R EBALEMENREREFIRZLHEN
BB 3 3T

Graduate Institute of Electronics Engineering

College of Electrical Engineering and Computer Science
National Taiwan University
Master Thesis

0 TRE 3 I B K v T B
Improving Property Directed Reachability by Predicate

Extraction

IAR

Chun-Yi Chiang

SR C ¥ e
Advisor: Chung-Yang (Ric) Huang, Ph.D.

TERE 10947 A
July, 2020

doi:10.6342/NTU202001451

R 28 KE R
nRXEBEeEEE

I ECE) A BGE M E T] 2 MR
Improving Property Directed Reachability by Predicate Extraction

A XA BB FE (R07943110> ERIEEREEFIRLH
T RRZBEEMEG) NEBE 109 57 A 24 BAFH#RE B
ELEABBROREAKE HILEA

O EE % %%

(45 §#3)
e B 3gl ¥
7l RN

%%\%
2/ ik :

BT RB D R BETE B vy 2

ﬁﬁﬁi%’@pﬁiﬁkKﬂ.;mé%
\‘ m;}ﬂ %?’Cﬁ’t ff‘#’};’ ’ ;[.ff’ 3

REPhh §F » pd ERFLH> % 04 F 883725

(w

Rz & A Tl
5p FT cap FL gt A

R 0 RA PGS TR ARy B PR B 4 R 2R A S
ré’ﬂﬁﬁﬁﬁﬁﬁﬁiﬁm#WTiﬂr»ﬁ{%$75?%¢°
E#HFRINEE 2L 2L NR RN T REFRT DR
FAeebs2 o 4 R EEE G AT - AR g o
R i KR P FRLFFT A BERLG < F e

£

Wenw g LA F T RDEN 7

N S

’]’_E__E/3§

o

BB R BASRA A By

_‘gﬁqua;\‘.%—’x

L PR s R

IR EE o BR R

KEAFe 5280 BEDERTIAFLE > BARKTE priz A
ARG BTG GG AFA S GPLABE T LT A b S

BRI BEL o frd ERITEL o FE AT N EEHFR
Bess 2 ey 4 o

doi:10.6342/NTU202001451

2F T

a&mu&ﬁﬁﬂ@’ﬁ?% VBT 5 A bk il
= RN o SR ST Ly SR

cho Fpt o LT RRIEBIRE R G S ALRE R o A
W ? o AP g A e T e
o TEREM G o AL BT A A S b AR AR B
RS e R *m&?"f%aﬁébﬁmzfqv R T Ja2b BB
PR ARE L - BE T A IR &0 F TR TR

BB ars AP e B AR R AT e T Y

5 thdk] o

Mz @ TRBHE -WIARAE - TRIEFE S PTErT IR

il

doi:10.6342/NTU202001451

Abstract

Since proposed in 2011, PDR (IC3) has been the best model checking
algorithm until now. However, there are still many cases that PDR struggles
to solve. Hence, many works are presented to enhance the algorithm. In this
thesis, we propose a general method to aid PDR by solving predicate
separately. Furthermore, we provide two kinds of useful pattern easily
recognized from the solving process as example. The original PDR
algorithm and the new feature are implemented on a custom model checking
environment called Ia2b. The experiment on HWMCC benchmarks shows

that our method can solve more cases than the classic PDR.

Keywords: Formal Verification, Model Checking, Satisfiability Problem,

Property Directed Reachability, Predicate Refinement

il

doi:10.6342/NTU202001451

Contents

= i
IR ii
Abstract iii
Contents iv
List of Figures vi
List of Tables viil
1 Introduction 1
1.1 Contributions of the Thesis 2

1.2 Organizations of the Thesis 3

2 Preliminaries 4
2.1 Propositional Satisfiability 4

2.2 Finite State Boolean Transition System 5

2.3 Model Checking Problem 5

2.4 Property Directed Reachability 8
2.4.1 The Monotonicity of Frames 10

24.2 Ternary Simulation Lo 13

243 Recursively BlockingCubes 14

v

doi:10.6342/NTU202001451

2.4.4 Propagating Blocked Cubes 15

2.4.5 Other Subroutines 17

3 Predicate Extraction 18
3.1 Motivation 18

3.2 General Method and Correctness 21

33 TwoKindsof Predicate 23
3.3.1 BlockingClause 23

3.3.2 ProofObligation 25

333 Recapfor6s288r 28

4 Implementation 32
4.1 The Model Checking Environment 32

4.2 Optimization and Other Things We Tried 34
42.1 Subsumption 34

4.2.2 Ternary Simulation 35

423 SATQuery i e 37

4.2.4 Storage of Proof Obligation 39

4.2.5 PropagatingCubes, 41

4.2.6 Activity of State Variables 41

4.2.77 Predicate Extraction 42

5 Experimental Results 45
5.1 OVEIVIEW . . . o v o o o o e e e e e 45

5.2 Performance 48

5.3 Detailed Analysis 61

6 Conclusion and Future Work 66
Reference 68

A

doi:10.6342/NTU202001451

List of Figures

2.1 The depiction of trace of frame. 9

2.2 The depiction of recBlockCubes. 14

3.1 36 blocked cubes out of the 889 ones in the inductive invariant of 6s288r. 19

3.2 The depiction of the similar clause problem. 20
3.3 The depiction of the reason for the similar clause problem. 21
3.4 Anexample for clause-based predicate. 24

3.5 The possible distribution of reachable and bad states for similar obligation

problem. 25
3.6 Anexample for obligation-based predicate. 26
3.7 The proof obligations leading to the similar clauses. 28
3.8 Theconeof 12141 112142 12180. 29
3.9 The cone of the literal along with 12141 112142 12180 in Figure 3.1. . . . 29
3.10 Blocking procedure for the similar clauses (1). 30
3.11 Blocking procedure for the similar clauses (2). 30
3.12 Blocking procedure for the similar clauses (3). 31
4.1 The memory arrangement for cube of PDR. 34
5.1 The cumulative plot of PDR among different model checkers. 47

5.2 The cumulative plot of different limit of SAT query for CLS, INF, B = 20,
M=1lonpdr vb. 49

Vi

doi:10.6342/NTU202001451

53

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15
5.16

The cumulative plot of different limit of SAT query for CLS, ALL, B =
10,M=2onpdr vb.
The schematic diagram of the sweet spot prediction.
The depiction of sample points.
The cumulative plot of different ratio of Backtrack number and Match
number for CLS, INF, L=1000onpdr vb.
The cumulative plot of different ratio of Backtrack number and Match
number for CLS, ALL,L=1000onpdr vb.
The cumulative plot of two best ratios and the mixed version for CLS, L
=1000onpdr vb..
The cumulative plot of two best ratios and the mixed version for CLS, L
=300onpdr vb.
The cumulative plot of different limit of SAT query for OBL, T = 66 on

The cumulative plot of the best parameters for CLS, OBL and the
combination of bothonfull. 000
The comparison between clause-based and obligation-based predicate. . .
The comparison between basic PDR and clause-based predicate (1).

The comparison between basic PDR and clause-based predicate (2). . . .

The comparison between basic PDR and obligation-based predicate. . . .

vii

doi:10.6342/NTU202001451

50

List of Tables

5.1 Comparison of PDR among different model checkers. 47
5.2 Comparison among different limit of SAT query for CLS, INF, B=20, M
=lonpdr vb.. 49
5.3 Comparison among different limit of SAT query for CLS, ALL, B = 10,
M=2onpdr vb. 50
5.4 Comparison among different ratio of Backtrack number and Match
number for CLS, INF, L=1000onpdr vb. 53
5.5 Comparison among different ratio of Backtrack number and Match
number for CLS, ALL,L=1000onpdr vb. 54
5.6 Comparison among two best ratios and the mixed version for CLS, L =
1000onpdr vb. 55
5.7 Comparison among two best ratios and the mixed version for CLS, L =
300onpdr vb. 56
5.8 Comparison among different limit of SAT query for OBL, T =66 on pdr_vb. 58

5.9 Comparison among different Obligation threshold for OBL, L = 300 on

5.10 Comparison among the best parameters for CLS, OBL and the

combination of bothonfull. 60

viii

doi:10.6342/NTU202001451

Chapter 1

Introduction

Model checking is the problem to check if a specification is violated under a transition
system. This kind of problem is common in the area of formal verification. For hardware
verification, as the design becomes more complicated, the gate count in a circuit grows
dramatically, which makes the complexity of this problem becomes higher and higher.
Hence, many innovative algorithms are proposed continually to tackle with the problem.

At early time, Binary Decision Diagram (BDD) [1] is used to compute the exact
image by building the transition relation. The process continues until either a fixed point
is reached or the current reachability intersects with the violation. However, BDD has
poor scalability for large design since it often suffers from memory explosion.

As SAT algorithm gets tremendous efficiency improvement [2, 3, 4, 5, 6, 7], many
researchers notice the practicality for SAT-based model checking method. Bounded
Model Checking (BMC) [8] unfolds the circuit to check whether some states are
reachable in this length. BMC itself can only answer whether the system is safe until a
given length instead of proving the property completely. Afterwards, many algorithms
based on BMC are proposed to enable the proof.

[9, 10] uses BMC as base case to support K-Induction (IND) for the proof. The SAT
query of K-Induction also involves unrolling. Furthermore, the simple-path constraints

should be added to make the algorithm complete.

doi:10.6342/NTU202001451

In [11], McMillan shows a procedure to construct Craig’s interpolation [12] from a
resolution refutation generated by modern SAT solver and use this technique to compute
the over-approximated image. BMC is used for finding counter example, either real or
spurious one. If BMC returns UNSAT, interpolant is computed and then sent to
fixed-point checking. If the result is true, an inductive invariant set is found; otherwise,
the interpolant is used for the next BMC solving. This method 1is called
Interpolation-based Model Checking (IMC). On the other hand, Interpolation-Sequence
Based Model Checking [13] works in similar way but different manner. There are also
efforts to explore the property about interpolant [14, 15].

After several years, Bradley proposes a novel non-unrolling method [16] based on
his previous work [17]. His implementation called IC3 won the third place in Hardware
Model Checking Competition (HWMCC) 2010. Only two well-tuned integrated
verification tools can beat it. Later, E€n presents a more efficient version of IC3 called
Property Directed Reachability (PDR) [18]. From then on, PDR becomes the most
important model checking algorithm and is commonly implemented in verification
environment.

There are many works trying to modify PDR to improve it like [19, 20, 21, 22, 23].
Among them, [24] lets a blocked cube be a spurious proof obligation when it fails to be
propagated to the next frame. This can be seen as over-approximating the property to let
PDR refine the reachability more eagerly. However, this seems to be not so useful
compared to its overhead. Hence, the authors need to include other techniques to

demonstrate the potential of the method.

1.1 Contributions of the Thesis

In this thesis, we propose a general method to aid PDR by solving predicate separately.
The meaning of this method is to force PDR solve for what we guess useful instead of

only the original property. PDR will search for what is actually unreachable more eagerly

doi:10.6342/NTU202001451

since we over-approximate the property by predicates. The predicate serves as a guide
to smooth the whole process of solving. This is because we find predicate by observing
the solving process locally and point out what obstacle PDR encounters in this period.
By handling the obstacle separately in time, it is expected to improve the efficiency. We
further provide two examples of how to produce such predicate by blocking clauses and
proof obligations. Both of them can help PDR solve cases that are hardly proven by the
original PDR among various implementations. Overall, PDR with predicate extraction

performs better than the original one.

1.2 Organizations of the Thesis

The rest of the thesis is organized as follows. Some background knowledge is provided in
chapter 2 to define the problem and method clearly. In chapter 3, we explain our method
for PDR based on predicate solving. The implementation details including the whole
environment and optimization are listed in chapter 4. We show the experimental results
in chapter 5 to support our method. In the last chapter, we make a conclusion and discuss

about the future work.

doi:10.6342/NTU202001451

Chapter 2

Preliminaries

In this chapter, we give a seires of basic knowledge for PDR step by step to help readers

realize the background.

2.1 Propositional Satisfiability

One-dimensional Boolean space is a set containing only two elements B = {TRUE,
FALSE}. Multi-dimensional Boolean space is defined by the n-ary Cartesian product
B" = BxB...xB, where n is the number of dimension. A propositional variable is a
variable whose value is defined on B. A literal is a propositional variable with positive
or negative polarity. A cube is a conjunction of literals, while a clause is a disjunction of
literals. A disjunctive normal form (DNF, also called sum of product, SOP) is a
disjunction of cubes, while a conjunctive normal form (CNF, also called product of sum,
POS) is a conjunction of clauses. The satisfiability (SAT) problem is to answer if there
exists an assignment such that the given propositional formula is evaluated to TRUE. If
the answer is yes, we call it satisfiable (SAT); otherwise, it is unsatisfiable (UNSAT). We
say that a clause is satisfied if at least one literal in it is evaluated to TRUE. The given
formula is usually in the form of CNF, which means the instance is SAT iff all the

clauses are satisfied under the assignment.

doi:10.6342/NTU202001451

2.2 Finite State Boolean Transition System

We can define the finite state Boolean transition system M by introducing three
components (S, Init,Tr). S is a finite set of propositional variables called state
variable, and a state s is an assignment on them. Therefore, we know that the set of all
states is equal to B, where the vertical bars means the cardinality of a set. Init(S) is a
propositional formula to mark the initial state. That is, a state s belongs to the initial state
iff Init(s) is TRUE. T'r(S,S") is also a propositional formula, and it is used to indicate
the transition relationship of the system. S’ is a copy from S to represent the next state
after transition. Given two states sq, o, either identical or different, s; can transit to s,
iff T'r(sy, $2) is TRUE.

To correspond with the circuit representation that we encounter in real problem, we
define an equivalent form as transition function. Consider that a state may transit to
more than one state, we introduce another set of propositional variables I called input
variable. Formally, the domain of the transition function is B!*“/l and the codomain is
BI5l. The system will go to T'f(s,4) under the current state s and input combination i.
To convert the transition function to the transition relation, we just perform existential

quantification on the input variables. That is, 7r(S,S") = 31.(S" = T'f(S, I)).

2.3 Model Checking Problem

A property p is a propositional formula to mark the set of states meeting the expectation.
A bad state is a state s such that p(s) is FALSE, and we call the rest states as good state.
Model checking can be divided to two main categories, including safety and liveness
problem. Safety problem (AG p) is to answer whether the system can go a bad state or
not without any time limit. On the other hand, liveness problem (AF p) checks if the
system can eventually reach a good state along any branch. The algorithms introduced in
this thesis focus on the safety problem. If AGp is true, we say the problem is safe

(UNSAT); otherwise, it is violated (SAT).

doi:10.6342/NTU202001451

Definition 1. A frace is a finite sequence of states that all adjacent states follow the

transition relation.

