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要

廣播問題是在給定的圖中找尋廣播起始點，使得圖上最長通訊時間最小化。在本

篇論文中，我們考慮加權樹上基於郵政模型的廣播問題。對於單中心的廣播問題，

Su, Lin, and Lee提出了線性時間複雜度的演算法。本篇論文更進一步提出線性時

間複雜度的演算法，將其結果延伸到廣播雙中心問題。

我們觀察到廣播過程中會存在一條未使用到的邊，並證明最佳解中未使用到的

邊會落在一條特定的路徑上。接著利用相鄰子樹的重疊性質減少重複計算，計算

該路徑上每個邊兩側子樹的廣播時間，以找出廣播雙中心的位置。

關 廣播問題、雙中心、郵政模型、合成函數。
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Abatract

We consider the broadcasting 2-center problem in weighted trees under the postal model in

this thesis. We observe that there is always an edge not used during the broadcast process.

Further, we prove that the unused edge in the optimal solution will lie on a specific path

structure. By computing all the broadcast time for subtrees in the both side of each edge

on the path, we propose an O(n) time algorithm for solving the broadcasting 2-center

problem.

Keywords: broadcasting problem、2-center、postal model、function composition.
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Chapter 1

Introduction

We consider the broadcasting problem under the postal model, which distinguishes the

broadcast process into two parts, connection and transmission. In the postal model, the

time for connection is a constant α > 0, and the time for transmission varies according to

the edge weight. A vertex starts to broadcast messages to its neighbors if it is a broadcast

center or it receives a message from its neighbors. To broadcast a message to a neighbor,

a vertex should take α time to set up the connection first and then take the transmission

time to broadcast according to the edge weight. At any time, a vertex can only set up a

connection to one of its neighbor. However, it can transmit messages to multiple neighbors

simultaneously whenever the connections to those neighbors are set up (refer to Figure 1.1

for an illustrative example).
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α + 3

c
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3
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Figure 1.1: Two transmission orders: (a) (a, b, c) and (b) (c, b, a) under the postal model.

Some notations are introduced below. The neighborhood NT (v) of a vertex v is the

set of all vertices adjacent to v in T . Let deg(v) denote the number of neighborhood of

v. For each edge (u, v) ∈ E(T ), let w(u, v) denote the weight of (u, v). The removal of

1
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edge (u, v) will result in two subtrees. We use the notations Tu,v and Tv,u to denote the

subtrees containing u and v, respectively. Clearly, we have Tu,v = T − Tv,u.

The broadcast time of u, denoted as b(u, T ), is the minimum time required to broadcast

a message from u to all vertices in T . The 1-center broadcast time of T , denoted as b1(T ),

is the minimum time required to broadcast a message from any vertex x ∈ V (T ) to all

the others in T , i.e., b1(T ) = min{b(x, T )|x ∈ V (T )}. The broadcast time of u and v,

denoted as b(u, v, T ), is the minimum time required to broadcast a message from u and v

to all vertices in T simultaneously. The 2-center broadcast time of T , denoted as b2(T ), is

the minimum time required to broadcast a message from any two vertices x, y ∈ V (T ) to

all the others in T , i.e., b2(T ) = min{b(x, y, T )|x, y ∈ V (T )}.

Given a weighted tree T = (V,E) with n = |V | in which the weight w(u, v) of

each edge (u, v) represents the transmission time between them, the broadcasting 2-center

problem under the postal model with a constant connection time α > 0 is to determine

the minimum time b2(T ) = min{b(x, y, T )|x, y ∈ V (T )} needed to broadcast from 2

broadcast centers to all vertices in the tree.

1.1 Previous Work

The problem for finding the broadcast time of an arbitrary vertex in general graph is proved

to be NP complete [1]. Since it has been proved to be NP-complete for genreal graphs,

many attempts have been made to design approximation algorithms [2, 3, 4, 5], consider

the broadcasting problem in special classes of graphs [6, 7, 8, 9, 10], and provide some

heuristic methods [11, 12, 13, 14, 15].

Specifically, many researchers considered the broadcasting problem in trees under sev-

eral different models. For the telephone model, Slater et al. [1] proposed an O(n) time

algorithm for computing the broadcast time of a given unweighted tree. Koh et al. [16]

extended their results to weighted trees by providing anO(nlogn) time algorithm. On the

other hand, for the k-broadcasting model, Harutyunyan et al. [17] gave an O(n) time al-

gorithm finding the k-broadcast time of a given unweighted tree. As for the postal model,

Tsou et al. [18] provided an O(n)-time algorithm for solving the broadcast median prob-

2
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lem in weighted trees. Su et al. [19] proposed an O(n)-time algorithm for computing the

broadcast time of a given weighted tree.

In this thesis, we extend Su et al. [19]’s results for the broadcasting 1-center prob-

lem to the broadcasting 2-center problem by providing a O(n) time algorithm. We recall

the following lemmas (due to Su et al. [19]), which provides some useful properties for

detemining b(v, T ) given that v ∈ V (T ).

Lemma 1.1. (Lemma 1 in [19]) Suppose that u1, u2, . . . , uk are neighbors of a vertex v in

a tree T such that w(v, ui) + b(ui, Tui,v) ≥ w(v, ui+1) + b(ui, Tui+1,v) for 1 ≤ i ≤ k − 1.

Then, u1, u2, . . . , uk is an optimal sequence of calls for v to broadcast messages to its

neighbors. Consequently, we have b(v, T ) = max{w(v, ui) + b(ui, Tui,v) + iα | 1 ≤ i ≤ k}.

Lemma 1.2. (Lemma 3 in [19]) For each edge (u, v) ∈ E(T ), if b(u, Tu,v) ≤ b(v, Tv,u),

then we have b(v, T ) ≤ b(u, T ) and b(u, T ) = α + w(u, v) + b(v, Tv,u).

Lemma 1.3. [19] Suppose that u1, u2, . . . , uk are neighbors of a vertex v in a tree T , and

the values b(u1, Tu1,v), b(u2, Tu2,v), . . . , b(uk, Tuk,v) are given. Then, the value b(v, T ) =

max{w(v, ui) + b(ui, Tui,v) + iα | 1 ≤ i ≤ k} can be determined in O(k) time without

sorting.

Note that Lemma 1.3 can be obtained directly from the proof of Theorem 10 in [19].

1.2 Organization

The rest of this thesis is organized as follows. Chapter 2 gives a brief introduction of

essential edge and candidate path, and defines the termsP-broadcast time andP-broadcast

function. In Chapter 3, we propose a linear time algorithm and show its correctness and

linear time complexity. In Chapter 4, we analysis the properties of P-broadcast function

in detail and use them to prove the correctness of Lemmas 3.11, 3.12, and 3.13. Finally,

we give the concluding remarks in Chapter 5.

3
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Chapter 2

Candidate Paths

In this chapter, we intoduce the main idea howwe solve the broadcasting 2-center problem

by the observation of the candidate path. In Section 2.1, we define the concept of candidate

path and show the relation between broadcasting 2-center problem and candidate path.

Next, some definitions and notations are introduced in Section 2.2 in order to describe our

linear time algorithm precisely.

The main difference in the broadcasting 2-center problem compared to the broadcast-

ing 1-center problem is that we can choose 2 starting vertices in the tree to broadcast

simultaneously, and each vertex in the tree can receive message from either one of these 2

starting vertices. Since no matter how we pick the 2 centers, there must be n− 2 vertices

not been broadcast in the beginning, and each time if a vertex receive a message, an edge

in the tree is passed through. Therefore, an edge in the tree is not used at all during the

broadcast process.

Given an optimal 2 centers position and broadcast scheme, there is an edge not used at

all, which we call essential edge. Formally, an edge (x∗, y∗) is said to be an essential edge

if b2(T ) = max{b1(Tx∗,y∗), b1(Ty∗,x∗)}. Naively, the value b1(Tu,v) and b1(Tv,u) can be

determined inO(n) time for an edge (u, v) ∈ E(T ) using the algorithm for broadcasting 1-

center problem proposed by Su et al.[19]. It follows that the broadcasting 2-center problem

can be solved in O(n2) time by testing essential edge from all n− 1 edges in the tree T .

This thesis improves the above naive algorithm by observing that there is an optimal

solution, in which the essential edge lies on the specefic path structure, which we call

4
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candidate path P (for essential edge).

2.1 Essential Edges and Candidate Paths

In this section, we give the formal definition of the candidate path P , and prove that the

candidate path P contains an essential edge in Theorem 1. Before that, we first introduce

some properties of the broadcast center.

Lemma 2.1. A vertex k ∈ V (T ) is a broadcast center if b(k, Tk,u) ≥ b(u, Tu,k) for each

vertex u ∈ NT (k).

Proof. We prove the statement by showing that b(k, T ) ≤ b(v, T ) for each vertex v ∈

V (T ) using induction on d(k, v), where d(k, v) is the number of edges on the path from

k to v in T . First, we consider the case when d(k, v) = 1. Since (k, v) ∈ E(T ) and

b(k, Tk,v) ≥ b(v, Tv,k), we have b(k, T ) ≤ b(v, T ) by Lemma 1.2.

