
doi:10.6342/NTU202100293

國立臺灣大學電機資訊學院電子工程學研究所

碩士論文

Graduate Institute of Electronics Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

基於點雲及局部關節網路之人體姿態及體型估測

3D Human Pose and Shape Estimation from Point Clouds

with Local Joint Network

章孟治

Meng-Chih Chang

指導教授：簡韶逸 博士

Advisor: Shao-Yi Chien, Ph.D.

 中華民國 110年 02月

February 2021

doi:10.6342/NTU202100293

國立臺灣大學碩士學位論文

口試委員會審定書

基於點雲及局部關節網路之人體姿態及體型估測

3D Human Pose and Shape Estimation from Point Clouds
with Local Joint Network

本論文係章孟治君 (R07943130) 在國立臺灣大學電子工程學研

究所完成之碩士學位論文，於民國110年01 月 20 日承下列考試委員審

查通過及口試及格，特此證明

口試委員 ： 岳钅［辶」指導教授）
二呋尻
二

所長 召

doi:10.6342/NTU202100293

致謝

到這邊，我聽著 King Crimson的《Epitaph》邊寫著，碩班一路走來真的蜿蜒

曲折，從一開始的題目六自由度物體姿態估測，中途換成三維空間人體關節預測，

最後是以人體姿態與體型估測作為結尾；在沒有人帶領的情況下獨自面對這個對

實驗室來說是全新的題目，每天看工作站盯著進度條等結果，是好是壞無從得知，

只能一試再試，今天開始跑，明天可以看結果，成功了可以大笑，但我總是害怕明

日會讓我絕望的哭泣，然而事實也是如此。

 雖然在主要研究道路上孤獨，但其他地方還是受到許多人幫助，洋彬在最後我

獨自一人時給了許多提醒跟建議，禹呈跟均澤一直以來都有提供諮詢，曼妤、宏璋

和翊忞則是在面試和其他地方有所幫助，致緯時常提供如何做研究的資訊，柏煒給

的是情緒上的窗口，華揚幫我弄了一些套件讓我能用，聖竣來拍了資料集跟幫我跑

實驗，實驗室其他人提供各種協助，在新竹和其他各地的老友會聽我苦中作樂的嬉

鬧，最後是老師願意讓我這樣收尾。

 這份論文對我來說一直都是未完成品，我不知道怎麼完成，繼續下去的話什麼

時候會完成，所以就終止在這邊吧，將來有什麼時間，有更多資源的時候，但願我

會再想起那些未完成的部分。

2021.02.03 章孟治

doi:10.6342/NTU202100293

中文摘要

三維空間的姿態與體型估測是屬於電腦視覺裡進階的題目，其最終目標為得

到人體模型。相較於傳統的方法仰賴模型貼合法，現今的作法利用捲積神經網路來

抽取深層特徵來取得人體模型的參數。現今頂尖的方法使用單張彩色影像當作輸

入，然而由於渲染器裡的柵格化，三維空間中的幾何特徵是被隱含在其中。我們認

為這樣的資料無法正確的帶出三維空間的資訊。因此我們認為使用具有三維空間

資訊的資料，也就是深度影像或點雲，會是一個更好的選擇。

在這篇論文裡，我們提出一個兩階段的方法，透過深度影像或對應的點雲預

測三維空間人體姿態與體型。這其中我們設計了兩個特殊的模組，都稱為局部關節

網路。在第一個階段裡，我們先進行三維空間人體關節預測。我們假設事先可取得

二維空間人體關節點來當作初始特徵，我們把這些關節點投影回三維空間形成初

始三維空間關節，然後以這些關節為中心去對點雲進行分群，經過分群後的點雲會

送進第一個局部關節網路來取的真正的相機空間中三維空間人體關節。在第二個

階段裡，我們以前一階段得到的三維空間關節為初始特徵，結合點雲來預測人體模

型參數，並使用另外一個局部關節網路來對這些參數進行細部修正。取得參數後，

我們變能將它轉換成人體模型。我們驗證我們的方法在我們自己產生的合成資料

上，其結果顯示我我們的方法是有效的。而我們論文的最終目標為實作一個擴增實

境系統，為此，我們設計了一套系統，結合我們設計的模型，將 Kinect v2 相機的

資料當作輸入，輸出具有擴增實境效果的圖。其結果也顯示我們的方法在實際資料

上也是有效的。

doi:10.6342/NTU202100293

3D Human Pose and Shape Estimation from

Point Clouds with Local Joint Network

Meng-Chih Chang

Advisor: Shao-Yi Chien

Graduate Institute of Electronics Engineering

National Taiwan University

Taipei, Taiwan

February 2021

doi:10.6342/NTU202100293

Abstract

3D human pose and shape estimation is an advanced problem in the Computer

Vision region. The goal is to retrieve human meshes. While traditional methods

mostly rely on model fitting method, modern approaches exploit the potential of

Convolutional Neural Network (CNN) to extract deep features and regress the

parametric representation of human meshes. Those state-of-the-arts use only an

RGB image as input. However, because of the rasterization, the geometric features

of 3D space are encoded implicitly in this kind of data. We argue that an RGB

image cannot correctly bring out the information of 3D space. Therefore, we

suggest that a 3D data, a depth image, or point clouds, would be a better choice.

In this thesis, we proposed a two stage method to predict human meshes from

depth images or point clouds with two special modules named Local Joint Network

(LJN). In the first stage, we predict 3D human joints first. We assume that the 2D

joints are provided as initial information. We project those initial joints to 3D space

by the depth and use the grouping technique to gather points into clusters according

to them. The groups of features are sent to first LJN to predict the real 3D joints in

camera coordinate. For the second stage, the 3D joints from the previous step will

become initial features. We regress an initial parametric model according to point

clouds and the initial features and then refine detailed parameters with another

LJN. With the refined parameters, we can recover human meshes. We evaluate

our method on a synthetic dataset generated on our own and the experiments show

that our two models are effective. The final goal of our study is to achieve an AR

system. To this end, we design a flow combining our models’ outputs augmented

i

doi:10.6342/NTU202100293

Abstract ii

images from Kinect v2 camera. The result also shows that our models work well

even on real images.

