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Abstract

A transport equation with a diffuse boundary condition is studied for the
propagation of a gas near vacuum. Our work reaches large time asymptotic
results. Also, some stochastic processes concerning the structure of the differ-
ential equation and the boundary condition were studied. The characteristic
method leads to the explicit solution of the transport equation, which is a
renewal function. The local limit theorem is our main tool studying this func-
tion. When turning to the specific renewal function in our problem, more
structures were revealed and the space-time relationship is given by extra

properties of the second rate function.

Keywords: Diffuse Boundary Condition; Random Walks; Renewal The-
ory; Regenerative Processes; Compound Renewal Processes; Large Deviations;

Local Limit Theorem; Second Rate Function
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1 Introduction

In the work of Liu and Yu (see [5]), a Boltzmann equation under a constant gravi-

tational field on the upper half space is considered, for (x,¢,v) € Hf x R* x R?,

hf+v-Vxf—g-Vif =Q(f) (1.1)

with Maxwell diffuse boundary condition, for x € {z = 0}*

f(X, t V)|V3>0 = p(X, t) 27T/Q]M<V>|V3>0’

p(x,t) = p(z,y,t) = [, o —Vvaf(x,t,v)dv,
where

X:(.:C’y?Z)GHJ’_’ g:(0707g)7g>0’

H" = {xeR*2>0}, R":={t>0},
e~ IvI2/(20)

M(v):= rd)E

Fix any time ¢, the quantity f(-,t,) is a probability density which gives the proba-
bility per unit phase-space volume if it’s normalized.? This equation models the dif-
fusion of gas near vacuum that being reflected off a flat surface with the Maxwellian
distribution and being pulled back to the surface by the gravitational force. The
quantity p is the flux that goes into the boundary {z = 0}. Under the boundary
condition, this inward flux equals to the flux that goes outward from the boundary.

The following theorem gives an upper bound estimate of the gas density f show-
ing that the propagation of the gas is similar to a two-dimensional heat flow in the

central (|x| = o(t)) part.

1We abuse the notation that when x € {z = 0}, x denotes either (x,y,0) or (z,y) according to
the context.

2This is achieved when the initial data f(x,0,v) is normalized by the fact that the solution f
has a fixed total amount ||f||; := [ f(x,t, v)dxdv, which is constant for any ¢ € R*.

1
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Theorem 1.1 (LY[5]-B). There exists ¢g > 0 and Cy > 0 such that for all0 < € < €,
if 0 < f(,0,v) < ee” V¥ e=92/0 ) (v), then the solution satisfies

(e 10 (1)

R CEUEI S DI — (1.2)
(1_—&—756 Co(l+t) ¢ Co > e*gz/eM(fu)

This theorem is obtained by first treating the collision term Q(f) as a perturba-
tion since the case of interest is the one near vacuum; thus, with Q(f) omitted, a

free transport equation
Of+v-Vxf—g-Vf=0 (1.3)

is studied first, which then leads to the following theorem. This theorem has a

slightly stronger estimate than Theorem 1.1.

Theorem 1.2 (LY[5]-A). There exists C' > 0 such that if | f(z, 0, v)| < e~ V*+V (efgz/aM(v))B

for a given 8 € (0,1), then the solution f of the transport equation satisfies

~ 1 2 y2 x24y2 4t
w001 = O1) (e 0 oY) (o 1)

Instead of upper bounds of f described in (1.2), our goal is to go further into its
large time asymptotics. However, our current result is only on the transport part.
We leave the non-linear collision part for future research.

In the case of a free transport equation, the behaviour of f in HT x R* x R? is
completely determined by the boundary flux p and its initial data; thus, the problem
is reduced to study p(x,t) in R?xR*. (By characteristic method, the result for f can
be easily recovered from p.) The above Theorem 1.2 is obtained by estimates of
upper bounds of p(x, t) in various regions of (x,t) (see [5, p.195]). Thus, asymptotics

of f are reached when we have the corresponding asymptotics of p.
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Theorem 1.3 (Main Result). Given a radial space-time ratio o = |x|/t, suppose

the initial data satisfies f*(z,t) = O(e NV@D) 3 Then
1 C) e
ol 1) =11l (D'(1.0) S e=tPr 1 4 o) (14

as t — 0o, where the remainder o(1) is uniform for all sufficiently small compact
set K such that o € K. The functions C, D are defined in Section 2.2 and \ is

an increasing function defined in Section 3.

