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摘要 

  生態學家早已知道，動物的族群動態是由上行力（bottom-up forces）（例如資

源可利用性）和下行力（top-down forces）（例如捕食）所共同決定的。然而，一

些經濟學家指出人口動態也受到合作的影響，這是生態學家很少考慮的概念。在

這裡，我們透過建構將環境條件、合作和族群大小結合在一起的個體為本模式

（individual-based model），來考慮「橫向力量」（例如作用於族群內的種間合作）

對族群動態的作用。在證明環境質量同時影響合作和資源可利用性之後，我們發

現由於資源可利用性對合作和族群大小的對比影響，在中等資源水平下社會性生

物的族群大小會大於非社會性生物。最終，我們的結果顯示，社會性族群比非社

會性族群對環境變化的適應力更強，這是因為合作的好處可能大於資源匱乏的影

響。在氣候變化時代，了解環境如何影響包括我們自己在內的社會物種的族群動

態至關重要。 

 

關鍵字：合作、族群動態、恢復力 
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Abstract 

Ecologists have long known that animal population dynamics are determined by a 

combination of bottom-up (resource availability) and top-down forces (predation). 

However, some economists have shown that human population dynamics are also 

influenced by cooperation, a concept seldom considered by ecologists. Here we 

consider the role of “lateral forces” on population dynamics by constructing an 

individual-based model linking environmental conditions, cooperation, and population 

size. After showing that environmental quality influences both cooperation and resource 

availability, we find that sizes of social populations will be greater than those of non-

social populations under intermediate resources levels due to the contrasting effects that 

resource availability has on cooperation and population size. Ultimately, we show that 

social populations are more resilient to environmental change than non-social ones 

because the benefits of cooperation can outweigh the effects of low resource 

availability. Understanding how the environment influences population dynamics of 

social species, including our own, is critical in era of climate change. 

 

Keywords: cooperation, population dynamics, resilience 
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1. Introduction 

1.1 Two contrasting views on the relationship between resource availability and 

population dynamics 

The abundance or carrying capacity of animal populations is often determined by 

top-down forces like predation pressure or bottom-up forces like resource availability 

(Anne & Rudy, 1997; Berryman, 2004; Hopfenberg, 2003; Melis et al., 2009; Rutz & 

Bijlsma Rob, 2006; Schluter & Repasky, 1991; Walankiewicz, 2002), both of which can 

be influenced by environmental conditions. The role of bottom-up forces extends the 

view of resource-constrained populations proposed by the economist Thomas Malthus 

over two centuries ago (Malthus, 1798). Not only is Malthus’ view on resource-

constrained population dynamics still widely held in ecology (Gotelli, 2008; Lomnicki, 

1988; May & McLean, 2007; Molles, 2016), his view on the human struggle for 

existence remains central to the theory of evolution by natural selection (Darwin, 1859). 

After the industrial revolution, however, the growth of the world’s population prompted 

economists to reconsider the role of resources in human population dynamics (Brown, 

1954; Cépède, Houtart, & Grond, 1964; Cohen, 1995). More than a half century ago, 

the economist Esther Boserup (Boserup, 1965) further proposed that high population 

density stimulated human cooperation in order to improve agricultural efficiency, 

thereby increasing resource supply to match the needs of a growing population. In 
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contrast to the views of Malthus, Boserup hypothesized that human populations can 

overcome resource constraints and thrive through cooperation. Whether human 

populations can actually escape from resource limitation by cooperating remains a topic 

of great debate to this day (Decker & Reuveny, 2005; Demont, Jouve, Stessens, & 

Tollens, 2007; Lipton, 1989; Richerson & Boyd, 1997; Urdal, 2005).  