Suppose that the statement holds when d(k, v) = n. We consider the case when

d(k, v) = n + 1 below. Let k′ and v′ be the neighbor of k and v on the path from

k to v. Since Tv,v′ ⊆ Tk′,k and Tk,k′ ⊆ Tv′,v, we have b(v, Tv,v′) ≤ b(k′, Tk′,k) and

b(k, Tk,k′) ≤ b(v′, Tv′,v) respectively. Further, the inequality b(k′, Tk′,k) ≤ b(k, Tk,k′)

holds as k′ ∈ NT (k). Then, we have b(v, Tv,v′) ≤ b(k′, Tk′,k) ≤ b(k, Tk,k′) ≤ b(v′, Tv′,v)

and so by Lemma 1.2 we have b(v′, T ) ≤ b(v, T ). Therefore, by the induction hypothesis,

the statement holds as b(k, T ) ≤ b(v′, T ) ≤ b(v, T ).

Lemma 2.1 gives a sufficient condition for the broadcast center. A vertex k is called

a prime broadcast center if it satisfies the condition of Lemma 2.1. The concept of the

prime broadcast center is firstly proposed by Tsou et al. [20]. Notice that we can always

find a prime broadcast center k in a given weighted tree T such that b(k, Tk,u) ≥ b(u, Tu,k)

for each vertex u ∈ NT (k) by comparing between every two adjecent vertices. Therefore,

every weighted tree T contains at least one prime broadcast center k.

5
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Let k be a prime broadcast center of T . Further, suppose that T is a ordered tree rooted

by k, and the children u1, u2, . . . , uk of an arbitrary vertex v in T are ordered such that

w(v, ui) + b(ui, Tui,v) ≥ w(v, ui+1) + b(ui+1, Tui+1,v) for 1 ≤ i ≤ k − 1. A candidate

edge set for an essential edge, called candidate path P , is defined below. Let

P = (xs, . . . , x2, x1, k, y1, y2 . . . , yt),

where x1 and y1 are the first and the second child of k, xi is the first child of xi−1 for

2 ≤ i ≤ s, and yj is the first child of yj−1 for 2 ≤ j ≤ t. For technical purposes, we

assume that x1 = y−1, x0 = k = y0, and x−1 = y1. Note that the candidate path P

partition the original tree T into some subtrees. Let Tv be the subtree partioned by the

candidate path P that contains the vertex v. Furthermore, for any subpath (z1, z2, ..., zk)

of P , we define T (z1, zk) = T (zk, z1) = Tz1 ∪ Tz2 ∪ ... ∪ Tzk ∪ (z1, z2, ..., zk) to be the

subtree containing Tz1 , Tz2 , ..., Tzk (refer to Figure 2.1).

kx
1

...x
s−1x

s
y
1

... y
t−1 y

t

TκTx1
Txs−1 Ty1

Tyt−1

T (x1, y1)

Figure 2.1: A general view of a candidate path.

Intuively, the edge with larger weight is likely to be an essential edge, on the other

hand, the position of the essential edge should be close to the broadcast center k. Actually,

2 properties should be considered at the same time, and the candidate path P in some way

makes a balance between them. Refer to Figure 2.2. Two examples are given assume that

we have α = 1. One can verify that the candidate path P are those edges with thick line,

besides, the edge (b1, b2) is an essential edge in (a), and the edge (a1, a2) is an essential

edge in (b). In both cases, there is an essential edge lieing on the candidate path. Before

proving this property of the candidate path, we first show the following lemma.

6
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k

a1 b1 c1 d1

a2 b2 c2 d2

30
1 1

1

30 50 1 1

(a)

k

a1 b1 c1 d1

a2 b2 c2 d2

1
30 1

1

60 30 1 1

(b)

Figure 2.2: Two candidate paths containing essential edges: (a) (b1, b2) and (b) (a1, a2).

Lemma 2.2. For an edge (u, v) ∈ E(T ), if k is a prime broadcast center of T lieing in

Tu,v and k′ is a prime broadcast center of Tu,v. Then, the vertex k lies on the path from u

to k′.

Proof. If k = u, then the statement holds immediately. Otherwise, let T ′ = Tu,v and

suppose that p is the neighbor of k on the path from k to u in T ′. We prove the statement

by showing that k′ ∈ V (T ′
k,p). Since T ′ is a subtree of T , we have b(p, T ′

p,k) ≤ b(p, Tp,k).

We first consider the case when b(p, T ′
p,k) = b(p, Tp,k). Notice that in this case, we

have b(c, T ′
c,k) = b(c, Tc,k) for each vertex c inNT ′(k), and so b(k, T ′

k,c) = b(k, Tk,c) holds

for each vertex c in NT ′(k) by Lemma 1.1. Thus, we have b(k, T ′
k,c) ≥ b(c, T ′

c,k) for each

vertex c in NT ′(k) by the fact that b(k, Tk,c) ≥ b(c, Tc,k) for each vertex c in NT (k). It

follows that k is a prime broadcast center of T ′, i.e., k′ = k. Then, the statement holds as

k ∈ V (T ′
k,p).

Next, we consider the case when b(p, T ′
p,k) < b(p, Tp,k). Assume to the contrary that

k′ ∈ V (T ′
p,k) and q is the neighbor of k′ on the path from k′ to k in T ′. One can see that

we have

b(k′, T ′
k′,q) ≤ b(p, T ′

p,k) (T ′
k′,q ⊆ T ′

p,k)

< b(p, Tp,k)

≤ b(k, Tk,p) (by Lemma 2.1)

= b(k, T ′
k,p) (Tk,p = T ′

k,p)

≤ b(q, T ′
q,k′), (T ′

k,p ⊆ T ′
q,k′)

7
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contradicting to the fact that k′ is a prime broadcast center of T ′. Hence, k′ ∈ V (T ′
k,p).

Next, we prove that the candidate path P indeed contains an essential edge. Be-

sides, we further prove that the exact position of the candidate path P can be determined

in O(n) time. Recall that an edge (x∗, y∗) is said to be an essential edge if b2(T ) =

max{b1(Tx∗,y∗), b1(Ty∗,x∗)}. In the following proof, we use the fact that if b(Tx,y) ≤

b(Tu,v) and b(Ty,x) ≤ b(Tu,v), then (u, v) is an essential edge implies (x, y) is also an

essential edge.

Theorem 1. The candidate path P of a tree T contains an essential edge (x∗, y∗).

Proof. If (x∗, y∗) is in P , then we are done. Otherwise, without loss of generousity, we

assume that there is a prime broadcast center k ∈ V (Tx∗,y∗) and the edge (x∗, y∗) is con-

tained in the subtree Tyj for some j > 0. We prove the statement by showing that the edge

(yj, yj+1) is also an essential edge of T .

We first consider the case x∗ = yj . Note that b(Tyj+1,yj) ≤ b(Tyj ,y∗) since Tyj+1,yj

is a subtree of Tyj ,y∗ . Suppose that k′ is a prime broadcast center of Tyj ,y∗ , then by

Lemma 2.2, we have k′ ∈ Ty0,y1 . By the definition of yj+1, we have b(y∗, Ty∗,yj) +

w(yj, y
∗) ≤ b(yj+1, Tyj+1,yj) + w(yj, yj+1), implying that b(k′, Tyj ,yj+1

) ≤ b(k′, Tyj ,y∗)

by Lemma 1.1. It follows that b(Tyj ,yj+1
) ≤ b(k′, Tyj ,yj+1

) ≤ b(k′, Tyj ,y∗) = b(Tyj ,y∗).

Therefore, (yj, yj+1) is also an essential edge.

Next, we consider the case x∗ ̸= yj . Suppose that p is the neighbor of yj on the

path from x∗ to yj in Tyj . Note that b(Tyj ,p) ≤ b(Tx∗,y∗) since Tyj ,p ⊆ Tx∗,y∗ . And

also, we have b(Tp,yj) ≤ b(Tyj ,yj+1
) as Tp,yj ⊆ Tyj ,yj+1

. Besides, we have shown that

b(Tyj ,yj+1
) ≤ b(Tyj ,p) in the previous case. Therefore, we have b(Tp,yj) ≤ b(Tyj ,yj+1

) ≤

b(Tyj ,p) ≤ b(Tx∗,y∗), implying that (yj, p) is also an essential edge.

On the other hand, if the edge (x∗, y∗) is contained in the subtree Ty0 , using the similar

argument, one can veify that either (y0, y1) or (y0, x1) is an essential edge of T depending

on the position of a prime broadcast center k′ of Tyj ,y∗ .

8



doi:10.6342/NTU202001303

Lemma 2.3. The candidate pathP can be determined inO(n) time. Furthermore, for any

edge (x, y) ∈ E(T ) with x lieing on P and y not lieing on P , the broadcast time b(y, Ty,x)

can be obtained during the process.