1.1 Method of Characteristics, the Renewal Measure

The transport equation can be solved explicitly by characteristic method. A char-

acteristic curve (x(t), v(t)) satisfies 4 f(x(t), ¢, v(t)) = 0; thus, given t > to,

v(t) =x'(t) = v(to) — gt — to),

(t —tg)*

x(t) =x(to) + v(to) - (t —to) — & 5

Since f is invariant along a characteristic curve, for each point (x,v) € HT x R3
the value of f can be shifted along a characteristic curve to its boundary of domain,
which are either {t = 0} and {z = 0}. In this way, separating the boundary flux p
into two parts according to these two types of characteristic curves, we find that p

satisfies a renewal equation. For x € {z = 0},

3The initial flux f* is defined in (1.7); v is the Laplace transform of f* being the only term
concerning the initial data in (1.4).
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= / —v3f(x,t,v)dv
v3<0

/ —v3f(x,t,v)dv + / —v3f(x,t,v)dv
v<—gt/2 —gt/2<v3<0

/ —v3f(x — vit,y — vot, —v3t — g752, 0,v+gt)dv
vy<— gt/2 2

+/ —vsf (x4 (2vivs/g,2vavs/g,0),t + 2vs/g, v — 2(0,0,v3))dv
gt/2<v3<0

/ —vsf(x —vit,y — vol, —vst — th, 0,v + gt)dv
vy<— gt/2 2

2vViv 2Vyov 2v 2
+/ —vap(w+ Ty T 2, [T (v
—gt/2<v5<0 g g g 0

= fH(x,t) + Q(x,t) * p(x, 1), (1.5)

2(0,0,v3)>dv

W ’7

where the convolution is taken on both x and ¢ and *

2 $2+y2 QQtQ
5og7 XD (=g — %), >0

Qx,t) = Qz,y,t) := : (1.6)
0 t<0

fr(x,t) = / —vsf(z — vit,y — vat, —vst — gt2, 0,v+ gt)dv. (1.7)
v3z< gt/2 2

If we interpret f* as the flux caused by particles that never been reflected, then
moving forward in time along its characteristic curve, any particle with finite initial

speed will eventually reach the ”ground” {z = 0}. Thus, if f is integrable,

o [ + _
1/ H-—/O /Rgf dxdt /}I+XR3f(x,o,v>dxdv
:/ f(x,t,v)dxdv =: ||f]|.
H+ xR3

The renewal equation (1.5) can be solved uniquely (a proof can be found in e.g.

4The function Q(x,t) defined in [5] has a typo.

d0i:10.6342/NTU202001584
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[6, p. 115]) with solution given by

p(x,t) =R * fT(x,1), (1.8)

R(x,t) =) _ Q" (x,1), (1.9)

where Q% is defined to be the Dirac delta function. R(x,t) is the renewal function
associated with Q).

Being non-negative and | Qdxdt = 1, it can be treated as a probability density
of a random vector &. Let &, ¢ = 1,2,... be a sequence of iid copies of &; by
an elementary property of convolution, S, = > " | & is a random vector with the
density Q™ for each n. Then the renewal function R(x,t) as sums of probability

densities defines the renewal measure

H(B):=>» P(S,€B) = / R(x, t)dxdt (1.10)
n=0 B
for B C R? x RT, which is finite for every bounded measurable set B if (see [4,
p.654]) either
1. The expectation E¢ # 0 exists.
2. B¢ =0, the second moment matrix F¢T¢ exists and has rank not less than 3.

In our case,

V2o

9

e - / (2., QU y, t)ddydt = (0,0, Y270y 2 0,

In fact, since Q(x,t) = 0 for ¢ < 0, the third component £3) > 0 almost surely
and hence S > 0 almost surely for each n. This gives a further structure of the
renewal measure H. To give this third component a special treatment, we name it
7 and write £ = ({, 7).

As the random variable 7 is positive, the finite sums of its iid copies form a

>
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sequence with strong order, which means it can be treated as an index and is referred
as the renewal times. Some stochastic processes index by time ¢ are defined later,

which has a structure concerning these renewal times.

1.2 Numerical Computation

For small time ¢, the flux p(x,t¢) can be achieved numerically by computing the
renewal function R(x,t) = 2 Q™ (x,t¢).” This subsection aims for gaining some
intuitions by visualizing our problem.