 

1.2 Intraspecific cooperation: an overlooked “lateral force” acting within 

populations 

As an extension of Boserup’s ideas, intraspecific cooperation can be considered to 

be a “lateral force” that acts within populations and interacts with external top-down 

and bottom-up forces to regulate population size. Although the role of cooperation has 

been widely discussed in studies of human population dynamics (Ellis, Magliocca, 

Stevens, & Fuller, 2018; Hamilton et al., 2009), it is rarely considered in studies of 

population dynamics in other animals. One exception comes from studies of microbes 

(de Vargas Roditi, Boyle, & Xavier, 2013; Gore, Youk, & van Oudenaarden, 2009; 

Sanchez & Gore, 2013) that have explored the impact of cooperation on population 

growth (Gore et al., 2009; Rainey & Rainey, 2003) or the interaction between 

cooperation and population dynamics (Sanchez & Gore, 2013). Yet, given that harsh 

environments are thought to favor cooperation in microbes (Bottery, Wood, & 
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Brockhurst, 2016; Frost et al., 2018; Yurtsev, Chao, Datta, Artemova, & Gore, 2013), as 

they do in other social animals (Firman, Rubenstein, Moran, Rowe, & Buzatto, 2020; 

Jetz & Rubenstein, 2011; Lukas & Clutton-Brock, 2017; Rubenstein & Lovette, 2007), 

how environment-associated cooperation affects population dynamics remains largely 

unstudied in any organism. 

 

1.3 Brief review on the relevant theoretical studies 

Although initial theoretical work on cooperative behavior tended to focus on the 

emergence and maintenance of cooperation by studying the dynamics of cooperators 

and free riders in populations of fixed size (Axelrod & Hamilton, 1981; Ohtsuki, 

Hauert, Lieberman, & Nowak, 2006; Traulsen & Nowak, 2006; Weitz, Eksin, Paarporn, 

Brown, & Ratcliff, 2016), more recent studies have begun to consider populations that 

vary in size (Epstein, 1998; Zhang & Hui, 2011). Indeed, eco-evolutionary feedbacks 

between cooperative behavior and population dynamics often induce coexistence of 

cooperators and defectors (Hauert, Holmes, & Doebeli, 2006; Sanchez & Gore, 2013). 

Yet, the role of resource availability in driving these eco-evolutionary feedbacks 

remains poorly known. Environmental harshness, which reduces resource availability 

(Allison, 2005; Wang & Goldenfeld, 2011) and increases mortality (Yurtsev et al., 2013; 

Zhang & Hui, 2011), tends to favor cooperation (Smaldino, Schank, & McElreath, 
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2013). Yet, clarifying the interactions between resource availability (a bottom-up force) 

and intraspecific cooperation (a lateral force) on population dynamics remain a 

challenge for theoretical biologists. Simultaneous consideration of the relationships 

among population dynamics, cooperation, and resource availability is necessary to more 

fully understand how social species and populations respond to resource constraints and 

other environmental challenges.  

 

1.4 Research aims 

To capture the essence of a social population and formulate the theory about the 

relationships among population dynamics, cooperation, and resource availability, it is 

necessary to construct a model to address this subject. Individuals’ cooperative 

behaviour and their interactions with each other and with other elements of their 

environment play an important role in impacting the properties of a social population. 

Most importantly, individuals are adaptive, and adaptation, from which population-level 

properties emerge, occurs at individual-level, not higher levels. Therefore, individual-

based modeling is a suitable approach to explore the emergent properties at the 

population level in which we are interested. Here, we model how environmental 

conditions and the benefits of cooperation shape the evolution of asexual and structured 

populations with overlapping generations. We assume that there are two types of 
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individuals in the population: free-riders, who do not contribute to creating group 

benefits, and cooperators, who invest in creating benefits that are shared by all group 

members at the cost of decreasing the cooperator’s own fitness. Groups interact in the 

population through random offspring dispersal. Population size is not externally 

assumed, but instead emerges from the dynamics of birth and death processes that are 

influenced by both environmental conditions and individual behavioral strategies (Fig. 

1). We first consider environments of differing quality (harsh environments with low 

resource availability versus benign environments with high resource availability) to 

elucidate the relationship between environmental quality and the evolution of 

cooperation. To tease out the ecological consequences of cooperation, we then compare 

the population size and the niche breadth of social and non-social populations. 

