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中文摘要 

在成對比較類型的運動數據分析中，實務工作者和研究者們認知球隊在連續

比賽中，由於受傷、團隊心理和團隊進步會導致團隊能力變化。描述分數差或比賽

結果最常用的框架主要是對主場隊伍和客場隊伍的能力差做適當的轉換。在這樣

的考慮下，隊伍能力的變化可以在頻率派學者或貝氏的觀點下進一步建模。通過整

合這些特點到模型的構造中，我們對團隊能力提出更通用的動態模型。此外，我們

還制定了一些準則來從競爭模型中選出擁有較好季後賽預測力的模型。我們透過

美國國家籃球協會2009-2010賽季到2018-2019賽季的數據來調查提案的實用性。 

關鍵字：成對比較、動態能力、混合效應模型、模型選擇、預測率、預測均方差 
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Abstract

In paired-comparison sports data analysis, practitioners and researchers have iden-

tified the varying abilities of teams due to injuries, team psychology, and team

improvement in the course of sequential competitions. The most commonly used

framework to describe the score difference or the match outcome is mainly based

on an appropriate transformation of the difference in abilities of the home team

and the visiting team. Under such consideration, the abilities of teams can be fur-

ther modelled with dynamic effects in the frequentist or Bayesian perspective. By

integrating these features into a model formulation, we propose more general dy-

namic models for the abilities of teams. In addition, some criteria are developed

to select a better predictive model for playoffs among competing models. The

practicality of our proposal is also investigated by the data from the 2009-2010

season to the 2018-2019 season of the National Basketball Association.

KEY WORDS: Paired comparisons; Dynamic abilities; Mixed effects models;

Model selection; Proportion of correct predictions; Prediction mean squared er-

ror.
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Chapter 1

Introduction

How to assess abilities of sports teams has been of great interest to researchers

and practitioners. National Collegiate Athletic Association (NCAA) established a

ranking system reflecting the abilities of teams to select teams for playoffs. Pre-

dictions of future outcomes can be made by the abilities of participating teams,

which are highly concerned by practitioners.

Paired comparison models have been commonly used for sports events. A sea-

son of basketball matches in NBA league can be regarded as a series of paired

comparisons. The advantage of paired comparisons is reducing the effects of con-

founding. For example, two teams share the same referee in a match, whereas one

team may played with several different referees throughout the whole season and

there may be judgement biases among referees. Existing Paired comparison mod-

els for sports events characterize the score difference or outcome to be related with

home team’s ability and visiting team’s ability by a linear model or generalized

linear model respectively.

Previous studies proposed a variety of paired comparison models for sports

events including random/fixed effects models with/without dynamic effects on the

abilities. In the spirit of existing models, we further propose two flexible models

under different cases and many of existing models can be unified in the proposed

models. We connect Bayesian and frequentist viewpoints by mixed effects models.

1
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1. Introduction 2

The dynamic scheme of abilities is more general by considering fixed dynamic

scheme and random processes for the abilities simultaneously. We provide model

selection criteria to select a better model and setup for the prediction purpose. Two

measures of predictive ability are used to compare the predictive performances of

competing models.

In section 2, several existing paired comparison models are introduced. Sec-

tion 3 describes the proposed models under different setups. Section 4 intro-

duces the estimation method, which consists of least squares method, maximiz-

ing observed likelihood, and maximizing posterior likelihood. The measures of

goodness-of-fit and predictive ability are also introduced. Section 5 presents an

application to the National Basketball Association.
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Chapter 2

Existing Paired Comparison Models

Let m be the number of matches; T the number of teams; Yi the score difference

of match i, i = 1, . . . , m; ak and bk the home ability and visiting ability of team k

respectively, k = 1, . . . , T ; hi and vi the home team and visiting team in match i

respectively; and ti the time of match i.