For demonstration, the dimension of x is reduced to one (it’s easier to plot the

result) and coefficients are scaled and normalized. Let

Qx.t) = Q) == %exp (5 1),

f-(t) = /00 Q(z,t)dr = 2t exp (—1t?).

The function @) chosen here leads to the same f, as the function ) defined by (1.6)

up to a scaling.® It’s an easy observation to see that

/ Rix fydx =Y / Q™ () = 3 f7°(1).

Under suitable initial data’, the initial flux fT(x,¢) can be chosen to be the
Dirac delta function, so that the flux p(z,t) = > 7 Q™ (x,t) and the flow rate
on Ris [ p(z,t)de = > 07 fr*(t). The density p(z,t) and Q™ (z,t) are shown
by contours in Figure 1,2, while Figure 3 shows the flow rate ffooo p(x,t)dx and
fm(t), n=1,2,3,..., forx =0.

57small” depends on one’s computation power and required accuracy.

6Note that f, can be treated as a probability density, which defines a random variable 7 con-
cerning to processes defined in the next section.
"Choose the initial data f(x,0,v) = x=0:v=(0,0,—1)-

6
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3 2 1 a 1

Figure 1: Contour of p(z,t) for 0 < t < 12 and —3 < z < 3. Started quite
concentrated at the origin, it gradually spreads out as ¢ grows.

: 5 5 I:-:I
] 5 5 ] 5 5 ] 3 5 ]

Figure 2: Contour of Q™ (z,t) forn = 1,2,...,8, 0 < ¢t < 20 and =5 < z < 5.
The center of Q™ (z,t) shifts with a unit pace as n grows; meanwhile, their shapes
gradually deform to a normal distribution.

From Figure 3, one can see the flow rate [ p(z,t)dx becomes almost a constant

after oscillating a few periods (with the fixed period E7). The convergence of the

doi:10.6342/NTU202001584
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Figure 3: The flow rate ffooo p(x,t)dx and fI*(t), n =1,2,3,..., for t < 20. The
flow rate [ p(x,t)dz converges to a constant 1/ET = 2/+/7 ~ 1.128. The peak point
of fI*(t) is reached when t = nET.

flow rate can be shown by an elementary renewal theory (see e.g. [6, Sec 2.2]) that

lim N(t)/t =1/ET as. (1.11)

t—o00

where N (t) and 7 are defined in Definition 4.1.

For small time ¢, the flux p(z, t) is dominated by a finite number of Q™*(x, t) for n
near t/E7 i.e. letting m = [t/E7|, p(x,t) is well approximated by SN Q™ (x, t)
for some N < oo (with the error term of O(exp(—N))) estimated by exponential
Chebyshev’s inequality). This is why the numerical approximation is feasible. How-
ever, the required N(upon an accuracy) grows as ¢ grows.® This is when the limit

theorems kicks in.

8As can be seen that Q™*(z,t) spreads out as n grows so more effective overlaps of Q™*(z,t) on
the t-large side of Figure 3.

doi:10.6342/NTU202001584
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2 Local Limit Theorem

This section aims for the asymptotics of the renewal measure H defined in (1.10).
If f* is the Dirac delta function, then p(x,t) is the density of H and it’s regarded
as the homogeneous case. For general f*, the inhomogeneous renewal measure H;
is defined as H besides that among the iid sequence of random variables &;, & is
no longer being identical. Recall that ||f*]| := [ fTdxdt = ||f]|| and assign the
probability density of & with fT/||f||, then p(x,t)/|| f|| becomes the density of H;.?

Let us begin with a more general problem formulation. Set £ be a nondegenerate
random vector in R?, with distribution F, recall that S, = or &, where &, @ =

1,2, ... is a sequence of iid copies of &.

2.1 Local Limit Theorem for Sums of Independent Random

Vectors

Before going to the asymptotics of H, we should first study the asymptotics of .5,,.
Let

Y(A) = B, A e R?

be the Laplace transform of ¢ and A := {¢p < oo} be its effective domain. For
A € A, let F' denotes the distribution of &, its Cramér transform is defined such

that

ey

(N)

9The normalization of f* can be omit i.e. & need not be a random variable, doing so is just
for an easier interpretation.