doi:10.6342/NTU202100293

Contents

Abstract i

List of Figures vi

List of Tables ix

1 Introduction 1

1.1 3D Human Joint Estimation . 1

1.2 3D Human Pose and Shape Estimation 2

1.3 System . 3

1.4 Contribution . 3

2 Related Work 4

2.1 2D Joint Detection . 4

2.2 3D Joint Detection . 6

2.3 Human Pose and Shape Estimation 7

2.3.1 From RGB Image . 7

2.3.2 From Depth Image . 8

3 3D Human Pose and Shape Estimation from Point Clouds with Local

Joint Network 9

3.1 3D Human Body Model . 9

3.2 Backbone Network . 11

3.2.1 Pointnet . 11

iii

doi:10.6342/NTU202100293

CONTENTS iv

3.2.2 Pointnet++ . 12

3.3 3D Joint Detection . 12

3.3.1 Proposed Model . 13

3.3.2 Basic Model . 13

3.4 Human Pose and Shape Estimation 15

3.4.1 Proposed Model . 15

3.4.2 Basic Model . 16

3.5 Data Preparation . 16

3.5.1 Data Sampling . 16

3.5.2 Data Rendering . 21

3.6 Implement Details . 22

3.6.1 Common Settings . 22

3.6.2 3D Joint Detection . 24

3.6.3 Human Pose and Shape Estimation 24

3.7 Result . 25

3.7.1 3D Joint Detection . 25

3.7.2 Human Pose and Shape Estimation 27

4 System 33

4.1 Introduction . 33

4.2 Experiment Settings . 33

4.2.1 Scene . 33

4.2.2 Data Preparation . 35

4.3 Proposed system . 35

4.3.1 2D Joint Detection . 35

4.3.2 3D Human Mesh Estimation 36

4.3.3 Post Processing . 36

4.4 Experiment Result . 38

4.4.1 Synthetic Data . 38

4.4.2 Real Data . 38

doi:10.6342/NTU202100293

CONTENTS v

5 Conclusion and Future Work 43

5.1 Conclusion . 43

5.2 Future Work . 43

Reference 45

doi:10.6342/NTU202100293

List of Figures

2.1 Pictorial structure example of [1]. 4

2.2 Stacked hourglass architecture of [2]. 5

2.3 Mutil-scale network of CPM[3]. 5

2.4 Pipeline of OpenPose. 6

2.5 Architecture of [4]. 7

2.6 SMPL model [5]. 7

2.7 HMR, SPIN, and HKMR. 8

3.1 Numbering of SMPL joints. The figure are originally shown in [5]. 10

3.2 Architecture of Pointnet. 11

3.3 Architecture of Pointnet++. 12

3.4 Architecture of proposed model of 3D joint detection. (a) This

shows the whole architecture. Hidden features are grouped accord-

ing to the initial joints. i-th group is concatenated with a common

global feature and i-th row of EDM. (b) LJNjd is made up of K

sub-networks named joint regressor. (c) This reveals the detailed

design of a joint regressor. The architecture is the same as the

classification part of Pointnet. 14

3.5 Architecture of basic model of 3D joint detection. In this model,

we don’t use the grouping operation but straightly regress all joint

location. The feature extractor (blue triangle) is a similar design as

Pointnet. The output dimension is 72 (24× 3). 15

vi

doi:10.6342/NTU202100293

LIST OF FIGURES vii

3.6 Overall architecture for human pose and shape estimation. We

use Pointnet++ to extract a global feature (red one) and an initial

SMPL parameter.The parameter and the global feature then are

sent to a hierarchical regressor to predict final parameter. 17

3.7 Joint regressor and beta regressor. The θi in (a) represent the pose

parameter of i-th joint. In an iteration, joint regressor will first find

the residual of each θi, and then refine β. The sub-labels with j in

(a) are not the real labels. They means the parent joins that can be

traced from the i-th joint. 18

3.8 The connection between each joint regressor. We separate the

whole body into 3 parts to visualize clearly. Every joint except the

endpoints has at least one child joint. The theta of i-th joint will be

transmitted to the joints it can reach. 19

3.9 The basic model of human pose and estimation. 20

3.10 Data generation pipeline in SURREAL. 21

3.11 Different view of a mesh. Most of the meshes get from SURREAL

are looked like (a), or ”top view.” We define the ”front view” as

in (b). The position of head should be the highest except that the

action of the target is something like crawling. We find that by a

fixed rotation, most of the meshes can be rotated to ”front view.” . 23

3.12 Visualization. The number of input points is sampled to 4096.

The blue skeletons are the ground truth, and the red ones are the

predicted. We draw two views, fv for front view and sv for side

view, for better illustration. fv is the same view as input point

clouds, and sv is set by rotating the whole graph properly. ”ours”

are the results from the proposed model with s = 5. For [4], we

use s = 0. 31

3.13 Visualization. 32

doi:10.6342/NTU202100293

LIST OF FIGURES viii

4.1 The pipeline of our system. Both the RGB image and the depth

image share the same segmentation mask. 34

4.2 Synthetic data in SURREAL and our real data. 36

4.3 Visualization of our CPN results. The lighter dots inside the

squares on the Results column are predicted joint locations. Color

red represents right part of a human body, and color green is the

opposite. The direct inference results are reasonably well on real

data. 37

4.4 Some frames of results of synthetic sequence. 39

4.5 Visualization of 2D joints. Color red indicates right part of a

human body. Color green is the opposite. We can find that the

failures have already failed in 2D detection. 40

4.6 Visualization of real data of the first target. 41

4.7 Visualization of real data of the second target. 42

doi:10.6342/NTU202100293

List of Tables

3.1 Numbers of data. The validation set is a sub-set of testing set. The

authors don’t mention it in the original paper but it is available on

their website. 21

3.2 The results of different designs. Our results use σ = 10. 26

3.3 The results of proposed model given different level of disordered

initial joints. The unit is millimeter. σ = 0 means we use ground

truth. 26

3.4 The results of different numbers of sampled points `. 27

3.5 The results of different designs. pointnet means it use Pointnet

but not Pointnet++ as the feature extractor. single represents that

LJNpse is non-hierarchical design.The result with † means it comes

from Wang et al.[6]. The result with ‡ means it is the result on

RGB dataset Human3.6m[7] reported in the original paper and use

protocol 2 when calculate MPJPE. 29

3.6 The results of proposed model given different level of disordered

initial joints. end-to-end use the 3D joints from our proposed 3D

joint detector with σ = 20 and ` = 4096 to ensure both joint

detection and pose and shape estimation have enough performance. 30

3.7 The results of different numbers of sampled points `. 30

ix

doi:10.6342/NTU202100293

Chapter 1

Introduction

Analyzing 3D data is a frequently discussed topic in computer vision. By un-

derstanding the 3D space, many applications, such as automatic manipulation,

augmented reality (AR), virtual reality (VR), human-robot interaction, and so on,

can progress. Particularly, human-related works drag lots of attention recently be-

cause of the commercial possibilities. In this thesis, we discuss two human-related

problems: 3D human joint estimation and 3D human pose and shape estimation.

Furthermore, we propose an AR system that utilize the contents of these two

problems.

1.1 3D Human Joint Estimation

3D human joint estimation, also known as 3D human pose estimation, aims to locate

the joints’ coordinates in 3D space. Traditional methods range from geometry-

based techniques [8] to purely statistical approaches [9]. Recent works rely on the

powerful deep convolutional neural network (CNN) [10, 4, 11]. The two popular

pipelines are let a network learns the mapping between 2D joints and 3D joints and

direct prediction from RGB images. The latter one usually predicts 2D joints first

as a side product too. However, these methods are easily confused by the lacking

of depth. Some others use multi-view camera to deal with the problem. But the

1

doi:10.6342/NTU202100293

1. Introduction 2

related camera position needs to be known.

In our method, we choose depth images as our input. Depth images encode 3D

structure explicitly. Furthermore, we back-project the depth to the camera space

with camera parameters to get the point clouds, which is a natural 3D data type.

We propose a ”grouping” operation that groups points into clusters and handle

each cluster separably. The 2D joints will first be back-projected to 3D space,

forming initial 3D joints. After that, we use the initial 3D joints as the centers

to gather nearby points into clusters. The model takes clusters of points as input

named Local Joint Network (LJNjd, jd for joint detection). LJNjd consists of

several sub-networks, and each of them can explore the local structure of a joint.

Compared with direct prediction, our LJNjd will not be interfered by other joints’

structures.

1.2 3D Human Pose and Shape Estimation

3D human pose and shape estimation, or human mesh recovery, intend to find a

particular target’s parametric model[5]. Early works [12] rely on model fitting, and

the results are usually undesirable. Recent works [13, 14, 15] count on the deep

features extracted by CNN from a single RGB image. Similarly, an RGB image

cannot resolve the inherent ambiguity of 3D-2D projection.

To this end, we also choose depth images as our input. Besides, we propose

another Local Joint Network (LJNpse, pse for pose and shape estimation). In

LJNpse, we predict the parametric parameters hierarchically. Starting from the root

joint, we refine the pose parameter sequentially according to the human kinematic

tree. After the pose parameter is done, we move on to the shape parameter. The

LJNpse will repeat several times to get a more acceptable result.

doi:10.6342/NTU202100293

1. Introduction 3

1.3 System

A popular application of human pose and shape estimation is augmented reality.

By knowing the target’s pose, we can project the same mesh as the target or other

meshes with the same pose on the display system. Therefore, we propose a system

that combines the two models, 3D joint detection and 3D human pose and shape

estimation, and outputs augmented images with human meshes from Kinect v2

camera. To accomplish the system, we train a special version of Cascaded Pyramid

Network (CPN) [16] that predicts SMPL joints. With the 2D joints and the depth

images, the rest is evident.

1.4 Contribution

To summarize our thesis, the main contributions are as follow:

• We estimate 3D human joint locations from depth images and 2D joints

with Local Joint Network (LJNjd), which explores the local structure of each

joint.

• We estimate the parametric models (3D human meshes) from depth images

and 3D joints with Local Joint Network (LJNpse), which gets more refined

results of each parameter.

