefficient 

of determination r2 after fitting to an exponential distribution was lower than a set 

model fit threshold THMODEL, then the trend in the insect pest counts was abnormal. In 

this work, the value of THMODEL was set to 0.7. Alternatively, K-means clustering was 

applied. K-means clustering is an unsupervised learning technique that iteratively 

groups data points into K number of clusters or centroids. The centroids are used to 

train a k-nearest neighbor (kNN) classifier which classifies data points based on their 

distance to the centroids found. K-means was used as an alternative method since it 

does not depend on the frequency distribution of the data. However, it was found that 

using K-means equally cuts the dataset, which leads to too many SEVERE alarms.  

Finally, recommendations were displayed in the user interfaces, together with the 
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alarm levels. The recommendations were based on the advices given by IPM experts to 

the farm managers depending on the severity of the insect pest condition. It was also 

specifically defined that only the HIGH and SEVERE levels recommend the use of 

pesticides. This was meant to help the farm managers reduce their pesticide usage and 

use alternative methods such as isolation of crops, environmental control, and other 

natural methods. Notifications were shown in the user interfaces whenever the alarm 

level was HIGH to SEVERE based on their defined time of day.  

 

3.10.2 Insect pest hotspot detection 

One way to optimize the integrated pest management is to selectively control the 

insect pest population in specific hotspots. Based on the collected insect pest counts per 

sensor node, hotspots were detected by ranking the insect pest count data in ascending 

order. The insect pest count data per sensor node was displayed using gradient colors 

from white (lowest) to black (highest). The insect hotspot information can be used by 

the farm managers to reduce their pesticide usage since other locations may not have 

any insect pests around. The farm managers may also simply isolate the crops located 

in the hotspots and move them away from the other crops. This information was given 

simultaneously in the user interfaces with the insect pest count alarm. 
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3.10.3 Insect pest flight rate model development 

The temperature data and insect pest count data obtained by the system was used 

to develop an insect flight model. The insect flight model was used to estimate the 

probability that an insect will fly into the sticky paper trap. The model can help the farm 

managers to control the temperature condition in their farm such that to diminish the 

activity of the insect pests and stop them from emerging.  

To prepare the data for model fitting, a series of pre-processing steps was 

performed. First, the moving average of the increase in insect pests counts from Ti to Tf 

was obtained using a window size of 1.5°C from 0°C to 50°C was obtained. This step 

converts the increase in insect pest counts into insect flight rate F under different 

temperature levels. The outliers from the F data were determined using Eq. 3-25: 

𝐹𝑇 > (�̅� − 3σ𝐹),    𝐹𝑇 < (�̅� + 3σ𝐹) (3-25) 

where FT is the insect flight rate at temperature T and σF is the standard deviation of the 

insect flight rate. Eq. 3-25 shows that all values three standard deviations below or 

above the average of F were considered as outliers; following the definition of an outlier 

in a Gaussian distribution. All the outliers detected were converted to the average of F. 

The filtered F data was fit to a five-parameter double Weibull function (Haefner, 2005): 
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𝐼𝑛𝑠𝑒𝑐𝑡 𝑓𝑙𝑖𝑔ℎ𝑡 𝑟𝑎𝑡𝑒 (𝐹) = 𝑚1(1 − 𝑒
−(

𝑇
𝑚2

)
𝑚3

)𝑒
−(

𝑇
𝑚4

)
𝑚5

 
(3-26) 

where F is the insect flight rate (time-1), T is the temperature in °C, m1 is the amplitude 

of F, and m2, m3, m4, and m5, are the shape and scale parameters of the Weibull 

distribution and its complement, respectively. The five-parameter double Weibull 

function is the product of a two-parameter Weibull function and its complement. It is a 

widely used distribution function for modeling biological phenomena (Haefner, 2005; 

Rustia & Lin, 2019). The five parameters of Eq. 3-26 were estimated using LM method. 

Finally, the values of F from the fitted model was normalized from 0 to 1 to generalize 

the model.  

Three important data were obtained from the fitted model: lower niche temperature 

Tniche,min1, peak niche temperature Tniche,max, and upper niche temperature Tniche,min2. 

Niche temperature is the temperature level in which there is non-zero probability that 

the insects will take flight. The lower and upper niche temperature are the temperature 

levels in which there is a minimum probability of insect flight, while the peak niche 

temperature represents the temperature level with maximum flight probability. This 

information was provided in the user interfaces so that the farm managers know the 

possible environmental control conditions they can apply to control the insect activity. 
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3.10.4 Crop growth information 

To assist the farmers in optimizing the yield of their crops, two crop growth 

information were extracted from the sensor data: daily light integral DLI and growing 

degree days GDD. Both crop growth information are indicators used by the farm 

managers to estimate how much enough energy the crops received from sunlight and 

temperature (Miller et al., 2018; Rustia & Chung, 2016). 

DLI was computed using the measured light intensity data of the monitoring system, 

using Eq. 3-27:  

𝐷𝑎𝑖𝑙𝑦 𝑙𝑖𝑔ℎ𝑡 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 (𝐷𝐿𝐼) =  
𝐶𝐹 ∗ 𝐿𝐼24 ∗ 3600 ∗ 24 

1000000
 (3-27) 

where LI24 is the average light intensity over a 24-hour period in lux, CF is the 

calibration factor to convert lux to mol/m2/s (Thimijan & Heins, 1983), 3600 is 

computed from the number of seconds in a 60 minute period, and 24 is the number of 

hours in a day. DLI is measured in µmol/m2/day or simply as photosynthetic photon 

flux density (ppfd).  

On the other hand, GDD was computed from the measured temperature data of the 

monitoring system using Eq. 3-28: 
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𝐺𝑟𝑜𝑤𝑖𝑛𝑔 𝑑𝑒𝑔𝑟𝑒𝑒 𝑑𝑎𝑦𝑠 (𝐺𝐷𝐷) =
(𝑇𝑚𝑖𝑛 + 𝑇𝑚𝑎𝑥)

2
− 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (3-28) 

where Tmin is the daily minimum temperature in °C, Tmax is the daily maximum 

temperature in °C, and Tbaseline is the growing degree days baseline temperature in °C. 

In this research, a general Tbaseline  of 18°C was used, which is the most common lower 

niche temperature for crop growth.  

 

3.11 System front-end 

To distribute the system to the users of the system, two major front-end user 

interfaces were designed: website and mobile APP. The user interfaces contain all the 

data and information that the users may need to perform efficient and data-driven IPM. 

All the data displayed in the website and mobile APP were pre-processed and converted 

to locally stored .csv files in the server using background programs written in Python 

3.5, supported by Pandas data analysis library (McKinney, 2010) and Scikit-learn 

machine learning library (Pedregosa et al., 2011). Unlike loading all the data from a 

database, pre-processing the data into .csv files greatly decreases the loading time and 

makes the user interfaces more fluid. This section discusses about the design and 

development of the user interfaces. 
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3.11.1 Website 

The system website was written using PHP, Javascript, and HTML programming 

languages. The display data were obtained from the MySQL database and shown 

through charts and graphs using Highcharts, an interactive Javascript library for 

generating charts. In the website home page, as shown in Fig. 3-35, the users can view 

a summary of their data such as the current insect pest count data and alarm, percentage 

of insect pest counts, cumulative insect pest counts, environmental data, and more. For 

more in-depth data analysis, the users can access the temporal analysis page (Fig. 3-36) 

in which users can select the data they need to analyze, such as insect pest count and 

environmental data, and pick the starting date and ending date of the data. In the same 

page, users can also pick the data period frequency such as daily, monthly or per DB. 

In this context, a DB is referred to as period in which a set of sticky paper traps was not 

replaced with clean sticky paper traps. The users can also check the spatial analysis 

page (Fig. 3-37) which shows the insect pest count and environmental data in a per 

node display. The insect pest hotspots were also shown in the same page. Finally, users 

can also print out their data by exporting them to a .pdf file through the report page, as 

illustrated in Fig. 3-38. The report was also sent to the users depending on pre-defined 

subscription settings. The report contains data analyses for all the data obtained by the 
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system such as insect pest count and environmental data. A user guide was also provided 

in the same .pdf file explaining about the meaning of the data and how they can use it 

in their IPM program. In the case of having multiple sites, the user can select the 

location name in each page. The website can be viewed in any browser using a desktop 

computer or mobile device such as smartphone or tablet. 
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Fig. 3-35. I2PDM website home page. 
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 Fig. 3-36. I2PDM website temporal analysis page. 
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Fig. 3-37. I2PDM website spatial analysis page. 
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Fig. 3-38. I2PDM website report page. 
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3.11.2 Mobile APP 

Users of the system may also view their data from the mobile APP. The system 

mobile APP Android version was written using Java programming language and the 

iOS version was written using Swift programming language. The mobile APP is 

downloadable in the Google Play Store and APP Store for mobile devices running in 

Android and iOS, respectively. The mobile APP displays a more concise presentation 

of the users’ data.  

In the APP’s home page (Fig. 3-39), users can pick their location, view the current 

environmental data, insect pest count data and alarm, local weather condition, and 

pesticide calendar. The pesticide calendar can be used to tick the days in which they 

have sprayed pesticides in their farm. It can be used to track whether their pesticide 

application was effective or not. This can convince the farmers to decrease their 

pesticide usage and realize the benefits of spraying pesticides only whenever the insect 

pest condition was out of hand.  

Users can also access the mobile APP’s analysis page, as shown in Fig. 3-40. 

Similar to the website, the users may also see the map view (Fig. 3-40a) which contains 

the spatial presentation of their insect pest count data and environmental data. It also 

shows the insect pest hotspots wherein users can focus on controlling the insect pest 
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population. The table view (Fig. 3-40b) shows the data of each sensor node and the 

processed sticky paper trap images. The insect pest count analysis page (Fig. 3-40c) 

shows the temporal change in insect pest counts while the environmental page (Fig. 3-

40d) displays the environmental data. The users of the mobile APP also receive 

notifications whenever there was a HIGH or SEVERE insect pest count alarm, as shown 

in Fig. 3-41. Upon clicking the notification, users may see the current insect pest count 

data and pesticide recommendations for the specific insect pest. This guides the users 

to use appropriate pesticides and effectively reduce the insect pest population. 

 

 

Fig. 3-39. I2PDM mobile APP home page. a) Insect pest count; b) Weather, and 

pesticide calendar. 
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Fig. 3-40. I2PDM mobile APP analysis page. a) Map view; b) Table view; c) Insect 

pest count analysis; and d) Environmental data analysis. 
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Fig. 3-41. I2PDM mobile APP alarm notification sample. a) Notification; b) Insect 

pest count alarm and pesticide information. 
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Chapter 4 Results and Discussion 

4.1 Insect pest detection and recognition algorithm model 

training, validation and testing 

This section covers the processes involved in developing the insect pest detection 

and recognition algorithm. It includes the model training, tuning, and testing results of 

each part of the algorithm. All the related processes were carried out using a desktop 

computer, different from the server computer, running under Windows 10 operating 

system, with an Intel Core i7-6700 CPU @ 3.40 GHz, 40 GB RAM and Nvidia 

GTX1060 GPU.  

 

4.1.1 Supervised object detector and insect vs. non-insect model 

4.1.1.1 Indoor object detector and insect vs. non-insect model 

The indoor object detector was trained with the samples of the indoor sites 

according to the number of prepared samples in Table 3-5. Training was done with 300 

epochs, with 1000 training steps per epoch, and the model was optimized by stochastic 
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gradient descent using Adam optimizer as loss minimizer. The training curve of the 

indoor object detector is shown in Fig. 4-1. 

Two metrics were used in selecting the best model: validation loss and mean 

average precision mAP. Validation loss is the error computed after testing on the 

validation set, while mAP is a measure of the correctness of the detections by the object 

detector model. The training curve shows that the trained model was able to quickly 

learn from the training images as it converged at around 200 epochs and the mAP began 

to saturate at 0.96. This shows that the model did not learn any new relevant features 

after 200 epochs. Therefore, the model trained with 200 epochs was chosen as the object 

detector model. 