Proof. We run the Algorithm BROADCAST proposed by Su et al. [19] once with a little

modification. Note that the only vertex κ left after the while loop is indeed a prime broad-

cast center k of the tree T . Also, for any vertex v ∈ V (T ), we have t(v) = b(v, T (v, v′)),

where v′ is the neighbor of v such that v′ is on the path from v to k. By the definition of

the candidate path P , we have k lies on P , implying that all the broadcast time b(y, Ty,x)

are obtained during the process.

To identify the exact position of the candidate path P , we assume that T is a rooted

tree with k as the root and the vertices u1, u2, . . . , uk are the children of an arbitrary ver-

tex v. During each while loop iteration in the algorithm, we record the children of v with

the largest and the second largest value w(v, ui) + b(ui, Tui,v) by comparing between all

children in O(deg(v)) time. Therefore, all the vertices in the candidate path P can be

found out in O(n) time.

2.2 More Notations

In this section, we define 3 terms,P-subtree,P-broadcast time, andP-broadcast function.

As saying previously, given a weighted tree T , we can unique determine the candidate path

P for the essential edge.

The subtree is called aP-subtree if it corresponds to any one ofTxi,xi−1
, Txi−1,xi

, Tyj ,yj−1

or Tyj−1,yj for some i or j. Below, we assume that two vertices u, v both lie on P . The

P-broadcast time b(u, v) is the minumum time needed to broadcast from the vertex u to all

vertices in T (u, v). On the other hand, the P-broadcast function b̃(u, v : t) is a function

that returns the minumum time needed to broadcast from the vertex u to all vertices in

T (u, v) ∪ (v, v′) ∪ T ′, assuming that w(v, v′) = 0, v′ ∈ V (T ′), and b(v′, T ′) = t. Note

that the value b̃(u, v : t) corresponds to some b(u, v′) with the same starting point u if we

choose t properly.

9
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κx1x2x3x4 y1 y2 y3

x11 x12x21 x22x31 x32 y11 y12 y13 y14 y21 y22

121086 2 6 30

3 3 3 3 3 3 30
24 13

12 9 2

Figure 2.3: An illustrative example.

Refer to Figure 2.3 for an illustrative example. Suppose that we have α = 5. Accord-

ing to Lemma 1.1, if y2 is going to broadcast message to T (y2, y3), it should broadcast to y3

first, and then y21 and y22. Therefore we have b(y2, y3) = 35 and b̃(y2, y2 : 30) = 35, that

is, b̃(y2, y2 : t) = b(y2, y3) if we choose t = 30. Furthurmore, by knowing b(y2, y3) = 35

and use Lemma 1.1 again to further calculate b(y1, y3), one can verify that b(y1, y3) = 46

and b̃(y1, y1 : 41) = 46. We also have that b̃(y1, y1 : t) = b(y1, y3) if we choose

t = 41 = 6 + 35.

Note that the 1-center broadcast time b1(Ts,t) doesn’t specify the position of the starting

vertex, which is different from the P-broadcast time b(u, v). In our linear-time algoritm

introduced in the next section, we will calculate all the 1-center broadcast time b1(Ts,t) of

each P-subtree Ts,t with the help of P-broadcast time b(u, v) and P-broadcast function

b̃(u, v : t).

10
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Chapter 3

A Linear-Time Algorithm

In this chapter, a linear time algorithm is proposed. Section 3.1 gives an overview of the

linear-time algorithm. Next, the correctness and the time complexity are analysised in

Section 3.2.

3.1 An Algorithm Overview

To solve the broadcasting 2-center problem, we calculate all the 1-center broadcast time

b1(Ts,t) of eachP-subtree Ts,t in order to find out the essential edge. In algorithm 1, we use

4 for-loops to calculate those 1-center broadcast time, which corresponds to the P-subtree

Tyj−1,yj , Tyj ,yj−1
, Txi−1,xi

and Txi,xi−1
respectively. Note that the direction of each for-loop

is different. After computing all the P-subtree broadcast time, we choose an essential

edge among all edges on P , and calculate the 2-center broadcast time b2(T ).

11
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Algorithm 1 Solving the broadcasting 2-center problem.

Input: A weighted tree T = (V,E).
Output: Essential edge (x∗, y∗) and 2-center broadcast time b2(T ).
1: determine the candidate path P = (xs, ..., x2, x1, k, y1, y2, ..., yt);
2: for j = t downto 1 do
3: calculate the 1-center broadcast time b1(Tyj−1,yj);
4: end for
5: for j = 1 to t do
6: calculate the 1-center broadcast time b1(Tyj ,yj−1

);
7: end for
8: for i = s downto 1 do
9: calculate the 1-center broadcast time b1(Txi−1,xi

);
10: end for
11: for i = 1 to s do
12: calculate the 1-center broadcast time b1(Txi,xi−1

);
13: end for
14: choose an essential edge (x∗, y∗) on P s.t. max{b1(Tx∗,y∗), b1(Ty∗,x∗)} is minimized;
15:
16: return (x∗, y∗) and b2(T ) = max{b1(Tx∗,y∗), b1(Ty∗,x∗)}

The implementation of Algorithm 1 will be shown in Procedures 2 and 3 later. Below,

we prove some useful lemmas to explain how the implementation works. First, Lemmas

3.1-3.4 show how to find the broadcast center position of eachP-subtree Tyj−1,yj , Tyj ,yj−1
,

Txi−1,xi
and Txi,xi−1

.

Lemma 3.1. Let xk be the vertex on P with 0 ≤ k ≤ s − 1 satisfying b(xk, xs) ≥

b(xk−1, yj−1) and b(xk, yj−1) ≥ b(xk+1, xs). Then, the vertex xk is a prime boradcast

center of the P-subtree Tyj−1,yj . (The condition b(xk, xs) ≥ b(xk−1, yj−1) is no need if

k = 0 and j = 1.)

Proof. Suppose that T ′ = Tyj−1,yj . By Lemma 2.1, it suffices to show that the vertex xk

satisfies b(xk, T
′
xk,u

) ≥ b(u, T ′
u,xk

) for all vertex u ∈ NT ′(xk). For the case that u = xk+1,

we have b(xk, T
′
xk,u

) = b(xk, T
′
xk,xk+1

) = b(xk, yj−1) ≥ b(xk+1, xs) = b(xk+1, T
′
xk+1,xk

) =

b(u, T ′
u,xk

). Similarly, if u = xk−1, we have b(xk, T
′
xk,u

) = b(xk, T
′
xk,xk−1

) = b(xk, xs) ≥

b(xk−1, yj−1) = b(xk−1, T
′
xk−1,xk

) = b(u, T ′
u,xk

).

Finally, we consider the case that u ∈ NT ′(xk)∩V (Txk
), i.e., u is not on the candidate

12
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path. In this case, we have

b(xk, T
′
xk,u

) ≥ α + w(xk, xk+1) + b(xk+1, T
′
xk+1,xk

) (broadcast to subtree T ′
xk+1,xk

)

= α + w(xk, xk+1) + b(xk+1, Txk+1,xk
) (T ′

xk+1,xk
= Txk+1,xk

)

≥ α + w(xk, u) + b(u, Tu,xk
) (definition of xk+1)

> b(u, Tu,xk
)

= b(u, T ′
u,xk

), (T ′
u,xk

= Tu,xk
)

which completes the proof.

Lemma 3.2. Let yk be the vertex onP with j ≤ k ≤ t−1 satisfying b(yk, yt) ≥ b(yk−1, yj)

and b(yk, yj) ≥ b(yk+1, yt). Then, the vertex yk is a prime boradcast center of the P-

subtree Tyj ,yj−1
. (The condition b(yk, yt) ≥ b(yk−1, yj) is no need if k = j.)

Lemma 3.3. Let yk be the vertex on P with 0 ≤ k ≤ t − 1 satisfying b(yk, yt) ≥

b(yk−1, xi−1) and b(yk, xi−1) ≥ b(yk+1, yt). Then, the vertex yk is a prime boradcast

center of the P-subtree Txi−1,xi
. (The condition b(yk, yt) ≥ b(yk−1, xi−1) is no need if

k = 0 and i = 1.)

Lemma 3.4. Let xk be the vertex on P with i ≤ k ≤ s − 1 satisfying b(xk, xs) ≥

b(xk−1, xi) and b(xk, xi) ≥ b(xk+1, xs). Then, the vertex xk is a prime boradcast cen-

ter of the P-subtree Txi,xi−1
. (The condition b(xk, xs) ≥ b(xk−1, xi) is no need if k = i.)

Using the similar arguments stated in Lemma 3.1, one can also prove Lemmas 3.2-3.4,

hence, we omit the proofs. The implementation of the algorithm utilizes Lemmas 3.1-3.4

to find a prime broadcast center of each P-subtree. Next, by utilizing the position of a

prime broadcast center, Lemmas 3.5-3.8 are introduced to calculate the broadcast time of

each P-subtree.

