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Abstract

In paired-comparison sports data analysis, practitioners and researchers have iden-
tified the varying abilities of teams due to injuries, team psychology, and team
improvement in the course of sequential competitions. The most commonly used
framework to describe the score difference or the match outcome is mainly based
on an appropriate transformation of the difference in abilities of the home team
and the visiting team. Under such consideration, the abilities of teams can be fur-
ther modelled with dynamic effects in the frequentist or Bayesian perspective. By
integrating these features into a model formulation, we propose more general dy-
namic models for the abilities of teams. In addition, some criteria are developed
to select a better predictive model for playoffs among competing models. The
practicality of our proposal is also investigated by the data from the 2009-2010

season to the 2018-2019 season of the National Basketball Association.
KEY WORDS: Paired comparisons; Dynamic abilities; Mixed effects models;

Model selection; Proportion of correct predictions; Prediction mean squared er-

Ior.
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Chapter 1

Introduction

How to assess abilities of sports teams has been of great interest to researchers
and practitioners. National Collegiate Athletic Association (NCAA) established a
ranking system reflecting the abilities of teams to select teams for playoffs. Pre-
dictions of future outcomes can be made by the abilities of participating teams,
which are highly concerned by practitioners.

Paired comparison models have been commonly used for sports events. A sea-
son of basketball matches in NBA league can be regarded as a series of paired
comparisons. The advantage of paired comparisons is reducing the effects of con-
founding. For example, two teams share the same referee in a match, whereas one
team may played with several different referees throughout the whole season and
there may be judgement biases among referees. Existing Paired comparison mod-
els for sports events characterize the score difference or outcome to be related with
home team’s ability and visiting team’s ability by a linear model or generalized
linear model respectively.

Previous studies proposed a variety of paired comparison models for sports
events including random/fixed effects models with/without dynamic effects on the
abilities. In the spirit of existing models, we further propose two flexible models
under different cases and many of existing models can be unified in the proposed

models. We connect Bayesian and frequentist viewpoints by mixed effects models.
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1. Introduction 2

The dynamic scheme of abilities is more general by considering fixed dynamic
scheme and random processes for the abilities simultaneously. We provide model
selection criteria to select a better model and setup for the prediction purpose. Two
measures of predictive ability are used to compare the predictive performances of
competing models.

In section 2, several existing paired comparison models are introduced. Sec-
tion 3 describes the proposed models under different setups. Section 4 intro-
duces the estimation method, which consists of least squares method, maximiz-
ing observed likelihood, and maximizing posterior likelihood. The measures of
goodness-of-fit and predictive ability are also introduced. Section 5 presents an

application to the National Basketball Association.
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Chapter 2

Existing Paired Comparison Models

Let m be the number of matches; T' the number of teams; Y; the score difference
of match 7,7 =1, ..., m; a; and by, the home ability and visiting ability of team k
respectively, £ = 1,...,T; h; and v; the home team and visiting team in match ¢
respectively; and ¢; the time of match .

The first paired comparison model for sports events proposed by [1] did not
consider the dynamic effects and the home ability and visiting ability were con-
sidered to be the same. Thatis, a, = b, = o, Vi =1,...,m,and k =1,...,T,

which leads to the following model:
Yi=ap —a, +e,1=1,...,m. (2.1)

[2] improved model (2.1) by considering the home court advantage 6, i.e.,

ar = ap + 6 and b, £ o, which leads to the following model:
Yi=0+aop —a, +e;,1=1,...,m. (2.2)

[3] considered team-specific home court advantages 6y, i.e., ax £ ap + 0y, and

br £ ., which leads to the following model:
Yi=0h +ap, —a,, +e, 1 =1,...,m. (2.3)

The first model considering the dynamic abilities was proposed by [4]. The
model suggested that there is a deviation of performance Sy (¢;) from a team’s

3
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2. Existing Paired Comparison Models 4

underlying ability in each game. In the formulation of (2.2), let a (t;) = 6 +ax(t;)
and by (t;) = a(t;). The model leads to

where Sy (t;) follows a random process. [5] proposed a model for ordered cate-
gories:

P(Y; S 7") = F(HT —+ Oéhi(ti) — Oém‘(ti)), r = 1, cey k (25)

with oy (t;) following a random process and oy (0) = «y, for all k. [4] and [5] both
assumed that the dynamic effects on ability depends on some random processes,
wheras [6] proposed a fixed dynamic scheme for the dynamic evolution of ability.