Ultimately, we model population dynamics in a fluctuating environment with varying 

levels of resources to explore how social populations respond to environmental changes.  

.  
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2. The model 

2.1 General description 

We use an individual-based model to simulate the dynamics of structured 

populations consisting of cooperators and noncooperators (free riders). Cooperators 

produce benefits (group resources that are shared equally by the group members) at a 

cost to themselves. Individuals have different genetically-determined levels of 

cooperative investment, which determine the group resources that they generate. Group 

resources are essential for individual’s reproduction. In other words, more cooperators 

generate greater group resources, which leads to a higher average reproduction rate of 

the group members. In contrast, noncooperators provide no benefit to their groups and 

bear no cost; they simply consume the group resources. 

For a comparison with social populations, we also model nonsocial populations 

consisting exclusively of noncooperators. For simplicity, we consider asexual 

populations with a mutation rate equal to 0.001, which means the probability that every 

newborn offspring born from cooperators (noncooperators) mutate into noncooperators 

(cooperators) is 0.001. At the beginning of each simulation, population size is set to 

300, proportion of cooperators is set to 0.01 (to ensure that), and all cooperators and 

free-riders are randomly divided into 90 groups, which is a level of social structure 

between individual and population levels. We assume that the interaction among 
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individuals happens only within groups. That is, the group resources generated by the 

cooperators are only shared by the individuals in the same group. For comparison, we 

also model the scenario of non-structured populations and found that cooperation cannot 

evolve in such a scenario (Fig. S1), as has been found in other studies (Zhang & Hui, 

2011). 

Within every simulation time step, cooperators generate group resources, all 

individuals consume resources and reproduce, and some individuals die. After 

individuals produce offspring, the offspring disperse and randomly join a group. The 

total number of time steps in a simulation is 10,000, which means that the evolutionary 

process lasts 10,000 years (roughly several thousand generations), to ensure that the 

system settles into relatively stable dynamics (Strogatz, 2001). We record the proportion 

of cooperators in populations, the average degree of cooperation that an individuals 

exhibits, the population size, and the total and per capita reproductive output of each 

group throughout the process. These properties spontaneously emerge from individual-

level interactions.  

All variables and parameters are summarized in Table 1. 

 

2.2 Life cycles of individuals 

The individuals will undergo the following process during a time step: 
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At the beginning, individuals equally share the group resources (𝑅𝑖,𝑡, where 𝑖 

denotes the 𝑖𝑡ℎ group and 𝑡 denotes the 𝑡𝑡ℎ time step). Therefore, when there are 

𝑁𝑖,𝑡 individuals in the 𝑖𝑡ℎ group, each individual’s resource consumption (𝑠𝑖,𝑡) is equal 

to 𝑅𝑖,𝑡 𝑁𝑖,𝑡⁄ .  

Group resources is determined by environmental resource availability (𝑅0) and 

cooperation benefits (𝑏𝐾 ∑ ∅𝐾𝑖,𝑗𝑗 ). 𝑏𝐾 denotes cooperation efficiency, and ∅𝐾𝑖,𝑗
 with 

eleven levels (0.0, 0.1, 0.2, . . . , 1.0) denotes the 𝑗𝑡ℎ individual’s degree of cooperation, 

which is genetically-determined and affects the individual’s level of cooperative 

investment, in the 𝑖𝑡ℎ group. Group resources is a saturating function of cooperation 

benefits (𝑏𝐾 ∑ ∅𝐾𝑖,𝑗𝑗 ), which is analogous to Monod equation (Monod, 1949): 

𝑅𝑖,𝑡 =  𝑅0 (1 + 𝐼 ∙
𝑏𝐾 ∑ ∅𝐾𝑖,𝑗𝑗

𝐼𝑅0

2 + 𝑏𝐾 ∑ ∅𝐾𝑖,𝑗𝑗

) , 

where 𝐼 is the maximum resource increment rate. For the groups without cooperators 

generating group benefits, 𝑅𝑖,𝑡 =  𝑅0. 