Definition 2. A state is reachable at k steps from another state if there exists a trace of
length k such that it is the last state and the first one is that state. A state is reachable
from another state if it is reachable at any step; otherwise, it is unreachable. 1f not

specified explicitly, it means reachable from the initial state.

The safety problem can then be described as whether all the bad states are
unreachable. That is, it is to show that there exists no counterexample, where a
counterexample means a trace to any bad state. In order to prove this problem, we need

to introduce the following two terms.

Definition 3. A set of states characterized by a propositional formula Ind is inductive

iff it contains the initial state and no state belonging to it can transit out of itself.
1. Init(S)— Ind(S) (Base)

2. Ind(S)NTr(S,S") — Ind(S") (Inductive)

Definition 4. A set of states characterized by a propositional formula /nv is invariant

iff it holds the property. That is, all the states belonging to it are good.

Inv(S)— p(S)

Lemma 1. The safety problem is true iff we can find an inductive and invariant set.

The proof is trivial to show that all the bad states are not reachable at any step by

doi:10.6342/NTU202001451

induction. Then the rest problem is how to compute the inductive invariant set. A
straightforward way is to compute the set of all the reachable states, which is actually the
smallest inductive set. This scheme is called exact reachability analysis, which is
adapted by BDD and some SAT-based techniques like [25]. A basic procedure for exact
reachability analysis is to compute the image of the current set of states until fixpoint
while starting from the initial state. The image means the set of states that can transit
from any state of the current set. That is, image(R) = {s'|Is€ R, Tr(s,s’) = TRUE}
Furthermore, we say the set reaches a fixpoint if it becomes inductive and cannot transit

to any other state.

Algorithm 1: safetyByExactReach
Input: Transition system M, property p
Output: safe or violated

1 R+ Init

2 while not R(S) ATr(S,5") — R(S")

3 R+« RVimage(R)

4 if RA—p=SAT

5

6

7

return violated
else
return safe

However, the computing effort is too expensive so that it is undesirable to perform on
large design. Instead, we compute an approximation of the reachable states in more
affordable way. In order to use the approximation for proof, we need to make sure the
approximation maintains an ordering relative to the image, which means one must be a
subset of the other. Under-approximation assures that the approximation is contained in
the image; otherwise, over-approximation ensures the approximation being a superset of
the image. The modern SAT-based algorithms like IMC or PDR are usually
over-approximations. We can still complete the proof if the obtained inductive set is also
invariant, but we cannot answer that the property is violated otherwise since there may
exist a smaller inductive set that holds the property. Whenever we encounter a
counterexample, we need to verify whether it is real or just spurious. Hence, the

procedure for over-approximation usually combines image computation and spurious

doi:10.6342/NTU202001451

counterexample refinement to form a whole picture. The refinement for IMC is just
discarding the current set and restart the computation after unrolling one more
timeframe. On the other hand, PDR uses blocking clause to exclude the spurious

counterexample and form the image simultaneously.

2.4 Property Directed Reachability

In this section, we introduce the method of basic PDR to facilitate the explanation of our
method in the next chapter. The content basically follows the implementation in [18]
with proper rearrangement and renaming.

How PDR treats the reachability is to continuously refine the over-approximation
whenever a spurious counterexample is found by adding clauses to refute it. Throughout
the process, PDR maintains a trace of frames (Fy, F1, ..., F,,), where frame is a set of
clauses over-approximating the states reachable at a certain step or less. The trace has

the following 5 properties:
2. Vi > 0, F; is set of clauses and is represented by the intersection of them.

3. Vi > 0, F;;4 1s a subset of F; and all the clauses in F; contain the initial state, which

means Vi >0, F; — Fj 4.
4. F(S)NTr(S,S") = Fi11(5"), Fiy1 over-approximates the image of F}.
5. F; — p, the frame holds the property except for the tail of the trace.

The pseudo code of the main process is shown in Algorithm 2. In addition to that the
first frame £y is initial, we keep another special frame F,, that represents the current
inductive set. We can always place I, behind the tail of the trace without violating the
above 5 rules. The length of trace keeps increasing over each iteration. For each new

frame except for the first one, it starts by copying the clauses from F,. Then we can try

doi:10.6342/NTU202001451

to propagate the clause in the previous frame to the current one, which is performed in
propBlockedCubes. The fixpoint checking is also included in this section. If there still
exists a witness of violation in the last frame, we need to check if it is real or spurious.
This is done by recBlockCubes. After the tail of the trace becomes invariant, we

proceed to the next frame.

Algorithm 2: safetyByPDR
Input: Transition system M, property p
Output: safe or violated
1 Fy « Init
2 F < Tautology
3 for cur Frame = 0 to oo
4 while TRUE
5 badCube < get BadCube(p, cur Frame)
6 if badCube # NULL
7
8
9

if not recBlockCubes(badCube, cur Frame)
return violated
if propBlockedCubes(cur Frame)
10 return safe

Fo Fy B Fy

Figure 2.1: The depiction of trace of frame. F. represents all the frames beyond the
current frame. When newing a frame, just add one of them into consideration.

doi:10.6342/NTU202001451

Theorem 1. At the end of each iteration, the safety is proved by PDR if there are two

adjacent frames with the same size.

Proof -

We show that the set of states of the two frames are inductive and invariant.

1. The size of the two frames are the same.

By Property 3, the two frames have the same clauses. That is, the same set of states.

|| = |Fia| = F, = Fia

By Property 4, this set is inductive.

Fi(S)ATr(S,5") = Fia (') = Fi(S")

2. At the end of iteration, all the frames holds the property. It is invariant.

Fi—p

Hence, F; is both inductive and invariant. By Lemma 1, the safety is proved. [|

In the following subsections, we introduce each component of PDR to explain the

algorithm and its correctness more clearly.

2.4.1 The Monotonicity of Frames

Definition 5. A set of states F' is inductive relative to another one (G iff it contains

the initial state and no state belonging to both GG and F’ can transit out of F' [17].
1. Init(S) — F(S) (Base)

2. F(SYNG(S)NTr(S,S")— F(S") (Inductive)

10

doi:10.6342/NTU202001451

When a cube is examined whether it is reachable at a certain frame, only the previous
frame is involved. We check if there exists any state in the previous frame that can
transit into the cube. If the answer is not, we can add the negation of the cube as
blocking clause to block it at the frame. We will use blocking clause and blocked cube
interchangeably since they are just negation of each other. A special feature for PDR
about the checking is to query whether Fj_1(S) A —¢(S)ATr(S,S") — —¢(S") holds,
which means — ¢ is inductive relative to Fj_;. It is the term —¢(S) that enables the

addition of blocking clause to all the frames before the target one.

Theorem 2. If the addition of blocking clause meets the following criteria, the trace
of frames holds the Property 4.

—cis added to F; ~ F}, if it contains the initial state and is inductive relative to Fj,_;.
1. ¢ Init = UNSAT

2. F1(S) A=c(S) ATr(S, ') Ac(S') = UNSAT

Proof :

For simplicity, we only keep two F,,, from Figure 2.1 to preserve the inductive property of
itself. For consistency of indices, we assign the two F, to be F},,; and F},, . In addition,
we assume to add the clause to the first frame even if it actually does not since this is

equivalent. Then it turns out that we need to show

Vie[0,n+ 1], F/(S) ATr(S,) — Fl,,(S"),

e F,N=c¢, Viel0,k]
where F}' =

F;, Vielk+1,n+2]

1. For: > k, nothing changes.

11

doi:10.6342/NTU202001451

2. Fori =k

F/(S)ATr(S,8') = Fy(S) A= c(S) ATr(S, ")
S F(S)ATr(S, S")

= Fin(9) = Fu(9)

3. Fori <k

(1) —cisinductive relative to F;

F/(S)ATr(S,8') = Fy(S) A= c(S) ATr(S, ')

— =¢(S")

(i) Only adding — c to F; holds the inductive property

F/(S)ATr(S,8") = Fi(S) A=e(S) ATH(S, S)
S Fy(S)ATr(S, S

—>Fi+1(S/)

(ii1)) By composition of the above two formula

F/(S)ATr(S,5") = Fup(S) A= elS') = Fy ()

Combine the three cases, we know that Property 4 holds. |

The result is that the former frame must be a subset of the latter one (Property 3).
That is, the set of clauses monotonically decreases along the trace. Hence, in the
implementation, we just record the difference of adjacent frames to prevent duplication.

In order to reuse the SAT solver, we use assumption to activate the frames and mark the

12

doi:10.6342/NTU202001451

cube. For modern SAT solver, it is able to derive a final conflict clause based on the
assumption. We can remove the literals that do not participate in the proof, which results

in a higher frame and a larger cube.

2.4.2 Ternary Simulation

From the witness of violation in the last frame, if a cube cannot be blocked at a certain
frame, we can find a state in the previous frame that cause the reachability and
recursively do the blocking. We can use ternary simulation to collect more states with
the same property to form a larger cube. The transition for ternary logic on AND gate
includes {0ANX = 0, INX = X, XAX = X and - X = X} besides the basic
Boolean operation. We first define target as a set of signals with the value we want. It
can also be described as a cube since all the values should hold simultaneously, but is not
restricted to only state variable. In get BadC'ube, the target is the violation of property
—p. In check Reach, the target is the given cube c. Starting with a normal simulation,
the value of the given state can transit to the target. Now we force one variable in the
state to be X and perform the ternary simulation on the circuit. If there is no signal in the
target becoming X, the changed variable is actually don’t-care so it can be set to X.
Otherwise, we need to reset the variable to its original value since it is crucial for the
transition. The iteration can be performed for every state variable to find as much
don’t-care as we can. We can call the obtained cube as proof obligation since the whole
cube should be blocked at every frame to prove the safety. Note that this statement

makes sense since the obtained cube of a proof obligation is still a proof obligation.

Lemma 2. All the states in the cube obtained by ternary simulation can transit to its

target. (Only consider the variables in the target.)

13

doi:10.6342/NTU202001451

2.4.3 Recursively Blocking Cubes

Starting from a witness of violation in the last frame, we need to check if it is really
reachable from the initial state. From the previous subsection, we know the reachability
checking only involves the previous frame. If the previous frame is strong enough to
ensure the unreachability, we just add blocking clause to every corresponding frame.
However, if is too weak to refute, we still do not know whether the proof obligation is
reachable or not. If we want to block the proof obligation in this frame, we first need to
block the state in the previous frame that can transit to it. Hence, we extract the
assignment from the SAT solver to form a new proof obligation at the previous frame. If
the blocking of the new proof obligation succeeds, we can go back to the original one
and try to block it again. But if it fails, just repeat the same process at more previous
frames recursively. The extreme case is reaching F{, which means no refinement can be
done anymore and shows the presence of a counterexample. Otherwise, at the end of the
subroutine, all the frames are refined to be strong enough to block the first proof

obligation in the last frame.

(a) When return false. (b) When return true.

Figure 2.2: The depiction of recBlockCubes. The blue rectangle means proof obligation.
The X means unreachable from the previous frame. The arrow means the reachability
checking. The number associated with each arrow means the order to perform.

14

doi:10.6342/NTU202001451

The process is illustrated by Algorithm 3. The most special modification is at line 16
where we push the blocked proof obligation to further frame since it should be blocked
everywhere. Without this setting, the process acts as a depth first search as depicted in
Figure 2.2 where the depth is between the current frame and the last one. In this situation,
a stack is enough to record the trace of proof obligations. However, with this setting,
there will be multiple proof obligations waiting at a frame to be blocked so that we should
arrange more space to record. In addition, an integer block F'rame is introduced to indicate
where the blocking takes place now. If a proof obligation should be blocked at the first
frame, we know a counterexample is found and return false. We always try to block
the proof obligation with the lowest frame throughout the process. When we focus on a
frame, we can pick any of the proof obligation in that frame to block. First we check if
it is already blocked at that frame by simply subsumption or even SAT query. We then
check the reachability relative to the previous frame if the answer is not. If it is reachable
from the previous frame, go to deeper frame recursively. Otherwise, add blocking clause
properly after performing generalization on it. After emptying the task for a frame, go
back to the shallower one. If all the proof obligations are blocked without reaching the
first frame, the first one is really unreachable and true is returned. Last, we introduce the
term bad depth to represent the distance of proof obligation between the last one. The bad
depth of the last proof obligation is 0 since it is exactly the violation of property, while the

bad depth of the rest proof obligations is one more than that of the one producing it.

2.44 Propagating Blocked Cubes

The process to propagate cube is illustrated in Algorithm 4. It is very simple that checking
the reachability at the next frame for every blocking clause in every frame. For the detail
of implementation, we only check the difference between two adjacent frames since the
storage is exactly like that. To check whether the two frames are equivalent, we can just

check if the number of difference between two frames is zero.

15

doi:10.6342/NTU202001451

Algorithm 3: recBlockCubes

Input: Cube badCube, the frame to block f
Output: TRUE or FALSE
Data: An infinite array of set of cubes bad Arr
1 badArr(f].add(badCube)
2 blockFrame <+ f
3 while block Frame < f
4 if blockFrame = 0

5 return FALSE
6 targetCube < bad Arr[block Frame].pop()
7 if not is Blocked(targetCube, block Frame)
8 preCube <— check Reach(targetCube, block Frame)
9 if preC'ube # NULL
10 bad Arr[block Frame].add(targetCube)
1 block Frame < block Frame — 1
12 badArr[block Frame].add(preCube)
13 else
14 addBlockedCube(generalize(targetCube, block Frame))
15 if block Frame < f
16 bad Arr[block Frame + 1].add(targetCube)
17 if bad Arr[block Frame].empty()
18 block F'rame < blockFrame + 1

19 return TRUE

Algorithm 4: propBlockedCubes

Input: The currently maximum frame cur F'rame
Output: TRUE or FALSE
1 for k = 1to curFrame
for all cubes c€ I},
if checkReach(c, k + 1) = NULL
addBlockedCube(c, k + 1)
if Fy = Fiy
return TRUE

2
3
4
5
6
7 return FALSE

16

doi:10.6342/NTU202001451

2.4.5 Other Subroutines

Generalization in PDR means to gain more information from a proof obligation as we can.
The information here is to block larger cube in higher frame, which means to get closer to

the exact reachability. The generalization process roughly contains three phases.

1. Use the final conflict clause produced by SAT solver to remove the literals not
related to the UNSAT proof, which leads to a larger cube and a higher frame. This
procedure is performed in every check Reach, which means it is also activated by

the rest two steps.