Let A\, As € [0, 1] and Y; = 1 if the home team won, and Y; = 0 if the visiting
(_

i

Y denotes the time of the previous home match in which h; was
(-1

team won. ¢
also the home team, ¢, denotes the time of the previous away match in which
v; was also the visiting team. [6] proposed the following dynamic Bradley-Terry

model:

exp{an, (ti) — by, (t:)}
P, = 1Yoy = gire. Yo =) = ; i
( Yir = yi =) 1+ exp{an, (t;) — by, (t:)}

with
I — (*1) o (71)
ap,(t;) = Myt )+ (1= Apag, (t; ),
bu(t) = dona(1 =yt ) + (1= Q)b (7).

where y(t;) denotes the outcome of the match at time ¢;. [6] assumed that all

(2.6)

teams started with the same home and visiting underlying abilities ;7 and ~»7,
respectively, where 7, and 7, are the average win rates of home matches and away

matches over the previous regular season respectively.
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Chapter 3

Proposed Models for Dynamic
Effects

Based on existing models, a paired comparison model for sports events can be

formulated as

Y;:ah(tl)—bvl(t,)+€,, Zzl,,m (31)

(3

The main issue is how to model the dynamic evolutions of abilities ay, (¢;) and
by, (t;) for i = 1,... m. LetY; denote the score difference of match i. Y},(¢;)
and Y, (¢;) denote the scores of the home team and the visiting team of match ¢

respectively. For the regression formulation, we define the following notations:

Y €1 ay by Y11 Y21
Y = y €= y @ = 7b: y Y1 = 7and’)/2:

Yo Em ar br M Yor
3.1 Background

In the spirit of [6], we propose a more general model for abilities (hereinafter

referred to M1):

an (1) = My gn(t) + (1= Man (17,
bu (t) = Az 9o (1) 4 (1= M)y, (1577,

5

(3.2)
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3. Proposed Models for Dynamic Effects 6

The underlying abilities a; and by, are fixed unknown parameters for k = 1,..., 7.
The dynamic Bradley-Terry model is a special case of model M1 under the fol-
lowing three conditions: (i) underlying abilities are set to be the average win rates
of home matches and away matches over the previous regular season respectively.
(1) y11 = -+ = mr and 91 = -+ = ~vop. (iii) The score difference is replaced
with the outcome.

In model M1, the underlying abilities a and b are involved in the updating
scheme with scores. Thus the effects of underlying abilities will decrease as the
season goes on. However, model (2.4) provides a different aspect: The effects
of underlying abilities should be the same throughout the season. The dynamic
effects are explained as the deviations of the actual performances from the underly-
ing abilities. Considering the feature, we propose a model in which the underlying

abilities are not involved in the updating scheme (hereinafter referred to M2):

Qp, (tl) = ap, + 71hiShi (tl) and bvi (tl) = bUz‘ + 72viSv¢ (ti)a

Sha(ti) = (1= A0S () + Mg (1), (3.3)

Sulti) = (1= 2) Sy, (1) + Aoy (6171,

where S,,(0) = 0 and Sj,(0) = 0.
There are two meaningful cases of model M2: A\y = Ay = land \; = Ay =0
(hereinafter referred to M2-i and M2-ii respectively). The former implies that the

dynamic effects only count on the result of the previous match. That is,

S () = yp(t) and S, (t) =y (V). (3.4)

7

The case of \; = Ay = 0 means that there is no dynamic effect, i.e.,
Sp,(ti) =0 and S, (t;) =0. (3.5)

The roles of A\; and )\, are the weights of averaging the previous match results
and historic results. A\; and \; can be considered as covariates that we can design.
One can set \; and ), for arbitrary value in [0, 1]. Several values of \; and A is

tested in chapter 5.

doi:10.6342/NTU202001978



3. Proposed Models for Dynamic Effects 7

Above models are in the frequentist framework, the abilities are updated by
fixed parameters and historic data. In Bayesian framework, the abilities are up-
dated by some random processes. The simplest case is the first-order random

walk model:

an, (t;) = ap, (tz(_l)) + up (L), 3.6)

bu () = bu (57) + wo(t0),
where u,(t;)’s "2 N(0,07), uy(t;)’s “=* N(0,02) and they are mutually inde-
pendent for 7 = 1,..., m. Considering both factors simultaneously, we further
propose models M1R, M2R, M2R-i and M2R-ii from M1, M2, M2-i and M2-ii re-

spectively, in which the abilities follow a random process. In the case of first-order

random walk, MIR and M2R are proposed as the follows respectively.

an, () = Myinyn () + (1= M)an, (1577) + un(ty), o)
by (1) = AoYau b (1) 4 (1 = Aa)by, (£71) + (1),

an, (t;) = an, + Y1n,Sh, (t:)  and by, (t;) = by, + Yau, 5, (ti),

S () = (1= A) Sk (85) + My (857) + un(ty), (3.8)
Sur (1) = (1= X0) S, (t17) + Mo (611) + ().