Next, individuals produce offspring, and the offspring disperse and randomly join a 

group. The number of offspring the 𝑗𝑡ℎ individual can produce (reproduction rate 

𝐹𝑖,𝑗,𝑡) is a saturating function of the amount of resource it consumed in the form of 

Monod equation (Monod, 1949) and also depends on the cost of cooperation: 

𝐹𝑖,𝑗,𝑡 = 𝛼 (1 − 𝛽∅𝐾𝑖,𝑗
) ∙

𝑠𝑖,𝑡 − 𝑀

𝐾𝑠 + (𝑠𝑖,𝑡 − 𝑀)
 , 

where 𝛼 denotes the maximum reproduction rate of an individual, 𝛽 (0 < 𝛽 ≤ 1) is 
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defined as the percentage decrease in reproduction rate caused by per unit cooperation 

degree (∅𝐾𝑖,𝑗
), 𝑀 is a constant and represents the metabolic consumption of an 

individual, which is a threshold for reproduction, and 𝐾𝑠 is the “half-saturation 

constant”, which is the value of the individual energy for reproduction (𝑠𝑖,𝑡 − 𝑀) at 

which reproduction rate (𝐹𝑖,𝑗,𝑡) is half of its maximum. 

Finally, the system determines whether individuals survive. The survival rate (𝑟𝑖,𝑗,𝑡) 

of the 𝑗𝑡ℎ individual in the 𝑖𝑡ℎ group decreases as it gets older: 

𝑟𝑖,𝑗,𝑡 = c ∙ 𝑒𝑥𝑝 (−
𝑎𝑔𝑒𝑖,𝑗,𝑡

𝑎𝑔𝑒𝑐𝑜𝑛𝑠𝑡
) , 

where c is a constant between 0 and 1. For the offspring born at the 𝑡𝑡ℎ time step, 

𝑟𝑖,𝑗,𝑡 =  𝑐 because 𝑎𝑔𝑒𝑖,𝑗,𝑡 = 0. 

 

2.3 Populations in fluctuating environments 

Ultimately, we introduce environmental fluctuation into the system. Environmental 

resource availability (𝑅0𝑡
) periodically fluctuates in a sine function: 

𝑅0𝑡
= 𝑅00

+ 𝐴𝑠𝑖𝑛 (
2𝜋𝑡

𝑃
), 

where A denotes the amplitude and P denotes the period. We record the time series of 

the proportion of cooperators, the average degree of cooperation, and the population 

size. To derive the trend in population dynamics, we average the time series from 500 

replicates of simulations. We further use time-lagged cross-correlation (TLCC) to 
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quantify synchrony between environmental fluctuation and population dynamics at the 

relatively stable state, and evaluate the variation of the population size by converting the 

time series of the population size variation standardized by the mean to the frequency 

spectra using a fast Fourier transformation (Dillon et al., 2016). 
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3. Results 

3.1 Environmental quality and the evolution of cooperation 

We found that the evolution of cooperative behavior is determined jointly by the 

amount of available environmental resources and the benefits of cooperation. 

Cooperation, in terms of both the proportion of cooperators in the population and the 

average degree of cooperation that each individual exhibits, is more likely to evolve 

when environmental condition are harsh (i.e. low resource availability) and when the 

benefits of cooperation are large (Figs. 2 and 3). This is because individuals are 

generally unable to produce offspring with the few resources generated by cooperators 

in harsh environments (Fig. 4a). Thus, free riders cannot persist without cooperators 

under harsh environmental conditions. In addition, although both cooperators and free 

riders share the group resources generated by cooperators (but only the cooperators have 

to pay personal costs), cooperators in groups with more group resources can still have 

more offspring than individuals in groups with fewer cooperators and group resources in 

harsh environments (Fig. 4a). However, resources generated by cooperators play a 

smaller role in impacting reproduction in benign environments because available 

environmental resources are already abundant (Fig. 4b). As a consequence, cooperation 

