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Abstract A central research problem in the area of Harmonic analysis is
to prove the sharp weighted bound for singular integrals. In 2000 S.Petermichl
used dyadic averages of Haar shifts to represent the kernel of Hilbert transform
which in turn enabled her to obtain the sharp A2 bound for Hilbert transform.
Shortly after, the kernels of Riesz transforms were also obtained via averages of
Haar shifts and finally the full generality was made by T. Hytonen who solved
the longstanding A2 conjecture for singular integrals. In this dissertation, we
first introduce how to use the averages of Haar shifts to represent the kernel
of Hilbert transform (2000, S.Petermichl). Second, we will introduce how to
represent the kernels of Riesz transforms via dyadic averages of Haar shifts
(2002,S. Petermichl, S. Treil and A. Volberg). This result not only extends
Petermichl’s ideas to higher dimensions, but also explicitly constructs the Haar
shifts for Riesz transforms. However in order to make the result nondegenerate
an integral that arises in the process of averaging Haar shifts must be nonzero.
S. Petermichl, S. Treil and A. Volberg provided a proof to show the integral
is nonzero in dimension two but for other dimensions the problem remains
unknown. A new part of this dissertation is to prove the integral is nonzero in
dimension three. Finally we also discuss the breakthrough work of T. Hytonen

in 2012 that solves the A2 conjecture for singular integrals.

key words: Calderén-Zygmund operator , Hilbert transform, Riesz transform,

dyadic average, sharp Ay bound, Harr shift operator.
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1 Introduction

One of the important milestones that appears in the area of Harmonic analysis
in the past decades is the appearance of dyadic Haar shifts. It not only con-
nects the continuous singular integrals with dyadic operators but also enables
people to resolve the longstanding As conjecture concerning with the sharp
weighted bound for Calderén-Zygmund singular integrals. More precisely, the
breakthrough work of Petermichl [12] showed that the kernel of the Hilbert

transform is actually an average of some certain dyadic operators:

Co

, 1
. 210gL/£ 1%5202 / > hi(t)(hi—(z)—hry(2))dadr. (1.1)

R repar

Therefore the sharp weighted bound for Hilbert transform can be reduced to
proving a uniform sharp weighted bound for above dyadic operators which are
called dyadic Haar shifts. Such representation of dyadic average for Hilbert
transform kernel later was generalized by Stefanie Petermichl, Sergei Treil,
Alexander Volberg, [13] to a slightly wider class of kernels but still restricted
on one dimensional singular integrals. Finally the full generality was made by
Hytonen in [6] who showed that any Calderén-Zygmund operator is a simple
variant of dyadic averages, and part of the work was built on a previous result

obtained by Hytoénen, Perez, Treil and Volberg [5].

Moreover as shown in the work of S. Petermichi that an explicit dyadic Haar shift
can actually be given for Hilbert transform. As a result it may be also expected

that some explicit dyadic Haar shifts can also be given for Riesz transforms.
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Indeed, it was shown in the work of Petermichl, Treil, Volberg [13] that each
component of the kernel of Riesz transforms can be explicitly represented by an

average of dyadic shift.

In this dissertation, we will go through the history of dyadic averages of Haar
shifts for singular integrals and give a proof to a question posed in [13]. More
precisely, in section 2 we will demonstrate how to use Haar shifts to represent
the kernel of Hilbert transform. In section 3, we also illustrate another way
to represent the kernel of Hilbert transform and extend the method to Riesz
transforms that are vector singular integrals in higher dimensions. In section 4,
we prove a new result that shows an integral arising from averages of Haar shifts
for Riesz transforms is nonzero in dimension three. In last section, we discuss
the work of T. Hytonen who showed that any Cardelon-Zygmund operator is a
simple variant of averages of haar shifts and gave the solution of the longstanding

Ay conjecture.

2 Hilbert transform

Hilbert transform as dyadic operator This part mainly comes from [12].
It connects the discrete Haar shift with continuous singular kernel, % We first
introduce a variety of dyadic grids in R. The basic dyadic grid, starting at 0

with intervals of length 1 - 2" will be denoted by D} i.e.

Dy = {2"([0,1) +m) : k € Z,m € Z}.
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hj is the Haar function for J € D}, namely

1

hy = ——=(XJ- — XJ+),
| ]|

where J— is the left half of J and J+ is the right half of J.

We obtain a variation of D} by first shifting the starting point 0 to o € R and
secondly choosing intervals of length r - 2" for a positive r. The resulting grid
is called D, and the corresponding Haar functions h; are chosen so that they

are still normalized in LZ2.

Since Haar functions forms a basis in L*(R), for f € L*(R) we have

f@)= > (f,hr)hi(z), Yo €R,r>0.

IeDar

We define for such a, r a dyadic shift operator S*" by

(S f)(x) = Erepor(f, hr) (hr_(z) — by, (2)) .

It’s L? operator norm is V2 and its representing kernel is

K (t,z)= Y hy(t) — hy,(2)). (2.1)

IeDer

Lemma 1. The convergence of sum (see above) is uniform for |x — ¢| > ¢ for

every 6 > 0. For xz #£ t let

1 d
K(t,x) = lim / lim —/ K‘”t:vdoz—r
L—o0 210gL 1/L R—o0 2

The limits exist pointwise and the convergence is bounded |x —t| > ¢ for every

6 > 0 and K(t,x) = 7 for some ¢y > 0.

hi(t) (hi-(x) — hrs(2)) | < 2V2/|t —

z|,Vo € R and Vr > 0. 0. In particular, the sum converges absolutely and

Proof. It is easy to see that Y pas
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uniformly |z — t| > 0 for every § > 0. > 0. The existence of the limits is due
to fact that summands repeat for different dyadic grids. The main point is to
show |K(t,z) = ¢y/(t — x)| with ¢y # 0. 0. It is enough to prove the following

properties of K(t,x):

1 translation invariance, i.e., K(t,x) = K(t + ¢,z + ¢),Ve € R, so K(t,z) =
K(t —x);

2 antisymmetry, i.e, K(t,z) = —K(—t,—x), so K(x —t) = =K (t — x);
3 dilation invariance, i.e., K(t,z) = AK(\t, Ax), VA > 0;

4 K(l):CO>O.

In order to check the first three properties we observe the following simple rela-
tionships between the Haar functions of different dyadic grids for translations,

reflections and dilations:

For any interval I € D*" there exists an interval of the same length in D"
so that hy"(t + ¢) = hy “'(t). In a similar sense hy" (—t) = —h;“"(t) when
changing grids from D*" to D~*" and h}" (At) = A_l/Qh?/A’r/)‘(t) when chang-

ing from D" to DA,

Using these facts, the proof of the first three properties are simple computations,
mainly involving changes of integration variables. Note that these properties

show that K (f,7) = 7, we turn to the essential part to show that ¢ # 0.

The product h;(t) (h;—(x) — hyi(x)) # 0 if and only if the point (¢, z) lies in
this square I x I. Its value is +v/2/|I|, where the correct sign is indicated inside
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the smaller rectangles. Let us first compute

1 R
Kj(t0) = lim / S ha(t) (hr-(z) — hre(@))da, | (22)

for fixed » > 0 and n € Z and assuming ¢t > x. Due to the averaging process in

«, this is only going to depend on t — z. If:

t —x =0, then K, (t,x) = 0 and similarly;

t —ax=|I|/4 , then K (t,z) =3/4-v/2/|I|;

t —x=|I/2 , then K (t,x) = 0;

t —x=3[I|/4 , then K'(t,x) = —1/4-/2/|1];

t—x >|I|,then K] (t,z) =0.

Now we compute

|I|=r2"

So we compute K" (t,z) using K (t,x) for different values of n and summing
over n € Z. It suffices to compute K'(t,z) for values t — x = 3/4 - r2"

andt — x = -r2™:

3 1v2 342 942 11 2
KT(—r2”):__£+—£+—£ 44—+ )= f, (2.3)
A Aron T 16r2n | gdron 116 8ron
3 V2 1 1 V2
Koy =2V (14024 4 )= . 9.4
(r2") 16r2n( tit T ) Aron (2:4)
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The above equations imply that

3v2 . V2
WSK(t_x)Sm Vr > 0. (2-5)

From above, it is clear that ¢y > 0. O

3 Riesz transform

The “simplest ” operator whose average is the Hilbert transform This
part comes from [13]. It uses average technique to generalize the method in
section 1 to the n-dimensional Riesz kernels. Let £ denote a dyadic lattice in
R. By L(k) we understand the dyadic grid of intervals from £ having length
2%k € Z. For the convenience we would like to use the notations D =: £(0).
We consider first such a dyadic lattice that the grid D has the point 0 as one of
the end-points of its intervals. To emphasize that we write D0O. Later we will

have D; —the point ¢ plays the role of 0.

Let us consider the following linear operation

f=o(x) =D (f hi)xi(x).

1D,

Here h; denotes the Haar function of the interval I, that is

—1
|I|_1/2 ,fOI'ﬁL’EI,

h[(l‘) =

|I|1/2 9 fOrZE' E I_i_,

and I_, I, are left and right halves of the interval I correspondingly. Symbol

X1 as usual stands for the characteristic function of the interval I.
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This linear operation will be our main building block, so it deserves a name P.
Actually, we will call it Py, thus ¢o(z) := Pof := D ep, (f, hr)xz(z). Index 0

indicates the end-point of one of the intervals from Dy. So similarly we consider

¢t (ZE’) = ]P)tf
defined exactly as before, but with respect to the grid D, of unit intervals such

that the end-point of one of them is in ¢ € R.

Notice that the family of grids D;, t € R, can be naturally provided with
the structure of probability space. This space is (R/Z,dt) = ((—1,0],dt). As
usual we can use the letter w for a point from (—1,0], and dP(w) denotes the
probability —in this case just Lebesgue measure on the interval (—1,0]. We

want to fix £ € R and to write a nice formula for

E (¢ (x)dP(w)).
So we want to average operators IP,,. It can be noticed immediately that EP, is a
convolution operator. In fact, let us denote by La the shift operator: L,(f)(z) =
f(xz 4+ a). Then obviously
P; oL, = L,P;.
Applying averaging (and the fact that our dP(w) is invariant with respect to

the natural shift on R/Z induced by the shift on R) we immediately get

EP,L, = L,EP,. (3.1)

So the average operator EP, is a convolution operator, we will write this as
follows

E (. (¢)dP(w)) = EP,(x) = Fy * f(z). (3.2)
11 doi1:10.6342/NTU202001176



It is easy to compute Fj. By the definition of ¢;(x) one can write

1 1

¢i(x) = /f(S)ht_é(S)dS, T — % <t-g5 <z, (3.3)

where

—1 ,forse(t—1,t)

h'(s) =
+1 , fors € (t,t + 3).

But h'(s) = ko(t — x), where

+1 , for s € (—3,0)
ko(s) =
—1 , fors € (0, 3).

So (3.3) can be rewritten as follows

¢t+;(x):/f(s)ko(t—s)ds, x—%<t<x—|—%. (3.4)

Thus comparing this with (3.2) ) (and using again the shift invariance of dP(w))

we get
Fyx f(z) = E(¢u(z)dP(w))
= E (6,1 (1)dP(w)) = / _+ ( / kot — :r:)ds) dt.

From which we get the formula for Fy:

Fo(x) = / T fo(B)dt = ko % xo(x). (3.5)
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where xj is the characteristic function of the unit interval (—1/2,1/2).

Let us start over the beginning of this section with one slight difference —
we rescale all our operators, and now P}, ¢}, Fy, ki are precisely as above, but
when the unit length intervals are replaced by intervals of length p > 0. We

just change the scale —nothing else. In particular,

¢h(x) :=Phf ==Y (f hi)xi(x)/\/p

IeDf

where D} is the grid of intervals of length p such that 0 is the end-point of two
intervals from this grid. We want to remind that h; here is always normalized
in L2,
Again we have a natural probability space of all grids of intervals of size p:
(R/o: 3del(~p.0)]) .
$f(x) =P f ==Y (f hi)xi(x)/\/p.

IeDy
Averaging over all grids of intervals of size p makes P/ a convolution operator
—there is no difference with our reasoning above. It is easy to see that this is
the convolution operator with the kernel

1 [ [t
Ff(a:) = —/ —]f() <—> dt = ,OF() <§> . (36)
plee p o \p p

2

The first %is because of the form our probability has. The second %because we

should average a function normalized in L'

Let us now consider all convolution operators with kernels F{. Let us fix r €

13 doi:10.6342/NTU202001176



[1,2) and let us take a look at the convolution operator with kernel

F, = i FZ (3.7)

n=—o00
The grids D?"" (¢ is fixed) can be united into a “ dyadic ” lattice £} . Here ¢
means the reference point —one of the end-point of intervals from our lattice,
and r means the length of one of the intervals of the lattice—let us call r the
calibre of the lattice. Obviously the convolution operator with the kernel Fr is
the averaging over all “ dyadic ” lattices (not grids!) L} of fixed calibre r of the
operators given by
Perf = S U b))
Iecy

Foxf =EPp f.

This is just because the kernel F;. is the sum of kernels, each of which appeared as
averaging of the grid opearators assigned to grids of size 2"r, n =0, £+1,£2, ...,
where we summed up over the grids, and the lattice of calibre r is the union of

such grids.

Now let us finally average over r € [1,2):

F(x) = /12 F.(x)—.

T

Now we have from one side
F x f = (AveragePy) f, (3.8)

where averaging is performed over all lattices L.
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where averaging is performed over all lattices ®.

Fa) = [ F@) % (3.9)

[ [ [a)E o

We used (3.6) here. Finally we have

Fla) = —i /OOO Fy(t)dt = % (3.11)

Theorem 3.1. Averaging of operators P,r over both parameters ¢ and r is

equal to one quarter of kernel of the Hilbert transform.

We have a good thing:

The Hilbert transform is the averaging over the family of lattices of very simple
operators What is the dyadic shift? The function that generated everything
in the first section was function F{, —the kernel of the convolution operator
which is the averaging of grid operators P;. It is easy to see that Fy(z £ 1) are
also kernels of the convolution operators which are the averagings of some grid

operators. Given f, let us consider ¢;(x) as above and also

oe(x+1) =Y (frhi)xi(x) = ) (f hr)xra(@) = PL(f)

1eDy IeD;
Gi(w —1) =D (frhre)xi(x) = Y (f hi)xra(e) = B (f)

So we test f on h; and put the result on I += 1. What if we average these

operators? Repeating (3.2) we get

</01P;tdt) f=FxF1)x*f (3.12)
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Consider

S(z) = Fo(x) — % Fy(z + 1) + Fole — 1)]. (3.13)

Supposedly S is a kernel of a convolution operator corresponding to averaging
over grids of a certain grid operator (we will show which one). If we build S, as
before for all calibres, we can consider again S, := > ° S2"" . Operators S,
are averagings over all lattices of calibre r of the operators which are sums of

our hypothetical grid operators. Averaging over r € [1,2) with respect to the

measure dr/r, we will get the operator with kernel

/fsr(x)%:/o x dp / S(t)dt = (3.14)

So we are left to invent a simple “ grid ” operator, whose average will give us

S(z).

Theorem 3.2. Let Df) be a grid of intervals of length 2 such that ¢ is the

end-point. Consider operators

f= > (fhsdxae

f— Z (fshae) X+

JeD?

The averaging over t of the first operator gives a convolution with kernel %Fo(x—

1), the averaging over t of the second operator gives a convolution with kernel

16 doi:10.6342/NTU202001176



%Fo(x + 1), and the averaging over t of the third and the fourth operator gives

a convolution with kernel 1 Fy(x) each.