Lemma3.5. Letxk be a prime broadcast center of theP-subtreeTyj−1,yj . Then, b1(Tyj−1,yj) =

min{u, v}, where u = max{α + w(xk, xk−1) + b(xk−1, yj−1), α + b(xk, xs)} and v =

max{α + w(xk, xk+1) + b(xk+1, xs), α + b(xk, yj−1)}. (The value u = ∞ if k = 0 and

j = 1.)
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Proof. By definition of the candidate path P , we have w(xk, xk+1) + b(xk+1, Txk+1,xk
) ≥

w(xk, u) + b(u, Tu,xk
) for all u ∈ NT (xk) ∩ V (Txk

). Suppose that T ′ = Tyj ,yj+1
. Since

Txk+1,xk
= T ′

xk+1,xk
and Tu,xk

= T ′
u,xk

, the optimal seqence of call for xk to broadcast

message to its neighbor in T ′ must start with either xk+1 or xk−1 by Lemma 1.1.

If it starts with xk+1, then xk takes α time to set up connection to xk+1, and xk+1 will

receive message just at time α + w(xk, xk+1). Therefore, the time needed to broadcast

to all vertices will be max{α + w(xk, xk+1) + b(xk+1, xs), α + b(xk, yj−1)}. Similarly,

if it starts with xk−1, then xk takes α time to set up connection to xk−1, and xk−1 will

receive message just at time α+ w(xk, xk−1). Therefore, the time needed to broadcast to

all vertices will be max{α + w(xk, xk−1) + b(xk−1, yj−1), α + b(xk, xs)}.

Lemma3.6. Let yk be a prime broadcast center of theP-subtreeTyj ,yj−1
. Then, b1(Tyj ,yj−1

) =

min{u, v}, where u = max{α + w(yk, yk−1) + b(yk−1, yj), α + b(yk, yt)} and v =

max{α+ w(yk, yk+1) + b(yk+1, yt), α + b(yk, yj)}. (The value u =∞ if k = j.)

Lemma3.7. Let yk be a prime broadcast center of theP-subtreeTxi−1,xi
. Then, b1(Txi−1,xi

) =

min{u, v}, where u = max{α + w(yk, yk−1) + b(yk−1, xi−1), α + b(yk, yt)} and v =

max{α + w(yk, yk+1) + b(yk+1, yt), α + b(yk, xi−1)}. (The value u = ∞ if k = 0 and

i = 1.)

Lemma3.8. Letxk be a prime broadcast center of theP-subtreeTxi,xi−1
. Then, b1(Txi,xi−1

) =

min{u, v}, where u = max{α + w(xk, xk−1) + b(xk−1, xi), α + b(xk, xs)} and v =

max{α+ w(xk, xk+1) + b(xk+1, xs), α + b(xk, xi)}. (The value u =∞ if k = i.)

Lemma 3.5 shows the broadcast time b1(Tyj−1,yj) can be determined in O(1) time by

knowing the value b(xk, xs), b(xk+1, xs), b(xk, yj−1), and b(xk−1, yj−1). Likewise, Lem-

mas 3.6-3.8 can be similarly proved, so we omit the detailed proofs. Below, we make use

of Lemmas 3.1 and 3.5 to design Procedure 2 which implements the first for-loop in Algo-

rithm 1. The details about how to determine the P-broadcast time b(xk, xs), b(xk+1, xs),

b(xk, yj−1), b(xk−1, yj−1) and the value using in the while-loop will be discussed in the

next section.
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Procedure 2 Implementation of steps(2) - (4) in Algorithm 1
Input: A weighted tree T and the candidate path P = (xs, ..., x2, x1, k, y1, y2, ..., yt).
Output: All the P-subtree broadcast time b1(Tyj−1,yj).
1: let k ← 0;
2: for j = t downto 1 do
3: while b(xk, yj−1) < b(xk+1, xs) do
4: let k ← k + 1;
5: end while
6: // xk is a prime broadcast center of P-subtree Tyj−1,yj

7: determine b1(Tyj−1,yj) using b(xk, xs), b(xk+1, xs), b(xk, yj−1), and b(xk−1, yj−1)
8: end for
9:
10: return b1(Tyt−1,yt), b1(Tyt−2,yt−1), ..., and b1(Ty0,y1)

In each specific iteration j in the for-loop of Procedure 2, we deal with the P-subtree

Tyj−1,yj . First, the while-loop is executed to examine the condition of Lemma 3.1 and

to find a prime broadcast center xk of P-subtree Tyj−1,yj . Next, by using Lemma 3.5,

the P-subtree broadcast time b1(Tyj−1,yj) can be determined by b(xk, xs), b(xk+1, xs),

b(xk, yj−1), and b(xk−1, yj−1).

Procedure 3 Implementation of steps(5) - (7) in Algorithm 1
Input: A weighted tree T and the candidate path P = (xs, ..., x2, x1, k, y1, y2, ..., yt).
Output: All the P-subtree broadcast time b1(Tyj ,yj−1

).
1: let k ← 1;
2: for j = 1 to t do
3: if k < j, then let k ← j; // yk must lie on (yj, yj+1, ..., yt)
4: while b(yk, yj) < b(yk+1, yt) do
5: let k ← k + 1;
6: end while
7: // yk is a prime broadcast center of P-subtree Tyj ,yj−1

8: determine b1(Tyj ,yj−1
) using b(yk, yt), b(yk+1, yt), b(yk, yj), and b(yk−1, yj)

9: end for
10:
11: return b1(Ty1,y0), b1(Ty2,y1), ..., and b1(Tyt,yt−1)

In the same way, Procedure 3 is designed to implement the second for-loop in Algo-

rithm 1. According to Lemmas 3.2 and 3.6, we determine b1(Tyj ,yj−1
) one by one from

j = 1 to j = t by finding out the broadcast center in each subtree Tyj ,yj−1
and computing

the corresponding value b(yk, yt), b(yk+1, yt), b(yk, yj), and b(yk−1, yj). Note that the Step

(3) of Procedure 3 is added since the prime broadcast center yk must lie on (yj, yj+1, ..., yt).

Due to the symmetry of the candidate path P , the other 2 for-loops in Algorithm 1
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can be implemented in the same way, therefore, we omit the details. Intuively, there may

be totally O(n2) different P-broadcast time b(u, v) that needs to be determined since the

maximal length ofP can beO(n). However, onlyO(n)P-broadcast time will be covered,

and Procedures 2 and 3 can both be implemented inO(n) time. We analysis the correctness

and the time complexity in the next section.

3.2 Correctness and Time Complexity

In this section, we prove the correctness of Procedures 2 and 3, and show that all the

P-broadcast time b(u, v) needed in the precedures can be determined in O(n) time.

Lemma 3.9. Procedure 2 returns the correct P-subtree broadcast time b1(Tyj−1,yj).

Proof. According to Lemmas 3.1 and 3.5, to prove the correctness of Procedure 2, it suf-

fices to show that if the while-loop terminates during the for-loop iteration j, then the

vertex xk satisfies the condition b(xk, xs) ≥ b(xk−1, yj−1) and b(xk, yj−1) ≥ b(xk+1, xs).

The latter inequality b(xk, yj−1) ≥ b(xk+1, xs) holds due to the termination of the while-

loop.

For the former inequality b(xk, xs) ≥ b(xk−1, yj−1), we consider 2 cases depending

on whether the Step (4) in the while-loop has ever been executed during the same for-

loop iteration j. If the Step (4) has ever been executed, then the previous execution of the

while-loop implies b(xk−1, yj−1) < b(xk, xs), therefore, the former inequality holds. On

the other hand, if the Step (4) has never been executed, then for the case j = t, we have

b(xk, xs) ≥ b(xk−1, yj) due to xk = k is a prime broadcast center of T , otherwise, since

the vertex xk is also a prime broadcast center of Tyj ,yj+1
, we have b(xk, xs) ≥ b(xk−1, yj).

It follows that b(xk, xs) ≥ b(xk−1, yj−1) since T (xk−1, yj−1) is a subtree of T (xk−1, yj),

therefore, the former inequality holds.

Lemma 3.10. Procedure 3 returns the correct P-subtree broadcast time b1(Tyj ,yj−1
).

Proof. According to Lemmas 3.2 and 3.6, to prove the correctness of Procedure 3, it suf-

fices to show that if the while-loop terminates during the for-loop iteration j, then the
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vertex yk satisfies the condition b(yk, yt) ≥ b(yk−1, yj) and b(yk, yj) ≥ b(yk+1, yt). The

latter inequality b(yk, yj) ≥ b(yk+1, yt) holds due to the termination of the while-loop.

For the former inequality, we consider 2 cases depending on whether the Step (5) in the

while-loop has ever been executed during the same for-loop iteration j. If the Step (5) has

ever been executed, then the previous execution of the while-loop implies b(yk−1, yj) <

b(yk, yt), therefore, the former inequality holds. On the other hand, if the Step (5) has never

been executed, then for the case j = k, we don’t need to examine the former inequlity by

Lemma 3.2, otherwise, since the vertex yk is also a prime broadcast center of Tyj−1,yj−2
,

therefore, we have b(yk, yt) ≥ b(xk−1, yj−1). It follows that b(yk, yt) ≥ b(yk−1, yj) since

T (yk−1, yj) is a subtree of T (yk−1, yj−1) and thus the former inequality holds.