2. More eagerly, iteratively check the reachability by ignoring one literal at a time. If
the resulting cube is still unreachable, the literal will be actually removed. Note that

the cube cannot intersect with the initial state, or the criterion of correctness fails.

3. By fixing the cube, check if it is unreachable at further frame until the pushing fails.

Definition 6. A cube ¢; subsumes another one ¢, 1ff all the literals in ¢; are also in cs.

{Illecy C{i]icc)

Subsumption is another basic part in PDR. It is performed at two places.

1. To check a proof obligation is blocked at the frame or not. If it is subsumed by any

of the blocking clause, it has already been blocked.

2. Before adding a blocking clause to the corresponding frame, all the clauses

subsumed by it in that frame are removed to prevent redundancy.

17

doi:10.6342/NTU202001451

Chapter 3

Predicate Extraction

In this chapter, we explain our method, property directed reachability with predicate
extraction. We first describe the problem we observe and how it inspires us to come up
with the solution. Then a simple general method by predicate solving is proposed with
the proof of its correctness. Finally, we give two examples of predicate to demonstrate

the feasibility and efficiency.

3.1 Motivation

Among various implementations of PDR, the final inductive and invariant sets are all
distinct due to the don’t-cares. Although not directly related to the runtime, the number
of clauses somewhat illustrates how efficiently the engine solves the problem. There
may exists many possible inductive invariant sets, so the problem is how to find a proper
one from them with elegant representation of clauses. Hence we collect the inductive
invariant set with the form of clauses for those safe benchmarks. By studying these
cases, we observe that there often exist similarities among the clauses.

6s288r is a classic example depicted in Figure 3.1. For most of the clauses in the
figure, they all share a common part (enclosed in the red box) and only differ by one
literal. Intuitively, if the common part is added during the process, we may save the

effort to prove those clauses. However, at first glance, this kind of pattern seems to tell

18

doi:10.6342/NTU202001451

us that it is a reachable state that hinders the blocking since a cube can be blocked only if

all the states in it are unreachable. That is, in cube (12141, 112142, 12180), a smaller

cube or even a minterm may be reachable so that PDR must avoid to block those states.

(708)
(707)
(708)
(709)
(710)
(711)
(712)
(713)
(714)
(715)
(716)
(717)
(718)
(719)
(720)
(721)
(722)
(723)
(724)
(725)
(7286)
(727)
(728)
(729)
(730)
(731)
(732)
(733)
(734)
(735)
(7386)
(737)
(738)
(739)
(740)
(741)

Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size

Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit
Lit

12140
12140
12140

12171
12173
12175

12141
12141
12141
12141
12141
12141
12141
12141
12141
12141
12141
12141
12141
12141
12141
12141
12141
12141
12141
12141
12141
12141
12141
12141
12141
12141
12141
12141
12141
12141
12141
12141

112142
112142
112142
112142
112142
112142
112142
112142
112142
112142
112142
112142
112142
112142
112142
112142
112142
112142
112142
112142
112142
112142
112142
112142
112142
112142
112142
112142
112142
112142
112142
112142

12180
12180
12180
12180
12180
12180
12180
12180
12180
12180
12180
12180
12180
12180
12180
12180
12180
12180
12180
12180
12180
12180
12180
12180
12180
12180
12180
12180
12180
12180
12180
12180

12141

112142

12205

12199
12452
12556
12560
12704
12706
12716
12725
12730
12732
12741
12743
12751
12753
12761
12764
12766
12768
12773
12775
12777
12784
12786
12787
12792
12802
12807
14200
14201
14202
14293
14319

112223 12554

Figure 3.1: 36 blocked cubes out of the 889 ones in the inductive invariant set of 6s288r.
The number in the parentheses means the index. The numbers after ”Lit” are the IDs of

latch variable. Exclamation mark means the literal is complement.

Surprisingly, by directly set this cube to be the property, we easily prove that the whole

cube is unreachable by PDR itself. It only costs five clauses for the inductive invariant set

within tens of milliseconds. Now the question is why PDR struggles to block the bad states

spreading around the cube by so many clauses instead of only one. (For convenience, we

extend the term bad to describe any state that leads to the violation eventually since the

result is equivalent.) Here we restate the seemingly reachable state as hard-to-block state

and provide a possible reason in the next paragraph.

19

doi:10.6342/NTU202001451

Figure 3.2: The depiction of the similar clause problem. The largest rectangle is the whole
Boolean space. The middle rectangle means the cube as common part. There are many
proof obligations (red spot) spreading around the cube. The gray area denotes that the
state is reachable while the unreachable state in the white area has been blocked. The
left subgraph illustrates what we observe. In order not to touch the lower-left cube, many
blocking clauses are needed to tackle with the blocking. However, there is actually no
such a state, as in the right subgraph. Why not just use a larger clause to represent it?

From the details introduced in the previous chapter, we know that every blocking
clause is generated from a proof obligation. When excluding a proof obligation, we also
block some other states by removing some literals of it in generalization process. A
don’t-care state that is neither reachable nor bad is included in the final result if there is
no proof obligation generalized to block it. Hence, the reachability depends on the
appearance of proof obligation to a high degree. Corresponding to the name, property
directed reachability, the reachability is computed by continuously eliminating the
violation we want to prove. This scheme makes sense since we can just focus on the
point of the problem. However, it sometimes prevents us to make better use of the
don’t-care state. A state can be proven to be unreachable only if all the predecessors of it
have been proven earlier. The hard-to-block state must be don’t-care since it will
eventually be blocked if it is bad. In addition, we know that all the predecessors of it are
don’t-care as well. If any of the predecessors is difficult to be blocked with the guide of
the obtained proof obligation during the procedure, it probably remains reachable until
the end. Therefore, PDR gives up for proving the unreachability of the hard-to-block

state immediately without digging into the proof recursively just because it is not a bad

20

doi:10.6342/NTU202001451

state. Consequently, PDR tends to block around the hard-to-block state since it cannot

assure that it is unreachable, which leads to that many similar clauses.

DC

Figure 3.3: The depiction of the reason for the similar clause problem. I, R, DC, !p,
'P means the initial state, the reachable states, the don’t-cares, the violation of property
and the bad states, respectively. As the left subgraph, an inductive invariant set must
include R and exclude !P. For the right subgraph, in order to block the bad states, two
blocking clauses are involved (blue and orange). During generalization of them, they all
want to include the brown states. However, the predecessor of the brown state has little
connectivity to the property. Hence, PDR fails to prove their unreachability continually.

The inspiration for us is straightforward. If we can force the procedure to prove for
some property more eagerly, we can make better use of the don’t-care states to find a
more efficient and elegant clause representation. Hence we let the procedure solve the
candidate separately if they find something weird, just as what we human beings do. If
it really helps, the obtained information can be used to help the original main procedure.
Now, two phases are needed, including how to extract some patterns as predicate to solve

and how to get information from it.

3.2 General Method and Correctness

As shown in Algorithm 5, the procedure is very simple. Given a predicate as any form
to represent an assumed property, we start another PDR procedure with resource limit to
work on it. Note that the procedure is activated without predicate solving to ensure the
completeness. The resource limit is determined by the number of SAT query to indicate

the effort PDR has spent. We can modify L in accordance with how much feedback we

21

doi:10.6342/NTU202001451

expect to get from it. The procedure terminates if the answer is proved or the resource limit
is used up. If the result is safe, we can collect the inductive invariant set. Otherwise, we
can still get £, from it. For both case, we obtain an inductive set containing only clauses.
Then we directly merge it back to the F, of the original main procedure. The merge is
trivial for two CNF since they basically do nothing except for some detailed checking like
subsumption. After finishing the solving, PDR turns back to what it does previously and

just go on without preparing anything for the correctness.

Algorithm 5: solvePredicate
Input: Predicate p’ and the limit for SAT query L
Output: None
Set SAT query limit to L
result < pdr Main(M, p')
if result = safe
ind < collectIndInv()
else // violated or unknown
ind < getInfFrame()
Foo+ Fo Nind

N SN B AW N =

Theorem 3. Property directed reachability with predicate solving is sound.

Proof :
1. Property 1 and 5 are not related to this modification and hold trivially.

2. The merged set ind is composed of clauses and does not exclude the initial state so

that Property 2 and 3 still hold.

3. By following the proof for Theorem 2, we show that Property 4 holds.

ind 1s inductive itself so that inductive relative to F,,

Fo(S)Nind(S) ANTr(S,S") —ind(S) ANTr(S,S") —ind(S")

Then it just means to add a set of clauses instead of only one.

The 5 properties still hold with the aid of predicate solving. The algorithm is sound. W

22

doi:10.6342/NTU202001451

3.3 Two Kinds of Predicate

We have introduced how to extract information from the predicate. It can be performed
on predicate of general form. The rest problem is how to find an effective predicate. More
precisely, we want to find the predicate within reasonable time compared to how much it
gains for us. However, there should not be too much expectation on a single predicate, the
improvement is probably established on a wide search. It may be good to spend less time
for each checking to find a series of candidates no matter how useful they are.

In the following subsections, we provide two examples that can be easily identified
during the solving process. Both of them are expressed by cube since the calculation
only involves the essential components of PDR without doing further modification. It is
worth mentioning that PDR can be seen as breaking the entire problem into small pieces
without handling the whole timeframe at a time. What we do is to observe that whether
PDR encounters obstacles during the last period of time. If it solves for a similar problem
for a while, we can just make an assumption on that part to help PDR conquer it. Then
we expect an improvement by smoothing the solving process with the aid of these local

information.

3.3.1 Blocking Clause

As being the problem we mentioned, the first example is to eliminate the similar clauses.
Algorithm 6 illustrates the way to identify the candidates. We introduce two parameters
to guide how to find the candidates, including Backtrack number (B) and Match number
(M). Generally, each frame can be associated with different value of these two numbers.
Backtrack number means how many clauses in the corresponding frame is backtracked
to be considered from the last one. If the size of the frame is less than B, just take the
whole frame into consideration. findCommon can be composed of any rule to find the
common part to solve. Here we just handle the case that there is only one difference of

literal between two clauses just as what we encountered. The number of occurrence of each

23

doi:10.6342/NTU202001451

common part is recorded in a structure. Match number serves as a threshold. The candidate
is picked only when it occurs more than or equal to M times. Note that the returned set
can contains no or more than one cube. In our implementation, this subroutine is placed

after every addBlockedC'ube then solve Predicate is activated for every candidate.

Algorithm 6: findClsPredicate
Input: A blocked cube c and the frame £ to block it
Output: A set of cubes
Data: A map candM ap from cube to unsigned number
size < | Fy|
B, M «+ getParam(k)
n < min(size, B)
for ¢ in the last n cubes € F},
common <— findCommon(c,c)
if common # NULL
// By default, every cube maps to 0
candM ap[common] < cand M ap[common] + 1
return {c | candMap[c'] > M}

—

o 0 N N A W N

Size=3,Lit=112126 112134 14161

Size=4,Lit=12126 12142 12180 14161

Size=4,Llit=12141 112142 12180 14161

Size=4,Lit=12126 12142 12180 14162

Size=4,Llit=12141 112142 12180 14162
4 | Size=3,Lit=112126 112134 14160

Size= 4, Lit=12126 12142 12180 14160
Size= 4, Lit=[12141 112142 12180/14160
Size= 3, Lit = 112126 112134 14164

B=10] | size=4,Lit=12126 12142 12180 14164
Size= 4, Lit=[12141 112142 12180|14164 M=2

Size= 3, Lit=112126 112134 12556 12141 112142 12180:3
112142 12180 12556:1 X

Size= 4, Lit =12126 12142 12180 12215

Size= 4, Lit=[12141 112142 12180/12215
Size= 4, Lit =12126| 112142 12180 12556/
Size= 4, Lit=12141 112142 12180 12556

Figure 3.4: An example for clause-based predicate. After adding the cube to its
corresponding frame, only the last several cubes are considered to find the common part.
There may be multiple common parts, but only the ones occurring more than the threshold
are picked.

24

doi:10.6342/NTU202001451

3.3.2 Proof Obligation

For some cases, all the proof obligations for them share a common part. The common part
here means the intersection of literals and we collect them to be a cube. Firstly, we set the
negation of the cube as the initial state and keep the original property. For some cases, it is
still safe, which means all of the bad states really locate in that cube. However, if we keep
the initial state and set the cube as the property. They are easily proved to be violated,
that is, not all of the reachable states locate in the negation of that cube. In Figure 3.5, we

show the possible distribution of reachable and bad states.

Figure 3.5: The possible distribution of reachable and bad states for similar obligation
problem. The lower-right rectangle means the cube of shared literals. The difficulty of
this kind of problem is probably to show that the reachable states do not intersect with the
bad states in this cube.

The global constraint is too loose to represent a useful information. It turns out that
local information makes sense again. We present the procedure to collect the common
part in Algorithm 7. A set of cube and a counter are kept globally since the result
becomes available after a period of accumulation. At each time of collection, the counter
increases by one to indicate that one more proof obligation is considered. Furthermore,
we continuously compute the common part by the given obligation. However, we do not
return predicate in this subroutine. This is not like the case for blocking clause that the
candidate can be produced at every query to find predicate. Algorithm 8 demonstrate
when and how to use obligation as predicate. The collection is performed when the proof

obligation is shown to be not blocked by this frame. After checking the reachability, we

25

doi:10.6342/NTU202001451

check the availability of predicate only if the obligation can be reached from the previous
frame. We introduce a parameter called Obligation threshold (7°) here. If the cumulative
number of obligations exceeds 7T', we collect the common part as a cube to be predicate if
it is not empty. After checking the predicate, we reset the cumulative number and

continue to block cube recursively.

Algorithm 7: findOblPredicate
Input: A proof obligation o
Output: None
Data: A set of literals common and an unsigned number numObl
(Keep globally. By default, common = &, numObl = 0)

1 numObl + numObl + 1
2 if numObl = 1
3 common <+ {l |l € o}
4 else
5 common < commonN{l|l € o}
Obligation Common Part # Obligation Predicate
—— <«— Check (T=3)
ab'cf —— ab'cf 1 X
v
b'cde’'f — b'cf 2 NULL
B «— Check (T=3)
abbcd — b’ c 3 X
b'cde — b'c 4 b'c
—— «— Check (T=3)
abcde — abcde 1 X
v
a'cdfg — cd 2 X
v
a’de’'f — None 3 NULL

-- <«— Check (T=3)

Figure 3.6: An example for obligation-based predicate. At each beginning, all the literals
are collected. During the process, intersection is performed to pick up the sharing literals.
At the time to check, if the cumulative number of obligations is still smaller than the
threshold or there is no common part during this period, NULL is returned to disable the
predicate solving; otherwise, a cube is returned as a predicate by gathering the rest literals.