• We introduce a system that achieves augmented reality with Kinect v2

camera.

doi:10.6342/NTU202100293

Chapter 2

Related Work

2.1 2D Joint Detection

2D joint detection, i.e., 2D human pose estimation, is a classical problem in com-

puter vision. Generally, the problem can be classified into a key-points detection

problem. Traditional[17, 18, 1] methods utilize pictorial structures[19, 20] that

express the human body as a tree-structured graphical model based on human

kinematic to solve the problem.

Figure 2.1: Pictorial structure example of [1].

As the convolutional neural network(CNN)[21, 22] rising, recent methods

choose CNN as it’s feature extractor to learn human joints’ features and get

4

doi:10.6342/NTU202100293

2. Related Work 5

remarkable results. DeepPose[23] is one of the pioneers that apply CNN to 2D

human pose estimation. They use AlexNet[22] as backbone to directly regress

joint locations. Despite the success of DeepPose, it’s hard to predict joint locations

directly. The probability map of the joint location, or heat-map, is considered a

better representation. Newell et al.[2] use stacked hourglass modules to predict

heat-maps of joints. Tompson et al.[24] and Wei et al.[3] utilize multi-resolution

network and output heat-maps in different scales to predict joints coarse-to-fine.

Figure 2.2: Stacked hourglass architecture of [2].

Figure 2.3: Mutil-scale network of CPM[3].

Different from single person 2D joint detection, multi-person joint detection

needs to aggregate key points into several persons. Methods for multi-person

tasks usually can be classified into two ways: top-down and bottom-up. Bottom-

up approaches predict all key-points first and then combine joints that belong to

doi:10.6342/NTU202100293

2. Related Work 6

the same person. DeepCut series[25, 26] assemble joints of a single person by

partitioning predicted joints and labeled body parts. OpenPose[27] introduce part

affinity fields(PAFs), which predict the possible connection between any two joints,

to gather joints belong to the same person.

Figure 2.4: Pipeline of OpenPose.

In contrast to bottom-up, top-down methods[28, 29, 16] detect and crop out

every person first and treat them as a single person case. Therefore, the performance

is effected by both single person joint estimation and human detection.

2.2 3D Joint Detection

Due to the ambiguity between 2D and 3D space, 3D joint detection is a more

advanced topic. Traditional methods[9, 8] require lots of additional priors. Recent

methods exploit the power of CNN and tend to start from 2D joint to predict 3D

joint, either assume hands-on 2D joint detection or train an end-to-end network by

themselves. Moreno-Noguer et al.[10] transform 2D joints into Euclidean Distance

Matrix(EDM) first and then regress another EDM of corresponding 3D joints.

By Muldtidimensional Scaling (MDS), they can easily transform EDM back to

3D joints. Martinez et al.[4] use simple linear layer along with ReLU[30], batch

normalization[31] and dropout[32] to achieve extraordinary result at that time,

forming a simple baseline for 3D joint detection. Wu et al.[33] predict depth maps

additionally, and let the network learn how to project 2D joints back to 3D joints

in camera coordinate. Cheng et al.[11] take time information into consideration.

Furthermore, they follow [34], use Kinematic Chain Space (KCS) in both spatial

doi:10.6342/NTU202100293

2. Related Work 7

and temporal. Iskakov et al.[35] and Qiu et al.[36] exploit multi-view geometry,

fusing features from different view by epipolar geometry and triangulation.

Figure 2.5: Architecture of [4].

2.3 Human Pose and Shape Estimation

3D human mesh recovery is also a classic problem in computer vision. Unlike

typical mesh retrieval, human meshes are articulated objects. The different poses

of one same person result in different meshes. Therefore, parametric human

models[5, 37] are proposed to represent various poses and shapes.

Figure 2.6: SMPL model [5].

2.3.1 From RGB Image

Bogo et al. [12] predict 2D joints first, and then fit them with projected 3D joints

of SMPL model[5]. HMR[13] use iterative regression network to extract SMPL

doi:10.6342/NTU202100293

2. Related Work 8

parameters and weak-perspective camera parameters from a single image. They

also use a discriminator to verify valid human pose. Based on HMR, SPIN[14]

concatenate the fitting procedure of [12] after it, HKMR[15] propose hierarchical

estimation of pose parameters. Ci et al.[38] and Kolotouros et al.[14] utilize Graph

Convolutional Network(GCN) to exploit structure information.

Figure 2.7: HMR, SPIN, and HKMR.

2.3.2 From Depth Image

Guo et al.[39] fit a pre-scanned template model into depth by L0-based constraint,

successfully reduce the deformation around joints. Fusion series[40, 41, 42]

reconstruct human model by joint motion and surface motion. Wei et al.[43] take

two depth maps as input, and use CNN to find the correspondences of them to

construct mesh. Wang et al.[6] convert depth to point cloud first, and then exploit

Pointnet[44, 45] and GCN to estimate vertex coordinate of SMPL mesh.

doi:10.6342/NTU202100293

Chapter 3

3D Human Pose and Shape

Estimation from Point Clouds with

Local Joint Network

As mentioned in the previous chapter, we estimate human meshes starting by

detecting 3D joints first with LJNjd. Afterward, we use the joints as initial features

to predict SMPL parameters with LJNpse. In the remainder of this chapter, we will

first discuss how to represent a human mesh and the backbone we use, and then

the detailed design of our models.

3.1 3D Human Body Model

Skinned Multi-Person Linear Model (SMPL)[5] is a linear and differentiable

parametric model that factor human bodies into two parameters, pose θ ∈ R3K

and shape β ∈ R10. The pose parameter represents the relative 3D rotation of K =

24 joints (the order is show in Fig.3.1) in axis-angle representation, affecting the

deformation of a mesh’s surface. The shape parameter is calculated as the first ten

coefficients of a PCA projection of the shape space, defining individuals’ varying

9

doi:10.6342/NTU202100293

3. 3D Human Pose and Shape Estimation from Point Clouds with Local Joint Network10

Figure 3.1: Numbering of SMPL joints. The figure are originally shown in [5].

physique. The whole transform of SMPL is differentiable and defined as follow:

M (−→β ,−→θ) = W (Tp(
−→
β ,
−→
θ), J(−→β),−→θ ,W) (3.1)

Tp(−→β ,−→θ) = T +Bs(
−→
β) +Bp(

−→
θ) (3.2)

where M (−→β ,−→θ) ∈ RV×3,V = 6980 is the vertices coordinate of a transformed

mesh,W is the blend weights, T represents vertices of rest pose, and Bs(
−→
β) and

Bp(
−→
θ) describe the displacement of vertices from the rest pose to the target pose.

doi:10.6342/NTU202100293

3. 3D Human Pose and Shape Estimation from Point Clouds with Local Joint Network11

3.2 Backbone Network

Our input data is a single depth map. To avoid heavy calculation, we project the

depth map back to the camera space to get a set of 3D point clouds {Pi ∈ R3|i = 1, ..., `}

but not creating voxels. Unlike RGB images, point clouds have unordered property.

That is, a set of point clouds doesn’t have a specific order. As a result, a network

must be invariant to permutations of input points. From the perspective of this

property, Qi et al. design the Pointnet series netowk[44, 45] to handle the problem.

3.2.1 Pointnet

Figure 3.2: Architecture of Pointnet.

Pointnet is the first work in the Pointnet series. In this work, they try to perform

classification and segmentation on a set of point clouds. The whole design is in Fig.

3.2. Unlike performing 2D convolution on an image, they use 1D convolutions

(MLP layers in the image) to extract features individually, avoiding considering

non-relative points. At the end of feature extracting, they use a single symmetric

function, max pooling, to decide the final global feature. Therefore, no matter what

the order of input is, the network can extract the most representative feature.

doi:10.6342/NTU202100293

3. 3D Human Pose and Shape Estimation from Point Clouds with Local Joint Network12

Figure 3.3: Architecture of Pointnet++.

3.2.2 Pointnet++

In Pointnet++, the authors try to solve a problem: how to explore the local features.

To this end, they propose a hierarchical module named set abstraction (SA). As

shown in Fig. 3.3, the main idea of SA is sampling and grouping. They first

uniformly sample several points as centers and then group input points into several

clusters. For each cluster, it will go through a simple Pointnet to extract local a

feature. Therefore, the local structures are encoded hierarchically by several stages

of SA modules.