Proof. Let us call the first operator H;, and let us average EH; it over its
probability space ,(R/Z; %dt\ (—2,0]). Instead of considering the grid of intervals
of length 2 let us consider the grid of intervals of length 1 —we call it D} .

Consider operators

Ay = Z (f,hr)xri1

I is odd,I€D}

B :— Z (fyhr)Xr+1-

I is even,I€D}
Clearly A;y1 = By. Also it is clear that A; + B; = P, where the last operator

is our grid operator from the beginning of this Section.
I I I
EH, — -/ (A + Apr) = —/ (A + By) = —/ Py dt.
2 Jy 2 Jo 2 Jy
From (3.12) we get that
1
]EHt = éF()(.CE — 1) * .
Similarly, if we call the second operator G; we get from (3.12)
1

Using (3.2) and (3.5) we show that averagings of the third and the fourth op-

erators give us convolution operator with kernel %Fg. The theorem is proved.

U

17 doi:10.6342/NTU202001176



Theorem 3.3. Let us consider the following grid operator

F= > {f ),

JeD?

where
1

Then its averaging is the convolution operator with kernel \%S (x).

Proof. We weite h as \/Lﬁ (—xJ— + xJ+)- Then it is an obvious algebraic remark

that
V2 our operator = third operator of Theorem 5.2
+ third operator of Theorem 3.2
— third operator of Theorem 5.2
— third operator of Theorem 3.2
Averaging this and using Theorem 3.2 finishes the proof. [

As in the previous section, given the lattice £ = L], we can consider the lattice

operator

KEf = (f hoe = hyhy

JeL
amalgamated from the grid operators of Theorem 3.2.

This operator is called the dyadic shift. It has been proved that averaging of
dyadic shifts over all lattices gives us operator which is proportional to the
Hilbert transform (we certainly mean that coefficient of proportionality is not

7€er0).
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Let us reproduce this result. Fixing r and averaging over lattices with fixed
calibre r (we leave for the reader to invent the natural probability space of all

lattices with fixed calibre r) we get the convolution operator with the kernel

1 < 1 T 1
752 35 (5) = 550

—00
Averaging convolution operators with kernels %Sr over ([1, 2); %), we get the
operator with the kernel %\%% So we get averaging of the shift operators over

all lattices of all calibres = ﬁi kernel of the Hilbert transform.

Planar case We can and will reason by analogy. We have lattices L} of squares,
where ¢ now is in Q? := R?/pZ with normalized Lebesgue measure (Lebesgue
measure on the torus € divided by p?). We have the main grid operator
Pof =Y (f ho)xq
QeDy
where D; is a grid of unit squares such that ¢t € R? is a vertex for 4 of them,

where

L forz e Q

ho(x) = 4 ‘ |11/2 , forx € Q,,

0, otherwise

\

Here QI, Q, are left and right halves of @, function h is normalized in L*. We
consider the same type of grid operators for grids D} of squares of side p —the

only change is that we divide xg by p to make it normalized in L?.
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Let us denote by kg the function —hg,, where @)y is the unit square centered at

0. Also xo denotes the characteristic function of this square. Consider

D 1= xo * ko,

11 : : 1 x
(I)p(fL') = —<—5Xo0 (—) * k() (—) = —q)() (—) .
’ P22 \p p) P> \p
Exactly as before (in one dimensional case) function ® is the kernel of the

convolution operator, which appears as averaging of P, over Q'. Function Py is

the kernel of the convolution operator, which appears as averaging of P} over

Qr.

Again, we can consider kernel
=z
k(x) = /OO (IDS(x)@ = @
0 P ||
And it is very easy to see that w is an odd non-zero function on the unit
circle. Literally as before we can see that k is the convolution operator which is
the average with respect to measure %Hl, 2) of the convolution operators with

kernels
o0

ke (x) = Z O ().

n=—oo

In its turn, k, is the average of the lattice operators which are sums of corre-

sponding grid operators, here are those lattice operators:

Per= Y (f. hQ>XQ/\/@-

QeLr
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Here r is fixed and denotes the calibre of the lattice. The averaging over the
lattices of this fixed calibre gives us the convolution operator with kernel k..
So the averaging over the calibres (= ff e %) gives us the averaging over all
lattices, over all calibres. As a result we get the convolution operator with kernel

L — w(g7)

|z[>

Again we would like to repeat all this but with slightly different lattice opera-
tors —just because there are nicer ones and because Pz are not L? bounded.
Another problem we face now is that k is not necessarily a kernel of a Riesz
transform. So we will need to work a bit more than in the one-dimensional case

to obtain the Riesz transform kernel.

For a square () consider its partition to 4 equal squares and let us call them
Q™ , Q" Q% (Q*¢ according to northwest, northeast,.... Let us consider the
following grid operator
f — Z <JC7 hQne —|— hQse - han - hst)hQ,
Qen;?

1
teQ® .= <R2/2Z2; 1 Lebesque measure) :
Consider also the function (z = (x1, z2))

1 1
S(Z’l,xg) = (I)()(xl,xg) — 5(130(371 + 1,:132) — §®O($1 — 1,1’2)

1 1 1
-+ 5@0(%’1,%‘2 + 1) — Z(I)()(Z’l + 1,29 + 1) — Z(I)()(I’l — 1,$2) (315)

1 1 1
—+ 5(13()(1"1,1‘2 — 1) — Z(I)()(Zlil + 1,29 — 1) — ZCI)O(:UI — 1,29 — 1)

Theorem 3.4. The averaging of the grid operator above over Q) gives the

convolution operator with kernel 15(z).
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The proof is literally the same as the proof of Theorem 3.3.

Let us start with one observation about (3.15). Function @y is the convolution
Xo * ko. But both functions y and kg are products of functions of one variable
Dg(z1,29) = folza) - Fy(z1). Moreover, function fj is nonnegative. Actually
fo(x2) is a convolution square of the characteristic function of the unit interval

centered at 0. Formula (3.15) now looks like

S(a1,22) = (fle) + s + 1)+ 3ol = 1))

« (Fo(xl) _ %Fo(xl +1)— %Fo(xl _ 1)) |

For the future purposes we can say what happens in n > 2 case easily. We get

Sp(x) = Sy(x1, 22, ..., 2,) and

Sn(l‘) = (fo(xz) + %fo(d?g + 1) + %f@(ﬂjg — 1)) (3.16)

—

(Fo(xl) _ %Fo(azl 1) - %Fo(azl _ 1)) |

As in the previous section this S generates kernel s by formula

s(w)zfooop—lns(g)%:%.

And it is very easy to see that &, is an odd non-zero function on the unit sphere.
We will show it below. Literally as before we can see that s is the convolution
operator which is the average with respect to measure 2 |[1, 2) of the convolution

operators with kernels

sp(x) == Z Sp? ().

n=—oo
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In its turn, s, is the average of the lattice operators which are sums of corre-
sponding grid operators, here are those lattice operators:

Sﬁr = Z <f, hQne + hQse - han - hQ5w>hQ (317)
QeLr

Here r is fixed and denotes the calibre of the lattice. The averaging over the
lattices of this fixed calibre gives us the convolution operator with kernel s,.
So the averaging over the calibres (= ff e %) gives us the averaging over all

lattices, over all calibres. As a result we get the convolution operator with kernel

Let S"~1 denote as always the boundary sphere of the n-dimensional unit ball.
Denote by S”! the right half sphere —the half that lies in {z € R : z; > 0}.
Let e; be a unit vector in the direction of coordinate axis x;. Let o denote

Lebesgue measure of S" 1. It would be important to prove

En(w){w, er)do(w) < 0. (3.18)

Sl
For n = 2 we can just prove that & (w) < 0 for any w € S1. Then (3.18) follows
immediately. To do this we use formula (3.16) and notice that fy(z) + 3 fo(z +

1) + 5 fo(x — 1) = (1 — 42)+. Then the fact that &(w) < 0 follows from the

following lemma.

Lemma 2. For any k € [0,00) we have

/02 (1 B %kx)+ (Fo(x) - %FO(x - 1)) zdz < 0.

Proof. If k > 2 then the first factor vanishes everywhere where the second factor

is positive. So we are done for such k. For 0 < k < 1, we have (1 — 3kz), =

23 doi:10.6342/NTU202001176



(1— %k’m) on [0,2], and we can make an easy calculation of the integral. For the
range 1 < k < 2 the calculation becomes unpleasant, but still straightforward,

we skip it just to avoid direct and simple calculations. [

For n = 2, w can be identified with a point of [—7, 7). Under this identification
the kernel & becomes an even function skew symmetric on [0, 77| with respect to

the point 7/2. Rotation of the kernel £ (w) means just the new kernel & (w—¢).
Then

(€ % c08) (6) = cos 6 - ( /_ £(5) cos sd5> (3.19)
= cos ([ @) erido)) = crooso,

J7 | coss|ds

and constant Ay := el

. Notice that rotation of kernel & corresponds
to rotation of dyadic lattices on the plane. We have just proved the following

theorem.

2(Uvfir) ,

Theorem 3.5. The Riesz transform %* is the operator integral ¢, L [ cos ¢§ FE
di. In particular, this means that operator with the kernel A5 1|£—|13 lies in the
closed convex hull (in the weak operator topology) of the planar dyadic shifts.

Thus, uniform boundedness of dyadic shift operators in any Banach space im-

plies the boundedness of the Riesz transform in the same space.

For the case n > 2 we again start with (3.18). Let us average £, with respect
to all rotations that leave e; fixed. We get a new function 7, (w) = f({w,e1)).
Obviously,

f({w, e1)){w, e1)do(w) < 0. (3.20)

n—1
S+
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Let SO is the group of orthogonal rotations of S™1!.

Let us calculate ¢, = [, f((Uei,e1))(Uer, e1)dU. Obviously,
Cn = Gnt f(<w7 61>><w7 61>d0_(w> 7& 0,
because of (3.20). Now let us consider the rotated functions f((Uey,e1)). Con-

sider

gw)= [ f({Uw,e)))(Uey,e1)dU.
SO

Then it is clear that g(Rw) = g(w) for every R € SO that fixes e;. In fact,

g(Rw) = SOf((URw,q))(Uel,el}dU

= f((Vw,e1)) (VR ey, e1)dV
SO

= f((Vw,e1))(Ver,e)dV = g(w).
SO

On the other hand, it easy to see that

g9(w) = fw, €))(€, e1)do(w). (3.21)

gn-1
Such a function (as we saw) depends only on (w, e1). But moreover, it can be
written as [q._1 f((e1,&))(§, w)do(w). This is a restriction of a linear polynomial
onto the sphere. This linear polynomial depends on (w,e;) only, and, thus, is
¢+ (w,e1). The constant c is just our ¢,. One can see that by plugging w = e;

into our formula (3.21) for g(w).

Consider A,, := Jso |<U||ec 1’61>|dU. Notice that rotation of kernel &, corresponds to

rotation of dyadic lattices on the plane. We have just proved the following

theorem.
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Theorem 3.6. The Riesz transform \xTTlH* is the operator integral

0_1/ (Ue 6>M*dU
L P A P '

In particular, this means that operator with the kernel A 1% lies in the closed

convex hull (in the weak operator topology) of the planar dyadic shifts. Thus,
uniform boundedness of dyadic shift operators in any Banach space implies the

boundedness of the Riesz transform in the same space.

4  An integral arising from dyadic average of Riesz

transforms

Introduction The question that was risen in their work [13] is whether the
following integral is zero or not (the detail definitions of some notations in this
integral are given in next section):

/n_1 <w, e > &y (w)do(w). (4.1)

+

They were able to show the integral is nonzero (in fact it is negative) when

dimension n = 2 but for dimension n > 3 the problem remains unsolved.

Therefore the purpose of this section is to show the above integral when di-
mension n = 3 is also negative. This was done via a careful and an efficient
decomposition for the integral. For some terms in our decomposition we are
able to show explicitly that their values are negative. For some other terms
we are able to prove an upper bound. Combining all the estimates shows the

integral is indeed negative. Now let us mention the difficulties of the integral
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for dimension n = 3. First, the integrand functions in the integral are piece-
wise defined on some compact intervals, and the range of the integration is only
half-sphere. Secondly, after we carefully analyse the integrand functions, one
of the main difficulties then arises due to the mutual overlaps of their supports.
More precisely, after using the sphere coordinates in the integral, the supports
of the functions will create several difficulties since the behaviors of the points
in these supports will now depend on the values of some complicated trigonom-
etry functions. For these difficulties, it requires us to very carefully distinguish
the range of the integrals in our decomposition. Finally for several integrals
in our decomposition, we are able to show that their exact definite integrals
can be computed. For the other integrals, we are not able to find their exact
definite integrals, but we are able to find their upper bounds whose values can

be explicitly estimated.

Preliminary In this section we first introduce some notations that will be used
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frequently in this paper. Let Fj, I, fy, and f be defined as followings.

Fo(ilf)

F(x) = Fo(x) — %Fo(ac +1) — %Fo(a: —1);

Jo(z)

4
1 — |z +1 —-1<z<0
<—(%—|x—%|) 0<z<l1l 5
0 otherwise

1—|z| if|z] <1

)

otherwise

0

f(z) = folz) + %fo(iﬁ +1)+ %fo(x —1).

Note that F'is an odd function so that we may only describe F' on x > 0, i.e.

F(z)

<

\

f—3+3| 1| ;o 1|<1
4 Tt Tl T olsg
1 1 3 31
Z e =2 _ <z
Rt TN A Lt

0 x> 2

and f(z) =1 — 3|z] if |z| < 2 and 0 otherwise. See below for their graphs.
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v v
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Figure 1: F', and Fj

A A
2 2
AN
-2 0 2
2 2
\
(a) fo (b) f

Figure 2: f, and fy
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For all n > 2, and given x = (1, ..., 2,) # 0, we define

n

K,(r) = F(x) x Hf(fﬂz')

i=2
and
x . [1 x. dp
Gu(i) = el [ KD
|| o PP p
Let p = @, the above formula §n(ﬁ) now becomes

Eulw) = Ea() = / S (M ar,

] |z
where w € S"7!. Recall that the main result that we want to prove is to show

the following integral is nonzero (negative),

/ cw e > & (w)do(w),
st

where ST ! = {w = (wyi, - ,w,) € S" 1wy > 0}. Thus putting it together,

our goal is to show for n = 3 the following integral is negative.

