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中文摘要

在調和分析中一個重要的核心問題是研究奇異積分算子的最佳加權上界問題，而此

問題相當於研究奇異積分算子在 L2 加權的有界性。

在 2000 年，S. Petermichl 使用哈爾小波平均來表示希爾伯特轉換的核，此方法後

來被發現是研究此問題的重大突破，爾後里斯轉換 (Riesz transform) 的核，甚至

一般奇異積分算子的核也被找出類似的表示方法。在此基礎之上，S.Petermichl 於

2007 解決希爾伯特轉換的最佳加權上界問題，T. Hytonen 則於 2012 解決一般奇

異積分最佳加權上界問題。

本篇論文會先介紹如何使用哈爾小波平均來表示希爾伯特轉換的核 (2000, S.

Petermichl)，此方法雖然簡單卻隱含對希爾伯特轉換深刻的觀察。接著我們會介紹

如何使用哈爾小波平均來表示里斯轉換的核 (2002, S. Petermichl, S. Treil and A.

Volberg)，這不單單只是推廣希爾伯特轉換的結果到高維度，而是將前方法作一個

統整與重新表示，找出一個推廣到高維度的方式，而這證明過程中，出現一個特殊

積分不等於零的假設，雖然最後作者提出另一條路徑解決，但原本特殊積分不等於

0 的問題在維度大於 2 還是未知的，本篇論文中我們解決積分非零的問題在維度等

於 3 的時候。最後我們介紹如何表示一般的奇異積分算子，並解決最佳加權上界的

問題 (2012, T. Hytonen)。

關鍵字: 卡德隆-吉格曼算子, 希爾伯特轉換, 里斯轉換, 二次平均, 最佳加權上界, 哈

爾偏移算子.
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Abstract A central research problem in the area of Harmonic analysis is

to prove the sharp weighted bound for singular integrals. In 2000 S.Petermichl

used dyadic averages of Haar shifts to represent the kernel of Hilbert transform

which in turn enabled her to obtain the sharp A2 bound for Hilbert transform.

Shortly after, the kernels of Riesz transforms were also obtained via averages of

Haar shifts and finally the full generality was made by T. Hytonen who solved

the longstanding A2 conjecture for singular integrals. In this dissertation, we

first introduce how to use the averages of Haar shifts to represent the kernel

of Hilbert transform (2000, S.Petermichl). Second, we will introduce how to

represent the kernels of Riesz transforms via dyadic averages of Haar shifts

(2002,S. Petermichl, S. Treil and A. Volberg). This result not only extends

Petermichl’s ideas to higher dimensions, but also explicitly constructs the Haar

shifts for Riesz transforms. However in order to make the result nondegenerate

an integral that arises in the process of averaging Haar shifts must be nonzero.

S. Petermichl, S. Treil and A. Volberg provided a proof to show the integral

is nonzero in dimension two but for other dimensions the problem remains

unknown. A new part of this dissertation is to prove the integral is nonzero in

dimension three. Finally we also discuss the breakthrough work of T. Hytonen

in 2012 that solves the A2 conjecture for singular integrals.

key words: Calderón-Zygmund operator , Hilbert transform, Riesz transform,

dyadic average, sharp A2 bound, Harr shift operator.
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1 Introduction

One of the important milestones that appears in the area of Harmonic analysis

in the past decades is the appearance of dyadic Haar shifts. It not only con-

nects the continuous singular integrals with dyadic operators but also enables

people to resolve the longstanding A2 conjecture concerning with the sharp

weighted bound for Calderón-Zygmund singular integrals. More precisely, the

breakthrough work of Petermichl [12] showed that the kernel of the Hilbert

transform is actually an average of some certain dyadic operators:

c0
t− x

= lim
L→∞

1

2 logL

∫ L

1
L

lim
R→∞

1

2R

∫ R

−R

∑
I∈Dα,r

hI(t)(hI−(x)−hI+(x))dαdr. (1.1)

Therefore the sharp weighted bound for Hilbert transform can be reduced to

proving a uniform sharp weighted bound for above dyadic operators which are

called dyadic Haar shifts. Such representation of dyadic average for Hilbert

transform kernel later was generalized by Stefanie Petermichl, Sergei Treil,

Alexander Volberg, [13] to a slightly wider class of kernels but still restricted

on one dimensional singular integrals. Finally the full generality was made by

Hytönen in [6] who showed that any Calderón-Zygmund operator is a simple

variant of dyadic averages, and part of the work was built on a previous result

obtained by Hytönen, Perez, Treil and Volberg [5].

Moreover as shown in the work of S. Petermichi that an explicit dyadic Haar shift

can actually be given for Hilbert transform. As a result it may be also expected

that some explicit dyadic Haar shifts can also be given for Riesz transforms.
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Indeed, it was shown in the work of Petermichl, Treil, Volberg [13] that each

component of the kernel of Riesz transforms can be explicitly represented by an

average of dyadic shift.

In this dissertation, we will go through the history of dyadic averages of Haar

shifts for singular integrals and give a proof to a question posed in [13]. More

precisely, in section 2 we will demonstrate how to use Haar shifts to represent

the kernel of Hilbert transform. In section 3, we also illustrate another way

to represent the kernel of Hilbert transform and extend the method to Riesz

transforms that are vector singular integrals in higher dimensions. In section 4,

we prove a new result that shows an integral arising from averages of Haar shifts

for Riesz transforms is nonzero in dimension three. In last section, we discuss

the work of T. Hytonen who showed that any Cardelon-Zygmund operator is a

simple variant of averages of haar shifts and gave the solution of the longstanding

A2 conjecture.

2 Hilbert transform

Hilbert transform as dyadic operator This part mainly comes from [12].

It connects the discrete Haar shift with continuous singular kernel, 1
x . We first

introduce a variety of dyadic grids in R. The basic dyadic grid, starting at 0

with intervals of length 1 · 2n, will be denoted by D1
0 i.e.

D1
0 := {2k([0, 1) +m) : k ∈ Z,m ∈ Z}.

6
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hJ is the Haar function for J ∈ D1
0, namely

hJ :=
1√
|J |

(χJ− − χJ+),

where J− is the left half of J and J+ is the right half of J .

We obtain a variation of D1
0 by first shifting the starting point 0 to α ∈ R and

secondly choosing intervals of length r · 2n for a positive r. The resulting grid

is called D1,α, and the corresponding Haar functions hJ are chosen so that they

are still normalized in L2.

Since Haar functions forms a basis in L2(R), for f ∈ L2(R) we have

f(x) =
∑
I∈Dα,r

〈f, hI〉hI(x), ∀α ∈ R, r > 0.

We define for such α, r a dyadic shift operator Sα,r by

(Sα,rf)(x) = ΣI∈Dα,r〈f, hI〉
(
hI−(x)− hI+(x)

)
.

It’s L2 operator norm is
√
2 and its representing kernel is

Kα,r(t, x) =
∑
I∈Dα,r

hI(t)
(
hI−(x)− hI+(x)

)
. (2.1)

Lemma 1. The convergence of sum (see above) is uniform for |x − t| ≥ δ for

every δ > 0. For x 6= t let

K(t, x) = lim
L→∞

1

2 logL

∫ L

1/L
lim
R→∞

1

2R

∫ R

−R
Kα,r(t, x)dα

dr

r
.

The limits exist pointwise and the convergence is bounded |x− t| ≥ δ for every

δ > 0 and K(t, x) = c0
t−x for some c0 > 0.

Proof. It is easy to see that
∑

I∈Dα,r |hI(t) (hI−(x)− hI+(x)) | ≤ 2
√
2/|t −

x|, ∀α ∈ R and ∀r > 0. 0. In particular, the sum converges absolutely and

7
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uniformly |x − t| ≥ δ for every δ > 0. > 0. The existence of the limits is due

to fact that summands repeat for different dyadic grids. The main point is to

show |K(t, x) = c0/(t− x)| with c0 6= 0. 0. It is enough to prove the following

properties of K(t, x):

1 translation invariance, i.e., K(t, x) = K(t + c, x + c), ∀c ∈ R, so K(t, x) =

K(t− x);

2 antisymmetry, i.e, K(t, x) = −K(−t,−x), so K(x− t) = −K(t− x);

3 dilation invariance, i.e., K(t, x) = λK(λt, λx), ∀λ > 0;

4 K(1) = c0 > 0.

In order to check the first three properties we observe the following simple rela-

tionships between the Haar functions of different dyadic grids for translations,

reflections and dilations:

For any interval I ∈ Dα,r there exists an interval of the same length in Dα−c,r

so that hα,rI (t + c) = hα−c,rI (t). In a similar sense hα,rI (−t) = −h−α,rI (t) when

changing grids from Dα,r to D−α,r and hα,rI (λt) = λ−1/2h
α/λ,r/λ
I (t) when chang-

ing from Dα,r to Dα/λ,rλ.

Using these facts, the proof of the first three properties are simple computations,

mainly involving changes of integration variables. Note that these properties

show that K(t, x) = c0
t−x , we turn to the essential part to show that c) 6= 0.

The product hI(t) (hI−(x)− hI+(x)) 6= 0 if and only if the point (t, x) lies in

this square I×I. Its value is ±
√
2/|I|, where the correct sign is indicated inside

8
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the smaller rectangles. Let us first compute

Kr
n(t, x) := lim

R→∞

1

2R

∫ R

−R

∑
I∈Dα,r

|I|=r2n

hI(t) (hI−(x)− hI+(x)) dα, (2.2)

for fixed r > 0 and n ∈ Z and assuming t > x. Due to the averaging process in

α, this is only going to depend on t− x. If:

t− x = 0 , then Kr
n(t, x) = 0 and similarly;

t− x = |I|/4 , then Kr
n(t, x) = 3/4 ·

√
2/|I|;

t− x = |I|/2 , then Kr
n(t, x) = 0;

t− x = 3|I|/4 , then Kr
n(t, x) = −1/4 ·

√
2/|I|;

t− x ≥ |I| , then Kr
n(t, x) = 0.

Now we compute

Kr
n(t, x) := lim

R→∞

1

2R

∫ R

−R
Kα,r(t, x)dα

=
∑
n∈Z

lim
R→∞

1

2R

∫ R

−R

∑
I∈Dα,r

|I|=r2n

hI(t) (hI−(x)− hI+(x)) dα.

So we compute Kr(t, x) using Kr
n(t, x) for different values of n and summing

over n ∈ Z. It suffices to compute Kr(t, x) for values t − x = 3/4 · r2n

andt− x = ·r2n:

Kr(
3

4
r2n) = −1

4

√
2

r2n
+

3

16

√
2

r2n
+

9

64

√
2

r2n

(
1 +

1

4
+

1

16
+ . . .

)
=

√
2

8r2n
, (2.3)

Kr(r2n) =
3

16

√
2

r2n

(
1 +

1

4
+

1

16
+ . . .

)
=

√
2

4r2n
. (2.4)

9



doi:10.6342/NTU202001176

The above equations imply that

3
√
2

32(t− x)
≤ Kr(t− x) ≤

√
2

4(t− x)
∀r > 0. (2.5)

From above, it is clear that c0 > 0. □

3 Riesz transform

The“simplest”operator whose average is the Hilbert transform This

part comes from [13]. It uses average technique to generalize the method in

section 1 to the n-dimensional Riesz kernels. Let L denote a dyadic lattice in

R. By L(k) we understand the dyadic grid of intervals from L having length

2−k, k ∈ Z. For the convenience we would like to use the notations D =: L(0).

We consider first such a dyadic lattice that the grid D has the point 0 as one of

the end-points of its intervals. To emphasize that we write D0. Later we will

have Dt —the point t plays the role of 0.

Let us consider the following linear operation

f → ϕ(x) :=
∑
I∈D0

〈f, hI〉χI(x).

Here hI denotes the Haar function of the interval I, that is

hI(x) =


−1

|I|1/2 , for x ∈ I−

1
|I|1/2 , forx ∈ I+,

and I−, I+ are left and right halves of the interval I correspondingly. Symbol

χI as usual stands for the characteristic function of the interval I.

10
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This linear operation will be our main building block, so it deserves a name P.

Actually, we will call it P0, thus ϕ0(x) := P0f :=
∑

I∈D0
〈f, hI〉χI(x). Index 0

indicates the end-point of one of the intervals from D0. So similarly we consider

ϕt(x) := Ptf

defined exactly as before, but with respect to the grid Dt of unit intervals such

that the end-point of one of them is in t ∈ R.

Notice that the family of grids Dt, t ∈ R, can be naturally provided with

the structure of probability space. This space is (R/Z, dt) = ((−1, 0], dt). As

usual we can use the letter ω for a point from (−1, 0], and dP (ω) denotes the

probability —in this case just Lebesgue measure on the interval (−1, 0]. We

want to fix x ∈ R and to write a nice formula for

E (ϕω(x)dP (ω)) .

So we want to average operators Pω. It can be noticed immediately that EPω is a

convolution operator. In fact, let us denote by La the shift operator: La(f)(x) =

f(x+ a). Then obviously

Pt−aLa = LaPt.

Applying averaging (and the fact that our dP (ω) is invariant with respect to

the natural shift on R/Z induced by the shift on R) we immediately get

EPωLa = LaEPω. (3.1)

So the average operator EPω is a convolution operator, we will write this as

follows

E (ϕω(x)dP (ω)) = EPω(x) = F0 ∗ f(x). (3.2)

11



doi:10.6342/NTU202001176

It is easy to compute F0. By the definition of ϕt(x) one can write

ϕt(x) =

∫
f(s)ht−

1
2 (s)ds, x− 1

2
< t− 1

2
< x+

1

2
, (3.3)

where

ht(s) =


−1 , for s ∈ (t− 1

2 , t)

+1 , fors ∈ (t, t+ 1
2).

But ht(s) = k0(t− x), where

k0(s) =


+1 , for s ∈ (−1

2 , 0)

−1 , fors ∈ (0, 12).

So (3.3) can be rewritten as follows

ϕt+ 1
2
(x) =

∫
f(s)k0(t− s)ds, x− 1

2
< t < x+

1

2
. (3.4)

Thus comparing this with (3.2) ) (and using again the shift invariance of dP (ω))

we get

F0 ∗ f(x) = E (ϕω(x)dP (ω))

= E
(
ϕω+ 1

2
(x)dP (ω)

)
=

∫ x+ 1
2

x− 1
2

(∫
f(x)k0(t− x)ds

)
dt.

From which we get the formula for F0:

F0(x) =

∫ x+ 1
2

x− 1
2

k0(t)dt = k0 ∗ χ0(x), (3.5)

12
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where χ0 is the characteristic function of the unit interval (−1/2, 1/2).

Let us start over the beginning of this section with one slight difference —

we rescale all our operators, and now Pρt , ϕ
ρ
t , F

ρ
0 , k

ρ
0 are precisely as above, but

when the unit length intervals are replaced by intervals of length ρ > 0. We

just change the scale —nothing else. In particular,

ϕρ0(x) := Pρ0f :=
∑
I∈Dρ

0

〈f, hI〉χI(x)/
√
ρ

where Dρ
0 is the grid of intervals of length ρ such that 0 is the end-point of two

intervals from this grid. We want to remind that hI here is always normalized

in L2.

Again we have a natural probability space of all grids of intervals of size ρ:(
R/ρZ; 1ρdt|(−ρ, 0]

)
.

ϕρt (x) := Pρtf :=
∑
I∈Dρ

t

〈f, hI〉χI(x)/
√
ρ.

Averaging over all grids of intervals of size ρ makes Pρt a convolution operator

—there is no difference with our reasoning above. It is easy to see that this is

the convolution operator with the kernel

F ρ
t (x) :=

1

ρ

∫ x+ rho
2

x−ρ
2

1

ρ
k0

(
t

ρ

)
dt = ρF0

(
x

ρ

)
. (3.6)

The first 1
ρ is because of the form our probability has. The second 1

ρbecause we

should average a function normalized in L1.

Let us now consider all convolution operators with kernels F ρ
0 . Let us fix r ∈

13
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[1, 2) and let us take a look at the convolution operator with kernel

Fr =
∞∑

n=−∞
F 2nr
0 . (3.7)

The grids D2nr
t (t is fixed) can be united into a “dyadic”lattice Lrt . Here t

means the reference point —one of the end-point of intervals from our lattice,

and r means the length of one of the intervals of the lattice—let us call r the

calibre of the lattice. Obviously the convolution operator with the kernel Fr is

the averaging over all“dyadic”lattices (not grids!) Lrt of fixed calibre r of the

operators given by

PLrtf =
∑
I∈Lrt

〈f, hI〉χI(x)/
√
|I|

Fr ∗ f = EPLrtf.

This is just because the kernel Fr is the sum of kernels, each of which appeared as

averaging of the grid opearators assigned to grids of size 2nr, n = 0,±1,±2, . . . ,

where we summed up over the grids, and the lattice of calibre r is the union of

such grids.

Now let us finally average over r ∈ [1, 2):

F (x) :=

∫ 2

1
Fr(x)

dr

r
.

Now we have from one side

F ∗ f = (AveragePL) f, (3.8)

where averaging is performed over all lattices Lrt .

14
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where averaging is performed over all lattices Φ.

F (x) =

∫ 2

1
Fr(x)

dr

r
(3.9)

=

∫ 2

1

∞∑
n=−∞

F 2nr
0

dr

r
=

∫ ∞

0
F ρ
0

dρ

ρ
=

∫ ∞

0
F0

(
x

ρ

)
dρ

ρ2
. (3.10)

We used (3.6) here. Finally we have

F (x) = −1

x

∫ ∞

0
F0(t)dt =

1

4

1

x
. (3.11)

Theorem 3.1. Averaging of operators PLrt over both parameters t and r is

equal to one quarter of kernel of the Hilbert transform.

We have a good thing:

The Hilbert transform is the averaging over the family of lattices of very simple

operators What is the dyadic shift? The function that generated everything

in the first section was function F0 —the kernel of the convolution operator

which is the averaging of grid operators Pt. It is easy to see that F0(x± 1) are

also kernels of the convolution operators which are the averagings of some grid

operators. Given f , let us consider ϕt(x) as above and also

ϕt(x+ 1) =
∑
I∈Dt

〈f, hI−1〉χI(x) =
∑
I∈Dt

〈f, hI〉χI+1(x) =: P+
t (f)

ϕt(x− 1) =
∑
I∈Dt

〈f, hI+1〉χI(x) =
∑
I∈Dt

〈f, hI〉χI−1(x) =: P−
t (f)

So we test f on hI and put the result on I ± 1. What if we average these

operators? Repeating (3.2) we get(∫ 1

0
P±
t dt

)
f = F0(x∓ 1) ∗ f. (3.12)

15
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Consider

S(x) := F0(x)−
1

2
[F0(x+ 1) + F0(x− 1)] . (3.13)

Supposedly S is a kernel of a convolution operator corresponding to averaging

over grids of a certain grid operator (we will show which one). If we build Sρ as

before for all calibres, we can consider again Sr :=
∑∞

n=−∞ S2nr. Operators Sr

are averagings over all lattices of calibre r of the operators which are sums of

our hypothetical grid operators. Averaging over r ∈ [1, 2) with respect to the

measure dr/r, we will get the operator with kernel∫ 2

1
Sr(x)

dr

r
=

∫ ∞

0
S(
x

ρ
)
dρ

ρ2
=

1

x

∫ ∞

0
S(t)dt =

1

4

1

x
. (3.14)

So we are left to invent a simple “grid”operator, whose average will give us

S(x).

Theorem 3.2. Let D(2)
t be a grid of intervals of length 2 such that t is the

end-point. Consider operators

f →
∑
J∈D(2)

t

〈f, hJ−〉χJ+

f →
∑
J∈D(2)

t

〈f, hJ+〉χJ−

f →
∑
J∈D(2)

t

〈f, hJ−〉χJ−

f →
∑
J∈D(2)

t

〈f, hJ+〉χJ+

The averaging over t of the first operator gives a convolution with kernel 1
2F0(x−

1), the averaging over t of the second operator gives a convolution with kernel

16
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1
2F0(x+ 1), and the averaging over t of the third and the fourth operator gives

a convolution with kernel 1
2F0(x) each.

Proof. Let us call the first operator Ht, and let us average EHt it over its

probability space ,
(
R/Z; 12dt|(−2, 0]

)
. Instead of considering the grid of intervals

of length 2 let us consider the grid of intervals of length 1 —we call it D1
t .

Consider operators

At :→
∑

I is odd,I∈D1
t

〈f, hI〉χI+1

Bt :→
∑

I is even,I∈D1
t

〈f, hI〉χI+1.

Clearly At+1 = Bt. Also it is clear that At + Bt = P+
t , where the last operator

is our grid operator from the beginning of this Section.

EHt =
1

2

∫ 1

0
(At + At+1) =

1

2

∫ 1

0
(At +Bt) =

1

2

∫ 1

0
P+
t dt.

From (3.12) we get that

EHt =
1

2
F0(x− 1) ∗ .

Similarly, if we call the second operator Gt we get from (3.12)

EGt =
1

2
F0(x+ 1) ∗ .

Using (3.2) and (3.5) we show that averagings of the third and the fourth op-

erators give us convolution operator with kernel 1
2F0. The theorem is proved.