 

Fig. 4-1. Indoor object detector model training curve. 
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The insect vs. non-insect model was trained with data augmentation to balance the 

number of training samples by rotation, horizontal flipping, and vertical flipping. The 

number of training samples was balanced by increments of 2400, one fifth of the total 

augmented number of non-insect training samples, until the best model was found. 

Adam optimizer was used to minimize loss and grid search learning values of 0.01, 

0.001, and 0.0001 was set, with batch sizes of 8, 16, and 32. Training of the models was 

done with 200 epochs, with 20 training steps each. Model validation was carried out 

every 20 epochs, using the manually prepared 128 x 128 images of the validation set. 

The model validation results are shown in Fig. 4-2. 

It can be seen that the trained insect vs. non-insect model with the raw training 

samples had a high average validation F1-score, even as different classification 

thresholds were used. Applying data augmentation improved the validation F1-score to 

around 0.97, with 7200 balanced augmented training samples. It also showed that 

augmenting the data up to 9600 and 12000 did not improve the classification 

performance, probably caused by overfitting. Based on the results, the trained model 

with 7200 augmented training samples was selected, setting its classification threshold 

THCNN to 0.55. The results of testing the insect vs. non-insect model trained without and 

with data augmentation by object level is also shown in Fig. 4-2b and Fig. 4-2c, 

respectively. It shows that both models had very close classification performance. This  
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Fig. 4-2. Indoor insect vs. non-insect model validation and testing results: a) 

Classification threshold tuning; b) Object-level testing confusion matrix without 

augmentation; and c) Object-level testing confusion matrix with augmentation (7200 

samples). 
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shows that the models were robust enough to filter out the non-insect objects. Having 

a high insect vs. non-insect model F1-score was very important since it prevents false 

positive classification of unknown detected objects.  

The NMS threshold of the object detector model was tuned as it was cascaded with 

the insect vs. non-insect model. It was selected as the main tuning parameter since it 

controls the number of objects detected by the object detector model. NMS threshold 

values of 0.05, with increments of 0.10, were selected for tuning. The tuning results are 

shown in Fig. 4-3. The effect of filtering out the non-insect objects from the object 

detector model detections by the insect vs. non-insect model was quite noticeable. In 

Fig. 4-3a, the false positive rate of the object detector model was quite high without the 

insect vs. non-insect model. This was the issue to be solved since the object detector 

model was too sensitive and there were too many excess detections. The excess 

detections usually included overlapping detections of single objects and objects found 

at the edges of the image. With the insect vs. non-insect model, the false positives were 

almost completely avoided. This caused an increase in the miss rate which was found 

to be negligible since the reliability of detecting the insect objects increased with an F1-

score of 0.93. The results showed that using a high NMS threshold led to more false 

positive detections. Based on the tuning curve, an NMS threshold of 0.15 was set since 

it yields the highest F1-score with very low false positive rate and minimal miss rate. 
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Fig. 4-3. NMS threshold tuning curves of the indoor insect object detector: a) False 

positive rate; b) Miss rate; c) F1-score. 
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4.1.1.2 Outdoor object detector and insect vs. non-insect model 

The outdoor object detector was trained with the samples of Farm M1. Training 

was done with similar training parameters as the indoor object detector. The training 

results are shown in Fig. 4-4. It shows that the outdoor object detector had relatively 

lower mAP of around 0.88 compared to the indoor object detector. This was due to the 

foreign objects stuck in the sticky paper trap images that caused false positive detection 

of non-insect objects. Based on the training curve, both validation loss and mAP 

saturated quickly at 100 epochs. This means that there were not too many training 

images to train on. Finally, the object detector model trained with 100 epochs was 

selected as the final object detector model. 

 

Fig. 4-4. Outdoor object detector model training curve. 
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The object detector model can be improved in the future, if more training images 

can be collected. But due to the limited number of sensor nodes installed in the outdoor 

sites, it was necessary to filter out the non-insect objects before classification. To 

resolve this issue, an insect vs. non-insect model was trained. Since there was a limited 

number of non-insect images collected, data augmentation by rotation, horizontal 

flipping and vertical flipping was applied. The number of training samples of each class 

was balanced by increments of 1600. Training was carried out for 200 epochs, with 20 

steps per epoch, and with a learning rate of 0.005, using Adam optimizer for minimizing 

the validation loss. The model with the lowest validation loss and highest validation 

accuracy was selected as the final model. Each trained model was validated through 

stratified k-fold validation, with k set as 5. The classification threshold THCNN was also 

tuned with values from 0.05 to 0.95, with increments of 0.05. The model validation 

results are shown in Fig. 4-5a.  

It can be seen from the results the trained model was able to achieve an average 

validation F1-score of 0.95. It also shows that data augmentation did not contribute 

much in improving the classification performance of the trained model. But as the 

object level testing confusion matrix of the trained model without augmentation was 

obtained, it shows that it was overfit to the insect class (Fig. 4-5b). This was due to the 

imbalanced number of samples of each class; with the insect class having more than  
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Fig. 4-5. Outdoor insect vs. non-insect model validation and testing results: a) 

Classification threshold tuning; b) Object-level testing confusion matrix without 

augmentation; and c) Object-level testing confusion matrix with augmentation (8000 

samples). 
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twice the number of samples of the non-insect class. On the other hand, the trained 

model with 8000 augmented samples showed that the classification performance for 

each class was balanced (Fig. 4-5c). This shows that data augmentation was able to 

resolve potential overfitting issues caused by imbalanced number of samples. Therefore, 

the trained model with 8000 augmented samples was selected as the final model, with 

its classification threshold THCNN set to 0.55.  

The NMS threshold of the outdoor object detector model was tuned in a similar 

manner as the indoor object detector model. The tuning results are shown in Fig. 4-6. 

It can be seen from the results that the insect vs. non-insect model was able to greatly 

reduce the false positive rate of the insect object detector to around 0.05 (Fig. 4-6a). 

This had a minimal effect to the miss rate but it was negligible and the F1-score also 

increased up to around 0.92. The tuning curve also shows that a very low NMS 

threshold value can lead to more missed detections. But considering the goal of the 

insect object detector model, an NMS threshold of 0.15 was selected since it yields a 

balance of all the evaluation metrics. The validation and tuning results show the 

importance of the insect vs. non-insect model in improving the over-all performance of 

the algorithm, especially for the outdoor site that had a lot of foreign objects stuck in 

the sticky paper traps. 
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Fig. 4-6. NMS threshold tuning curves of the outdoor insect object detector: a) False 

positive rate; b) Miss rate; c) F1-score. 
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4.1.2 Multi-class insect classifier model 

The multi-class insect classifier models for indoor insects and outdoor insects were 

trained in two different ways. The indoor insect multi-class insect classifier model was 

trained using the presented semi-supervised learning method. The primary goal in 

applying the semi-supervised learning method was to be able to continuously collect 

new image samples of classifier target classes with few samples. The multi-class insect 

classifier model should improve over time. One pre-requisite of the semi-supervised 

learning method is that the number of image sources for pseudo-labelling is adequate 

to improve the model after each semi-supervised learning cycle. Unfortunately, there 

was currently just one outdoor installation site to collect the images from. After 

performing preliminary tests, the semi-supervised learning method barely improved the 

outdoor multi-class insect classifier base model after each semi-supervised learning 

cycle. Moreover, the outdoor multi-class insect classifier consisted of more than one 

cascaded classifier. However, the current semi-supervised learning method was not yet 

optimized for this kind of setup. The stated reasons justify the differentiation between 

the learning methods for the outdoor and indoor insect classifiers. This section discusses 

about the training, validation, testing, and optimization steps performed to develop the 

multi-class insect classifiers. 
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4.1.2.1 Semi-supervised indoor multi-class insect classifier model 

A BM was trained using the training images, 2 years since the system was running. 

The semi-supervised model learning method was started during this time since there 

was already an adequate number of samples per insect class to train the model.  Training 

of the BM was done for 200 epochs, with 20 steps per epoch, and with a learning rate 

of 0.0001, using Adam optimizer to minimize the validation loss. The BM was validated 

every epoch and the model with the lowest validation loss and highest validation 

accuracy was selected as the final model. The validation results are shown in Fig. 4-7. 

The model validation results show that the BM had a good classification 

performance with a best validation F1-score of 0.85. This was expected since some of 

the classes defined for training did not have too many training samples that will balance 

the performance of the model. This justifies that the semi-supervised learning method 

can be applied to continuously retrain the model as new samples of the other insect 

classes were received. A classification threshold of 0.45 was set based on the tuning 

curve.  

The trained BM was also tested in an object level, as shown in Fig. 4-7b. The results 

clearly show that the base model had difficulty recognizing craneflies, 
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Fig. 4-7. Indoor multi-class insect classifier base model performance: a) Model 

validation results; b) Object-level testing results using the best model. 
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flies, midges, mosquitoes, and thrips. The four insect pests were considerably close in 

appearance; which caused the confusion in classification. This was also caused by the 

lack of image samples of the cranefly and mosquito classes. Therefore, more samples 

should be collected to improve the classification performance.  

To prepare for applying the semi-supervised learning technique, the feature 

projection of the samples was analyzed. The base model was used to extract the features 

of the training images and were encoded using PCA into two principal components. 

The results are shown in Fig. 4-8. The feature projection shows that there were at least 

two easily distinguishable classes: mothfly and whitefly. This also explains why the F1-

score of the two classes was very high. It can also be seen that the features of the other 

classes were overlapping with each other. It shows that the model should be trained to 

know the difference between the five classes.  

The semi-supervised learning technique was applied to automatically collect more 

samples of the weaker classes to improve the over-all algorithm performance. In so 

doing, each semi-supervised learning cycle was set to every month. On each cycle, the 

sticky paper trap image of each sensor node in each location with the most insects was 

selected automatically with the assistance of the object detector model and insect vs. 

non-insect model. The sticky paper trap images were filtered out by ignoring the images 

with less than 20 insects. A classification threshold THCNN of 0.8 was also set for the 
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Fig. 4-8. Two-dimensional PCA feature projection of the indoor multi-class insect 

classifier base model. 

insect vs. non-insect model to prevent collection of non-insect objects images.  

The collected insect images were then sorted using the proposed unsupervised 

pseudo-labelling algorithm. The scaling factor of the sample cleaning step was set to ω 

= 3, to remove outliers. It was tested from previous trials that the ω value of 3 achieved 

the most reliable and efficient results. Sample results of the pseudo-labelling algorithm 

are shown in Fig. 4-9. 
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Fig. 4-9. Sample results of pseudo-labelling mothfly image samples from images of 

Farm TS1: a) Pseudo-labelled images via base model CNN classification; b) Images 

closer to another centroid; and c) Images outside cluster ellipse ω = 3. 
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The results shown in Fig. 4-9 demonstrates the three major steps of the proposed 

pseudo-labelling algorithm. First, the incoming image samples were pseudo-labelled as 

mothfly using the base model.  The sample image results shown in Fig. 4-9a show that 

the samples were correctly pseudo-labelled as mothfly. Actually, the sample image 

results show typical mothfly images. But in Fig. 4-9b, some pseudo-labelled samples 

were found closer to the other class centroids. It appears that such samples were 

occasionally blurred samples that may only cause confusion to the classifier. Finally, 

the sample cleaning step was able to find outlier mothfly images, as shown in Fig 4-9c. 

It can be noticed that the images were not an image of a mothfly but were of a non-

insect or of an unknown class. This shows that the pseudo-labelling algorithm 

effectively selected clean samples that can possibly be added to the current training set 

and improve the base model.  

In each semi-supervised cycle, the cluster density and testing F1-score of each class 

were computed to evaluate the effectiveness of the semi-supervised learning method. 