J

Before we proceed to give our decompositions for this integral. The diagram

<w e > /0 T RF (o) 2 () f (toy) dtdor (). (4.2)

2
+

in next page gives a big picture how the integral is decomposed and how each

term in our decomposition is estimated.
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o2 27 dodg

Decompose by ¢ and ¢

l l |

Case 3 Case 2 Case 1 Case 4
cos~t L T - cos™! L
f;)/qul 1 0271' d9d¢ f7r/4 v fD d9d¢ f(] /4 IOQ ded(b fﬂ-/4 v ch ded(b
S (Further estimate) ~0.1252
I (Closed form) T
—Part E — Part A
—Part A o (Theoretically negative) (Further estimate)
Sl I dodo el o
~ 70,041\256 e Sul:iclasle 1 S /4 a(0)
(Closed form) fi)):—l gﬁ Hp1(6)d6
'—e Subcase 2 .Part B
ff;t; ;ﬁ Hps(0)do , (Further estimate)
—e Subcase 1
— Part B oot
11
5 g2 dbdg —— Part F Jeorr2” K1 (6)
~ _0_3£5 e (Further estimate)
L— Subcase 2
(Closed form) Suls | theonetat o cas
—eoubcase eoretically negative cos™ " —=
cot’l(ﬁ) fcot’1 %\/3 KBQ<9)d0
fCOtfl(%) Hp1(9)d9
—e Subcase 2
— Part C o1 2
—12 ’ 2
jf;t—l 44?/5 jozfr d9d¢> fcotﬂ(%) H}Q(@)d&
~ —0.0139
(Closed form) L« Part G
o (Further estimate
(Further estimate)
—eSubcase 1
cot™ (722
Tona ) Hea(6)d6
—Part D
fCOt:11 %4 27 d9d ¢ —e Subcase 2
cot s JO cot’lﬁﬂ
~ —0.0643 Joot=1 3 Heo(0)do

(Closed form)
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Decompositions

In order to integrate with spherical measure appearing in (4.2), we use spherical

coordinate system to represent wi,ws, and wy i.e.
wy = cos 6,
wy = sin @ cos ¢,
w3 = sin @ sin ¢,
where 6 € [0,7/2] and ¢ € [0, 27] because we only integrate on the half sphere

Si. Putting in these new variables and using change of variables formula, the

integral (4.2) which we want to estimate becomes

3 2w ()
/ / cos 0 / t2F (t cos ) f (t sin 6 cos ) f (£ sin O sin ¢)dt sin Odedh, (4.3)
o Jo 0

where the factor sin 6 is due to Jacobian, and the cos 6 is from < w, e; >. Since
the integral range is 0 < 6 < 7, we only need to consider F“(t) = F(tcos0)
with w; > 0. In order to estimate £3(w), we break F“'(t) into 4 linear mutually
disjoint support functions with respect to ¢ that is F“'(t) := F[{'(t) + Fi3 () +
Fi3(t) + Fi (t), where

3 1

i (t) = (4.4)
0 otherwise
)
§(tw1—1) L <r< 2
Flo.él (t) _ < 2 2w — — 2w (45)
0  otherwise
\
)
1 _ 2 <t < 3
FY3(t) = =1 s st < (4.6)
0 otherwise
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1 3 4
—=(twy — 2 = <t < =
Ffﬁf(t) _ 2( 1 ) 201 — 7 — 2w (47)
0 otherwise
( ts|
11— B2y o<t < &
fCUQ(t) :< ( 2 ) | | |wa] (48)
0 otherwise
\
( t|
-2 o< <2
o= U = (4.9)
0 otherwise

Let
Si(a,6,6) = /0 2 F9(8) £ (£) f (£)dt = /0 27 (£) £ (£ sin 0 cos &) f (£ cos 0 sin 6)d,

for i = 1,2,3,4. Then we have &(w) = Y21, Si(00, 6, ¢).

Remark 1. For a fixed wy, the support of F“1(t) is 0 < t < ﬁ, and the
support of f*2 and f*® are 0 <t < ﬁ and 0 <t < ﬁ respectively. Hence
the integral range for S; will be simultaneously determined by the supports of
the functions of F“*, f¥2 and f“3. This observation leads us to decompose the
integral in terms of the supports of these functions. More precisely, we divide

the integral into 4 cases depending on which function vanishes first. We now

give details in the following sections.

Criteria of decomposition

As just mentioned before, we can reduce the integral range of S; to {0, max{ﬁ, 2 23| }} .

wa]? fws]
Therefore the integral range of ¢ now depends on the variables 6 and ¢ since the
variables w; depend on #, ¢ and this also explains why estimating the integral is
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complicated and difficult. Therefore we will have 4 cases that depend on which

function F*' f“2 or f“s vanishes before the others.

Remark 2. Throughout this paper, given two functions f, g and assuming the
supports of f and g are [0,a] and [0, b] respectively, then we say f vanishes

before g or g vanishes after f if a < b.

First part vanishes before the others. Assuming F“'(t) vanishes before
the others i.e. |wi| > |we| and |wi| > |ws|. Notice that w? + w3 + w3 = 1. If
lwi| = |cosB| > \L@, then for all ¢, |wq| is always the largest one. If |wq| €
[\/Lg, \/LE]’ then |wy| > |ws| for some ¢. If |wy| < \/Lg, then by pigeonhole principle
one of |wsl, |ws| must be larger than \/Lg which is larger than |w;|. Thus 6 must

1

be in [0, cos™ \/ig] There are two different situations we need to separately deal

with.

1 When 6 € [0, 7/4], then we will have wy is larger than |ws| and |ws| for all ¢.

2 When 0 € [r/4,cos™! \/ig], then we will have wy is larger than |ws| and |ws|

for some ¢.

Case 1 0 <60 < x/4 and for all 0 < ¢ < 27.(Closed form)
Since F“1(t) vanishes before the others and w; = cosf, wy = sinf cos ¢ and
w3 = sin @ sin ¢. Thus we see that when 6 € [0, 7/4], we will have

lwi| = |cosB| > |sin b cos p| = |wal,

and
jwi| = |cosO| > |sinfsin ¢| = |ws],
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for all 0 < ¢ < 27. Now

2

gg(w):/o“ 2F(t cos 0) f(tsin 6 cos ¢) f (¢ sin O sin ¢)dt = Zs R
let

m(0,6) = 5i(5=—.0.0).

ha(0, @) := Sa( Olse,@ ¢) — 52(2C 0, 0),

(9. 6) = Sy(52—5.0.0) — Sy(—.0.0).

ha(0, ¢) = Sa( 02s€’6 ¢) — 54(2(308979,(/5)-

Since t2F;(tw;) f*2(t) f“*(t) is a polynomial of degree 5 on this integral range,

and hq, ho, hs, and hy all have closed forms, therefore we obtain

4
Z hi(0, ) = — (720 cos O sin O cos ¢ — 680 cos? § — 629 cos ¢ sin ¢
i=1
+ 720 cos 0 sin 0 sin ¢ + 629 cos? f cos ¢ sin ¢) (3840 cos® §)
2m 4 4(C082 9(& 629 ) __ 3cosfsinf + 629)
: _ 192 — 7630 8 7680
/0 sinfcosf Y  hi(f, ¢)de = ey .

i=1
Therefore, we see that the integral below has a closed form so that we can

estimate it accurately

w/4 27
/ / 6in 0 cos 0(h (0, &) + ha(6, 8) + hs(6, 8) + ha(0, 6))dbdd ~ 0.1252.
0 0
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Remark 3. This is the only term that has positive value.

Case 2 /4 <0 < cos™ and ¢ € D. (further estimate)

f?

In this case 7/4 < 6 < cos™ % and since we want wy > |ws|, and wy > |ws.

Thus we have cot # > |sin ¢| and cot @ > | cos ¢| in spherical coordinates. As a

result, the range of ¢ will be restricted on D which is
On the first quadrant: cos”H(cot §) <¢ < sin~!(cot 6)
On the second quadrant: g 4 cos Hcot ) <¢ < g + sin~!(cot 0)
On the third quadrant: T 4 cos (cot §) <¢ < 7+ sin ' (cot 0)

3 3
On the fourth quadrant: g + cos_l(cot 0) <¢ < g + sin_l(cot 0).

Observe that since f is even so that for all ¢ we have

F&1(8) f<2(t) £ () = F(t cos 0) f(tsin 6 cos §) f (¢ sin O sin &)
— F(tcos0) f(tsincos(¢ + m/2)) f (¢ sin Osin(p + 7/2))
= F(tcos0) f(tsinfsin ) f(¢sin b cos &)

— P8 () £ ().

Thus

sin™ cot 9
/ 0,6) + ha(0,6) + (6, &) + ha(6, §))do

cos™!(cot 6)

w\:\

sin™ cot@
:/ . (0 L)+ ha(6, ) + ha(6, ) + ha(6, 6))do

- /Sm t0)+ : (9’ ¢) + h2(9, ¢) + h3(9; ¢) + h4(97 ¢))d¢

3

sin™ cotH 7
_ / 1160, 6) + ha(0, &) + hs(6, 6) + ha(6, ¢))do.

cos™1(cot @ —1—3”
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Hence the integral that we want to estimate is equal to

/ g / (h1(8, @) + ha(6, ¢) + hs(0, ¢) + ha(6, ¢))dpsinfdd ~ (4.10)

sin~!(cot 6)
= [T s (1n(0.6) + ha(6.0) + hs(0, 6) + ha(0. 6))dsin 0.
/4 cos~1(cot 9)
Integrating with respect to ¢ is a closed form as above. However, when integrat-
ing with respect to #, we are unable to find its closed form. The reason is that
the range is from cos™*(cot 8) to sin"!(cot ), and after integrating the variable

¢ these upper and lower limits make the integrand in the variable 6 extremely

complicated. Therefore this case will be further estimated in the final section.
Second or third part vanishes before the others.

In this case it suffices to consider f“? vanishes before the others. The reasons

are the followings. First, we observe that

Fr(t) f<2(t) f2(t) = F(tcosO)f(tsinf cos @) f(tsinbsin @)
= F(tcos®)f(tsinfcos(¢ + 7/2))f(tsinOsin(¢p + 7/2)),

and notice that the if f“* vanishes before the others, the integral range for ¢ in
this case is only different from the integral range for ¢ by rotating 7 in the case
that f*“2 vanishes before the others. Now we see that for f“? vanishes before
the others, we must have ¢ € [—7/4,7/4] and [—37/4, 57 /4]. Again since f is
even, it suffices to only consider the range [—7/4,7/4]. Thus
27 27 00
Cawo = [ [ Err oo
w/4  poo
_y4 / / 2F9(£) £ (£) £ () dtdo.
w/4 J0
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We now determine the range of . Assume f“2 vanishes before the others
ie. |wa| > |wi| and |ws| > |ws|. Notice that w? + w3 + wi = 1. If |wo| =
| sin @ cos | > %, then for all ¢, |ws| is always the largest one. If |ws| € [%, %],

then |ws| > |wq| for some ¢. If |wy| < \/Lg, then by pigeonhole principle one

of |wi|, |ws| is larger than \/Lg which is larger than |ws|. Thus 6 must be in

(/4,7 /2]. There are two different situations we need to separately deal with

1 When 6 € [cos™! \%,77/2], lwo| is larger than |wi| and |ws| for all ¢ €
[—m/4,7/4] .

2 When 6 € [r/4,cos™! \/Lg], lwo| is larger than |wq| and |w;| for some ¢ €
[—7m /4, m/4].

Case 3 cos_l(\%) <0 <m/2

We also break F“! into 4 pieces as before. And the decompositions in this term
are the most complicated one since we need to decide which of the 5 pieces F{,
Fil+F9, B+ FS 4+ FE Y+ F9 + Fig + Fi, and f“? vanishes before the
others according to 6 and ¢. More precisely, since f“2(t) vanishes before the
others and F(twy) = F{{ + Fi5 + F{5 + F{}. Therefore there are 4 possibilities
that f“2 vanishes before (1) Fi{' (2) Fi' + Fi3, (3) Fif + Fi5 + Fi3 and (4)
Fi1' + Fi9 + Fi§ 4+ FY}'. We now further decompose these 4 possibilities in terms

of the range of ¢.

1: These 4 possibilities hold for all ¢ € [—7/4,7/4].
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Part A f“» vanishes before F|{'. It gives

2

aw) = [T e orenren = [T e o),
Part B f“2 vanishes after F|}' and before F{{" + F3. It gives
alw) = [ R @)+ )00

Part C f“2 vanishes after Fi + F}5 and before Fi' + 5 + F5. It gives

3(w) = / SRR () + F2() + FE0) (1) 1 (1).

Part D f“2 vanishes after F|{' + F|3 + F5 and before F|{' + F{5 + F{5 + Fi3.

It gives

2

3(w) = / SRR ) + B (D) + FS () + F4 () £(0) £ (1)

Now we define some notations to simplify our expressions. Let

2

91(97¢) = Sl(‘ ‘ 0 ¢) (m,9,¢),
2
92(9,¢) _SZ(‘ ‘ 0 ¢) (2COSH’9’¢):SQ(SiHQCOSQb,e’gb)_52(2COS(9
2 2
g3(8,¢) = SS(‘ ’ 0 ¢) (2 Oseaeaqb) - Sg(sin9008¢’9’¢) T 53(2(3088

3

2
94(97¢) - = S4 <‘ 2| 0 ¢) (2(308979’(;5) = S4 <—797¢> — S4(T7

sin 6 cos ¢

Therefore

Part A §(w) = g1(6, ).

Part B &(w) = hi(0,¢) + g2(6. ¢).

797¢)7

,6,¢>,

3

os 0

6, 9).
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Part C &(w) = hi(0,¢) + ha(0, ¢) + g3(0, ¢).

Part D 53(("]) =M (97 ¢) + h?(ev ¢) + h3(97 ¢) + 94(97 ¢)

Since we have further decomposed the integral into these 4 possibilities for all

¢ € [—m/4,7/4], we need to determine the range of 6.

Part A (Closed form)

Since we now have 0 < ﬁ < 2|w1| or 0 < ﬁ <5 | for all ¢ € [—n/4,7/4]. In
order to satisfy the condition max{ -2 ool ‘w?)‘ <3 ‘ thus we have max{ﬁ, ﬁ} <
2 1 1

Si}l/; < Toos? = T which in turn gives that

T/2>0> cot !

I
SH
[\

Therefore we get the following integral:

/4 <2 0—1
HA(0) := 4sinfcos b 9100, ¢)dp = 85m—3
/4 sin® 6

Moreover the integral of H4(0) with respect to 0 is a closed form. Finally we

can explicitly compute the vaule

/2
/ HA(0)d0 ~ —0.0146.

-1 _1
ot 1

S

Part B (Closed form)

Since we have -1 < 2 <
2w1 |2 2

g

for all ¢. In other words we have 2 § 9,
w1 sin 6 cos

1 2
and 5-— < ==5. Hence we get range of ¢

cot” = >0 > cot™

o

Nk
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Therefore
/4

Hp(0) : = 4sinf cosb hi(0, ) + g2(0, ¢)do
—7/4

— —(24 cos O sin® O — sin® 6 — 1024 cos® O + 2048 cos® § sin @ — 407 sin* 0 + 407 sin®

+ 51201og(v2 + 1) cos® O sin 6 4 1024v/2 cos® A sin A) /(1280 cos* § sin® ).
Similarly, the integral of Hp(#) is a closed form and finally we have

cot_li
/ Hyp(0)d0 ~ —0.0655.

-1_2_
ot i3

Part C (Closed form)

Since we have: 2—31 < ﬁ < 2—31 for all ¢ € [—m/4,7/4]. As above, we will have

that the range of 6 is

Cot_12 >0 > cot ! i
4 442

Therefore

/4
He(0) : = 4sin9c:os€//4 hi(0,¢) + ha(0, ®) + g3(0, ¢)dop

— —[61sin 6 — 696 cos 6 + 2088 cos® f + cos® #(5120log(V2 + 1) + 1024+/2 — 40)
— cos” (5120 log(V'2 + 1) + 1024v/2 + 1352) + (5207 — 183)(sin 6 — sin® )

— cos” 0sin 0(10407 — 183) + cos’ fsin H(520m — 10301) /(3840 cos™ § sin* 6)],

and finally we have

cot~1 2
/ " He(0)d9 ~ —0.0139.
cot™1 3

4

S

Part D (Closed form)
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Since we have: % < ﬁ < 5, forall ¢ € [-7/4,7/4]. As above, we will have
that the range of 6 is

.3 4

cot”™ = >0 >cotTt ——.