26

doi:10.6342/NTU202001451

Algorithm 8: recBlockCubes

Input: Cube badCube, the frame to block f
Output: TRUE or FALSE
Data: An infinite array of set of cubes bad Arr

1 badArr|f].add(badCube)
2 blockFrame < f
3 while block Frame < f

4

o e 9 &N W

10
1
12
13
14
15
16
17
18
19
20
21
22
23

if blockFrame = 0
return FALSE
targetCube < bad Arr[block Frame].pop()
if not is Blocked(targetCube, block Frame)
findObl Predicate(targetCube)
preCube < check Reach(targetCube, block Frame)
if preC'ube # NULL
bad Arr[block Frame].add(targetCube)
block F'rame < blockFrame — 1
bad Arr[block Frame].add(preCube)
if numObl >T
if not common.empty()
solve Predicate(toCube(common), L)
numObl <0
else
addBlockedCube(generalize(targetCube, block Frame))
if blockFrame < f
bad Arr[block Frame + 1].add(targetCube)
if bad Arr{block Frame].empty()
block F'rame < block Frame + 1

24 return TRUE

27

doi:10.6342/NTU202001451

3.3.3 Recap for 6s288r

In this subsection, we provide more details about 6s288r that serves as the example in
Section 3.1 by the following figures. Although the real cause of this phenomenon still

needs to be verified, these facts can be seen as clues for the final answer.

Check: frame = 3, BadDepth = 8, Size = 178, Lit = !12126 12128 12129 !12130 !12131 12132 12134
112135 12137 112138 12139 112140 12141 !'12142 !'12160 !121el !121e2 121€4 !121e6 !121e8 112170
112172 112174 112179 12180 !12184 12185 !'12186 112189 12150 !12192 112194 12195 112197 112199
112200 112201 12203 !'12205 112206 112207 112208 12215 12316 12320 12324 12326 12332 112336
112337 1123368 112339 112340 112341 !'12342 112343 112344 112345 112346 112347 112345 112349
112350 112351 !'12352 112353 !12354 !'12355 !'12356 !12357 !12358 !12359 !'12360 !12361 !12362
112363 112364 !'12365 !12366 !12367 !12368 !'12369 112370 !12371 !'12372 12445 !'12452 12453
'12454 112455 12458 !'12530 12537 12545 12550 !'12553 12555 12556 !12558 !12€77 !12678 12711
112726 12742 12756 12769 12778 !'12788 !12793 12807 !'13095 !13101 !'13102 !13104 !'13106 !13107
'1310% !13110 !'13111 !'13112 !13113 !'13114 !'13115 !13116 !13117 !'1379%1 137%9 !'13809 13819 13829
135835 138495 !13859 13869 !13879 !13885% 13%05% 13941 !13551 !13%61 13971 139%61 !13%51 !14001
14011 14021 !'14031 14041 14051 !14060 1409%1 !'14101 14111 14121 !'14131 14141 14151 14161 14171
14181 14201 !'14211 !14240 !14241 !'14242 114299 114300 !14301 !'14302 !14303 114304 114305
114307 !'14306 !'14309 !14310 !14311 !'1431z2

UNSAT generalization: frame = 3, Size = 4, Lit = 12141 !'12142 12180 14201

Check: frame = 2, BadDepth = 8, Size = 92, Lit = !12126 12128 12129 !12130 !12131 12132 12134
112135 12137 112138 12139 112140 12141 !'12142 !'12160 !121e€l !121e2 !121e¢4 !12lee !121e8 112170
112172 12174 112179 12180 !12184 12185 !12186 !12185 12190 121%2 !'12194 12195 112197 1121689
112200 112201 '12203 112205 112207 !'12208 12215 12316 12320 12324 12328 12332 112336 !1244¢
112447 112448 '12449 112450 !12451 '12452 12453 '12454 112455 !12530 12537 12545 12548 112556
112677 !12678 !'12681 !'12683 !12697 12708 12716 12732 112743 12751 12753 !12775 '12786 112789
'12802 !12807 !'13098 !13101 !13102 !'13106é !13107 !13108 !13115 !'13117 !'13791 !14240 !14241
114242 114259

UNSAT generalization: frame = 2, Size = 4, Lit = 12141 !'12142 12180 12753

Check: frame = 3, BadDepth = 8, Size = 123, Lit = !'1212¢ 12128 12129% !12130 !12131 12132 12134
112135 12137 '12138 1213% 112140 12141 !'12142 !'121e0 !121el !121e2 12164 !121e6 !'12168 !12170
112172 '12174 !'12179% 12180 !12184 12185 !'1218% 12150 12152 !121%4 121%5 112187 !1218% 112200
112201 112203 12205 112207 !'12208 12212 112215 12222 1222¢ 12230 12234 12237 12240 12243
12246 12250 12253 12256 12259% 12262 12265 12268 12271 12274 12277 12280 12283 12286 12289
12292 12295 12298 12301 12304 12307 12310 12313 12317 12321 12325 12329 12333 112336 112408
11244¢ 12447 12445 12445 12450 112451 112452 12453 112454 112455 112530 12537 12545 12548
112556 112677 !12678 !12681 !12e83 !12657 !12706 112708 12730 12743 112751 112753 112770
112780 !12786 !'12802 !12807 !13098 !'13101 !'13102 !13104 !'13106 !'13107 !13115 !13117 !'13791
114240 114241 114242 1142899

UNSAT generalization: frame = Inf, Size = 4, Tit = 12141 112142 12180 12743

Figure 3.7: The proof obligations leading to the similar clauses. ”Check” means to block
proof obligation in recBlockCubes and the number after frame” is the frame to block
it. The blocked cube after "UNSAT generalization” with the frame to add it is generated
after successfully blocking a proof obligation. Note that the three examples are not under
computation in a row, we just collect them together to present. Most of these proof
obligations have bad depth equal to 8, and the rest small portion with 14 or 16. We know
that these proof obligations locate in the 8th steps from !p. Furthermore, they all share
a common part but different for the rest literals and even the length. We then guess that
these proof obligations describe a similar scheme of possible violation. Limited by the
reachability, PDR has difficulty blocking them all at a time.

28

doi:10.6342/NTU202001451

12141: 12126 12132 12140 12141 12142 12143 12144 12145 12146 12147 12146 1214% 12150 12151 12152
12153 12156 12157 12158 12176 12181 12186 12191 12192 121%6 12197 12202 12203 12209 12210 12214

12142: 12126 12132 12140 12141 12142 12143 12144 12145 12146 12147 12146 12145 12150 12151 12152
12153 12156 12157 12158 12176 12181 12186 12191 12192 121%6 12197 12202 12203 12209 12210 12214

12180: 12126 12132 12134 12140 12141 12142 12147 12148 1214% 12150 12151 12152 12153 12156 12157
12158 12176 12180 12181 12186 12191 12192 12196 12197 12202 12203 12209 12210 12214

Figure 3.8: The cone of 12141 !12142 12180. The variables (latch ID) after the colons
are the respective cone of these three latches. A variable is in the cone iff the function
of the latch is dependent of this variable. We can see that the cone of these three latches

are similar, and the distribution of variables locates in a range smaller than 100 (12126 ~
12214).

12452: 12126 12132 12134 12140 12141 12142 12147 12148 12149 12150 12151 12152 12153 12154 12155
12156 12157 12158 12162 12164 12lee 12168 12170 12172 12174 12176 12181 12186 12181 12152 1219¢
12197 12202 12203 12209 12210 12214 12452

12556: 12128 12125 12205 12556

12560: 12128 12125 12134 12138 12160 12154 12199 12200 12205 12206 12207 12213 12223 12550 12551
12552 12553 12554 12560

12786: 12126 12128 12129% 12130 12131 12132 12134 12581 1278¢

12787: 12128 12125 12134 12205 12550 12551 12553 12555 12556 12557 12558 12559 12560 12561 12562
12563 12564 12698 12767 12788

127%2: 12128 12125 12134 12205 12550 12551 12553 12555 12556 12557 12558 12559 12560 12561 12562
12563 12564 12698 12782 12753 12794

Figure 3.9: The cone of the literal along with 12141 112142 12180 in Figure 3.1. We just
take 6 out of them to present. These latches are not necessarily related to 12141, 12142
and 12180, but they all depend on itself.

We have not found a strong evidence to show the cause of the similar clause problem.
We just make a guess based on these observations. In the following three figures, the
reason that the clauses with 12141 12142 12180 can be added is by the help of the clauses
added before them. This is because the proof obligation generates the others so that we
know it is not able to be blocked initially. For the three situations, the first added clause
cannot be enlarged anymore. (Become Tautology, 12142 12180, 112126 112134) We then

guess that it is this limit that prevents PDR from removing the literal during generalization.

29

doi:10.6342/NTU202001451

Check: frame = 1, BadDepth = 8, Size = 96, Lit = 112126 12128 12129 !12130 112131 12132 12134
112135 12137 !'12138 12139 !'12140 12141 !'12142 !'121¢0 !1216l !'12162 !'121e4 !121e6 !12168 !12170
112172 12174 !'1217% 12180 !12184 12185 !12186 !12189% 12150 12152 !1219%4 12155 !121%% !12200
112201 112205 !'12207 112208 12215 12221 12316 12320 12324 12328 12332 12337 12410 !12447
112448 112449 112450 112452 12453 112454 112455 12458 12494 12531 12537 12545 12548 112556
112677 '12678 !12681 !'12697 12708 12716 !12730 !12732 !'12743 112751 112753 !'12761 !12764
12766 112773 12775 112784 !12786 !12802 !12807 !130%8 !13101 !13102 !13104 !13106 !13107
113115 113117 !'13751 !'14240 !14241 114242 114285

UNSAT generalization: frame = 1, Size = 1, Lit = 12716

Check: frame = 2, BadDepth = 8, Size = %6, Lit = !12126 12125 1212% !12130 !12131 12132 12134
112135 12137 112138 1213% 112140 12141 !'12142 !'121¢0 !121e6l !12162 !121e4 !12l1e6 !121e8 112170
112172 12174 '1217%9 12180 !'12184 12185 !'12186 !12189 12190 12192 !'121%4 12195 !'1219%% !12200
112201 112205 !'12207 !'12208 12215 12221 12316 12320 12324 12328 12332 12337 12410 !12447
112448 112449 !'12450 112452 12453 !'12454 112455 12458 12454 12531 12537 12545 12548 112556
112677 112678 !12681 112697 12708 12716 112730 112732 112743 112751 112753 !'1276l1 !12764
12766 '12773 112775 '12784 !'12786 !12802 !12807 !'13098 !13101 !13102 !'13104 !'13106 !13107
113115 113117 !'13791 !'14240 !14241 !14242 !14285

UNSAT generalization: frame = 2, Size = 4, Lit = 12141 !12142 12180 12716

Figure 3.10: Blocking procedure for the similar clauses (1). The actions of blocking in
these three figures take place in arow. Although in the presented situations, the last literals
are the same (12716, 12766, 12743), actually there exists the case that does not follow this
regularity. In this figure, the two blocking clauses are generated by one proof obligation
at different frames.

Check: frame = 2, BadDepth = 9, Size = 105, Lit = 12126 12128 1212% !12134 12135 12137 !'12138
12139 !12140 '12141 12142 !'12160 !12161 !12163 !12165 112167 !1216% !12171 !12173 12175 !'12179
12180 !'12184 12185 !12186 !12189 12190 12192 !1219%4 12195 112197 !1219%% !12200 !'12201 !'12203
112205 112207 '12208 12215 '12336 !12446 !'12447 112448 112449 112450 112451 112452 12453
112454 112455 112530 12537 12545 12549 112556 !12677 !12678 !12697 12708 12716 12732 112743
12751 12766 112773 '12775 !'12784 112786 112789 112802 112807 !12822 !13043 !130958 !'13101
113102 '13106 !'13107 !'13108 !13109 !'13110 !13111 !13112 !13113 !13114 !13115 !13116 !13117
113751 114240 '14241 '14242 114299 !'14300 !14301 !14302 114303 114304 114305 !14307 114308
114308 !14310 !'14311 !'14312

UNSAT generalization: frame = 2, Size = 3, Lit = 12142 12180 12766

Check: frame = 3, BadDepth = 9, size = 105, Lit = 12126 12128 12129 !12134 12135 12137 !12138
12139 112140 112141 12142 !'12160 !121el !12163 !'121e5 !12167 !121€%9 112171 112173 12175 112179
12180 !12184 12185 !'12186 !12189 12150 121%2 !1219%4 12195 112197 !1219%% !'12200 !12201 112203
112205 112207 '12208 12215 !12336 !12446 !12447 !'12448 112449 '12450 !12451 !'12452 12453
112454 '12455 !12530 12537 12545 12549 112556 !'12677 !12678 !'12697 12708 12716 12732 !12743
12751 12766 !12773 !'12775 !'12784 !'12786 !12789 !'12802 !12807 !'12822 !13043 !13098 !13101
'13102 !'13106 !'13107 !'13108 !13109 !13110 !'13111 !'13112 !13113 !'13114 !'13115 !'13116 113117
113791 !'14240 !'14241 114242 114295 !14300 !14301 !14302 114303 !'14304 !14305 !14307 !14308
114309 !'14310 !14311 !14312

UNSAT generalization: frame = 3, Size = 4, Lit = 12126 12142 12180 127&6

Check: frame = 3, BadDepth = 8, Size = 93, Lit = !12126 121285 12129 !12130 !12131 12132 12134
112135 12137 112138 12139% !'12140 12141 112142 !'12160 !121el !'12162 !121e64 !12le6 !121e8 !12170
112172 12174 112179 12180 !'12184 12185 !12186 !12185% 12190 121%2 112194 12195 112197 112199
112200 112201 '12203 112205 112207 112208 12215 1231e 12320 12324 12328 12332 112336 !1244¢6
112447 112448 '12449 112450 112451 !'12452 12453 '12454 112455 112530 12537 12545 12548 11255¢
112€77 '12e78 !'12681 112697 12708 12716 12732 112743 12751 12766 !12773 112775 '12784 112786
112789 112802 !'12807 !'13098 !13101 !'13102 !'13106 !13107 113108 !13115 !'13117 !'13791 !14240
114241 '14242 114299

UNSBET generalization: frame = 4, Size = 4, TLit = 12141 !'12142 12180 12766

Figure 3.11: Blocking procedure for the similar clauses (2). In this figure, the above two
proof obligations are the same, and the third is the one generating it.