This can also to which class was the adaptive model learning after each cycle. The 

results are shown in Fig. 4-10. Looking closely at the weaker classes found previously 

in Fig. 4-7b, it can be observed in Fig. 4-10 that there were very few additional cranefly 

samples collected by pseudo-labelling. This was because craneflies were rarely found 

in each farm. However, it can be seen that new samples of cranefly were collected  
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Fig. 4-10. Temporal semi-supervised learning results per class. 
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starting at t = 6. The F1-score of the adaptive model in classifying the cranefly class 

slowly increased until it stopped at around 0.95 at t = 12. This was found different for 

the mosquito class; new mosquito training images were collected almost after every 

time t. Although, it can be noticed that there was a sudden drop at t = 4. It was found 

that a few misclassified mosquito samples were added to the training dataset. But as 

soon as more samples were collected, it slowly increased again until the final testing 

F1-score was 0.86. Even though the F1-score was still low, it was still an improvement 

from 0.77 of the base model. The performance of the adaptive model also progressed 

slowly for the rest of the classes. It can also be seen that there was almost no 

improvement in performance of the stronger classes, mothfly and whitefly. Despite this, 

it means that the other classes were unaffected by the new samples collected. 

The temporal improvement of the adaptive model, based on the semi-supervised 

learning online and offline metrics, was analyzed, as shown in Fig. 4-11. Supervised 

learning was also carried out for comparison. It can be observed that the total number 

of samples collected at each semi-supervised learning cycle varied (Fig. 4-11a). This 

was because the availability of new samples depended on the number of good quality 

sticky paper trap images collected. The pseudo-labelling accuracy was also measured 

by inspecting the clean and noisy pseudo-labels obtained at each cycle. It shows that 

the pseudo-labelling accuracy ranged from 0.85 to 0.95 (Fig. 4-11b), with an average  
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Fig. 4-11. Temporal evaluation of the adaptive model based on the semi-supervised 

learning online and offline metrics. 
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of 0.91, based on 12 cycles. Interestingly, there was a difference between the silhouette 

score values of semi-supervised and supervised learning (Fig. 4-11c). Based on the goal 

of the pseudo-labelling algorithm, the distance between each class cluster should slowly 

separate since new uncommon clean training samples were collected at each cycle. But 

in supervised learning, all the correct samples were added to the training dataset. 

Apparently, this caused the clusters to draw closer since the model was slowly overfit 

due to redundant samples collected. This showed that the pseudo-labelling algorithm 

was effective to reduce the collection of redundant samples to prevent model overfitting. 

The average validation and testing F1-scores at each cycle was also recorded for 

both semi-supervised learning and supervised learning. It shows that the validation F1-

score of the model trained by supervised learning was higher than the model trained by 

semi-supervised learning. However, it can be observed in Fig. 4-11e that the high 

validation F1-score did not always reflect a high testing F1-score. This may indicate that 

the model trained by supervised learning was slowly overfitting and did not perform 

well on images outside the training dataset. This has proven that the semi-supervised 

learning was able to avoid the issue of overfitting. Moreover, it also shows that the 

semi-supervised learning method was a feasible alternative to supervised learning since 

the model F1-scores of both methods at each cycle were not too different.  

It can also be noticed that the F1-score of the semi-supervised adaptive model never 
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dropped. This was due to the model selection criterion that prevented contamination of 

the current base model. As soon as an unsupervised model with lower F1-score was 

validated, the model was discarded and the pseudo-labelled training samples obtained 

during that cycle was not added to the current training dataset. This shows that the 

model selection method was useful in avoiding system issues due to training of a 

corrupted adaptive model. 

The object level testing results of the trained semi-supervised and supervised 

models are shown in Fig. 4-12 and Fig. 4-13, respectively. One main difference can be 

seen from both confusion matrices, the supervised model indicates overfitting in several 

classes. The supervised model had F1-scores very close to 1.00 in classifying the fly 

class and gnat class. Unfortunately, this has caused the classifier model to incur more 

errors in classifying the cranefly and mosquito class. On the other hand, the semi-

supervised model showed balanced F1-scores for most of the classes. However, it can 

be seen that the semi-supervised model can still be improved further as soon as 

additional samples were collected. It was still slightly inaccurate in recognizing the fly, 

mosquito, and thrips class. This also shows that an adaptive model was necessary to 

continuously learn from the images collected by the system.  
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Fig. 4-12. Semi-supervised indoor multi-class insect classifier model object-level 

testing confusion matrix. 

 

Fig. 4-13. Supervised indoor multi-class insect classifier model object-level testing 

confusion matrix. 
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The final total training images through semi-supervised learning and supervised 

learning are shown in Table 4-1. It was found that there was not much difference in the 

number of samples collected by both approaches. There were more samples collected 

by semi-supervised learning since there might be noisy samples also included. However, 

it was found that the noisy samples did not have detrimental effect to the performance 

of the trained adaptive model. In conclusion, the semi-supervised model was proven 

useful in automating the image data collection and model training routines in building 

the image classifier models used by the system. 

Table 4-1. Final total number of training images of the indoor multi-class insect pest 

classifier model after applying semi-supervised learning. 

Class Base model 
Final adaptive model  

(supervised) 

Final adaptive model  

(semi-supervised) 

Cranefly 25 53 47 

Fly 359 773 619 

Gnat 1824 1900 2366 

Midge 356 656 711 

Mosquito 47 58 69 

Mothfly 440 550 580 

Thrips 668 907 1199 

Whitefly 1817 1959 2199 

Total 5536 6856 7790 
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4.1.2.2 Supervised outdoor multi-class insect classifier models 

Two classification strategies were tested for training the outdoor multi-class insect 

classifier model: single stage and multi-stage. The single stage strategy uses a single 

model to classify the insect pests while the multi-stage strategy applies the hierarchical 

classification scheme shown in Fig. 3-29. The purpose of this comparison was to show 

the benefits of applying the hierarchical classification scheme for multi-class 

classification of insect pests.  

Since the number of training samples of each class was imbalanced, data 

augmentation by rotation, horizontal flipping and vertical flipping were applied. After 

augmentation, the number of training samples of each class was balanced by increments 

of 100. Training of the single stage model was carried out for 200 epochs, with 20 steps 

per epoch, and with a learning rate of 0.005, using Adam optimizer as validation loss 

minimizing function. After training each model, the model with the lowest validation 

loss and highest validation accuracy was selected as the final model. Each trained model 

was validated through stratified k-fold validation, with k set as 5. Model validation also 

included tuning of the classification threshold THCNN from 0.05 to 0.95, with increments 

of 0.05. The single stage model validation results are shown in Fig. 4-14a. 
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Fig. 4-14. Single stage outdoor multi-class insect classifier model performance: a) 

Model validation results; b) Object-level testing results using the best model. 
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It can be seen from the results in Fig. 4-14a that the best average validation F1-

score of the single stage outdoor multi-class insect classifier model was up to 0.93. 

Despite applying data augmentation, it did not improve the model performance and 

failed to exceed the performance of the model with the training set that consisted of 

non-augmented samples. Therefore, the trained model with raw samples was selected 

for testing. Based on the tuning curve in Fig. 4-14a, the final classification threshold 

THCNN was set to 0.55, such as to avoid an oversensitivity classification issue if the 

threshold value was too low. The testing results are shown in Fig. 4-14b. Unfortunately, 

it can be seen that the trained model performed poorly in classifying the testing set 2 

images with an average testing F1-score of only 0.81. The confusion matrix shown 

clearly indicate that the trained single stage classifier model was confused in 

recognizing classes: fruitfly, gnat, mango leafhopper, and oriental fruitfly. The 

confusion was reasonable and expected since the four classes had similar appearances; 

black, medium to large in size, and had wings. Meanwhile, it was able to recognize the 

other insect classes.  

Each model for multi-stage classification was trained with close training 

parameters as the single stage model. The steps per epoch was set to 10, and learning 

rate was set to 0.0001, adjusting to the few training samples. The validation results of 

the Stages 1, 2A, 2B, and 3 models are shown in Figs. 4-15 to 4-18, respectively. 
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Fig. 4-15. Multi-stage outdoor insect classifier Stage 1 model validation results. 

 

Fig. 4-16. Multi-stage outdoor insect classifier Stage 2A model validation results. 
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Fig. 4-17. Multi-stage outdoor insect classifier Stage 2B model validation results. 

 

Fig. 4-18. Multi-stage outdoor insect classifier Stage 3 model validation results. 
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The model validation results of the Stage 1 model show that the best average 

validation F1-score of the Stage 1 multi-stage model was 0.96. Similar to the single 

stage model, applying data augmentation was still not able to further improve the model 

classification performance. This was likely caused by the few raw training samples of 

mango leafhopper and oriental fruitfly. From the current number of samples, not too 

many augmented samples can be generated. Still, the Stage 1 model classification 

performance was still high. A classification threshold THCNN of 0.65 was selected based 

from the tuning results. 

The model validation results of the Stage 2A model in Fig. 4-16 show that 

classifying between mango leafhopper and leafhopper had no issues, as expected. The 

main reason for this was that mango leafhoppers were black while leafhoppers were 

green. Carrying out data augmentation also improved the classification performance. 

Therefore, the trained model with 500 balanced augmented samples was selected as the 

final Stage 2A model, with a classification threshold THCNN of 0.85. Meanwhile, the 

Stage 2B model, as shown in Fig. 4-17, also had good validation results with an average 

F1-score of 0.96. Applying data augmentation did not improve the classification 

performance of the model. However, the trained model with raw training samples was 

already enough; therefore, it was selected as the final model with a classification 

threshold THCNN of 0.75. 
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The final model, the Stage 3 model, had good validation results with an average 

F1-score of 0.97 (Fig. 4-18). This was unexpected since fruitflies and oriental fruitflies 

had very close appearances. The only difference between the two was their head and 

wing pattern. This shows that the classifier model was still able to detect unique features 

from the two classes. The trained model with raw training samples was selected as the 

final model, with a classification threshold THCNN of 0.55. 

In average, the validation F1-score of the entire multi-class outdoor insect classifier 

was 0.97, which was already higher than the validation F1-score of the single stage 

classifier model. To further evaluate the performance of the multi-stage classification 

strategy, its confusion matrix was obtained as shown in Fig. 4-19. The results show that 

the Stage 1 model can still be improved since there were few misclassifications of 

mango leafhoppers into fruitfly. It also shows that there were issues in misclassification 

of fruitfly into gnat and vice-versa. This was expected since the images of the fruitfly 

class and gnat class were somehow similar in appearance. In summary, the 

classification performance of the multi-stage classification strategy was still 

satisfactory with an average testing F1-score of 0.91, a huge improvement from the 

average testing F1-score of the single stage model of 0.81. The results show that the 

multi-stage classification strategy was able to successfully boost the classification 

performance of the algorithm.  
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Fig. 4-19. Multi-stage multi-class outdoor insect classifier object-level testing 

confusion matrix results. 
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4.1.3 Image-level testing results 

4.1.3.1 Indoor insect pest detection and recognition testing results 

The sample processed sticky paper trap images of detecting and recognizing the 

indoor insect pests are shown in Fig. 4-20. The results of the object detector model (Fig. 

4-20a) show that most of the insect pests were detected except for large insects that the 

model may have not seen yet. Unlike the small-sized insects, the large insect pests such 

as cranefly and mosquito do not appear often; causing missed detections. However, this 

can be easily solved in the future as the object detector model is retrained. The zoomed 

in image in Fig. 4-20a also shows that some insects were detected twice. This was 

seldom encountered since some insect objects appear as two objects if their body parts 

resemble other small insect pests such as thrips. The sample results in Fig. 4-20b shows 

this example in which the head of the gnat was wrongly detected as another insect object. 

The insect vs. non-insect model was able to correct this error as shown in Fig. 4-20b. 