4 42

Therefore

/4
Hp(f) : = 4811&0(3089//4 hi(0, ) 4+ ha(0, @) + hs(0, @) + 94(0, ¢)dep

— —(395sin 0 — 3264 cos  + 9792 cos® A + cos” H(5120log(V2 + 1) + 1024v/2 + 53
— cos” A(5120log(v/2 + 1) + 1024v/2 + 11840) + (18807 — 1185)(sin f — sin® )

— cos 0sin O(3760m — 1185) + cos°0 sin 0(18807 4 4725)) /(1920 cos™ § sin* 9)),

and finally we have

cot™
/ " Hp(6)d6 ~ —0.0634
cot™ 14Vﬁ

However there are still some ranges of # that we have not dealt with in parts

A, B,C, D above and the ranges are

1 1
[cot™ =, cot™t —=], [cot™'Z cot™! —=], and |cot

4’ 4:/2 4’ 4:/2

For these 3 ranges, we need to further estimate the integrals.

2 2 3 3
1o ettt .

4’ 4:/2

Remark 4. Those 3 parts are more complicated than above 4 parts since in each

cases, supq{ suppf“2} = 1s not contained in one of [0, 5 T [2—2)1, 2271], [2271, 2%1],

and 52, 51| for all ¢ € [ 7/4,7/4]. In fact it depend on ¢. Therefore those

17 2w

three parts are not part A,B,C and D. Fortunately, it is contained in one of

0, 2], [5h 55, and [,

» Zor b 3 2o b ] That is why in each of following cases, we need

2w1 7 2w

to split the integrals into two subcases according to ¢.
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Part E 6 € [cot™' 1 cot™! \1[] (negative value)

When 6 € [cot™ 1, cot™! ﬁ] the range [—m /4, 7/4] of ¢ will be split into two
cases. One of the ranges will give &5(w) = ¢1(0, ¢), and the other range will give

&3(¢) = g2(0, ¢). More precisely, when 6 € [cot™ 1, cot™ 4—\1/5], the variable ¢

will have two possibilities. One possibility is that f“2 vanishes before F{' i.e.

we will have 0 < ‘ N < The other possibility is that f“2 vanishes before

|2|

Fi3 and after F|7', which gives 5 - < 2. < 2 As a result, we split the range

Jwa| = 2

of ¢ according to which above p0881b111ty occurs.

1 0< ﬁ < 2—01J1 (&3(w) = g1(0,9)).

Since 0 < 2 < 2—2}1 which is 2 < Thus

w2 sinf cos¢p — 20059

—cos T4dcoth < ¢ < cos 4 cot 6.

Therefore we can estimate the integral below

cos~ (4 cot 6)
Hp1(0) = 4Sin9(:os€/ g1(0, ¢)do,

—cos™1(4cot h)

which is a closed form in variable ¢. However after plugging in the upper
and lower limits, we are unable to show whether the integral [ Hp;(0)d6 has
a closed form. But it is easy to show that its value is negative. Notice that
G108, ) = [0 2 pen () pen(t) fos (£)dt, and for all £, £2, f<2(t), and f<2(t)

are positive but Fi7'(t) is negative so that g;(0, ¢) < 0 for all # and ¢. Hence

cot™ 141
/ " Hp(6)do < 0.

11
ot i
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The integral range of ¢ is just the complement of the range in case 1 above.

Hence we have

/4 —cos™ (4 cot 0)

h(0,6) + 920, 6)dé + / h(0,) + g2(6, 6

os~ (4 cot 6) —m/4

Hp(0) := 4sinf cos b [/
Again we can explicitly compute Hpo(0) because the above integrals are closed
forms in variable ¢. However after plugging in the upper and lower limits,
the integral [ Hpo(0)d0 is difficult to see if it has a closed form. But it is
easy to show that its value is negative. Notice that hi(0,¢) + g2(6,¢) =
Jppembeoso 2 gy L (E)] 2 (t) £ (£)dt, and for all £, 2, f<2(¢), and f<(t)
are positive but F|}'(t), and F}3 (t) are negative so that hi(0,¢) + g2(0,¢) < 0
for all # and ¢. Hence

1

cot 14 5
/ " Hus(6)d6 < 0.

—-11
ot i

Part F 0 € [cot™' 2, cot™ ﬁi](further estimate)

As in part E above, there will be two cases when 6 € [cot™" 2, cot ™! ﬁ] One
case is that 211 < |w | < 23} , and the other case is 2271 < % < 2371

1o <o < g (G(w) =+ o).

2&)1 W

N

Since ﬁ < L‘ < 2%1, it gives that 0 < ¢ < cos™(2cot ). Hence

|w2
cos~1(2cot 6)

Hpy(6) :=4sinfcosd hi(0,¢) + g2(0, ¢)do.

—cos™1(2cot 0)

Hp1(0) can be explicitly computed, but integral [ Hpy(0)d6 is difficult to show
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if it has a closed form. Therefore this case will be further estimated in the final

section.

2 L§|2—|§2%1(§3(W):h1+h2+93)

w

)

Since % <2 <3 It gives us that
1 |wa| 2wy

/4
Hps(0) := 4sin 6 cos 9(/ hi(0,¢) + h2(0, @) + g3(6, ¢)do

cos~1(2cot h)

—cos 1(2cot )
" /_ hi(0, @) + ha(0, 9) + g3(0, ¢)dg).

/4

Again Hpo() can be explicitly computed, but integral [ Hpo(0)d0 is difficult
to show if it has a closed form. Therefore this case will be further estimated in

the final section.

Part G 6 € [cot™" 2, cot™! %] (further estimate)

2 2 3 _
Lo Sl S 2 (&3(w) = h1 + ha + g3).
Since QL <2< i, it gives us that
w1 ‘(JJQ‘ le

—1(3
cos™ " (g cot 0)

He1(0) := 4sin 6 cos 0 hi(0,¢) + ha(0, &) + g3(0, @)do.

(
—cos™1(2 cot 0)
H¢1(0) can be explicitly computed, but integral [ Hgy(0) is difficult to show if
it has a closed form. Therefore this case will be further estimated in the final

section.
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2 i<L§2iwl(fg(w):hl+hg+hg+g4) Smcei<l§2;:jl, it gives

2w1 — |wal 2w — |wa
us that
/4
Hgo(0) := 4sin 6 cos 9(/ e hi(0,¢) + ha(0, @) + hs(0, @) + 94(8, ¢)do
cos~! %cot

cos™ ' (3 cot 0)
+/_ hi(0,8) + ha(0, 6) + ha(6, 0) + ga(6, )d)

/4

/4
Hen(0) = / ha(6, ) + ha(8, &) + hs(6, ) + g4(6, 6)do.

os™1(2 cot 0)

Hgs(0) can be explicitly computed, but integral [ Hgo(0) is difficult to show if
it has a closed form. Therefore this case will be further estimated in the final

section.

Finally the remaining case is below. Case 4: 7 < 6 < cos™ (%) (further

estimate)

For this case 7 < 0 < cos™ (\}g), the range of ¢ is actually the complement of
the range in case 2 above. In other words, the integral range of ¢ is D (see
page 8 for the definition of D). Just as what we observe in case 2 the integral
that we want to estimate can be reduced to

COSs

st / 2 e (1) £ () 45 (£ dt s sin B

R

/ " cosf t2F°"1(t) f2(t) f43(t)dtde sin Od6 (4.11)

cos™ ! cot 6
/ 4 cos 0 / t2F9 (1) f92(t) f<3 (t)dtd e sin 0d.
—cos~1cotf
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Now here is the key observations that since ¢ € [—cos™! cot 6, cos™! cot 0] so
that

wy = sinf cos ¢ € [cos ), sinb)],

Hence we have

2 2 2 2
|sinf| ~ |sinfcos@| ~ |cos|  |wi|

Therefore we will only have f“? vanishes before i + Fi5 + Fi3 + FyJ and

after Fit + F3' + Fi3 for all ¢ € [—cos ! cot 0, cos™! cot §]. This gives us that

—2_ > _3_ and hence we have
| sin 6| 2|w |

Therefore the other part is

Part A’ % << Cot_1%
In this case we have
cos~Lcot O
K4(0) :==4cosfsinb hi(0, ) + ha(0, ) + hs(0, ¢) + g4(0, ¢)do,
—cos~lcot

which shows we need to estimate the integral below for this case.

cot™! %
/ K A(0)d0.
/4

Still, we are not able to find its closed form and hence this case will be further

estimated in the final section.
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s . -13 -1 1
Part B’ :cot™ 4§ <6 < cos 7

When cot™! % < 0 < cos ig, there will be two cases

(1) f«2(t) vanishes after F{j + Fi5' + Fi3', which gives = > 52—

Wy — 2&)1’

(2) f“2(t) vanishes before F}j' + Fiy + Fi3 after Fi7' +Fi3, which gives 2 < 53—

|w2| - 2w1
1 52 g0 (&(w) = hi+ ha + hy + ga).
From this condition, we get the integral range of ¢ is
4 ~1

CoS gcote < ¢ < cos " coth.

Therefore we have
cos~Lcoth

Kp1(0) := 4 cosfsin (9(/ hi(6,¢) + ha(0, @) + h3(8, ¢) + 94(0, P)de

cos~! %cot@

—cos_lgcotH
L /_ 1 (0, 8) + ha(6, ) + hs(0,0) + ga(6, $)do.

cos~1cot @

K1 can be explicitly computed, but integral f Kp1(0) is difficult to see if it has
a closed form. Therefore this case will be further estimated in the final section.
2 o S < (Gw) =l +ha+gs)

201 = Jwa = 2wy \S3 w 1 271 93)

From this condition, we get the integral range of ¢ is

4
0<op< cos ! gcot 0.

cos™! % cot 6

Kpo(0) := 4cosﬁsin9/ hi(0, ) + ha(0, @) + g3(0, ¢)do.

—cos1 % cot @

Kps(0) can be explicitly computed, but integral [ Kpo is difficult to see if it has

a closed form. Therefore this case will be further estimated in the final section.
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Some Remarks (1) We use the program of Matlab [14] to find the closed forms
for some of above integrals. It can be also directly checked that all the indefinite
integrals are correct. (2) The variable-precision floating-point arithmetic (VPA)
that we use in the program of Matlab is 32 digits, thus the precision of the values
for closed forms is accurate up to 10732 error which would not effect our final

value.

Upper bounds for all the further estimate cases Recall that for all the
closed forms above, their values add up to be negative. In addition, part E is
proved to be negative. Therefore our goal in the section is to give upper bounds
for all the further estimate cases above and show that the values of the upper

bounds are all negative which after all shows the integral (4.2) is negative.

Note that &3(w) = [ t2F (twr) f(tws) f (tws)dt and F(twy) = Fi1(t) + Fi3 () +
Fi3(t) + Fy}(t), also recall that for all t,w, F|{'(t), F13 (t) are negative, and
Fi3(t), F{1(t), f(tws), f(tws) are positive. In previous sections, we have shown
that for those further estimate cases, it is difficult to see if they have closed
forms. Therefore the ideas for these remaining cases are to combine the integrals
and split the combined integrals into positive and negative integrals. Finally,
we are able to find upper bounds for these negative and positive integrals and

show that these upper bounds have closed forms. Case 2 and case 4 Recall

that in case 2, the integral (4.10) is

/ " cos O sin 0 E3(w)dpdh.

/4 ¢eD
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In case 4, the integral (4.11) is

/ " cosBsin 6 E3(w)dpdo.

/4 ¢peDe

We now separate &3 (w) into negative part and positive part i.e.

21 r2V3
(Negative) / cosesme/ / t2[FE(t) + FS5 ()] f<2(8) 42 (t)dtdedo,

21 r2V3
(Positive) / 7 o5 0sin 6 / / 2 [F9(8) + FE (0] £ (8) £ (£ dtdgdd,

where negative part indicates that 2 [F} (t) + F5 (t)] f<2(t) f<3(t) < 0 for all ¢

and positive part indicates t* [Fy3 (t) + Fyi(t)] f<2(t) f<*(t) > 0 for all ¢.
Negative part

Since in case 2 and case 4 the three functions F, f“2, f“s all vanish after F3' so

that the negative part becomes

-1 1

cos™ = 2m
/ v cos@sin@/ hi(0,¢) + ha(0, @)dpdo.
/4 0

Also this integral has closed form

/Cosﬁsinﬁ - hi(0, @) 4+ ha(0, ¢)dpdo
0

= |—=— —tan- — ———tan" — + —tan" — + —tan’ - — ——| /(tan" = — 1)
32 64 2 640 2 32 2 64 2 1920 2
9tanh ™! (tan )

64

Plugging in the exact integral range, we thus obtain

-1 1

cos™ = 2m
/ v costin@/ hi(0,¢) + ha(0, ¢)dpdd ~ —0.0607.
/4 0

Thus the negative part of case 2 4case 4 is about -0.0607.
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Positive part For positive part, we are unable to get the exact value. Instead,
we will find an upper bound for the positive part and show that the upper bound
has a closed form. Recall that in case 2, and part A’ and part B’1 of case 4, the

function 2 F (twy) f(tws) f (tws) vanishes after 3 and they are

_17

Case 2 / " cosBsin b / ha(0, ¢) + ha(0, §)dedo,
w/4 D
cot’lg
Case 4,A’ / cosOsinf [ hs(0,¢) + g4(0, p)dpdo,
/4 De

Case 4,B’1 /
C

-13
ot™" 3

cos@sinH/Rhg(@,@ + 94(0, ¢)dopd,

where R is the integral range of ¢ in B’1 of case 4.

Notice that in part B’2 of case 4, the function #*F (twy) f(tws) f(tws) vanishes

before F|j' and the integral is

-1 _1

Case 4,B’2 / cosOsin® [ g3(0,¢p)dopdo.

ot~! % Re

S

To obtain an upper bound, we introduce a function which is a linear extension

of Fi3.

~ 1 1
Fiy () = 5(twr — 1),
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Where the dotted line is Fy3 (t) = 1 (tw; — 1).

Now for case 2

3/2cosf 4/2cos 6

tAFS () f<2(t) £<5 () dt + / t2FE () f<2(t) f<5(t ) dt

3/2cos b

hal0,0) + ha(6.6) = |

2/2cosf

3/2cos 4/2cosf
< [ emoromeas [ R0 o
3

2/2cos 6 /2cos

4/2sin 6 cos ¢ )~
</ PES (1) f* (1) f* (t)dt

2/2cos 6
The last inequality comes from that fact that F' vanishes before f“2 in case 2,

i.e.

4 < 4
2cosf — 2sinfcosg
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For case 4A and 4B’1

3/2cosf 4/2sin 6 cos ¢
hs(0. ) + 9.(6, 6) = / LR () £ () £ (£)dt + / E(8) £ (8) 2 (1)t

2/2cos 6 3/2cosf

3/2cos0 4/2sinfcosdp -
<[ UeRpoeoreds [T BRSO 0
2/2cos @ 3/2cosb
4/2sin 6 cos ¢

S S = TR OV OL
2/2cos
For the case 4B’2, we note that
3/2sin 6 cos ¢
wl.6) = [ EF0) () fti

2/2cos

4/2sinfcos¢p
< / 2 ES (1) f (teon) f (teg) .
2/2cos @

Therefore combining all the inequalities above to get an upper bound which is

2r  p4/2sinfcosdp
/ cos 0 sin 0 / / t2ES () f2 () £ (t)dtdpdB
0

2/2cosf
0 +2 L0107 + 29 , 0157 + 89 0 2log(v2+1) 2v2+4
—(tan® = —tan! ——— = 4 tan®’ = ——— 4+ tan—
(tan® 5 5= — tan’ 5 0 tan” o g tan o (= T )
0 22 + 4 0 41249
+ tan” 5(2log(\/§ +1) + %) — tan’ 5(2 log(V2+ 1) + \/_1—0+)
0 2log(v2+1) 2v2 1. 1 ) 0 L0 0 0
— tan” ~ = t t tan® — — tan® ~
an 2( 3 + B —|—6) 3)/( an® 3 — 3tan® 2—!—3 an” o — tan 2)
0 6391 80 0 2log(v2+1) 2244
4log(t 3 — tanh~ — 2)/10 + tan -
~ (4log(tan 3))/3 — tan (9tang+240) 3 )10+ tan o (=== LT
tang2
_|_

Plugging in the exact integral range, we thus obtain

-1

cos 2r  p4/2sinfcosd
/ " cos Osin 0 / / t2ES () f2 () £ (t)dtdpd =~ 0.08718.
/4 2/2cos 6

s
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Thus the positive part of case 2 +case 4 is bounded by 0.08717. Part F in

case 3 Part F is

cot™! ﬁ cos™ (2 cot 0)
/ 4sin 6 cos @ hi(0,¢) + g2(0, ¢)dpdb

ot~1! —cos™1(2cot h)
cot‘1 Lf /4
4 8in 6 cos 9(/ hi(0,¢) + ha(0, @) + g3(0, ¢)dodb
cot ™1 cos~1(2cot 0)
cot ! 4f —cos (2cot 0)
[ mi.0) s hal0.0) + 00, 0)a0)dp
cot™! 2 -7

where hq, ho, go represent the negative part and g3 represents the positive part.