The first paired comparison model for sports events proposed by [1] did not

consider the dynamic effects and the home ability and visiting ability were con-

sidered to be the same. That is, ak = bk , αk, ∀i = 1, . . . , m, and k = 1, . . . , T ,

which leads to the following model:

Yi = αhi
− αvi

+ εi, i = 1, . . . , m. (2.1)

[2] improved model (2.1) by considering the home court advantage θ, i.e.,

ak , αk + θ and bk , αk, which leads to the following model:

Yi = θ + αhi
− αvi

+ εi, i = 1, . . . , m. (2.2)

[3] considered team-specific home court advantages θk, i.e., ak , αk + θk and

bk , αk, which leads to the following model:

Yi = θhi
+ αhi

− αvi
+ εi, i = 1, . . . , m. (2.3)

The first model considering the dynamic abilities was proposed by [4]. The

model suggested that there is a deviation of performance Sk(ti) from a team’s

3
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2. Existing Paired Comparison Models 4

underlying ability in each game. In the formulation of (2.2), let ak(ti) , θ+αk(ti)

and bk(ti) , αk(ti). The model leads to

αk(ti) = αk + Sk(ti), (2.4)

where Sk(ti) follows a random process. [5] proposed a model for ordered cate-

gories:

P (Yi ≤ r) = F (θr + αhi(ti) − αvi(ti)), r = 1, . . . , k (2.5)

with αk(ti) following a random process and αk(0) = αk for all k. [4] and [5] both

assumed that the dynamic effects on ability depends on some random processes,

wheras [6] proposed a fixed dynamic scheme for the dynamic evolution of ability.

Let λ1, λ2 ∈ [0, 1] and Yi = 1 if the home team won, and Yi = 0 if the visiting

team won. t
(−1)
i denotes the time of the previous home match in which hi was

also the home team, t
′(−1)
i denotes the time of the previous away match in which

vi was also the visiting team. [6] proposed the following dynamic Bradley-Terry

model:

P (Yi = 1|Yi−1 = yi−1, . . . , Y1 = y1) = exp{ahi
(ti) − bvi

(ti)}
1 + exp{ahi

(ti) − bvi
(ti)}

with 
ahi

(ti) = λ1γ1y(t(−1)
i ) + (1 − λ1)ahi

(t(−1)
i ),

bvi
(ti) = λ2γ2(1 − y(t′(−1)

i )) + (1 − λ2)bvi
(t′(−1)

i ),
(2.6)

where y(ti) denotes the outcome of the match at time ti. [6] assumed that all

teams started with the same home and visiting underlying abilities γ1r̄h and γ2r̄v

respectively, where r̄h and r̄v are the average win rates of home matches and away

matches over the previous regular season respectively.
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Chapter 3

Proposed Models for Dynamic

Effects

Based on existing models, a paired comparison model for sports events can be

formulated as

Yi = ahi
(ti) − bvi

(ti) + εi, i = 1, . . . , m. (3.1)

The main issue is how to model the dynamic evolutions of abilities ahi
(ti) and

bvi
(ti) for i = 1, . . . , m. Let Yi denote the score difference of match i. Yh(ti)

and Yv(ti) denote the scores of the home team and the visiting team of match i

respectively. For the regression formulation, we define the following notations:

Y =


Y1
...

Ym

 , ε =


ε1
...

εm

 , a =


a1
...

aT

 , b =


b1
...

bT

 , γ1 =


γ11

...

γ1T

 , and γ2 =


γ21

...

γ2T

 .

3.1 Background

In the spirit of [6], we propose a more general model for abilities (hereinafter

referred to M1):
ahi

(ti) = λ1γ1hi
yh(t(−1)

i ) + (1 − λ1)ahi
(t(−1)

i ),

bvi
(ti) = λ2γ2vi

yv(t′(−1)
i ) + (1 − λ2)bvi

(t′(−1)
i ).

(3.2)

5
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3. Proposed Models for Dynamic Effects 6

The underlying abilities ak and bk are fixed unknown parameters for k = 1, . . . , T .

The dynamic Bradley-Terry model is a special case of model M1 under the fol-

lowing three conditions: (i) underlying abilities are set to be the average win rates

of home matches and away matches over the previous regular season respectively.

(ii) γ11 = · · · = γ1T and γ21 = · · · = γ2T . (iii) The score difference is replaced

with the outcome.