In other cases, droplets were wrongly detected as insects and classified as whiteflies, 

dirt were classified as mothflies or thrips, and more. Through the insect vs. non-insect 

model, all of these issues were resolved since it was purposely trained to examine the 

objects detected by the object detector model. 
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Fig. 4-20. Indoor object detector and insect vs. non-insect classifier model sample 

processed images: a) Image with detected images; b) Image with insect and non-insect 

images. 
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Following insect vs. non-insect classification was multi-class insect pest 

classification, as shown in Fig. 4-21. The sample processed image in Fig. 4-21a show 

the reclassified results of Fig. 4-21. Five sample classification results are shown: 

mosquito, gnat, mothfly, fly, and whitefly. One potential error in classification is shown 

in Fig. 4-21a, a mosquito classified as gnat. This was caused by the similar appearance 

of the two types of insect pests. However, this can still be solved as the classifier model 

improves through semi-supervised learning and additional training samples are 

collected. Meanwhile, Fig. 4-21b shows a sample processed image that contains 

cranefly, midge, and thrips. The sample processed image show that the algorithm was 

effective for any size of insect pests. It also shows that the multi-class insect pest 

classifier can properly distinguish between midges and thrips, which were very similar 

in appearance at times. One sample error is shown in Fig. 4-21b, classification of dirt 

to thrips. The thrips class was the most prone to error dealt by misclassification of non-

insect objects. Hence, it is still recommended to maintain the cleanliness of the sticky 

paper traps to assure the performance of the algorithm. This means that the farm 

managers still have the responsibility in maintaining the condition of the sticky paper 

traps. The sample results illustrated show that the insect pest detection and recognition 

algorithm was able to successfully count the insect pests from the sticky paper traps, 

regardless of image complexity. 
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Fig. 4-21. Indoor multi-class insect pest classifier model sample processed images: a) 

Image with mosquito, gnat, mothfly, fly, and whitefly images; b) Image with cranefly, 

midge, and thrips images. 
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The insect pest detection and recognition algorithm, using the final best adaptive 

model trained by semi-supervised learning, was tested by image level using the images 

included in testing set 1. The scatter plots are shown in Fig. 4-22. It can be seen that the 

algorithm had an acceptable performance in counting craneflies and mosquitoes. But 

for the rest of the classes, the algorithm performed well with accuracies higher than 

0.87, except for the whitefly class with only 0.81. The inaccuracy in counting whiteflies 

was caused by the presence of water droplets in the testing images. This has caused 

wrong detection of water droplets which were eventually classified as whiteflies. 

However, it still shows the algorithm was able to properly count even high number of 

whiteflies, more than 250 (Fig. 4-22h). The algorithm had slight overestimation of gnats 

(Fig. 4-22c) and thrips (Fig. 4-22g) at higher counts but were still found to be 

satisfactory. Gnats were usually counted twice due to the disintegrated bodies of the 

gnats after getting stuck on the sticky paper traps. On the other hand, the overestimation 

of thrips was found to be caused by non-insect objects such as dirt that were 

occasionally classified as thrips. It can also be noticed that there was overestimation of 

other insect pests, since there are still remaining insect pests that the classifier model 

has not been trained on. In general, most of the insect pests were detected and 

recognized with an average accuracy of 0.87 and r2 of 0.94.  
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Fig. 4-22. Scatter plots of the manual and automatic insect counts of the sticky paper 

images collected from the indoor installation sites, from the recent year. 
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The results of image level testing of the algorithm on indoor insects are also 

presented in boxplots in Fig. 4-23. As expected, it can be seen that the algorithm had 

high F1-scores in terms of detecting and recognizing gnats and whiteflies. It can be 

noticed that it performed satisfactorily in counting the rest of the classes. In particular, 

it only had an F1-score of 0.84 in counting craneflies. However, this was still acceptable 

since there were very few craneflies in the testing images. A relatively low F1-score was 

obtained in detecting and recognizing thrips due to the similar issue of having non-

insect objects in the images. In general, the algorithm still performed well with an 

average F1-score of 0.89 based on the testing images of testing set 1. The results prove 

that the algorithm was reliable in both object level and image level. 

 

Fig. 4-23. Algorithm image level F1-score boxplots per class as tested on testing set 1. 
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The spatio-temporal voting method was applied to improve the performance of the 

algorithm. The re-validated scatter plot results are shown in Fig. 4-24. It can be 

immediately seen that there was improvement in the counting results. The 

overestimation issues encountered a while ago was almost solved completely through 

the proposed post-processing method. Interestingly, accuracies as high as 0.97 were 

achieved for the fly and gnat class, and 0.96 for the whitefly class. The counting of 

whiteflies was improved since the misclassification issue due to water droplets was 

solved. In other cases, the spatio-temporal voting method was also helpful in resolving 

the issue of glares that leads to missed detection of whiteflies. Through the retention 

criteria of the proposed method, the whiteflies are still detected even they appear as 

glares. The accuracy in counting thrips also improved from 0.87 to 0.89 (Fig. 24g). this 

was because the dirt objects classified into thrips were reclassified in every sticky paper 

trap image. By continuously checking the objects’ class, it was eliminated since it will 

be classified into non-insect. The misclassification of other insect pests was also 

resolved. As a whole, the average increased to 0.91, with an r2 of 0.99. 

Finally, the image-level F1-score boxplots after applying the spatio-temporal 

voting method on the images of testing set 1 are shown in Fig. 4-25. The difference 

between the results in Fig. 4-23 and Fig. 4-25 can easily be noticed as the boxes drew 

closer to F1-scores of 1.0. Similarly, the algorithm still performed well in detecting and 
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Fig. 4-24. Scatter plots of the manual and automatic insect counts of the sticky paper 

images collected from the indoor installation sites, from the recent year, after applying 

the spatio-temporal voting method 
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Fig. 4-25. Algorithm image level F1-score boxplots per class as tested on testing set 1, 

after applying the spatio-temporal voting method. 

recognizing the gnat and whitefly classes. However, it can be seen that there was a big 

improvement in the thrips class as the F1-score increased 0.86 from to 0.95. This means 

that the presence of foreign objects on the sticky paper trap images did really have an 

effect on the algorithm results. The rest of the classes also had improved F1-scores, 

accordingly. It can be seen that the image-level average F1-score increased from 0.89 

to 0.93. This shows that the spatio-temporal voting method was relevant to the 

algorithm since it can solve missed detection, overlapping detection, and 

misclassification issues caused by non-insect objects.  
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4.1.3.2 Outdoor insect pest detection and recognition testing results 

Sample processed images of detecting and recognizing outdoor insect pests are 

shown in Fig. 4-26. The first sample image (Fig. 4-26a) shows that most of the insect 

pests were detected and classified correctly, most especially small insects such as 

leafhoppers, gnats, and thrips. It also shows two common errors in detection and 

classification. In the middle of the image, a missed detection error was encountered due 

to touching bodies of insect pests. This was mostly due to the large bodies of fruitflies. 

This issue can be avoided in the future if more object detector samples were obtained. 

The bottom of the image shows a misclassification of a fruitfly into gnat. This was a 

common error since some gnats do appear like fruitflies. The second sample image (Fig. 

4-26b) shows examples of classifying oriental fruitflies, mothflies, and mango 

leafhoppers. The first error in the sample processed image shows a sample of duplicate 

detection. This was occasionally encountered since the anchor box of the object detector 

sees the object twice. The error found in the bottom of the sample processed image 

shows a classification error of dirt into thrips, which was also commonly encountered 

even in classifying indoor insects. The sample processed images show that the 

developed algorithm successfully detected and recognized the target insect pests with 

minor issues that may be solved by re-training the models in the future. 
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Fig. 4-26. Outdoor insect pest detection and recognition sample processed images: a) 

Image with leafhopper, fruitfly, gnat, and thrips; b) Image with oriental fruitfly, 

mothfly and mango leafhopper. Sample errors were marked with dotted circles. 
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The scatter plots of the manual count vs. the automatic count per class were 

obtained, as shown in Fig. 4.27. It shows that, similar to the confusion matrix shown 

previously in Fig. 4-27, there was misclassification between fruitfly, gnat, and mango 

leafhopper due to their close appearances. This led to overestimation of fruitflies and 

underestimation of gnats and mango leafhoppers. However, it shows that the wrong 

estimation between the three classes were not too large as the accuracies of fruitfly, gnat 

and mango leafhopper were 0.84, 0.90, and 0.88, respectively. It also shows that the 

accuracy of counting oriental fruitflies was quite low. This was also due to some wrong 

classification of some oriental fruitflies into fruitflies. It can also be noticed that the 

number of oriental fruitflies was quite few, which also made the accuracy and r2
 

sensitive to the small difference in the numbers. The counting of thrips had an r2 of 0.86 

and accuracy of 0.87, which was acceptable considering the cleanliness of the sticky 

paper traps. It was also observed that there were still many unidentified insects that 

were not classified into any insect class. Upon inspection, the other insects include other 

insect types such as large mothflies, worms, and more. Unfortunately, there were very 

few samples of the other insect types for training and were not too important to the farm 

managers. In conclusion, most insect pests were counted with an r2 of 0.98 and average 

accuracy of 0.88, including only the 7 classes. Meanwhile, the image-level testing F1-

score boxplots are shown in Fig. 4-28. 
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Fig. 4-27. Scatter plots of the manual and automatic insect counts from the sticky 

paper images collected in Farm M1, from the recent 6 months. 
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Fig. 4-28. Algorithm image level F1-score boxplots per class as tested on testing set 2.  

The image level testing results shown in Fig. 4-28 show that most of the insect 

classes were correctly classified with median F1-scores of 0.8 and above. The only issue 

observed was the detection and classification of oriental fruitflies. However, this was 

also caused by the few oriental fruitflies detected in each sticky paper trap image. There 

were also few cases of misclassified oriental fruitflies. The algorithm also did not 

perform that well in detecting and classifying leafhoppers, mango leafhoppers, and 

thrips. This issue was found to be caused by non-insect objects that were misclassified 

into the three classes. In average, a median F1-score of 0.87 was obtained. To improve 

the performance of the algorithm, the spatio-temporal voting method was applied. The 

new scatter plots of the manual and automatic counts are shown in Fig. 4-29. 
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Fig. 4-29. Scatter plots of the manual and automatic insect counts from the sticky 

paper images collected in Farm M1, from the recent 6 months, after applying the 

spatio-temporal voting method. 
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Generally, it can be seen that there was an improvement in the r2 values and 

accuracies of the algorithm on each class. The best improvement was the detection and 

recognition of fruitfly from an accuracy of 0.84 to 0.91. This was because wrong 

classifications of fruitfly was reduced through the spatio-temporal voting method. The 

image-level F1-score boxplots also showed improvements to the algorithm, as shown 

in Fig. 4-30. There were improvements of gnat from 0.90 to 0.96, thrips from 0.87 to 

0.9, and others from 0.89 to 1.0.  There were drops in F1-score of the other classes but 

were almost negligible. It also slightly improved the average accuracy of the algorithm 

from 0.88 to 0.89. The results show that the timely information from the sticky paper 

trap images was valuable in improving the latest after applying the spatio-temporal  

 

Fig. 4-30. Algorithm image level F1-score boxplots per class as tested on testing set 2.  
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voting method. It was able to reduce the potential effects of external factors such as 

lighting condition, presence of non-insect objects, and more. 

It can be concluded from the results that classification of the weaker classes can 

still be improved by retraining the classifier models with more training image samples. 

It also showed that the multi-stage approach in classification was effective in 

classifying the insect pests even up to the species level such as mango leafhopper and 

oriental fruitfly. However, this also means that classifying into the species level will 

require adequate training samples to be more effective and accurate. The unknown 

insect pest types should also be classified in the future as soon as more training samples 

were collected. This may also depend on the target insect pests of the farm managers. 

In the case of the mango farm, the most important insect pests to monitor were thrips, 

mango leafhopper, and oriental fruitfly. In the current state of the algorithm, it was able 

to satisfactorily detect and recognize the mentioned insect pests.  

The semi-supervised learning method, which was applied on the indoor multi-class 

insect classifier model, may also be used to improve the classifier model over time. 

However, it should be optimized for fine-tuning more than one model in every semi-

supervised learning cycle to make it more flexible. 
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4.2 System performance testing 

The performance of the system was measured in terms of its data throughput and 

trapping efficacy; indicating the reliability and validity of the data collected by the 

system and its accuracy. The following sub-sections discuss about the results of the tests 

and analyses performed. 