Below, we introduce 3 useful lemmas showing good time property about the running

time of determining the broadcast time sequences. These lemmas help a lot to prove the

O(n) time complexity of Procedures 2 and 3, the concept is easy to understand, but the

correctness proof is technical. So, we leave detailed proofs to Section 4.3.

Lemma 3.11. Let (z1, z2, . . . , zm) be a subpath of the candidate path P . Then, the broad-

cast time sequence b(z1, z1), b(z2, z1), . . . , b(zm, z1) can be determined in the total of

O(
m∑
i=1

deg(zi)) time.

Lemma 3.12. Let (z1, z2, . . . , zm) be a subpath of the candidate path P . Then, the broad-

cast time sequence b(z1, z1), b(z1, z2), . . . , b(z1, zm) can be determined in the total of

O(
m∑
i=1

deg(zi)) time.

Lemma 3.13. Let (z1, z2, ..., zm) be a subpath of the candidate path P . Then, the

broadcast time sequence b̃(za1 , z1 : v1), b̃(za2 , z1 : v2), ...,b̃(zan , z1 : vn) can be deter-

mined in the total of O(
m∑
i=1

deg(zi) + n) time under the condition that:

(1) a1, a2, ..., an is an (nonstrictly) increasing sequence with ai ∈ {1, 2, ...m}.

(2) v1, v2, ..., vn is a (nonstrictly) decreasing sequence of input values.

We now prove the O(n) time complexity of Procedures 2 and 3. Roughly, we partion

the running time of the procedures into two parts, determining the prime broadcast center
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(the while-loop) and determining the 1-center broadcast time (Step (7) in Procedure 2 and

Step (8) in Procedure 3). We will show that each part takes O(n) time respectively.

Lemma 3.14. Procedure 2 can be implemented in O(n) time.

Proof. Suppose that xkt , xkt−1 , . . . , , xk1 are the corresponding prime broadcast centers

of Tyt−1,yt , Tyt−2,yt−1 , . . . , Ty0,y1 . We first consider the overall running time of the while-

loop. Note that the P-broadcast time equals to some P-broadcast function with proper

input t, i.e., b(xkj , yj−1) = b̃(xkj , k : w(k, y1)+ b(y1, yj−1)). Since w(k, y1)+ b(y1, yt−1),

w(k, y1) + b(y1, yt−2), . . ., w(k, y1) + b(y1, y1) is a (nonstrictly) decreasing sequnce of

values and can be determined in O(
t∑

i=1

deg(yi)) = O(n) time according to Lemma 3.12,

therefore, Lemma 3.13 implies that all the values b(xkj , yj−1) needed in the while-loop

can be determined in O(
s∑

i=0

deg(xi) + n) = O(n) time. Note that for the case j = 1,

b(xkj , yj−1) = b(xk1 , y0) should be calculated using another O(
k1∑
i=0

deg(xi)) = O(n) time

by Lemma 3.11. On the other hand, according to Lemma 3.11, all the values b(xkj+1, xs)

using in the while-loop can be determined in O(
s∑

i=0

deg(xi)) = O(n) time.

Next, we consider the running time of the Step (7). According to Lemma 3.11, all the

values b(xkj , xs) and b(xkj+1, xs) needed in the Step (7) can be determined inO(
s∑

i=0

deg(xi)) =

O(n) time. Furthermore, by b(xkj , yj−1) = b̃(xkj , k : w(k, y1) + b(y1, yj−1)) and Time

Properties 2 and 3, all the values b(xkj , yj−1) needed in the Step (7) can be determined in

O(
s∑

i=0

deg(xi) + n) = O(n) time. Similarly, all the values b(xkj−1, yj−1) needed in the

Step (7) can be determined in O(
s∑

i=0

deg(xi) + n) = O(n) time as well.

Since all the other steps can be easily implemented in O(1) time, we conclude that

Procedure 2 can be implemented in O(n) time.

Lemma 3.15. Procedure 3 can be implemented in O(n) time.

Proof. Suppose that yk1 , yk2 , . . . , , ykt are the corresponding prime broadcast centers of

Ty1,y0 , Ty2,y1 , . . . , Tyt,yt−1 , and let ypivot(0) = y1. By repeatly finding the prime broad-

cast center of T (ypivot(i−1), yt), we suppose that ypivot(i) is the prime broadcast center of

T (ypivot(i−1), yt) for 2 ≤ i ≤ n − 1, and ypivot(n) = yt−1 is the prime broadcast center of
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T (ypivot(n−1), yt) (, one can verify that it will end up at yt−1). For technical purpose, we

assume that ypivot(n+1) = yt−1.

We first consider the for-loop iterations pivot(0), pivot(1), . . . , pivot(n). According

to Lemma 3.11, b(ypivot(i), ypivot(i)), b(ypivot(i)+1, ypivot(i)), . . ., b(ypivot(i+1), ypivot(i)) can

be determined in O(
pivot(i+1)∑
j=pivot(i)

deg(yj)) time for 0 ≤ i ≤ n− 1. Hence, the corresponding

value b(ykj , yj) using in testing the while-loop of these iterations can be determined in

O(
n−1∑
i=0

pivot(i+1)∑
j=pivot(i)

deg(yj)) = 2O(
t∑

j=0

deg(yj)) = O(n) time. Also, one can see that all the

values b(ykj , yj) and b(ykj−1, yj) needed in the Step (8) of these iterations is obtained at

the same time.

Next, we consider the other for-loop iterations. For pivot(i) < j < pivot(i + 1), the

prime broadcast center ykj of Tyj ,yj−1
will lie on (ypivot(i+1), . . . , ypivot(i+2)), and we have

b(ykj , yj) = b̃(ykj , ypivot(i+1) : w(yk1−1, yk1) + b(yk1−1, yj)). Therefore, using the similar

arguments in the proof of Lemma 3.14, one can prove that the values b(ykj , yj) needed in

testing the while-loop and the values b(ykj , yj) and b(ykj−1, yj) needed in the Step (8) of

these iterations can be determined in O(
pivot(i+2)∑
j=pivot(i)

deg(yj)) time. So, the total running time

in all these for-loop iterations is O(
n−1∑
i=0

pivot(i+2)∑
j=pivot(i)

deg(yj)) = 2O(
t∑

j=0

deg(yj)) = O(n).

Since all the other steps can be easily implemented in O(1) time, we conclude that

Procedure 3 can be implemented in O(n) time.

Theorem 2. Algorithm 1 solves the broadcasting 2-center problem in O(n) time.

Proof. The correctness is directly derived from Theorem 1, Lemmas 3.9-3.10, and the

symmetry of the candidate path P . Below, we discuss the running time. The candidate

path P can be constructed in O(n) time by Lemma 2.3. According to Lemmas 3.14-

3.15 and the symmetry of the candidate path P , all the for-loops in Algorithm 1 can be

implemented in O(n) time. Step (14) can also be done by a simple comparison in O(n)

time. Therefore, Algorithm 1 runs in O(n) time.
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Chapter 4

P-Broadcast Functions

Some good properties of P-broadcast function are shown in this chapter, which help a

lot in proving Lemmas 3.12 and 3.13. In Section 4.1, we establish some fundamental

characteristics of P-broadcast function. Next, we discuss how to construct and merge the

records ofP-broadcast functions in Section 4.2. Finally, the correctness proofs of Lemmas

3.12 and 3.13 are provided in Section 4.3.

In this chapter, we assume that all the values b(y, Ty,x) are already determined where

x is any vertex on the candidate path P and y is a neighbor of x in Tx. According to

Lemma 2.3, these values can be determined in advance in O(n) time.
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4.1 Properties of P-Broadcast Functions

Recall that theP-broadcast function b̃(u, v : t) is a function that returns theminumum time

needed to broadcast from the vertex u to all vertices in T (u, v) ∪ (v, v′) ∪ T ′, assuming

that w(v, v′) = 0, v′ ∈ V (T ′), and b(v′, T ′) = t.

Lemma 4.1. The broadcast function b̃(u, v : t) is continuous, piecewise linear, and the

slope of each piece is either 0 or 1.

Proof. We prove the statement by induction on d(u, v), where d(u, v) denotes the number

of edges on the path from u to v. We first consider the case that d(u, v) = 0, i.e., we con-

sider b̃(u, u : t). Let u1, u2, ..., uk be the neighbors of u inTu and u′ be the additional neigh-

bor of uwithw(u, u′) = 0 and b(u′, T ′) = t. Moreover, let timei = w(u, ui)+b(ui, Tui,u)

for 1 ≤ i ≤ k with timei ≥ timei+1 for 1 ≤ i ≤ k− 1. According to Lemma 1.1, when t

lies in any specific interval [0, timek), [timek, timek−1), ... , [time2, time1), [time1,∞)

the optimal sequnce of calls from u to broadcast messages to its neighbors remains the

same, implying that b̃(u, u : t) can be determined by picking the max value of some con-

stant value and one linear function of slope 1. So, the statement holds when t lies on these

intervals, on the other hand, one can verify that b̃(u, u : t) is continuous on each boundary

point time1, time2, ..., timek.