□

17
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Theorem 3.3. Let us consider the following grid operator

f →
∑
J∈D(2)

t

〈f, hJ〉,

where

t ∈
(
R/Z;

1

2
dt|(−2, 0]

)
.

Then its averaging is the convolution operator with kernel 1√
2
S(x).

Proof. We weite hJ as 1√
2
(−χJ− + χJ+). Then it is an obvious algebraic remark

that

√
2 our operator = third operator of Theorem 3.2

+ third operator of Theorem 3.2

− third operator of Theorem 3.2

− third operator of Theorem 3.2

Averaging this and using Theorem 3.2 finishes the proof. □

As in the previous section, given the lattice L = Lrt , we can consider the lattice

operator

KLf :=
∑
J∈L

〈f, hJ+ − hJ−〉hJ

amalgamated from the grid operators of Theorem 3.2.

This operator is called the dyadic shift. It has been proved that averaging of

dyadic shifts over all lattices gives us operator which is proportional to the

Hilbert transform (we certainly mean that coefficient of proportionality is not

zero).

18
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Let us reproduce this result. Fixing r and averaging over lattices with fixed

calibre r (we leave for the reader to invent the natural probability space of all

lattices with fixed calibre r) we get the convolution operator with the kernel

1√
2

∞∑
n=−∞

1

2nr
S
( x

2nr

)
=:

1√
2
Sr(x).

Averaging convolution operators with kernels 1√
2
Sr over

(
[1, 2); drr

)
, we get the

operator with the kernel 1
4

1√
2
1
x . So we get averaging of the shift operators over

all lattices of all calibres = 1
4
√
2

kernel of the Hilbert transform.

Planar case We can and will reason by analogy. We have lattices Lρt of squares,

where t now is in Ωρ := R2/ρZ with normalized Lebesgue measure (Lebesgue

measure on the torus Ωρ divided by ρ2). We have the main grid operator

Ptf :=
∑
Q∈Dt

〈f, hQ〉χQ

where Dt is a grid of unit squares such that t ∈ R2 is a vertex for 4 of them,

where

hQ(x) =



−1
|Q|1/2 , for x ∈ Ql

1
|Q|1/2 , forx ∈ Qr,

0, otherwise

Here Ql,Qr are left and right halves of Q, function hQ is normalized in L2. We

consider the same type of grid operators for grids Dρ
t of squares of side ρ —the

only change is that we divide χQ by ρ to make it normalized in L2.

19



doi:10.6342/NTU202001176

Let us denote by k0 the function −hQ0
, where Q0 is the unit square centered at

0. Also χ0 denotes the characteristic function of this square. Consider

Φ0 := χ0 ∗ k0,

Φρ
0(x) :=

1

ρ2
1

ρ2
χ0

(
·
ρ

)
∗ k0

(
·
ρ

)
=

1

ρ2
Φ0

(
x

ρ

)
.

Exactly as before (in one dimensional case) function Φ0 is the kernel of the

convolution operator, which appears as averaging of Pt over Ω1. Function Φρ
0 is

the kernel of the convolution operator, which appears as averaging of Pρt over

Ωρ.

Again, we can consider kernel

k(x) :=

∫ ∞

0
Φρ

0(x)
dρ

ρ
=
ω
(
x
|x|

)
|x|2

.

And it is very easy to see that ω is an odd non-zero function on the unit

circle. Literally as before we can see that k is the convolution operator which is

the average with respect to measure dr
r |[1, 2) of the convolution operators with

kernels

kr(x) :=
∞∑

n=−∞
Φr·2n

0 (x).

In its turn, kr is the average of the lattice operators which are sums of corre-

sponding grid operators, here are those lattice operators:

PLr :=
∑
Q∈Lr

〈f, hQ〉χQ/
√
|Q|.
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Here r is fixed and denotes the calibre of the lattice. The averaging over the

lattices of this fixed calibre gives us the convolution operator with kernel kr.

So the averaging over the calibres (=
∫ 2
1 . . .

dr
r ) gives us the averaging over all

lattices, over all calibres. As a result we get the convolution operator with kernel

k =
ω( x

|x|)
|x|2 .

Again we would like to repeat all this but with slightly different lattice opera-

tors —just because there are nicer ones and because PLr are not L2 bounded.

Another problem we face now is that k is not necessarily a kernel of a Riesz

transform. So we will need to work a bit more than in the one-dimensional case

to obtain the Riesz transform kernel.

For a square Q consider its partition to 4 equal squares and let us call them

Qnw, Qne, Qsw, Qse according to northwest, northeast,. . . . Let us consider the

following grid operator

f →
∑

Q∈D(2)
t

〈f, hQne + hQse − hQnw − hQsw〉hQ,

t ∈ Ω(2) :=

(
R2/2Z2;

1

4
Lebesgue measure

)
.

Consider also the function (x = (x1, x2))

S(x1, x2) = Φ0(x1, x2)−
1

2
Φ0(x1 + 1, x2)−

1

2
Φ0(x1 − 1, x2)

+
1

2
Φ0(x1, x2 + 1)− 1

4
Φ0(x1 + 1, x2 + 1)− 1

4
Φ0(x1 − 1, x2) (3.15)

+
1

2
Φ0(x1, x2 − 1)− 1

4
Φ0(x1 + 1, x2 − 1)− 1

4
Φ0(x1 − 1, x2 − 1).

Theorem 3.4. The averaging of the grid operator above over Ω(2) gives the

convolution operator with kernel 1
2S(x).
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The proof is literally the same as the proof of Theorem 3.3.

Let us start with one observation about (3.15). Function Φ0 is the convolution

χ0 ∗ k0. But both functions χ0 and k0 are products of functions of one variable

Φ0(x1, x2) = f0(x2) · F0(x1). Moreover, function f0 is nonnegative. Actually

f0(x2) is a convolution square of the characteristic function of the unit interval

centered at 0. Formula (3.15) now looks like

S(x1, x2) =

(
f0(x2) +

1

2
f0(x2 + 1) +

1

2
f0(x2 − 1)

)
×
(
F0(x1)−

1

2
F0(x1 + 1)− 1

2
F0(x1 − 1)

)
.

For the future purposes we can say what happens in n > 2 case easily. We get

Sn(x) = Sn(x1, x2, . . . , xn) and

Sn(x) =

(
f0(x2) +

1

2
f0(x2 + 1) +

1

2
f0(x2 − 1)

)
(3.16)

×
n∏
i=2

(
F0(x1)−

1

2
F0(x1 + 1)− 1

2
F0(x1 − 1)

)
.

As in the previous section this S generates kernel s by formula

s(x) =

∫ ∞

0

1

ρn
S

(
x

ρ

)
dρ

ρ
=
ξ( x|x|)

|x|n
.

And it is very easy to see that ξn is an odd non-zero function on the unit sphere.

We will show it below. Literally as before we can see that s is the convolution

operator which is the average with respect to measure dr
r |[1, 2) of the convolution

operators with kernels

sr(x) :=
∞∑

n=−∞
Sr·2

n

0 (x).
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In its turn, sr is the average of the lattice operators which are sums of corre-

sponding grid operators, here are those lattice operators:

SLr :=
∑
Q∈Lr

〈f, hQne + hQse − hQnw − hQsw〉hQ. (3.17)

Here r is fixed and denotes the calibre of the lattice. The averaging over the

lattices of this fixed calibre gives us the convolution operator with kernel sr.

So the averaging over the calibres (=
∫ 2
1 . . .

dr
r ) gives us the averaging over all

lattices, over all calibres. As a result we get the convolution operator with kernel

s =
ξn( x

|x|)
|x|n .

Let Sn−1 denote as always the boundary sphere of the n-dimensional unit ball.

Denote by Sn−1
+ the right half sphere —the half that lies in {x ∈ R : x1 > 0}.

Let e1 be a unit vector in the direction of coordinate axis x1. Let σ denote

Lebesgue measure of Sn−1. It would be important to prove∫
Sn−1
+

ξn(ω)〈ω, e1〉dσ(ω) < 0. (3.18)

For n = 2 we can just prove that ξ2(ω) < 0 for any ω ∈ S1
+. Then (3.18) follows

immediately. To do this we use formula (3.16) and notice that f0(x) + 1
2f0(x+

1) + 1
2f0(x − 1) = (1 − 1

2x)+. Then the fact that ξ2(ω) < 0 follows from the

following lemma.

Lemma 2. For any k ∈ [0,∞) we have∫ 2

0

(
1− 1

2
kx

)
+

(
F0(x)−

1

2
F0(x− 1)

)
xdx < 0.

Proof. If k ≥ 2 then the first factor vanishes everywhere where the second factor

is positive. So we are done for such k. For 0 ≤ k ≤ 1, we have (1 − 1
2kx)+ =
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(1− 1
2kx) on [0,2], and we can make an easy calculation of the integral. For the

range 1 < k < 2 the calculation becomes unpleasant, but still straightforward,

we skip it just to avoid direct and simple calculations. □

For n = 2, ω can be identified with a point of [−π, π). Under this identification

the kernel ξ2 becomes an even function skew symmetric on [0, π] with respect to

the point π/2. Rotation of the kernel ξ2(ω) means just the new kernel ξ2(ω−ϕ).

Then

(ξ2 ∗ cos) (ϕ) = cosϕ ·
(∫ π

−π
ξ2(s) cos sds

)
(3.19)

= cosϕ ·
(∫

S1

ξ2(ω)〈ω, e1〉dσ(ω)
)
= c2 cosϕ,

and constant A2 :=
∫ π
−π | cos s|ds

|c2| . Notice that rotation of kernel ξ2 corresponds

to rotation of dyadic lattices on the plane. We have just proved the following

theorem.

Theorem 3.5. The Riesz transform x1
|x|3∗ is the operator integral c−1

2

∫
cosψ ξ2(Uψ x

|x|)
|x|3 ∗

dψ. In particular, this means that operator with the kernel A−1
2

x1
|x|3 lies in the

closed convex hull (in the weak operator topology) of the planar dyadic shifts.

Thus, uniform boundedness of dyadic shift operators in any Banach space im-

plies the boundedness of the Riesz transform in the same space.

For the case n > 2 we again start with (3.18). Let us average ξn with respect

to all rotations that leave e1 fixed. We get a new function ηn(ω) = f(〈ω, e1〉).

Obviously, ∫
Sn−1
+

f(〈ω, e1〉)〈ω, e1〉dσ(ω) < 0. (3.20)
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Let SO is the group of orthogonal rotations of Sn−1.

Let us calculate cn =
∫
SO f(〈Ue1, e1〉)〈Ue1, e1〉dU . Obviously,

cn =

∫
Sn−1

f(〈ω, e1〉)〈ω, e1〉dσ(ω) 6= 0,

because of (3.20). Now let us consider the rotated functions f(〈Ue1, e1〉). Con-

sider

g(ω) =

∫
SO
f(〈Uω, e1〉)〈Ue1, e1〉dU.

Then it is clear that g(Rω) = g(ω) for every R ∈ SO that fixes e1. In fact,

g(Rω) =

∫
SO
f(〈URω, e1〉)〈Ue1, e1〉dU

=

∫
SO
f(〈V ω, e1〉)〈V R∗e1, e1〉dV

=

∫
SO
f(〈V ω, e1〉)〈V e1, e1〉dV = g(ω).

On the other hand, it easy to see that

g(ω) =

∫
Sn−1

f(〈ω, ξ〉)〈ξ, e1〉dσ(ω). (3.21)

Such a function (as we saw) depends only on 〈ω, e1〉. But moreover, it can be

written as
∫
Sn−1 f(〈e1, ξ〉)〈ξ, ω〉dσ(ω). This is a restriction of a linear polynomial

onto the sphere. This linear polynomial depends on 〈ω, e1〉 only, and, thus, is

c · 〈ω, e1〉. The constant c is just our cn. One can see that by plugging ω = e1

into our formula (3.21) for g(ω).

Consider An :=
∫
SO |〈Ue1,e1〉|dU

||cn . Notice that rotation of kernel ξn corresponds to

rotation of dyadic lattices on the plane. We have just proved the following

theorem.
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Theorem 3.6. The Riesz transform x1
|x|n+1∗ is the operator integral

c−1
n

∫
SO

〈Ue1, e1〉
ηn
(
U x

|x|

)
|x|n+1

∗ dU.

In particular, this means that operator with the kernel A−1
n

x1
|x|n+1 lies in the closed

convex hull (in the weak operator topology) of the planar dyadic shifts. Thus,

uniform boundedness of dyadic shift operators in any Banach space implies the

boundedness of the Riesz transform in the same space.

4 An integral arising from dyadic average of Riesz
transforms

Introduction The question that was risen in their work [13] is whether the

following integral is zero or not (the detail definitions of some notations in this

integral are given in next section):∫
Sn−1
+

< ω, e1 > ξn(ω)dσ(ω). (4.1)

They were able to show the integral is nonzero (in fact it is negative) when

dimension n = 2 but for dimension n ≥ 3 the problem remains unsolved.

Therefore the purpose of this section is to show the above integral when di-

mension n = 3 is also negative. This was done via a careful and an efficient

decomposition for the integral. For some terms in our decomposition we are

able to show explicitly that their values are negative. For some other terms

we are able to prove an upper bound. Combining all the estimates shows the

integral is indeed negative. Now let us mention the difficulties of the integral
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for dimension n = 3. First, the integrand functions in the integral are piece-

wise defined on some compact intervals, and the range of the integration is only

half-sphere. Secondly, after we carefully analyse the integrand functions, one

of the main difficulties then arises due to the mutual overlaps of their supports.

More precisely, after using the sphere coordinates in the integral, the supports

of the functions will create several difficulties since the behaviors of the points

in these supports will now depend on the values of some complicated trigonom-

etry functions. For these difficulties, it requires us to very carefully distinguish

the range of the integrals in our decomposition. Finally for several integrals

in our decomposition, we are able to show that their exact definite integrals

can be computed. For the other integrals, we are not able to find their exact

definite integrals, but we are able to find their upper bounds whose values can

be explicitly estimated.

Preliminary In this section we first introduce some notations that will be used
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frequently in this paper. Let F0, F , f0, and f be defined as followings.

F0(x) =



1
2 − |x+ 1

2| −1 ≤ x < 0

−(12 − |x− 1
2|) 0 ≤ x < 1

0 otherwise

;

F (x) = F0(x)−
1

2
F0(x+ 1)− 1

2
F0(x− 1);

f0(x) =


1− |x| if |x| ≤ 1

0 otherwise
;

f(x) = f0(x) +
1

2
f0(x+ 1) +

1

2
f0(x− 1).

Note that F is an odd function so that we may only describe F on x ≥ 0, i.e.

F (x) =



−3

4
+

3

2
|x− 1

2
| if |x− 1

2
| ≤ 1

2
1

4
− 1

2
|x− 3

2
| if |x− 3

2
| ≤ 1

2

0 x ≥ 2

and f(x) = 1− 1
2|x| if |x| ≤ 2 and 0 otherwise. See below for their graphs.
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(a) F0 (b) F

Figure 1: F , and F0

(a) f0 (b) f

Figure 2: f , and f0
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For all n ≥ 2, and given x = (x1, ..., xn) 6= 0, we define

Kn(x) = F (x1)×
n∏
i=2

f(xi)

and

ξn(
x

|x|
) := |x|n

∫ ∞

0

1

ρn
Kn(

x

ρ
)
dρ

ρ
.

Let ρ = |x|
t , the above formula ξn( x|x|) now becomes

ξn(ω) := ξn(
x

|x|
) =

∫ ∞

0
tn−1Kn(

tx

|x|
)dt,

where ω ∈ Sn−1. Recall that the main result that we want to prove is to show

the following integral is nonzero (negative),∫
Sn−1
+

< ω, e1 > ξn(ω)dσ(ω),

where Sn−1
+ = {ω = (ω1, · · · , ωn) ∈ Sn−1;ω1 > 0}. Thus putting it together,

our goal is to show for n = 3 the following integral is negative.∫
S2
+

< ω, e1 >

∫ ∞

0
t2F (tω1)f

ω2(t)f(tω3)dtdσ(ω). (4.2)

Before we proceed to give our decompositions for this integral. The diagram

in next page gives a big picture how the integral is decomposed and how each

term in our decomposition is estimated.
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∫π/2
0

∫2π
0 dθdφ

Decompose by θ and φ

Case 3
∫ π/2
cos−1 1

√

3

∫ 2π
0 dθdφ

Case 1

(Closed form)

∫ π/4
0

∫ 2π
0 dθdφ

≈ 0.1252

Case 4
∫ cos−1 1

√

3

π/4

∫
Dc dθdφ

Case 2
∫ cos−1 1

√

3

π/4

∫
D dθdφ

(Further estimate)

Part A
∫ π/2
cot−1 1

4
√

2

∫ 2π
0 dθdφ

≈ −0.0146

(Closed form)

Part C
∫ cot−1 2

4

cot−1 3

4
√

2

∫ 2π
0 dθdφ

≈ −0.0139

(Closed form)

Part D
∫ cot−1 3

4

cot−1 4

4
√

2

∫ 2π
0 dθdφ

≈ −0.0643

(Closed form)

Part B
∫ cot−1 1

4

cot−1 2

4
√

2

∫ 2π
0 dθdφ

≈ −0.0655

(Closed form)

Part E
(Theoretically negative)

Subcase 1
∫ cot−1 1

4
√

2

cot−1 1

4

HE1(θ)dθ

Subcase 2
∫ cot−1 1

4
√

2

cot−1 1

4

HE2(θ)dθ

Part F

(Further estimate)

Subcase 1

Subcase 2

∫ cot−1( 1

2
√

2
)

cot−1( 1
2
)

HF1(θ)dθ

∫ cot−1 2

4
√

2

cot−1( 2
4
)
HF2(θ)dθ

(Theoretically negative)

Part G
(Further estimate)

Subcase 1

Subcase 2

∫ cot−1( 3

4
√

2
)

cot−1( 3
4
)

HG1(θ)dθ

∫ cot−1 3

4
√

2

cot−1 3

4

HG2(θ)dθ

Part A

(Further estimate)
∫ cot−1 3

4

π/4 KA(θ)dθ

Part B
(Further estimate)

Subcase 1

Subcase 2

∫ cos−1 1
√

3

cot−1 3

4

KB1(θ)

∫ cos−1 1
√

3

cot−1 3

4

KB2(θ)dθ
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Decompositions

In order to integrate with spherical measure appearing in (4.2), we use spherical

coordinate system to represent ω1, ω2, and ω3 i.e.

ω1 = cos θ,

ω2 = sin θ cosϕ,

ω3 = sin θ sinϕ,

where θ ∈ [0, π/2] and ϕ ∈ [0, 2π] because we only integrate on the half sphere

S2
+. Putting in these new variables and using change of variables formula, the

integral (4.2) which we want to estimate becomes∫ π
2

0

∫ 2π

0
cos θ

∫ ∞

0
t2F (t cos θ)f(t sin θ cosϕ)f(t sin θ sinϕ)dt sin θdϕdθ, (4.3)

where the factor sin θ is due to Jacobian, and the cos θ is from < ω, e1 >. Since

the integral range is 0 ≤ θ ≤ π
2 , we only need to consider F ω1(t) = F (t cos θ)

with ω1 ≥ 0. In order to estimate ξ3(ω), we break F ω1(t) into 4 linear mutually

disjoint support functions with respect to t that is F ω1(t) := F ω1
11 (t) + F ω1

12 (t) +

F ω1
13 (t) + F ω1

14 (t), where

F ω1
11 (t) =

 −3
2tω1 0 ≤ t ≤ 1

2ω1

0 otherwise
(4.4)

F ω1
12 (t) =


3
2(tω1 − 1) 1

2ω1
≤ x ≤ 2

2ω1

0 otherwise
(4.5)

F ω1
13 (t) =


1
2(tω1 − 1) 2

2ω1
≤ t ≤ 3

2ω1

0 otherwise
(4.6)
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F ω1
14 (t) =

 −1
2(tω1 − 2) 3

2ω1
≤ t ≤ 4

2ω1

0 otherwise
(4.7)

fω2(t) =

 (1− |tω2|
2 ) 0 ≤ |t| ≤ 2

|ω2|

0 otherwise
(4.8)

fω3(t) =

 (1− |tω3|
2 ) 0 ≤ |t| ≤ 2

|ω|

0 otherwise
. (4.9)

Let

Si(a, θ, ϕ) =

∫ a

0
t2F ω1

1i (t)f
ω2(t)fω3(t)dt =

∫ a

0
t2F ω1

1i (t)f(t sin θ cosϕ)f(t cos θ sinϕ)dt,

for i = 1, 2, 3, 4. Then we have ξ3(ω) =
∑4

i=1 Si(∞, θ, ϕ).