30

doi:10.6342/NTU202001451

Check: frame = 2, BadDepth = 10, Size = 119, Lit = !'12126 !12128 !12134 112135 12137 '12138
1213% 112140 !'12141 12142 !12160 !'12161 !12163 12165 !12167 !12169 !'12171 !12173 !'12175 !'12179
12180 !'12184 12185 !12189 12190 121%2 !'12194 12195 !'12197 112199 112200 !'12201 112203 112205
112207 112208 12212 112215 12222 12226 12230 12234 12237 12240 12243 12246 12250 12253 12256
12259 12262 12265 12268 12271 12274 12277 12280 12283 12286 1228% 12292 12295 12298 12301
12304 12307 12310 12313 12317 12321 12325 123295 12333 !12336 112408 !12446 12447 12448 12445
12450 112451 !'12452 12453 112454 !'12455 112530 12537 12545 1254% 112556 !12677 !12678 !12683
112697 112706 112708 12730 12743 112751 112753 112770 112780 !12786 !'12802 112807 113043
113096 113099 !13101 !'13102 !13105 !13106 !'13107 !13115 !'13117 !'13791 !'14240 !14241 !'14242

UNSAT generalization: frame = Inf, Size = 3, Lit = 112126 !'12134 12743

Check: frame = 3, BadDepth = %, Size = 120, Lit = 12126 12128 12129% !12134 12135 12137 !'12136
12139 112140 !12141 12142 !'12160 !12161 !'12163 12165 !12167 112169 112171 !'12173 !12175 112179
12180 !12184 12185 !'12168% 12190 1219%2 !1219%4 121585 !'12197 !12199% 112200 !'12201 !'12203 112205
112207 '12208 12212 112215 12222 12226 12230 12234 12237 12240 12243 12246 12250 12253 12256
12259 12262 12265 12268 12271 12274 12277 12280 12283 12286 12289 12282 12285 12298 12301
12304 12307 12310 12313 12317 12321 12325 12329 12333 112336 112408 !12446 12447 12448 12449
12450 112451 112452 12453 112454 112455 !12530 12537 12545 12549 112556 !'12677 !'12678 !12683
112697 112706 112708 12730 12743 '12751 112753 12770 '12780 !'127686 !12802 112807 !13043
1130968 !13099 113101 !13102 !'13105 !13106 113107 !13115 !13117 !13791 114240 114241 !14242

UNSAT generalization: frame = Inf, Size = 4, TLit = 12126 12142 12180 12743

Check: frame = 3, BadDepth = 8, Size = 123, Lit = !1212€ 12128 12129 !'12130 !12131 12132 12134
112135 12137 112138 12139 !12140 12141 !'12142 !121e0 !1216l !121e2 12164 !12l1ee !12168 !12170
112172 112174 !'12179 12180 !12164 12185 !1218% 12190 12162 112194 12165 112197 !'1219%% !12200
112201 !'12203 !12205 !'12207 !12208 12212 112215 12222 12226 12230 12234 12237 12240 12243
12246 12250 12253 12256 12259% 12262 12265 12268 12271 12274 12277 12280 12283 12286 12289
12252 12295 12268 12301 12304 12307 12310 12313 12317 12321 12325 12329 12333 !12336 112408
112446 12447 12448 12449 12450 '12451 112452 12453 112454 112455 112530 12537 12545 12548
112556 112677 !12678 !'12681 !12683 112657 !12706 !12708 12730 12743 !'12751 112753 112770
112780 !'12786¢ !12802 !'12807 !130%6 !13101 !13102 !'13104 !13106 !13107 !13115 !13117 !'13791
114240 114241 114242 114299

UNSAT generalization: frame = Inf, Size = 4, Lit = 12141 !'12142 12180 12743

Figure 3.12: Blocking procedure for the similar clauses (3). In this figure, the upper proof
obligation is generated by the lower one. That is, the second generates the first and the
third generates the second.

We further make an informal conclusion here. For the case of 6s288r in this subsection,
we know that there also exists regularity for the proof obligations. However, since the
proof obligation related to this phenomenon does not appear in a row, we cannot get the
common part by our checking method. On the other hand, after the blocking clause is
added to the frame, we can observe the similarity from the clauses. Hence, sometimes
these two kinds of predicate may be complementary for each other, but it still needs more

modification to achieve a balance of cooperation.

31

doi:10.6342/NTU202001451

Chapter 4

Implementation

In this chapter, we describe our model checking environment called ”Ia2b” briefly. We

also introduce what optimizations are applied in the engine to make it more efficient.

4.1 The Model Checking Environment

For the research of this thesis, we implement a model checking environment called
”la2b”. It contains compilation environment, command line interface, AIG network
structure, simple simplification methods and various model checking algorithms.

The compilation is very trivial that every sub-directory under the source directory
serves a module. Every compilation unit in each module is compiled to an object file,
then all the object files are gathered to form a static library. The dependency simply
follows the hierarchy mentioned above.

A basic command line interface is provided to facilitate the use of model checking
engine. It is not as powerful as the mature shells like Bash at all, but is enough for the
experiment. In addition to the fundamental string manipulation, the auto completion for
command token, option and name of files is available. We support variadic length of
tokens for command. Furthermore, for each token, the corresponding utility will be
invoked as long as the mandatory part of it is satisfied. That is, we do not need to type

full string for the command. Moreover, signal handling is also supported. For example,

32

doi:10.6342/NTU202001451

the command line will be arranged to the settings at the time the process is paused when
restoring, or the position of the characters will be changed to follow the window size.

We only support And Inverter Graph (AIG) for the network structure to follow the
benchmarks in HWMCC [26, 27]. That is, there are only five gate types in the network,
including constant zero (Const0), primary input (PI), latch (Latch), primary output (PO),
and AND gate (And). In addition, some basic logic minimization methods like
[28, 29, 30] are included though they are not activated in the experiment.

In addition to PDR, another engine like BMC, IND and IMC are also implemented,
but we will not focus on them here. The implementation of our PDR basically follows
the description in [18]. We simply introduce some main data structures we use and the
optimization is presented in the next section. Figure 4.1 depicts the memory arrangement
of cube for PDR. This structure is used by both proof obligation and blocking clause. All
the information is collected to store in a chunk of memory that is continuous. Bad depth
and the previous proof obligation are only meaningful for proof obligation and are
wastes for blocking clause. Signature for subsumption is the method proposed by [31].
There are two Boolean flags for miscellaneous purpose. Reference count is to record
how many places hold the address of this chunk of memory. Once the counter decreases
to be zero, the occupied memory should be released since no one can access it anymore.
Number of literals is kept in order to define the boundary of the literals after it. This
array-like memory allocation for a series of literals comes from MiniSAT [6]. However,
we do not explicitly employ memory management to allocate all the cubes together.
Instead, we just use the built-in allocation utility from C++ to request and return the
memory. Besides, the structure for the frames is simply vector of vector of cube. F is
always kept to be the last element. This linear storage is convenient for iteration and is

actually not so inefficient for deletion of subsumed clauses.

33

doi:10.6342/NTU202001451

Flagl Flag2 Reference Count

Literals
T
|
Bad Previous Signature . .
Literal 1t Literal
Depth Proof Obligation For Subsumption erais rera
Bytes 4 8 8 11 2 4 4

Figure 4.1: The memory arrangement for cube of PDR.

4.2 Optimization and Other Things We Tried

In this section, we introduce different implementation techniques for every part of PDR

and discuss about their efficiency.

4.2.1 Subsumption

Although subsumption checking is a very simple task, but it is performed for a great
number of times throughout the process. We need to check subsumption for every
blocking clause before either blocking a proof obligation or adding a new blocking
clause. That is, as the number of blocking clause grows, the overhead of subsumption

increases dramatically. The following are a series of methods to check if ¢; subsumes c,.

1. The most trivial method is to iterate over ¢, for every literal in c; to check if it is in

2. The complexity is |1 | X |ca].

2. For the rest methods, we use some rules to do early break on the checking. The use
of signature is proposed by [31] to record the existence of a literal to a specific bit
in a number. Before doing the detailed checking, we first check the sizes and the
signatures to filter the apparently failed cases. For the cubes, we maintain that they
are sorted. If we find that a literal in ¢, is at a position of c¢,, the literals of ¢; behind
that must locate after that position in ¢, if the subsumption holds. This results in a
linear checking procedure since we just need to iterate over ¢, for one time without
going back again. The complexity is |ci| + |c2| and we adopt this method in our

implementation.

34

doi:10.6342/NTU202001451

3. Consider that the size of proof obligation is often much larger than that of blocking
clause. We can use binary search to check if a literal in ¢; is in ¢, since we assure

the cube is sorted. The complexity becomes |c; | xlog|ca|.

4. As in [31], the subsumption checking can be generalized to be a self-subsumption
one. However, this introduces an overhead that cannot be ignored. This is because
there are more literals being processed by self-subsumption checking due to its
looser criteria. When the subsumption is sure to fail, they are still possible to be
self-subsumption. Since we just need pure subsumption here, so the general

process for self-subsumption is discarded.

4.2.2 Ternary Simulation

Ternary simulation plays an important role for efficiency of PDR because of not only the
effect to maximize the proof obligation but also the runtime taken by it. Hence, it is
important to reduce the overhead of it without sacrificing the quality. In the following,
we introduce several kinds of method and the last two have not been verified by

implementation yet.

1. The ternary value is encoded by two bits and the transition of an AND gate follows
the method in MiniSAT 2.2.0 [32]. We encode the result in a magic number in
advance and use bit shift to get the answer based on the two inputs. This is actually
equivalent to a 3x 3 look-up table. For the most straightforward method, we do the
normal simulation in the topological order. We collect the cone related to the target
first and the latches not in the cone are trivially don’t-care. Then we do constant
propagation based on the value of primary inputs since we will not modify these
values during the process. By doing these two steps, we can reduce the number of

gates to simulate massively.

2. Since we only modify the value of one latch at a time, the influence may not transit

to a wide range. Event-driven simulation here is a good choice to only simulate the

35

doi:10.6342/NTU202001451

gate in need. An event is that we need to re-simulate a gate due to the change of
any of its inputs. We still need to collect the cone of target to eliminate the latches
trivially don’t-care and to prevent the event from spreading out of the cone. We

adopt this scheme thanks to the balance of runtime and quality.

. Backward simulation is very fast since its complexity is only linear to the size of the
cone. First we assign the value of every gate in the cone by performing simulation
once or extracting from the SAT solver. Then we backward mark the set of don’t-

care based on the following rules from the target.

(a) If the output is 1, both of the inputs must be also 1s and should be kept.

(b) If the output is 0 and the input combinations is either (0, 1) or (1, 0), we can

keep the value 0 and mark the other input with value 1 to be don’t-care.

(c) Ifthe output is 0 and both of the inputs are also Os, we can pick one of the inputs

to keep the value and mark the other to be don’t-care.

Note that the mark of don’t-care is dominated if the value is mandatory for another
part of circuit. After one traversal, we can directly remove the latches that are really

don’t-care.

. The cube in the original PDR can only contain state variables. This scheme
sometimes increases the number of blocking clause like representing XOR gate.
An idea is to use the internal signal of the circuit in the cube to represent the state.
This does not mean to find a cut for representation, but to use different set of gates
in different cubes. Note that the used gate cannot be related to any primary input,
that is, the cone of it can only contain latches. If it does contain any primary input,

the semantics for state representation is broken.

. The last method uses SAT instead of ternary simulation. First we make an
assumption on the negation of the target. We then make assumptions on the

assignment of primary inputs and latches. The query must be UNSAT so that we

36

doi:10.6342/NTU202001451

can pick the literals in the final conflict clause that are enough for the target. Note
that this method cannot be applied before normal ternary simulation since there

may exists don’t-care at the target after this checking.

423 SAT Query

SAT query takes most of the runtime in PDR. Although one query is simple compared to
that of the other model checking algorithm, there are plenty of SAT queries in one run of
PDR. We focus on how to reduce the runtime of SAT in each query instead of the
number of queries since the latter one is too hard to predict.

SAT solver itself is used as a black box in our implementation since we choose to use
powerful open-source libraries instead of customization. We try a series of similar
solvers including MiniSAT 1.14 [32], MiniSAT 2.2.0 [32] and Glucose 3.0 [33], where
the latter is an improved version of the former. It is not surprising that Glucose performs
the best thanks to its ability to solve SAT so that we adopt it in our implementation.

How to convert the constraints of circuit to CNF that is recognized by SAT solver is
another problem that has a great effect on the performance. The basic procedure follows
[34] to introduce a new variable for each internal signal. It is simple and fast to convert
but too fundamental to be efficient for SAT solving. On the other hand, there are various
techniques aiming at reducing the size of CNF [35, 36, 37, 38]. Although the size of
CNF is not directly related to how difficult an SAT instance is, the improvement from
these techniques are supported by the experiment in their papers. For simplicity, we just
adopt Tseitin transformation in our implementation.

Another important part is to reduce the overhead stemming from the old information
accumulated during the process. We heavily rely on the incremental feature of SAT
solver to reuse one solver for multiple queries. If we do not make the clause database
more clear and simple intentionally, there are more and more redundant constraints kept
in the solver. As indicated by [39], ABC [40] uses a smart conversion scheme to only

add the part of circuit related to the current solving. Since the SAT query often involves

37

doi:10.6342/NTU202001451

a small portion of latches in each round, this scheme can prevent the overhead of
Boolean constraint propagation (BCP) from the unused clauses a lot. Moreover, the
concept is also applicable to the clauses in each frame. The SAT query usually involves
only the frames close to the last one, so there is no need to always keep all the clauses in
the solver. Actually the smart conversion scheme works by the help of solver recycling.
We recycle the solver for a number of queries to reset the data and state in it. This action
is originally designed to reduce the overhead from the unused activation variables [18]
since we frequently add new variable to enable a temporary clause. Hence, we initially
set the number of unused variables to be the threshold to recycle. However, with the
above conversion scheme, it turns out that the improvement mainly comes from the
concise clause database. Therefore, we modify that using the exact number of SAT
queries to be the threshold.

As suggested by [39], we can apply approximate SAT solving for PDR. From the
experiment, the cost of satisfiable case is often more expensive than the unsatisfiable one
[18]. In addition, for most of the time, only the unsatisfiable answer is meaningful for us
to drive the proof. Hence, we can set a resource limit on one SAT query before solving
and just see the aborted case as a satisfiable one. In [39], the authors use a static number
100 to limit the number of decisions and achieve an improvement. Our method is to
record the maximum number of decisions for all the unsatisfiable calls so far and use
1.5x of this value as the bound. We also observe an improvement in the experiment but
does not include this technique in the presented result. Note that the approximate solving
cannot be applied at the call that we really need the assignment from the satisfiable call
like check Reach.