 

4.2.1 System data throughput analysis 

The data throughput performance of each location was analyzed. The data 

throughput analyses of the longest running installation sites: Farms TS1, TS2, and O1 

are shown in Fig. 4-31, while Table 4-2 shows the summary of all sites. 

The results illustrated in Fig. 4-31 show that the system was able to generally 

obtain more than 80% of the expected data. The first installation site, Farm TS1, had a 

good data throughput of 93.23%; indicating that there were few sensor node 

breakdowns. On the other hand, Farms TS2 and O1 had lower data throughput. The 

different between the data throughput on each farm was found to be caused by 

numerous and site-specific issues as shown in the summary in Table 4-2. 
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Fig. 4-31. System data throughput analyses of Farms a) TS1, b) TS2, and c) O1. 
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Table 4-2. Data throughput analysis of the sensor nodes of each installation site. 

Farm 

name 

Data Data 

throughput 

percentage 

Data loss 

percentage 

Common 

issue/s 
Received Expected Loss 

TS1 8216 8813 597 93.23 6.77 a 

TS2 9690 8530 1160 88.03 11.97 a 

TS3 1825 2334 1825 78.19 21.81 a, b 

T1 1869 2136 267 87.50 12.50 c 

T2 1725 2136 411 80.76 19.24 d 

O1 5903 6784 881 87.01 12.99 a 

O2 3312 4038 726 82.02 17.98 b 

O3 3304 4710 1406 70.15 29.85 a 

S1 2897 5224 2327 55.46 44.54 a, b 

C1 1591 1740 149 91.43 8.57 e 

M1 3516 5080 1564 69.21 30.79 a, b, c, d 

where a = farm management, b = sensor node hardware, c = Wi-Fi issue, d = Internet 

issue, e = external factors 

 

First of all, some of the farm owners will cut off their electricity for a few days. 

According to them, there were times they had to clean and disinfect the farm. In so 

doing, they would have to greatly increase the temperature in their farm. To protect the 

sensor nodes, turning off the power would be safer. Instances like this was encountered 

around days 680 to 690 of Farm TS1 (Fig. 4-31a) and days 620 to 630 of Farm TS2 
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(Fig. 4-31b). On the other hand, Farm O1 will sometimes cut off their electricity if there 

were no crops in the farm such as in days 600-630 (Fig. 4-31c). Secondly, the farm 

managers did not know how to maintain the system. There were times that the farm 

managers were not aware that the sensor nodes were off or broken. This was mostly 

encountered in Farms TS1, TS2, TS3, O3, S1, and M1. Despite our persistence in 

notifying the farm managers with regards the issue, they were often not unavailable to 

address the problem. Unfortunately, these problems are in the hands of the farm 

managers. The results also show that the data throughput of the system partially 

depended on the management of the farm owners.  

From the system side, the primary cause of breakdowns was due to hardware 

problems. The issues include sensor node overheating, stuck up operating system, weak 

Wi-Fi signal, sensor node waterproof issues, and power supply issue. Overheating of 

the sensor node leads to CPU throttling and stuck up operating system of the sensor 

nodes. The overheating problem was noticeable in all farms whenever the average 

temperature in the farm was higher than 30°C. During the initial stages of the system, 

this was solved by including an on-board fan connected to the Raspberry Pi. However, 

this leaves the sensor node vulnerable to water splashes that caused permanent damage 

to the sensor nodes. Thus, making the sensor node waterproof was made a higher 

priority. The weak Wi-Fi signal also contributed to the number of inactive nodes since 
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the farms had various area sizes. This caused corrupted data packets that were ignored 

in the server side. There were also times that the sensor node cannot finish sending the 

sticky paper trap images. Depending on the site, this was solved by installing Wi-Fi 

signal extenders. Waterproofing was also found as an important issue and was 

encountered usually in Farms TS3, O2, S1 and M1. The indoor farms TS3, O2, and S1 

had different irrigation methods compared to the other installation sites. The farms had 

denser water sprinklers that causes water seepage going to the inside of the device. To 

solve this problem, the latest design of the sensor node had all holes sealed with acrylic 

sealants. Meanwhile, Farm M1 had a harsher environment and occasionally experiences 

continuous rainfall. The same solution was applied to the sensor nodes of Farm M1.  

An external factor that caused device breakdowns was internet signal. In Farms T2 

and M1, the internet signal was not stable since the telecommunications company 

informed us that there were few cell sites around the farms. Amplification of the signal 

had to be requested to make sure the installation sites had stable internet signal. 

Moreover, the internet promo of the sim cards changed from time to time causing data 

limits. This shows that the stability of the system depended on the reliability of the 

internet service. Edge computing is a possible solution to this issue. For an instance, 

the sticky paper trap images can be processed on the device and not in the server. This 

will shrink the size of the data that the sensor nodes have to send to the server.  
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4.2.2 System insect pest trapping efficacy analysis 

The results of the system insect pest trapping efficacy experiment was analyzed. 

Each insect pest count data set consists of 18 data points obtained every 2 weeks.  

The analysis results per node of Farm TS1 are shown in Fig. 4-32 and Fig. 4-33, 

for whiteflies and thrips, respectively. It can be seen from the results that the raw 

automatic insect pest counts ICauto were quite different to the manual insect pest counts 

of the sticky paper trap below the sensor node ICbelow and the manual count insect pest 

count of the sticky paper trap held by the sensor node ICdevice. The difference between 

ICauto and ICbelow was caused by three factors: shape of the sticky paper trap, vertical 

distance of the crops and the sensor node, and design of the sensor node. It was 

mentioned previously in the text that the shape of the sticky paper trap had a significant 

effect to the number of insects trapped and was verified through the results presented. 

The effect of the height distance was also proven in other related studies (Atakan & 

Canhilal, 2004; Kaas, 2005). Atakan and Canhilal (2004) found that every vertical 

distance of 20 cm from the crops to the sticky paper trap caused at least 12-15% 

decrease in the number of whiteflies trapped. The sensor node also may occasionally 

block the flight pathway of the insects. Considering these factors, it was reasonable that 

there was at least three-fold difference between the insect pest counts.  
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Fig. 4-32. Whitefly trapping efficacy experiment results obtained from each sensor 

node of Farm TS1. 
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Fig. 4-33. Thrips trapping efficacy experiment results obtained from each sensor node 

of Farm TS1. 
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Meanwhile, the difference ICauto and ICdevice can be attributed to the limited FOV 

of the sensor node’s camera. As mentioned in Section 3.2.1, the sensor node can only 

see 11.5 cm x 15 cm of the 14.8 cm x 21 cm sticky paper trap. Based from manual 

inspection of the sticky paper traps, there was quite a number of insects stuck on the 

edges of the sticky paper trap. This issue can be solved in the future if there was a 

compatible camera that has a better resolution than the current one.  

It can be noticed that the number of thrips automatically counted by the system 

were different to the number of manually counted thrips. This was mainly attributed to 

the misclassification of dirt to thrips. However, it can also be seen than the number of 

thrips in Farm TS1 were few; therefore, the results were still acceptable. 

Despite the raw value differences between the insect pest counts, the normalized 

values showed that the values had generally similar trends. As the total insect pest 

counts were computed, the results were found more reasonable, as shown in Fig. 4-34 

and Fig. 4-35. It can be seen from Fig. 4-34 that the system was able to reliably count 

whiteflies with an r2 of 0.87. Paired t-test results also show that the null hypothesis 

cannot be rejected (p-value = > α, α = 0.05, df = 18). However, as expected, the r2
 of 

counting thrips was quite low and the paired t-test results show significant difference. 

The results show that the insect pest detection and recognition algorithm can still be 

improved in the future for classifying thrips and the cleanliness of the greenhouse still  



doi:10.6342/NTU202100237

175 

 

 

Fig. 4-34. Total whitefly trapping efficacy experiment results obtained from Farm 

TS1. a) Raw and normalized insect pest counts; b) Linear regression analysis. 
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Fig. 4-35. Total thrips trapping efficacy experiment results obtained from Farm TS1. 

a) Raw and normalized insect pest counts; b) Linear regression analysis. 
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had an effect to the automatic insect pest counting results 

The trapping efficacy analysis results of Farms TS2 and TS3 are shown in Figs. 4-

36 to 4-43. It can be normally seen that the trapping efficacy of whiteflies were also 

good for Farms TS2 and TS3. Both t-test results performed on the dataset of Farms TS2 

and TS3 showed that ICauto and ICbelow were not significantly different. Compared to 

Farms TS1 and TS3, the efficacy of trapping and counting thrips in Farm TS2 were 

relatively better. Since there were a lot of thrips found in Farm TS2, it was found that 

the system did reasonably perform well when there were more insect pests trapped. 

However, there was still a remaining issue of underestimation as shown in Fig. 4-39.  

Nevertheless, it can be seen from the comparison results that the insect pest counts 

of the system had a similar trend to the insect pest counts of the sticky paper trap below 

the sensor node. This means that the issues including: shape of the sticky paper trap, 

height distance of the sensor node from the crops, and sensor node design, can be 

ignored. This conclusion can also be inferred since the comparison was done during 

similar time periods. The difference can be further examined through a more structured 

test in which the sensor node was separated from the cylindrical sticky paper trap and 

the experiment was conducted in different time periods. 
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Fig. 4-36. Whitefly trapping efficacy experiment results obtained from each sensor 

node of Farm TS2. 
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Fig. 4-37. Thrips trapping efficacy experiment results obtained from each sensor node 

of Farm TS2. 
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Fig. 4-38. Total whitefly trapping efficacy experiment results obtained from Farm 

TS2. a) Raw and normalized insect pest counts; b) Linear regression analysis results. 
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Fig. 4-39. Total thrips trapping efficacy experiment results obtained from Farm TS2. 

a) Raw and normalized insect pest counts; b) Linear regression analysis results. 
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Fig. 4-40. Whitefly trapping efficacy experiment results obtained from each sensor 

node of Farm TS3. 
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Fig. 4-41. Thrips trapping efficacy experiment results obtained from each sensor node 

of Farm TS3. 
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Fig. 4-42. Total whitefly trapping efficacy experiment results obtained from Farm 

TS3. a) Raw and normalized insect pest counts; b) Linear regression analysis results. 
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Fig. 4-43. Total thrips trapping efficacy experiment results obtained from Farm TS3. 

a) Raw and normalized insect pest counts; b) Linear regression analysis results. 
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4.3 Data analytics model development 

4.3.1 Insect pest count alarm model 

Insect pest count alarm models were prepared based on the historical insect pest 

count data of each installation site. The developed models based on the data of Farms 

TS1 and TS2 are shown in Fig. 4-44 and Fig. 4-45, respectively. It can be seen from 

both sets of insect pest count alarm models that both farms have their distinct frequency 

distributions of increase in insect pest count. It can be also be seen that both did not 

have many craneflies or mosquitoes in their farm; thus, the alarm model was not used. 

However, it can be noticed that the increase in count of the important insect pests, thrips 

and whitefly, had different frequency distributions. It can be seen that Farm TS1 had 

lower increase in count of thrips, with a SEVERE level of 12 and above. In contrast, 

Farm TS2 can have an increase in the count of thrips up to more than 46 in a day. 

Meanwhile, both had close SEVERE level insect pest count thresholds of 74 and 67, 

for Farms TS1 and TS2, respectively. This reflected that both farms regularly had 

whiteflies in their farm. Considering the area size of both farms, the alarm models how 

that it was really necessary to develop and fit individual models for each site. In general, 

the automatic insect pest count alarm determination method was able to successfully 

find reasonable increase in insect pest count threshold values for both farms. 
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Fig. 4-44. Insect pest count alarm models of Farm TS1. 
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Fig. 4-45. Insect pest count alarm models of Farm TS2. 
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The insect pest count alarm models of Farm O1 was also obtained, as shown in Fig. 