Remark 1. For a fixed ω1, the support of F ω1(t) is 0 ≤ t ≤ 2
|ω1| , and the

support of fω2 and fω3 are 0 ≤ t ≤ 2
|ω2| and 0 ≤ t ≤ 2

|ω3| respectively. Hence

the integral range for Si will be simultaneously determined by the supports of

the functions of F ω1, fω2, and fω3. This observation leads us to decompose the

integral in terms of the supports of these functions. More precisely, we divide

the integral into 4 cases depending on which function vanishes first. We now

give details in the following sections.

Criteria of decomposition

As just mentioned before, we can reduce the integral range of Si to
[
0,max{ 2

|ω1| ,
2

|ω2| ,
2

|ω3|}
]
.

Therefore the integral range of t now depends on the variables θ and ϕ since the

variables ωi depend on θ, ϕ and this also explains why estimating the integral is
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complicated and difficult. Therefore we will have 4 cases that depend on which

function F ω1 fω2 or fω3 vanishes before the others.

Remark 2. Throughout this paper, given two functions f, g and assuming the

supports of f and g are [0, a] and [0, b] respectively, then we say f vanishes

before g or g vanishes after f if a ≤ b.

First part vanishes before the others. Assuming F ω1(t) vanishes before

the others i.e. |ω1| ≥ |ω2| and |ω1| ≥ |ω3|. Notice that ω2
1 + ω2

2 + ω2
3 = 1. If

|ω1| = | cos θ| ≥ 1√
2
, then for all ϕ, |ω1| is always the largest one. If |ω1| ∈

[ 1√
3
, 1√

2
], then |ω1| ≥ |ω2| for some ϕ. If |ω1| ≤ 1√

3
, then by pigeonhole principle

one of |ω2|, |ω3| must be larger than 1√
3

which is larger than |ω1|. Thus θ must

be in [0, cos−1 1√
3
]. There are two different situations we need to separately deal

with.

1 When θ ∈ [0, π/4], then we will have ω1 is larger than |ω2| and |ω3| for all ϕ.

2 When θ ∈ [π/4, cos−1 1√
3
], then we will have ω1 is larger than |ω2| and |ω3|

for some ϕ.

Case 1 0 ≤ θ < π/4 and for all 0 ≤ ϕ < 2π.(Closed form)

Since F ω1(t) vanishes before the others and ω1 = cos θ, ω2 = sin θ cosϕ and

ω3 = sin θ sinϕ. Thus we see that when θ ∈ [0, π/4], we will have

|ω1| = | cos θ| ≥ | sin θ cosϕ| = |ω2|,

and

|ω1| = | cos θ| ≥ | sin θ sinϕ| = |ω3|,
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for all 0 ≤ ϕ < 2π. Now

ξ3(ω) =

∫ 2
ω1

0
t2F (t cos θ)f(t sin θ cosϕ)f(t sin θ sinϕ)dt =

4∑
i=1

Si(
i

2ω1
, θ, ϕ)−Si(

i− 1

2ω1
, θ, ϕ)

let

h1(θ, ϕ) := S1(
1

2 cos θ
, θ, ϕ),

h2(θ, ϕ) := S2(
1

cos θ
, θ, ϕ)− S2(

1

2 cos θ
, θ, ϕ),

h3(θ, ϕ) := S3(
3

2 cos θ
, θ, ϕ)− S3(

1

cos θ
, θ, ϕ),

h4(θ, ϕ) := S4(
2

cos θ
, θ, ϕ)− S4(

3

2 cos θ
, θ, ϕ).

Since t2F1i(tω1)f
ω2(t)fω3(t) is a polynomial of degree 5 on this integral range,

and h1, h2, h3, and h4 all have closed forms, therefore we obtain

4∑
i=1

hi(θ, ϕ) =− (720 cos θ sin θ cosϕ− 680 cos2 θ − 629 cosϕ sinϕ

+ 720 cos θ sin θ sinϕ+ 629 cos2 θ cosϕ sinϕ)(3840 cos5 θ)−1,

∫ 2π

0
sin θ cos θ

4∑
i=1

hi(θ, ϕ)dϕ =
4(cos2 θ(17π192 −

629
7680)−

3 cos θ sin θ
8 + 629

7680)

cos5 θ
.

Therefore, we see that the integral below has a closed form so that we can

estimate it accurately∫ π/4

0

∫ 2π

0
sin θ cos θ(h1(θ, ϕ) + h2(θ, ϕ) + h3(θ, ϕ) + h4(θ, ϕ))dϕdθ ≈ 0.1252.
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Remark 3. This is the only term that has positive value.

Case 2 π/4 ≤ θ ≤ cos−1 1√
3
, and ϕ ∈ D. (further estimate)

In this case π/4 ≤ θ ≤ cos−1 1√
3

and since we want ω1 ≥ |ω2|, and ω1 ≥ |ω3|.

Thus we have cot θ ≥ | sinϕ| and cot θ ≥ | cosϕ| in spherical coordinates. As a

result, the range of ϕ will be restricted on D which is

On the first quadrant: cos−1(cot θ) ≤ϕ ≤ sin−1(cot θ)

On the second quadrant: π

2
+ cos−1(cot θ) ≤ϕ ≤ π

2
+ sin−1(cot θ)

On the third quadrant: π + cos−1(cot θ) ≤ϕ ≤ π + sin−1(cot θ)

On the fourth quadrant: 3π

2
+ cos−1(cot θ) ≤ϕ ≤ 3π

2
+ sin−1(cot θ).

Observe that since f is even so that for all ϕ we have

F ω1(t)fω2(t)fω3(t) = F (t cos θ)f(t sin θ cosϕ)f(t sin θ sinϕ)

= F (t cos θ)f(t sin θ cos(ϕ+ π/2))f(t sin θ sin(ϕ+ π/2))

= F (t cos θ)f(t sin θ sinϕ)f(t sin θ cosϕ)

= F ω1(t)fω3(t)fω2(t).

Thus ∫ sin−1(cot θ)

cos−1(cot θ)
(h1(θ, ϕ) + h2(θ, ϕ) + h3(θ, ϕ) + h4(θ, ϕ))dϕ

=

∫ sin−1(cot θ)+π
2

cos−1(cot θ)+π
2

(h1(θ, ϕ) + h2(θ, ϕ) + h3(θ, ϕ) + h4(θ, ϕ))dϕ

=

∫ sin−1(cot θ)+ 2π
2

cos−1(cot θ)+ 2π
2

(h1(θ, ϕ) + h2(θ, ϕ) + h3(θ, ϕ) + h4(θ, ϕ))dϕ

=

∫ sin−1(cot θ)+ 3π
2

cos−1(cot θ)+ 3π
2

(h1(θ, ϕ) + h2(θ, ϕ) + h3(θ, ϕ) + h4(θ, ϕ))dϕ.
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Hence the integral that we want to estimate is equal to∫ cos−1 1√
3

π/4
cos θ

∫
D
(h1(θ, ϕ) + h2(θ, ϕ) + h3(θ, ϕ) + h4(θ, ϕ))dϕ sin θdθ (4.10)

=

∫ cos−1 1√
3

π/4
4 cos θ

∫ sin−1(cot θ)

cos−1(cot θ)
(h1(θ, ϕ) + h2(θ, ϕ) + h3(θ, ϕ) + h4(θ, ϕ))dϕ sin θdθ.

Integrating with respect to ϕ is a closed form as above. However, when integrat-

ing with respect to θ, we are unable to find its closed form. The reason is that

the range is from cos−1(cot θ) to sin−1(cot θ), and after integrating the variable

ϕ these upper and lower limits make the integrand in the variable θ extremely

complicated. Therefore this case will be further estimated in the final section.

Second or third part vanishes before the others.

In this case it suffices to consider fω2 vanishes before the others. The reasons

are the followings. First, we observe that

F ω1(t)fω2(t)fω3(t) = F (t cos θ)f(t sin θ cosϕ)f(t sin θ sinϕ)

= F (t cos θ)f(t sin θ cos(ϕ+ π/2))f(t sin θ sin(ϕ+ π/2)),

and notice that the if fω3 vanishes before the others, the integral range for ϕ in

this case is only different from the integral range for ϕ by rotating π
2 in the case

that fω2 vanishes before the others. Now we see that for fω2 vanishes before

the others, we must have ϕ ∈ [−π/4, π/4] and [−3π/4, 5π/4]. Again since f is

even, it suffices to only consider the range [−π/4, π/4]. Thus∫ 2π

0
ξ3(ω)dϕ =

∫ 2π

0

∫ ∞

0
t2F ω1(t)fω2(t)fω3(t)dt

= 4

∫ π/4

−π/4

∫ ∞

0
t2F ω1(t)fω2(t)fω3(t)dtdϕ.
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We now determine the range of θ. Assume fω2 vanishes before the others

i.e. |ω2| ≥ |ω1| and |ω2| ≥ |ω3|. Notice that ω2
1 + ω2

2 + ω2
3 = 1. If |ω2| =

| sin θ cosϕ| ≥ 1√
2
, then for all ϕ, |ω2| is always the largest one. If |ω2| ∈ [ 1√

3
, 1√

2
],

then |ω2| ≥ |ω1| for some ϕ. If |ω2| ≤ 1√
3
, then by pigeonhole principle one

of |ω1|, |ω3| is larger than 1√
3

which is larger than |ω2|. Thus θ must be in

[π/4, π/2]. There are two different situations we need to separately deal with

1 When θ ∈ [cos−1 1√
3
, π/2], |ω2| is larger than |ω1| and |ω3| for all ϕ ∈

[−π/4, π/4] .

2 When θ ∈ [π/4, cos−1 1√
3
], |ω2| is larger than |ω1| and |ω3| for some ϕ ∈

[−π/4, π/4].

Case 3 cos−1( 1√
3
) ≤ θ ≤ π/2.

We also break F ω1 into 4 pieces as before. And the decompositions in this term

are the most complicated one since we need to decide which of the 5 pieces F ω1
11 ,

F ω1
11 +F

ω1
12 , F ω1

11 +F
ω1
12 +F

ω1
13 , F ω1

11 +F
ω1
12 +F

ω1
13 +F

ω1
14 , and fω2 vanishes before the

others according to θ and ϕ. More precisely, since fω2(t) vanishes before the

others and F (tω1) = F ω1
11 +F ω1

12 +F ω1
13 +F ω1

14 . Therefore there are 4 possibilities

that fω2 vanishes before (1) F ω1
11 (2) F ω1

11 + F ω1
12 , (3) F ω1

11 + F ω1
12 + F ω1

13 and (4)

F ω1
11 +F

ω1
12 +F

ω1
13 +F

ω1
14 . We now further decompose these 4 possibilities in terms

of the range of ϕ.

1: These 4 possibilities hold for all ϕ ∈ [−π/4, π/4].
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Part A fω2 vanishes before F ω1
11 . It gives

ξ3(ω) =

∫ 2
|ω2|

0
t2F ω1(t)fω2(t)fω3(t) =

∫ 2
|ω2|

0
t2F ω1

11 (t)f
ω2(t)fω3(t).

Part B fω2 vanishes after F ω1
11 and before F ω1

11 + F ω1
12 . It gives

ξ3(ω) =

∫ 2
|ω2|

0
t2(F ω1

11 (t) + F ω1
12 (t))f

ω2(t)fω3(t).

Part C fω2 vanishes after F ω1
11 + F ω1

12 and before F ω1
11 + F ω1

12 + F ω1
13 . It gives

ξ3(ω) =

∫ 2
|ω2|

0
t2(F ω1

11 (t) + F ω1
12 (t) + F ω1

13 (t))f
ω2(t)fω3(t).

Part D fω2 vanishes after F ω1
11 +F ω1

12 +F ω1
13 and before F ω1

11 +F ω1
12 +F ω1

13 +F ω1
14 .

It gives

ξ3(ω) =

∫ 2
|ω2|

0
t2(F ω1

11 (t) + F ω1
12 (t) + F ω1

13 (t) + F ω1
14 (t))f

ω2(t)fω3(t).

Now we define some notations to simplify our expressions. Let

g1(θ, ϕ) : = S1(
2

|ω2|
, θ, ϕ) = S1(

2

sin θ cosϕ
, θ, ϕ),

g2(θ, ϕ) : = S2(
2

|ω2|
, θ, ϕ)− S2(

1

2 cos θ
, θ, ϕ) = S2(

2

sin θ cosϕ
, θ, ϕ)− S2(

1

2 cos θ
, θ, ϕ),

g3(θ, ϕ) : = S3(
2

|ω2|
, θ, ϕ)− S3(

2

2 cos θ
, θ, ϕ) = S3(

2

sin θ cosϕ
, θ, ϕ)− S3(

2

2 cos θ
, θ, ϕ),

g4(θ, ϕ) : = S4

(
2

|ω2|
, θ, ϕ

)
− S4(

3

2 cos θ
, θ, ϕ) = S4

(
2

sin θ cosϕ
, θ, ϕ

)
− S4(

3

2 cos θ
, θ, ϕ).

Therefore

Part A ξ3(ω) = g1(θ, ϕ).

Part B ξ3(ω) = h1(θ, ϕ) + g2(θ, ϕ).
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Part C ξ3(ω) = h1(θ, ϕ) + h2(θ, ϕ) + g3(θ, ϕ).

Part D ξ3(ω) = h1(θ, ϕ) + h2(θ, ϕ) + h3(θ, ϕ) + g4(θ, ϕ).

Since we have further decomposed the integral into these 4 possibilities for all

ϕ ∈ [−π/4, π/4], we need to determine the range of θ.

Part A (Closed form)

Since we now have 0 ≤ 2
|ω2| ≤

1
2|ω1| or 0 ≤ 2

|ω3| ≤
1

2|ω1| for all ϕ ∈ [−π/4, π/4]. In

order to satisfy the condition max{ 2
|ω2| ,

2
|ω3|} ≤ 1

2|ω1| , thus we have max{ 2
|ω2| ,

2
|ω3|} ≤

2
√
2

sin θ ≤
1

2 cos θ =
1

2ω1
, which in turn gives that

π/2 ≥ θ ≥ cot−1 1

4
√
2
.

Therefore we get the following integral:

HA(θ) := 4 sin θ cos θ
∫ π/4

−π/4
g1(θ, ϕ)dϕ =

8 sin2 θ − 1

sin3 θ
.

Moreover the integral of HA(θ) with respect to θ is a closed form. Finally we

can explicitly compute the vaule∫ π/2

cot−1 1
4
√
2

HA(θ)dθ ≈ −0.0146.

Part B (Closed form)

Since we have 1
2ω1

≤ 2
|ω2| ≤

2
2ω1

for all ϕ. In other words we have 2
√
2

sin θ ≤ 2
2 cos θ ,

and 1
2 cos θ ≤

2
sin θ . Hence we get range of θ

cot−1 1

4
≥ θ ≥ cot−1 2

4
√
2
.
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Therefore

HB(θ) : = 4 sin θ cos θ
∫ π/4

−π/4
h1(θ, ϕ) + g2(θ, ϕ)dϕ

= −(24 cos θ sin5 θ − sin6 θ − 1024 cos6 θ + 2048 cos5 θ sin θ − 40π sin4 θ + 40π sin6 θ

+ 5120 log(
√
2 + 1) cos5 θ sin θ + 1024

√
2 cos5 θ sin θ)/(1280 cos4 θ sin3 θ).

Similarly, the integral of HB(θ) is a closed form and finally we have∫ cot−1 1
4

cot−1 2
4
√
2

HB(θ)dθ ≈ −0.0655.

Part C (Closed form)

Since we have: 2
2ω1

≤ 2
|ω2| ≤

3
2ω1

for all ϕ ∈ [−π/4, π/4]. As above, we will have

that the range of θ is

cot−1 2

4
≥ θ ≥ cot−1 3

4
√
2
.

Therefore

HC(θ) : = 4 sin θ cos θ
∫ π/4

π/4
h1(θ, ϕ) + h2(θ, ϕ) + g3(θ, ϕ)dϕ

= −[61 sin θ − 696 cos θ + 2088 cos3 θ + cos5 θ(5120 log(
√
2 + 1) + 1024

√
2− 40)

− cos7 θ(5120 log(
√
2 + 1) + 1024

√
2 + 1352) + (520π − 183)(sin θ − sin3 θ)

− cos4 θ sin θ(1040π − 183) + cos6 θ sin θ(520π − 10301)/(3840 cos4 θ sin4 θ)],

and finally we have ∫ cot−1 2
4

cot−1 3
4
√
2

HC(θ)dθ ≈ −0.0139.

Part D (Closed form)
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Since we have: 3
2ω1

≤ 2
|ω2| ≤

4
2ω1

for all ϕ ∈ [−π/4, π/4]. As above, we will have

that the range of θ is

cot−1 3

4
≥ θ ≥ cot−1 4

4
√
2
.

Therefore

HD(θ) : = 4 sin θ cos θ
∫ π/4

π/4
h1(θ, ϕ) + h2(θ, ϕ) + h3(θ, ϕ) + g4(θ, ϕ)dϕ

= −(395 sin θ − 3264 cos θ + 9792 cos3 θ + cos7 θ(5120 log(
√
2 + 1) + 1024

√
2 + 5312)

− cos5 θ(5120 log(
√
2 + 1) + 1024

√
2 + 11840) + (1880π − 1185)(sin θ − sin3 θ)

− cos4 θ sin θ(3760π − 1185) + cos6θ sin θ(1880π + 4725))/(1920 cos4 θ sin4 θ)),

and finally we have ∫ cot−1 3
4

cot−1 4
4
√
2

HD(θ)dθ ≈ −0.0634

However there are still some ranges of θ that we have not dealt with in parts

A,B,C,D above and the ranges are

[cot−1 1

4
, cot−1 1

4
√
2
], [cot−1 2

4
, cot−1 2

4
√
2
], and

[
cot−1 3

4
, cot−1 3

4
√
2

]
.

For these 3 ranges, we need to further estimate the integrals.

Remark 4. Those 3 parts are more complicated than above 4 parts since in each

cases, sup{suppfω2} = 2
|ω2| is not contained in one of [0, 1

2ω1
], [ 1

2ω1
, 2
2ω1

], [ 2
2ω1
, 3
2ω1

],

and [ 3
2ω1
, 4
2ω1

] for all ϕ ∈ [−π/4, π/4]. In fact it depend on ϕ. Therefore those

three parts are not part A,B,C and D. Fortunately, it is contained in one of

[0, 2
2ω1

], [ 1
2ω1
, 3
2ω1

], and [ 2
2ω1
, 4
2ω1

]. That is why in each of following cases, we need

to split the integrals into two subcases according to ϕ.
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Part E θ ∈ [cot−1 1
4 , cot−1 1

4
√
2
]. (negative value)

When θ ∈ [cot−1 1
4 , cot−1 1

4
√
2
] the range [−π/4, π/4] of ϕ will be split into two

cases. One of the ranges will give ξ3(ω) = g1(θ, ϕ), and the other range will give

ξ3(ϕ) = g2(θ, ϕ). More precisely, when θ ∈ [cot−1 1
4 , cot−1 1

4
√
2
], the variable ϕ

will have two possibilities. One possibility is that fω2 vanishes before F ω1
11 i.e.

we will have 0 ≤ 2
|ω2| ≤

1
|2ω1| . The other possibility is that fω2 vanishes before

F ω1
12 and after F ω1

11 , which gives 1
2ω1

≤ 2
|ω2| ≤

2
2ω1

. As a result, we split the range

of ϕ according to which above possibility occurs.

1 0 ≤ 2
|ω2| ≤

1
2ω1

(ξ3(ω) = g1(θ, ϕ)).

Since 0 ≤ 2
|ω2| ≤

1
2ω1

which is 2
sin θ cosϕ ≤ 1

2 cos θ . Thus

− cos−1 4 cot θ ≤ ϕ ≤ cos−1 4 cot θ.

Therefore we can estimate the integral below

HE1(θ) := 4 sin θ cos θ
∫ cos−1(4 cot θ)

− cos−1(4 cot θ)
g1(θ, ϕ)dϕ,

which is a closed form in variable ϕ. However after plugging in the upper

and lower limits, we are unable to show whether the integral
∫
HE1(θ)dθ has

a closed form. But it is easy to show that its value is negative. Notice that

g1(θ, ϕ) =
∫ 4/2 sin θ cosϕ
0 t2F ω1

11 (t)f
ω2(t)fω3(t)dt, and for all t, t2, fω2(t), and fω2(t)

are positive but F ω1
11 (t) is negative so that g1(θ, ϕ) ≤ 0 for all θ and ϕ. Hence∫ cot−1 1

4
√
2

cot−1 1
4

HE1(θ)dθ ≤ 0.

2 1
2ω1

≤ 2
|ω2| ≤

2
2ω1

(ξ3(ω) = h1 + g2).
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The integral range of ϕ is just the complement of the range in case 1 above.

Hence we have

HE2(θ) := 4 sin θ cos θ
[∫ π/4

cos−1(4 cot θ)
h1(θ, ϕ) + g2(θ, ϕ)dϕ+

∫ − cos−1(4 cot θ)

−π/4
h1(θ, ϕ) + g2(θ, ϕ)dϕ

]
.