F\(dy) =

F(dy). (2.1)

d0i:10.6342/NTU202001584
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Denoted by &y is the random vector with this tilted, or re-weighted distribution

and S, is defined accordingly. An easy computation gives'

Eoy = (Inp(N)), VEp = (Inp(N))".

The key point of the local limit theorem of S, is choosing the right A of the
Cramér transform such that the center of S,y shifts to the point of interest, so the
distribution around this point can be approximated by the central limit theorem.

Given v € R"™, by properties of the Laplace transform, we have

6)\-1)
——P(S,, € dv) = P(S, € dv),

P(S, € dv) = e XN p(S o € dv).

We can replace P(S,\) € dv) with (27n)~%2 det(VE(,))"/%(1 4 0(1)) by the central
limit theorem if X is chosen such that ES,, ) = v. This is achieved when (In()))" =
E¢n = v/n. Let a = v/n and assume such A can be achieved and determined

according to this value, i.e. A\ = A(«), we rewrite the above equation as

o (@M@ v @)

P(Sa € dv) = /@rn)d det((In o (M@))")

(1 + o(1))dv (2.2)

as n — Q.

The deviation function corresponding to £ is defined as

Aa) = sgp{)\ ca—Iny(A)}, (2.3)

which is the conjugate of the convex function In(\). Let £ denotes the domain of

analyticity of A.

19Here V() denotes the covariance matrix Covl[€y)).

10
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Theorem 2.1 (Local limit theorem for sums of independent random vectors [3]).
Given a compact set K C L, for a = v/n € K, the equation (Iny()\)) = a can be
solved uniquely so the function A(«) described in (2.2) is well defined; furthermore,

the function o - A(a) — Inp(A(«)) coincides with A(«). Thus, rewrite (2.2),

e—nA(a)

Vv (2mn)? det((Iny(A(a))”)

P(S, € dv) = (14 0(1))dv (2.4)

as n — oo, where the remainder o(1) is uniform in K.

2.2 Local Limit Theorem for the Renewal Measure

The local limit theorem of the renewal measure has a similar form to (2.4) but with

a different rate function. The second rate function (see [4])
D(a) := 71n1>1£ rA(a/r),

in terms of convex analysis, is the positively homogeneous convex function generated
by A. Let ® denotes its domain of analyticity. Let ¢); denotes the Laplace transform
of &, Ay := {1y < 0o} be its effective domain and Ak := {D'(«) | @« € K}.

Theorem 2.2 (Integro-local limit theorem for the renewal measure [2][4]). For
v € R and T € R, let a := x/T. Suppose o € K C D for a compact set K

separated from the origin and Ax C Ay, then

H(dz) :%C@)e—m(% +o(1)), (2.5)
Hy(dz) =1 (D' () H (dx) (1 + o(1)) (2.6)

as T — oo, where the remainder o(1) is uniform in K.

11
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A brief outline of the proof is given here. For z € R,
H(dx) := >  P(S, € dx).
n=1

Depending on the structure of the distribution of £, there’re several ways showing

that this series is approximately the partial sums

> P(S, € dx),
N2

where Ny := {17 < n < T} and ¢, ¢y are constants depending on «a. Let

r:=n/T and L(r) := rA(a/r), by Theorem 2.1 and the Laplace method,!!

Ci(z/n)

Z P(S, € dr) = Z Wemm/n)“ Toll))de
N Na
S
re€ler,ca]

T e

For the inhomogeneous case (& #4 &), we need the following lemma.!?

Lemma 2.3. Under the assumptions in Theorem 2.2, there exists ¢ > 0 and

Co, Ty < oo such that
|H (dz) — E(H(d(z —&)); )& < In? T) | < CoeTP@—el® T (2.7)

for T > 1Tg.

HFor details, see [2, p. 580].
2In fact, Hy(B) = E(H (B — &)) so this lemma means if we put a restriction on &, then there
is a corresponding error.

12
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For |&| < In*T,
~TD(a—&/T) = —TD(a) + D'(a) - & + O(n* T/T).
Thus,

B(H(d - )il <1 T)

T(d-1)/2

(
:E< d Cla— & /T)e”TPE=8/D) (1 4 o(1));]&] < In? T)
(

O(a)e—TD(a)+D/(a)'£1) (1+0(1))

3 The Second Rate Function

The valid region of the asymptotic in Theorem 2.2 depends on the second rate

function D and the distribution of the initial step &;. Recall that

2 2 2 242
_9° _zthy”  gott
g7 €XP (— g5 ) t>0

Qx,t) = Q(x,y,1) == :
0, t<0

which is now assigned as the density function of &, determines D. On the other
hand, f*/||f]| is assigned to be the density function of &;.