Similar to the case of PDR, it also takes many SAT queries to construct a
Functionally Reduced AIG (FRAIG) [28]. A special feature for FRAIG is to use the
assignment from previous satisfiable call for simulation to distinguish if the instance is
satisfiable before actually solving. In detail, right when getting an assignment, we are

able to simulate based on it since we have already known all the possible SAT calls in the

38

doi:10.6342/NTU202001451

future. On the other hand, this technique can be applied to PDR in a little different
manner. We should record all the patterns so far since we do not know which instance
will be under solving. As a tradeoff, we can just record the last several patterns instead
without losing too many opportunities of recognition. From our simple experiment on
6s288r, the coverage relative to the case that all the patterns are stored can be over 80%
if we use 5 numbers with 64 bits to record. In the current implementation, we have not

adopted this technique yet.

4.2.4 Storage of Proof Obligation

Originally in [18], the authors use a priority queue in recBlockCubes to get the proof
obligation with minimum frame. In addition, keeping the obligations in one frame act
like a stack is thought to be beneficial by them. In Algorithm 3, we suggest to maintain
an infinite array of set to store all the proof obligation by their corresponding frame [41].
By this structure, we can easily know which obligation has the minimum frame and keep
track with the arrangement in each frame. Besides the stack-like behavior, we also try
the queue-like one by implementing the frame as deque structure. Furthermore, we have
tried to tackle with the obligation with maximum bad depth first. In our implementation,
we adopt the classic stack-like scheme.

On the other hand, as indicated in Subsection 2.4.3, the blocked proof obligation is
reused to be blocked at further frame. In the original algorithm, the reuse is not thorough
so that we present the procedure again in Algorithm 9 to discuss about the problem.
First, the return value of 7s Blocked is no longer a simple Boolean. It is now an integer to
represent the highest frame that can block it. 0 is used as a special number to indicate the
failure of blocking since we should not block any obligation at the first frame. Instead of
simply discarding the blocked obligation, we preserve and push it to the frame that it has
not been blocked to prevent redundant checking. In addition, we use the frame returned
by generalize to know the destination the blocking clause is added. We then push the

obligation to that frame instead of just to the next one. We only adopt this basic

39

doi:10.6342/NTU202001451

modification in the experiment. Furthermore, the pushing is also not limited by the
currently maximum frame anymore. Combing these techniques really improves the

efficiency, just like the tendency introduced by reusing the proof obligation initially.

Algorithm 9: recBlockCubes, ¢y se
Input: Cube badCube, the frame to block f
Output: TRUE or FALSE
Data: An infinite array of set of cubes bad Arr
1 badArr(f].add(badCube)
2 blockFrame <+ f
3 while block Frame < f
4 if blockFrame = 0

5 return FALSE
6 targetCube < bad Arr[block Frame].pop()
7 Fyock < isBlocked(targetCube, block Frame)
8 if Fyjoer, = 0
9 preCube <— check Reach(targetCube, block Frame)
10 if preC'ube # NULL
1 bad Arr[block Frame].add(targetCube)
12 block F'rame < blockFrame — 1
13 bad Arr[block Frame].add(preCube)
14 else
15 newCube, Fyoer < generalize(targetCube, block Frame)
16 addBlockedCube(newCube, Fyoer)
17 if Fyjocr 7 00
18 bad Arr[Fyocr, + 1].add(targetCube)
19 if bad Arr[block Frame].empty()
20 block F'rame < block Frame + 1
21 else
2 if Fyjocp # 00
23 bad Arr|Fyoer + 1].add(targetCube)

24 return TRUE

Because of pushing the proof obligation to further frame, we can find a counterexample
longer than the currently maximum frame. Furthermore, the found counterexample is no
longer guaranteed to be the shortest one. In order to find the counterexample, we store
the previous one in every proof obligation. When reaching the first frame, we can iterate
through this record to the first proof obligation that violates the property. Then we can get

the input combinations by examining this sequence.

40

doi:10.6342/NTU202001451

4.2.5 Propagating Cubes

The runtime taken by propagating cubes is usually not dominating, but we can still carry
out some idea to enhance it.

[24] propagates the blocked cubes out of the boundary of currently maximum frame.
This scheme gives more opportunities for us to recognize an inductive subset of clauses
when observing no difference between any two adjacent frames. Though it may be not
invariant, we can always add them to F,,,. However, no obvious improvement can be
noticed after activating this scheme. We guess that the reason is that these subset of
clauses can be propagated to any further frame since the set is inductive itself. Hence,
the reachability does not change at all if we just explicitly add them to F..

As stated in Subsection 4.2.3, we should not let the past information be the burden of
the current process. A lazy propagation scheme is introduced here to propagate the cube
in the frame that seems to be changed during this iteration. Since we are not capable of
detecting the change exactly, we observe whether any proof obligation is under blocking
in this frame instead. For many cases, the first several frames will not be involved in the
blocking anymore. Hence, trying to propagate the clauses in those frames all the time
may not be a good choice so that we try to skip it. We can achieve a small improvement
from that since it is seldom the bottleneck. On the other hand, when successfully
propagating a cube to further frame without enlarging it, we can skip the subsumption
checking for those frame before its original one since it is performed at its previous

adding.

4.2.6 Activity of State Variables

We can consider the order of latch variable when performing ternary simulation and
generalization. The goal of removing literals is to reach a local optimal that there is no
literal removable in the cube. However, this may not be a global optimum with
minimum number of literal or the most suitable form for the PDR process. The methods

we have tried are as the following.

41

doi:10.6342/NTU202001451

1. Use a static order that just follow the index of latch variable in the circuit network.

2. Allocate counters for each variable to record the number of occurrence of it in all
the blocking cubes. We dynamically change the order that follows the ascending

order of the counters or reversely.

3. Inorder to focus on the current information, the counter can be decayed periodically

just like VSIDS [4].

We do not observe obvious difference for the above methods so that the basic static order

is picked for the experiment.

4.2.7 Predicate Extraction

In this subsection, we discuss about the things we tried for predicate extraction in addition
to the final version introduced in Chapter 3.

A main feature of our method is the flexibility before and after solving the predicate.
As long as we maintain the 5 properties, there are various operations can be tried. Start

with the case before the predicate solving.

1. Reuse nothing. As the version we present, we start a new PDR procedure to solve

the predicate.

2. Reuse F.. Since F, is itself an inductive set, we can add it to a new PDR procedure

to constraint the search space. The result is similar to that of reusing nothing.

3. Reuse all the clauses. In this scheme, we set the predicate to be the property of
the original process temporarily instead of creating a new one. Then we directly
solve the predicate on the original process with all the clauses in it. However, the
result is poor compared to the above two. A possible reason is that the convergence
related to the predicate is interrupted by the original clauses. In a separate PDR, the
inductive invariant set may be easily found. But in the same PDR, the solving for

predicate is difficult or even pollutes the original learned information.

42

doi:10.6342/NTU202001451

Then we explain how to merge the obtained information back to the original process.
The merging only applies for the first two reusing schemes since the last one just works

on the same PDR.

1. Merge the inductive set. As the version we present, we only merge the obtained
inductive set back to F,. In addition to check if any clause is subsumed by the
added ones, we need to check if any added clause is subsumed by the original one

in .

2. Merge all the clauses. This has not been verified by implementation. The concept
is that we can merge all the clauses in the separate PDR back to its corresponding

frame. A simple proof for Property 4 is as follows.

Fi1(S)ATr(S, ") = Fi11(S) A Fi12(S) ATH(S, S")
= i_171(5’) A TT(S, S/) A E—l,Q(S) N TT(S, Sl)

— Fa(S) AFaS) = Fi(S)

Since we only record the difference between adjacent frames, the clauses in a frame
does not actually represent the set of states of it. The similar clauses may not be detected
because we observe one frame at a time. Another method is to allocate a fixed length of
space to store the last several added clauses and find the candidate from them. In this
scheme, we do not simply consider the frame that the clause is blocked at. The result has
no improvement and the possible reason is that the accuracy decreases after we mix all
the clauses together without classification.

Another scheme is to find the candidate after the last frame becomes invariant, that
is, before propagating the cubes. This aims at tackling with the predicates at a time
without interrupting the blocking phase. The result is not good so that dealing with the
obstacle in time seems to be more reasonable.

For predicate of obligation, we present a version that gather all the obligations to find

the common part. This version does not classify the obligations by their own

43

doi:10.6342/NTU202001451

characteristics. We have tried to distinguish them by the bad depth associated with each
obligation. The set for each depth maintains its own common and numQbl while
returning separate predicate. The experiment shows the improvement compared to the

original PDR, but does not outperform the version we propose.

44

doi:10.6342/NTU202001451

Chapter 5

Experimental Results

In this chapter, we provide a series of experimental results. The experiment is conducted
on a machine with Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz and 125G memory.
The operating system is Ubuntu 16.04.6 LTS and the compiler is g++ 7.5.0. The set of
benchmarks is collected from HWMCC 12, 13, 14, 15 and 17. The case with property not
related to any latch is removed and there are total 1020 cases left. The runtime limit is set

to 3600 seconds in the following data.

5.1 Overview

We first compare our basic PDR with the implementation in two well-known model
checkers including V3 [41] and ABC [42]. Both V3 and ABC are activated by their
default options without any other preprocess command. That is, only ABC solves with
the strashed circuit in that it naturally maintains the strashed form for every network.
Either [a2b or V3 does not modify the circuit structure before solving the property. In
figure 5.1, Our engine outperforms V3 a lot and is close to ABC. But we also see that
there is an obvious gap between the average runtime of Ia2b and ABC. Since the total
solved number of cases are similar, we know that ABC still outperforms us for many
cases. The main difference between Ia2b and ABC is the runtime of SAT query. The

remarkable runtime of SAT query in ABC probably results from its sophisticated CNF

45

doi:10.6342/NTU202001451

conversion technique [38]. But at the time close to the limit, the numbers of solved cases
are almost the same. This is probably because the impact of clauses grows gradually
along the process due to the accumulated quantity in each frame so that the improvement
from CNF of circuit decreases. For the following experiment, we only use the original
PDR in Ia2b (called "baseline”) for comparison to reveal the effect of our method.

In this round, actually we let the three model checkers run 7200 seconds totally to
test the limit of original PDR. (We still present the version with 3600 seconds time limit
here.) We further collect all the cases that any of the three engines can solve within 7200
seconds for a preliminary test of our method. In the following sections, we call this set as
”pdr_vb” and the original one is referred as full”.

For the rest experiment, there are two main results we want to show. First of all, we
need to assure that our method at least outperforms the basic PDR engine. In order to do
this, we place the curve of basic PDR in every figure to show the difference. For those
parameters that gets the efficiency worse, we provide explanation. Secondly, we want to
show the trend for a ’sweet spot” for predicate solving. After we find a predicate, we
need to explicitly solve it to get useful information. If we put too much effort on them,
too much overhead is added to the main procedure compared to the benefit. The effort
here means the runtime to solve predicate rather than finding it. Otherwise, if we explore
too less about the predicates, there is no much difference compared to the original
method. Hence, we predict a balance between the solving effort and the achieved
feedback. Because there are too many possible combinations of parameters, we do not
aim at finding a best one among them. Actually the best value of parameter is probably
case dependent. Instead, we just use a series of comparison to show the trend.

There is not an obvious dependency among all the parameters in our method. Hence,
we decide to just vary one parameter at a time while fixing all the other ones and to
compare which value is more suitable. Or we say it is closer to the sweet spot under this

combination of parameters.

46

doi:10.6342/NTU202001451

Checker Total | SAT | UNSAT | Unique Solve | Average Time (s)
v3 487 | 141 346 3 202.1
abc 544 | 148 396 25 177.9
ia2b baseline | 543 | 149 394 20 195.1

Table 5.1: Comparison of PDR among different model checkers. Unique solve means
only this variant can solve among all the ones in the same table. Average time involves
only solved cases, so the comparison on this column should be directed for the variants
with the same or at least similar number of solved cases.

550 4

500 +

450 ~

Solved

400 ~

350 4

300 +

v3 (487)
abc (544)
ia2b_baseline (543)

0

T
500

T
1000

T
1500

T T
2000 2500
Time (s)

T T
3000 3500

Figure 5.1: The cumulative plot for PDR among different model checkers. The X-axis
means the runtime in second while the Y-axis means the number of cases. The labels in
the lower-right corner indicate the representative of each curve with different colors. The
number enclosed by the parentheses means the total number of solved cases, which is also
indicated by the horizontal dashed line at the tail of curve.

47

doi:10.6342/NTU202001451

5.2 Performance

In this section, we present the result for clause-based (CLS), obligation-based (OBL) and
combined predicate in order. The first two kinds are conducted on ’pdr vb” for a
preliminary examination, while the last one is on ”full” to demonstrate the final result.
Note that either in the table or in the figure, all the variants are sorted by the solving
effort on predicate in the ascending order. The first one is the basic PDR that is the
special case with no effort spent. For both CLS and OBL, we use a small SAT query
limit (L = 300) for the experiment to find a relatively proper value combination based
on this L. Then we use this value combination back to test different L. Last, the best L
found in the previous round is used to test the trend discovered at the first.

For CLS, each frame can be assigned by different Backtrack number (B) and Match
Number (M). For simplicity, we introduce only two schemes including INF and ALL.
INF is to observe only F,, that is, the Backtrack number of the other frames are all
zeros. ALL is to treat all the frames equally with the same B and M. The value we
choose to test different L is (B, M) = (20, 1) and (10, 2) for INF and ALL respectively.
The result is shown by Figure 5.2 and 5.3. If fixing the other parameters, we assume the
number of predicates are the same. Hence, the effort is proportional to the magnitude of
L. The number of solved cases of all are larger than the one of baseline except for the
case with no limit (L = oo). This case is intentionally added to show the extreme case of
predicate solving. Apparently, it loses the direction to reach the final answer.
Furthermore, the trend is obvious that the best one locates in the middle and the result

degrades to the both sides.

48

doi:10.6342/NTU202001451

SAT Limit | Total | SAT | UNSAT | Unique Solve | Average Time (s)
baseline | 543 | 149 394 0 195.1
300 553 | 150 403 3 209.3
1000 554 | 149 405 3 213.3
5000 550 | 147 403 0 235.6
no limit | 495 | 130 365 1 219.8

Table 5.2: Comparison among different limit of SAT query for CLS, INF, B=20, M =1

on pdr_vb.