The underlying abilities a, b and parameters of dynamic effects v, 2 can be
fixed unknown parameters or random parameters. From frequentist viewpoint, if
the sample size is large enough, consistency of the estimation guarantees the esti-
mated parameters will converge to the true parameters. Form Bayesian viewpoint,
by assuming the parameters follow some prior distributions, it can reduce the num-
ber of parameters to be estimated, which is an advantage when the sample size is
small. We cover above two viewpoints by considering the following 4 different
cases:

Case 1 . a, b and 7, 7 are fixed;

Case 2 . a, b are fixed and v, 7, are random;

Case 3 . a, b are random and v, 7 are fixed; and

doi:10.6342/NTU202001978



3. Proposed Models for Dynamic Effects 8

Case 4 . a, b and y,, 7, are random.
In each of above cases, if a and b are random, we assume that a;,’s ““* N(1, 02)
and by’s "= N (jup, 02). If 71 and ~y, are random, we assume that yy;,’s “%% N (1, 02)
and o;,s “4 N (p2,0%) and all the random parameters are mutually independent.
If there is any random parameters, the normality assumption &;’s “% N (0,02) is

required due to concerns about estimation.

3.2 Regression Model Formulation

All proposed models can be rewritten as the following form:

Y =X3+e¢, 3.9)
where

a
b

uh(tl) U,v(t1>
M .

b= with uy, = , and u, =

V2

uh(tm) Uy (tm)
Up,
uU

Model M1 is chosen as an example to show how to obtain the regression formula-
tion. In an arbitrary match 7 (or at time ¢;), the home ability and visiting ability of

team h; and team v; under model M1 can be rewritten as the follows respectively:

ap, (t;) = (1= X)) an, + [)\1 SR - Al)jyh(tg_j_l))} Vih;s

bu(ti) = (1= 22)%2by, + o 2125 (1 = M)y (8177 7)] 7

(3.10)

where K and K5 denote the number of home matches and away matches h; and
v; had played before time ¢; respectively. From (3.10) one can design the covariate
matrix X and obtain the regression model formulation of model M1. Proceed in
the same way, one can derive the regression formulation of all models. Due to the

problem of identifiability, we assume that ZL b, = 0 in model M2, M2-i, M2-ii,

doi:10.6342/NTU202001978



3. Proposed Models for Dynamic Effects 9

M2R, M2R-i and M2R-ii. If there are random effects in the model, mixed effects
model formulation has more advantages in estimation.

Let Sr denotes the random parameters and 5z denotes the fixed parameters,

i.e.,
a
— 1 b
Case 2. fr = I ,Br = ;
Yo — polr H1
2
I
a— ugl
Case 3. fr = fla ,Br = e ; and
b— pplr ga!
V2
a — ,ua]lT Ha
b— upl
Case 4. fr = poiT ,Br = Ho
Y — palr H1
Yo — polp iz

Due to the problem of identifiability, we assume that 1, = 0 in model M2, M2-i,
M2-ii, M2R, M2R-i and M2R-ii. By similar procedures, one can derive the mixed

effects model formulation:

Y = XpBr+ XpfBp +e. (3.11)

doi:10.6342/NTU202001978



Chapter 4

Estimation and Model Selection

To write down the estimation approach explicitly, we first define some notations.
Let X, and X, be the covariate matrix of 7; and , respectively. Let v =

(’7{7 f)/g)T’ X’Y = (X'Yl’X’}’Q)’ and Y* - Y — XFﬁF.

4.1 Estimation

By the model formulation (3.11):
Y = XgBr+ Xpbp+c = Xpfr+e", (4.1)

where ¢* = € + Xgfr and e* ~ N,,(0,021,, + XgVar(Br)X%). The estimation

approach of 5z and ) is proposed to minimize the sum of squares
SSA, Br) = (Y — XFBF)T(Y — Xpfr). (4.2)
Least square method can be applied in this minimization.
{\né? SS(\, Br) = mAin Héllvn SS(\, Br) = m/\in(Y — XFBF)T(Y — XFBF),

where 3 = (XL X 7)1 XLY is the least square estimator of .