In model M1, the underlying abilities a and b are involved in the updating

scheme with scores. Thus the effects of underlying abilities will decrease as the

season goes on. However, model (2.4) provides a different aspect: The effects

of underlying abilities should be the same throughout the season. The dynamic

effects are explained as the deviations of the actual performances from the underly-

ing abilities. Considering the feature, we propose a model in which the underlying

abilities are not involved in the updating scheme (hereinafter referred to M2):

ahi
(ti) = ahi

+ γ1hi
Shi

(ti) and bvi
(ti) = bvi

+ γ2vi
Svi

(ti),

Shi
(ti) = (1 − λ1)Shi

(t(−1)
i ) + λ1yh(t(−1)

i ),

Svi
(ti) = (1 − λ2)Svi

(t′(−1)
i ) + λ2yv(t′(−1)

i ),

(3.3)

where Svi
(0) = 0 and Shi

(0) = 0.

There are two meaningful cases of model M2: λ1 = λ2 = 1 and λ1 = λ2 = 0

(hereinafter referred to M2-i and M2-ii respectively). The former implies that the

dynamic effects only count on the result of the previous match. That is,

Shi
(ti) = yh(t(−1)

i ) and Svi
(ti) = yv(t′(−1)

i ). (3.4)

The case of λ1 = λ2 = 0 means that there is no dynamic effect, i.e.,

Shi
(ti) ≡ 0 and Svi

(ti) ≡ 0. (3.5)

The roles of λ1 and λ2 are the weights of averaging the previous match results

and historic results. λ1 and λ2 can be considered as covariates that we can design.

One can set λ1 and λ2 for arbitrary value in [0, 1]. Several values of λ1 and λ2 is

tested in chapter 5.
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3. Proposed Models for Dynamic Effects 7

Above models are in the frequentist framework, the abilities are updated by

fixed parameters and historic data. In Bayesian framework, the abilities are up-

dated by some random processes. The simplest case is the first-order random

walk model: 
ahi

(ti) = ahi
(t(−1)

i ) + uh(ti),

bvi
(ti) = bvi

(t′(−1)
i ) + uv(ti),

(3.6)

where uh(ti)’s i.i.d.˜ N(0, σ2
h), uv(ti)’s i.i.d.˜ N(0, σ2

v) and they are mutually inde-

pendent for i = 1, . . . , m. Considering both factors simultaneously, we further

propose models M1R, M2R, M2R-i and M2R-ii from M1, M2, M2-i and M2-ii re-

spectively, in which the abilities follow a random process. In the case of first-order

random walk, M1R and M2R are proposed as the follows respectively.
ahi

(ti) = λ1γ1hi
yh(t(−1)

i ) + (1 − λ1)ahi
(t(−1)

i ) + uh(ti),

bvi
(ti) = λ2γ2vi

yv(t′(−1)
i ) + (1 − λ2)bvi

(t′(−1)
i ) + uv(ti).

(3.7)



ahi
(ti) = ahi

+ γ1hi
Shi

(ti) and bvi
(ti) = bvi

+ γ2vi
Svi

(ti),

Shi
(ti) = (1 − λ1)Shi

(t(−1)
i ) + λ1yh(t(−1)

i ) + uh(ti),

Svi
(ti) = (1 − λ2)Svi

(t′(−1)
i ) + λ2yv(t′(−1)

i ) + uv(ti).

(3.8)

The underlying abilities a, b and parameters of dynamic effects γ1, γ2 can be

fixed unknown parameters or random parameters. From frequentist viewpoint, if

the sample size is large enough, consistency of the estimation guarantees the esti-

mated parameters will converge to the true parameters. Form Bayesian viewpoint,

by assuming the parameters follow some prior distributions, it can reduce the num-

ber of parameters to be estimated, which is an advantage when the sample size is

small. We cover above two viewpoints by considering the following 4 different

cases:

Case 1 . a, b and γ1, γ2 are fixed;

Case 2 . a, b are fixed and γ1, γ2 are random;

Case 3 . a, b are random and γ1, γ2 are fixed; and
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Case 4 . a, b and γ1, γ2 are random.

In each of above cases, if a and b are random, we assume that ak’s i.i.d.˜ N(µa, σ2
a)

and bk’s i.i.d.˜ N(µb, σ2
b ). If γ1 and γ2 are random, we assume that γ1k’s i.i.d.˜ N(µ1, σ2

1)

and γ2k’s i.i.d.˜ N(µ2, σ2
2) and all the random parameters are mutually independent.

If there is any random parameters, the normality assumption εi’s i.i.d.˜ N(0, σ2
0) is

required due to concerns about estimation.