3.3 3D Joint Detection

Given the a depth image of a target and the corresponding 2D joints, we project

them back to 3D camera space, forming point clouds and initial 3D joints. We then

use them as input data to estimate the corresponding 3D joint location in camera

coordinate. As mentioned in the previous section, we exploit the design of Pointnet

and Pointnet++. In this stage, we will describe two different models we design.

The first one is the final version of our proposal that utilizes LJNjd. The second

one is the basic model, and it’s also our baseline model, which is used to prove the

doi:10.6342/NTU202100293

3. 3D Human Pose and Shape Estimation from Point Clouds with Local Joint Network13

effectiveness of LJNjd.

3.3.1 Proposed Model

In this model (Fig. 3.4), we extract features with Pointnet first and then use LJNjd

to predict joint location. The main idea of LJNjd is that it focuses on the local

part of every joint. LJNjd consist of K sub-networks. Each of them takes a group

of points as input, which is constructed by gathering `′ points around the initial

joint location in a given ball query with a specific radius. We name the operation

”grouping.” For example, i-th input of i-th sub-network is a group of points centered

around the i-th joint. Therefore, every sub-networks in LJNjd can pay attention to

the joint it belongs to.

Furthermore, we adapt two schemes to strengthen the global relationship

between each point and between each joint. First, we perform the grouping

operation on the hidden features before the pooling layer and concatenate the

global feature after passing the pooling layer. This arrangement is also used in

Pointnet. Second, we add the row of the euclidean distance matrix of initial 3D

joints to each group, e.g., the group of i-th joint keeps the i-th row (or column) of

EDM. Because a joint is not entirely independent of any other joints, we let each

sub-network in LJNjd infer other joints’ information by the distance matrix.

3.3.2 Basic Model

Except the proposed model, we also design a basic model to prove that our LJNjd

is effective. Fig. 3.5 shows the architecture of basic model. In this design, we

simply concatenate the initial joint location with input points, forming a input data

with ` × (C1 + 72) features. We use a Pointnet-liked design to extract features

from the input and directly regress all joint locations.

doi:10.6342/NTU202100293

3. 3D Human Pose and Shape Estimation from Point Clouds with Local Joint Network14

(a
)W

ho
le

de
si

gn

(b
)L

oc
al

Jo
in

tN
et

w
or

k
fo

r d
et

ec
tio

n
(c

)S
ub

-n
et

w
or

k

Fi
gu

re
3.

4:
A

rc
hi

te
ct

ur
e

of
pr

op
os

ed
m

od
el

of
3D

jo
in

td
et

ec
tio

n.
(a

)T
hi

s
sh

ow
s

th
e

w
ho

le
ar

ch
ite

ct
ur

e.
H

id
de

n
fe

at
ur

es
ar

e
gr

ou
pe

d

ac
co

rd
in

g
to

th
e

in
iti

al
jo

in
ts

.i
-t

h
gr

ou
p

is
co

nc
at

en
at

ed
w

ith
a

co
m

m
on

gl
ob

al
fe

at
ur

e
an

d
i-

th
ro

w
of

E
D

M
.(

b)
L

JN
jd

is
m

ad
e

up
of

K
su

b-
ne

tw
or

ks
na

m
ed

jo
in

tr
eg

re
ss

or
.(

c)
T

hi
s

re
ve

al
s

th
e

de
ta

ile
d

de
si

gn
of

a
jo

in
tr

eg
re

ss
or

.T
he

ar
ch

ite
ct

ur
e

is
th

e
sa

m
e

as
th

e

cl
as

si
fic

at
io

n
pa

rt
of

Po
in

tn
et

.

doi:10.6342/NTU202100293

3. 3D Human Pose and Shape Estimation from Point Clouds with Local Joint Network15

Figure 3.5: Architecture of basic model of 3D joint detection. In this model, we

don’t use the grouping operation but straightly regress all joint location. The feature

extractor (blue triangle) is a similar design as Pointnet. The output dimension is 72

(24× 3).

3.4 Human Pose and Shape Estimation

Given a depth map of a target and it’s 3D joint location, we aim to predict the

corresponding human mesh in SMPL format. We also propose two models. The

first one is the basic model which is direct regression. The second one is the

proposed model that use LJNpse.

3.4.1 Proposed Model

As illustrated in Fig. 3.6, we predict initial parameters first with Pointnet++ and

then refine them with LJNpse. Our LJNpse is similar to HKMR[15]. HKMR uses

chain-based regressors, which correct the pose parameters for a parent trunk first

and then send the parameters to the child trunk, to predict the SMPL parameters

sequentially. Different from them, our LJNpse uses joint-based regressors. That is,

we refine a single joint (parent joint) first and send it to its child joints that it can

reach. The parent-child relationship between joints can be found in Fig.3.8.

Before giving an example, we clarify the symbols used here first. We denote

θ for the whole pose parameter, θi for the pose parameter of i-th joint, β for the

shape parameter. A symbol with an apostrophe means it is from the previous stage.

As shown in Fig. 3.7a, when we are updating θ′i, all refined θj of the parent joints

doi:10.6342/NTU202100293

3. 3D Human Pose and Shape Estimation from Point Clouds with Local Joint Network16

that can be traced, β′, and the global feature are taken into consideration too. After

θ is processed, the beta regressor then regresses β based on β′, θ, and the global

feature. After getting θ and β, one iteration is over and θ and β become θ′ and β′

for next iteration. LJNpse repeats the above pipeline N times to output the final

prediction.

3.4.2 Basic Model

We also have a basic model to show that our LJNpse is practical. The whole

architecture are in Fig. 3.9. In this desing, we also use Pointnet++ to extract the

same features as the proposed model. However, we use those features to directly

predict all the residual values of SMPL parameter. We will show that this direct

regression degenerate the performance in Section 3.7.

3.5 Data Preparation

In our settings, we need depth maps and corresponding SMPL ground truths.

However, parametric model for an individual doesn’t exist ground truth and most

of datasets don’t come with depth maps. Therefore, we conduct our experiments

on synthetic data generated by ourselves. Like [6], we use the SMPL parameters

provided by SURREAL[46] and render a set of depth maps.

3.5.1 Data Sampling

Learning from Synthetic Humans (SURREAL) is a large-scale synthetic human

dataset. They fit CMU MoCap database [47] into pose parameters of SMPL and

sample human mesh from CAESAR dataset [48] to acquire shape parameters. They

generate more than 6 million data (see Table 3.1 for more details). Each is provided

with an RGB image, 2D and 3D joint label with SMPL joint definition, SMPL

parameter and mesh, segmentation map, depth map, and optical flow. They also

offer 3 different overlap ratios for choice.

doi:10.6342/NTU202100293

3. 3D Human Pose and Shape Estimation from Point Clouds with Local Joint Network17

Fi
gu

re
3.

6:
O

ve
ra

ll
ar

ch
ite

ct
ur

e
fo

rh
um

an
po

se
an

d
sh

ap
e

es
tim

at
io

n.
W

e
us

e
Po

in
tn

et
++

to
ex

tr
ac

ta
gl

ob
al

fe
at

ur
e

(r
ed

on
e)

an
d

an

in
iti

al
SM

PL
pa

ra
m

et
er

.T
he

pa
ra

m
et

er
an

d
th

e
gl

ob
al

fe
at

ur
e

th
en

ar
e

se
nt

to
a

hi
er

ar
ch

ic
al

re
gr

es
so

rt
o

pr
ed

ic
tfi

na
lp

ar
am

et
er

.

doi:10.6342/NTU202100293

3. 3D Human Pose and Shape Estimation from Point Clouds with Local Joint Network18

(a) Joint regressor

(b) Beta regressor

Figure 3.7: Joint regressor and beta regressor. The θi in (a) represent the pose

parameter of i-th joint. In an iteration, joint regressor will first find the residual of

each θi, and then refine β. The sub-labels with j in (a) are not the real labels. They

means the parent joins that can be traced from the i-th joint.

doi:10.6342/NTU202100293

3. 3D Human Pose and Shape Estimation from Point Clouds with Local Joint Network19

(a) Upper body

(b) Middle body (c) Lower body

Figure 3.8: The connection between each joint regressor. We separate the whole

body into 3 parts to visualize clearly. Every joint except the endpoints has at least

one child joint. The theta of i-th joint will be transmitted to the joints it can reach.

doi:10.6342/NTU202100293

3. 3D Human Pose and Shape Estimation from Point Clouds with Local Joint Network20

Fi
gu

re
3.