For simplicity, we consider this nonparametrized version

C%exp(—%—tz), t>0
Q(x,1) = Q(z,y,1) := ,
0, £<0

13

d0i:10.6342/NTU202001584


http://dx.doi.org/10.6342/NTU202001584

where C' is the normalizing constant. First, the Laplace transform of £ is computed.

(s, up,us) / / C'=exp( y —t* + st + uyx + ugy)dwdydt
R2

2
—C/ 7t exp (M — 1 + st)dt.
0

Note that v is analytic in its effective domain
A= {1 < oo} = {(s,us,us) € R® | uf +uj < 4}.
Write ¥ (s, p1) = (s, ur,uz) for p = /u? +u3. For p € (u,put) :=(—2,2), define

A(p) == —sup{s : ¥(s,u) < 1},

A®(p) == —sup{s : ¢(s, ) < 0o} = —00

Fix g € (u=, "), (s, ) strictly increases as s grows so A = A(u) is the unique
solution for the equation (—A\, ) = 1. By implicit function theorem, A is analytic
in the region where A(u) > A>(p). This region happens to be (u~, u™). For a € R,
define

Some convex analysis arguments show that

Di(a) = s%p{ua — A(p)},

which is analytic for o € (A'(u~ +0), A’(ut — 0)). Combining the facts
e The graph (A(u), (1)) is a contour of .
e (s, ) is strictly increasing in s-component.

e The effective domain in u-component of ¢ is bounded.

14
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We conclude that (A'(x~+0), A'(u*t—0)) = (=00, 00) in our problem. Thus, for the
homogeneous case, the local limit theorem for the renewal measure can be applied
without restriction.

For the inhomogeneous case, the constraint on &; actually depends on the region
of interest. Given a € RT x R?, it’s sufficient that D’(a) € (A;), which means, by

selecting K a sufficiently small neighborhood of D'(«), let

A; =sup{D'(a);,a € K7},

A =inf{D'(a);,a € K}, j=1,2,3,
then it’s sufficient for & to satisfy: there exists r, C' > 0 such that

P((&); > 8) <Ce™ P,

P((&); < —B) <Ce™ 7
for g > r.

3.1 Normal and Moderate Large Deviations
When a = x/t — 0, the asymptotic is said to be in the moderate large deviation
region. In this case, Di(a) — 0, Dj(a) — 0 and D{(a) — (%—f)_l =: 271 also,

Y1(D}(a)) — 1 and C(a) — (2rET|X|)~Y/2; thus, we have the following asymptotic

—xT'y—1x
t - = &
_P’(”J‘;’R ~ ((m )y e R TET),

which is uniform in any compact set separated from the origin. Combining Theo-

rem 4.4, we have

15
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Theorem 3.1 (Local limit theorem of the boundary flux in its central part [,

p.401]).
p(z, ) 2 Er 71/28Xp(_m2TEET;1m)
g~ (@ ETIE) . (3:1)

as t — oo. This asymptotic is uniform when x = o(t*/?).

Note that the initial data has no contribution to the asymptotic in this region.!?

4 Stochastic Processes

Physical quantities satisfying conservation laws of the Boltzmann equation (1.1)
or the free transport equation (1.3), which are of physical interest, can be treated
as stochastic processes. What are conservation laws? For the transport equation,
these physical quantities are required to be invariant along characteristic curves.
For example, f, (vi,vq)f and (% +gz) f give the distributions of the position, the
horizontal momentum and the total energy of the gas in the phase-space respectively.

Let us denote these processes by Yy(t), Yi(t) and Y5(t). Given B C HT x R3,

P(Yy(t) € B) = C’o/ f(x,t,v)dxdv,

P(Yi(t) € B) =} /B(vl,VZ)f(x,t,v)dxdv,
v|®

P(Ys3(t) € B) = Cy /B(T + g2) f(x,t,v)dxdv,

where C; are normalizing constants.
Similarly, [ fdv, [(vi,v2)fdv and [ (% + gz) fdv give the distributions of the

position, the horizontal momentum and the total energy of the gas in the upper-

BThough the tails of the initial f* are still required to be subject to exponential decay.
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space HT respectively. Denote these processes by Xy, X; and X,. For U C HT,

P(Xy(t) € B) = C’O/ f(x,t,v)dvdx,
U JR3
P(X\(t) € B) = Cy / /R (V1 va)f O V),

!V|2
P(X(t) + g2)f(x,t,v)dvdx,
Rs

The stochastic formulation of these quantities enable us to reach their limiting be-
haviours.