is maintained in harsh environments, particularly when the benefit of cooperating is 

high.  
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3.2 Joint influence of environmental quality and cooperation on population 

dynamics 

Next, we explored how environmental quality and cooperation jointly influence 

population dynamics. We found that population size in social organisms is affected by 

environmental quality both directly in terms of resource availability and indirectly by its 

effect on the number of cooperators and the degree of cooperation within the 

population. When the benefit of cooperating is small, population size is largely 

determined by environmental quality, resulting in a population that is similar in size to 

one without cooperators (Fig. 5a). However, as the benefit of cooperating becomes 

greater, population size is determined by both environmental quality and cooperation 

(Fig. 5b). When the benefit of cooperating becomes very large, population size increases 

abruptly with an increase in environmental quality (i.e. an increase in resources) and 

then stays relatively constant (Fig. 5c). This result can be explained by the fact that the 

average degree of cooperation is also modulated by environmental quality in such a way 

that individuals are less cooperative in benign than in harsh environments (Fig. 2). 

Therefore, the positive effect of additional resources in benign environments is canceled 

out by the negative effect of additional free riders. Moreover, additional cooperators in 

harsh environments compensate for any negative effects of resource scarcity. 

Furthermore, we showed that social populations possess an advantage in harsh 



doi:10.6342/NTU202001116
- 13 - 

 

environments with low resource availability when the benefit of cooperating is great 

enough to outweigh any effects of resource limitation on population size. This result 

implies that social populations can have wider ecological niches (i.e., can occur in 

environments with a wider range of resource availability) than non-social populations 

due solely to the fact that individuals cooperate. 

 

3.3 Stability of population dynamics in a fluctuating environment  

Finally, we compared the population dynamics of cooperative and noncooperative 

populations in a changing environment. We found that the dynamics of noncooperative 

populations tend to synchronize with environmental fluctuation (Fig. 6a and 6c), 

whereas the dynamics of cooperative populations do not (Fig. 6b and 6d). Population 

size increases after environmental conditions become extremely harsh, but decreases as 

conditions become more benign. In addition, the values of peaks in the frequency 

spectra of population size variation in noncooperative populations are higher than in 

cooperative populations (Fig. 6e and 6f), which indicates that cooperative populations 

are more stable than noncooperative ones in a changing environment because the pattern 

of cooperation is also modulated by environmental conditions (i.e., they are more 

cooperative in harsher environments), which can buffer the effect of changing 

environmental conditions on population size (Fig. 7). 
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4. Discussion 

4.1 The significance of the research 

Our results show that environmental conditions have an impact on the size and 

carrying capacity of social species in complex ways (Fig. 5) by affecting both the 

degree of cooperation and the dynamics between cooperators and noncooperators (i.e. 

free riders) (Fig. 3). Our model therefore provides a theoretical framework for 

understanding the ecological causes (e.g., environmental harshness) and consequences 

(e.g. niche width) of cooperation. Three main results emerge from our model: (1) there 

will be complex relationships among environmental conditions, cooperation, and 

population dynamics (Fig. 5); (2) cooperation can facilitate social species to expand 

their niche width in terms of resource abundance (Fig. 5) and stability (Fig. 6); and (3) 

social species have greater population resilience to environmental fluctuation than non-

social ones (Fig. 6). We explain these results in greater detail below. 

 

4.2 Complex relationships among environmental conditions, cooperation and 

population dynamics 

Our results show an unexpected relationship between environmental quality and 

population size in social organisms (Fig. 5). Despite resource scarcity, the size of a 

social population can be larger in harsh environments than in benign ones if the benefit 
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of cooperating is high enough. This pattern contradicts the Malthusian view of resource-

constrained population dynamics, which does not consider the impact of cooperation on 

population size. It also differs from Boserup’s idea that high population density drives 

cooperation to facilitate population growth, since the degree of cooperation is also 

determined by environmental conditions. In a benign environment, free-riders account 

for the majority of individuals in a population, and thus there is little benefit of 

cooperating for further population growth. Therefore, our model synthesizes Malthus’ 

view of resource-constrained population dynamics (Malthus, 1798) with Boserup’s idea 

that cooperation drives population growth (e.g. via agricultural innovation in humans) 

(Boserup, 1965). We show that environmental quality influence population dynamics 

both directly (via resource availability) and indirectly (via the degree of intraspecific 

cooperation within the population). 