9:
T

he
ba

si
c

m
od

el
of

hu
m

an
po

se
an

d
es

tim
at

io
n.

doi:10.6342/NTU202100293

3. 3D Human Pose and Shape Estimation from Point Clouds with Local Joint Network21

Figure 3.10: Data generation pipeline in SURREAL.

#subjects #sequences #clips #frames #our samples

Train 115 1,964 55,001 5,342,090 60,000

Validation - - - - 5,000

Test 30 703 12,528 1,194,662 15,000

Table 3.1: Numbers of data. The validation set is a sub-set of testing set. The

authors don’t mention it in the original paper but it is available on their website.

We choose one overlap ration (run0 named by the authors) and sample at least 3

data from the clip more than five frames. We finally generate 60 thousand training

samples, 5 thousand samples for the validation set, and 15 thousand testing samples.

Specially, we only use the SMPL parameter. We transform those parameters in

meshes and render new sets of depth maps. Next, we will discuss how we generate

our data.

3.5.2 Data Rendering

We use Kinect v2 camera settings to render our data. Kinect v2 has one RGB

camera with resolution (1920, 1080) and one time-of-flight (ToF) camera with

resolution (424, 512). We only use the data of the ToF camera. However, we set

doi:10.6342/NTU202100293

3. 3D Human Pose and Shape Estimation from Point Clouds with Local Joint Network22

the resolution to (512, 424). That is, to capture the whole human body clearly, we

assume the Kinect camera is placed vertically but not horizontally as usual. The

intrinsic parameters K we use is as followed:

K =


366.458 0 206.470

0 366.736 253.026

0 0 1

 (3.3)

Another problem is that the global rotation (rotation of the root joint) of the

parameters get from SURREAL is random. In other words, we need to decide the

rotation matrix of the extrinsic parameter additionally. After observing visualized

data, we fond that most of the data can be transformed to ”front view” (see Fig. 3.11

for the definition of front view) by a common rotation. Therefore, the rendering

procedure can be formulated into the follow equation:

D = Π(R ·M + T) (3.4)

R(M) =


0 1 0

0 0 1

1 0 0

 , T =


tx

ty

tz

 (3.5)

D is the depth map of a mesh M . Π is the projecting function in OpenGL with

intrinsic parameter K. R is the fixed rotation matrix and T is random translation in

the extrinsic matrix.

3.6 Implement Details

3.6.1 Common Settings

All depth maps are segmented by a mask and added Gaussian noises with zero

mean and 0.001 standard derivation before transformed to point clouds. We also

use normal vectors calculated by Open3D[49] as additional input features. We use

RAdam [50] optimizer with default settings. The learning rate decays 0.1 every 5

doi:10.6342/NTU202100293

3. 3D Human Pose and Shape Estimation from Point Clouds with Local Joint Network23

(a) Original view (b) front view

Figure 3.11: Different view of a mesh. Most of the meshes get from SURREAL

are looked like (a), or ”top view.” We define the ”front view” as in (b). The position

of head should be the highest except that the action of the target is something like

crawling. We find that by a fixed rotation, most of the meshes can be rotated to

”front view.”

doi:10.6342/NTU202100293

3. 3D Human Pose and Shape Estimation from Point Clouds with Local Joint Network24

epochs. Because we use small batch size in training stage, we remove all batch

normalization layer in the original Pointnet and Pointnet++. Additionally, we use

PReLU[51] as activation layers but not ReLU.

3.6.2 3D Joint Detection

We simulate disordered initial joints by adding Gaussian noise. We totally simulate

4 different levels by changing standard deviation σ. The unit simulated noise is

pixel. The number of sampled points `′ of a sub-network is 128. Searching radius

r of each sub-network is different. The loss function is:

loss =
K∑
i=1

∥∥∥J̃3D
i − J3D

i

∥∥∥2

2
(3.6)

J̃3D
i is the predicted 3D joint location and J3D

i is the ground truth location.

3.6.3 Human Pose and Shape Estimation

We have two different initial joints settings. The first one is we use the estimated

result from the proposed model in Section 3.3.2. The other one is we add Gaussian

noise with different standard deviation to ground truth joints. The unit of simulated

noise is meter. For loss function, we don’t calculate loss on parameters. The direct

supervision on parameters is meaningless, leading to over-fitting on training data.

Therefore, we transform the parameters to human meshes and then calculate the

loss:

loss = 1
V

τ∑
t=1

V∑
i=1
‖ṽt,i − vi‖2

2 (3.7)

ṽi is a vertex of the mesh transformed from the predicted theta and beta and vi is a

vertex of ground truth mesh.

doi:10.6342/NTU202100293

3. 3D Human Pose and Shape Estimation from Point Clouds with Local Joint Network25

3.7 Result

3.7.1 3D Joint Detection

Evaluation metrics

We use two metrics to evaluate our models: mean per-joint position error (MPJPE)

and percentage of correct key-points (PCK). MPJPE is as in Equation 3.8, which

is the mean L2 distance over all joints and samples. The unit is millimeter (mm).

PCK counts the percentage of correct key-points, whose error are less than a

certain threshold. We choose the threshold as half of head bone length (ground

truth distance between 13-th joint and 16-th joint). We denote it PCKH@0.5 in

our tables. The unit is percentage (%).

MPJPE = 1
NK

N∑
t=1

K∑
i=2

∥∥∥J̃3D
t,i − J3D

t,i

∥∥∥
2

(3.8)

Comparison between each model

We first evaluate the performance of the two designs. As in Table 3.2, we can find

that the basic model is good enough. Nevertheless, the proposed model boosts

the accuracy by almost 8 mm. This result indicates that our grouping strategy and

LJN are effective and powerful. Each sub-network can focus on the local region.

Moreover, the sub-network can easily obtain global information from the global

feature. In contrast, the basic model needs to put lots of effort into disentangling

each part of input points, leading to a higher error. We also evaluate the function of

adding rows of EDM. The same table shows that the performance is boosted further.

This result verifies that a joint’s sub-network requires some prior knowledge of

other joints to locate the correct joint location better.

doi:10.6342/NTU202100293

3. 3D Human Pose and Shape Estimation from Point Clouds with Local Joint Network26

MPJPE PCKh@0.5

basic 32.1 85.6

proposed w/o EDM 25.0 90.2

proposed 24.2 90.8

simplebaseline[4](σ = 0) 59.4 51.9

simplebaseline[4](σ = 10) 81.3 33.6

Table 3.2: The results of different designs. Our results use σ = 10.

std of gaussian max dist. mean dist. MPJPE PCKh@0.5

σ = 0 0 0 14.3 97.2

σ = 5 26.6 6.3 18.6 94.7

σ = 10 53.2 12.5 24.2 90.8

σ = 15 83.7 19.0 31.4 85.6

Table 3.3: The results of proposed model given different level of disordered initial

joints. The unit is millimeter. σ = 0 means we use ground truth.

Input noise of 2D joints

Table 3.3 is the ablative study of our model under different levels of noise of 2D

joints. The 4 standard deviation are 0, 5, 10, and 15. σ = 0 is equals to ground

truth joint. We also provide the maximum value and the mean L2 distance (”max

dist.” and ”mean dist.” in the table) of the noisy 2D joints in pixels for better

understanding the variation. If the input noise is relativly small (σ is less or equal

to 10), our model is stable. The changing of MPJPE and PCK is about 10 mm

and 7 percent. In contrast, the performance of our proposed model will degrade

much only when noise of input 2D joints is very large (σ = 15). To model a proper

results of 2D detector, we choose σ = 10 in other tables.

doi:10.6342/NTU202100293

3. 3D Human Pose and Shape Estimation from Point Clouds with Local Joint Network27

sample points MPJPE PCKh@0.5

` = 2048 25.8 90.1

` = 4096 24.2 90.8

Table 3.4: The results of different numbers of sampled points `.