4-46. As expected, the alarm models of Farm O1 was different quite different from the 

first two farms. It can be noticed that the SEVERE level of thrips and whiteflies in Farm 

O1 was a lot lower than in Farms TS1 and TS2. This was important to know since 

orchids are naturally more sensitive to damages of the said insect pests. Based on the 

feedback of the farm managers, this was reasonable since they need to be notified more 

promptly if thrips and whiteflies were detected in their farm. In the orchid industry, if 

an inspector finds a single thrips or whitefly in the leaves or petals of the orchid, it will 

be rejected for export. It also shows that there were a lot of gnats in Farm O1. It was 

still considered normal since gnats do not inflict serious damage to orchids. The insect 

pest count alarm models show that the other five insect pests: cranefly, fly, midge, 

mothfly, and mosquito, did not have any alarm threshold values. This was because there 

were very few of the insect pests found in Farm O1. 

The results of the first three farms show that the alarm models can also explain the 

trend of the increase in insect pest counts of each farm. The three cases show that most 

of the distributions can be explained by an exponential function. It was also found that 

some of the insect pests were not usually found in each farm. However, it was still 

important to know what kind of insect pests were usually found in each farm.  
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Fig. 4-46. Insect pest count alarm models of Farm O1. 
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An insect pest count alarm model was also developed for the outdoor site, Farm 

M1, as shown in Fig. 4-47. The results show that only thrips, leafhopper, gnat, mothfly, 

and fruitfly had automatically determined alarm threshold values. It was found that the 

frequency of increase in the count of thrips was quite low. This shows that the farm 

managers of Farm M1 was able to successfully control the population of thrips. It also 

shows that there was a constant increase in the number of fruitflies. Fortunately, 

common fruit flies do not inflict damage to the crops. Only the oriental fruitflies and 

mango leafhoppers may cause serious damage to the crops but did not frequently appear 

in the farm. In general, it shows that their strategy was effective to prevent issues caused 

by insect pest outbreaks.  

The insect pest count alarm models of the rest of the installation sites were also 

obtained, as shown in Table 4-3. In summary, Farms TS1 and TS3 mostly had similar 

insect pest count alarm models. However, Farm TS2 had an unusual trend in the 

increase in count of thrips. This shows that Farm TS2 need to focus more on controlling 

the population of thrips in their farm. Farms O1, O2 and O3 also had generally safe 

trends in insect pest counts. This was found reasonable due to the sensitivity of their 

crops. Farms S1 and C1 mostly only had issues in mothflies, which indicate that the 

cleanliness of the farm should be improved. The insect pest count alarm models were 

used to analyze the historical insect pest count data of each farm later in Section 4.4. 
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Fig. 4-47. Insect pest count alarm models of Farm M1. 
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Table 4-3. Insect pest count alarm threshold values of all the installation sites. 

Farm name # of days Alarm level Cranefly Fly Gnat Midge Mosquito Mothfly Thrips Whitefly 

TS1 1260 Normal - 0 0 0 - 0 0 0 

  Guarded - 1 3 2 - 2 3 5 

  Moderate - 4 8 4 - 6 7 13 

  High - 6 12 6 - 9 10 37 

  Severe - 10 24 7 - 18 12 74 

TS2 970 Normal - 0 0 0 - 0 0 0 

  Guarded - 3 4 3 - 1 4 6 

  Moderate - 7 10 7 - 3 11 14 

  High - 10 15 10 - 5 31 40 

  Severe - 17 20 19 - 7 46 67 

TS3 382 Normal - 0 0 0 - 0 - 0 

  Guarded - 1 2 1 - 1 - 1 

  Moderate - 2 5 2 - 2 - 3 
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  High - 6 15 3 - 3 - 8 

  Severe - 10 44 5 - 4 - 34 

T1 268 Normal - 0 0 0 - - 0 0 

  Guarded - 1 2 2 - - 1 2 

  Moderate - 2 6 6 - - 3 5 

  High - 7 19 18 - - 9 15 

  Severe - 21 25 20 - - 11 301 

T2 268 Normal - - 0 - - - - 0 

  Guarded - - 1 - - - - 1 

  Moderate - - 2 - - - - 2 

  High - - 3 - - - - 8 

  Severe - - 5 - - - - 84 

O1 851 Normal - - 0 - - - 0 0 

  Guarded - - 1 - - - 1 1 

  Moderate - - 3 - - - 2 2 

  High - - 10 - - - 5 3 
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  Severe - - 27 - - - 8 5 

O2 674 Normal - 0 0 - - 0 - - 

  Guarded - 1 1 - - 1 - - 

  Moderate - 2 2 - - 2 - - 

  High - 5 3 - - 3 - - 

  Severe - 6 6 - - 5 - - 

O3 786 Normal - 0 0 0 0 0 0 0 

  Guarded - 1 1 1 1 1 1 1 

  Moderate - 2 3 3 2 2 3 3 

  High - 7 10 8 5 3 8 9 

  Severe - 15 64 39 6 6 15 23 

S1 654 Normal - 0 - 0 - 0 0 0 

  Guarded - 1 - 5 - 10 1 1 

  Moderate - 5 - 10 - 11 3 3 

  High - 7 - 11 - 23 8 4 

  Severe - 10 - 15 - 35 10 5 
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C1 601 Normal - 0 - 0 - 0 0 0 

  Guarded - 3 - 2 - 2 3 5 

  Moderate - 5 - 4 - 6 5 13 

  High - 10 - 6 - 9 7 23 

  Severe - 12 - 7 - 23 8 55 

   Thrips Leafhopper Mango 

leafhopper 

Gnat Mothfly Fruitfly Oriental 

fruitfly 

M1 645 Normal 0 0 - 0 0 0 - 

  Guarded 1 1 - 1 1 1 - 

  Moderate 3 2 - 3 2 2 - 

  High 6 3 - 9 7 3 - 

  Severe 7 6 - 23 13 4 - 
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4.3.2 Insect pest flight rate model 

The historical insect pest count data and temperature data was analyzed to develop 

the insect pest flight rate models.  The models of Farms TS1 and TS2 are shown in Fig. 

4-48 and 4-49. It can be seen from the results that there were slight differences between 

the models formed from the two sites despite having similar crops. This shows that the 

environmental control strategy of both farms had an effect to the insect pest flight 

behavior. It can be seen that the insects that belonged to the order Diptera namely, 

cranefly, fly, gnat, midge, mothfly, and mosquito, had closely similar flight behaviors. 

Particularly, the insects were less active during cold weather and more active during hot 

weather. The insects also had wide niche temperature widths, which agreed with 

literature (Damos & Savopoulou-Soultani, 2012). 

In Farm TS1, thrips and whiteflies were more active during cold weather (Fig. 4-

48g and Fig. 4-48h). On the other hand, thrips and whiteflies were more active during 

hot weather in Farm TS2 (Fig. 4-49g and Fig. 4-49h). According to the farm managers 

of Farm TS1, this happened because they tend to ignore the presence of insect pests 

because based on their experience, the crops do not usually get affected by diseases 

during the winter season. But upon inspecting the raw data, it did show that there were 

almost two peaks in the flight rate of thrips and whiteflies in Farm TS1, which was  
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Fig. 4-48. Fitted temperature vs. flight rate model of insects found in Farm TS1. 



doi:10.6342/NTU202100237

199 

 

 

Fig. 4-49. Fitted temperature vs. flight rate model of insects found in Farm TS2. 
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close to the results obtained from Farm TS2. The flight behavior of thrips and whiteflies 

in Farm TS2 were more in agreement to related studies (Bonsignore, 2015; Damos & 

Savopoulou-Soultani, 2012; Rhainds et al., 2007).  

In general, it shows that the double Weibull function was able to properly describe 

the flight behavior of the insect pests with r2 values higher than 0.9. The results also 

show that the data from literature were not absolute in all cases. Developing adaptive 

biological models can be more useful to the farm managers since it adjusts according 

to their management strategies and unique environmental conditions. 

The flight behavior models of the insect pests in Farm O1 were also developed, as 

shown in Fig. 4-50. It can be noticed from the results that most of the insect pests in the 

orchid farm had narrower niche temperature widths. This was most likely since the 

environment was strictly controlled by the farm managers. Similarly, the thrips and 

whiteflies in Farm O1 were more active at moderately warm temperatures of around 

25°C to 31°C (Fig. 4-50g and Fig. 4-50h). The other insect types were also more active 

during the similar condition. The peak of the models in Farm O1 were also relatively 

sharper than the models of Farms TS1 and TS2. This shows that there were certain 

conditions that the insect pests were most active. Despite that, the biological modelling 

method was still able to describe the insect behaviors with r2 values higher than 0.95.  
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Fig. 4-50. Fitted temperature vs. flight rate model of insects found in Farm O1. 
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The flight behavior of the insect pests in Farm M1 was also analyzed, as illustrated 

in Fig. 4-51. Since the environmental condition outdoors cannot be controlled, it 

showed that most of the insect pests followed the data referred from related literature 

(Jha et al., 2009; Rieger et al., 2007; Wang et al., 2012). In particular, the thrips in Farm 

M1 were most active at temperature levels from 23°C to 30°C, similar to the findings 

in literature of 27°C. It can be also seen that the oriental fruitflies and mango 

leafhoppers had similar flight behaviors. However, it was found that this was caused by 

both natural conditions and the growth condition of the crops. More discussion on the 

behavior of the two insects are presented in Section 4.4.2.  

The insect pest flight behavior of the insects of the rest of the installation sites was 

also analyzed and summarized in Table 4-3. Most of the developed biological models 

were in correlation to the results of related literature. It was found that the niche 

temperature width in the tomato seedling and tomato farms were wider compared to the 

orchid farms. This was due to the stricter environmental control strategies applied in 

the orchid farms to stimulate the growth of the crops. This led to unique models that 

were formed due to external factors in the installation sites, most especially the farm 

managers management strategy. The results obtained showed that the monitoring 

system was able to collect valuable environmental information that can guide the farm 

managers about the behavior of the insect pests in their farm. 
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Fig. 4-51. Fitted temperature vs. flight rate model of insects found in Farm M1.
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Table 4-4. Insect pest flight rate model niche temperature per installation site. 

Farm name # of days Niche T(°C) Cranefly Fly Gnat Midge Mosquito Mothfly Thrips Whitefly 

TS1 1260 Tniche,min1 17 7 10 8 10 6 10 11 

  Tniche,max 23 20 22 23 17 28 18 22 

  Tniche,min2 46 44 41 41 41 41 40 45 

TS2 970 Tniche,min1 22 16 16 10 16 11 11 11 

  Tniche,max 30 26 24 31 26 31 32 31 

  Tniche,min2 39 40 40 41 39 40 40 40 

TS3 382 Tniche,min1 20 16 13 16 17 21 16 15 

  Tniche,max 27 25 24 27 22 22 31 28 

  Tniche,min2 37 41 43 42 38 33 38 42 

T1 268 Tniche,min1 26 17 15 17 18 16 16 21 

  Tniche,max 32 26 26 24 25 23 24 30 

  Tniche,min2 38 38 42 44 35 34 43 40 

T2 268 Tniche,min1 - 18 15 19 19 27 19 12 
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  Tniche,max - 24 26 25 24 28 31 31 

  Tniche,min2 - 35 35 35 42 31 32 31 

O1 851 Tniche,min1 22 12 15 18 15 18 22 18 

  Tniche,max 27 27 28 25 29 23 31 25 

  Tniche,min2 32 38 38 35 33 33 38 39 

O2 674 Tniche,min1 - 15 18 22 23 17 15 18 

  Tniche,max - 27 29 23 23 24 28 28 

  Tniche,min2 - 33 35 43 32 33 34 34 

O3 786 Tniche,min1 22 12 9 6 14 9 6 6 

  Tniche,max 30 24 27 39 22 28 39 31 

  Tniche,min2 36 50 48 43 45 50 43 45 

   Thrips Leafhopper Mango 

leafhopper 

Gnat Mothfly Fruitfly Oriental 

fruitfly 

M1 601 Tniche,min1 15 13 21 11 13 12 21 

  Tniche,max 23 18 22 25 19 26 22 

  Tniche,min2 36 32 30 35 36 37 30 
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4.4 Insect pest count data analysis 

This section discusses about the data collected from the installation sites. The 

insect pest count alarm models in Section 4.3.1 and insect pest temperature vs. flight 

rate models in Section 4.3.2 of each site were incorporated in the data analyses to extract 

more valuable information from the data. Data analysis was broken into two parts 

according to the indoor site and outdoor site data to differentiate the obtained results.  