The magnitude of the benefit of cooperating play an important role in shaping the 

relationship between environmental quality and population size. When the benefit of 

cooperating is low, the impact of cooperation on population size is weak, and thus the 

size of a social population—similar to that of non-social one—is mainly determined by 

environmental conditions (Fig. 5a). However, when the benefit of cooperating is high, 

cooperation can strongly influence population size (Fig. 5c). In addition, the degree to 

which cooperators invest in creating group resources depends on the environmental 
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conditions, such that they contribute more in harsh environments and less in benign 

environments (Fig. 3). Consequently, the direct relationship between environmental 

quality and population size is less clear than has been previously assumed. 

Two important implications can be drawn from this observation. First, ecologists 

often assume that better environmental conditions lead to larger populations (Gotelli, 

2008; Molles, 2016). Yet, to the best of our knowledge, few empirical studies examine 

the relationship between resource availability and size of social populations. Our 

finding highlights the need to empirically test such assumptions in social species by 

quantifying lateral forces—the degree of intraspecific cooperation—to understand their 

impact on population size. Second, the booming human population sizes of the past 

century are often considered as evidence that human populations are not limited by 

resources (Kögel & Prskawetz, 2001; Steinmann, Prskawetz, & Feichtinger, 1998). 

However, we caution against such a view (Boserup, 1965), since our model suggests 

that the effect of resource availability on the degree of cooperation within a population 

can also influence population dynamics and constrain population sizes. Thus, 

empirically testing the direct and indirect relationships among environmental quality, 

cooperation, and population dynamics is urgently needed in social species, including 

our own. 
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4.3 Cooperation can facilitate social species to expand their niche width  

If we consider resource availability as a dimension of niche space, we can deduce 

that social species have a wider fundamental niche breadth than non-social ones (Fig. 

5). However, it should be noted that this study has not considered the confounding 

effects of body size and thermal affinity on niche breadth. Despite its limitation, this 

study does suggest cooperation helps social species to maintain positive population 

growth even when the environments are harsh, i.e. with scarce resources if the benefit of 

cooperation is large. This result supports and provide a more complete theoretical 

foundation for the social conquest hypothesis. The ecological consequences of 

cooperation, such as how cooperation influences the abundance and the niche width, has 

been rarely tested empirically. Although Wilson has long argued that ants and human are 

the two most dominant species on earth because of their ability to cooperate and form 

groups (Wilson, 1987, 2012), to our knowledge, few formal analyses or evidence exist. 

One exception is a study in Asian burying beetles, it has been found that social groups 

are more cooperative in harsher, hotter environments with more intense inter-specific 

competition than in benign environments (Sun et al., 2014). As a consequence, social 

groups are able to expand their thermal niche to harsher, hotter environments than the 

solitary groups.  

Since wider niche width often leads to larger geographic range size and higher 
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abundance (Slatyer, Hirst, & Sexton, 2013), we also predict that social species will 

likely have larger geographic range size of species. Indeed, it has been found that in 

starlings, cooperation occurs more frequently in the harsh environments and that 

cooperative species have larger range sizes than non-cooperative ones (Lin, Chan, 

Rubenstein, Liu, & Shen, 2019). However, they also found that cooperation does not 

influence range size of species in hornbills and that hornbills cooperate only when 

resources are abundant, presumably due to the habitat saturation caused by high 

population density, which are different from the scenario described in our model. In 

short, more studies comparing the niche width and geographic range size of social and 

non-social species will help us understand the generality of this prediction.  