Negative part of F We first notice that the negative part of F'is bounded by

/4
/ 4 cos 0 sin 0 hi(6, ¢)dpdo

—m/4
3 3tan§ 5 0, 3m 1 37Ttan4g 3tan5§ 1 5 0
— = -2 fan® (= — - tan? = — 1)°—
[64 w0 oGy T et Ter Y0 Tes| /(Mg
3tanh ™' (tan %)
160

Plugging in the exact integral range, we thus obtain

cot (m) /4
/ 4 cos  sin 0 hy(6, ¢)dpdo
cot71(1) —7/4

~ —0.026.

Thus the negative part of F'is bounded by -0.026. Positive part of F The

positive part of F'is

cot’l(ﬁ) /4 —cos™!(2cot )
/ 4 sin 6 cos / 93(9,¢)d¢+/ g3(0,0)do | do

ot=1(3) os~1(2cot 0) —m/4 ( )
4.12
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cot_l(ﬁ) /4 4/2sinfcosp
< / 4 sin 6 cos (9(/ / t2Fi3 (t)dtde
c (2cot 0)

ot=1(3) cos™! 2/2cos b
—cos *(2cotf) p4/2sinfcos¢
+ / / t2ES () dtdg)db. (4.13)
—r/4 2/2cosf

But we observe that

cot (m) cos 1 (2cot b 4/2sinfcosp
/ 4 sin 6 cos 0 / t2F (t)dtdpdd > 0, (4.14)
cot™1(3) —cos™1(2cot8) J2/2cos 0

because when 6 € [cot ™ (3), cot_l(ﬁi)], ¢ € [—cos™H(2cot B),cos (2 cot 0)],
2/2cosf > 4/2sin 6 cos ¢,
and 2% () < 0 when t < 2/2cos 6.

Hence (4.12) is bounded by (4.13)+(4.14) which is

cotfl(ﬁ) /4  p4/2cosfsinf
/ 4sin 6 cosd / t2F () dtdedd.

ot~1(3) —m/4 J2/2cos0

It has closed form

/4  p4/2cosfsin®
/ 4 sin 6 cos 0 / t2Fi (t)dtdpdo

—m/4 J2/2cos6
8 tan Qlog(\/_—l—l +2 3210g(tan%)
=8 tan
2 3 3
5 0 16 0 5 0.1 2+1 2 8 0 0
+ |tan 577—2 -I—8(tan§—tan 5) og(\/_—; )+\/_—§])/(tan2§—tan4§)
—|—8ta 29
= tan” —.
3 2

Plugging in the exact integral range, we thus obtain

cot_l(Q—\l/i) /4 p4/2cosfsinh
/ 4 sin 6 cos 0 / t2Fi3 (t)dtdpdd
cot~1(1) —7m/4 J2/2cosb

~0.0064.
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Thus the positive part of F'is bounded by 0.0064. part G in case 3 Part G is

cos(2 cot 6)

/CO 4sin9COSH h1<(97 ¢) + h2(97 ¢) + 93(9’ ¢)d0

ot~! — cos(3 cot 0)

s\

w/4

% ysin 6 cos / 11(0, 6) + ha(6, 8) + hs(6, &) + ga(6, B)do

cot™1 3 cos™1(2 cot 0)

—cos™ (3 cot 0)
n /_ hi(0,6) + ha(0, 6) + ha(6, 6) + ga(6, )de)do

/4

cot™ 1

5\

where hq, ho are negative and hs, g3, g4 are positive. Negative part of G The

negative part of G is

cot (%) /4
/cot—l(i) 4 cosfsinf i hi(0,9) + ho(6, ¢)dpdl
3 16 5 6
— (;_;T B 9t2:§ _ tan? g(% B 63410 N 77rt3aQn 2 9tzz 3 13;0> /(taan )
9 tanh ! (tan g)
64
~ — 0.0694.

Thus the negative part of G is bounded by -0.0694. Positive part of G The

positive part of G can be split into two terms.

cot™ (7) cos™!(2 cot 0)
(GZ)/ 4005031119/ g3(0, ¢)dpdl

ot=1(2) (2 cot0)
cot™ (4%/5) /4
+ (G2) - 4cos€sin(9(/ e h3(0, ¢) + g4(0, ¢)do+

_ cos_l(g cot 0)
n /_ hs(6, ) + 9a(6, ¢)de)do

/4
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cot™ cos™ cot 0)
(G1) / 4cos@sm9/ (0, p)do

ot~ cot 0)

,-\ Nu

if cos™ ( cot@) 4/2sinfcosp

/ 4 cos 0sin 0 / / 2 () f2 () f<5(t)dtd g,

cot71(3) —cos~ (3 cot §) J2/2cos 6
(4.15)

and
cot_l(%ﬁ) /4
(G2) 4 cos 6 sin (9(/ hs(8, @) + g4(0, ¢)do
cot71(3) cos—1(2 cot 6)

—cos™ (3 cot 0)
+ [ hs(6,6) + 9a(0. 6)do)

/4

is bounded by
cot_l(ﬁ) w/4 4/2sinfcos¢p
/ 4 cos 0sin 0 / / 2F9(8) 2 () 4 (£) dtdg
c (2 cot 0)

Otfl(%) COS_l 2 2/20059
_cos—l(%cot9) 4/2sin 6 cos ¢ ) ~
+/ /4 /2/2 , ! Ey3 () f22(t) f2(t)dtde)

(4.16)
Hence the positive part of G is bounded by (4.15)4(4.16), which has closed

form

/4  p4/2sinfcos¢
/ 4 cos @ sin 0 / t2ES () f2 () £ (t)dtdpdb

—m/4 J2/2cos0
6O+ 2 , 0107 429 5 0157 + 89 010log(v2+1) +2v2+4
—[tan® ~ — tan” ————— + tan® —————— + tan =
2 6 2 30 2 90 2 15
2 4 0 4v2 49
+ tan —(210g(\/_ 1) + \/_ 2t =) —tan® 5(210g(\/§ + 1)+ #)
21 2 1 6 7 6 0
—tan’ 2( og(\g_ D 1\2_ 6) — §]/ [tan2 5~ 3 tan* 5 + 3tan® 5 tan® 5]
6391 80
4log(tan g) tanh (9tang+24o - ?> 0 (2log(v2+1) 2244 tanzg
- - + tan - + + .
3 10 2 3 15 3
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Plugging in the exact integral range, we thus obtain

cotfl(%ﬁ) /4  p4/2sinfcos¢
/ 4cos 0sin 0 / 2F(6) £ (4) £ (t)dtdbdo
¢ 2

ot=1(2) —m/4 J2/2cos6

~0.0139.

Therefore the positive part of G is bounded by 0.0139. Altogether The sum

of all further estimate cases is

(Negative part of case 2+4)+ (Positive part of case 2+4)+ (Negative part of F)
+ (Positive part of F)+ (Negative part of G)+ (Positive part of G)
< — 0.0607 + 0.08718 + (—0.026)

+ 0.0064 + (—0.0694) + 0.0139 < 0.

Remark 5. It is very likely to extend the ideas to all dimensions n > 4 and

show the correspondent integral is negative.

5 General Calderon-Zygmund operators and sharp A2
bound
Introduction

Theorem 5.1. For any Calderd-Zygmund operator T on R?, any w € A,, and

f € L*(w), we have

1Tl r2y < Crlwlas 1 £l 2w -

The proof will proceed via the following steps, in the same order:
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o Reduction to dyadic shift operators: every Calderon-Zygmund operator
T has a representation in terms of these simpler operators, and hence it

suffices to prove a similar claim for every dyadic shift .S in place of T
e Reduction to testing conditions: in order to have full norm inequality
151 2wy < Cslwla, [1f1l 2 »
it suffices to have such an inequality for special testing functions only:
HS(leil)HLz(w) < Cs|wla, HIQWAHL%) ;
IS (Low)ll 1) < Ol 1wl ooy
o Verification of the testing conditions for .S.

In the original proof of this theorem, in Summer 2010, the two reductions were
done in different order: the (quite complicated) reduction to testing functions
was obtain for general Calerén-Zygmund operators by Pérez-Treil-Volberg [1];

Hytonen’s completion of proof [6]

Preliminaries The standard (or reference) system of dyadic cubes is
2" .= {2750, )" + m) :€ Z,m € Z}.
We will need several dyadic systems, obtained by translating the reference sys-
tem as follows. Let w = (w;)jez € ({0,1}9)% and
IHw: =1+ Ej:27j<g([)2_jw‘j.

Then
2% = {I+w: I e 2",
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and it is straightforward to check that &% inherits the important nestedness
property of 2% if I,.J € 2%, then IN.J € {I,.J,0}. When the particular w is
unimportant, then notation Z is sometimes used for a generic dyadic system.
Haar function Any given dyadic system & has a nautral function system
associated to do it: the Haar functions. In one dimension, there are two Haar
functions associated with an interval I. the non-cancellative A% := |I|~'/21; and
the cancellative h} := |I|7V/2(1;, — 11 ), where [; and I, are the left and right
halves of I. In d dimensions, the Haar functions on a cubes I = I; x --- X I;

are formed of all products of the one-dimensional Haar functions:
d

i) = B @, wa) = ] ().
=1

The non-cancellative h) = |I1|'~/21; has the same formula as in d = 1. All other
27 — 1 Haar functions A} with n € {0,1}9\{0} are cancellative, i.e., satisfy

[ h] =0, since they are cancellative in at least one coordinate direction.

For a fixed 2, all the cancellative Haar functions A7, I € 2 and 5 € {0, 1}9\{0},
form an othonormal basis of L?(R?). Hence any function f € L?(R?) has the
othogonal expression

f=> 2 (fmnl

1€7 1e{0,1}4\ {0}

Since the different 7)’s seldom play any major role, this will be often abbreviated

(with slight abuse of language) simply as

f - Z<f7 h[>hl7

Ie9
and the summation over 7 is understood implicitly. Dyadic shift A dyadic

shift with parameters 7,7 € N is an operator of the form where h; is a Haar

60 doi:10.6342/NTU202001176



function on [/ (similarly hy), and the A i are coeflicients with

vaulied

larjr| < H——.
| K|

It is also required that all subshifts

So=>» ,2C9,
Ke2

maps So : L*(R?) — L*(R?) with norm at most one.
The shift is called cancellative, if all the h; and h; are cancellative; otherwise,

it is called non-cancellative.

The notation Ax indicates an “average operator” on K. Indeed, from the

normalization of the Haar functions it follows that

Axf] < 1x /K /]

pointwise.

For cancellative shifts, the L? boundedness is automatic from the other condi-

tions. This is a consequence of following facts:

 The pointwise bound for each Ag implies that ||Axf|;, < || fll.» for all
p € [1, 00]; in particular, thes components of S are uniformly bounded on
L? with norm one. (This first point is true even in the non-cancellative

case.)

o Let D% denote the othogonal projection of L? onto span{h; : I C K,{(I) =
27"0(K)}. When i is fixed, it follows readily that any two D% are othogonal

to each other. (This depend on the use of cancellative h;.) Moreover, we
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have Ax = ]D)%(AKID)%. Then the boundedness of S follows from two
applications of Pythagoras’s theorem with the uniformly boundedness of

the Ax in between.

A prime example of a non-cancellative shift (and the only one we need) is the
dyadic paraproduct

[1F =" 0 ha)(f)ichic =D K[V (0, ki) - (f. B b,
b

Keo Ke9

where b € BMO,; (the dyadic BMO space) and hg is a cancellative Haar
funciton. This is a dyadic shift with parameter (¢,5) = (0,0), where arjx =
|K|~'2(b, h) for I = J = K. The L? boundedness of the paraproduct, if and
only if b € BMOy, is part of the classical theroy. Actually, to ensure the nor-
malization condition of the shift, it should be further require that ||b]|5y;0, < 1.
Random dyadic systems; good and bad cubes We obtain a notion of ran-
dom dyadic systems by equipping the parameter set Q := ({0,1}%)% with the

natural probability measure: each components are independent of each other.
Let ¢ : [0,1] — [0, 1] be a fixed modulus of continuity: a strictly increasing

function with ¢(0) = 0, ¢(1) = 1, and t — @ decreasing (@ = 1 hence

o(t) >t for all t € [0,1]) with lim;_,o ¢(t)/t = co. We further require the Dini

/1 ¢(t)% < 0.
0

Main examples include ¢(t) = 7 with v € (0,1) and

condition

1 1
o(t) = (1+ ;bg ;)_777 > 1.
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We also fix a (large) parameter r € N. (How large, will be specified shortly.)
A cube I € D, is called nad if there exists J € D,, such that £(J) > 27¢([) and

dist(1,0.]) < qs(%)w) :

roughly, I is relatively close to the boundary of a much bigger cube.

Remark 6. This definition of good cubes goes back to Nazarov-Treil-Volberg in
the context of singular integrals with respect to non-doubling measures. They
used the modulus of continuity ¢(t) = t7, where v was chosen to depend on the

dimension and the Holder exponent of the Calderén-Zygmund kernel via

B o
7= 2(d+ «a)
This choice become "canonical” in the subsequent literature, including the orig-
inal proof of the Ay theorem. However, other choices can also be made, as we

do here.

We make some basic probablistic observations related to badness. Let I € 2°
be a refenece interval. The position of the translated interval
IHw=I+ Y 27w,
J:277<(I)
by definition, depends only on w; for 277 < £(I). On the other hand, the badness

of I+w depends on its relative position with respect to the bigger intervals

Jdw=J+ Z 2_jwj + Z 2_7@]-.
J:273<L(1) J(I)<2=i<l(I)
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The same translation component Zjﬂ_jw) 27Jw; appears in both I+w and
J+w, and so does not affect the relative position on these intervals. Thus this
relative position, and hence the badness of I, depends only on w; for 271 > ((I).

In particular:

Lemma 3. For I € 2°, the position and the badness of /+w are independent

random variables.

Another observation is the following: by symmetry and the fact that the con-
dition of badness only involves relative position and size of different cubes, it

readily follows that the probability of a particular cube I+w being bad is equal
for all cubes I € 2°:

P, (I+wbad) = Thaq = Thaa(r, d, @).

The final observation concerns the value of this probability:

Lemma 4. We have
20 dt
Thad S 8d ¢(t)_7
0 t
in particular, mpq < 1 if 7 = r(d, ¢) chosen large enough.

With r = r(d, ¢) chosen like this, we then have mgp0q := 1 — Thaa > 0, namely,

good situations have positive probability.