Next, suppose that the statement holds for d(u, v) = k, we consider the case d(u, v) =

k+1 below. Let x be the neighbor ofu on the path fromu to v. By the induction hypothesis,

both the broadcast function b̃(u, u : t) and b̃(x, v : t) are continuous, piecewise linear, and

the slope of each piece is either 0 or 1. Since b̃(u, v : t) = b̃(u, u : w(u, x) + b̃(x, v : t)),

the broadcast function b̃(u, v : t) is continuous and piecewise linear. One can see that the

slope of a piece in b̃(u, v : t) is 1 if the slope of the corresponding pieces in b̃(u, u : t)

and b̃(x, v : t) are both 1, otherwise, the slope of that piece is 0. Therefore, the lemma

holds.
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Lemma 4.2. Let (e, b̃(u, v : e)) be the endpoint on the last piece of the broadcast function

b̃(u, v : t). Then, we have b̃(u, v : e)− b̃(u, v : 0) ≤ α.

Proof. We prove the statement by induction on d(u, v), where d(u, v) denotes the number

of edges on the path from u to v. We first consider the case that d(u, v) = 0, i.e., we

consider b̃(u, u : t). Let u1, u2, ..., uk be the neighbors of u in Tu and u′ be the additional

neighbor of u with w(u, u′) = 0 and b(u′, T ′) = t. Moreover, let timei = w(u, ui) +

b(ui, Tui,u) for 1 ≤ i ≤ k with timei ≥ timei+1 for 1 ≤ i ≤ k − 1.

According to Lemma 1.1, the optimal sequnce of calls for u is u1, . . . , uk, u
′ when

t = 0, implying that b̃(u, v : 0) = max{t1, t2} with t1 = max{timei + iα|1 ≤ i ≤ k}

and t2 = 0 + (k + 1)α. On the other hand, since (e, b̃(u, v : e)) lies on the endpoint on

the last piece, the optimal sequnce of calls for u is v, u1, . . . , uk when t = e. Besides,

the slope on the left side of e is 0 and the slope on the right side of e is 1, implying

that b̃(u, v : e) = e + α = max{timei + (i + 1)α|1 ≤ i ≤ k}. To sum up, since

t1 = b̃(u, v : e) − α, we have b̃(u, v : e) − b̃(u, v : 0) ≤ α with equality if and only if

t1 ≥ t2.

Next, suppose that the statement holds for d(u, v) = k, we consider the case d(u, v) =

k + 1 below. Let x be the neighbor of u on the path from u to v, and let (e1, b̃(u, u : e1))

and (e2, b̃(x, v : e2)) be the corresponding endpoints on the last piece of b̃(u, u : t) and

b̃(x, v : t). By the induction hypothesis, we have b̃(u, u : e1) − b̃(u, u : 0) ≤ α and

b̃(x, v : e2) − b̃(x, v : 0) ≤ α. Note that b̃(u, v : t) = b̃(u, u : w(u, x) + b̃(x, v : t)),

and the slope of a piece in b̃(u, v : t) is 0 if and only if any slope of the corresponding

piece in b̃(u, u : t) and b̃(x, v : t) is 0. Since the slope on the left side of e in b̃(u, v : t)

is 0, we have e ≤ e2 or w(u, x) + b̃(x, v : e) ≤ e1. If e ≤ e2, we have (b̃(x, v :

e) + w(u, x)) − (b̃(x, v : 0) + w(u, x)) ≤ α by the induction hypothesis on b̃(x, v : t)

and hence b̃(u, v : e) − b̃(u, v : 0) ≤ α. Otherwise, if w(u, x) + b̃(x, v : e) ≤ e1, we

have b̃(u, u : b̃(x, v : e) + w(u, x))− b̃(u, u, b̃(x, v : 0) + w(u, x)) ≤ α by the induction

hypothesis on b̃(u, u : t), implying that b̃(u, v : e)− b̃(u, v : 0) ≤ α. Therefore, the lemma

holds.
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Lemma 4.3. Let (l, r) be an interval of slope 0 piece between some pieces of slope 1 in

the broadcast function b̃(u, v : t). Then, we have r − l ≥ α.

Proof. We prove the statement by induction on d(u, v), where d(u, v) denotes the number

of edges on the path from u to v. We first consider the case that d(u, v) = 0, i.e., we con-

sider b̃(u, u : t). Let u1, u2, ..., uk be the neighbors of u inTu and u′ be the additional neigh-

bor of uwithw(u, u′) = 0 and b(u′, T ′) = t. Moreover, let timei = w(u, ui)+b(ui, Tui,u)

for 1 ≤ i ≤ k with timei ≥ timei+1 for 1 ≤ i ≤ k − 1. According to Lemma 1.1 and

the piece of slope 0 on (l, r) lies between some pieces of slope 1, we suppose that the

optimal sequnce of calls for u when t = l is u1, ..., ui, u
′, ui+1, ..., uk with timei = l >

timei+1, and the optimal sequnce of calls for u when t = r is u1, ..., uj, u
′, uj+1, ..., uk

with timej > r > timej+1. Clearly, as timej > r > l = timei, we have j < i. Besides,

by Lemma 1.1, we have b̃(u, u : l) = l + (i + 1)α and b̃(u, u : r) = r + (j + 1)α.

Therefore, since the slope of the piece on (l, r) is 0, we have l+ (i+1)α = r+ (j +1)α,

which implies that r − l = (i− j)α ≥ α.

Next, suppose that the statement holds for d(u, v) = k, we consider the case d(u, v) =

k + 1 below. Let x be the neighbor of u on the path from u to v. Since b̃(u, v : t) =

b̃(u, u : w(u, x) + b̃(x, v : t)), the slope of a piece (l, r) in b̃(u, v : t) is 0 if and only if

the slope of the piece (l, r) in b̃(x, v : t) is 0 or the slope of the piece (w(u, x) + b̃(x, v :

l), w(u, x) + b̃(x, v : r)) in b̃(u, u : t) is 0. Therefore, by the induction hypothesis, the

statment for b̃(x, v : t) holds, implying that the statement also holds for b̃(u, v : t) .

Below, we give some graph examples about the of P-broadcast function b̃(u, v : t) to

have a better understanding of these lemmas. Refer to Figure 4.1, where some graphs of

P-broadcast functions in Figure 2.3 are shown. One can see that each of theseP-broadcast

function consists of some pieces of slope 0 or slope 1, and Lemmas 4.2 and 4.3 also hold

on these examples in the same time.

Let (e, b̃(u, v : e)) be the endpoint on the last piece of the broadcast function b̃(u, v :

t). To represent b̃(u, v : t) graphically, we only need to record the starting endpoint

(0, b̃(u, v : 0)), the ending endpoint (e, b̃(u, v : e)), and the (doubly linked) list of these

pieces (p1, p2, ..., pk) with each piece pi = (leni, slopei) represented by its relative length
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b̃(y1, y1 : t)

t10 12 2224 2930 35

35

37
39

40

b̃(y2, y2 : t)

t2 7 9 14

15

17

19

b̃(y1, y2 : t)

t1 2 7 8 18 19 24

37

38
39

40

Figure 4.1: Graphs of some P-broadcast functions in Figure 2.3.

of x coordinate and slope. Note that it doesn’t need to record the last piece of slope 1 if

we know the ending endpoint. In addition, we also record the P-broadcast time b(u, v).

Refer to Figure 4.2 for example, where some records associated with P-broadcast

functions in Figure 2.3 are shown. By using this kind of record, we can answer the query

b̃(u, v : x) of any given input x by traversing the list from the endpoint (0, b̃(u, v : 0)) or

(e, b̃(u, v : e)) to the target point (x, b̃(u, v : x)). We make use of the record and query

scheme to determine the broadcast time sequence in Lemmas 3.12 and 3.13.

b̃(y1, y1 : t)

b(y1, y1): 35
start: (0, 35)
end: (35, 40)
list: ((10, 0), (2, 1), (10, 0),

(2, 1), (5, 0), (1, 1), (5, 0))

b̃(y2, y2 : t)

b(y2, y2): 14
start: (0, 15)
end: (14, 19)
list: ((2, 1), (5, 0), (2, 1), (5, 0))

b̃(y1, y2 : t)

b(y1, y2): 37
start: (0, 37)
end: (24, 40)
list: ((1, 0), (1, 1), (5, 0),

(1, 1), (10, 0), (1, 1), (5, 0))

Figure 4.2: Records associated with some P-broadcast functions in Figure 2.3.