Again we can explicitly compute HE2(θ) because the above integrals are closed

forms in variable ϕ. However after plugging in the upper and lower limits,

the integral
∫
HE2(θ)dθ is difficult to see if it has a closed form. But it is

easy to show that its value is negative. Notice that h1(θ, ϕ) + g2(θ, ϕ) =∫ 4/2 sin θ cosϕ
0 t2 [F ω1

11 (t) + F ω1
12 (t)] f

ω2(t)fω3(t)dt, and for all t, t2, fω2(t), and fω2(t)

are positive but F ω1
11 (t), and F ω1

12 (t) are negative so that h1(θ, ϕ) + g2(θ, ϕ) ≤ 0

for all θ and ϕ. Hence ∫ cot−1 1
4
√
2

cot−1 1
4

HE2(θ)dθ ≤ 0.

Part F θ ∈ [cot−1 2
4 , cot−1 2

4
√
2
](further estimate)

As in part E above, there will be two cases when θ ∈ [cot−1 2
4 , cot−1 2

4
√
2
]. One

case is that 1
2ω1

≤ 2
|ω2| ≤

2
2ω1

, and the other case is 2
2ω1

≤ 2
|ω2| ≤

3
2ω1

.

1 1
2ω1

≤ 2
|ω2| ≤

2
2ω1

(ξ3(ω) = h1 + g2).

Since 1
2ω1

≤ 2
|ω2| ≤

2
2ω1

, it gives that 0 ≤ ϕ ≤ cos−1(2 cot θ). Hence

HF1(θ) := 4 sin θ cos θ
∫ cos−1(2 cot θ)

− cos−1(2 cot θ)
h1(θ, ϕ) + g2(θ, ϕ)dϕ.

HF1(θ) can be explicitly computed, but integral
∫
HF1(θ)dθ is difficult to show
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if it has a closed form. Therefore this case will be further estimated in the final

section.

2 2
2ω1

≤ 2
|ω2| ≤

3
2ω1

(ξ3(ω) = h1 + h2 + g3)

Since 2
2ω1

≤ 2
|ω2| ≤

3
2ω1

. It gives us that

HF2(θ) := 4 sin θ cos θ(
∫ π/4

cos−1(2 cot θ)
h1(θ, ϕ) + h2(θ, ϕ) + g3(θ, ϕ)dϕ

+

∫ − cos−1(2 cot θ)

−π/4
h1(θ, ϕ) + h2(θ, ϕ) + g3(θ, ϕ)dϕ).

Again HF2(θ) can be explicitly computed, but integral
∫
HF2(θ)dθ is difficult

to show if it has a closed form. Therefore this case will be further estimated in

the final section.

Part G θ ∈ [cot−1 3
4 , cot−1 3

4
√
2
] (further estimate)

1 2
2ω1

≤ 2
|ω2| ≤

3
2ω1

(ξ3(ω) = h1 + h2 + g3).

Since 2
2ω1

≤ 2
|ω2| ≤

3
2ω1

, it gives us that

HG1(θ) := 4 sin θ cos θ
∫ cos−1( 34 cot θ)

− cos−1( 34 cot θ)
h1(θ, ϕ) + h2(θ, ϕ) + g3(θ, ϕ)dϕ.

HG1(θ) can be explicitly computed, but integral
∫
HG1(θ) is difficult to show if

it has a closed form. Therefore this case will be further estimated in the final

section.
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2 3
2ω1

≤ 2
|ω2| ≤

4
2ω1

(ξ3(ω) = h1 + h2 + h3 + g4) Since 3
2ω1

≤ 2
|ω2| ≤

4
2ω1

, it gives

us that

HG2(θ) := 4 sin θ cos θ(
∫ π/4

cos−1( 34 cot θ)
h1(θ, ϕ) + h2(θ, ϕ) + h3(θ, ϕ) + g4(θ, ϕ)dϕ

+

∫ − cos−1( 34 cot θ)

−π/4
h1(θ, ϕ) + h2(θ, ϕ) + h3(θ, ϕ) + g4(θ, ϕ)dϕ)

HG2(θ) :=

∫ π/4

cos−1( 34 cot θ)
h1(θ, ϕ) + h2(θ, ϕ) + h3(θ, ϕ) + g4(θ, ϕ)dϕ.

HG2(θ) can be explicitly computed, but integral
∫
HG2(θ) is difficult to show if

it has a closed form. Therefore this case will be further estimated in the final

section.

Finally the remaining case is below. Case 4: π
4 ≤ θ ≤ cos−1( 1√

3
) (further

estimate)

For this case π
4 ≤ θ ≤ cos−1( 1√

3
), the range of ϕ is actually the complement of

the range in case 2 above. In other words, the integral range of ϕ is Dc (see

page 8 for the definition of D). Just as what we observe in case 2 the integral

that we want to estimate can be reduced to

∫ cos−1 1√
3

π
4

cos θ
∫ 2π

0
t2F ω1(t)fω2(t)fω3(t)dtdϕ sin θdθ

=

∫ cos−1 1√
3

π
4

cos θ
∫
Dc

t2F ω1(t)fω2(t)fω3(t)dtdϕ sin θdθ (4.11)

=

∫ cos−1 1√
3

π
4

4 cos θ
∫ cos−1 cot θ

− cos−1 cot θ
t2F ω1(t)fω2(t)fω3(t)dtdϕ sin θdθ.
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Now here is the key observations that since ϕ ∈ [− cos−1 cot θ, cos−1 cot θ] so

that

ω2 = sin θ cosϕ ∈ [cos θ, sin θ],

Hence we have
2

| sin θ|
≤ 2

|sinθ cosϕ|
≤ 2

| cos θ|
=

2

|ω1|
.

Therefore we will only have fω2 vanishes before F ω1
11 + F ω1

12 + F ω1
13 + F ω1

14 and

after F ω1
11 + F ω1

12 + F ω1
13 for all ϕ ∈ [− cos−1 cot θ, cos−1 cot θ]. This gives us that

2
| sin θ| ≥

3
2|ω1| and hence we have

π

4
≤ θ ≤ cot−1 3

4
.

Therefore the other part is

cot−1 3

4
≤ θ ≤ cos−1 1√

3
.

Part A’ : π
4 ≤ θ ≤ cot−1 3

4

In this case we have

KA(θ) := 4 cos θ sin θ
∫ cos−1 cot θ

− cos−1 cot θ
h1(θ, ϕ) + h2(θ, ϕ) + h3(θ, ϕ) + g4(θ, ϕ)dϕ,

which shows we need to estimate the integral below for this case.∫ cot−1 3
4

π/4
KA(θ)dθ.

Still, we are not able to find its closed form and hence this case will be further

estimated in the final section.
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Part B’ : cot−1 3
4 ≤ θ ≤ cos−1 1√

3

When cot−1 3
4 ≤ θ ≤ cos−1 1√

3
, there will be two cases

(1) fω2(t) vanishes after F ω1
11 + F ω1

12 + F ω1
13 , which gives 2

ω2
≥ 3

2ω1
;

(2) fω2(t) vanishes before F ω1
11 +F

ω1
12 +F

ω1
13 after F ω1

11 +F
ω1
12 , which gives 2

|ω2| ≤
3

2ω1
.

1 2
|ω2| ≥

3
2ω1

(ξ3(ω) = h1 + h2 + h3 + g4).

From this condition, we get the integral range of ϕ is

cos−1 4

3
cot θ ≤ ϕ ≤ cos−1 cot θ.

Therefore we have

KB1(θ) := 4 cos θ sin θ(
∫ cos−1 cot θ

cos−1 4
3 cot θ

h1(θ, ϕ) + h2(θ, ϕ) + h3(θ, ϕ) + g4(θ, ϕ)dϕ

+

∫ − cos−1 4
3 cot θ

− cos−1 cot θ
h1(θ, ϕ) + h2(θ, ϕ) + h3(θ, ϕ) + g4(θ, ϕ)dϕ.

KB1 can be explicitly computed, but integral
∫
KB1(θ) is difficult to see if it has

a closed form. Therefore this case will be further estimated in the final section.

2 2
2ω1

≤ 2
|ω2| ≤

3
2ω1

(ξ3(ω) = h1 + h2 + g3).

From this condition, we get the integral range of ϕ is

0 ≤ ϕ ≤ cos−1 4

3
cot θ.

KB2(θ) := 4 cos θ sin θ
∫ cos−1 4

3 cot θ

− cos−1 4
3 cot θ

h1(θ, ϕ) + h2(θ, ϕ) + g3(θ, ϕ)dϕ.

KB2(θ) can be explicitly computed, but integral
∫
KB2 is difficult to see if it has

a closed form. Therefore this case will be further estimated in the final section.
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Some Remarks (1) We use the program of Matlab [14] to find the closed forms

for some of above integrals. It can be also directly checked that all the indefinite

integrals are correct. (2) The variable-precision floating-point arithmetic (VPA)

that we use in the program of Matlab is 32 digits, thus the precision of the values

for closed forms is accurate up to 10−32 error which would not effect our final

value.

Upper bounds for all the further estimate cases Recall that for all the

closed forms above, their values add up to be negative. In addition, part E is

proved to be negative. Therefore our goal in the section is to give upper bounds

for all the further estimate cases above and show that the values of the upper

bounds are all negative which after all shows the integral (4.2) is negative.

Note that ξ3(ω) =
∫∞
0 t2F (tω1)f(tω2)f(tω3)dt and F (tω1) = F ω1

11 (t) +F ω1
12 (t) +

F ω1
13 (t) + F ω1

14 (t), also recall that for all t, ω, F ω1
11 (t), F

ω1
12 (t) are negative, and

F ω1
13 (t), F

ω1
14 (t), f(tω2), f(tω3) are positive. In previous sections, we have shown

that for those further estimate cases, it is difficult to see if they have closed

forms. Therefore the ideas for these remaining cases are to combine the integrals

and split the combined integrals into positive and negative integrals. Finally,

we are able to find upper bounds for these negative and positive integrals and

show that these upper bounds have closed forms. Case 2 and case 4 Recall

that in case 2, the integral (4.10) is∫ cos−1 1√
3

π/4
cos θ sin θ

∫
ϕ∈D

ξ3(ω)dϕdθ.
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In case 4, the integral (4.11) is∫ cos−1 1√
3

π/4
cos θ sin θ

∫
ϕ∈Dc

ξ3(ω)dϕdθ.

We now separate ξ3(ω) into negative part and positive part i.e.

(Negative)
∫ cos−1 1√

3

π/4
cos θ sin θ

∫ 2π

0

∫ 2
√
3

0
t2 [F ω1

11 (t) + F ω1
12 (t)] f

ω2(t)fω3(t)dtdϕdθ,

(Positive)
∫ cos−1 1√

3

π/4
cos θ sin θ

∫ 2π

0

∫ 2
√
3

0
t2 [F ω1

13 (t) + F ω1
14 (t)] f

ω2(t)fω3(t)dtdϕdθ,

where negative part indicates that t2 [F ω1
11 (t) + F ω1

12 (t)] f
ω2(t)fω3(t) ≤ 0 for all t

and positive part indicates t2 [F ω1
13 (t) + F ω1

14 (t)] f
ω2(t)fω3(t) ≥ 0 for all t.

Negative part

Since in case 2 and case 4 the three functions F, fω2, fω3 all vanish after F ω1
12 so

that the negative part becomes∫ cos−1 1√
3

π/4
cos θ sin θ

∫ 2π

0
h1(θ, ϕ) + h2(θ, ϕ)dϕdθ.

Also this integral has closed form∫
cos θ sin θ

∫ 2π

0
h1(θ, ϕ) + h2(θ, ϕ)dϕdθ

=

[
7π

32
− 9

64
tan θ

2
− 280π − 31

640
tan2 θ

2
+

7π

32
tan4 θ

2
+

9

64
tan5 θ

2
− 31

1920

]
/(tan2 θ

2
− 1)3

−
9 tanh−1(tan θ

2)

64
.

Plugging in the exact integral range, we thus obtain∫ cos−1 1√
3

π/4
cos θ sin θ

∫ 2π

0
h1(θ, ϕ) + h2(θ, ϕ)dϕdθ ≈ −0.0607.

Thus the negative part of case 2 +case 4 is about -0.0607.
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Positive part For positive part, we are unable to get the exact value. Instead,

we will find an upper bound for the positive part and show that the upper bound

has a closed form. Recall that in case 2, and part A’ and part B’1 of case 4, the

function t2F (tω1)f(tω2)f(tω3) vanishes after F ω1
13 and they are

Case 2
∫ cos−1 1√

3

π/4
cos θ sin θ

∫
D
h3(θ, ϕ) + h4(θ, ϕ)dϕdθ,

Case 4,A’
∫ cot−1 3

4

π/4
cos θ sin θ

∫
Dc

h3(θ, ϕ) + g4(θ, ϕ)dϕdθ,

Case 4,B’1
∫ cos−1 1√

3

cot−1 3
4

cos θ sin θ
∫
R
h3(θ, ϕ) + g4(θ, ϕ)dϕdθ,

where R is the integral range of ϕ in B’1 of case 4.

Notice that in part B’2 of case 4, the function t2F (tω1)f(tω2)f(tω3) vanishes

before F ω1
14 and the integral is

Case 4,B’2
∫ cos−1 1√

3

cot−1 3
4

cos θ sin θ
∫
Rc
g3(θ, ϕ)dϕdθ.

To obtain an upper bound, we introduce a function which is a linear extension

of F ω1
13 .

F̃ ω1
13 (t) =

1

2
(tω1 − 1).
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Where the dotted line is F̃ ω1
13 (t) =

1
2(tω1 − 1).

Now for case 2

h3(θ, ϕ) + h4(θ, ϕ) =

∫ 3/2 cos θ

2/2 cos θ
t2F ω1

13 (t)f
ω2(t)fω3(t)dt+

∫ 4/2 cos θ

3/2 cos θ
t2F ω1

14 (t)f
ω2(t)fω3(t)dt

≤
∫ 3/2 cos θ

2/2 cos θ
t2F̃ ω1

13 (t)f
ω2(t)fω3(t)dt+

∫ 4/2 cos θ

3/2 cos θ
t2F̃ ω1

13 (t)f
ω2(t)fω3(t)dt

≤
∫ 4/2 sin θ cosϕ

2/2 cos θ
t2F̃ ω1

13 (t)f
ω2(t)fω3(t)dt.

The last inequality comes from that fact that F vanishes before fω2 in case 2,

i.e.
4

2 cos θ
≤ 4

2 sin θ cosϕ
.
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For case 4A and 4B’1

h3(θ, ϕ) + g4(θ, ϕ) =

∫ 3/2 cos θ

2/2 cos θ
t2F ω1

13 (t)f
ω2(t)fω3(t)dt+

∫ 4/2 sin θ cosϕ

3/2 cos θ
t2F ω1

14 (t)f
ω2(t)fω3(t)dt

≤
∫ 3/2 cos θ

2/2 cos θ
t2F̃ ω1

13 (t)f
ω2(t)fω3(t)dt+

∫ 4/2 sin θ cosϕ

3/2 cos θ
t2F̃ ω1

13 (t)f
ω2(t)fω3(t)dt

=

∫ 4/2 sin θ cosϕ

2/2 cos θ
t2F̃ ω1

13 (t)f
ω2(t)fω3(t)dt.

For the case 4B’2, we note that

g3(θ, ϕ) =

∫ 3/2 sin θ cosϕ

2/2 cos θ
t2F ω1

13 (t)f(tω2)f(tω3)dt

≤
∫ 4/2 sin θ cosϕ

2/2 cos θ
t2F̃ ω1

13 (t)f(tω2)f(tω3)dt.

Therefore combining all the inequalities above to get an upper bound which is∫
cos θ sin θ

∫ 2π

0

∫ 4/2 sin θ cosϕ

2/2 cos θ
t2F̃ ω1

13 (t)f
ω2(t)fω3(t)dtdϕdθ

=(tan6 θ

2

π + 2

6
− tan4 θ

2

10π + 29

30
+ tan2 θ

2

15π + 89

90
+ tan θ

2
(
2 log(

√
2 + 1)

3
+

2
√
2 + 4

15
)

+ tan5 θ

2
(2 log(

√
2 + 1) +

2
√
2 + 4

5
)− tan3 θ

2
(2 log(

√
2 + 1) +

4
√
2 + 9

10
)

− tan7 θ

2
(
2 log(

√
2 + 1)

3
+

2
√
2

15
+

1

6
)− 1

3
)/(tan2 θ

2
− 3 tan4 θ

2
+ 3 tan6 θ

2
− tan8 θ

2
)

− (4 log(tan θ
2
))/3− tanh−1(

6391

9 tan θ
2 + 240)

− 80

3
)/10 + tan θ

2
(
2 log(

√
2 + 1)

3
+

2
√
2 + 4

15
)

+
tan θ

2

2

3
.

Plugging in the exact integral range, we thus obtain∫ cos−1 1√
3

π/4
cos θ sin θ

∫ 2π

0

∫ 4/2 sin θ cosϕ

2/2 cos θ
t2F̃ ω1

13 (t)f
ω2(t)fω3(t)dtdϕdθ ≈ 0.08718.
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Thus the positive part of case 2 +case 4 is bounded by 0.08717. Part F in

case 3 Part F is∫ cot−1 2
4
√
2

cot−1 2
4

4 sin θ cos θ
∫ cos−1(2 cot θ)

− cos−1(2 cot θ)
h1(θ, ϕ) + g2(θ, ϕ)dϕdθ∫ cot−1 2

4
√
2

cot−1 2
4

4 sin θ cos θ(
∫ π/4

cos−1(2 cot θ)
h1(θ, ϕ) + h2(θ, ϕ) + g3(θ, ϕ)dϕdθ

+

∫ cot−1 2
4
√
2

cot−1 2
4

∫ − cos−1(2 cot θ)

−π/4
h1(θ, ϕ) + h2(θ, ϕ) + g3(θ, ϕ)dϕ)dθ,

where h1, h2, g2 represent the negative part and g3 represents the positive part.

Negative part of F We first notice that the negative part of F is bounded by∫
4 cos θ sin θ

∫ π/4

−π/4
h1(θ, ϕ)dϕdθ

=

[
3π

64
−

3 tan θ
2

160
− tan2 θ

2
(
3π

32
− 1

256
) +

3π tan4 θ
2

64
+

3 tan5 θ
2

160
− 1

768

]
/(tan2 θ

2
− 1)3−

3 tanh−1(tan θ
2)

160
.

Plugging in the exact integral range, we thus obtain∫ cot−1( 1
2
√
2
)

cot−1( 12 )
4 cos θ sin θ

∫ π/4

−π/4
h1(θ, ϕ)dϕdθ

≈ −0.026.

Thus the negative part of F is bounded by -0.026. Positive part of F The

positive part of F is∫ cot−1( 1
2
√
2
)

cot−1( 12 )
4 sin θ cos θ

(∫ π/4

cos−1(2 cot θ)
g3(θ, ϕ)dϕ+

∫ − cos−1(2 cot θ)

−π/4
g3(θ, ϕ)dϕ

)
dθ

(4.12)
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≤
∫ cot−1( 1

2
√
2
)

cot−1( 12 )
4 sin θ cos θ(

∫ π/4

cos−1(2 cot θ)

∫ 4/2 sin θ cosϕ

2/2 cos θ
t2F̃ ω1

13 (t)dtdϕ

+

∫ − cos−1(2 cot θ)

−π/4

∫ 4/2 sin θ cosϕ

2/2 cos θ
t2F̃ ω1

13 (t)dtdϕ)dθ. (4.13)

But we observe that∫ cot−1( 1
2
√
2
)

cot−1( 12 )
4 sin θ cos θ

∫ cos−1(2 cot θ)

− cos−1(2 cot θ)

∫ 4/2 sin θ cosϕ

2/2 cos θ
t2F̃ ω1

13 (t)dtdϕdθ ≥ 0, (4.14)

because when θ ∈ [cot−1(12), cot−1( 1
2
√
2
)], ϕ ∈ [− cos−1(2 cot θ), cos−1(2 cot θ)],

2/2 cos θ > 4/2 sin θ cosϕ,

and F̃ ω1
13 (t) ≤ 0 when t ≤ 2/2 cos θ.

Hence (4.12) is bounded by (4.13)+(4.14) which is∫ cot−1( 1
2
√
2
)

cot−1( 12 )
4 sin θ cos θ

∫ π/4

−π/4

∫ 4/2 cos θ sin θ

2/2 cos θ
t2F̃ ω1

13 (t)dtdϕdθ.

It has closed form∫
4 sin θ cos θ

∫ π/4

−π/4

∫ 4/2 cos θ sin θ

2/2 cos θ
t2F̃ ω1

13 (t)dtdϕdθ

=8 tan θ
2

log(
√
2 + 1) +

√
2

3
−

32 log(tan θ
2)

3

+

[
tan2 θ

2

π + 16

6
+ 8(tan θ

2
− tan3 θ

2
)
log(

√
2 + 1) +

√
2

3
− 8

3

]
)/(tan2 θ

2
− tan4 θ

2
)

+
8

3
tan2 θ

2
.