3.2 Regression Model Formulation

All proposed models can be rewritten as the following form:

Y = Xβ + ε, (3.9)

where

β =



a

b

γ1

γ2

uh

uv


with uh =


uh(t1)

...

uh(tm)

 , and uv =


uv(t1)

...

uv(tm)

 .

Model M1 is chosen as an example to show how to obtain the regression formula-

tion. In an arbitrary match i (or at time ti), the home ability and visiting ability of

team hi and team vi under model M1 can be rewritten as the follows respectively:
ahi

(ti) = (1 − λ1)K1ahi
+

[
λ1

∑K1−1
j=0 (1 − λ1)jyh(t(−j−1)

i )
]

γ1hi
,

bvi
(ti) = (1 − λ2)K2bvi

+
[
λ2

∑K2−1
j=0 (1 − λ2)jyv(t′(−j−1)

i )
]

γ2vi
,

(3.10)

where K1 and K2 denote the number of home matches and away matches hi and

vi had played before time ti respectively. From (3.10) one can design the covariate

matrix X and obtain the regression model formulation of model M1. Proceed in

the same way, one can derive the regression formulation of all models. Due to the

problem of identifiability, we assume that
∑T

k=1 bk = 0 in model M2, M2-i, M2-ii,
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M2R, M2R-i and M2R-ii. If there are random effects in the model, mixed effects

model formulation has more advantages in estimation.

Let βR denotes the random parameters and βF denotes the fixed parameters,

i.e.,

Case 2. βR =

γ1 − µ11T

γ2 − µ21T

 , βF =



a

b

µ1

µ2


;

Case 3. βR =

a − µa1T

b − µb1T

 , βF =



µa

µb

γ1

γ2


; and

Case 4. βR =



a − µa1T

b − µb1T

γ1 − µ11T

γ2 − µ21T


, βF =



µa

µb

µ1

µ2


.

Due to the problem of identifiability, we assume that µb = 0 in model M2, M2-i,

M2-ii, M2R, M2R-i and M2R-ii. By similar procedures, one can derive the mixed

effects model formulation:

Y = XRβR + XF βF + ε. (3.11)
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Chapter 4

Estimation and Model Selection

To write down the estimation approach explicitly, we first define some notations.

Let Xγ1 and Xγ2 be the covariate matrix of γ1 and γ2 respectively. Let γ =

(γT
1 , γT

2 )T , Xγ = (Xγ1 , Xγ2), and Y ∗ = Y − XF βF .

4.1 Estimation

By the model formulation (3.11):

Y = XRβR + XF βF + ε , XF βF + ε∗, (4.1)

where ε∗ = ε + XRβR and ε∗ ∼ Nm(0, σ2
0Im + XRV ar(βR)XT

R). The estimation

approach of βF and λ is proposed to minimize the sum of squares

SS(λ, βF ) = (Y − XF βF )T (Y − XF βF ). (4.2)

Least square method can be applied in this minimization.

min
λ,βF

SS(λ, βF ) = min
λ

min
βF

SS(λ, βF ) = min
λ

(Y − XF β̂F )T (Y − XF β̂F ),

where β̂F = (XT
F XF )−1XT

F Y is the least square estimator of βF .

We illustrate the rest of the estimation by case 2, in which V ar(βR) = diag(σ2
1IT , σ2

2IT ).

The observed likelihood function of (σ2
0, σ2

1, σ2
2) is

L(σ2
0, σ2

1, σ2
2|X, Y ) = (2π)− m

2 |Σ|−
1
2 e− 1

2 (Y −XF βF )T Σ−1(Y −XF βF ), (4.3)

10
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where Σ = σ2
0Im + σ2

1Xγ1XT
γ1 + σ2

2Xγ2XT
γ2 and the observed log-likelihood func-

tion is

−m

2
log(2π)−m

2
log σ2

0−1
2

log |Im + σ2
1

σ2
0
Xγ1XT

γ1 + σ2
2

σ2
0
Xγ2XT

γ2|

− 1
2σ2

0
(Y − XF βF )T (Im + σ2

1
σ2

0
Xγ1XT

γ1 + σ2
2

σ2
0
Xγ2XT

γ2)−1(Y − XF βF ).
(4.4)

The estimation approach for (σ2
0, σ2

1, σ2
2) is proposed to maximize the observed

log-likelihood function, i.e.,

(σ̂2
0, σ̂2

1, σ̂2
2) = argmax

(σ2
0 ,σ2

1 ,σ2
2)

l(σ2
0, σ2

1, σ2
2|X, Y ).