600

550 4

500 4

Solved

400

350 4

300 ~

—— baseline (543)
300 (553)
—— 1000 (554)
—— 5000 (550)
—— no_limit (495)

0

T
500

T
1000

T T
1500 2000
Time (s)

T
2500

T
3000

T
3500

Figure 5.2: The cumulative plot of different limit of SAT query for CLS, INF, B = 20, M

=1 on pdr_vb.

49

doi:10.6342/NTU202001451

SAT Limit | Total | SAT | UNSAT | Unique Solve | Average Time (s)
baseline | 543 | 149 394 2 195.1
300 554 | 149 405 1 195.2
1000 558 | 151 407 4 211.5
5000 551 | 149 402 1 240.4
no limit 464 | 124 340 1 191.7

Table 5.3: Comparison among different limit of SAT query for CLS, ALL, B=10,M =2

on pdr_vb.
600
550 =3
500 |
=
o -
2 450 -
a
400
—— baseline (543)
350 300 (554)
—— 1000 (558)
—— 5000 {551)
300 A —— no_limit (464)
T T T T T T T
0 500 1000 1500 2000 2500 3000 3500
Time (s)

Figure 5.3: The cumulative plot of different limit of SAT query for CLS, ALL, B=10, M

=2 on pdr_vb.

50

doi:10.6342/NTU202001451

We then present the concept of sweet spot again by the experimental result in Figure

5.4. In addition, since the sample points are loose, we can further find a better point once

the trend is confirmed. The concept is demonstrated in Figure 5.5.

Gain

Baseline

schematic diagram

Figure 5.4: The schematic diagram of the sweet spot prediction and illustration by the
result of CLS, ALL, B=10, M =2 on pdr_vb. X-axis means the effort and Y-axis means
the gain. Note that the gain can be negative, which means the overall performance is
worse. The bars mean the number of solved cases in Figure 5.3 and they are not in exact
scale. In this figure, we use difference among these numbers to represent the gain.

Figure 5.5: The depiction of sample points. X-axis means the effort and Y-axis means
the gain. If we obtain the five points by experiment and basically confirm that the trend
exists, we can exclude the outer range (red area) since the best point is not possible to be
at there. Then we can apply denser sample points in the yellow area to find a better one.

51

doi:10.6342/NTU202001451

Since L = 1000 is the best choice of the above two figures, we use it to test different
B and M for both INF and ALL. The higher B is, the more clauses are checked so that
the number of predicates increases. The lower M is, the looser constraint to pick up a
common part as candidate, which leads to less predicate. Though not every predicate
uses up all the SAT query limit, we assume they consumes the same effort. Hence, the
effort is roughly proportional to the ratio B/M. The result is shown in Figure 5.6 and
5.7. The best choices are 20 1 and 10_2 for INF and ALL respectively. There are two
possible reasons. The first one is that the number of frame under observation differs.
This reason corresponds to the hypothesis of sweet spot we made above. In INF, we only
consider F,, so that the constraint should be looser to create more chance. However, in
ALL, all the frames are under consideration so that we need to apply a tighter criterion.
The second is to state the different usefulness among the frames. All the clauses in F,,
forms an inductive set so that they are more meaningful and should be applied by a
looser constraint. On the other hand, we should not emphasize too much on the other
frames since they seem to be no so useful. An interesting phenomenon is that the
performance of 10 1 and 10 2 for ALL are poor. Nonetheless, this does not happen for
the case with L = 300. This is probably an evidence that we put too much effort on
predicate solving.

If the reason is actually the second one, there should be possible to combine the
benefit from the two different sources. Hence, we introduce another scheme MIX that
uses (B,M) = (20,1) and (10,2) for F,, and the other frames respectively and
simultaneously. In Figure 5.8, MIX does not perform well and it is even the worst one.
However, as the case with L = 300 depicted by Figure 5.9, MIX is the best one instead.
We then make a conclusion that the reason is closer to the first one. MIX has a higher
possibility to find predicate than both INF and ALL if we simply consider the ratio B/ M
for every frame. For the case with L = 1000, INF_20 1 and ALL 10 2 are relatively
better choices, so changing to MIX does not improve. But for L = 300, INF 20 1 and

ALL 10 2 have not reached the sweet spot, so changing to MIX is better.

52

doi:10.6342/NTU202001451

B M | Total | SAT | UNSAT | Unique Solve | Average Time (s)
baseline | 543 | 149 394 3 195.1

10 2 546 | 148 398 3 199.2

10 1 548 | 147 401 3 196.4

20 1 554 | 149 405 3 2133

Table 5.4: Comparison among different ratio of Backtrack number and Match number for
CLS, INF, L = 1000 on pdr_vb.

600

550 4

500 4

Solved

400 ~

350 4

300 1

—— baseline (543)
10_2 (546)

—— 10_1(548)

—— 20_1(554)

0

T
500

T
1000

T
1500

T T
2000 2500

Time (s)

T T
3000 3500

Figure 5.6: The cumulative plot of different ratio of Backtrack number and Match number
for CLS, INF, L = 1000 on pdr_vb.

53

doi:10.6342/NTU202001451

B M | Total | SAT | UNSAT | Unique Solve | Average Time (s)
baseline | 543 | 149 394 5 195.1

10 2 558 | 151 407 10 211.5

10 1 535 | 145 390 2 228.5

20 1 532 | 143 389 1 224.0

Table 5.5: Comparison among different ratio of Backtrack number and Match number for
CLS, ALL, L = 1000 on pdr_vb.

600
550 A
500 A
=]
o
2 450
&
400
350 -
—— baseline (543)
10_2 (558)
300 - — 10_1 (535)
— 20.1(532)
T T T T T T T T
4] 500 1000 1500 2000 2500 3000 3500

Time (s)

Figure 5.7: The cumulative plot of different ratio of Backtrack number and Match number
for CLS, ALL, L = 1000 on pdr_vb.

54

doi:10.6342/NTU202001451

Type Total | SAT | UNSAT | Unique Solve | Average Time (s)
baseline | 543 | 149 394 3 195.1
inf 20 1| 554 | 149 | 405 2 213.3
all 10 2 | 558 | 151 407 3 211.5

mix 553 | 148 405 0 211.0

Table 5.6: Comparison among two best ratios and the mixed version for CLS, L = 1000
on pdr_vb.

600 4
550 - =—
500 A
=]
o
=
8 450
400 A
350 A —— baseline (543)
inf 20_1 (554)
—— all_10_2 (558)
300 - — mix (553)
T T T T T T T
4] 500 1000 1500 2000 2500 3000 3500

Time (s)

Figure 5.8: The cumulative plot of two best ratios and the mixed version for CLS, L =
1000 on pdr_vb.

55

doi:10.6342/NTU202001451

Type Total | SAT | UNSAT | Unique Solve | Average Time (s)
baseline | 543 | 149 394 1 195.1
inf 20 1 | 553 | 150 403 0 209.3
all 10 2 | 554 | 149 405 1 195.2

mix 558 | 152 406 2 203.9

Table 5.7: Comparison among two best ratios and the mixed version for CLS, L = 300 on
pdr_vb.

600
550 -
500 A
=]
o
=
& 4501
400 A
—— baseline (543)
350 1 inf 20 1 (553)
—— all_10_2 (554)
—— mix (558)
T T T T T T T
4] 500 1000 1500 2000 2500 3000 3500

Time (s)

Figure 5.9: The cumulative plot of two best ratios and the mixed version for CLS, L =300
on pdr_vb.

56

doi:10.6342/NTU202001451

For OBL, we use 7' = 66 to test different L and the result is shown in Figure 5.10.
Again, the trend is obvious so that we choose the case with L = 300, which is the same
as the preliminary test. We then use L = 300 to test different Obligation threshold (7).
The higher 7T is, the less chance to check and the less possibility of common part exists,
which leads to less predicate. Hence, the effort is inversely proportional to 7. We
observe the trend in Figure 5.11 once again and the best value is 7' = 66. It seems like
that the hypothesis is also applicable to OBL.

Finally, we test all the cases in ’full” for both CLS and OBL to examine the ability of
them to handle the hard problem for the original PDR. The values of parameter are
(B, M) = (10,2) for CLS, ALL and T = 66 for OBL. In addition, we also try to activate
the two kinds of predicate simultaneously. The result in shown in Figure 5.12. As
indicated by the result of MIX, we know that we cannot ensure the improvement by
simply solving more and more predicates. This is because we do not gain the
information right when we find the predicate and we need to solve it practically. On the
other hand, we know that both CLS and OBL works well. They outperform the basic

PDR by 29 and 18 cases respectively.

57

doi:10.6342/NTU202001451

SAT Limit | Total | SAT | UNSAT | Unique Solve | Average Time (s)
baseline | 543 | 149 394 5 195.1
300 551 | 148 403 4 193.8
1000 543 | 144 399 3 183.3
5000 540 | 144 396 2 188.0

Table 5.8: Comparison among different limit of SAT query for OBL, T = 66 on pdr_vb.

600

550 4

500 +

Solved

400 ~

350 4

450 4

—— baseline (543)
300 (551)

—— 1000 (543)

— 5000 (540)

0

T
500

T
1000

T T
1500 2000
Time (s)

T
2500

T T
3000 3500

Figure 5.10: The cumulative plot of different limit of SAT query for OBL, T = 66 on

pdr_vb.

58

doi:10.6342/NTU202001451

Threshold | Total | SAT | UNSAT | Unique Solve | Average Time (s)
baseline | 543 | 149 394 3 195.1

100 543 | 147 396 1 191.4

66 551 | 148 403 5 193.8

36 540 | 145 395 1 170.1

Table 5.9: Comparison among different Obligation threshold for OBL, L =300 on pdr_vb.

600 -
550 A
500 A
=]
18]
=
@ 450 4
400 -
—— baseline (543)
350 - 100 (543)
— 66 (551)
— 36 (540)
T T T T T T T
0 500 1000 1500 2000 2500 3000 3500
Time (s)

Figure 5.11: The cumulative plot of different Obligation threshold for OBL, L = 300 on

pdr_vb.

59

doi:10.6342/NTU202001451

Type Total | SAT | UNSAT | Unique Solve | Average Time (s)
baseline | 543 | 149 394 2 195.1
cls 572 | 151 421 11 244.8
obl 561 | 150 411 2 232.7
cls+obl | 567 | 151 416 9 234.5

Table 5.10: Comparison among the best parameters for CLS, OBL and the combination

of both on full.

600

550 4

500 4

450 ~

Solved

400 ~

350 4

300 1

—— baseline (543)
cls (572)

—— obl (561)

—— cls+obl (567)

0

T
500

T
1000

T
1500

T T
2000 2500

Time (s)

T T
3000 3500

Figure 5.12: The cumulative plot of the best parameters for CLS, OBL and the

combination of both on full.

60

doi:10.6342/NTU202001451

5.3 Detailed Analysis

To further understand the effect of our method, we perform a series of analysis in order to
find the relationship between the characteristic of predicate solving and the improvement.
There are two kinds of comparison. The first one is to compare the basic PDR with the
one activating one of the two predicates. The second one is to compare between the two

predicates. We first introduce the information extracted from the process.

1. Total Pre: The number of predicates that is ever tried to prove.
2. PASS: The number of predicates successfully proved to be unreachable (safe).

3. Total Pre Inf: Total number of clauses in the inductive set produced by all the

separate PDRs to solve predicate.

4. Added: Total number of clauses added back to the original PDR. After terminating
the separate PDR, only the clause that is not subsumed by F},, can be added back to

the original one.

5. Total Inf: Total number of clauses added to F,, of the original PDR throughout the

process. This number includes the clauses counted in Added.
6. Cls_Length: Average number of literals for the clauses counted in Total Inf.
7. Cls_Length Pre: Average number of literals for the clauses counted in Added.
8. Runtime: Runtime for this configuration of PDR.

9. SAT Query Pre: The number of SAT query called by all the separate PDRs.

Note that the above numbers are extracted from the PDR with predicate solving since
we want to find a better criterion to choose predicate. We only pick the runtime of basic
PDR to show the improvement. Then we introduce the combination of the above numbers

that we think meaningful.

61

doi:10.6342/NTU202001451

1. Improvement: The comparison between the Runtime of basic PDR (oldTime) and
that of the PDR with predicate solving (newTime). The improvement is equal to
(oldTime - newTime) / Max(oldTime, newTime). PDR with predicate solving is
more efficient iff the value is positive. In addition, if either one is timeout, the
absolute value will be one. Last, in order to prevent noise, we do not consider the
case that both of the configurations take less than five seconds. On the other hand,
we only consider that one is faster than the other when comparing clause-based and

obligation-based predicate.

2. Added / Total Inf: The proportion of clauses in F,, added from the separate PDR.

It is to show that how important the separate PDR plays the role for the original one.

3. Added/(Total Inf* SAT Query Pre): The proportion of clauses in F,, added from
the separate PDR per SAT query. It is to show that how important one SAT query

for separate PDR can contribute to the original one.
4. PASS / Total Pre: The proportion of successful predicate.

5. Added / Total Pre Inf: The proportion of clauses produced by the separate PDR
that can be added back. It is to show the ability that the separate PDR can explore

different kinds of clause.

6. Added / SAT query Pre: The number of clauses added back to the original PDR
per SAT query. It is to show that how efficient the separate PDR can generate useful

clause.

7. Cls_Length Pre/ Cls_Length: The ratio of average length of clauses produced by
the original and separate PDR. For a single clause, we think it excludes more states
if it has shorter length and we call it stronger. It is to show which kinds of clause is

stronger.
For the comparison of basic PDR and the one with predicate solving, there is no

obvious target to predict the improvement. The even distribution takes place for both of

62

doi:10.6342/NTU202001451

the predicates. Although we have difficulty identifying good predicate to maximize the
benefits, we can still find some property about it. On the other hand, when comparing
the two kinds of predicate, we can roughly distinguish the characteristic of efficiency for
some cases, which provides us a way to choose between the predicates. In the following,
we display some of the figures to demonstrate the analysis. In all the figures, each spot

corresponds to a case. Furthermore, the experiment in this section only contains pdr_vb.