Proof. Observe that in the definition of badness, we only need to consider those
J with I C J. Namely, if I is closed to the boundary of some bigger J, we

can always find another dyadic J’ of the same size as J which contains I, and
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then I will also be close to the boundary of J’. Hence we need to consider
the relative position of I with respect to each J D I with £(J) = 2¥¢(I) and
kE=r,r4+1,.... For a fixed k, this relative position is determined by
Z 27 wj,
J:4(I)<2-3 <2k4(T)
which has 2%¢ different values with equal probability. These correspond to the
subcubes of I of size ¢(1I).

Now bad position of I are those which are within distance ¢(€(I)/€(J)) - £(J)
from the boundary. Since the possible position of the subcubes are discrete,

being integer multiples of £(1), , the effective bad boundary region has depth
[¢ (%) %] ur) (¢ (%) % i 1) o)
1) (o (K(I D) 1) <o (1),

) (/)
The good region is the cube inside J, whose side-length is ¢(J) minus twice the

IA

~

~
<
~

by using that ¢ < ¢(t).

depth of the bad boundary region:

0(J) -2 [¢ (%) %} oI) > 0() — 40(.0) <%> .

Hence the volume of the bad region is

o (-2 () ] ) <01 1= (-0 ()
< |J] - 4dé (%)
by the elementary inequality (1 —a)? > 1— ad for a € [0,1]. (We assume that
r is at least so large that 4¢(27r) < 1.)
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So the fraction of the bad region of the total volume is at most 4dp(€(1) /¢(J)) =

4dp(27F) for a fixed k = r,r + 1,.... This gives the final estimate

P, (/4w bad) < f:zldgb(g—k) - i 8d¢<2_k)2—k—1
w -~ 2_k

k=r

<28d/2 k ¢(t)dt—8d gt )dt

2—k—1 0

where we used that ¢(t)/t is decreasing in the last inequality. O

The dyadic representation theorem Let T' be a Calderén-Zygmund operator
on RY. That is, it acts on a suitable dense subspace of functions in L*(R%) (for
the present purposes, this class should at least contain the indicators of cubes

in RY) and has the kernel representation

Tf(x)= [ K(z,y)f(y)dy, x ¢ suppf.

Rd
Moreover, the kernel should satisfy the standard estimates, which we here as-
sume in a slightly more general form than usual, involving another modulus of

continuity ), like the one considered above:

Co
<—
‘K(:L‘,y)| >~ |,f[,'—y‘d7
Cy |z — 2|
/ /
_ — <
K (o) = KG)| + K 0) - K] < 2o (222

for all z,2,y,y" € R? with |z — y| > 2|z — 2/|. Let us denote the smallest
admissible constants Cp and Cy, by [|K||¢z, and || K[|¢z, . The classical standard

estimates correspond to the choice ¥ (t) = t*, a € (0, 1], in which case we write

K¢z, for |K]l¢z,
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We say that T is a bounded Calderon-Zygmund operator, if in addition 1T’

LA(R?) — L*(R?), and we denote its operator norm by ||T'|| 2 ., -

Let us agree that || stands for the /*° norm on R? i.e., |z| := maxj<jq|2;l.
While the choice of the norm is not particularly important, this choice is slightly
more convenient than the usual Euclidean norm when dealing with cubes as we

will: e.g., the diameter of a cube in the £*° norm is equal to its sidelength ¢(Q).

Let us first formulate the dyadic representation theorem for general moduli of
continuity, and then specialize it to the usual standard estimates. Define the

following coefficients for 7, 7 € N:
7_(27]) — ¢(27max{i,j})fd¢(2fmax{i,j}¢(2—max{i,j})fl)y
if min{s, j}=0.

We assume that ¢ and v are such, that

fﬁ“”ﬁézéwtég%+AEC£ﬁ%<w- (5:1)

1,7=0

This is the case, in particular, when ¥ (t) = t* (usual standard estimates) and

d(t) = (1 4+ a tlogt™1)™7; then one checks that

7(i,7) < P(max{i, j})2 @ max{i}

P(j) = (1 + )71,

which ch clearly satisfies the required convergence. However, it is also possible
to treat weaker forms of the standard estimates with a logarithmic modulus
Y(t) = (1 +atlogt 1) ~@. . This might be of some interest for applications,

but we do not pursue this line any further here.
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Theorem 5.2. Let T T be a bounded Calderén—Zygmund operator with mod-

ulus of continuity satisfying the above assumption. Then it has an expansion,
say f,g € CL(RY),
0 ..
OTf = (1Tl + 1Koz, ) - Eo S 70, 3){a) SES.
i,j=0
where ¢ is a dimensional constant and S% is a dyadic shift of parameters (i, 5)

on the dyadic system D“; w; all of them except possibly S are cancellative.

The first version of this theorem appeared in [6], and another one in [5]. |. The
present proof is yet another variant of the same argument. It is slightly simpler
in terms of the probabilistic tools that are used: no conditional probabilities are

needed, although they were important for the original arguments.

In proving this theorem, we do not actually need to employ the full strength of
the assumption that 7" : L?(R?) — L?(RY); rather it suffices to have the kernel
conditions plus the following conditions of the T'1 theorem of David-Journé:
(19)T'1g| < Cwpp|Q| (weak boundedness property),

T1 € BMO(RY), and T*1 € BMO(R?).

Let us denote the smallest Cyygp by ||T| ;y5p- Then we have the following more

precise version of the representation:

Theorem 5.3. Let T' be a Calderon—Zygmund operator with modulus of con-

tinuity satisfying the above assumption. Then it has an expansion, say for
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f.g € CHRY),

OTf = (IKllez, + 1Koz, ) B 3 7(0.5)(0)SHS (5:2)
maf(’gi:j%>0
¢ (1Kl ez, + 1Tl wpr) Balo)SES + Eulg Hf+E (D

T*1

where S%/ is a cancellative dyadic shift of parameters (i,7) ) on the dyadic
system D¥; and [} is a dyadic paraproduct on the dyadic system D“ associated
with the BMO-function b € {T'1,T*1}.

Remark 7. Note that [[; = |16l gy0 - S, where S¢ = [1; / |Ibll g0 O 1s a
shift with the correct normalization. Hence, writing everything in terms of
normalized shifts, as in Theorem 5.2, we get the factor |11 51,0 S Tl 2 f2 +
| K|z, in the second-to-last term, and (T*1,y BMO < (T)r212 + (K)cz,
in the last one. The proof will also show that both occurrences of the factor
(K)cyz, could be replaced by (T')r2_, 2, giving the statement of Theorem 5.2

(since trivially (T)wpp < (T)r2_,12).

As a by-product, Theorem 5.2 delivers a proof of the T'1 theorem: under the
above assumptions, the operator T is already bounded on L%(R?). ). Namely,
all the dyadic shifts S¥ are uniformly bounded on L?(R?) ) by definition, and
the convergence condition (5.1) ensures that so is their average representing the
operator 1. This by-product proof of the T'1 theorem is not a coincidence, since
the proof of Theorem 5.2 and (5.3) was actually inspired by the proof of the
T'1 Theorem for non-doubling measures due to Nazarov-Treil-Volberg[2] and its

vector-valued extension [3].
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A key to the proof of the dyadic representation is a random expansion 7' in

terms of Haar functions hj, where the bad cubes are avoided:

Proposition 1.

(g, Tf) = B, Y lgoa(smaller{I, J})- (g, hs){hs, Thr)(hs, f),

T
good 1 Jegw

where

smaller{I, J} := I if ((I)<{(J)
Joif A1) > ()

Proof. Recall that Haar functions form a basis

f = Z <f7 hI—i—w>hH—w

190

for any fixed w € €); and we can also take expectation [E, of both sides of this

identity.
Let
1, if I+w is good,

1good(l—i—w) =
0, else

We make use of the above random Haar expansion of f, multiply and divide by
Tgood = Pu(IHw good) = E,1y00a(I+w),

and use the independence from above Lemma to get:
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<97 Tf> = E, Z<ga Th]%cu><h[irw7 f>

I

1 )
= > EullgooaI+w)Eu[(g, Thyio) (hij, f)]

good 7

1 .
- E, Z lgOOd(]—H")) <g7 ThI—Fw> <hH-w7 f>

Trgood i

1 .
= - dEw Z lgood(]'H‘)) <97 hJ—i—oJ> <hJ—i—w? Th[+w><hl+w? f>

200 1.7

On the other hand, using independence again in half of this double sum, we

have

1 )
Ew[lgOOd([+w) <ga hJ—@-w> <hJ—§-w7 Th[—i—w> <hI—i-w7 f>]

Tgood y )2y

= Y Bl Bl b )i Thii) (i )

Tgood 4\ o)

=K, Z <gv hJ—Fw> <hJ—Fw7 Th[—i—w><hI—Fwa f>
(D>(J)

and hence

1

T EW Z 1900d(1—i—w)<97 hJ—i—w><hJ—i—w7ThI—i—w> <hl—i—w7 f>
good — ypy<a()

+ E, Z <gv hJ+w><hJ—Fw7 Th[—i—w><hI—Fw7 f>
oD)>6(J)

(9,Tf) =

Comparison with the basic identity

<ga Tf> =E, Z<ga hJ—Fw><hJ—Fw7 ThI—Fw> <hI—i—w7 f> (5'3)
1,J
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shows that

Ew Z ga hJ—Hu hJ+w7ThI+w><hI+wvf>
LI)<e(J)

]EW Z 1900(1(]—]—&0) <97 hJ—l—w> <hJ—§-w7 Th[—i—w> <hl—5-w7 f>
(I)=<L(J)

T good

Symmetrically, we also have

Ew Z gahJ+w hJ+w7ThI+w><hI+w?f>
LI)>e(J)

1 )
T E, Z 1900d([+w)<g7 hJ—@-w><hJ—i—w7ThH—w><hI—i-w7 f>7
900d pry>0(7)

and this completes the proof. [

This is essentially the end of probability in this proof. Henceforth, we can
simply concentrate on the summation inside E,,, for a fixed value of w € €2, and
manipulate it into the required form. Moreover, we will concentrate on the half
of the sum with ¢(J) > ¢(I), the other half being handled symmetrically. We
further divide this sum into the following parts:

Z =0 gist>0(J)(£(I)/L(J)) T Z + Z + Z

(1)<t() 1) =T dist oD 1)

=0out + Oin + 0=+ Opear

In order to recognize these series as sums of dyadic shifts, we need to locate, for
each pair (I, J) appearing here, a common dyadic ancestor which contains both
of them. The existence of such containing cubes, with control on their size, is

provided by the following:
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Lemma 5. If I € D is good and J € D is a disjoint cube with ¢(.J) > ¢(I),

then there exists K D I U J which satisfies

((K) <2"0(1), if dist(I, J) < U(J)p(—=)

E(K)gb(%) < 2dist(I, J), if dist(I,J) > zuw(@)

We need to find the bound of /(K).

Proof. Firstly, we have to show that [ U J C K rather than estimate by ¢([) +
0(J) + dist(1, J) < ¢(K) since we don’t know the location of I, J and K. Let
us start with the following initial observation: if K € & satisfies I C K, and
J C K¢ and ¢(K) > 2"¢(1), then

E(K)¢(%) < dist(I, 0K) = dist(I, K°) < dist(1, J).

Case 1: dist(Z,J) < 4(J)¢ (ﬁ)
Choose any K with ¢(K) > 2"¢(I), and I C K. Since [ is good, we have

\/

dist(1, K) > E(K)¢((—), and ¢(J) < 2"¢(I). Assume for contradiction that

U(K)
J C K¢ Then
E(K)gb(%) < dist(l,0K) < dist([, J) < E(J)gb(%)

Dividing both sides by /(1) and recalling that @ is decreasing, this implies that
((K) < £(J), a contradiction with ¢(K) > 2"¢(I) > ¢(J). Hence J ¢ K¢, and
since £(J) < £(K), this implies that J C K. Since for any K with ¢(K) > 2"¢(I)

can contains I U J, the minimality of K is ¢(K) < 2"¢([).
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—

Case 2: dist(/,J) > K(J)gb(fé—%).
Consider the minimal K D I with ¢(K) > 2"¢(I) and dist(/, J) < K(K)¢(%)
(Since ¢(t)/t — oo as t — 0, this bound hold for all large enough K.) Then
(since ¢(t)/t is decreasing) ¢(K) > ¢(J), and by initial observation, J ¢ K°.
(If J C K°, then £(K)$ (1) < dist(I,0K) < dist(I,.J) < €(K)(;{z5), which

is contradiction.) Hence J C K. By the minimality of K, there holds

SO ) < () 2005 < (1.,

and it implies that

1)Ly < (D) 5)) < 2dist(7,J)

Y

so the required bound is true in each case.

U

We denote that minimal such K by I V J, thus

IV J:= ﬂ K

KoIvJ
Separated cubes,sigma out We reorganize the sum o, with respect to the
new summation variable K = I V J, as well as the relative size of I and J with

respect to K:

aout:iiz Z

j=1 i=j K djst(I,J)>€(J)¢(@)

IVJ=K “ )
0(I)=2"4(K) (J)=2"7((K)
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Note that we can start the summation from 1 instead of 0, since the disjointness
of I and J implies that K = I V J must be strictly larger than either of I and
J. The goal is to identify the quantity in parentheses as a decaying factor times

a cancellative averaging operator with parameters (i, 7).

Lemma 6. For [ and J appearing in o,,;, we have

d 1
(s 7] % 1, Y0 () w(f&g(b(;(([?)) ) K=1vJ

Proof. Using the cancellation of Ay, standard estimates, and Lemma, and lemma

5

(hy, Thy) |_\// by (2) K (2, )b (y)dy |

- [[ st K(m )] )y
Skl // )t () el
=K, — t;”) <dm LY Wl e

<les, e (i) (e (i) ) Wi

]
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Lemma 7.

> Lyood(I) - (g, hy){hy, Thi)(hi, f)

dist(1,.)>((])é(55)
CIVJ=K
UI)=2"U(K)0(J)=2"7(K)

=Koz, (27 (27027 ) {g, AV f),

where A% is a cancellative averaging operator with parameters (i,j).

Proof. By the previous lemma, substituting ¢(I)/{(K) =

VI - , -
[(hr, Thi)| S 1K ez, %gﬁ (27) v (270 (27) ),

and the first factor is precisely the required size of the coefficients of AZI]( [

Summarizing, we have

Oout — “K“CZ¢ZZ¢ dw 2" ¢( ) 1)<g’SU>

J=11i=y

Containe subcubes, sigma in When I C J, then [ is contained in some

subcubes of J, which we denote by J;.

<hJ, Th[> :<1J1Chj, Th[> + <1JIhJ, Th]>
=(1y¢hy, Thr) 4 (hj) 5, (15, Thr)

=(Lyg(hy — () ), Thi) + (1, Thy),
where we notice that h; is constant on J; D I.

Lemma 8.

1/2 ~1
(5=} ). T S (WKl + W) (1) (j((?)(b (i7) ) ,
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where
" d
v) = [ wF,

and || K[|z, could be alternatively replaced by || T z2_, -

Proof

(Lsg(hs = s}, Thi)| <2 [ [Thoto)d
where ||, = ]2 |
Case ((I) > 27"¢(J). We have

Th@lde < [ | [ Klag)hi)dylds
J§ 3I\I

" /(3I)C | / (K(z,y) = k(z,y1)) hi(y)dy|dz

1
S|IK / /—d dz ||hr| o
Kllcz, [ [ vz I
1 (1)
K hrll, d
[ Kllez, /(3I)c dist(x,])d¢<dist(m,1)) Ihrlly d

<1 U\
SN MWt 4 1K e, [ g0 (52 1

o) rd
PN
= [Kllez, 112+ Kz, | w01

<Koz, + 1Klloz,) 11172

by Dini condition in the last step.