4.2 Constructing the Records of P-Broadcast Functions

In this section, 2 procedures are proposed for constructing the records of P-broadcast

functions. Procedure 4 shows how to construct the record ofP-broadcast function b̃(u, u :

t) given that u is a vertex on P . Procedure 5 on the other hand shows how to construct the

record of b̃(p, s : t) by compositing 2 given records of b̃(p, q : t) and b̃(r, s : t) under the

condition that (p, ..., q, r, ..., s) is a subpath of P .
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Given a vertex u on the candidate path P , Precedure 4 constructs the record of

b̃(u, u : t) in O(deg(u)) time. It utilizes the non-sorting method mentioned by Su et

al. in Theorem 10 in [19], but in which we have additional neighbor of u that needs to be

considered. The correctness and the time complexity analysis of Procedure 4 are stated as

the following lemmas.

Procedure 4 Constructing the record of b̃(u, u : t).
Input: A weighted tree T with a vertex u on the candidate path P .
Output: The record of the P-broadcast function b̃(u, u : t) and the value b(u, u).
1: let u1, ..., uk be the neighbors of u in Tu and timei ← w(u, ui) + b(ui, Tui,u);
2: letM ← max{timei | 1 ≤ i ≤ k};
3: create list[j] for 0 ≤ j ≤ k, and insert each vertex ui into list[j] if the condition

αj ≤M − timei ≤ α(j + 1) holds;
4: let num[j]← |list[j]| and acc[j]←

∑j
i=0 num[i];

5: letmin[j]← min{timei | ui ∈ list[j]};
6: let b(u, u)← max{min[j] + αacc[j] | 0 ≤ j ≤ k − 1};
7:
8: let L← ϕ;
9: letM2← max{b(u, u), (k + 1)α};
10: let pointstart ← (0,M2);
11: if M − (k + 1)α ≥ 0 then L.push_back((M − (k + 1)α, 0));
12:
13: for j = k downto 0 do
14: let l← max{M − (j + 1)α, 0} and r ←M − jα;
15: if r < 0 then continue;
16: if min[j] =∞ then letmin[j]← r;
17: if min[j] + (acc[j] + 1)α ≥M2 then
18: let pivot←M2− (acc[j] + 1)α;
19: L.push_back((pivot− l, 0));
20: L.push_back((min[j]− pivot, 1));
21: letM2←M2 + (min[j]− pivot);
22: else
23: L.push_back((min[j]− l, 0));
24: end if
25: L.push_back((r −min[j], 0));
26: end for
27:
28: if M + α ≤M2 then L.push_back((M2− α−M, 0));
29: let pointend ← (M2− α,M2);
30:
31: return (b(u, u), pointstart, pointend, L);
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Lemma 4.4. Procedure 4 constructs the record of b̃(u, u : t) correctly.

Proof. Let u1, u2, ..., uk be the neighbors of u in Tu and u′ be the additional neighbor of

u with w(u, u′) = 0 and b(u′, T ′) = t. The Steps (1) - (6) implement the non-sorting

method mentioned by Su et al. in [19], in which the only difference is that we have one

more list list[k] since the vertex u now has k + 1 neighbors u1, ..., uk, and u′. It follows

that the value b(u, u) is determined correctly. Besides, when t = b(u′, T ′) = 0, there

is an optimal sequence of call for u to broadcast messages to its neighbor such that u′ is

the last vertex being broadcast and the broadcast order for u1, ..., uk remains the same as

the broadcast order that u only broadcasts message to u1, ..., uk. Thus, we have b̃(u, u :

0) = max{b(u, u), (k + 1)α}, and hence the coordinate of pointstart = (0, b̃(u, u : 0)) is

determined correctly.

Next, we prove that the list of pieces L can be constructed correctly. In each specific

iteration j in the for-loop of Procedure 4, we consider the graph of b̃(u, u : t) on the

interval [lj, rj] = [M − (j + 1)α,M − jα] ∩ [0,∞) if [lj, rj] ̸= ϕ. Note that b(u, u) =

max{min[j] + αacc[j] | 0 ≤ j ≤ k− 1}, and we now consider b̃(u, u : t) in that u has an

additional vertex u′ with b(u′, T ′) = t. When t varies in [lj, rj], the value of b̃(u, u : t) can

be determined by b̃(u, u : t) = max{x, y} with x = max{mint[i] + αacct[i] | i ̸= j} and

y = mint[j] + αacct[j] where mint and acct are the correponding minumum value and

accumulating number of vertices under the case that b(u′, T ′) = t. Clearly, x is a constant

with respect to t. We now analysis the value of y when t varies. If there are some vertices

in list[j], then y is piecewise linear such that the slope is 1 on [lj,min[j]] and the slope is

0 on [min[j], rj]. Otherwise, y is linear and the slope is 1 on [lj, rj]. It follows that the list

L on each interval [lj, rj] is determined correctly.

Using the similar arguments, one can also verify that the list of pieces L is determined

correctly on the inteval [0,M − (k+1)α] (if 0 ≤M − (k+1)α) and the interval [M,∞).

Therefore, the list of pieces L is constucted correctly, and the coordinate of pointend is

also determined correctly.
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Lemma 4.5. Procedure 4 constructs the record of b̃(u, u : t) in O(deg(u)) time.

Proof. The Steps (1) - (6) implement the non-sorting method mentioned by Su et al. in

[19]. As shown by Su et al., these stpes run in O(deg(u)) time. On the other hand, the

for-loop in Step (13) runs in O(k) = O(deg(u)) time, and all the other steps can be done

in O(1) time. Therefore, the lemma holds.

Procedure 5 Constructing the record of b̃(p, s : t).
Input: The records of b̃(p, q : t) and b̃(r, s : t) with (p, ..., q, r, ..., s) being a subpath of P .
Output: The record of b̃(p, s : t).
1: let (e1, b̃(p, q : e1)) be the ending endpoint of the broadcast function b̃(p, q : t);
2: let (e2, b̃(r, s : e2)) be the ending endpoint of the broadcast function b̃(r, s : t);
3: let L← ϕ;
4: let y1 ← b̃(r, s : 0) and y4 ← b̃(r, s : e2);
5: let z1 ← y1 + w(q, r), z4 ← y4 + w(q, r), and z0 ← b(r, s) + w(q, r);
6:
7: traverse b̃(p, q : t) from (0, b̃(p, q : 0)) to the right to (z4, b̃(p, q : z4));
8: let b(p, s)← (0, b̃(p, q : z0));
9: let pointstart ← (0, b̃(p, q : z1));
10: if there is a piece of slope 1 on [z1, z4] of b̃(p, q : t) then
11: let prise be the only piece of slope 1 on the interval [z1, z4] of b̃(p, q : t);
12: let (z2, b̃(p, q : z2)) and (z3, b̃(p, q : z3)) be the endpoints of prise with z2 ≤ z3;
13: let y2 ← z2 − w(q, r) and y3 ← z3 − w(q, r);
14: traverse b̃(r, s : t) from (0, b̃(r, s : 0)) to the right to (b̃−1(r, s : y2), y2);
15: traverse b̃(r, s : t) from (e2, b̃(r, s : e2)) to the left to (b̃−1(r, s : y3), y3);
16: let L1 be the remaining pieces on the interval [b̃−1(r, s : y2), b̃

−1(r, s : y3)] of b̃(r, s :

t);
17: L.push_back((b̃−1(r, s : y2), 0));
18: L.append(L1);
19: L.push_back((e2 − b̃−1(r, s : y3), 0));
20: else
21: L.push_back((e2, 0));
22: end if
23:
24: if z4 ≤ e1 then
25: let L2 be the remaining pieces on the interval [z4, e1] of b̃(p, q : t);
26: L.append(L2);
27: end if
28: determine pointend according to pointstart and L;
29:
30: return (b(p, s), pointstart, pointend, L);
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To go a step further, given the records of b̃(p, q : t) and b̃(r, s : t) under the condition

that (p, ..., q, r, ..., s) is a subpath of P , Procedure 5 constructs the record of b̃(p, s : t) by

compositing them in the time linear to the number of pieces in the record of b̃(p, q : t) and

b̃(r, s : t) being removed during the process.

Themain idea of Precedure 5 is according to the fact that b̃(p, s : t) = b̃(p, q : w(q, r)+

b̃(r, s : t)). Besides, by Lemmas 4.2 and 4.3, the range of w(q, r) + b̃(r, s : t) without

regard to the last piece of slope 1 must be within length α, and be mapped to at most

one rising piece in b̃(p, q : t). Therefore, the record of b̃(p, s : t) can be constructed

efficiently. Below, we state 2 lemmas that analysis the correctness and the time complexity

of Procedure 5.

Lemma 4.6. Procedure 5 constructs the record of b̃(p, s : t) correctly.

Proof. Since b(p, s) = b̃(p, q : w(q, r)+b(r, s)) and b̃(p, s : 0) = b̃(p, q : w(q, r)+ b̃(r, s :

0)), the value b(p, s) and the coordinate of pointstart = (0, b̃(p, s : 0)) are determined

correctly. On the other hand, since b̃(p, s : t) = b̃(p, q : w(q, r) + b̃(r, s : t)), the slope of

b̃(p, s : t) on [l, r] is 1 if and only if the slope of b̃(r, s : t) on [l, r] is 1 and the slope of

b̃(p, q : t) on [w(q, r) + b̃(r, s : l), w(q, r) + b̃(r, s : r)] is 1.