 

4.4 Social species have greater population resilience to environmental fluctuation  

We found that in fluctuating environments, the size of social populations is more 

stable than that of non-social populations (Fig. 6) because environment-associated 

cooperation buffers the impact of environmental fluctuations on social populations. In 

other words, the key mechanism leading to population resilience of social species is that 

they are more cooperative in harsh than benign environments (Fig. 2, 3, and 7). A study 

of social microbes also found that social populations are more resilient to environmental 

disturbance (i.e. experimentally lower population density) than non-social ones because 
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more cooperators generate greater public resources (public goods) (Sanchez & Gore, 

2013). However, this study assumed that environmental resource availability was stable 

and the only change in the experiment was lowering the population density. Thus, 

population resilience in this study meant that populations could survive through periods 

of low density but not environmental harshness per se, and the population dynamics 

were driven by density-dependent processes such that more cooperators in the 

population generated greater public goods. Several theoretical studies have investigated 

this density-dependent process (Epstein, 1998; Hauert et al., 2006; Zhang & Hui, 2011), 

showing similar patterns of dynamics: abundant public goods generated by cooperators 

favor the rise of free-riders who do not invest in producing public goods, eventually 

resulting in an overall reduction of public goods. As public goods became scarce, 

cooperators are favored by selection again. However, since environmental conditions 

such as resource availability are assumed constant, these studies cannot determine how 

bottom-up forces influence the interaction between population and evolutionary 

dynamics. In contrast, our model suggests that environmental quality can influence both 

the evolution of cooperation and population dynamics, a result that should be 

incorporated in future empirical studies. 

 

4.5 Model limitations 
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Our model indicates that the relationship between resource availability and size of 

social population is more complex than previously assumed. However, the finding of 

this study has been primarily concerned with the indirect effect of environmental quality 

via degree of intraspecific cooperation on population growth. This model has not 

considered other individual traits related to population growth.  

Some studies show that cooperation is more likely to evolve in benign 

environments (Leticia Avilés et al., 2007), which contrasts our results. This 

inconsistency may be due to the differences in the benefits of forming social groups. 

Dual-benefit hypothesis suggest that animals form social groups for two main reasons: 

coping with environmental harshness or intraspecific competition and outcompete 

conspecifics (Shen, Emlen, Koenig, & Rubenstein, 2017). Some animals are more likely 

to form social groups to overcome environmental challenges, whereas others are more 

likely to do so to compete with their conspecifics. In our model, we have only 

considered that individuals cooperate to coping with environmental harshness (i.e., low 

resource availability). Therefore, the lack of consideration of both dual benefits means 

that we cannot be certain that cooperation must evolve under certain conditions. 

 

4.5 Concluding remarks 
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As the earth continues to warm, its climate is becoming increasingly unpredictable 

(Salinger, 2005; Schär et al., 2004). Some studies have argued that climate change-

driven resource scarcity will lead to increased armed conflict in human societies, a truly 

neo-Malthusian perspective (Nordås & Gleditsch, 2007; Raleigh & Kniveton, 2012; 

Scheffran & Battaglini, 2011). Yet, other studies have argued that the environmental 

problems caused by climate change will not exacerbate violent conflict (Benjaminsen, 

Alinon, Buhaug, & Buseth, 2012; Gleditsch, 2012), and may even promote peace and 

greater cooperation (Slettebak, 2012). Based on our models exploring environmental 

quality, social interactions, and population dynamics, we predict that harsh 

environments—those with low resource availability—will also promote more 

cooperation in human societies depending on the types of cooperative benefits that can 

be generated under different environmental conditions. Empirical studies testing our 

model predictions by comparing patterns of cooperation under different environmental 

scenarios, as well as those examining population fluctuation and stability between social 

and non-social species, will be of great importance for understanding the future 

dynamics of social species, including our own.  
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6. Tables 

Table 1: Summary of model parameters. 