Alternatively, the part giving the factor || K|, could have been estimated by

/31\1 | /K(x,y)h[(y)dy\dx < BN IThally < V21T oy e
Case £(I) < 27"¢(J). Since I C J; is good, we have

(1)
t(J1)
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and hence
1 oI
Th dr < ||K hrll, d
[ imn@de < WKz, | g (G ) Il

1 1494 -
SIKlles, [ 0 (B2) et
D)) /(J) r

( )
LN oD/ g
= IKlez, [ w05 111

Now we can organize

= > Aphs(Lg(hy = (hpy INThe(h) f =D >
7

J ICJ i=1 IcJ
o(I=2"(J))

and the inner sum is recongnized as

(KNl ez + 1K llez,) T2 0(27) ) {9) AT,
or with ||T'[| 2_, ;> in place of || K||. , for a cancellative e averaging operator of
type (i,0).

On the other hand,

= > (g hylhyy T hi(hy) f

J ICJ

= > (D (@ hshyy IO Thi(hi) f

1 J2I

—Zg, Tlh[ h[>f
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Here [[;.; is the paraproduct, a non-cancellative shift composed of the non-

cancellative averaging operators
Arg = (T*V)hi{g, Thy = |T|7Y*(T*1)h; - (g)hIhs

of type (0,0).
Summarizing, we have

/ /!
Oin = O4p + Oin

= (I1Kllez, +11Klcz,) Z V(2 027) ) ST+ (]9

where W(t fo SS, and ||K||sy, could be replaced by [T ;... Note
that if we wanted to write [[;.; in terms of a shift with correct normalization,
we should divide and multiply it by ||T*1|| 5,0, thus getting a shift times the
factor |71 gyr0 < [Tl 2 + |1 K]lcz,- Near-by cubes, sigma in and sigma
near. We are left with the sums o_ of equal cubes I = J, as well as 0.,
of disjoint near-by cubes with dist(I,.J) < ¢(J)¢ (¢(1)/¢(J)). Since I is good,
this necessarily implies that ¢(1) > 27"¢(J). Then, for a given J, there are only

boundedly many related I in this sum.

Lemma 9.

[{h)Thil S Koz, + 01 1T lwsp -

Note that if we used the L?-boundedness of T instead of the C'Z, and WBP

condition (as is done in Theorem 5.2), we could also estimate simply

[(hys Thi)| S (hp)e(T) 22 (hr)e = (T) 12 12
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Proof. For disjoint cubes, we estimate directly

(hy, Th)| <)z, /J / ﬁdydmmwh»m

1
<)oz, [ | o dydal 7
J J3I\J |z — y|

S oz | J||T| P2 = (K) ez,

since |I| =~ |J|.

For J = I, let I; be its dyadic children. Then

[(hy, Thr)| <> [(hr) g (hr)r, (11, T1p)

i.j=1

1
S(K)ez, ) ul_l/f /1 ~drdy + ) |71, T S (K)ez, + (1))

o |z =y

by the same estimate as earlier for the first term, and the weak boundedness

property for the second. O]

With this lemma, the sum o_ is recognized as a cancellative dyadic shift of type

(0, 0) as such:

0= :Zlgood(]) ) <gvh1><hI7ThJ><hJ7f>
Ie9

= ((K)cz, + (T)war) (9, 5™ f),

where the factor in front could also be replaced by (T') 2, 2.

For I and J participating in 0., we conclude from Lemma 5 that K :=1V J
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satisfies /(K) < 2"¢(I), and hence we may organize

=YY Y

i—1 j=1 K 1.J: I\/J K
dist(1,J
oI

/—\\/

oJ

/—\

and the innermost sum is recognized as (K)cz, (g, A% f) for some cancellative

averaging operator of type (1, ).
Summarizing, we have

Onear + 0= = ((K)cz, + (T)wap) (9. S f) + (K) ¢z, Z Z 9,57 f),

J=1 1i=j
where S% and S¥ are cancellative dyadic shifts, and the factor ((K)cz, + (T') wsp)

could also be replaced by (T)r2_,r2.
Synthesis. We have checked that
> Lyooalg) () Thi(hy) f
oI)<Le(J)
= ((K)oz, +(K)cz,) (Y o(27) (27027 )9, 57 f)
1<5<i<oo
+ >

1<i<ooW(2-ip(2-1)~1)(g,510 f)

+ ((K)cz, + (Twsp) (9,5 f) + (g, Hf

where W = fo s)ds, [[+, is a paraproduct—a non-cancellative shift of (0, 0),

and all other S¥ is a cancellative dyadic shifts of type (7, 7).

By symmetry (just observing that the cubes of equal size contributed precisely

to the presence of the cancellative shifts of type (,7), and that the dual of a
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shift of type (7, 7) is a shift of type (7,14), it follows that

> Lgooalghhs{hsYThi(hy) f

o))

= ((K)cz, + (K)ez,) (Y o27) p(279p27) ") (g, S7f)

1<i<j<oo
+ 2

1<j<ooW(2-9¢(2-7)~1)(g,5% f)
+{g, 1 H
T1

so that altogether

> Lyooa(min{I, J})(gVhs(h YT hi(hs) f

oo

- (<K>CZO + <K>cz¢) (Z (27 max (5.3) ) dzp(Q max ZJ>¢(2—max(i,j>)—1)<97 S f)

by=1

+ Z U327 (9,5 f) + (9.5" 1))

+(<K>CZ0+<T>WBP) g,SOOf gqu gaHf>7

and this completes the proof of Theorem 5.2.
Two-weight theory for dyadic shifts

Before proceeding further, it is convenient to introduce a useful trick due to
E. Sawyer. Let o be an everywhere positive, finitely-valued function. Then
f € LP(w) if and only if ¢ = f\o € LP(cPw), and they have equal norms in the

respective spaces. Hence an inequality
1T f oy < N Iflloy VS € LP(w) (5.4)
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is equivalent to

1T (90 oy < N 60 oy = N0l oory V¢ € LP(0Pw). (5:5)

This is true for any o, and we now choose it in such a way that cfw = o,
ie, o =w MPl) = =P where p’ is the dual exponent. So finally (5.4) is
equivalent to

IT(P0) | oy < NNl oy Vo € LP(0).

This formulation has the advantage that the norm on the right and the operator

T(60)(@) = [ K(x.9)o0) - oly)dy

involve integration with respect to the same measure o. In particular, the Ay

theorem is equivalent to

IT(f o)l o) < erlwlas £l 220

for all f € L*(w), for all w € Ay and 0 = w™!. But once we know this, we can
also study this two-weight inequality on its own right, for two general measures

w and o, which need not be related by the pointwise relation o(z) = 1/w(x).

Theorem 5.4. Let 0 and w be two locally finite measures with

w(Q)o(Q
ol
Then a dyadic shift S of type (i, ) satisfies S(0) : L*(0) — L*(w) if and only
if *
S = sup |‘1QSETJ(S2))1‘/|2L2(CU)’ & o ||1Q5w((¢;1)612/)2HL2<a)
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are finite, and in this case

% 1/2
150 |22y S (14 KNS + &%) + (1+ £) [0, 013,

where kK = max{i, j}.

This result from my work with Pérez, Treil, and Volberg [5] was preceded by

an analogous qualitative version due to Nazarov, Treil, and Volberg [4].

The proof depends on decomposing functions in the spaces L?(w) — L*(o) in
terms of expansions similar to the Haar expansion in L*(R?). Let D be the
orthogonal projection of L?(o) onto its subspace of functions supported on I,
constant on the subcubes of I, and with vanishing integral with respect to do.
Then any two D7 are orthogonal to each other. Under the additional assumption
that the o measure of quadrants of R? is finite, we have the expansion

f=3 Dpf

Qe9
for all f € L*(0), and Pythagoras * theorem says that

1/2
1N 20y = (ZH%J‘"H;((») '

2
(These formulae needs a slight adjustment if the o measure of quadrants is finite;

Theorem 5.4 remains true without this extra assumption.) Let us also write

DY = ) DY

IcCK
(=274 (K)

For a fixed + € N, these are also orthogonal to each other, and the above
formulae generalize to

1/2

‘ ) 2
f— S o |fL2<g>(ZHDfoL2< >> '
Qe 2 ’
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The proof is in fact very similar in spirit to that of Theorem 5.2; it is another
T'1 argument, but now with respect to the measures o and w in place of the
Lebesgue measure. We hence expand

(9.8(0f))w=>_ (D%g,S(oDYf))w, f€ L), g€ L*(w),
Q,Re9

and estimate the matrix coefficients

(Dag, S(oDYf))w = Y _(D3g, A(0DRSf)). (5.6)

K

=33 ar (g, ha)uth, DG ).

K I,JcK
For (hr, D3 f)s # 0, there must hold I N Q # 0, thus I C Q or @ € I. But in
the latter case hy is constant on @ , while [ Dgf-o =0, so the pairing vanishes
even in this case. Thus the only nonzero contributions come from I C (), and

similarly from J C R. Since I, J C K, there holds

ICQCK or KCQ) and (JCC K or KCR).

Disjoint cubes. Suppose now that Q@ N R = (), and let K K be among those
cubes for which Ax K gives a nontrivial contribution above. Then it cannot
be that K C (@, since this would imply that Q "R D K NJ = J # (), and

similarly it cannot be that K C R. Thus (), R € K, and hence

QVQECK.
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Then
[(D%g, S(ED Nl < Y [(Dhg, Ak (D))l
KDQVR

D% L1

K5 &
_ sl [P
. QV R

2|

L'(o)

S

L'(0)

On the other hand, we have @ 2 I, R O J for some I,J C K with ¢(I) =
27(K) and £(J) = 2774(K). Hence 27%(K) < £(Q) and 2774(K) < {(R),
and thus

QVRCK CQIHR.

Now it is possible to estimate the total contribution of the part of the matrix
with QYR = 0. Let P := @V R R be a new auxiliary summation variable.
Then Q,R C P, and £(Q) = 2-%(P),/(R) = 27%(P) where a = 1,...,i
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b=1,...,7. Thus

> [D%g)S(aDyf),|

Q,Re
QNR=0

2

sziz S Bl 95/,

a=1 b=1 Pe@ QRe@;QvR:P
UQ)=2"(P)
U(R)=2"%¢(P)

ij .
< o Z D% 11 (0) Z HD fHLl

a,b=1peg | ‘ RCP QCP

((R)=2""((P) HQ)=2""4(P)
ij 1
=X | X wi >, Do/
a,b=1pec2 RCP QCP
0(R)=2""4(P) L1(o) 1H(Q)=27U(P) L'(w)
i,
1 .
B j loX}
=3 ], 25
a,b=1pe | ‘ e g
_ i o(P)Y2w(P)"/? ’]D)W H]Dcr,if
~ P g 2 P 2
e | P| L2(w) L2(0)
y 1/2 1/2
1/2 wi |I? oi ¢l
= Z [w,G]A2 Z ‘DP 9 L2(w) Z HDP / L2(o)
a,b=1 pPey pPey

.. 1/2
< ijlw, o1 gl oo 11l 2o

Deeply contained cubes. Consider now the part of sum with () C R and
Q) < 27%(R). (The part with R C Qandl(R) < 2774(Q) would be handled

in a symmetrical manner.)

Lemma 10. For all Q C R with £(Q) < 27%/(R), we have

(DRg, S(6DLf))w = (DRg) oo (S (Wlgn ), DG f)o,
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where further

D S*(wlgn) = DS (wlp) for any P D QW

Recall that DY = (Dj)* = (DE)* is an orthogonal projection on L*(0), so it

can be moved to either or both sides of (,),.

Proof. Recall formula (5.6). If (h;, DY, f), is nonzero, then I C @), and hence
JCK=1" Q
for all J participating in the same Ag as I. Thus D%g is constant in Q" hence

<D%97AK(G-D%JC)> <1Q( )]D)”gvAK((ﬂD f)>
= (D59)%0 (16 Ax (D))

= (D%9)on (Ak (Wlge), DG f).
Moreover, for any P D Q) D K,

< %A}(WlQ(i)), f> 1@(1), AK(O']DQf)>

/AKO']D)

= (1p, Ax (0D f))w = (DG Ak (wlp), o

Summing these equalities over all relevant K, and using S = ), Ag, giving

the claim. ]
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By the lemma, we can then manipulate

Y. (Dkg, S(oDS))e

Q,R:QCR
0(Q)<27U(R)

I
=[] =1 =[]

> (D)oo | (S (wlgn), DG f)s

R2QU

<g>2}2(i) <S* (W1Q(i))7 ng>a

(9)7(S*(@lr), > Djf)e

QCR
(Q)=2"1(R)

(9)7(S* (W1r), D fo.

I
=[]

w

where (g)%, := w(R) ™! [, g -w is the average of g on R with respect to the w

measure.

By using the properties of the pairwise orthogonal projections D%’i on L*(0),

the above series may be estimated as follows:

LY (D%, S(eDRf))]

Q,R:QCR

< Z\ .
(z v, ) (5]

where the last factor is equal to || f[| 2,

O'ZS* wlR H

’DU’LJ(

L2(o )’

The first factor on the right is handled by the dyadic Carleson embedding the-

orem: It follows from the second equality of Lemma

We firstly prove a lemma 10, namely Dg)S* (wlgm) = ]D)ZQS*(wlp) for all P D
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QY. that D%’iS*(wlR) = D%S*(wlp) for all P C R. Hence, we have
O,0 Crk 2 0,0 * 2

S |psiswin)|, =3 [pFaes @i

RCP @ kop (@)

< 1pS*(Wlp)lz2) S S20(P)

by the (dual) testing estimate for the dyadic shifts. By the Carleson embedding

theorem, it then follows that

1/2
. 2
(Z ()l D%S*(wlmuw) S & llgll o)
R

and the estimation of the deeply contained cubes is finished. Contained cubes

of comparable size. It remains to estimate

> (D4g, S(oDHF))w;

Q.R:QCR
((Q)>27U(R)
the sum over R C @ with ¢(R) > 277/(Q) would be handled in a symmetric

manner. The sum of interest may be written as

Y> ). (D3g,S(oD ZZ 79, 50D f)),

a=0 R QCR a=0 R
t(Q)=2""U(R)

and
2d

(D%g, S(oDG f)w = > (D59 R, (S*(wlg,),DF f)o

k=1
where the Rj, are the 27 dyadic children of R, and (D%g)g, is the constant

valued of D%¢g on Rj. Now
<S*(W1Rk)7 ]D)Uéif% = <]‘RkS*(w]‘Rk)7 ]D)iz’if% + <S*(W1Rk)7 IREDgif%v
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where

(18" (@1a), DY fol < Suw(R)? D5

L3(~)
and, observing that only those A} where K intersects both Ry and Rj con-

tribute to the second part,

[(S*(wlk,), LasDE ol =1 ) (AR (wlr,), 1 DF o]
K2Ry,
1
S ) [pg]
P v
1
— w(R)o 1/2HDJZ
S TeRe (R 2 5],
W(Rl/QU(R)l/Q 1/2 ||mo-i
D )
- |R| “ H L2 Li(0)
< [w,o]a,w(R 1/2H]D)‘” :
o, ola (RO D]
It follows that
(8" @1a). D5 1ol £ (6. + . oa (B D57,

and hence

O"L

(@W1r SOF )l S (8. + [w,0]4,) DR 2o

o

Finally,
~ S (D3, S(0BF ).
a=0 R
. 1/2 ) 1/2
w 2 o1
a=0 R R

< (1+0)(6. + [w, 0]4) 1191l 22y 11 2200
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The symmetric case with R C Q with £(R) > 2774(Q) similarly yields the
factor (1+ 7)(6 + |[w, 0]4,). This completes the proof of Theorem (5.4). Final
decompositions: verification of the testing conditions We now turn to

the estimation of the testing constant

. 1S (a10) 12w
ey o(Q)'V?