Sparsity of input points

We analyze the sparsity by changing the number of sampled points `. As in Table

3.4, we use two different levels. To extracting rich features, we set ` = 4096 as

standard. The other one is half of the standard. We can see that when the input

resolution is lower, our model don’t degrade much. This shows that our model is

robust to different input resolution.

Comparison with simple baseline

We further compare our proposed model with [4] (”simple baseline” in Table 3.2),

which also starts from 2D joints. We train their network with our dataset and

evaluate two different input noise. From the table, we can see that our model

out-perform them under the same circumstances. We argue that [4] is confused

by the ambiguity of 3D-2D projection. By eliminating the uncertainty with depth

prior, our model can focus on localization in 3D space. Furthermore, their model

is unable to handle large-scale dislocated 2D joints.

3.7.2 Human Pose and Shape Estimation

Evaluation metric

We use L2 distance to calculate averaged per-vertex error (APVE) without further

alignment as in Equation 3.9. We also report MPJPE of meshes’ joints.

APV E = 1
NV

N∑
t=1

V∑
i=1
‖ṽt,i − vt,i‖2 (3.9)

doi:10.6342/NTU202100293

3. 3D Human Pose and Shape Estimation from Point Clouds with Local Joint Network28

Comparison between models

Table 3.5 shows the results of our models. ”basic” is the basic model, and ”pro-

posed” is the proposed model using LJNpse. We can see that our LJNpse boosts the

performance for about 10 mm, proving that our per-joint design is effective. We

also evaluate the hierarchical design in LJNpse. single in the table represents that

we don’t transmit a joint to its child joint (like the sub-network design in chapter

Fig. 3.4), and its error is higher than the final proposed for about 8 mm. This

result indicates that the hierarchical design following the human kinematic tree

is useful. The next comparison is the choice of feature extractor. We believe that

the model needs detailed features to estimate the parametric model. Therefore, we

change Pointnet++ to Pointnet in pointnet in the table, and it proves. Pointnet++

can further increase hte performance.

Effectiveness of noised 3D joints

We study how 3D joints affect the accuracy by changing the standard deviation

of Gaussian noise. We evaluate 4 different σ as in Table 3.6. σ = 0 means it

uses ground truth 3D joints as input. We also provide the mean and the maximum

L2 distance (”mean dist.” and ”max dist.” in the table) of the noisy 3D joints in

millimeter for better understanding the variation. The table shows that our proposed

model is reasonably well when using ground truth 3D joints. The proposed model

degenerates 6 mm when the input noise is large, which indicates that our proposed

model is stable for different level of noise. In the all of our experiments, we choose

σ = 0.02 if there is no further notation. The result using the output of our proposed

3D joint detector is labeled ”end-to-end” int the table. Even though it’s closed

to the result of using σ = 0.03, the difference between ground truth and it is still

less than 10 mm. This demonstrates that our proposed model is stalbe to unknown

noise.

doi:10.6342/NTU202100293

3. 3D Human Pose and Shape Estimation from Point Clouds with Local Joint Network29

Sparsity of input points

We also evaluate the sparsity of input points by changing `. In Table 3.7, We

evaluate two different input resolution. The standard one it ` = 4096 too. Likewise,

our model degenerate less when the resolution is half (` = 2048). This result also

proves that our model is robust to input sparsity.

APVE MPJPE

basic 43.1 42.9

proposed-single 42.2 40.6

proposed-pointnet 35.6 36.8

proposed 34.5 33.0

HMR[13]† 54.3 -

Wei et al.[52]† 58.6 -

HMR[13]‡ 56.8 87.9

SPIN[14]‡ 41.1 -

HKMR[15]‡ - 71.0

Table 3.5: The results of different designs. pointnet means it use Pointnet but not

Pointnet++ as the feature extractor. single represents that LJNpse is non-hierarchical

design.The result with † means it comes from Wang et al.[6]. The result with ‡

means it is the result on RGB dataset Human3.6m[7] reported in the original paper

and use protocol 2 when calculate MPJPE.

doi:10.6342/NTU202100293

3. 3D Human Pose and Shape Estimation from Point Clouds with Local Joint Network30

std of gaussian max dist. mean dist. APVE MPJPE

σ = 0 0 0 31.6 30.5

σ = 0.01 52.9 12.5 32.9 31.5

σ = 0.02 105.6 25.1 34.5 33.0

σ = 0.03 170.0 37.6 37.6 36.0

end-to-end - - 38.8 36.8

Table 3.6: The results of proposed model given different level of disordered initial

joints. end-to-end use the 3D joints from our proposed 3D joint detector with

σ = 20 and ` = 4096 to ensure both joint detection and pose and shape estimation

have enough performance.

sample points APVE MPJPE

` = 2048 36.0 34.3

` = 4096 34.5 33.0

Table 3.7: The results of different numbers of sampled points `.

doi:10.6342/NTU202100293

3. 3D Human Pose and Shape Estimation from Point Clouds with Local Joint Network31

point clouds oursfv ourssv [4]fv [4]sv

Figure 3.12: Visualization. The number of input points is sampled to 4096. The

blue skeletons are the ground truth, and the red ones are the predicted. We draw

two views, fv for front view and sv for side view, for better illustration. fv is the

same view as input point clouds, and sv is set by rotating the whole graph properly.

”ours” are the results from the proposed model with s = 5. For [4], we use s = 0.

doi:10.6342/NTU202100293

3. 3D Human Pose and Shape Estimation from Point Clouds with Local Joint Network32

point clouds ground truth results color bar

Figure 3.13: Visualization.

doi:10.6342/NTU202100293

Chapter 4

System

4.1 Introduction

As mentioned in Chapter 5, we accomplish an augmented reality system by merging

our two proposed models. Except for the synthetic data used in Chapter 3, we also

collect some real data and test the system on it. Although we train our models

with synthetic data, we find them efficient enough to be directly used in a real

scene. The main challenges are: 1) How to get confident 2D joints. 2) We need

to align the output meshes with images. To this end, we train a particular CPN to

get 2D joints in SMPL format and design a procedure to manage the alignment

problem. The full pipeline is shown in Fig. 4.1. In the following sections, we will

first discuss the settings of our system and the main architecture. The visualization

of the output of the system is at the end.

4.2 Experiment Settings

4.2.1 Scene

We assume the input source is Kinect v2 camera. The distance between the camera

and the target is about 1.5 ∼ 2 meters to ensure that the whole body can be

33

doi:10.6342/NTU202100293

4. System 34

Fi
gu

re
4.

1:
T

he
pi

pe
lin

e
of

ou
r s

ys
te

m
.B

ot
h

th
e

R
G

B
im

ag
e

an
d

th
e

de
pt

h
im

ag
e

sh
ar

e
th

e
sa

m
e

se
gm

en
ta

tio
n

m
as

k.

doi:10.6342/NTU202100293

4. System 35

captured.

4.2.2 Data Preparation

We capture several real scenes with a Kinect v2. The resolution (height, width)

is (512, 424). The RGB images are also registered to the same resolution. We put

a simple green curtain behind the target to do background removal. The whole

segmentation procedure is accomplished by OpenCV[53]. We also use another

depth threshold to exclude outlier pixels to make the mask more perfect. Some

examples can be find in Fig. 4.3. We also have some results from synthetic data.

The settings are the same as the testing set in Section 3.5.

4.3 Proposed system

4.3.1 2D Joint Detection

As stated, we use CPN as our 2D joint detector but not train a new one. No matter

the accuracy and the speed are efficient enough in CPN. We train a particular

version that can predict SMPL joints, which is unreachable for most pre-trained

work. The training details are the same as the original paper, except that we use

the RAdam optimizer. The training data is the RGB images of SURREAL.

However, the testing result on real data will fail if we use the weights directly

trained on SURREAL. We discover that this phenomenon results from the dis-

traction of the background. As shown in Fig. 4.2, an image in SURREAL has an

intricate background image irrelevant to the target. In other words, the network

put lots of effort into separating the target and the background. Nevertheless, the

whole structure of real data is quite different from synthetic data. Accordingly, the

network fails on real data.