Name Value Description 

𝑅0  [1, 20] Environmental resource availability 

𝑏𝐾  [0.1, 6.5] Cooperation efficiency 

∅𝐾  {0.0, 0.1, 0.2, …, 

1.0} 

Degree of cooperation 

I 40 Maximum resource increment rate 

𝛼  3 Maximum reproductive rate of an 

individual 

𝛽  0.5 The percentage decrease in the 

reproductive rate caused by per unit 

cooperation degree 

M 1.0 Metabolic consumption of an individual 

𝐾𝑠  2 Half-saturation constant 

c 0.7 Maximum survival rate 

𝑎𝑔𝑒𝑐𝑜𝑛𝑠𝑡  2 A constant related to age 

A 5 The amplitude of environmental 

fluctuation 

P 1000 The period of environmental fluctuation 
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7. Figures 

 

Fig. 1: A schematic diagram for the model. The diagram shows the process a 

population undergoes within one simulation time step. The red, yellow, green, and grey 

portions in the arrow on the left represent reproduction, dispersal, and survival stages in 
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individual life cycle, respectively. Red and green dots represent cooperators and 

noncooperators, respectively, and lighter colors represent newborn individuals.  
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Fig. 2: Proportion of cooperators in populations in relation to environmental 

resource availability and cooperation efficiency. Cooperative behavior is more likely 

to evolve when environmental conditions are harsh (i.e. low environmental resource 

availability) and when cooperation efficiency, an intrinsic property of individuals, is 

high.  
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Fig. 3: The outcome of the evolution of cooperation influenced by varying 

environmental resource availability. (a)-(c) Mean proportion of cooperators in 

populations in relation to environmental resource availability as cooperation efficiency 

is (a) low (𝑏𝐾 = 1), (b) medium (𝑏𝐾 = 3), and (c) high (𝑏𝐾 = 5). (d)-(f) Mean degree 

of cooperation that individuals exhibit in relation to environmental resource availability 

as cooperation efficiency is (d) low (𝑏𝐾 = 1), (e) medium (𝑏𝐾 = 3), and (f) high (𝑏𝐾 =

5). Points represent means and bars represent standard deviations. Each mean and 

standard deviation is calculated on the output data of 500 simulations.  
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Fig. 4: Comparison of the relationship between total reproductive output and 

cooperation benefit of groups in different environments. (a)-(b) Total reproductive 

output of groups in relation to their cooperation benefit in (a) harsh and (b) benign 

environments. Each point represents a group’s condition. The results are extracted from 

the early stage (the end of the 100th time step) of the simulations to see how cooperation 

benefits influence the reproductive output at the evolving stage.  
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Fig. 5: The combined effects of environmental resource availability and degree of 

cooperation on population size. (a)-(c) Population size in relation to environmental 

resource availability when cooperation efficiency is (a) low (𝑏𝐾 = 1), (b) medium 

(𝑏𝐾 = 3), and (c) high (𝑏𝐾 = 5). Points represent means and bars represent standard 

deviations. Each mean and standard deviation is calculated on the output data of 500 

simulations.  
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Fig. 6: Population dynamics and relative variability in population size in a 

fluctuating environment. (a)-(b) Time series of the population size of (a) non-social 

populations and (b) social populations in the fluctuating environment. (c)-(d) The time-

lagged cross correlation between the population dynamics and the environmental 
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fluctuation for (c) nonsocial populations and (d) social populations. (e)-(f) The 

frequency spectra of the population size variation standardized by mean, which are 

derived from fast Fourier transformation, are shown for (e) nonsocial populations and 

(f) social populations. Each line is the average of the output data of 500 simulations.  
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Fig. 7: Degree of cooperation changes with the fluctuation of environmental 

resource availability. Time series of (a) the proportion of cooperators and (b) the 

individual average degree of cooperation of social populations in a fluctuating 

environment. Each line is the average of the output data of 500 simulations. 
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Fig. S1: The evolutionary outcome and the population size of non-structured 

populations. (a) The proportion of cooperators, (b) the individual average degree of 

cooperation, and (c) the population size in relation to the environmental resource 

availability as the populations are not structured. 