Plugging in the exact integral range, we thus obtain∫ cot−1( 1
2
√
2
)

cot−1( 12 )
4 sin θ cos θ

∫ π/4

−π/4

∫ 4/2 cos θ sin θ

2/2 cos θ
t2F̃ ω1

13 (t)dtdϕdθ

≈0.0064.
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Thus the positive part of F is bounded by 0.0064. part G in case 3 Part G is∫ cot−1 3
4
√
2

cot−1 3
4

4 sin θ cos θ
∫ cos( 34 cot θ)

− cos( 34 cot θ)
h1(θ, ϕ) + h2(θ, ϕ) + g3(θ, ϕ)dθ∫ cot−1 3

4
√
2

cot−1 3
4

4 sin θ cos θ(
∫ π/4

cos−1( 34 cot θ)
h1(θ, ϕ) + h2(θ, ϕ) + h3(θ, ϕ) + g4(θ, ϕ)dϕ

+

∫ − cos−1( 34 cot θ)

−π/4
h1(θ, ϕ) + h2(θ, ϕ) + h3(θ, ϕ) + g4(θ, ϕ)dϕ)dθ,

where h1, h2 are negative and h3, g3, g4 are positive. Negative part of G The

negative part of G is∫ cot−1( 3
4
√
2
)

cot−1( 34 )
4 cos θ sin θ

∫ π/4

−π/4
h1(θ, ϕ) + h2(θ, ϕ)dϕdθ

=

(
7π

32
−

9 tan θ
2

64
− tan2 θ

2
(
7π

16
− 31

640
) +

7π tan4 θ
2

32
+

9 tan5 θ
2

64
− 31

1920

)
/(tan2 θ

2
− 1)3

−
9 tanh−1(tan θ

2)

64

≈− 0.0694.

Thus the negative part of G is bounded by -0.0694. Positive part of G The

positive part of G can be split into two terms.

(G1)
∫ cot−1( 3

4
√
2
)

cot−1( 34 )
4 cos θ sin θ

∫ cos−1( 34 cot θ)

− cos−1( 34 cot θ)
g3(θ, ϕ)dϕdθ

+ (G2)
∫ cot−1( 3

4
√
2
)

cot−1( 34 )
4 cos θ sin θ(

∫ π/4

cos−1( 34 cot θ)
h3(θ, ϕ) + g4(θ, ϕ)dϕ+

+

∫ − cos−1( 34 cot θ)

−π/4
h3(θ, ϕ) + g4(θ, ϕ)dϕ)dθ.
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Now

(G1)
∫ cot−1( 3

4
√
2
)

cot−1( 34 )
4 cos θ sin θ

∫ cos−1( 34 cot θ)

− cos−1( 34 cot θ)
g3(θ, ϕ)dϕ

≤
∫ cot−1( 3

4
√
2
)

cot−1( 34 )
4 cos θ sin θ

∫ cos−1( 34 cot θ)

− cos−1( 34 cot θ)

∫ 4/2 sin θ cosϕ

2/2 cos θ
t2F̃ ω1

13 (t)f
ω2(t)fω3(t)dtdϕ,

(4.15)

and

(G2)
∫ cot−1( 3

4
√
2
)

cot−1( 34 )
4 cos θ sin θ(

∫ π/4

cos−1( 34 cot θ)
h3(θ, ϕ) + g4(θ, ϕ)dϕ

+

∫ − cos−1( 34 cot θ)

−π/4
h3(θ, ϕ) + g4(θ, ϕ)dϕ)

is bounded by∫ cot−1( 3
4
√
2
)

cot−1( 34 )
4 cos θ sin θ(

∫ π/4

cos−1( 34 cot θ)

∫ 4/2 sin θ cosϕ

2/2 cos θ
t2F̃ ω1

13 (t)f
ω2(t)fω3(t)dtdϕ

+

∫ − cos−1( 34 cot θ)

−π/4

∫ 4/2 sin θ cosϕ

2/2 cos θ
t2F̃ ω1

13 (t)f
ω2(t)fω3(t)dtdϕ)

(4.16)

Hence the positive part of G is bounded by (4.15)+(4.16), which has closed

form∫
4 cos θ sin θ

∫ π/4

−π/4

∫ 4/2 sin θ cosϕ

2/2 cos θ
t2F̃ ω1

13 (t)f
ω2(t)fω3(t)dtdϕdθ

=[tan6 θ

2

π + 2

6
− tan4 θ

2

10π + 29

30
+ tan2 θ

2

15π + 89

90
+ tan θ

2

10 log(
√
2 + 1) + 2

√
2 + 4

15

+ tan5 θ

2
(2 log(

√
2 + 1) +

2
√
2 + 4

5
)− tan3 θ

2
(2 log(

√
2 + 1) +

+4
√
2 + 9

10
)

− tan7 θ

2
(
2 log(

√
2 + 1)

3
+

2
√
2

15
+

1

6
)− 1

3
]/

[
tan2 θ

2
− 3 tan4 θ

2
+ 3 tan6 θ

2
− tan8 θ

2

]

−
4 log(tan θ

2)

3
−

tanh
(

6391
9 tan θ

2+240
− 80

3

)
10

+ tan θ
2

(
2 log(

√
2 + 1)

3
+

2
√
2 + 4

15

)
+

tan2 θ
2

3
.
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Plugging in the exact integral range, we thus obtain∫ cot−1( 3
4
√
2
)

cot−1( 34 )
4 cos θ sin θ

∫ π/4

−π/4

∫ 4/2 sin θ cosϕ

2/2 cos θ
t2F̃ ω1

13 (t)f
ω2(t)fω3(t)dtdϕdθ

≈0.0139.

Therefore the positive part of G is bounded by 0.0139. Altogether The sum

of all further estimate cases is

(Negative part of case 2+4) + (Positive part of case 2+4) + (Negative part of F)

+ (Positive part of F) + (Negative part of G) + (Positive part of G)

≤− 0.0607 + 0.08718 + (−0.026)

+ 0.0064 + (−0.0694) + 0.0139 < 0.

Remark 5. It is very likely to extend the ideas to all dimensions n ≥ 4 and

show the correspondent integral is negative.

5 General Calderon-Zygmund operators and sharp A2
bound

Introduction

Theorem 5.1. For any Calderó-Zygmund operator T on Rd, any ω ∈ A2, and

f ∈ L2(ω), we have

‖Tf‖L2(ω) ≤ CT [ω]A2
‖f‖L2(ω) .

The proof will proceed via the following steps, in the same order:
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• Reduction to dyadic shift operators: every Calderón-Zygmund operator

T has a representation in terms of these simpler operators, and hence it

suffices to prove a similar claim for every dyadic shift S in place of T .

• Reduction to testing conditions: in order to have full norm inequality

‖Sf‖L2(ω) ≤ CS[ω]A2
‖f‖L2(ω) ,

it suffices to have such an inequality for special testing functions only:∥∥S(1Qω−1)
∥∥
L2(ω)

≤ CS[ω]A2

∥∥1Qω−1
∥∥
L2(ω)

,

‖S∗(1Qω)‖L2(ω−1) ≤ CS∗[ω]A2
‖1Qω‖L2(ω−1) .

• Verification of the testing conditions for S.

In the original proof of this theorem, in Summer 2010, the two reductions were

done in different order: the (quite complicated) reduction to testing functions

was obtain for general Calerón-Zygmund operators by Pérez-Treil-Volberg [1];

Hytönen’s completion of proof [6]

Preliminaries The standard (or reference) system of dyadic cubes is

D0 := {2−k([0, 1)d +m) :∈ Z,m ∈ Zd}.

We will need several dyadic systems, obtained by translating the reference sys-

tem as follows. Let ω = (ωj)j∈Z ∈ ({0, 1}d)Z and

I+̇ω := I + Σj:2−j<ℓ(I)2
−jωj.

Then

Dω := {I+̇ω : I ∈ D0},
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and it is straightforward to check that Dω inherits the important nestedness

property of D0: if I, J ∈ Dω, then I ∩ J ∈ {I, J, ∅}. When the particular ω is

unimportant, then notation D is sometimes used for a generic dyadic system.

Haar function Any given dyadic system D has a nautral function system

associated to do it: the Haar functions. In one dimension, there are two Haar

functions associated with an interval I. the non-cancellative h0I := |I|−1/21I and

the cancellative h1I := |I|−1/2(1Il − 1Ir), where Il and Ir are the left and right

halves of I. In d dimensions, the Haar functions on a cubes I = I1 × · · · × Id

are formed of all products of the one-dimensional Haar functions:

hηI(x) = h
(η1,··· ,ηd)
I1×···×Id(x1, · · · , xd) :=

d∏
i=1

hηiIi(xi).

The non-cancellative h0I = |I|1−/21I has the same formula as in d = 1. All other

2d − 1 Haar functions hηI with η ∈ {0, 1}d\{0} are cancellative, i.e., satisfy∫
hηI = 0, since they are cancellative in at least one coordinate direction.

For a fixed D , all the cancellative Haar functions hηI , I ∈ D and η ∈ {0, 1}d\{0},

form an othonormal basis of L2(Rd). Hence any function f ∈ L2(Rd) has the

othogonal expression

f =
∑
I∈D

∑
η∈{0,1}d\{0}

〈f, hηI〉h
η
i .

Since the different η’s seldom play any major role, this will be often abbreviated

(with slight abuse of language) simply as

f =
∑
I∈D

〈f, hI〉hI ,

and the summation over η is understood implicitly. Dyadic shift A dyadic

shift with parameters i, j ∈ N is an operator of the form where hI is a Haar
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function on I (similarly hJ), and the AIJK are coefficients with

|aIJK | ≤
√
|I||J |
|K|

.

It is also required that all subshifts

SQ =
∑
K∈Q

, Q ⊂ D ,

maps SQ : L2(Rd) → L2(Rd) with norm at most one.

The shift is called cancellative, if all the hI and hJ are cancellative; otherwise,

it is called non-cancellative.

The notation AK indicates an ”average operator” on K. Indeed, from the

normalization of the Haar functions it follows that

|AKf | ≤ 1K

∫
K
|f |

pointwise.

For cancellative shifts, the L2 boundedness is automatic from the other condi-

tions. This is a consequence of following facts:

• The pointwise bound for each AK implies that ‖AKf‖Lp ≤ ‖f‖Lp for all

p ∈ [1,∞]; in particular, thes components of S are uniformly bounded on

L2 with norm one. (This first point is true even in the non-cancellative

case.)

• Let Di
K denote the othogonal projection of L2 onto span{hI : I ⊂ K, ℓ(I) =

2−iℓ(K)}. When i is fixed, it follows readily that any two Di
K are othogonal

to each other. (This depend on the use of cancellative hI .) Moreover, we
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have AK = Dj
KAKDi

K . Then the boundedness of S follows from two

applications of Pythagoras’s theorem with the uniformly boundedness of

the AK in between.

A prime example of a non-cancellative shift (and the only one we need) is the

dyadic paraproduct

∏
b

f =
∑
K∈D

〈b, hK〉〈f〉KhK =
∑
K∈D

|K|−1/2〈b, kK〉 · 〈f, h0K〉hK ,

where b ∈ BMOd (the dyadic BMO space) and hK is a cancellative Haar

funciton. This is a dyadic shift with parameter (i, j) = (0, 0), where aIJK =

|K|−1/2〈b, hK〉 for I = J = K. The L2 boundedness of the paraproduct, if and

only if b ∈ BMOd, is part of the classical theroy. Actually, to ensure the nor-

malization condition of the shift, it should be further require that ‖b‖BMOd
≤ 1.

Random dyadic systems; good and bad cubes We obtain a notion of ran-

dom dyadic systems by equipping the parameter set Ω := ({0, 1}d)Z with the

natural probability measure: each components are independent of each other.

Let ϕ : [0, 1] → [0, 1] be a fixed modulus of continuity: a strictly increasing

function with ϕ(0) = 0, ϕ(1) = 1, and t 7→ ϕ(t)
t decreasing (ϕ(1)1 = 1 hence

ϕ(t) ≥ t for all t ∈ [0, 1]) with limt→0 ϕ(t)/t = ∞. We further require the Dini

condition ∫ 1

0
ϕ(t)

dt

t
<∞.

Main examples include ϕ(t) = tγ with γ ∈ (0, 1) and

ϕ(t) = (1 +
1

γ
log 1

t
)−γ, γ > 1.
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We also fix a (large) parameter r ∈ N. (How large, will be specified shortly.)

A cube I ∈ Dω is called nad if there exists J ∈ Dω such that ℓ(J) ≥ 2rℓ(I) and

dist(I, ∂J) ≤ ϕ(
ℓ(I)

ℓ(J)
)ℓ(J) :

roughly, I is relatively close to the boundary of a much bigger cube.

Remark 6. This definition of good cubes goes back to Nazarov-Treil-Volberg in

the context of singular integrals with respect to non-doubling measures. They

used the modulus of continuity ϕ(t) = tγ, where γ was chosen to depend on the

dimension and the Hölder exponent of the Calderón-Zygmund kernel via

γ =
α

2(d+ α)
.

This choice become ”canonical” in the subsequent literature, including the orig-

inal proof of the A2 theorem. However, other choices can also be made, as we

do here.

We make some basic probablistic observations related to badness. Let I ∈ D0

be a refenece interval. The position of the translated interval

I+̇ω = I+̇
∑

j:2−j<ℓ(I)

2−jωj,

by definition, depends only on ωj for 2−j < ℓ(I). On the other hand, the badness

of I+̇ω depends on its relative position with respect to the bigger intervals

J+̇ω = J +
∑

j:2−j<ℓ(I)

2−jωj +
∑

j:ℓ(I)≤2−j<ℓ(I)

2−jωj.
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The same translation component
∑

j:2−jℓ(I) 2
−jωj appears in both I+̇ω and

J+̇ω, and so does not affect the relative position on these intervals. Thus this

relative position, and hence the badness of I, depends only on ωj for 2−j ≥ ℓ(I).

In particular:

Lemma 3. For I ∈ D0, the position and the badness of I+̇ω are independent

random variables.

Another observation is the following: by symmetry and the fact that the con-

dition of badness only involves relative position and size of different cubes, it

readily follows that the probability of a particular cube I+̇ω being bad is equal

for all cubes I ∈ D0:

Pω(I+̇ωbad) = πbad = πbad(r, d, ϕ).

The final observation concerns the value of this probability:

Lemma 4. We have

πbad ≤ 8d

∫ 2−r

0
ϕ(t)

dt

t
;

in particular, πbad < 1 if r = r(d, ϕ) chosen large enough.

With r = r(d, ϕ) chosen like this, we then have πgood := 1− πbad > 0, namely,

good situations have positive probability.

Proof. Observe that in the definition of badness, we only need to consider those

J with I ⊂ J . Namely, if I is closed to the boundary of some bigger J , we

can always find another dyadic J ′ of the same size as J which contains I, and
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then I will also be close to the boundary of J ′. Hence we need to consider

the relative position of I with respect to each J ⊃ I with ℓ(J) = 2kℓ(I) and

k = r, r + 1, . . . . For a fixed k, this relative position is determined by∑
j:ℓ(I)≤2−j<2kℓ(I)

2−jωj,

which has 2kd different values with equal probability. These correspond to the

subcubes of I of size ℓ(I).

Now bad position of I are those which are within distance ϕ(ℓ(I)/ℓ(J)) · ℓ(J)

from the boundary. Since the possible position of the subcubes are discrete,

being integer multiples of ℓ(I), , the effective bad boundary region has depth[
ϕ

(
ℓ(I)

ℓ(J)

)
ℓ(J)

ℓ(I)

]
ℓ(I) ≤

(
ϕ

(
ℓ(I)

ℓ(J)

)
ℓ(J)

ℓ(I)
+ 1

)
ℓ(I)

= ℓ(J)

(
ϕ

(
ℓ(I)

ℓ(J)

)
+
ℓ(I)

ℓ(J)

)
≤ 2ℓ(J)ϕ

(
ℓ(I)

ℓ(J)

)
,

by using that t ≤ ϕ(t).

The good region is the cube inside J , whose side-length is ℓ(J) minus twice the

depth of the bad boundary region:

ℓ(J)− 2

[
ϕ

(
ℓ(I)

ℓ(J)

)
ℓ(J)

ℓ(I)

]
ℓ(I) ≥ ℓ(J)− 4ℓ(J)ϕ

(
ℓ(I)

ℓ(J)

)
.

Hence the volume of the bad region is

|J | −
(
ℓ(J)− 2

[
ϕ

(
ℓ(I)

ℓ(J)

)
ℓ(J)

ℓ(I)

]
ℓ(I)

)d
≤ |J |

(
1−

(
1− 4ϕ

(
ℓ(I)

ℓ(J)

))d)

≤ |J | · 4dϕ
(
ℓ(I)

ℓ(J)

)
by the elementary inequality (1−α)d ≥ 1−αd for α ∈ [0, 1]. (We assume that

r is at least so large that 4ϕ(2−r) ≤ 1.)
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So the fraction of the bad region of the total volume is at most 4dϕ(ℓ(I)/ℓ(J)) =

4dϕ(2−k) for a fixed k = r, r + 1, . . . . This gives the final estimate

Pω(I+̈ω bad) ≤
∞∑
k=r

4dϕ(2−k) =
∞∑
k=r

8d
ϕ(2−k)

2−k
2−k−1

≤
∞∑
k=r

8d

∫ 2−k

2−k−1

ϕ(t)

t
dt = 8d

∫ 2−r

0

ϕ(t)

t
dt,

where we used that ϕ(t)/t is decreasing in the last inequality. □

The dyadic representation theorem Let T be a Calderón-Zygmund operator

on Rd. That is, it acts on a suitable dense subspace of functions in L2(Rd) (for

the present purposes, this class should at least contain the indicators of cubes

in Rd) and has the kernel representation

Tf(x) =

∫
Rd
K(x, y)f(y)dy, x /∈ suppf.

Moreover, the kernel should satisfy the standard estimates, which we here as-

sume in a slightly more general form than usual, involving another modulus of

continuity ψ, like the one considered above:

|K(x, y)| ≤ C0

|x− y|d
,

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ Cψ
|x− y|d

ψ

(
|x− x′|
|x− y|

)
for all x, x′, y, y′ ∈ Rd with |x − y| > 2|x − x′|. Let us denote the smallest

admissible constants C0 and Cψ by ‖K‖CZ0
and ‖K‖CZψ . The classical standard

estimates correspond to the choice ψ(t) = tα, α ∈ (0, 1], in which case we write

‖K‖CZα for ‖K‖CZψ .
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We say that T is a bounded Calderón-Zygmund operator, if in addition T

:L2(Rd) → L2(Rd), and we denote its operator norm by ‖T‖L2→L2.

Let us agree that || stands for the ℓ∞ norm on Rd, i.e., |x| := max1≤i≤d |xi|.

While the choice of the norm is not particularly important, this choice is slightly

more convenient than the usual Euclidean norm when dealing with cubes as we

will: e.g., the diameter of a cube in the ℓ∞ norm is equal to its sidelength ℓ(Q).

Let us first formulate the dyadic representation theorem for general moduli of

continuity, and then specialize it to the usual standard estimates. Define the

following coefficients for i, j ∈ N:

τ(i, j) := ϕ(2−max{i,j})−dψ(2−max{i,j}ϕ(2−max{i,j})−1),

if min{i, j}=0.

We assume that ϕ and ψ are such, that
∞∑

i,j=0

τ(i, j) '
∫ 1

0

1

ϕ(t)d
ψ

(
t

ϕ(t)

)
dt

t
+

∫ 1

0
Ψ

(
t

ϕ(t)

)
dt

t
<∞. (5.1)

This is the case, in particular, when ψ(t) = tα (usual standard estimates) and

ϕ(t) = (1 + a−1 log t−1)−γ; then one checks that

τ(i, j) ≲ P (max{i, j})2−αmax{i,j},

P (j) = (1 + j)γ(d+α),

which ch clearly satisfies the required convergence. However, it is also possible

to treat weaker forms of the standard estimates with a logarithmic modulus

ψ(t) = (1 + a−1 log t−1)−α. . This might be of some interest for applications,

but we do not pursue this line any further here.
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Theorem 5.2. Let T T be a bounded Calderón–Zygmund operator with mod-

ulus of continuity satisfying the above assumption. Then it has an expansion,

say f, g ∈ C1
c (Rd),

〈g〉Tf = c ·
(
‖T‖L2→L2 + ‖K‖CZψ

)
· Eω

∞∑
i,j=0

τ(i, j)〈g〉Sijω f,

where c is a dimensional constant and Sijω is a dyadic shift of parameters (i, j)

on the dyadic system Dω; ω; all of them except possibly S00
ω are cancellative.

The first version of this theorem appeared in [6], and another one in [5]. ]. The

present proof is yet another variant of the same argument. It is slightly simpler

in terms of the probabilistic tools that are used: no conditional probabilities are

needed, although they were important for the original arguments.

In proving this theorem, we do not actually need to employ the full strength of

the assumption that T : L2(Rd) → L2(Rd); rather it suffices to have the kernel

conditions plus the following conditions of the T1 theorem of David-Journé:

|〈1Q〉T1Q| ≤ CWBP |Q| (weak boundedness property),

T1 ∈ BMO(Rd), and T ∗1 ∈ BMO(Rd).