 

4.4.1 Indoor site data analysis 

The data from two indoor sites were selected for comparison in the data analysis: 

Farm TS1 and TS2. The two were selected since they had similar crops and had the 

longest collection of data. It was also a good comparison since the farm managers of 

TS1 still sprayed pesticides in a regular basis despite the availability of the system. 

Meanwhile, the farm managers of Farm TS2 were constant users of the system and 

monitored the insect pest counts in their farm daily through the mobile APP. To 

demonstrate the usefulness of the system in developing smarter IPM strategies, sample 

effective pesticide application data is shown in Fig. 4-52. The data shown in Fig. 4-52 

are of Farm TS2. The data provided shows periods in the data when there was an insect  
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Fig. 4-52. Sample effective pesticide application data of Farm TS2. 
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pest outbreak and the farm managers of Farm TS2 was able to stop the outbreak 

effectively. It can be seen in Fig. 4-52a that the outbreak of thrips began at 2019-09-20. 

After two days, they sprayed pesticide to reduce the population of thrips. However, it 

shows that there was still a constant daily increase in the number of thrips detected. But 

as there was a peak in the increase in thrips count in 2019-09-29, they sprayed pesticides 

again to stop the outbreak. This greatly reduced the increase on the number of thrips by 

137 counts the next day. However, the outbreak did not end that quickly. Finally, after 

spraying pesticides again at 2019-10-03, they were able to successfully stop the 

outbreak and the alarm level for thrips went back to guarded.  

Meanwhile, during another time in 2019-11, there was an outbreak of whiteflies in 

Farm TS2. But it can be seen in Fig. 4-52b that it immediately ended after the farm 

managers sprayed pesticides in 2019-11-17. This shows that preventing insect pest 

outbreaks require immediate attention. Based on the feedback of the farm managers of 

Farm TS2, this was not possible if the system was not able to notify them immediately 

during those times.  

The long-term insect pest count data of Farm TS1 is shown in Fig. 4-53. The insect 

pest count data was presented as moving averages to clearly see the trend and patterns 

in the insect pest count data. It can be immediately seen that the farm managers of Farm 

TS1 followed a regular pesticide spraying schedule. It can also be seen that the daily  
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Fig. 4-53. Long-term temperature and insect pest count data collected from Farm TS1. 

Insect pest counts are presented as moving averages with a window size of 7. 
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temperature level per year was consistent (Fig. 4-53a). First, it can be seen that the 

insects belonging to the order Diptera were mostly found only during the first year of 

collecting data in the farm. They were slowly able to manage the population of such 

insect pests based on the data provided to them. It can also be seen that there was a 

trend in the number of thrips detected during the first year (Fig. 4-53h). Particularly, 

there were peaks every two months starting 2018-02. Based on the initial feedback of 

the farmers, this was caused by changing weather that was still able to affect the 

condition of the farm. It was also observed that the increase in whitefly counts followed 

a seasonal pattern on all three years. Whiteflies started to appear every June and October 

of each year (Fig. 4-53i). The farm managers mentioned that these times were indeed 

the peak times they see more whiteflies on the sticky paper traps. This was because 

these were the times that there was a transition from cold to hot weather or vice versa. 

It was found from our previous studies that this really caused insect pest to be more 

active due to the sudden changes in temperature (Rustia et al., 2020b; Rustia & Lin, 

2019).  

The long-term data of Farm TS2 is shown in Fig. 4-54. Similar to the data of Farm 

TS1, the trend in temperature was quite similar. This was because the weather on both 

locations were almost identical. It can be observed that there was no particular pattern  
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Fig. 4-54. Long-term temperature and insect pest count data collected from Farm TS2. 

Insect pest counts are presented as moving averages with a window size of 7. 
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in the counts of Diptera insects in Farm TS2. Apparently, it was found that it also had 

unique patterns in the increase of thrips and whitefly counts. In particular, there were 

outbreaks of thrips every October of each year (Fig. 4-54h). According to the farm 

managers, those were the times that the farm was fully occupied with seedlings. 

Therefore, there was frequent moving of seedling trays and the door had to be opened 

whenever the seedlings had to be transported. This has caused thrips to enter the farm 

and lay eggs for reproduction. It was also found that there were more whiteflies every 

June and November of each year (Fig. 4-54i). This was almost the same as the trend in 

Farm TS1. Apparently, the trend was also caused by the same reason stated by the farm 

managers of Farm TS1; there were abrupt changes of weather in the farm.  

It can be seen from both long-term dataset that the farms experienced insect pest 

outbreaks during very specific times of the year. This meant that there were several 

factors that caused it. First, the movement and activity in the farms was able to bring 

insect pests into the farms. This includes preparation and movement of seedling trays, 

entry of farm personnel, and more. Weather also had an effect in the activity and 

behavior of the insect pests. Despite having adequate equipment for controlling the 

environmental condition in the farms, the weather condition surrounding the 

greenhouse still drew insect pests to the farm. Some causes may include sudden gusts 

of wind, abrupt changes in temperature, or varying humidity levels.  
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The accumulated insect pest counts on each farm was also collected to assess the 

efficacy of the system in reducing the insect pests in both farms, as shown in Fig. 4-55 

and summarized in Table 4-5. It can be seen from the data of Farm TS1 that there was 

definitely a reduction in the detected whitefly (Fig. 4-55a) and thrips (Fig. 4-55b) in the 

farm. After calculation, it was found that the number of whiteflies detected reduced as 

much as 40% from Year 1 to Year 2, and 19% from Year 2 to Year 3. This shows that 

the proposed system was able to successfully assist the farmers in their IPM decision-

making. The data of Farm TS2 showed quite similar results. As a matter of fact, there 

was a higher reduction in thrips count of 25% from Year 1 to Year 2 than the 3 years of 

Farm TS1. The number of whiteflies was also halved from Year 1 to Year 2 in Farm 

TS2. But from Year 2 to Year 3, the number of whiteflies increased again and it is still 

to be determined whether the number of thrips will decrease as well. However, it shows 

from the historical data that the number of thrips will succeed during the succeeding 

months. These results proved that the system and proper guidance was beneficial to the 

farm managers.  

The number of alarms raised in farms TS1 and TS2 was also tallied, as shown in 

Table 4-6. It can be inspected that the number of NORMAL alarm levels increased after 

each year. At the same time, the number of SEVERE alarm levels dropped. This shows 

that the farm managers were able to avoid less insect pest outbreaks after each year  



doi:10.6342/NTU202100237

214 

 

 

Fig. 4-55. Daily accumulated thrips and whitefly counts of Farms TS1 and TS2 per 

year. The total counts per year are showed in the legends. 
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Table 4-5. Yearly reduction in thrips and whitefly counts of Farms TS1 and TS2. 

Farm Year 
Total thrips 

detected 

% reduction 

(thrips) 

Total 

whiteflies 

detected 

% reduction 

(whiteflies) 

TS1 1 1891 - 7963 - 

 2 1592 16% 4772 40% 

 3 924 19% 3854 19% 

TS2 1 3966 - 7107 - 

 2 2972 25% 3547 50% 

 3 2125  TBD 4670  TBD 

TBD: To be determined 

through the use of the system. It was also observed that the total number of SEVERE 

alarms raised in Farm TS1 was relatively more than Farm TS2. It was suspected that 

the reason was that the farm managers of Farm TS1 will check the notifications in their 

mobile APP but still spray pesticides according to their own discretion. This led to more 

SEVERE alarm level notifications since the insect pest outbreaks were not immediately 

stopped. In contrast, Farm TS2 has less SEVERE alarms since they followed the 

recommendations given by the proposed system. This also led to higher reduction in 

insect pests as shown previously in Table 4-5. This also shows one limitation of the 

system. The system can only notify and give recommendations to the farm managers 

on how to handle the insect pest condition in their farms. This was also a safer approach 

since the management of the farm is still in the hands of the farm managers, themselves.  
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Table 4-6. Thrips and whitefly counts alarm level statistics per year. 

Location Insect pest Alarm level Year 1 Year 2 Year 3 Total 

TS1 Thrips Normal 139 147 226 512 

  Guarded 118 130 106 354 

  Moderate 43 32 19 94 

  High 38 37 12 87 

  Severe 27 19 2 48 

 Whitefly Normal 120 152 186 458 

  Guarded 86 108 77 271 

  Moderate 79 73 82 234 

  High 66 26 17 109 

  Severe 14 6 3 23 

TS2 Thrips Normal 138 193 103 434 

  Guarded 96 117 80 293 

  Moderate 101 37 43 181 

  High 26 8 11 45 

  Severe 4 10 3 17 

 Whitefly Normal 163 205 83 451 

  Guarded 65 87 73 225 

  Moderate 78 61 59 198 

  High 52 9 24 85 

  Severe 7 3 1 11 
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The pesticide usage on each installation site was also recorded. However, in the 

case of Farms TS1 and TS2, only the farm managers of Farm TS2 agreed in giving their 

detailed pesticide usage data that included the dosage, purpose, and mixture used. The 

reduction in the usage of pesticides of Farm TS2 was computed as shown in Table 4-7. 

The farm managers of Farm TS2 was only able to record their pesticide usage from the 

past 2 years. However, it already showed that there was already at least 16% reduction 

in the total dosage of pesticides used from Year 2 to Year 3. The farm managers said 

that this reduction was due to the more efficient pesticide spraying strategy they applied 

through the proposed system. It appeared that their frequency of pesticide usage was 

about the same but they were able to reduce their dosages since they had the quantitative 

data as reference. This shows that proper guidance was able to help the farmers in every 

decision-making for IPM. It was also important to collect as much information to assess 

the usefulness of the proposed system in different aspects of IPM.  

 

Table 4-7. Pesticide usage data of Farm TS2. 

 Pesticide usage frequency Total dosage (L) % dosage reduction 

Year 1 - - - 

Year 2 55 times 12950 - 

Year 3 53 times 10820 16% 
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4.4.2 Outdoor site data analysis 

The analysis of the data obtained from Farm M1 is shown in Fig. 4-56. There was 

several important information found from the first-year data obtained from Farm M1. 

First, it was observed that thrips were mostly seen after the fruits fully ripened and not 

while they were ripening. Based on the IPM strategy of the farm managers, they said 

that they would usually spray pesticides continuously for several weeks before the fruits 

start to mature, as seen from 2019-03 to 2019-04. This will exterminate any harmful 

insect pests that will damage the crops as they mature. They also bagged the fruits while 

the fruits were ripening. After the fruits were harvested from 2019-07 to 2019-08, there 

was an outbreak of thrips from 2019-08 to 2019-09. This was matched by continuous 

rainfall which showed that only the growth stage affected the activity of thrips. The data 

verified that their IPM strategy worked as expected. It was also seen that a few 

leafhoppers, mango leafhoppers and oriental fruitflies were detected while the fruits 

were ripening. But as soon as the fruits were bagged, the activity of the insect pests 

dropped.  

During the second year, the farm managers slightly changed their IPM strategy. In 

the beginning of that year, they sprayed pesticides every after each week. The data 

showed that it was still effective and there was no serious outbreak of the insect pests. 
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Fig. 4-56. Weekly insect pest count, growth stage, and rain level data of Farm M1. 
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Little activity was observed from the insect pests while the fruits were ripening. 

However, a similar phenomenon occurred in which there was an outbreak of thrips after 

the fruits were harvested (Fig. 4-56d). There was also continuous rainfall before the 

outbreak. But at the same time, leafhoppers appeared in 2020-09 after the fruits were 

harvested. Generally, for both years, the fruits were safe from insect pest outbreaks; 

avoiding potential economic loss.  