Bounding &, is analogous by exchanging the roles of w and 0. Several split-

tings. First observe that

1@3(0‘1@) = 1@ Z AK(O'lQ) + 1Q Z AK(O'lQ).
K:KNQ#D K2Q

The second part is immediate to estimate even pointwise by

1Ak (olg)| < 192

|K \ Z \K = \Q )
and hence its L?(w) norm is bounded by

Q) _wl@Y0(Q
Q Q

So it remains to concentrate on K DO (), and we perform several consecutive

< [w7 0]A20<Q)1/2'

|

splittings of this collection of cubes. First, we separate scales by introducing
the splitting according to the x4 1 possible values of log, /(K)  mod (k+1).

We denote a generic choice of such a collection by
H =5 ={K2DQ :logyl(K)=r  mod (k+1)},

where k is arbitrary but fixed. (We will drop the subscript k, since its value

plays no role in the subsequent argument.) Next, we freeze the A2 characteristic
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by setting

(K)o(K)

Ho={Ken 20 <? K| <2}, a€Z, a<[loglw, >4l

where [] means rounding up to the next integer.

In the next step, we choose the principal cubes P € &2 O 7. This construc-
tion was first introduced by B. Muckenhoupt and R. Wheeden [8], and it has
been influential ever since. Let Z7§ consist of all maximal cubes in J#¢, and

inductively £27, | consist of maximal P" € 7 such that

o(P) o(P)
T

P'Cc Peuy,

Finally, let 22 : U2, Z2). For each K € ¢, let [[*(K) denote the minimal
P € &2 such that K C P. Then we set

H(P)={Kex":|[(K)=P}, Pecp"
Note that o(K)/|K| < 20(P)/|P| for all K € s#%(P), , which allows us to

freeze the o—to-Lebesgue measure ratio by the final subcollections

o(K) 1P|
K| o(P)

A= {K € #(P):27" < 1 <2t peN.

We have

{Ke2:KCQ}=Ui_, G == UagﬂogQ[w,a]Az]%a,
H = UPEQZ‘I%G(P)’ %G(P) = Ugio%a(P)v
where all unions are disjoint. Note that we drop the reference to the separation-

ofscales parameter k, since this plays no role in the forthcoming arguments.
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Recalling the notation for subshifts So = ) ;- 5 Ak, this splitting of collections

of cubes leads to the splitting of the function

Z Ag(olg) = Z Z Z ZS%M (olg).

KCQ k=0 a<[log,[w,0]a,] PEP* b=0

On the level of the function, we split one more time to write

S%a( ) O'lQ Z]_Ea Pn S%a (O'lQ),
n=0

EX(P,n):={x e R":n27%0)p < 1S epy(0lg(x))] < (0 + 127%o)p}.
This final splitting, from [7], is not strictly ‘ necessary ’ in that it was not part
of the original argument in [6], nor its predecessor in [10], which made instead
more careful use of the cubes where S 0 P)(O']_Q) stays constant; however, it

now seems that this splitting provides another simplification of the argument.

Now all relevant cancellation is inside the functions Sze(c1q), so that we can

simply estimate by the triangle inequality:

1> Ak(olg)|
Y Y Yy

k=0 a<[log,[w,0]a, ] PEP* b=0

Mg

1 + n < >P1{|S%a(p)(O’lQ)|>’/l2_b<0'>p}7

3
|
o

and

K 0 0

> Ak(olg) <> Y D> 2y (1+n)

Obviously, we will need good estimates to be able to sum up these infinite series.

D (D) PLS o (1))
Pepa

L2 (w)

Write the last norm as
1/2

2
/ [ Z <O->P1{S”ba(P)(alQ)>n2b<0>p}(x)] dw(z) ;

Pe&
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observe that

{ISs2p)(01Q)| > n2™"(o)p} C P,
and look at the integrand at a fixed point = € R?. At this point we sum over
a subset of those values of (o) p where the principal cube P > x. Let Fy be the
smallest cube such that |Sy.(P)| > n27"(c)p, let P, be the next smallest, and
so on. Then (o)p < 27 Yo)p | < -+ < 27™(g)p, by the construction of the
principal cubes, and hence

2 T s 2
Z<U>P1{s,#ba(P)(a1Q)>n2b<a>p}(33)] = Z<U>Pm]

Pe&

Hence

D (VP18 ey (010)=n2 o)

Pe» L2(w)

1/2
</ <4 Z 1{|5%’a(13) (olg)|>n27(c >P}> w)

Pe>

1/2
=2 (Z ()3 {|S ) (010)] > n2b<a>p}>> ,

pPe¥

and it remains to obtain good estimates for the measure of the level sets

{1S0(p)(01Q)| > n27"{o) p}.

Weak-type and John—Nirenberg-style estimates. We still need to esti-

mate the sets above. Recall that .Sz (p) is a subshift of S, which in particular
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has its scales separated so that logy /(K) =+  mod (k+1) for all K for which
Aj participating in Sz (p) is nonzero and k € {0,1,...,x = max{i, j}} is
fixed, S being of type (i,j). The following estimate deals with such subshifts,

which we simply denote by S.

Proposition 2. Let S be a dyadic shift of type (i,j) with scales separated. Then
C
871> M < S Ifl, VA0,

where C' depends only on the dimension.

Proof. The proof uses the classical Calderon—Zygmund decomposition:

f=g+h, b:=> b= 1p(f = {f)r),

LeA Le#

where L € A are the maximal dyadic cubes with (|f|)z > A: hence (|f])r <

29\, As usual,
g=F—=b=Tuzf+ D> (L
Le%#
) 2
satisfies ||gll. < 29\ and ||g||; < || f]l}, hence [lgll; < llgll llglly < 2N £1l;,

and thus
4

1 ) 1
{1591 > 52 < 5 ISl < 4-2S 111,

It remains to estimate {|Sb] > $A}. First observe that

So=5"5 Axb =" (Z Agbr + ZAKbL> ,

Ke9 Le# Le# \KCL KDL
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since Agbr, # 0 only if K N L # (). Now

{158] > A}\ <HIYo > Awbel > 0} + {1 Y > Axbil > AH

Le#B KCL LeB KDL

<Z|L‘+ ZZAKI)L

Le# LeB KDL

‘f”l Z Z ||AKbLH1a

Le% KDL

where we used the elementary properties of the Calderon—Zygmund decompo-

sition to estimate the first term.

For the remaining double sum, we still need some observations. Recall that

Agbp= Y apxhi{hy,br).
1,JCK

oI=2"(K)
0(J)=2"10(K)

Now, if ¢(K) > 25¢(L) > 2/¢(L), then £(J > ¢(L)), and hence h; is constant
on L. But the integral of by, vanishes, hence (hy,br) = 0 for all relevant J, and

thus Axb;, = 0 whenever ((K) > 2%((L).

Thus, in the inner sum, the only possible nonzero terms are Axby, for K = L™
for m = 1,..., k. By the separation of scales, at most one of these terms is
nonzero, and we write L for the corresponding unique K. So in fact

2 2 2 2 4
S0 MAkbelly =5 3 Agbally < 5 D7 el < 520161 = 5 161l

Le# KDL Le# Le#

by using the normalized boundedness of the averaging operator A; on LY(RY),
and an elementary estimate for the bad part of the Calderon—Zygmund decom-
position.

Altogether, we obtain the claim with C' =4 - 2¢ + 5. O]
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For the special subshift .S (p), we can improve the weak-type (1,1) estimate

to an exponential decay:

Proposition 3. Let Sz(p) be the subshift of S as constructed earlier. Then

the following estimate holds when nu is either the Lebesgue measure or w:

v ({|Sxap)(olg)| > C27o)p-t}) SC27'W(P), t>0,

where C is a constant.

Proof. Let X := C27%(o)p, where C is a large constant, and n € Z,. Let x € R?

be a point where

1S 0y (010) ()] > mA. (5.7)

Then for all small enough L € 24*(P) with L > z, there holds

DY

Kex"(P)K2L

AK(UlQ)(SU)l > nA.

Since D ke o(pyor Ar(0lg) is constant on L (thanks to separation of scales),

and

it follows that

o(L) _ ps0(P)

|AL(o1o)|l,, S Tt < 2122 (5.8)
N L] |P|
2
| Z Ag(olg)| > (n — §)>\ on L. (5.9)
K et (P)
KDL

Let £ C J*(P) be the collection of maximal cubes with the above prop-

erty. Thus all L € £ are disjoint, and all z with (5.7) belong to some L. By
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maximality of L, the minimal L* € 5£(S) with L* D L satisfies

2
g Ag(olg)| > (n— g))\ on L*.
KeAp(P)
KoL*

By an estimate similar to (5.8), with L* in place of L, it follows that
1
Z Ag(olg)| > (n—<-)A  on L.

3
Ke 5 (P)
KDL

Thus, if x satisfies (5.7) and x € L € .Z, then necessarily

1
|SK€%a( )KCL(JlQ Z AK O'lQ )| > g)\
Kes* (P

KCL
[]
Using the weak-type L! estimate to the shift Skexrap)rcr of type (i,7) with

scales separated, noting that Ax(clg) = Ax(olr) for K C L | it follows that

X Aol (@) > 20| < SolD)

A
Ke%(‘
KCL
C a(SﬂQ) 1
< —ol=tb Ll < =Z|L
< 32 = 5L

provided that the constant in the definition of A was chosen large enough. Re-

calling (5.9), there holds

| Z AK 01Q|>| Z AK 01Q|—| Z AK 01@)|
Kest® Ket,(P) Ke A (P)
KoL KCL

~ ~ 2
> (n—g))\—g)\: (n—1)X on L C L with |L| > §|L\
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Thus

{150 Py o10)] > nAM <D LN {]Ss0(p) (010))]

Le?
1
< > WISwpm (01l > 5}
Le?
1 1 3 -
< Z§|L\§ Z§'§\L|
Le¥ Le®

1
<3 D L[Sy (olo)] > (n— 1A}
Le?

< SHIS (1) > (= DAY

By induction it follows that

{[Ss0Pyo10)| > nA < 27{|Soge Py (010)| > O}

<27y M| <27P|,
Me#

where .# is the collection of maximal cubes in .7,*(5).

Recalling that we defined A\ := C27%(c)p in the beginning of the proof, the
previous display gives precisely the claim of the Proposition in the case that
v is the Lebesgue measure. We still need to consider the case that v = w.
To this end, selected intermediate steps of the above computation, as well as
the definition of J*(P), will be exploited. Recall that K € J#“ means that
2071 < WYk (o) g < 2% while K € 54%(P) means that in addition 270 <

(o) i /{o)p < 2'7P. Put together, this says that

K
2a+b_2<0>p < % < 2a+b<0'>p VK € %)G(P)
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Hence, using the collections .2, . # C 5°(P) as above,

w{|Sxe(Pyo1)] > 1A} <D w(L) < Y 2o p|L|
Le¥? Le¥

< 2a) pl{|S e (P01 > (n — 1)AY]

<2y 2 Y M|
Me#

<427 Y w(M) <4-27"w(S).
Me#

Conclusion of the estimation of the testing conditions. Recall that

Z AK(O'lQ)

reQ 12(w)

SiZiQ‘bi(l—i—n)

k=0 a b=0 n=0

Z <0_>P1{|Sﬁfb“(P)|>n2_b<0>P}

Pepa L2(w)

and

Z <0_>P1{|S%ba(P)|>n2_b<U>P}
PePpa

L2(w)

1/2
<2 ( > (oY pw({| S| > n2b<‘7>P}))

PecPa

1/2
<C ( > <a>?a2”/cw(P)>

PePa

1/2
— o2 ( 3 —U(]IDJ)DT?(P %(P))

Pepa
1/2
sC2 (2@ > a(P)> ,

PePa

recalling the freezing of the Ay characteristic between 24~! and 2° for cubes in
T D P
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For the summation over the principal cubes, we observe that

> a(P) = S (@)rlPl = [ 3 (o)rlp(@ds

Pez Pe> Q pepa
At any given z, if Py 2 P, € --- C () are the principal cubes containing it, we

have

> {o)plp(z) =) (o)p, <Y 27"™(0)p = 2(0)p, < 2M(01g)(x),

PePa

where M is the dyadic maximal operator. Hence

S o(P) <2 /Q M(olo)dz < 2[0]a_o(Q),

PePa

where we use the following notion of the A, characteristic:

/MUIQ

this was implicit already in the work of Fujii ([11]) and it was taken as an

[o]a, = sup

explicit definition by the author and C. Pérez ([9]). Substituting back, we have

ke B

SHH R AT

=0 a b=0 n=0

E , <U>P1{‘ijba(P)(alQ)|>n2_b<U>P

PePa

K 00 00 1/2
<< Y D 2> (1+4n)-C27 <2a > a(P))

k=0 a b=0 n=0 Pez

<< Z > i 9b iu +n)-C27" (2%0]4)"?

k=0 a b=0 n=0

L2(w)

K

=C- [y oo <Z2 )(Z 1+n)-2m>
]AJ n=0

k=0 \a<[log,w,o

<C- [l (1+k) wol{,
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and thus the testing constant . is estimated by
S <C-(1+k) - [wal{? 0]

By symmetry, exchanging the roles of w and o, we also have the analogous

result for .#*, and so we have completed the proof of the following

Theorem 5.5. Let 0, w € A, be functions which satisfy the joint A condition

w(Qo(Q))

[w, 0]4, == sup ———= < 0.

Qo QP
Then the testing constant . and .¥* associated with a dyadic shift S of type

(1, 7) satisfy the following bounds, where x := max{i, j}:

&<C-(1+5)- w0}

& <C-(1+r) [wol{’ o]}

CONCLUSIONS

In this section we simply collect the fruits of the hard work done above. A
combination of Theorem 5.4 and 5.5 gives the following two-weight inequality;,
whose qualitative version was pointed out by Lacey, Petermichl and Reguer
[10]. In the precise form as stated, this result and its consequences below were
obtained by Pérez and Hytonen [9], although originally formulated only in the

case that o~ = w is dual weight.

Theorem 5.6. Let 0,w € A be functions which satisfy the joint As condition

L w(@o(Q)
roha, = s o

< 0.
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Then a dyadic shift S of type (i,j) satisfies S(o) : L*(0) — L*(w), and more

precisely

1S 20y 120y (14 8)P e oL (L2 + 0142,

where Kk = max{i, j }.

The quantitative bound as stated, including the polynomial dependence on &,
allows to sum up these estimates in the Dyadic Representation Theorem to

deduce:

Theorem 5.7. Let 0, w € A be functions which satisfy the joint As condition.
Then any L? bounded Calderén—Zygmund operator 7" whose kernel K has

Holder type modulus of continuity 1 (t) = t%, a € (0, 1), satisfies

1/2 1/2 1/2
1T ooy S TN e+ 1K Nlo,) lo, o7 (132 + [0132)

Recalling the dual weight trick and specializing to the one-weight situation with

o = w~ !, this in turn gives:

Theorem 5.8. Let w € Ay. Then any L? bounded Calderén—Zygmund op-
erator T whose kernel K has Holder type modulus of continuity ¥(t) = t¢,

a € (0,1), satisfies

1/2 1/2 1/2
170 S (T gy + 1K Nle,) [, 0] (w12 + 0147

TN ponre + 1Kl oz,) [, 0] 4,

The second displayed line is the origin Ay theorem [6], , and it follows from the

first line by [w]a, < [w]a, and w4, < [w 4, = [w]a

2 2°
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