Let us denote the smallest CWBP by ‖T‖WBP. Then we have the following more

precise version of the representation:

Theorem 5.3. Let T be a Calderón–Zygmund operator with modulus of con-

tinuity satisfying the above assumption. Then it has an expansion, say for
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f, g ∈ C1
c (Rd),

〈g〉Tf = c ·
(
‖K‖CZ0

+ ‖K‖CZϕ
)
Eω

∞∑
i,j=0

max{i,j}>0

τ(i, j)〈g〉Si,jω f (5.2)

+ c ·
(
‖K‖CZ0

+ ‖T‖WBP
)
Eω〈g〉S00

ω f + Eω〈g〉
ω∏
T1

f + Eω〈g〉(
ω∏
T ∗1

)∗f,

where Si,jω is a cancellative dyadic shift of parameters (i, j) ) on the dyadic

system Dω, and
∏ω

b is a dyadic paraproduct on the dyadic system Dω associated

with the BMO-function b ∈ {T1, T ∗1}.

Remark 7. Note that
∏ω

b = ‖b‖BMO · Sωb , where Sωb =
∏ω

b / ‖b‖BMO O is a

shift with the correct normalization. Hence, writing everything in terms of

normalized shifts, as in Theorem 5.2, we get the factor ‖T1‖BMO ≲ ‖T‖L2→L2 +

‖K‖CZψ in the second-to-last term, and 〈T ∗1,〉 BMO ≲ 〈T 〉L2→L2 + 〈K〉CZψ
in the last one. The proof will also show that both occurrences of the factor

〈K〉CZ0
could be replaced by 〈T 〉L2→L2, giving the statement of Theorem 5.2

(since trivially 〈T 〉WBP ≤ 〈T 〉L2→L2).

As a by-product, Theorem 5.2 delivers a proof of the T1 theorem: under the

above assumptions, the operator T is already bounded on L2(Rd). ). Namely,

all the dyadic shifts Sijω are uniformly bounded on L2(Rd) ) by definition, and

the convergence condition (5.1) ensures that so is their average representing the

operator T . This by-product proof of the T1 theorem is not a coincidence, since

the proof of Theorem 5.2 and (5.3) was actually inspired by the proof of the

T1 Theorem for non-doubling measures due to Nazarov-Treil-Volberg[2] and its

vector-valued extension [3].

69



doi:10.6342/NTU202001176

A key to the proof of the dyadic representation is a random expansion T in

terms of Haar functions hI , where the bad cubes are avoided:

Proposition 1.

〈g, Tf〉 = 1

πgood
Eω

∑
I,J∈Dω

1good(smaller{I, J}) · 〈g, hJ〉〈hJ , ThI〉〈hI , f〉,

where

smaller{I, J} :=


I if ℓ(I) ≤ ℓ(J)

J if ℓ(I) > ℓ(J)

Proof. Recall that Haar functions form a basis

f =
∑
I∈D0

〈f, hI+̇ω〉hI+̇ω

for any fixed ω ∈ Ω; and we can also take expectation Eω of both sides of this

identity.

Let

1good(I+̇ω) :=


1, if I+̇ω is good,

0, else

We make use of the above random Haar expansion of f , multiply and divide by

πgood = Pω(I+̇ω good) = Eω1good(I+̇ω),

and use the independence from above Lemma to get:
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〈g, Tf〉 = Eω
∑
I

〈g, ThI+̇ω〉〈hI+̇ω, f〉

=
1

πgood

∑
I

Eω[1good(I+̇ω)]Eω[〈g, ThI+̇ω〉〈hI+̇ω, f〉]

=
1

πgood
Eω
∑
I

1good(I+̇ω)〈g, ThI+̇ω〉〈hI+̇ω, f〉

=
1

πgood
Eω
∑
I,J

1good(I+̇ω)〈g, hJ+̇ω〉〈hJ+̇ω, ThI+̇ω〉〈hI+̇ω, f〉

On the other hand, using independence again in half of this double sum, we

have

1

πgood

∑
ℓ(I)>ℓ(J)

Eω[1good(I+̇ω)〈g, hJ+̇ω〉〈hJ+̇ω, ThI+̇ω〉〈hI+̇ω, f〉]

=
1

πgood

∑
ℓ(I)>ℓ(J)

Eω[1good(I+̇ω)]Eω[〈g, hJ+̇ω〉〈hJ+̇ω, ThI+̇ω〉〈hI+̇ω, f〉]

= Eω
∑

ℓ(I)>ℓ(J)

〈g, hJ+̇ω〉〈hJ+̇ω, ThI+̇ω〉〈hI+̇ω, f〉

and hence

〈g, Tf〉 = 1

πgood
Eω

∑
ℓ(I)≤ℓ(J)

1good(I+̇ω)〈g, hJ+̇ω〉〈hJ+̇ω, ThI+̇ω〉〈hI+̇ω, f〉

+ Eω
∑

ℓ(I)>ℓ(J)

〈g, hJ+̇ω〉〈hJ+̇ω, ThI+̇ω〉〈hI+̇ω, f〉.

Comparison with the basic identity

〈g, Tf〉 = Eω
∑
I,J

〈g, hJ+̇ω〉〈hJ+̇ω, ThI+̇ω〉〈hI+̇ω, f〉 (5.3)
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shows that

Eω
∑

ℓ(I)≤ℓ(J)

〈g, hJ+̇ω〉〈hJ+̇ω, ThI+̇ω〉〈hI+̇ω, f〉

1

πgood
Eω

∑
ℓ(I)≤ℓ(J)

1good(I+̇ω)〈g, hJ+̇ω〉〈hJ+̇ω, ThI+̇ω〉〈hI+̇ω, f〉

Symmetrically, we also have

Eω
∑

ℓ(I)>ℓ(J)

〈g, hJ+̇ω〉〈hJ+̇ω, ThI+̇ω〉〈hI+̇ω, f〉

1

πgood
Eω

∑
ℓ(I)>ℓ(J)

1good(I+̇ω)〈g, hJ+̇ω〉〈hJ+̇ω, ThI+̇ω〉〈hI+̇ω, f〉,

and this completes the proof. □

This is essentially the end of probability in this proof. Henceforth, we can

simply concentrate on the summation inside Eω, for a fixed value of ω ∈ Ω, and

manipulate it into the required form. Moreover, we will concentrate on the half

of the sum with ℓ(J) ≥ ℓ(I), the other half being handled symmetrically. We

further divide this sum into the following parts:

∑
ℓ(I)≤ℓ(J)

=σdist>ℓ(J)ϕ(ℓ(I)/ℓ(J)) +
∑
I⊊J

+
∑
I=J

+
∑

dist≤ℓ(J)ϕ(ℓ(I)/ℓ(J))
I∩J=∅

=:σout + σin + σ= + σnear

In order to recognize these series as sums of dyadic shifts, we need to locate, for

each pair (I, J) appearing here, a common dyadic ancestor which contains both

of them. The existence of such containing cubes, with control on their size, is

provided by the following:
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Lemma 5. If I ∈ D is good and J ∈ D is a disjoint cube with ℓ(J) ≥ ℓ(I),

then there exists K ⊃ I ∪ J which satisfies

ℓ(K) ≤ 2rℓ(I), if dist(I, J) ≤ ℓ(J)ϕ(
ℓ(I)

ℓ(J)
)

ℓ(K)ϕ(
ℓ(I)

ℓ(K)
) ≤ 2dist(I, J), if dist(I, J) > ℓ(J)ϕ(

ℓ(I)

ℓ(J)
)

We need to find the bound of ℓ(K).

Proof. Firstly, we have to show that I ∪ J ⊂ K rather than estimate by ℓ(I) +

ℓ(J) + dist(I, J) ≤ ℓ(K) since we don’t know the location of I, J and K. Let

us start with the following initial observation: if K ∈ D satisfies I ⊂ K, and

J ⊂ Kc, and ℓ(K) ≥ 2rℓ(I), then

ℓ(K)ϕ(
ℓ(I)

ℓ(K)
) < dist(I, ∂K) = dist(I,Kc) ≤ dist(I, J).

Case 1: dist(I, J) ≤ ℓ(J)ϕ( ℓ(I)ℓ(J))

Choose any K with ℓ(K) ≥ 2rℓ(I), and I ⊂ K. Since I is good, we have

dist(I,K) > ℓ(K)ϕ( ℓ(I)ℓ(K)), and ℓ(J) < 2rℓ(I). Assume for contradiction that

J ⊂ Kc. Then

ℓ(K)ϕ(
ℓ(I)

ℓ(K)
) < dist(I, ∂K) ≤ dist(I, J) ≤ ℓ(J)ϕ(

ℓ(I)

ℓ(J)
).

Dividing both sides by ℓ(I) and recalling that ϕ(t)
t is decreasing, this implies that

ℓ(K) < ℓ(J), a contradiction with ℓ(K) ≥ 2rℓ(I) > ℓ(J). Hence J 6⊂ Kc, and

since ℓ(J) < ℓ(K), this implies that J ⊂ K. Since for anyK with ℓ(K) ≥ 2rℓ(I)

can contains I ∪ J , the minimality of K is ℓ(K) ≤ 2rℓ(I).
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Case 2: dist(I, J) > ℓ(J)ϕ( ℓ(I)ℓ(J)).

Consider the minimal K ⊃ I with ℓ(K) ≥ 2rℓ(I) and dist(I, J) ≤ ℓ(K)ϕ( ℓ(I)ℓ(K)).

(Since ϕ(t)/t → ∞ as t → 0, this bound hold for all large enough K.) Then

(since ϕ(t)/t is decreasing) ℓ(K) > ℓ(J), and by initial observation, J 6⊂ Kc.

(If J ⊂ Kc, then ℓ(K)ϕ( ℓ(I)ℓ(K)) < dist(I, ∂K) ≤ dist(I, J) ≤ ℓ(K)ϕ( ℓ(I)ℓ(K)), which

is contradiction.) Hence J ⊂ K. By the minimality of K, there holds

1

2
ℓ(K)ϕ(

ℓ(I)

ℓ(K)
) < ℓ(K)/2ϕ(

ℓ(I)

ℓ(K)/2
) ≤ dist(I, J),

and it implies that

ℓ(K)ϕ(
ℓ(I)

ℓ(K)
) < ℓ(Kϕ(

ℓ(I)

ℓ(K)/2
)) < 2dist(I, J)

,

so the required bound is true in each case.

□

We denote that minimal such K by I ∨ J , thus

I ∨ J :=
⋂

K⊃I∨J
K

Separated cubes,sigma out We reorganize the sum σout with respect to the

new summation variable K = I ∨ J, as well as the relative size of I and J with

respect to K:

σout =
∞∑
j=1

∞∑
i=j

∑
K

∑
dist(I,J)>ℓ(J)ϕ( ℓ(I)ℓ(J) )

I∨J=K
ℓ(I)=2−iℓ(K),ℓ(J)=2−jℓ(K)

.
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Note that we can start the summation from 1 instead of 0, since the disjointness

of I and J implies that K = I ∨ J must be strictly larger than either of I and

J . The goal is to identify the quantity in parentheses as a decaying factor times

a cancellative averaging operator with parameters (i, j).

Lemma 6. For I and J appearing in σout, we have

|〈hJ , ThI〉| ≲ ‖K‖CZψ

√
|I||J |
|K|

ϕ

(
ℓ(I)

ℓ(K)

)−d
ψ

(
ℓ(I)

ℓ(K)
ϕ

(
ℓ(I)

ℓ(K)

)−1
)
, K = I ∨ J

Proof. Using the cancellation of hI , standard estimates, and Lemma, and lemma

5

|〈hJ , ThI〉| =|
∫∫

hJ(x)K(x, y)hI(y)dydx|

=|
∫∫

hJ(x) [K(x, y)−K(x, yI)]hI(y)dydx|

≲ ‖K‖CZψ

∫∫
|hJ(x)|

1

dist(I,J)d
ψ

(
ℓ(I)

dist(I, J)

)
|hI(y)|dydx

= ‖K‖CZψ
1

dist(I,J)d
ψ

(
ℓ(I)

dist(I, J)

)
‖hJ‖1 ‖hI‖1

≲ ‖K‖CZψ
1

ℓ(K)d
ϕ

(
ℓ(I)

ℓ(K)

)−d
ψ

(
ℓ(I)

ℓ(K)
ϕ

(
ℓ(I)

ℓ(K)

)−1
)√

|J |
√
|I|.

□
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Lemma 7. ∑
dist(I,J)>ℓ(J)ϕ( ℓ(I)ℓ(J) )

I∨J=K
ℓ(I)=2−iℓ(K),ℓ(J)=2−jℓ(K)

1good(I) · 〈g, hJ〉〈hJ , ThI〉〈hI , f〉

= ‖K‖CZψ ϕ(2
−i)−dψ(2−iϕ(2−i)−1)〈g, Aijf〉,

where Aij is a cancellative averaging operator with parameters (i,j).

Proof. By the previous lemma, substituting ℓ(I)/ℓ(K) = 2−i,

|〈hJ , ThI〉| ≲ ‖K‖CZψ

√
|I||J |
|K|

ϕ
(
2−i
)−d

ψ
(
2−iϕ

(
2−i
)−1
)
,

and the first factor is precisely the required size of the coefficients of Aij
K . □

Summarizing, we have

σout = ‖K‖CZψ
∞∑
j=1

∞∑
i=j

ϕ(2−1)−dψ(2−1ϕ(2−i)−1)〈g, Sij〉.

Containe subcubes, sigma in When I ⊊ J , then I is contained in some

subcubes of J , which we denote by JI .

〈hJ , ThI〉 =〈1JcIhJ , ThI〉+ 〈1JIhJ , ThI〉

=〈1JcIhJ , ThI〉+ 〈hJ〉JI〈1JI , ThI〉

=〈1JcI (hJ − 〈hJ〉JI), ThI〉+ 〈1, ThI〉,

where we notice that hJ is constant on JI ⊃ I.

Lemma 8.

|〈1JcI (hJ−〈hJ〉JI), ThI〉| ≲
(
‖K‖CZψ + ‖K‖CZ0

)( |I|
|J |

)1/2

Ψ

(
ℓ(I)

ℓ(J)
ϕ

(
ℓ(I)

ℓ(J)

)−1
)
,
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where

Ψ(r) :=

∫ r

0
ψ(t)

dt

t
,

and ‖K‖CZ0
could be alternatively replaced by ‖T‖L2→L2.

Proof.

|〈1JcI (hJ − 〈hJ〉JI), ThI〉| ≤ 2 ‖hJ‖∞
∫
JcI

|ThI(x)|dx,

where ‖hJ‖∞ = |J |−1/2.

Case ℓ(I) ≥ 2−rℓ(J). We have∫
JcI

|ThI(x)|dx ≤
∫
3I\I

|
∫
K(x, y)hI(y)dy|dx

+

∫
(3I)c

|
∫

(K(x, y)− k(x, yI))hI(y)dy|dx

≲ ‖K‖CZ0

∫
3I\I

∫
I

1

|x− y|d
dydx ‖hI‖∞

+ ‖K‖CZψ

∫
(3I)c

1

dist(x, I)dψ
(

ℓ(I)

dist(x, I)

)
‖hI‖1 dx

≲ ‖K‖CZ0
|I| ‖hI‖∞ + ‖K‖CZψ

∫ ∞

ℓ(I)

1

rd
ψ

(
ℓ(I)

r

)
rd−1dr ‖hI‖1

= ‖K‖CZ0
|I|1/2 + ‖K‖CZψ

∫ 1

0
ψ(t)

dt

t
|I|1/2

≲(‖K‖CZ0
+ ‖K‖CZψ)|I|

1/2,

by Dini condition in the last step.

Alternatively, the part giving the factor ‖K‖CZ0
could have been estimated by∫

3I\I
|
∫
K(x, y)hI(y)dy|dx ≤ |3I\I|1/2 ‖ThI‖2 ≲ |I|1/2 ‖T‖L2→L2 .

Case ℓ(I) < 2−rℓ(J). Since I ⊂ JI is good, we have

dist(I, J cI ) > ℓ(JI)ϕ(
ℓ(I)

ℓ(JI)
) ≳ ℓ(J)ϕ(

ℓ(I)

ℓ(J)
)
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and hence∫
JcI

|ThI(x)|dx ≲ ‖K‖CZϕ

∫
JcI

1

d(x, I)
ψ

(
ℓ(I)

dist(x, I)

)
‖hI‖1 dx

≲ ‖K‖CZϕ

∫
ℓ(J)ϕ(ℓ(I)/ℓ(J))

1

rd
ψ

(
ℓ(I)

r

)
rd−1dr · ‖hI‖1

= ‖K‖CZϕ

∫ ℓ(I)\ℓ(J)·ϕ(ℓ(I)/ℓ(J))−1

0
ψ(t)

dt

t
· |I|1/2.

□

Now we can organize

σ′in :=
∑
J

∑
I⊊J

〈g〉hJ〈1JcI (hJ − 〈hJ ,〉 JI)〉ThI〈hI〉f =
∞∑
i=1

∑
J

∑
I⊂J

ℓ(I=2−iℓ(J))

,

and the inner sum is recongnized as

(‖K‖CZ0
+ ‖K‖CZϕ)Ψ(2−iϕ(2−i)−1)〈g〉Ai0

J f,

or with ‖T‖L2→L2 in place of ‖K‖CZ0
, for a cancellative e averaging operator of

type (i, 0).

On the other hand,

σ′′in : =
∑
J

∑
I⊊J

〈g〉hJ〈hJ ,〉 I〈1〉ThI〈hI〉f

=
∑
I

〈
∑
J⊋I

〈g〉hJhJ ,〉 I〈1〉ThI〈hI〉f

=
∑
I

〈g,〉 I〈T ∗1〉hI〈hI〉f

= 〈
∑
I

〈g,〉 I〈T ∗1〉hIhI〉f =: 〈
∏
T ∗1

g〉f = 〈g〉
∗∏
T ∗1

f.
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Here
∏

T ∗1 is the paraproduct, a non-cancellative shift composed of the non-

cancellative averaging operators

AIg = 〈T ∗1〉hI〈g,〉 IhI = |I|−1/2〈T ∗1〉hI · 〈g〉h0IhI

of type (0, 0).

Summarizing, we have

σin = σ′in + σ′′in

= (‖K‖CZ0
+ ‖K‖CZϕ)

∞∑
i=1

Ψ(2−iϕ(2−i)−1)〈g〉Si0J f + 〈
∏
T ∗1

g〉f,

where Ψ(t) =
∫ t
0 ψ(s)

ds
s , and ‖K‖CZ0

could be replaced by ‖T‖L2→L2. Note

that if we wanted to write
∏

T ∗1 in terms of a shift with correct normalization,

we should divide and multiply it by ‖T ∗1‖BMO, thus getting a shift times the

factor ‖T ∗1‖BMO ≲ ‖T‖L2 + ‖K‖CZψ . Near-by cubes, sigma in and sigma

near. We are left with the sums σ= of equal cubes I = J , as well as σnear

of disjoint near-by cubes with dist(I, J) ≤ ℓ(J)ϕ (ℓ(I)/ℓ(J)). Since I is good,

this necessarily implies that ℓ(I) > 2−rℓ(J). Then, for a given J, there are only

boundedly many related I in this sum.

Lemma 9.

|〈hJ〉ThI | ≲ ‖K‖CZ0
+ δIJ ‖T‖WBP .

Note that if we used the L2-boundedness of T instead of the CZ0 and WBP

condition (as is done in Theorem 5.2), we could also estimate simply

|〈hJ , ThI〉| ≲ 〈hJ〉2〈T 〉L2→L2〈hI〉2 = 〈T 〉L2→L2.
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Proof. For disjoint cubes, we estimate directly

|〈hJ , ThI〉| ≲〈K〉CZ0

∫
J

∫
I

1

|x− y|d
dydx〈hJ〉∞〈hI〉∞

≤〈K〉CZ0

∫
J

∫
3J\J

1

|x− y|d
dydx|J |−1/2|I|−1/2

≲〈K〉CZ0
|J ||J |−1/2|I|−1/2 = 〈K〉CZ0

,

since |I| ' |J |.

For J = I, let Ii be its dyadic children. Then

|〈hJ , ThI〉| ≤
2d∑

i,j=1

|〈hI〉Ii〈hI〉Ij〈1Ii, T1Ii〉|

≲〈K〉CZ0

∑
j 6=i

|I|−1

∫
Ii

∫
Ij

1

|x− y|d
dxdy +

∑
i

|I|−1|〈1Ii, T1Ii〉| ≲ 〈K〉CZ0
+ 〈T 〉WBP,

by the same estimate as earlier for the first term, and the weak boundedness

property for the second. □

With this lemma, the sum σ= is recognized as a cancellative dyadic shift of type

(0, 0) as such:

σ= =
∑
I∈D

1good(I) · 〈g, hI〉〈hI , ThJ〉〈hJ , f〉

=(〈K〉CZ0
+ 〈T 〉WBP) 〈g, S00f〉,

where the factor in front could also be replaced by 〈T 〉L2→L2.