The relative frequency of the insect in insect pest count for each growth stage was 

also analyzed, as shown in Fig. 4-57. The results in Fig. 4-57 show valuable information 

of when farmers can be more careful in handling the insect pests in their farm. For an 

instance, it was found that thrips were mostly appear after continuous rain. This means 

that it might potentially have been problematic if there was no continuous rainfall while 

the fruits were maturing. In that case, the farm managers should inspect the bagged 

fruits for possible damage. Fortunately, the data shows that thrips mostly showed up 

after the tree tips were pruned. Pruning the tips of fruit trees is a practice to stimulate 

better growth of new fruits. During this time, it was not critical to control the population 

of thrips since there were no fruits the thrips can damage. The results also showed that 

there was a considerable number of leafhoppers and mango leafhoppers as the fruits 

fully ripened. Mango leafhoppers typically feed on plant leaves and cause leaf curling. 

But based on the data, the farm managers were also able to prevent the damage caused  
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Fig. 4-57. Relative frequencies of increase in insect pest count per class during each 

growth stage of the crops in Farm M1. 
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by mango leafhoppers during flowering (Peng & Christian, 2005). However, it also 

showed that the fruits should be instantly harvested as they fully mature. Meanwhile, 

the relative frequency of the detection of oriental fruitflies was highest as the tree tips 

were pruned. But there were also some instances that oriental fruitflies appeared as the 

fruits ripened.  

The results showed that the system was able to successfully monitor the population 

of the insect pests in an outdoor agricultural production site. The data and information 

obtained from the system showed that growing mango trees require a certain amount of 

experience to develop a good IPM strategy. This reflects the relevance of the monitoring 

system such that new farm managers can be guided accordingly and know what kind 

of actions they can perform during certain situations. The system can act as a reference 

to verify if the IPM strategy of the farm managers were really effective or not.  

It was also found that the rain level was an important factor to consider in 

monitoring the insect pests in outdoor sites and shall also be automatically recorded in 

the future. The current monitoring system can still be improved by incorporating the 

growth stage information in building predictive models that can assist the farmers in 

decision-making. This can be done by asking the farm managers to input the growth 

stage and activities done in the farm as additional information.  
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4.5 User feedback 

With permission from the users, their login activity was recorded in the server 

database to know if they were using the system, as shown in Fig. 4-58. It can be easily 

noticed in Fig 4-58 that some of the users actively used the APP and monitored the 

insect pest condition of their farm. Particularly, the farm managers of TS1 had the most 

logins since the day that the farm managers downloaded the APP, accounting 45.26% 

of the time. Through their constant usage of the system, it was found that they were 

able to schedule their pesticide applications more efficiently as shown previously in the 

data analysis in Fig. 4-52.  

 

Fig. 4-58. I2PDM APP user login activity data. 
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It was previously seen in Fig. 4-53 that the farm managers of Farm TS1 still usually 

sprayed pesticides based on their schedule. Nevertheless, it shows that they used the 

APP frequently. Based on their feedback, they still followed their own schedule but 

would refer to the APP for further action. They used the system as a reference so that 

they can respond if their IPM strategy was not efficient enough. This proves that the 

system was still able to help them by providing quantitative information that they can 

guide them in many ways. The farm managers of Farm TS3 used the APP less frequently. 

However, this was only in the beginning in which the system was still not fully 

functioning due to issues encountered in the site. But as soon as the system worked well, 

they used the APP more often. The farm managers of Farm T1 and T2 were some of the 

most recent users of the system. They did not frequently check the APP whenever there 

were no crops in the farm. The tomatoes in the farm were harvested from time to time 

and there was no need to use the APP.  Meanwhile, the farm managers of the orchid 

farms used the APP only whenever the crops were still small. This was because it was 

critical to check if the seedlings grew up properly in the beginning. Lastly, our partner 

group, TDARES, usually checked the APP whenever they will visit the farms. They 

access the APP if they need to explain the insect pest condition to the farmers. This 

showed that the APP was used by both the farm managers and IPM experts. The login 

information gave us ideas on how to improve the APP and convince the users to access 
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the APP more frequently.  

The feedback of each user of the system was obtained to know their opinion and 

recommendations to improve the system. It was found that each user had their own 

focus on how to make the system more useful. First, the farm managers of TS1 were 

more interested in adding more functions to the system; making it smarter. For an 

instance, one of their suggestion was to add a surveillance camera to track their activity. 

They also suggested that a portable sensor node will be also useful for other farm 

owners. The farm managers of TS2 also had the same opinion. Meanwhile, the farm 

managers of TS3 focused more on the stability of the sensor nodes. In that site, there 

were quite a number of lost data due to failing sensor nodes. From our experiences in 

managing the sensor nodes in that site, one of the problems was that the internet signal 

there was very weak using our own 4G sim card; therefore, making it unstable at first. 

However, the main issue was that the farm managers of TS3 used denser sprinklers that 

occasionally causes water to seep into the device. Thus, improvement in the hardware 

should be considered. 

Users of the system from the tomato farms T1 and T2 had more positive feedback 

on the system. They said that the system was useful in properly tracking the number of 

insect pests in their farm. This allowed them to inspect their crops for diseases before 

any outbreak occurred. Meanwhile, the farm managers of O1 and O2 had similar 
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opinions. They were looking for other useful functions such as the daily light integral 

data and degree day data, which were recently added in the APP. The managers of Farm 

O2 was impressed of how our system found out that there were several outbreaks of 

gnats when there was a time they moved plants from greenhouse to greenhouse. 

However, their data showed that their current IPM strategy was already very effective 

because there were very few insect pests found in their farm. This was reasonable since 

their crops require strictly controlled environmental conditions to grow.   

Lastly, our partner group, TDARES, also shared their opinion of the system. Their 

main concern was how the number of insects trapped by the sensor nodes was different 

from the number of insects found on their manually prepared cylindrical sticky paper 

traps. Unfortunately, as constrained by the current technology, it is very costly and 

inconvenient to take the image of a cylindrical sticky paper trap. One solution to this is 

to use an unmanned aerial vehicle. This researched used wireless sensor nodes, which 

were limited to taking images of flat sticky paper traps. Nevertheless, it was shown in 

Section 4.2.2 that the system was still able to trap as many insect pests to match the 

trend of the cylindrical traps.  
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Chapter 5 Conclusions and Recommendations 

5.1 Conclusions 

An intelligent and integrated system for IPM application was successfully 

developed in this research. Techniques in deep learning, machine learning, and data 

analytics were applied to promote smart and data-driven IPM to farmers. The system 

was able to collect and provide insect pest information that were proven to be useful 

for implementing IPM in different agricultural production sites.  

The deep learning approaches applied for the two types of installation sites were 

successfully implemented. Based on the results obtained, the semi-supervised learning 

method applied for indoor sites was used as a convenient and reliable tool for collecting 

new training images and continuously retraining an adaptive multi-class insect 

classifier model. Based on the testing results, the final model presented in this research 

can achieve F1-scores of 0.93 based on both object level and image level testing. This 

was found to be a stepping stone towards developing a fully automated system that can 

learn from newly acquired images with minimal human supervision. The spatio-

temporal voting method was also able to further improve the over-all algorithm 

performance. 
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The hierarchical deep learning classification approach was also found to be a 

plausible solution for identifying outdoor insect pests up to the species level. Despite 

the effect of many external factors and the variety of insect pests found on the sticky 

paper trap images obtained from the outdoor sites, the algorithm had average F1-scores 

of 0.91 and 0.89 by object level and image level testing, respectively. This was 

considered an accomplishment since most technologies were limited to counting single 

type of insect pests using specific types of sensors. In this research, it was proven that 

current imaging technology was not too far from identifying insect pests using wireless 

sensor nodes. 

The system was installed in several agricultural production sites and valuable 

information were discovered from long-term monitoring. The data analyses showed that 

each agricultural production site had its own unique environment and insect pest 

condition. It was found that insect pest outbreaks were still possible in any site even the 

environmental conditions were carefully monitored and controlled. Several factors 

were found to affect the activity of insect pests. First, it was found from developed 

biological models that insect pests were most active in specific environmental 

conditions. For an instance, thrips and whiteflies emerged during warm weather and 

were less active when it was cold. This behavior of the insect pests was common for all 

the installation sites. It was also found that insect pest outbreaks occured continuously 
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unless immediate intervention was done. Without the monitoring system, farm 

managers may suddenly face economic loss since they have no available instantaneous 

information regarding the insect pests in their farm. It was found that the system assisted 

them in properly timing their pesticide application to end insect pest outbreaks 

effectively. As a matter of fact, farm managers of two of the installation sites were able 

to reduce their yearly total number of insect pests through constant usage of the system.  

The main issue found with the system was its maintenance. Limited by current 

technology, there were still problems that cannot be easily solved. One of the issues 

found was the replacement of sticky paper traps. Some farm managers forgot to replace 

the sticky paper traps when its already full of insects. This caused inaccuracy in 

detection and recognition due to overlapping insect bodies that cannot be resolved by 

using standard RGB cameras. The resolution of current cameras also limits the system 

to classifying certain insect types only up to order or family taxonomic level. 

Classification up to the species level was tested in this research with satisfactory results. 

However, it can still be improved if images with higher resolution were used for image 

recognition. Another issue was the maintenance of the sensor nodes. The current 

hardware design was limited by certain factors such as the size of commercially-

available sticky paper traps and over-all cost. In order to promote the usage of the 

system, the cost of the materials and components used for building each sensor node 
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had to be considered. Despite the efforts in building a robust design, the harsh 

environment in the farms still damage the device to certain extents.  

Based on the findings in this research, the proposed system was considered capable 

of bringing data-driven IPM to farmers, researchers, and agriculturists. Artificial 

intelligence was also proven to be capable of guiding and assisting people in their daily 

lives.  

 

5.2 Recommendations 

The presented system can still be improved in several ways. First, as recommended 

by the farmers, a surveillance system can be implemented to monitor either the farm 

staff activity or to detect plant disease infection from the crops. This may also help the 

system to automatically record the pesticide schedule of the farm managers. For an 

instance, the area in which pesticides were sprayed can be monitored to ensure that the 

population of the insect pests on detected hotspots were controlled efficiently. The 

additional function may also help in notifying the farmers if their crops were infected 

with a disease and determine whether it was caused by the insect pests or not.  

The designed sensor node can also be optimized by making it self-powered. The 

common problem in the installation of the system was the preparation of AC power 
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sockets. This was found to be very cumbersome and difficult since each farm has their 

unique structure and layouts. If the sensor node was self-powered, it can be placed in 

any location in the farm and can be used effortlessly. It may also be possible to 

implement the insect pest detection and recognition algorithm in the sensor node itself 

such as to save memory in the server.  

In terms of networking, a Wi-Fi mesh-based connection can also be implemented 

such that Wi-Fi extenders are no longer needed to keep the sensor nodes connected to 

the internet. The sensor nodes may connect to each other via Wi-Fi and form a larger 

network. This can make the system more flexible based on the layout and structure of 

the farms it will be installed in. 

The semi-supervised learning method may also be redeveloped to adapt based on 

newly found insect pest image classes. The current limitation of the proposed method 

was that it needed priori knowledge of the insect pest classes to be trained on. 

Discovering new classes from the newly acquired insect pest images may make the 

system fully self-supervised. This can decrease the workload in managing the system.  

By the time that imaging technology advances further, identification of the insect 

pests can be improved by classifying each insect according to its taxonomic species 

level. The current algorithm is now capable of classifying insect pests up to genus or 
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family level. However, there are instances that classification up to the species level may 

be necessary. Classification up to the species level may help in selecting crop variants 

that are immune to the damages dealt by specific insect pests. 

There are still many possible ways to use the quantitative insect pest information 

obtained by the system. This may include insect pest outbreak forecasting, automated 

environmental control and pesticide application, and a lot more. Through the said 

functions, a smarter decision support system can be developed.  
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