We illustrate the rest of the estimation by case 2, in which Var(8g) = diag(o? 7, 0317).

The observed likelihood function of (o7, 0%, 03) is

L(02,0%,02|X,Y) = (2m) % |5 ze sV Xefn) BT XeE) (4.3

10
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4. Estimation and Model Selection 11

where ¥ = 01, + 07X, X 4 05X, X! and the observed log-likelihood func-

1

tion is
m m 5 1 o'% - Ug .
—— log(2m)——log og— log [ I, + 5 X, X7, + 5 X, X0 |
2 2 2 o ol 44
1 o2 o2 B .
—5.20Y — XpBe) (L + 5 X0, XT + 22X, XT)N(Y — Xpfp).

The estimation approach for (03,07, 03) is proposed to maximize the observed

log-likelihood function, i.e.,

(65,67, 63) = argmax (g, 07, 03| X, Y).

(03’0—%705)
To estimate the predictors 4; and A, of 7, and 7,, it is proposed to maximize the

posterior log-likelihood. That is,

A

T

= argmaXIOgL(/ylv72|&§76%76§7X7 Y)7 (45)

Y2 (71,72)

where

1OgL(71772|0-(2)70-%70§7Xa Y) X IOg fY(y|0-8771772)7T(’71772|0-570-§)
m m 1
= —5 log(2m) =+ logog — 55 |(Y — Xpfr — X + Xo,%) [
2 2 202
m
5 (

1,1 1
(~m)log(2m)~3 (log0? +10g03) = 5 (s l* + 1)

o< —(Y" - XWV)T(Y* - X)) - VW,

and )
N1 0
W - 01 0_2
0 —Ir
03

The posterior log-likelihood is maximized when

= (XIX, + W) 'XIY* = E[y|o{, 03,05, X,Y]. (4.6)

doi:10.6342/NTU202001978



4. Estimation and Model Selection 12

4.2 Model Selection

With all the models and cases, how to select the best model is an important is-
sue. Good predictions of outcomes and difference in scores are important for
practitioners. In the following paragraphs, we first introduce two measures of pre-
dictive ability to measure the performance of a model on the prediction purpose.
Then several criteria are proposed based on goodness-of-fit and predictive ability
measured by regular season data.

The measures of predictive ability are proportion of correct predictions and
prediction mean squared error, hereinafter denoted by PCP and PMSE respec-

tively. Let (X°, Y?) be a future run.
PCP(M) = P(sign(Y?) - sign(X°Bu) > 0) + 0.5P(X By = 0),  (4.7)

and

PMSE(M) = E(Y? — X°3,,)?, (4.8)

where B v denotes the estimate of S under model M. To estimate the PCP and
PMSE of model M, the playoffs data are considered as future runs and the prob-
ability is estimated by the empirical distribution of playoffs data.

The Bayesian Information Criterion in [7] is a common approach in model
selection. With the observed log-likelihood function (4.4), the BIC value of a
model M is derived by

BIC(M) = —2log L(M) + pplog m, 4.9)

where p,, denotes the number of parameters in the model M. [7] suggested to
choose the model with smallest BIC value.

To get an analogue of prediction by regular season data, cross validation is a
commonly used approach. However, it can not be applied to the proposed models
since the estimation of dynamic abilities depends on historic data. Thus we split
the regular season data into training data and testing data by a given time. Esti-

mation is done by training data and measures of predictive ability can be derived

doi:10.6342/NTU202001978



4. Estimation and Model Selection 13

by applying the estimated parameters to the testing data. To be more explicit, we
introduce the following notations:

Ytr Xtr

Y = , X = ,

Yte Xte
where (X V') and (X', Y'¢) denote the training data and testing data respec-
tively. Let Bj& be the estimate of 5 by the training data under model M. The PCP
and PMSE of model M are estimated by