For I and J participating in σnear, we conclude from Lemma 5 that K := I ∨ J
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satisfies ℓ(K) ≤ 2rℓ(I), and hence we may organize

σnear =
r∑
i=1

i∑
j=1

∑
K

∑
I,J :I∨J=K

dist(I,J)≤ℓ(J)ϕ(ℓ(I)/ℓ(J))
ℓ(I)=2−iℓ(K)
ℓ(J)=2−jℓ(K)

,

and the innermost sum is recognized as 〈K〉CZ0
〈g, Aij

Kf〉 for some cancellative

averaging operator of type (i, j).

Summarizing, we have

σnear + σ= = (〈K〉CZ0
+ 〈T 〉WBP) 〈g, S00f〉+ 〈K〉CZ0

r∑
j=1

r∑
i=j

〈g, Sijf〉,

where S00 and Sij are cancellative dyadic shifts, and the factor (〈K〉CZ0
+ 〈T 〉WBP)

could also be replaced by 〈T 〉L2→L2.

Synthesis. We have checked that

∑
ℓ(I)≤ℓ(J)

1good〈g〉hJ〈hJ〉ThI〈hI〉f

=
(
〈K〉CZ0

+ 〈K〉CZϕ
)
(
∑

1≤j≤i<∞
ϕ(2−i)−dψ(2−iϕ(2−i)−1)〈g, Sijf〉

+
∑

1≤i<∞Ψ(2−iϕ(2−i)−1)〈g,Si0f〉

+ (〈K〉CZ0
+ 〈T 〉WBP ) 〈g, S00f〉+ 〈g,

∗∏
T ∗1

f〉

where Ψ =
∫ t
0 ψ(s)ds,

∏
T ∗1 is a paraproduct—a non-cancellative shift of (0, 0),

and all other Sij is a cancellative dyadic shifts of type (i, j).

By symmetry (just observing that the cubes of equal size contributed precisely

to the presence of the cancellative shifts of type (i, j), and that the dual of a
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shift of type (i, j) is a shift of type (j, i), it follows that

∑
ℓ(I)>ℓ(J)

1good〈g〉hJ〈hJ〉ThI〈hI〉f

=
(
〈K〉CZ0

+ 〈K〉CZϕ
)
(
∑

1≤i<j<∞
ϕ(2−j)−dψ(2−jϕ(2−j)−1)〈g, Sijf〉

+
∑

1≤j<∞Ψ(2−jϕ(2−j)−1)〈g,S0if〉

+ 〈g,
∏
T1

f〉

so that altogether

∑
I,J

1good(min{I, J})〈g〉hJ〈hJ〉ThI〈hI〉f

=
(
〈K〉CZ0

+ 〈K〉CZϕ
)
(

∞∑
i,j=1

ϕ(2−max(i,j))−dψ(2−max(i,j)ϕ(2−max(i,j))−1)〈g, Sijf〉

+
∑
i=1

Ψ(2−iϕ(2−i)−1)
(
〈g, Si0f〉+ 〈g, S0if〉

)
)

+ (〈K〉CZ0
+ 〈T 〉WBP ) 〈g, S00f〉+ 〈g,

∗∏
T ∗1

f〉+ 〈g,
∏
T1

f〉,

and this completes the proof of Theorem 5.2.

Two-weight theory for dyadic shifts

Before proceeding further, it is convenient to introduce a useful trick due to

E. Sawyer. Let σ be an everywhere positive, finitely-valued function. Then

f ∈ Lp(ω) if and only if ϕ = f\σ ∈ Lp(σpω), and they have equal norms in the

respective spaces. Hence an inequality

‖Tf‖Lp(ω) ≤ N ‖f‖Lp(ω) ∀f ∈ Lp(ω) (5.4)
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is equivalent to

‖T (ϕσ)‖Lp(ω) ≤ N ‖ϕσ‖Lp(ω) = N ‖ϕ‖Lp(σpω) ∀ϕ ∈ Lp(σpω). (5.5)

This is true for any σ, and we now choose it in such a way that σpω = σ,

i.e., σ = ω−1/(p−1) = ω1−p′, where p′ is the dual exponent. So finally (5.4) is

equivalent to

‖T (ϕσ)‖Lp(ω) ≤ N ‖ϕ‖Lp(σ) ∀ϕ ∈ Lp(σ).

This formulation has the advantage that the norm on the right and the operator

T (ϕσ)(x) =

∫
K(x, y)ϕ(y) · σ(y)dy

involve integration with respect to the same measure σ. In particular, the A2

theorem is equivalent to

‖T (fσ)‖L2(ω) ≤ cT [ω]A2
‖f‖L2(σ)

for all f ∈ L2(ω), for all ω ∈ A2 and σ = ω−1. But once we know this, we can

also study this two-weight inequality on its own right, for two general measures

ω and σ, which need not be related by the pointwise relation σ(x) = 1/ω(x).

Theorem 5.4. Let σ and ω be two locally finite measures with

[ω, σ]A2
:= sup

Q

ω(Q)σ(Q)

|Q|2
<∞.

Then a dyadic shift S of type (i, j) satisfies S(σ·) : L2(σ) → L2(ω) if and only

if

S := sup
Q

‖1QS(σ1Q)‖ L2(ω)

σ(Q)1/2
, S∗ := sup

Q

‖1QS∗(ω1Q)‖L2(σ)

ω(Q)1/2
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are finite, and in this case

‖S(σ·)‖L2(σ)→L2(ω) ≲ (1 + κ)(S+S∗) + (1 + κ)2[ω, σ]
1/2
A2
,

where κ = max{i, j}.

This result from my work with Pérez, Treil, and Volberg [5] was preceded by

an analogous qualitative version due to Nazarov, Treil, and Volberg [4].

The proof depends on decomposing functions in the spaces L2(ω) → L2(σ) in

terms of expansions similar to the Haar expansion in L2(Rd). Let Dσ
I be the

orthogonal projection of L2(σ) onto its subspace of functions supported on I,

constant on the subcubes of I, and with vanishing integral with respect to dσ.

Then any two Dσ
I are orthogonal to each other. Under the additional assumption

that the σ measure of quadrants of Rd is finite, we have the expansion

f =
∑
Q∈D

Dσ
Qf

for all f ∈ L2(σ), and Pythagoras’theorem says that

‖f‖L2(σ) =

(∑
Q

∥∥Dσ
Qf
∥∥2
L2(σ)

)1/2

.

(These formulae needs a slight adjustment if the σ measure of quadrants is finite;

Theorem 5.4 remains true without this extra assumption.) Let us also write

Dσ,i
K :=

∑
I⊂K

ℓ(I)=2−iℓ(K)

Dσ
I .

For a fixed i ∈ N, these are also orthogonal to each other, and the above

formulae generalize to

f =
∑
Q∈D

Dσ,i
Q f, ‖f‖L2(σ) =

(∑
Q

∥∥∥Dσ,i
Q f
∥∥∥2
L2(σ)

)1/2

.
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The proof is in fact very similar in spirit to that of Theorem 5.2; it is another

T1 argument, but now with respect to the measures σ and ω in place of the

Lebesgue measure. We hence expand

〈g, S(σf)〉ω =
∑

Q,R∈D

〈Dω
Rg, S(σD

σ
Qf)〉ω, f ∈ L2(σ), g ∈ L2(ω),

and estimate the matrix coefficients

〈Dω
Rg, S(σD

σ
Qf)〉ω =

∑
K

〈Dω
Rg, Ak(σDσ

Qf)〉ω (5.6)

=
∑
K

∑
I,J⊂K

aIJK〈Dω
Rg, hJ〉ω〈hI ,Dσ

Qf〉σ.

For 〈hI ,Dσ
Qf〉σ 6= 0, there must hold I ∩Q 6= ∅, thus I ⊂ Q or Q ⊊ I. But in

the latter case hI is constant on Q , while
∫
Dσ
Qf ·σ = 0, so the pairing vanishes

even in this case. Thus the only nonzero contributions come from I ⊆ Q, and

similarly from J ⊆ R. Since I, J ⊆ K, there holds

(I ⊆ Q ⊊ K or K ⊆ Q) and (J ⊆⊊ K or K ⊆ R).

Disjoint cubes. Suppose now that Q ∩ R = ∅, and let K K be among those

cubes for which AK K gives a nontrivial contribution above. Then it cannot

be that K ⊂ Q, since this would imply that Q ∩ R ⊇ K ∩ J = J 6= ∅, and

similarly it cannot be that K ⊆ R. Thus Q,R ⊊ K, and hence

Q ∨Q ⊆ K.

85



doi:10.6342/NTU202001176

Then

|〈Dω
Rg, S(σD

σ
Qf)〉ω| ≤

∑
K⊇Q∨R

|〈Dω
Rg, AK(σDσ

Qf)〉ω|

≲
∑

K⊇Q∨R

‖Dω
Rg‖L1(ω)

∥∥∥Dσ
Qf
∥∥∥
L1(σ)

|K|

≲
‖Dω

Rg‖L1(ω)

∥∥∥Dσ
Qf
∥∥∥
L1(σ)

|Q ∨R|
.

On the other hand, we have Q ⊇ I, R ⊇ J for some I, J ⊆ K with ℓ(I) =

2−iℓ(K) and ℓ(J) = 2−jℓ(K). Hence 2−iℓ(K) ≤ ℓ(Q) and 2−jℓ(K) ≤ ℓ(R),

and thus

Q ∨R ⊆ K ⊆ Q(i)∩R(j)

.

Now it is possible to estimate the total contribution of the part of the matrix

with Q ∩ R = ∅. Let P := Q ∨ R R be a new auxiliary summation variable.

Then Q,R ⊂ P , and ℓ(Q) = 2−aℓ(P ), ℓ(R) = 2−bℓ(P ) where a = 1, . . . , i
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b = 1, . . . , j. Thus

∑
Q,R∈D
Q∩R=∅

|〈Dω
Rg〉S(σDω

Qf)ω|

≲
i∑

a=1

j∑
b=1

∑
P∈D

1

|P |
∑

Q,R∈D :Q∨R=P
ℓ(Q)=2−aℓ(P )
ℓ(R)=2−bℓ(P )

‖Dω
Rg‖L1(σ)

∥∥Dσ
Qf
∥∥
L1(ω)

≤
i,j∑

a,b=1

∑
p∈D

1

|P |
∑
R⊆P

ℓ(R)=2−bℓ(P )

‖Dω
Rg‖L1(σ)

∑
Q⊆P

ℓ(Q)=2−aℓ(P )

∥∥Dσ
Qf
∥∥
L1(ω)

=

i,j∑
a,b=1

∑
p∈D

1

|P |

∥∥∥∥∥∥∥∥
∑
R⊆P

ℓ(R)=2−bℓ(P )

Dω
Rg

∥∥∥∥∥∥∥∥
L1(σ)

∥∥∥∥∥∥∥∥
∑
Q⊆P

ℓ(Q)=2−aℓ(P )

Dσ
Qf

∥∥∥∥∥∥∥∥
L1(ω)

=

i,j∑
a,b=1

∑
p∈D

1

|P |

∥∥∥Dω,j
P g
∥∥∥
L1(σ)

∥∥∥Dσ,i
P f
∥∥∥
L1(ω)

≤
i,j∑

a,b=1

∑
p∈D

σ(P )1/2ω(P )1/2

|P |

∥∥∥Dω,j
P g
∥∥∥
L2(ω)

∥∥∥Dσ,i
P f
∥∥∥
L2(σ)

≤
i,j∑

a,b=1

[ω, σ]
1/2
A2

(∑
P∈D

∥∥∥Dω,j
P g
∥∥∥2
L2(ω)

)1/2(∑
P∈D

∥∥∥Dσ,i
P f
∥∥∥2
L2(σ)

)1/2

≤ ij[ω, σ]
1/2
A2

‖g‖L2(ω) ‖f‖L2(σ) .

Deeply contained cubes. Consider now the part of sum with Q ⊂ R and

ℓ(Q) < 2−iℓ(R). (The part with R ⊂ Qandℓ(R) < 2−Jℓ(Q) would be handled

in a symmetrical manner.)

Lemma 10. For all Q ⊂ R with ℓ(Q) < 2−iℓ(R), we have

〈Dω
Rg, S(σD

σ
Qf)〉ω = 〈Dω

Rg〉Q(i)〈S∗(ω1Q(i)),Dσ
Qf〉σ,
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where further

Dσ
QS

∗(ω1Q(i)) = Dσ
QS

∗(ω1P ) for any P ⊇ Q(i).

Recall that Dσ
Q = (Dσ

Q)
2 = (Dσ

Q)
∗ is an orthogonal projection on L2(σ), so it

can be moved to either or both sides of 〈, 〉σ.

Proof. Recall formula (5.6). If 〈hI ,Dσ
Qf〉σ is nonzero, then I ⊆ Q, and hence

J ⊆ K = I(i) ⊆ Q(i) ⊊ R

for all J participating in the same AK as I. Thus Dω
Rg is constant in Q(i), hence

〈Dω
Rg, AK(σDσ

Qf)〉ω = 〈1Q(i)DωRg, AK(σDσ
Qf)〉ω

= 〈Dω
Rg〉ωQ(i)〈1(i)Q , AK(σDσ

Qf)〉ω

= 〈Dω
Rg〉ωQ(i)〈A∗

K(ω1Q(i)),Dσ
Qf〉.

Moreover, for any P ⊇ Q(i) ⊇ K,

〈Dσ
QA

∗
K(ω1Q(i)), f〉σ = 〈1Q(i), AK(σDσ

Qf)〉ω

=

∫
AK(σDσ

Qf)ω

= 〈1P , AK(σDσ
Qf)〉ω = 〈Dσ

QA
∗
K(ω1P ), f〉σ.

Summing these equalities over all relevant K, and using S =
∑

K AK , giving

the claim. □
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By the lemma, we can then manipulate∑
Q,R:Q⊂R

ℓ(Q)<2−iℓ(R)

〈Dω
Rg, S(σD

σ
Qf)〉ω

=
∑
Q

 ∑
R⊋Q(i)

〈Dω
Rg〉ωQ(i)

 〈S∗(ω1Q(i)),Dσ
Qf〉σ

=
∑
Q

〈g〉ωQ(i)〈S∗(ω1Q(i)),Dσ
Qf〉σ

=
∑
R

〈g〉ωR〈S∗(ω1R),
∑
Q⊆R

ℓ(Q)=2−iℓ(R)

Dσ
Qf〉σ

=
∑
R

〈g〉ωR〈S∗(ω1R),Dσ,i
R f〉σ,

where 〈g〉ωR := ω(R)−1
∫
R g · ω is the average of g on R with respect to the ω

measure.

By using the properties of the pairwise orthogonal projections Dσ,i
R on L2(σ),

the above series may be estimated as follows:

|
∑

Q,R:Q⊂R
〈Dω

Rg, S(σD
σ
Qf)〉ω|

≤
∑
R

|〈g〉ωR|
∥∥∥Dσ,i

R S
∗(ω1R)

∥∥∥
L2(σ)

∥∥∥Dσ,i
R f
∥∥∥
L2(σ)

≤
(∑

R

|〈g〉ωR|
∥∥∥Dσ,i

R S
∗(ω1R)

∥∥∥2
L2(σ)

)(∑
R

∥∥∥Dσ,i
R f
∥∥∥2
L2(σ)

)
,

where the last factor is equal to ‖f‖L2(ω).

The first factor on the right is handled by the dyadic Carleson embedding the-

orem: It follows from the second equality of Lemma

We firstly prove a lemma 10, namely Dσ
QS

∗(ω1Q(i)) = Dσ
QS

∗(ω1P ) for all P ⊃
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Q(i), that Dσ,i
R S

∗(ω1R) = Dσ
QS

∗(ω1P ) for all P ⊆ R. Hence, we have

∑
R⊂P

∥∥∥Dσ,i
R S

∗(ω1R)
∥∥∥2
L2(σ)

=
∑
R⊂P

∥∥∥Dσ,i
R (1PS

∗(ω1P ))
∥∥∥2
L2(σ)

≤ ‖1PS∗(ω1P )‖2L2(σ) ≲ S2
∗σ(P )

by the (dual) testing estimate for the dyadic shifts. By the Carleson embedding

theorem, it then follows that(∑
R

|〈g〉ωR|2
∥∥∥Dσ,i

R S
∗(ω1R)

∥∥∥2
L2(σ)

)1/2

≲ S∗ ‖g‖L2(σ) ,

and the estimation of the deeply contained cubes is finished. Contained cubes

of comparable size. It remains to estimate

∑
Q,R:Q⊆R

ℓ(Q)≥2−iℓ(R)

〈Dω
Rg, S(σD

σ
Qf)〉ω;

the sum over R ⊆ Q with ℓ(R) ≥ 2−jℓ(Q) would be handled in a symmetric

manner. The sum of interest may be written as
i∑

a=0

∑
R

∑
Q⊆R

ℓ(Q)=2−aℓ(R)

〈Dω
Rg, S(σD

σ
Qf)〉ω =

i∑
a=0

∑
R

〈Dω
Rg, S(σD

σ,i
Q f)〉ω,

and

〈Dω
Rg, S(σD

σ,i
Q f)〉ω =

2d∑
k=1

〈Dω
Rg〉Rk〈S∗(ω1Rk),D

σ,i
R f〉σ

where the Rk are the 2d dyadic children of R, and 〈Dω
Rg〉Rk is the constant

valued of Dω
Rg on Rk. Now

〈S∗(ω1Rk),D
σ,i
R f〉σ = 〈1RkS∗(ω1Rk),D

σ,i
R f〉σ + 〈S∗(ω1Rk), 1RckD

σ,i
R f〉σ,
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where

|〈1RkS∗(ω1Rk),D
σ,i
R f〉σ| ≤ S∗ω(Rk)

1/2
∥∥∥Dσ,i

R f
∥∥∥
L2(')

and, observing that only those A∗
K where K intersects both Rk and Rc

k con-

tribute to the second part,

|〈S∗(ω1Rk), 1RckD
σ,i
R f〉σ| = |

∑
K⊋Rk

〈A∗
K(ω1Rk), 1RckD

σ,i
R f〉σ|

≲
∑
K⊇R

1

|K|
ω(Rk)

∥∥∥Dσ,i
R f
∥∥∥
L1(σ)

≲ 1

|R|
ω(Rk)σ(R)

1/2
∥∥∥Dσ,i

R f
∥∥∥
L1(σ)

≤ ω(R1/2σ(R)1/2

|R|
ω(Rk)

1/2
∥∥∥Dσ,i

R f
∥∥∥
L1(σ)

≤ [ω, σ]A2
ω(Rk)

1/2
∥∥∥Dσ,i

R f
∥∥∥
L1(σ)

.

It follows that

|〈S∗(ω1Rk),D
σ,i
R f〉σ| ≲ (S∗ + [ω, σ]A2

)ω(Rk)
1/2
∥∥∥Dσ,i

R f
∥∥∥
L1(σ)

and hence

|〈ω1Rk, S(D
σ,i
R f)〉ω| ≲ (S∗ + [ω, σ]A2

) ‖Dω
Rg‖L2(ω)

∥∥∥Dσ,i
R f
∥∥∥
L1(σ)

.

Finally,
i∑

a=0

∑
R

|〈Dω
Rg, S(σD

σ,i
R f)〉ω|

≲ (S∗ + [ω, σ]A2
)

i∑
a=0

(∑
R

‖Dω
Rg‖

2
L2(ω)

)1/2(∑
R

∥∥∥Dσ,i
R f
∥∥∥2
L1(σ)

)1/2

≤ (1 + i)(S∗ + [ω, σ]A2
) ‖g‖L2(ω) ‖f‖L2(σ) .
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The symmetric case with R ⊂ Q with ℓ(R) ≥ 2−jℓ(Q) similarly yields the

factor (1 + j)(S+ [ω, σ]A2
). This completes the proof of Theorem (5.4). Final

decompositions: verification of the testing conditions We now turn to

the estimation of the testing constant

S := sup
Q∈D

‖1QS(σ1Q)‖L2(ω)

σ(Q)1/2
.

Bounding S∗ is analogous by exchanging the roles of ω and σ. Several split-

tings. First observe that

1QS(σ1Q) = 1Q
∑

K:K∩Q6=∅

AK(σ1Q) + 1Q
∑
K⊋Q

AK(σ1Q).

The second part is immediate to estimate even pointwise by

|1QAK(σ1Q)| ≤ 1Q
σ(Q)

|K|
,
∑
K⊋

1

|K|
≤ 1

|Q|
,

and hence its L2(ω) norm is bounded by∥∥∥∥1Qσ(Q)|Q|

∥∥∥∥
L2(ω)

=
ω(Q)1/2σ(Q)

|Q|
≤ [ω, σ]A2

σ(Q)1/2.

So it remains to concentrate on K ⊇ Q, and we perform several consecutive

splittings of this collection of cubes. First, we separate scales by introducing

the splitting according to the κ+1 possible values of log2 ℓ(K) mod (κ+1).