To address this problem, we use background-removed images in the training

stage. We segment images with the masks given by SURREAL and set the back-

doi:10.6342/NTU202100293

4. System 36

ground black. The network then can focus on the target. Fig. 4.3 demonstrates that

the proposed solution is good enough for real data.

(a) SURREAL (b) Real images

Figure 4.2: Synthetic data in SURREAL and our real data.

4.3.2 3D Human Mesh Estimation

To get human meshes, we combine the two proposed models in Sec. 3.3.2 and 3.4.

That is, we use the 2D joints from the CPN in the previous section as initial joints

and predict the 3D joint coordinate in camera space with the first model. After that,

the 3D joints are sent to the second model to get the estimated human mesh.

4.3.3 Post Processing

In Section 3.5.2, we mentioned that we use random translation in rendering stage.

However, to accomplish this AR system, we need to know the translation to render

meshes on the right position. To address this issue, we align the predicted root

and the root of the rotated estimated mesh. We assume the predicted root is

accurate enough that the translation between the two roots can approximate the

real translation, the T in Equation 3.5. Therefore, the rendering procedure is:

I = Π(R · M̃ + T ′) (4.1)

doi:10.6342/NTU202100293

4. System 37

Images Masked images Results

Figure 4.3: Visualization of our CPN results. The lighter dots inside the squares on

the Results column are predicted joint locations. Color red represents right part

of a human body, and color green is the opposite. The direct inference results are

reasonably well on real data.

T ′ =


J̃0,x − J̃ ′0,x
J̃0,y − J̃ ′0,y
J̃0,z − J̃ ′0,z

 (4.2)

I is the rendering result. Π and R are the same as in Equation 3.4. M̃ is the

predicted mesh. J̃0 is the predicted root and J̃ ′0 is the root of rotated M̃ .

doi:10.6342/NTU202100293

4. System 38

4.4 Experiment Result

4.4.1 Synthetic Data

The synthetic sequences are rendered in gray-scaled, and we only use ground

truth mask. The 2D joints are also taken from CPN. In Fig. 4.4, we can see that

because our model is trained with synthetic data, the result is ideal. Most frames

are matched. However, we still have some failed case. Those failed cases are

caused by wrong 2D joints. As in Fig. 4.5, we can discover that the left and the

right joints are flipped. Also, some occluded joints are predicted in the opposite

part. Therefore, the predicted meshes are wrong because the network consider the

target is reversed left-right.

4.4.2 Real Data

We directly test on real data without further fine-tuning. In Fig. 4.6 and Fig. 4.7,

we demonstrate the results of two sequences of two different targets. Although the

predicted meshes are not matched perfectly, the results is still reasonably well. The

motion of predicted meshes are the same input images. We also visualize the 2D

joints. We can discover that the results are stable for most frames. Even some 2D

joints are particularly noised, the results don’t deviate much.

We argue that the error mostly come from the domain gap between real data

and synthetic data. In training stage, we use texture-less SMPL meshes to render

our data. Furthermore, we use the ground truth masks. Nevertheless, this two

conditions are impossible for real data. As a result, our model is confused by the

noises, texture and outlier points, and output incorrect parameters.

doi:10.6342/NTU202100293

4. System 39

input result-success input result-failure

Figure 4.4: Some frames of results of synthetic sequence.

doi:10.6342/NTU202100293

4. System 40

successful frame failed frame

Figure 4.5: Visualization of 2D joints. Color red indicates right part of a human

body. Color green is the opposite. We can find that the failures have already failed

in 2D detection.

doi:10.6342/NTU202100293

4. System 41

input-RGB input-depth result-2D joints result-mesh

Figure 4.6: Visualization of real data of the first target.

doi:10.6342/NTU202100293

4. System 42

input-RGB input-depth result-2D joints result-mesh

Figure 4.7: Visualization of real data of the second target.

doi:10.6342/NTU202100293

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we study how to estimate 3D human joints and human parametric

models from point clouds. We propose two novel strategies called Local Joint

Network for joint detection (LJNjd) and for pose and shape estimation (LJNpse).

The two networks are aim to process the information of different joints separately

without the interference from others. We demonstrate the effectiveness of our

methods on synthetic data by considering different settings. Furthermore, we

design a flow of an AR system which can output augmented images with human

mesh on it. The outputs of the system also prove that our methods works adequately

on real data.

5.2 Future Work

Our two models are currently experimental. There still have many improvements.

First, we don’t use other priors and regularization to regularize valid detection

and pose and shape. Adding proper priors or regularization can make the result

more realistic. Second, we don’t consider time information, which can resolve

occlusion problem and increase the performance. Third, we assume having 2D

43

doi:10.6342/NTU202100293

5. Conclusion and Future Work 44

joints beforehand, making our model not really end-to-end. The last one is how

to handle the domain gaps between real data and synthetic data. We leave these

problem as our future works.

doi:10.6342/NTU202100293

Reference

[1] M. Andriluka, S. Roth, and B. Schiele, “Pictorial structures revisited: People

detection and articulated pose estimation,” in 2009 IEEE conference on

computer vision and pattern recognition. IEEE, 2009, pp. 1014–1021. vi, 4

[2] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for human

pose estimation,” in European conference on computer vision. Springer,

2016, pp. 483–499. vi, 5

[3] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional pose

machines,” in Proceedings of the IEEE conference on Computer Vision and

Pattern Recognition, 2016, pp. 4724–4732. vi, 5

[4] J. Martinez, R. Hossain, J. Romero, and J. J. Little, “A simple yet effective

baseline for 3d human pose estimation,” in Proceedings of the IEEE Interna-

tional Conference on Computer Vision, 2017, pp. 2640–2649. vi, vii, 1, 6, 7,

26, 27, 31

[5] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black, “Smpl:

A skinned multi-person linear model,” ACM transactions on graphics (TOG),

vol. 34, no. 6, pp. 1–16, 2015. vi, 2, 7, 9, 10

[6] K. Wang, J. Xie, G. Zhang, L. Liu, and J. Yang, “Sequential 3d human pose

and shape estimation from point clouds,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2020, pp. 7275–

7284. ix, 8, 16, 29

45

doi:10.6342/NTU202100293

REFERENCE 46

[7] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3. 6m: Large

scale datasets and predictive methods for 3d human sensing in natural envi-

ronments,” IEEE transactions on pattern analysis and machine intelligence,

vol. 36, no. 7, pp. 1325–1339, 2013. ix, 29

[8] A. Gupta, J. Martinez, J. J. Little, and R. J. Woodham, “3d pose from motion

for cross-view action recognition via non-linear circulant temporal encod-

ing,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2014, pp. 2601–2608. 1, 6

[9] H.-J. Lee and Z. Chen, “Determination of 3d human body postures from a

single view,” Computer Vision, Graphics, and Image Processing, vol. 30,

no. 2, pp. 148–168, 1985. 1, 6

[10] F. Moreno-Noguer, “3d human pose estimation from a single image via dis-

tance matrix regression,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2017, pp. 2823–2832. 1, 6

[11] Y. Cheng, B. Yang, B. Wang, and R. T. Tan, “3d human pose estimation using

spatio-temporal networks with explicit occlusion training,” arXiv preprint

arXiv:2004.11822, 2020. 1, 6

[12] F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero, and M. J. Black,

“Keep it smpl: Automatic estimation of 3d human pose and shape from a

single image,” in European Conference on Computer Vision. Springer, 2016,

pp. 561–578. 2, 7, 8

[13] A. Kanazawa, M. J. Black, D. W. Jacobs, and J. Malik, “End-to-end recov-

ery of human shape and pose,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2018, pp. 7122–7131. 2, 7, 29

[14] N. Kolotouros, G. Pavlakos, M. J. Black, and K. Daniilidis, “Learning to

reconstruct 3d human pose and shape via model-fitting in the loop,” in Pro-

doi:10.6342/NTU202100293

REFERENCE 47

ceedings of the IEEE International Conference on Computer Vision, 2019,

pp. 2252–2261. 2, 8, 29

[15] G. Georgakis, R. Li, S. Karanam, T. Chen, J. Kosecka, and Z. Wu, “Hierar-

chical kinematic human mesh recovery,” arXiv preprint arXiv:2003.04232,

2020. 2, 8, 15, 29

[16] Y. Chen, Z. Wang, Y. Peng, Z. Zhang, G. Yu, and J. Sun, “Cascaded pyramid

network for multi-person pose estimation,” in Proceedings of the IEEE con-

ference on computer vision and pattern recognition, 2018, pp. 7103–7112. 3,

6

[17] S. Johnson and M. Everingham, “Learning effective human pose estimation

from inaccurate annotation,” in CVPR 2011. IEEE, 2011, pp. 1465–1472. 4

[18] B. Sapp, C. Jordan, and B. Taskar, “Adaptive pose priors for pictorial struc-

tures,” in 2010 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition. IEEE, 2010, pp. 422–429. 4

[19] D. Ramanan, D. A. Forsyth, and A. Zisserman, “Strike a pose: Tracking

people by finding stylized poses,” in 2005 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR’05), vol. 1. IEEE,

2005, pp. 271–278. 4

[20] M. A. Fischler and R. A. Elschlager, “The representation and matching of

pictorial structures,” IEEE Transactions on computers, vol. 100, no. 1, pp.