Let (e1, b̃(p, q : e1)) and (e2, b̃(r, s : e2)) be the ending endpoints on the last piece

of b̃(p, q : t) and b̃(r, s : t) respectively. The inequality b̃(r, s : e2) − b̃(r, s : 0) ≤ α

holds due to Lemma 4.2. Therefore, according to Lemma 4.3, the function b̃(p, q : t)

on [w(q, r) + b̃(r, s : 0), w(q, r) + b̃(r, s : e2)] contains at most one piece of slope 1.

If there is one piece prise of slope 1 on [w(q, r) + b̃(r, s : 0), w(q, r) + b̃(r, s : e2)] of

b̃(p, q : t)with endpoints (z2, b̃(p, q : z2)) and (z3, b̃(p, q : z3)) such that z2 = y2+w(q, r),

z3 = y3 + w(q, r), and y2 ≤ y3, then we have the slope on [0, b̃−1(r, s : y2)] of b̃(p, s : t)

is 0, and the slope on [b̃−1(r, s : y3), e2] of b̃(p, s : t) is 0. Besides, the change trends

of the function b̃(p, s : t) on [b̃−1(r, s : y2), b̃
−1(r, s : y3)] and the function b̃(p, q : t)

on [z2, z3] are the same. Otherwise, if there is no piece of slope 1 on [w(q, r) + b̃(r, s :

0), w(q, r) + b̃(r, s : e2)] of b̃(p, q : t), then the slope on [0, e2] of b̃(p, s : t) is 0. Clearly,

Steps (10)-(22) implements the above arguments and constucts the list of pieces on [0, e2]

of b̃(p, s : t) correctly.
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As for [e2,∞) of b̃(p, s : t), since the slope on [0,∞) of b̃(r, s : t) is 1, the change

trends of the function b̃(p, s : t) on [e2,∞) and the function b̃(p, q : t) on [w(q, r)+ b̃(r, s :

e2),∞) are the same. Hence, Steps (24)-(27) constucts the list of pieces on [e2,∞) of

b̃(p, s : t) correctly. It follows that the list of pieces L is constucted correctly, and the

coordinate of pointend is also determined correctly.

Lemma 4.7. Procedure 5 constructs the record of b̃(p, s : t) in O(R) time, where R is

the number of pieces in the records of b̃(p, q : t) and b̃(r, s : t) being removed during the

process.

Proof. Procedure 5 constructs the record of b̃(p, s : t) by traversing the list of pieces in

b̃(p, q : t) and b̃(r, s : t). Note that those pieces in b̃(p, q : t) and b̃(r, s : t) being traversed

in Steps (7), (14), and (15) will not appear in L. Thus, Steps (7), (14), and (15) takes

exactly O(R) time.

On the other hand, Steps (8)-(13), (16)-(19), and (24)-(27) can be done in O(R) time

since they can be done in the same time when traversing in Steps (7), (14), and (15).

Besides, Steps (1)-(5) can be done in O(1) time, and we can infer the differences of x-

coordinate and y-coordinate of L in O(1) time, implying that Step (28) can also be deter-

mined in O(1) time.

4.3 Proofs of Lemmas 3.11, 3.12, and 3.13

Now, we get back to prove the correctness of Lemmas 3.11, 3.12, and 3.13, in order to

ensure the O(n) time complexity of Procedures 2 and 3.

4.3.1 Proof of Lemma 3.11

We calculate the broadcast time sequence b(z1, z1), b(z2, z1), . . . , b(zm, z1) in order. Since

we have already determined all the values b(x, T ′
x,z1

) where T ′ = T (z1, z1)) and x is

the neighbor of z1 in T ′, the value b(z1, z1) can be determined in O(deg(z1)) time by

Lemma 1.3.
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Assume that we have determined all the value b(zj, z1) with 1 ≤ j < i, and we

are now going to determine b(zi, z1) for some i ≥ 2. Without loss of generousity, let

T ′ = T (z1, zi). Note that the neighbor x of zi in T ′ is either zi−1 or some vertex in Tzi .

We have already determined all the values b(x, T ′
x,zi

) = b(x, Tx,zi) when x is the neighbor

of zi in Tzi . On the other hand, when x = zi−1 and 2 ≤ i ≤ m, b(x, T ′
x,zi

) = b(zi−1, z1) is

determined in the previous term of the sequence. Therefore, Lemma 1.3 implies that the

value b(zi, z1) can be determined in O(deg(zi)) time. By repeatly using this procedure,

we can calculate all the broadcast time b(z1, z1), b(z2, z1), . . . , b(zm, z1) in O(
m∑
i=1

deg(zi))

time.

4.3.2 Proof of Lemma 3.12

We calculate the broadcast time sequence b(z1, z1), b(z1, z2), . . . , b(z1, zm) in order. Note

that the record of b̃(u, v : t) includes the value b(u, v). Using Procedure 4, the records of

b̃(z1, z1 : t), b̃(z1, z1 : t) can be constructed in O(deg(z1)) time, and the value b(z1, z1) is

obtained in the same time.

Assume that we have constructed the record of b̃(z1, zi−1 : t) for some i ≥ 2, by

compositing the records of b̃(z1, zi−1 : t) and b̃(zi, zi : t) using Procedure 5, we can

construct the record of b̃(z1, zi : t) in O(ri) time where ri is the number of pieces be-

ing removed during the process. Note that the record of b̃(zi, zi : t) can be consturcted

in O(deg(zi)) time by Lemma 4.5, implying that the number of pieces in the record of

b̃(zi, zi : t) is also bounded by O(deg(zi)). Besides, all the pieces being removed are

actually correspond to some pieces appearing in the records of b̃(z1, z1 : t), b̃(z2, z2 : t),

..., b̃(zm, zm : t). Therefore, the total running time of constucting these records one by

one will beO(
m∑
i=2

ri) = O(
m∑
i=1

deg(zi)), and the values b(z1, z2), b(z1, z3), ..., b(z1, zm) are

obtained at the same time.

4.3.3 Proof of Lemma 3.13

Without loss of generousity, we assume that the above broadcast time sequence covers

each P-broadcast function b̃(z1, z1 : t), b̃(z2, z1 : t), ..., b̃(zm, z1 : t). Besides, we assume
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that the input values of b̃(zi, z1 : t) is constrained to [li, ri] for 1 ≤ i ≤ m, and the

equation li = ri+1 holds for 1 ≤ i ≤ m − 1. By the above assumptions, the process

of determining the broadcast time sequence can be split into two parts. The first part is

to traverse b̃(zi, z1 : t) from t = ri to t = li and determine the broadcast time in the

sequence, and the second part is to determine b̃(zi+1, z1 : ri+1) from b̃(zi, z1 : li) by a

slightly modification of Procedure 5.

For each b̃(zi, z1 : t) with 1 ≤ i ≤ m, we use the pointer pi to point to the location

in [li, ri] of its record in order to determine the broadcast time appearing in the sequence.

For the first part, we move the pointer pi from ri to li in the record of b̃(zi, z1 : t). Note

that if a piece of b̃(zi, z1 : t) is traversed, it will not be traversed again in the following

process. Besides, all the pieces traversed are actually correspond to some pieces appear-

ing in the records of b̃(z1, z1 : t), b̃(z2, z2 : t), ..., b̃(zm, zm : t). Therefore, since the

number of pieces in the record of b̃(zi, zi : t) is bounded by O(deg(zi)) by Lemma 4.5,

the first part takes at mostO(
m∑
i=1

deg(zi)) time. For the second part, one can see that value

b̃(zi+1, z1 : ri+1) can be infered from b̃(zi, z1 : li) and the location pointed by pi+1 can be

also inferred by pi by slightly modifying Procedure 5. It follows that the second part takes

at most O(
m∑
i=1

deg(zi)+n) time. Therefore, we can calculate the broadcast time sequence

b̃(za1 , z1 : v1), b̃(za2 , z1 : v2), ... , b̃(zan , z1 : vn) in the total of O(
m∑
i=1

deg(zi) + n) time.

31



doi:10.6342/NTU202001303

Chapter 5

Concluding Remarks

In this thesis, we proposed anO(n) time algorithm to solve the broadcasting 2-center prob-

lem in weighted trees under the postal model. The result is optimal for finding broadcast

2-centers. We observe that the problem can be solved by finding out the essential edge,

and prove that the candidate path P contains an essential edge. To find the essential edge

on P , we determine the broadcast center and calculate 1-center broadcast time of each

P-subtree.

The main challenge in this problem is to determine those broadcast time sequences in

Lemmas 3.11, 3.12, and 3.13 in an efficient way. As the adjacent P-subtrees share much

in common, we use the concept of P-broadcast function to store information and query

each broadcast time without recomputing every time. As a consequence, those broadcast

time sequences can all be determined in linear time as desired.
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