We denote a generic choice of such a collection by

H = H := {K ⊇ Q : log2 ℓ(K) ≡ κ mod (κ+ 1)},

where κ is arbitrary but fixed. (We will drop the subscript k, since its value

plays no role in the subsequent argument.) Next, we freeze the A2 characteristic
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by setting

H := {K ∈ H : 2a−1 <
ω(K)σ(K)

|K|
≤ 2a}, a ∈ Z, a ≤ dlog2[ω,']A2

e,

where de means rounding up to the next integer.

In the next step, we choose the principal cubes P ∈ P ⊇ H a. This construc-

tion was first introduced by B. Muckenhoupt and R. Wheeden [8], and it has

been influential ever since. Let Pa
0 consist of all maximal cubes in H a, and

inductively Pa
p+1 consist of maximal P ′ ∈ H a such that

P ′ ⊂ P ∈ H a
p ,

σ(P ′)

|P ′|
> 2

σ(P )

|P |
.

Finally, let Pa : ∪∞
p=0P

a
p . For each K ∈ H a, let

∏a(K) denote the minimal

P ∈ Pa such that K ⊆ P. Then we set

H a(P ) := {K ∈ H a :
a∏
(K) = P}, P ∈ Pa.

Note that σ(K)/|K| ≤ 2σ(P )/|P | for all K ∈ H a(P ), , which allows us to

freeze the σ−to-Lebesgue measure ratio by the final subcollections

H a
b := {K ∈ H a(P ) : 2−b <

σ(K)

|K|
|P |
σ(P )

} ≤ 21−b, b ∈ N.

We have

{K ∈ D : K ⊆ Q} = ∪κk=0Hk, Hk = H = ∪a≤dlog2[ω,σ]A2
eH

a,

H a = ∪P∈PaH a(P ), H a(P ) = ∪∞
b=0H

a
b (P ),

where all unions are disjoint. Note that we drop the reference to the separation-

ofscales parameter k, since this plays no role in the forthcoming arguments.

93



doi:10.6342/NTU202001176

Recalling the notation for subshifts SQ =
∑

K∈Q AK , this splitting of collections

of cubes leads to the splitting of the function∑
K⊆Q

AK(σ1Q) =
κ∑
k=0

∑
a≤dlog2[ω,σ]A2

e

∑
P∈Pa

∞∑
b=0

SH a
b (P )(σ1Q).

On the level of the function, we split one more time to write

SH a
b (P )(σ1Q) =

∞∑
n=0

1Eab (P,n)SH a
b (P )(σ1Q),

Ea
b (P, n) := {x ∈ Rd : n2−b〈σ〉P < |SH a

b (P )(σ1Q(x))| ≤ (n+ 1)2−b〈σ〉P}.

This final splitting, from [7], is not strictly‘necessary’in that it was not part

of the original argument in [6], nor its predecessor in [10], which made instead

more careful use of the cubes where SH a
b (P )(σ1Q) stays constant; however, it

now seems that this splitting provides another simplification of the argument.

Now all relevant cancellation is inside the functions SH a
b
(σ1Q), so that we can

simply estimate by the triangle inequality:

|
∑
K⊆

AK(σ1Q)|

≤
κ∑
k=0

∑
a≤dlog2[ω,σ]A2

e

∑
P∈Pa

∞∑
b=0

∞∑
n=0

(1 + n)2−b〈σ〉P1{|SH a
b
(P )(σ1Q)|>n2−b〈σ〉P },

and∥∥∥∥∥∥
∑
K⊆Q

AK(σ1Q)

∥∥∥∥∥∥
L2(ω)

≤
κ∑
k=0

∑
a

∞∑
b=0

2−b
∞∑
n=0

(1 + n)

∥∥∥∥∥ ∑
P∈Pa

〈σ〉P1{|SH a
b
(P )(σ1Q)|>n2−b〈σ〉P }

∥∥∥∥∥
L2(ω)

.

Obviously, we will need good estimates to be able to sum up these infinite series.

Write the last norm as∫ [∑
P∈P

〈σ〉P1{|SH a
b
(P )(σ1Q)|>n2−b〈σ〉P }(x)

]2
dω(x)

1/2

,
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observe that

{|SH a
b (P )(σ1Q)| > n2−b〈σ〉P} ⊆ P,

and look at the integrand at a fixed point x ∈ Rd. At this point we sum over

a subset of those values of 〈σ〉P where the principal cube P 3 x. Let P0 be the

smallest cube such that |SH a
b
(P )| > n2−b〈σ〉P , let P1 be the next smallest, and

so on. Then 〈σ〉Pm < 2−1〈σ〉Pm−1
< · · · < 2−m〈σ〉P0

by the construction of the

principal cubes, and hence[∑
P∈P

〈σ〉P1{|SH a
b
(P )(σ1Q)|>n2−b〈σ〉P }(x)

]2
=

[ ∞∑
m=0

〈σ〉Pm

]2

≤
[ ∞∑
m=0

2−m〈σ〉P0

]2
= 4〈σ〉2P0

≤ 4
∑
P∈P

〈σ〉2P1{|SH a
b
(P )(σ1Q)|>n2−b〈σ〉P }(x).

Hence ∥∥∥∥∥∑
P∈P

〈σ〉P1{|SH a
b
(P )(σ1Q)|>n2−b〈σ〉P }

∥∥∥∥∥
L2(ω)

≤
(∫ (

4
∑
P∈P

〈σ〉2P1{|SH a
b
(P )(σ1Q)|>n2−b〈σ〉P }

)
ω

)1/2

= 2

(∑
P∈P

〈σ〉2Pω({|SH a
b (P )(σ1Q)| > n2−b〈σ〉P})

)1/2

,

and it remains to obtain good estimates for the measure of the level sets

{|SH a
b (P )(σ1Q)| > n2−b〈σ〉P}.

Weak-type and John–Nirenberg-style estimates. We still need to esti-

mate the sets above. Recall that SH a
b (P ) is a subshift of S, which in particular

95



doi:10.6342/NTU202001176

has its scales separated so that log2 ℓ(K) ≡ κ mod (κ+1) for all K for which

AK participating in SH a
b (P ) is nonzero and k ∈ {0, 1, . . . , κ := max{i, j}} is

fixed, S being of type (i, j). The following estimate deals with such subshifts,

which we simply denote by S.

Proposition 2. Let S be a dyadic shift of type (i,j) with scales separated. Then

|{|Sf | > λ}| ≤ C

λ
‖f‖1 , ∀λ > 0,

where C depends only on the dimension.

Proof. The proof uses the classical Calderón–Zygmund decomposition:

f = g + h, b :=
∑
L∈B

bL :=
∑
L∈B

1B〈f − 〈f〉L〉,

where L ∈ B are the maximal dyadic cubes with 〈|f |〉L > λ: hence 〈|f |〉L ≤

2dλ. As usual,

g = f − b = 1(∪B)cf +
∑
L∈B

〈f〉L

satisfies ‖g‖∞ ≤ 2dλ and ‖g‖1 ≤ ‖f‖1, hence ‖g‖22 ≤ ‖g‖∞ ‖g‖1 ≤ 2dλ ‖f‖1,

and thus

|{|Sg| > 1

2
λ}| ≤ 4

λ2
‖Sg‖22 ≤ 4 · 2d 1

λ
‖f‖1 .

It remains to estimate {|Sb| > 1
2λ}. First observe that

Sb =
∑
K∈D

∑
L∈B

AKbL =
∑
L∈B

(∑
K⊆L

AKbL +
∑
K⊋L

AKbL

)
,
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since AKbL 6= 0 only if K ∩ L 6= ∅. Now

|{|Sb| > 1

2
λ}| ≤ |{|

∑
L∈B

∑
K⊆L

AKbL| > 0}|+ |{|
∑
L∈B

∑
K⊋L

AKbL| >
1

2
λ}|

≤
∑
L∈B

|L|+ 2

λ

∥∥∥∥∥∑
L∈B

∑
K⊋L

AKbL

∥∥∥∥∥
1

1

λ
‖f‖1 +

2

λ

∑
L∈B

∑
K⊋L

‖AKbL‖1 ,

where we used the elementary properties of the Calderón–Zygmund decompo-

sition to estimate the first term.

For the remaining double sum, we still need some observations. Recall that

AKbL =
∑
I,J⊆K

ℓ(I)=2−iℓ(K)
ℓ(J)=2−jℓ(K)

aIJKhI〈hJ , bL〉.

Now, if ℓ(K) > 2κℓ(L) ≥ 2jℓ(L), then ℓ(J > ℓ(L)), and hence hJ is constant

on L. But the integral of bL vanishes, hence 〈hJ , bL〉 = 0 for all relevant J , and

thus AKbL = 0 whenever ℓ(K) > 2κℓ(L).

Thus, in the inner sum, the only possible nonzero terms are AKbL for K = L(m)

for m = 1, . . . , κ. By the separation of scales, at most one of these terms is

nonzero, and we write L̃ for the corresponding unique K. So in fact

2

λ

∑
L∈B

∑
K⊋L

‖AKbL‖1 =
2

λ

∑
L∈B

‖AL̃bL‖1 ≤
2

λ

∑
L∈B

‖bL‖1 ≤
2

λ
· 2 ‖f‖1 =

4

λ
‖f‖1

by using the normalized boundedness of the averaging operator AL̃ on L1(Rd),

and an elementary estimate for the bad part of the Calderón–Zygmund decom-

position.

Altogether, we obtain the claim with C = 4 · 2d + 5. □
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For the special subshift SH a
b (P ), we can improve the weak-type (1,1) estimate

to an exponential decay:

Proposition 3. Let SH a
b (P ) be the subshift of S as constructed earlier. Then

the following estimate holds when nu is either the Lebesgue measure or ω:

ν
(
{|SH a

b (P )(σ1Q)| > C2−b〈σ〉P · t}
)
≲ C2−tν(P ), t ≥ 0,

where C is a constant.

Proof. Let λ := C2−b〈σ〉P , where C is a large constant, and n ∈ Z+. Let x ∈ Rd

be a point where

|SH a
b (P )(σ1Q)(x)| > nλ. (5.7)

Then for all small enough L ∈ H a
b (P ) with L 3 x, there holds

|
∑

K∈H a
b (P )K⊇L

AK(σ1Q)(x)| > nλ.

Since
∑

K∈H a
b (P )K⊇LAK(σ1Q) is constant on L (thanks to separation of scales),

and

‖AL(σ1Q)‖∞ ≲ σ(L)

|L|
≤ 21−b

σ(P )

|P |
, (5.8)

it follows that

|
∑

K∈H a
b (P )

K⊋L

AK(σ1Q)| > (n− 2

3
)λ on L. (5.9)

Let L ⊆ H a
b (P ) be the collection of maximal cubes with the above prop-

erty. Thus all L ∈ L are disjoint, and all x with (5.7) belong to some L. By
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maximality of L, the minimal L∗ ∈ H a
b (S) with L∗ ⊋ L satisfies

|
∑

K∈H a
b (P )

K⊋L∗

AK(σ1Q)| > (n− 2

3
)λ on L∗.

By an estimate similar to (5.8), with L∗ in place of L, it follows that

|
∑

K∈H a
b (P )

K⊋L

AK(σ1Q)| > (n− 1

3
)λ on L.

Thus, if x satisfies (5.7) and x ∈ L ∈ L , then necessarily

|SK∈H a
b (P ):K⊆L(σ1Q)(x)| = |

∑
K∈H a

b (P )
K⊊L

AK(σ1Q)(x)| >
1

3
λ

□

Using the weak-type L1 estimate to the shift SK∈H a
b (P ):K⊆L of type (i, j) with

scales separated, noting that AK(σ1Q) = AK(σ1L) for K ⊆ L , it follows that

|{|
∑

K∈H a
b (P )

K⊊L

AK(σ1Q)(x)| >
1

3
λ}| ≤ C

λ
σ(L)

≤ C

λ
21−b

σ(S ∩Q)
|S|

|L| ≤ 1

3
|L|,

provided that the constant in the definition of λ was chosen large enough. Re-

calling (5.9), there holds

|
∑

K∈H a
b

(P )AK(σ1Q)| ≥ |
∑

K∈H a
b (P )

K⊋L

AK(σ1Q)| − |
∑

K∈H a
b (P )

K⊆L

AK(σ1Q)|

> (n− 2

3
)λ− 1

3
λ = (n− 1)λ on L̃ ⊂ L with |L̃| ≥ 2

3
|L|.
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Thus

|{|SH a
b (P )(σ1Q)| > nλ}| ≤

∑
L∈L

|L ∩ {|SH a
b (P )(σ1Q)|

≤
∑
L∈L

|{|SH a
b (P )(σ1Q)| >

1

3
λ}|

≤
∑
L∈L

1

3
|L| ≤

∑
L∈L

1

3
· 3
2
|L̃|

≤ 1

2

∑
L∈L

|L ∩ {|SH a
b (P )(σ1Q)| > (n− 1)λ}|

≤ 1

2
|{|SH a

b (P )(σ1Q)| > (n− 1)λ}|.

By induction it follows that

{|SH a
b (P )(σ1Q)| > nλ}| ≤ 2−n{|SH a

b (P )(σ1Q)| > 0}|

≤ 2−n
∑
M∈M

|M | ≤ 2−n|P |,

where M is the collection of maximal cubes in H a
b (S).

Recalling that we defined λ := C2−b〈σ〉P in the beginning of the proof, the

previous display gives precisely the claim of the Proposition in the case that

ν is the Lebesgue measure. We still need to consider the case that ν = ω.

To this end, selected intermediate steps of the above computation, as well as

the definition of H a
b (P ), will be exploited. Recall that K ∈ H a means that

2a−1 < 〈ω〉K〈σ〉K ≤ 2a, while K ∈ H a
b (P ) means that in addition 2−b <

〈σ〉K/〈σ〉P ≤ 21−b. Put together, this says that

2a+b−2〈σ〉P <
ω(K)

|K|
< 2a+b〈σ〉P ∀K ∈ H a

b (P ).
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Hence, using the collections L ,M ⊆ H a
b (P ) as above,

ω({|SH a
b (P )(σ1Q)| > nλ}) ≤

∑
L∈L

ω(L) ≤
∑
L∈L

2a+b〈σ〉P |L|

≤ 2a+b〈σ〉P |{|SH a
b (P )(σ1Q)| > (n− 1)λ}|

≤ 2a+b〈σ〉P · 2−n
∑
M∈M

|M |

≤ 4 · 2−n
∑
M∈M

ω(M) ≤ 4 · 2−nω(S).

Conclusion of the estimation of the testing conditions. Recall that∥∥∥∥∥∥
∑
K⊆Q

AK(σ1Q)

∥∥∥∥∥∥
L2(ω)

≤
κ∑
k=0

∑
a

∞∑
b=0

2−b
∞∑
n=0

(1 + n)

∥∥∥∥∥ ∑
P∈Pa

〈σ〉P1{|SH a
b
(P )|>n2−b〈σ〉P }

∥∥∥∥∥
L2(ω)

and ∥∥∥∥∥ ∑
P∈Pa

〈σ〉P1{|SH a
b
(P )|>n2−b〈σ〉P }

∥∥∥∥∥
L2(ω)

≤ 2

( ∑
P∈Pa

〈σ〉2Pω({|SH a
b (P )| > n2−b〈σ〉P})

)1/2

≤ C

( ∑
P∈Pa

〈σ〉2P2n/Cω(P )
)1/2

= C2−cn

( ∑
P∈Pa

σ(P )ω(P )

|P |2
σ(P )

)1/2

≤C2−cn

(
2a
∑
P∈Pa

σ(P )

)1/2

,

recalling the freezing of the A2 characteristic between 2a−1 and 2a for cubes in

H a ⊇ Pa.
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For the summation over the principal cubes, we observe that∑
P∈P

σ(P ) =
∑
P∈P

〈σ〉P |P | =
∫
Q

∑
P∈Pa

〈σ〉P1P (x)dx.

At any given x, if P0 ⊋ P1 ⊊ · · · ⊆ Q are the principal cubes containing it, we

have∑
P∈Pa

〈σ〉P1P (x) =
∞∑
m=0

〈σ〉Pm ≤
∞∑
m=0

2−m〈σ〉P0
= 2〈σ〉P0

≤ 2M(σ1Q)(x),

where M is the dyadic maximal operator. Hence∑
P∈Pa

σ(P ) ≤ 2

∫
Q
M(σ1Q)dx ≤ 2[σ]A∞σ(Q),

where we use the following notion of the A∞ characteristic:

[σ]A∞ := sup
Q

1

σ(Q)

∫
Q
M(σ1Q)dx;

this was implicit already in the work of Fujii ([11]) and it was taken as an

explicit definition by the author and C. Pérez ([9]). Substituting back, we have∥∥∥∥∥∥
∑
K⊆Q

AK(σ1Q)

∥∥∥∥∥∥
L2(ω)

≤
κ∑
k=0

∑
a

∞∑
b=0

2−b
∞∑
n=0

(1 + n)

∥∥∥∥∥ ∑
P∈Pa

〈σ〉P1{|SH a
b
(P )(σ1Q)|>n2−b⟨σ⟩P

∥∥∥∥∥
L2(ω)

≤≤
κ∑
k=0

∑
a

∞∑
b=0

2−b
∞∑
n=0

(1 + n) · C2−cn
(
2a
∑
P∈P

σ(P )

)1/2

≤≤
κ∑
k=0

∑
a

∞∑
b=0

2−b
∞∑
n=0

(1 + n) · C2−cn (2a[σ]A∞)
1/2

= C · [σ]1/2A∞

κ∑
k=0

 ∑
a≤dlog2[ω,σ]A2

e

2a/2

( ∞∑
b=0

2−b

)( ∞∑
n=0

(1 + n) · 2−cn
)

≤ C · [σ]1/2A∞
· (1 + κ) · [ω, σ]1/2A2

,
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and thus the testing constant S is estimated by

S ≤ C · (1 + κ) · [ω, σ]1/2A2
· [σ]1/2A∞

.

By symmetry, exchanging the roles of ω and σ, we also have the analogous

result for S ∗, and so we have completed the proof of the following

Theorem 5.5. Let σ, ω ∈ A∞ be functions which satisfy the joint A2 condition

[ω, σ]A2
:= sup

Q

ω(Qσ(Q))

|Q|2
<∞.

Then the testing constant S and S ∗ associated with a dyadic shift S of type

(i, j) satisfy the following bounds, where κ := max{i, j}:

S ≤ C · (1 + κ) · [ω, σ]1/2A2
· [σ]1/2A∞

,

S∗ ≤ C · (1 + κ) · [ω, σ]1/2A2
· [σ]1/2A∞

.

CONCLUSIONS

In this section we simply collect the fruits of the hard work done above. A

combination of Theorem 5.4 and 5.5 gives the following two-weight inequality,

whose qualitative version was pointed out by Lacey, Petermichl and Reguer

[10]. In the precise form as stated, this result and its consequences below were

obtained by Pérez and Hytönen [9], although originally formulated only in the

case that σ−1 = ω is dual weight.

Theorem 5.6. Let σ, ω ∈ A∞ be functions which satisfy the joint A2 condition

[ω, σ]A2
:= sup

Q

ω(Q)σ(Q)

|Q|2
<∞.
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Then a dyadic shift S of type (i,j) satisfies S(σ·) : L2(σ) → L2(ω), and more

precisely

‖S(σ·)‖L2(σ)→L2(ω) ≲ (1 + κ)2[ω, σ]
1/2
A2

([ω]
1/2
A∞

+ [σ]
1/2
A∞

),

where κ = max{i, j}.

The quantitative bound as stated, including the polynomial dependence on κ,

allows to sum up these estimates in the Dyadic Representation Theorem to

deduce:

Theorem 5.7. Let σ, ω ∈ A∞ be functions which satisfy the joint A2 condition.

Then any L2 bounded Calderón–Zygmund operator T whose kernel K has

Hölder type modulus of continuity ψ(t) = tα, α ∈ (0, 1), satisfies

‖T (σ·)‖L2→L2(ω) ≲
(
‖T‖L2→L2 + ‖K‖CZα

)
[ω, σ]

1/2
A2

(
[ω]

1/2
A∞

+ [σ]
1/2
A∞

)
.

Recalling the dual weight trick and specializing to the one-weight situation with

σ = ω−1, this in turn gives:

Theorem 5.8. Let ω ∈ A2. Then any L2 bounded Calderón–Zygmund op-

erator T whose kernel K has Hölder type modulus of continuity ψ(t) = tα,

α ∈ (0, 1), satisfies

‖T‖L2→L2 ≲
(
‖T‖L2→L2 + ‖K‖CZα

)
[ω, σ]

1/2
A2

(
[ω]

1/2
A∞

+ [σ]
1/2
A∞

)
(
‖T‖L2→L2 + ‖K‖CZα

)
[ω, σ]A2

.

The second displayed line is the origin A2 theorem [6], , and it follows from the

first line by [ω]A∞ ≲ [ω]A2
and [ω−1]A∞ ≲ [ω−1]A2

= [ω]A2
.
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