To estimate the predictors γ̂1 and γ̂2 of γ1 and γ2, it is proposed to maximize the

posterior log-likelihood. That is,γ̂1

γ̂2

 = argmax
(γ1,γ2)

log L(γ1, γ2|σ̂2
0, σ̂2

1, σ̂2
2, X, Y ), (4.5)

where

log L(γ1, γ2|σ2
0, σ2

1, σ2
2, X, Y ) ∝ log fY (y|σ2

0, γ1, γ2)π(γ1, γ2|σ2
1, σ2

2)

= −m

2
log(2π)−m

2
log σ2

0 − 1
2σ2

0
|(Y − XF βF − Xγ1γ1 + Xγ2γ2)|2

(−m) log(2π)−m

2
(log σ2

1 + log σ2
2) − 1

2
( 1
σ2

1
|γ1|2 + 1

σ2
2
|γ1|2)

∝ −(Y ∗ − Xγγ)T (Y ∗ − Xγγ) − γT Wγ,

and

W =


σ2

0
σ2

1
IT 0

0 σ2
0

σ2
2
IT

 .

The posterior log-likelihood is maximized whenγ̂1

γ̂2

 = (XT
γ Xγ + W )−1XT

γ Y ∗ = E[γ|σ2
1, σ2

2, σ2
v , X, Y ]. (4.6)
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4.2 Model Selection

With all the models and cases, how to select the best model is an important is-

sue. Good predictions of outcomes and difference in scores are important for

practitioners. In the following paragraphs, we first introduce two measures of pre-

dictive ability to measure the performance of a model on the prediction purpose.

Then several criteria are proposed based on goodness-of-fit and predictive ability

measured by regular season data.

The measures of predictive ability are proportion of correct predictions and

prediction mean squared error, hereinafter denoted by PCP and PMSE respec-

tively. Let (X0, Y 0) be a future run.

PCP(M) = P (sign(Y 0) · sign(X0β̂M) > 0) + 0.5P (X0β̂M = 0), (4.7)

and

PMSE(M) = E(Y 0 − X0β̂M)2, (4.8)

where β̂M denotes the estimate of β under model M. To estimate the PCP and

PMSE of model M, the playoffs data are considered as future runs and the prob-

ability is estimated by the empirical distribution of playoffs data.

The Bayesian Information Criterion in [7] is a common approach in model

selection. With the observed log-likelihood function (4.4), the BIC value of a

model M is derived by

BIC(M) = −2 log L(M) + pM log m, (4.9)

where pM denotes the number of parameters in the model M. [7] suggested to

choose the model with smallest BIC value.

To get an analogue of prediction by regular season data, cross validation is a

commonly used approach. However, it can not be applied to the proposed models

since the estimation of dynamic abilities depends on historic data. Thus we split

the regular season data into training data and testing data by a given time. Esti-

mation is done by training data and measures of predictive ability can be derived
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by applying the estimated parameters to the testing data. To be more explicit, we

introduce the following notations:

Y =

Y tr

Y te

 , X =

X tr

X te

 ,

where (X tr, Y tr) and (X te, Y te) denote the training data and testing data respec-

tively. Let β̂tr
M be the estimate of β by the training data under model M. The PCP

and PMSE of model M are estimated by

P̂CP(M) = 1
S

S∑
i=1

[
I(sign(Y te

i ) · sign(X te
i β̂tr

M) > 0) + 0.5I(X te
i β̂tr

M = 0)
]

,

(4.10)

and

P̂MSE(M) = 1
S

S∑
i=1

(Y te
i − X te

i β̂tr
M)2, (4.11)

where S is the number of matches in testing data. The model MPCP and MPMSE

with highest P̂CP and smallest P̂MSE are chosen, i.e.,

MPCP = argmax
M

P̂CP(M) (4.12)

and

MPMSE = argmin
M

P̂MSE(M). (4.13)



doi:10.6342/NTU202001978

Chapter 5

An Application to National

Basketball Association

The proposed models are applied to 2009–2010 season to 2018–2019 season of

National Basketball Association. The data are available via an API provided in [8].