Added / Total_Inf Added / (Total_Inf * SAT_Query Pre)
0.0 - . g .
.
. . ® P
2
—0.54 [.‘ o, H L .
: »e s.i“ .
8, .
L4 : ‘: A -3 . M
*e
o o8 P .
~1.0 . s ¢ ‘3' ‘?o * A
['l . —4 []
3 o e 3 s 3nesd. |
o ® 1)
. L emey ° 3 :’ ‘: o,
.] o % gom oP
-15+ . -5] o
. . ‘¢: & e *
. . . . ®
.® o2 _% ° °
. ® L] =61 . ‘Qﬁg %
20) . L] .
. L] . - []
-7 . .
. .
. (]
—2.51 .

T T T T T T T T T T T T
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 i -6 -5 —4 -3 -2 -1
cs cls

Figure 5.13: The comparison between clause-based and obligation-based predicate. X-
axis is for clause and Y-axis is for obligation. The data are Added / Total Inf and Added
/ (Total Inf * SAT Query Pre) and both of them are in log scale since the range of
value is too wide to use linear scale. The figure is designed to be square to highlight
the comparison. Green spot means clause-based predicate is more efficient and red one
for obligation. There is no obvious boundary in the left subfigure. However, for the right
subfigure, we can roughly find that the predicate is more efficient if the value is larger.
That is, if we divide the square into two triangles by the line y = x, green spots mainly
concentrate at the lower-right triangle, and vice versa.

63

doi:10.6342/NTU202001451

cls

1.00 - e o ® cmpengwmess
e o °
0.75 - ° . " o
. of % .
0.50 - . os .q;-.’
3
2 0.25 * . .. o o™ i:.'
Q
5 . * . o ¢ ‘-":: Se
2 0.00- . o ® o ®
e .
5 . oot o 't‘i e
E —0.25 4 [] '.‘..' .. .
° [
. SRS
—0.50 | . e® -
LAY
e 0g
~0.75 1 o
. ot
-1.00 A s oo
25 20 15 _10 0.5 0.0
Added / Total_Inf
cls
L0 e ® o mesemeo » pgoep o ® .
* 9 .
¢ ¢ °
0.75 - *
. . L] '. ® .
0.50 °® 0
.
. .
2 0.25 1 ¢ ‘. .-’. ¢
7] *
5 oo0{ * ’ .:"'.&'“. .."3 g ®e
s ¢ ¢y o* Y ‘ll. s ° 'S
g . "' o 4 & &
E -0.25 . o w'™® -.:" b
*et A3y ¢
—0.50 A 2. -+ . % oo §
* LIS '.: oo *]
-0.75 . . *eq* o
. . - .
—1.00 - % e o % * .)
7 6 s 4 3

Added / (Total_Inf *# SAT Query_Pre)

Figure 5.14: The comparison between basic PDR and clause-based predicate (1). Y-axis
is the improvement and X-axis denotes the data including Added / Total Inf and Added /
(Total Inf* SAT Query Pre). Both of the data are in log scale. There is no obvious target
since almost for every value in X-axis, there exist positive and negative values for Y-axis.
In other words, we cannot distinguish which range of value can lead to improvement.

64

doi:10.6342/NTU202001451

cls

1.00 qr . e @
L]] ..
0.75 - ". .
0501 ©® o oo .
™ []
= 0251 BPe . *
Q
£ 1 . .
Y 0.00 A .
[=]
= L] []
E -0.25 4 e ¢ .
) L] []
(1]
—0.50 A 3" e o
L]
—0.75 A o ® .
L]
~1.00 ee®* ¢
T T T T T T
0.0 0.2 0.4 0.6 0.8 L0

PASS / Total_Pre

Figure 5.15: The comparison between basic PDR and clause-based predicate (2). Y-axis
is the improvement and X-axis is PASS / Total Pre. There is no obvious target. Note that
the proportion of PASS is actually very low, so the improvement can also result from the
predicate that fails or aborts.

L0004 e 'S
0.75 -
0.50 - .
0254 *®

0.00 4

Improvement

—0.25 A

—0.50 A

—0.75 1

—1.00 - L]

T T T T
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Cls_Length_Pre / Cls_Length

Figure 5.16: The comparison between basic PDR and obligation-based predicate. Y-axis
is the improvement and X-axis is Cls_Length Pre / Cls Length. There is no obvious
target. Note that the average length of clauses for separate PDR is often shorter than that
of all the clauses (ratio < 1).

65

doi:10.6342/NTU202001451

Chapter 6

Conclusion and Future Work

In this thesis, we propose a flexible method to solve predicate separately. In addition, we
provide two examples of useful predicate identified from blocking clauses and proof
obligations. We show by the experiment that this method is efficient compared to the
original PDR. Although we achieve a good result at the first step, there are still many
works to do.

We have shown that there exists a trend for predicate solving. An important job is to
find the absolutely best value for all the parameters. However, the values may be
case-dependent and vary among different sets of benchmarks. We then modify the goal
to find a fast and effective way to identify the best combination under a given set of
circuits. On the other hand, since the case-dependency, another choice is to find a good
heuristic to change the value dynamically. This again rely on the local information to do
the modification.

On top of the two kinds of relatively general predicate we present, there may exists
many other possibilities due to the variety of the circuit characteristics. By creating more
and more patterns as predicate, we expect to answer more unsolved cases by the support
of different one. Then the rest problem is to combine them automatically. As the
experiment, simply activating all the predicates is not a guarantee of improvement. We

provide two possible solutions here. The first one is to use multi-threads in parallel.

66

doi:10.6342/NTU202001451

Every thread is associated with its own kind of predicate and is not interrupted by the
other ones. The second one is more aggressive to integrate to a single engine. We use
local information again to trigger the corresponding predicate. Hence, the activated
predicate may be different throughout the process. There is also possible to be no or
more than one predicate at a time.

As indicated in Subsection 4.2.7, we can merge all the clauses back after solving the
predicate. That is, we are not limited by F,. A possible scheme is when observing
similar clauses in a frame. We can change the termination criteria to be up to that frame.
If reaching that frame successfully, we know the common part is unreachable up to that
frame. Hence, we get a trace of frame that can eliminate all the similar clauses at that

frame, which leads to a smoother representation of the reachability.

67

doi:10.6342/NTU202001451

Reference

[1] Randal E Bryant. Graph-based algorithms for boolean function manipulation. /EEE
Transactions on Computers, 100(8):677-691, 1986.

[2] Jodao P Marques-Silva and Karem A Sakallah. Grasp: A search algorithm for

propositional satisfiability. /[EEE Transactions on Computers, 48(5):506-521, 1999.

[3] Hantao Zhang. Sato: An efficient propositional prover. In International Conference

on Automated Deduction, pages 272-275. Springer, 1997.

[4] Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient sat solver. In Proceedings of the 38th annual

Design Automation Conference, pages 530-535, 2001.

[5] E Goldberg and Y Novikov. Berkmin: A fast and robust sat-solver. In Proceedings
2002 Design, Automation and Test in Europe Conference and Exhibition, pages 142—
149. IEEE, 2002.

[6] Niklas Eén and Niklas Soérensson. An extensible sat-solver. In International
conference on theory and applications of satisfiability testing, pages 502-518.
Springer, 2003.

[7] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern
sat solvers. In Twenty-first International Joint Conference on Artificial Intelligence,

2009.

68

doi:10.6342/NTU202001451

[8] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic
model checking without bdds. In International conference on tools and algorithms

for the construction and analysis of systems, pages 193—-207. Springer, 1999.

[9] Mary Sheeran, Satnam Singh, and Gunnar Stdlmarck. Checking safety properties
using induction and a sat-solver. In International conference on formal methods in

computer-aided design, pages 127—144. Springer, 2000.

[10] Niklas Eén and Niklas Sérensson. Temporal induction by incremental sat solving.

Electronic Notes in Theoretical Computer Science, 89(4):543-560, 2003.

[11] Kenneth L McMillan. Interpolation and sat-based model checking. In International

Conference on Computer Aided Verification, pages 1—13. Springer, 2003.

[12] William Craig. Linear reasoning. a new form of the herbrand-gentzen theorem. The

Journal of Symbolic Logic, 22(3):250-268, 1957.

[13] Yakir Vizel and Orna Grumberg. Interpolation-sequence based model checking. In

2009 Formal Methods in Computer-Aided Design, pages 1-8. IEEE, 2009.

[14] Vijay D’ Silva, Daniel Kroening, Mitra Purandare, and Georg Weissenbacher.
Interpolant strength. In International Workshop on Verification, Model Checking,

and Abstract Interpretation, pages 129—145. Springer, 2010.

[15] Simone Fulvio Rollini, Ondrej Sery, and Natasha Sharygina. Leveraging interpolant
strength in model checking. In International Conference on Computer Aided

Verification, pages 193-209. Springer, 2012.

[16] Aaron R Bradley. Sat-based model checking without unrolling. In International
Workshop on Verification, Model Checking, and Abstract Interpretation, pages 70—
87. Springer, 2011.

69

doi:10.6342/NTU202001451

[17] Aaron R Bradley and Zohar Manna. Checking safety by inductive generalization
of counterexamples to induction. In Formal Methods in Computer Aided Design

(FMCAD 07), pages 173-180. IEEE, 2007.

[18] Niklas Een, Alan Mishchenko, and Robert Brayton. Efficient implementation of
property directed reachability. In 2011 Formal Methods in Computer-Aided Design
(FMCAD), pages 125-134. IEEE, 2011.

[19] Hong-Syun Jiang and Chung-Yang (Ric) Huang. Enhancing property directed
reachability technique through cube analysis. Master Thesis, National Taiwan

University, 2015.

[20] Kuan Fan, Ming-Jen Yang, and Chung-Yang Huang. Automatic abstraction
refinement of tr for pdr. In 2016 21st Asia and South Pacific Design Automation

Conference (ASP-DAC), pages 121-126. IEEE, 2016.

[21] Ming-Jen Yang and Chung-Yang (Ric) Huang. Improving property directed
reachability with temporal decomposition. Master Thesis, National Taiwan

University, 2016.

[22] Cheng-Han Yang and Chung-Yang (Ric) Huang. Improving property directed
reachability using dynamic timeframe expansion. Master Thesis, National Taiwan

University, 2017.

[23] Shih-Yu Chuang and Chung-Yang (Ric) Huang. Property directed reachability with

interpolation refinement. Master Thesis, National Taiwan University, 2019.

[24] Alexander Ivrii and Arie Gurfinkel. Pushing to the top. In 2015 Formal Methods in
Computer-Aided Design (FMCAD), pages 65-72. IEEE, 2015.

[25] Ken L McMillan. Applying sat methods in unbounded symbolic model checking. In
International Conference on Computer Aided Verification, pages 250-264. Springer,

2002.

70

doi:10.6342/NTU202001451

[26] Armin Biere. The aiger and-inverter graph (aig) format version 20071012. FMV
Reports Series, Institute for Formal Models and Verification, Johannes Kepler

University, Altenbergerstr, 69:4040, 2007.

[27] Armin Biere, Keijo Heljanko, and Siert Wieringa. Aiger 1.9 and beyond. Available
at fmv. jku. at/hwmccll/beyondl. pdf, 2011.

[28] Alan Mishchenko, Satrajit Chatterjee, Roland Jiang, and Robert K Brayton. Fraigs:
A unifying representation for logic synthesis and verification. Technical report, ERL

Technical Report, 2005.

[29] Robert Brummayer and Armin Biere. Local two-level and-inverter graph

minimization without blowup. Proc. MEMICS, 6:32-38, 2006.

[30] Jordi Cortadella. Timing-driven logic bi-decomposition. [EEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 22(6):675-685, 2003.

[31] Niklas Eén and Armin Biere. Effective preprocessing in sat through variable and
clause elimination. In International conference on theory and applications of

satisfiability testing, pages 61-75. Springer, 2005.
[32] Niklas Eén and Niklas Sorensson. The MiniSat Page. http://minisat.se/.

[33] Gilles Audemard and Laurent Simon. Glucose s home page. https://www.labri.fr/

perso/lsimon /glucose/.

[34] G. S. Tseitin. On the complexity of derivation in propositional calculus. In Studies
in Constructive Mathematics and Mathematical Logic. Leningrad:Steklov Math.

Institute, 1968.

[35] David A Plaisted and Steven Greenbaum. A structure-preserving clause form

translation. Journal of Symbolic Computation, 2(3):293-304, 1986.

[36] Miroslav N Velev. Efficient translation of boolean formulas to cnf in formal

verification of microprocessors. In ASP-DAC 2004: Asia and South Pacific Design

71

doi:10.6342/NTU202001451

http://minisat.se/
https://www.labri.fr/perso/lsimon/glucose/
https://www.labri.fr/perso/lsimon/glucose/

Automation Conference 2004 (IEEE Cat. No. 04EX753), pages 310-315. IEEE,
2004.

[37] Daniel Sheridan. The optimality of a fast cnf conversion and its use with sat. SAT,

2,2004.

[38] Niklas Een, Alan Mishchenko, and Niklas Sorensson. Applying logic synthesis
for speeding up sat. In International Conference on Theory and Applications of

Satisfiability Testing, pages 272—-286. Springer, 2007.

[39] Alberto Griggio and Marco Roveri. Comparing different variants of the ic3 algorithm
for hardware model checking. [EEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 35(6):1026—1039, 2015.

[40] Robert Brayton and Alan Mishchenko. Abc: An academic industrial-strength
verification tool. In International Conference on Computer Aided Verification, pages

24-40. Springer, 2010.

[41] Cheng-Yin Wu and Chung-Yang (Ric) Huang. V3: An extensible framework for

hardware verification. https://github.com/chengyinwe/V3.

[42] Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential

Synthesis and Verification. https://people.eecs.berkeley.edu/~alanmi/abc/.

72

doi:10.6342/NTU202001451

https://github.com/chengyinwe/V3
https://people.eecs.berkeley.edu/~alanmi/abc/

	封面
	口委簽名頁
	內容
	誌謝
	中文摘要
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions of the Thesis
	Organizations of the Thesis

	Preliminaries
	Propositional Satisfiability
	Finite State Boolean Transition System
	Model Checking Problem
	Property Directed Reachability
	The Monotonicity of Frames
	Ternary Simulation
	Recursively Blocking Cubes
	Propagating Blocked Cubes
	Other Subroutines

	Predicate Extraction
	Motivation
	General Method and Correctness
	Two Kinds of Predicate
	Blocking Clause
	Proof Obligation
	Recap for 6s288r

	Implementation
	The Model Checking Environment
	Optimization and Other Things We Tried
	Subsumption
	Ternary Simulation
	SAT Query
	Storage of Proof Obligation
	Propagating Cubes
	Activity of State Variables
	Predicate Extraction

	Experimental Results
	Overview
	Performance
	Detailed Analysis

	Conclusion and Future Work
	Reference