67–92, 1973. 4

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998. 4

doi:10.6342/NTU202100293

REFERENCE 48

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in neural information

processing systems, 2012, pp. 1097–1105. 4, 5

[23] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via deep

neural networks,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2014, pp. 1653–1660. 5

[24] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, “Efficient

object localization using convolutional networks,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2015, pp. 648–656. 5

[25] L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. Andriluka, P. V. Gehler,

and B. Schiele, “Deepcut: Joint subset partition and labeling for multi person

pose estimation,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 4929–4937. 6

[26] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and B. Schiele,

“Deepercut: A deeper, stronger, and faster multi-person pose estimation

model,” in European Conference on Computer Vision. Springer, 2016, pp.

34–50. 6

[27] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh, “Openpose:

Realtime multi-person 2d pose estimation using part affinity fields,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2019. 6

[28] G. Papandreou, T. Zhu, N. Kanazawa, A. Toshev, J. Tompson, C. Bregler,

and K. Murphy, “Towards accurate multi-person pose estimation in the wild,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2017, pp. 4903–4911. 6

[29] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings

of the IEEE international conference on computer vision, 2017, pp. 2961–

2969. 6

doi:10.6342/NTU202100293

REFERENCE 49

[30] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann

machines,” in ICML, 2010. 6

[31] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” arXiv preprint

arXiv:1502.03167, 2015. 6

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” The

journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014. 6

[33] H. Wu and B. Xiao, “3d human pose estimation via explicit compositional

depth maps.” in AAAI, 2020, pp. 12 378–12 385. 6

[34] B. Wandt and B. Rosenhahn, “Repnet: Weakly supervised training of an ad-

versarial reprojection network for 3d human pose estimation,” in Proceedings

of the IEEE conference on computer vision and pattern recognition, 2019, pp.

7782–7791. 6

[35] K. Iskakov, E. Burkov, V. Lempitsky, and Y. Malkov, “Learnable triangulation

of human pose,” in Proceedings of the IEEE International Conference on

Computer Vision, 2019, pp. 7718–7727. 7

[36] H. Qiu, C. Wang, J. Wang, N. Wang, and W. Zeng, “Cross view fusion

for 3d human pose estimation,” in Proceedings of the IEEE International

Conference on Computer Vision, 2019, pp. 4342–4351. 7

[37] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and J. Davis,

“Scape: shape completion and animation of people,” in ACM SIGGRAPH

2005 Papers, 2005, pp. 408–416. 7

[38] H. Ci, C. Wang, X. Ma, and Y. Wang, “Optimizing network structure for 3d

human pose estimation,” in Proceedings of the IEEE International Conference

on Computer Vision, 2019, pp. 2262–2271. 8

doi:10.6342/NTU202100293

REFERENCE 50

[39] K. Guo, F. Xu, Y. Wang, Y. Liu, and Q. Dai, “Robust non-rigid motion

tracking and surface reconstruction using l0 regularization,” in Proceedings

of the IEEE International Conference on Computer Vision, 2015, pp. 3083–

3091. 8

[40] T. Yu, K. Guo, F. Xu, Y. Dong, Z. Su, J. Zhao, J. Li, Q. Dai, and Y. Liu,

“Bodyfusion: Real-time capture of human motion and surface geometry using

a single depth camera,” in Proceedings of the IEEE International Conference

on Computer Vision, 2017, pp. 910–919. 8

[41] T. Yu, Z. Zheng, K. Guo, J. Zhao, Q. Dai, H. Li, G. Pons-Moll, and Y. Liu,

“Doublefusion: Real-time capture of human performances with inner body

shapes from a single depth sensor,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2018, pp. 7287–7296. 8

[42] Z. Zheng, T. Yu, H. Li, K. Guo, Q. Dai, L. Fang, and Y. Liu, “Hybridfusion:

Real-time performance capture using a single depth sensor and sparse imus,”

in Proceedings of the European Conference on Computer Vision (ECCV),

2018, pp. 384–400. 8

[43] L. Wei, Q. Huang, D. Ceylan, E. Vouga, and H. Li, “Dense human body

correspondences using convolutional networks,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2016, pp. 1544–

1553. 8

[44] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point

sets for 3d classification and segmentation,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2017, pp. 652–660.

8, 11

[45] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical

feature learning on point sets in a metric space,” in Advances in neural

information processing systems, 2017, pp. 5099–5108. 8, 11

doi:10.6342/NTU202100293

REFERENCE 51

[46] G. Varol, J. Romero, X. Martin, N. Mahmood, M. J. Black, I. Laptev, and

C. Schmid, “Learning from synthetic humans,” in CVPR, 2017. 16

[47] Carnegie-mellon mocap database. [Online]. Available: http://mocap.cs.cmu.

edu/ 16

[48] K. M. Robinette, S. Blackwell, H. Daanen, M. Boehmer, and S. Fleming,

“Civilian american and european surface anthropometry resource (caesar),

final report. volume 1. summary,” SYTRONICS INC DAYTON OH, Tech.

Rep., 2002. 16

[49] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for 3D data

processing,” arXiv:1801.09847, 2018. 22

[50] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, “On the variance

of the adaptive learning rate and beyond,” in Proceedings of the Eighth

International Conference on Learning Representations (ICLR 2020), April

2020. 22

[51] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification,” in Proceedings of the

IEEE international conference on computer vision, 2015, pp. 1026–1034. 24

[52] L. Wei, Q. Huang, D. Ceylan, E. Vouga, and H. Li, “Dense human body

correspondences using convolutional networks,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

29

[53] “opencv,” https://opencv.org/, accessed: 2020-11-15. 35

http://mocap.cs.cmu.edu/
http://mocap.cs.cmu.edu/
https://opencv.org/

	Abstract
	List of Figures
	List of Tables
	Introduction
	3D Human Joint Estimation
	3D Human Pose and Shape Estimation
	System
	Contribution

	Related Work
	2D Joint Detection
	3D Joint Detection
	Human Pose and Shape Estimation
	From RGB Image
	From Depth Image

	3D Human Pose and Shape Estimation from Point Clouds with Local Joint Network
	3D Human Body Model
	Backbone Network
	Pointnet
	Pointnet++

	3D Joint Detection
	Proposed Model
	Basic Model

	Human Pose and Shape Estimation
	Proposed Model
	Basic Model

	Data Preparation
	Data Sampling
	Data Rendering

	Implement Details
	Common Settings
	3D Joint Detection
	Human Pose and Shape Estimation

	Result
	3D Joint Detection
	Human Pose and Shape Estimation

	System
	Introduction
	Experiment Settings
	Scene
	Data Preparation

	Proposed system
	2D Joint Detection
	3D Human Mesh Estimation
	Post Processing

	Experiment Result
	Synthetic Data
	Real Data

	Conclusion and Future Work
	Conclusion
	Future Work

	Reference
	空白頁面

{"type":"Document","isBackSide":false,"languages":["zh-hk"],"usedOnDeviceOCR":false}