The data consist of the index of every match sorting by calendar time, the home

teams and visiting teams of every match, and scores of the home teams and away

teams in every match. The regular season is used to fit the proposed models and

the playoffs data are treated as future runs to estimate the proportion of correct

predictions and prediction mean squared error. Model M1 and M2 with λ ∈ Λ

are also considered in this section, where Λ = {k(0.1, 0.1)T : k = 0, . . . , 9}.

Hereinafter we denote M· = {M · including the cases λ ∈ Λ}, for · = 1, 2, and

MT = M1 ∪ M2.

We investigate the dynamic effects of abilities in model M1R, M2R, M2R-i

and M2R-ii with first-order random walk. The means of the ratios σ̂2
h/σ̂2

0 and

σ̂2
v/σ̂2

0 over ten seasons are shown in Table 6.3. In these NBA data, the variances

of uh and uv are small compared to the estimated variances of ε. Moreover, the

predictions of outcomes are almost the same whether considering uh and uv or

not. To simplify the presentation, we do not consider models M1R, M2R, M2R-i,

and M2R-ii in this investigation based on these facts and .

14
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The proportion of correct predictions of dynamic Bradley-Terry model (2.6)

proposed in [6] (hereinafter referred to DBT model) and its modification which

replaces the outcome with score difference (hereinafter referred to DBTS model)

are listed in table 6.1 compared to the proposed models. DBT model produces pre-

dictions that the home team will win for every match. DBTS model has lower PCP

than the proposed models. One step of estimating the parameters is to minimize

the sum of squares function (4.2). Figure 6.2 and 6.3 show that the non-convexity

of sum of squares function under model M1 and M2 makes the minimization dif-

ficult. Thus we do not recommend DBT model and DBTS model.

Table 6.4 shows the mean of BIC values over ten seasons under different mod-

els and cases. BIC suggests that model M2-ii in the case that abilities are random

should be selected, which means that there is no dynamic effect. The conclusion

also holds if we look at the BIC values season by season.

We compare the PCP of MPCP, MPMSE and model MBIC (without dynamic

effect) for ten seasons to see if there is an evidence of dynamic effect. In most of

the seasons except 2015-2016 season, the models with dynamic effects can have

higher PCP than model MBIC. This can be an evidence that there are dynamic

effects in most of the seasons except 2015-2016 season. Moreover, in 2010–2011

season to 2012-2013 season we successfully select the models with dynamic effect

with higher PCP than model MBIC. Over the ten seasons, the PCP of selected

models are comparable to the highest PCP of all models except 2013-2014 season

and 2017-2018 season.

Table 6.4 shows the mean of PCP’s over ten seasons under different models

and cases. We can see that most of the models are comparable except model M1

under case 1, M1 under case 3, and model M2 under case 2.
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Chapter 6

Conclusion and Discussion

In the application to NBA, table 6.2 shows that the fixed dynamic scheme inspired

by [6] performs poorly in the sense of prediction with PCP 0.586 and DBT model

tends to produce meaningless predictions that the home team always wins. Es-

timation of the weight λ is also difficult (see Figure 6.2) and such estimation is

based on the sense of goodness-of-fit, which may not correspond to the predictive

ability. The fact that uh and uv are inapparent shows that the first-order random

walk assumption on the home ability and visiting ability (cf. [4] and [5]) has no

contribution to the dynamic effects. To sum up, most of the existing approaches to

estimate the dynamic effects are based on the goodness-of-fit with some specific

models. By such approaches, either there is no evidence of dynamic effects or the

dynamic effects may produce poor predictions.

In the aspect of regression, λ should play the role as designed covariate. As-

signing given values to λ avoids the difficulties in estimation and the proposed

model selection criteria can suggest the best λ in the sense of predictive ability.

In the applications to NBA, the proposed model selection criteria can select the

model with nearly the highest PCP in most of the seasons.

All the proposed models are parametric models that model the score difference

to be the difference of home ability and visiting ability. A more general semipara-

metric model may characterize the relation between score difference and abilities

16
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better. In the applications to NBA, the format of playoffs and regular season are

different, which may decrease the PCP and increase PMSE for our models. This

problem is still needed to be solved in future research.
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Figure 6.1: Proportion of correct predictions of M·PCP (red line), M·PMSE (blue

line), and M·BIC (green line). Black lines are the highest and lowest proportions

of correct predictions among M· for · = 1, 2, and T .