Additionally, these processes can be mapped onto the plane {z = 0} and forms
some two-dimensional processes. Among them, one of the simplest processes is the
last hitting position Z(t) of a single gas particle, which is obtained by mapping
Yo(t) along its characteristic curve to {z = 0}. This process admits the following

definition, being the main object studied in [1].

Definition 4.1 (Compound renewal processes [1]). Consider a sequence of random
vectors &, = (Tn, Cu), which are id to & = (1,() for n = 2,3, ... and independent of
&7 >0 and 1 > 0. For each n, (, can depend on 7, while being independent of

Tm Jor allm #n. Let T, := 2?21 7;, a renewal process is

=Y 1T, <t) (4.1)
n=0

Let Z(0) = 0, then

N(t)
2 =6 (4.2)

1s a compound renewal process.

The compound renewal process can be associated with the renewal measure H;
directly. Let us interpret Q™*(x,t) as the probability density of a chicken walking

n steps to move a displacement x while spending exactly ¢ amounts of time (or

17
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reaching (x,t) from the origin (0,0)). Suppose further that with every step it takes,
it lays an egg. If the chicken was at the origin at time ¢ = 0, then R(x,t) becomes
the increasing rate (with time) of the expected number of eggs per unit area at x
and at time t. Writing probabilistically the chicken’s behaviour, we get exactly the
process defined in Definition 4.1.

As moments of f or sums of mappings of f along the characteristic curve, these

processes are all belong to a class of stochastic process.

Definition 4.2 (Processes with regenerative increments [6, p.193]). Let 7,, n =
2,3, ... be a sequence of itd random variables with distributions identical to T and 1,
be another random variable independent to random variables 7,,; 7 > 0 and 7, > 0.

T, = Z;;l 7; is called a renewal time. An increment of a process G(t) is given by
Gn = (Tna {G(t + Tn—l) — G(Tn—l) 0<t< Tn})

A process G(t) is said to have regenerative increments if g, are #id for n = 2,3, ...

and gy is independent of increments g, (not necessarily identical).

These processes are all closely related to the renewal measure H;. Their distribu-
tions can be written explicitly into the form as ”a convolution of H; and a function

Fy plus another function F}”. Indeed,

P(Z(t) € U) = Lioery P(T} > t) = P( UtZ. €U T <t, Ty > t})
n=1

[
NE

(P(Z, €U, T, <t)— P(Z, €U, Try < t))
1

3
Il

H([0,t] x U) _iP(Zn ceU T,+717<1)

n=1

= H,((0,8] x U) — H,([0,4] x U) % P(1 < t)

= H,([0,8] x U) % P(r > 1)

where Hy([0,t] x U) x P(T > t) = fot P(t >t — s)Hy(ds x U). Likewise, by the
18
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characteristic method used in deriving (1.5), the distribution of X;(t), Y;(¢) can also
be written into this form.

With this connection to the renewal measure, the limiting behaviour of these
physical quantities are revealed. Like the inhomogeneous case to the homogeneous
case, an extra term arises in front of the renewal measure, which is the Laplace

transform of the function Fj.

Theorem 4.3 (Integro-local limit theorems for the compound renewal process).

Under the condition of Theorem 2.2,

P@ﬁ)e@ﬂ:(AW@WWHT>yM®HﬂﬂL@X1+dD)

+1(z = 0)P(T} > 1)

fort — .

There’s a version of central limit theorem for a process with regenerative incre-
ment, which can be found in e.g. [6] (in this book, it’s proved by using a functional

central limit theorem)

Theorem 4.4 (Regenerative CLT (one dimensional) [6, Sec 2.13]). In the context

of Definition 4.2, suppose

W= kT,

a:= E[G(T)]/p,

M, = sup {G(t+T,-1) —G(T,-1)}, n>1,

0§t<Tn

d0i:10.6342/NTU202001584
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When modified to its multi-dimensional version, this theorem matches our esti-

mate of the boundary flux in its central part (see Theorem 3.1).
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