(a) M1

(b) M2

(c) MT
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Table 6.1: The estimated proportion of correct predictions from the Dynamic

Bradley-Terry models (cf. [6]) and the selected proposed models on playoffs data.

PPPPPPPPPPPPPP
Model

Season
09–10 10–11 11–12 12–13 13–14

DBT 0.6707 0.6667 0.6786 0.6353 0.5618

DBTS 0.5000 0.5926 0.5000 0.5647 0.5618

M1PCP 0.6402 0.6420 0.7143 0.6588 0.5730

M1PMSE 0.6341 0.6420 0.6905 0.6941 0.5730

M1BIC 0.6463 0.6420 0.6667 0.6588 0.5955

M2PCP 0.6402 0.6543 0.7143 0.6824 0.5506

M2PMSE 0.6463 0.6667 0.7143 0.7059 0.6292

M2BIC 0.6463 0.6420 0.6667 0.6588 0.5955

MT PCP 0.6382 0.6543 0.7143 0.6588 0.5506

MT PMSE 0.6341 0.6420 0.6667 0.6941 0.5843

MT BIC 0.6463 0.6420 0.6667 0.6588 0.5955
PPPPPPPPPPPPPP
Model

Season
14–15 15–16 16–17 17–18 18–19

DBT 0.5926 0.6744 0.5696 0.7073 0.5610

DBTS 0.5926 0.6744 0.5696 0.7073 0.5610

M1PCP 0.6296 0.7229 0.6835 0.6341 0.6585

M1PMSE 0.6296 0.7093 0.6709 0.6098 0.6951

M1BIC 0.6296 0.7209 0.6709 0.6098 0.6707

M2PCP 0.6296 0.7171 0.6835 0.5976 0.6951

M2PMSE 0.6173 0.7093 0.6709 0.5610 0.7073

M2BIC 0.6296 0.7209 0.6709 0.6098 0.6707

MT PCP 0.6296 0.7200 0.6835 0.6341 0.6768

MT PMSE 0.6049 0.6628 0.6582 0.5732 0.6341

MT BIC 0.6296 0.7209 0.6709 0.6098 0.6707

21
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Table 6.2: Mean of proportion of correct predictions of Dynamic Bradley-Terry

model (cf. [6]) and proposed models over the ten seasons.

DBT DBTS M1PCP M1PMSE M1BIC

0.6318 0.5824 0.6557 0.6548 0.6511

M2PCP M2PMSE M2BIC MPCP MPMSE MBIC

0.6565 0.6628 0.6511 0.6560 0.6596 0.6511

Figure 6.2: Selected plots of minimized sum of squares value to λ

(a) 2013–2014 season (b) 2014–2015 season (c) 2016–2017 season

Figure 6.3: Selected plots of minimized sum of squares value to λ

(a) 2016–2017 season (b) 2017–2018 season (c) 2018–2019 season

22
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Table 6.3: Ratio of σ̂2
h to σ̂2

0 and σ̂2
h to σ̂2

0 (rounded to 3 decimal places)

Ratio of σ̂2
h to σ̂2

0

Model M1R M2R M2R-i M2R-ii

Case 1 0.013 0.000 0.000 0.000

Case 2 0.018 0.000 0.000

Case 3 0.769 0.000 0.000 0.002

Case 4 0.011 0.002 0.002

Ratio of σ̂2
v to σ̂2

0

Model M1R M2R M2R-i M2R-ii

Case 1 0.000 0.000 0.000 0.000

Case 2 0.022 0.000 0.000

Case 3 0.000 0.000 0.000 0.001

Case 4 0.020 0.001 0.001

23
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Table 6.4: Mean of PCP and BIC over ten seasons

PCP

Model M1 M2 M2-i M2-ii

Case 1 0.586 0.631 0.654 0.661

Case 2 0.655 0.661 0.657

Case 3 0.632 0.639 0.664 0.646

Case 4 0.652 0.652 0.655

BIC

Model M1 M2 M2-i M2-ii

Case 1 10105.43 10109.69 10125.14 9765.25

Case 2 9854.61 9838.85 9807.57

Case 3 9838.49 9792.86 9793.35 9540.60

Case 4 9569.06 9559.94 9559.02
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