POP(M) = 5 3 [H(san (¥ s (XL35) > 0)+ 051X 25, = 0],
(4.10)
and
PASE(M) = £ 3001 — XA @i

where S is the number of matches in testing data. The model Mpcp and Mpysg

with highest PCP and smallest ﬁ/@: are chosen, i.e.,

Mpcp = argmax PCP(M) (4.12)
M
and
Mpysg = argmin lmS\E(M) (4.13)
M

doi:10.6342/NTU202001978



Chapter 5

An Application to National

Basketball Association

The proposed models are applied to 2009-2010 season to 2018-2019 season of
National Basketball Association. The data are available via an API provided in [8].
The data consist of the index of every match sorting by calendar time, the home
teams and visiting teams of every match, and scores of the home teams and away
teams in every match. The regular season is used to fit the proposed models and
the playoffs data are treated as future runs to estimate the proportion of correct
predictions and prediction mean squared error. Model M1 and M2 with A € A
are also considered in this section, where A = {k(0.1,0.1)" : k£ = 0,...,9}.
Hereinafter we denote M. = {M - including the cases A\ € A}, for - = 1,2, and
Mp = My UM,.

We investigate the dynamic effects of abilities in model M1R, M2R, M2R-i
and M2R-ii with first-order random walk. The means of the ratios 67 /67 and
62 /65 over ten seasons are shown in Table 6.3. In these NBA data, the variances
of u, and wu, are small compared to the estimated variances of €. Moreover, the
predictions of outcomes are almost the same whether considering u; and u, or
not. To simplify the presentation, we do not consider models M1R, M2R, M2R-i,

and M2R-ii in this investigation based on these facts and .

14
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5. An Application to National Basketball Association 15

The proportion of correct predictions of dynamic Bradley-Terry model (2.6)
proposed in [6] (hereinafter referred to DBT model) and its modification which
replaces the outcome with score difference (hereinafter referred to DBTS model)
are listed in table 6.1 compared to the proposed models. DBT model produces pre-
dictions that the home team will win for every match. DBTS model has lower PCP
than the proposed models. One step of estimating the parameters is to minimize
the sum of squares function (4.2). Figure 6.2 and 6.3 show that the non-convexity
of sum of squares function under model M1 and M2 makes the minimization dif-
ficult. Thus we do not recommend DBT model and DBTS model.

Table 6.4 shows the mean of BIC values over ten seasons under different mod-
els and cases. BIC suggests that model M2-ii in the case that abilities are random
should be selected, which means that there is no dynamic effect. The conclusion
also holds if we look at the BIC values season by season.

We compare the PCP of Mpcp, Mpysg and model Mpgc (without dynamic
effect) for ten seasons to see if there is an evidence of dynamic effect. In most of
the seasons except 2015-2016 season, the models with dynamic effects can have
higher PCP than model Mgpjc. This can be an evidence that there are dynamic
effects in most of the seasons except 2015-2016 season. Moreover, in 2010-2011
season to 2012-2013 season we successfully select the models with dynamic effect
with higher PCP than model Mgjc. Over the ten seasons, the PCP of selected
models are comparable to the highest PCP of all models except 2013-2014 season
and 2017-2018 season.

Table 6.4 shows the mean of PCP’s over ten seasons under different models
and cases. We can see that most of the models are comparable except model M1

under case 1, M1 under case 3, and model M2 under case 2.

doi:10.6342/NTU202001978



Chapter 6

Conclusion and Discussion

In the application to NBA, table 6.2 shows that the fixed dynamic scheme inspired
by [6] performs poorly in the sense of prediction with PCP 0.586 and DBT model
tends to produce meaningless predictions that the home team always wins. Es-
timation of the weight \ is also difficult (see Figure 6.2) and such estimation is
based on the sense of goodness-of-fit, which may not correspond to the predictive
ability. The fact that u; and u, are inapparent shows that the first-order random
walk assumption on the home ability and visiting ability (cf. [4] and [5]) has no
contribution to the dynamic effects. To sum up, most of the existing approaches to
estimate the dynamic effects are based on the goodness-of-fit with some specific
models. By such approaches, either there is no evidence of dynamic effects or the
dynamic effects may produce poor predictions.

In the aspect of regression, A should play the role as designed covariate. As-
signing given values to A avoids the difficulties in estimation and the proposed
model selection criteria can suggest the best A in the sense of predictive ability.
In the applications to NBA, the proposed model selection criteria can select the
model with nearly the highest PCP in most of the seasons.

All the proposed models are parametric models that model the score difference
to be the difference of home ability and visiting ability. A more general semipara-

metric model may characterize the relation between score difference and abilities

16
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6. Conclusion and Discussion 17

better. In the applications to NBA, the format of playoffs and regular season are
different, which may decrease the PCP and increase PMSE for our models. This

problem is still needed to be solved in future research.
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Figure 6.1: Proportion of correct predictions of M .pcp (red line), M. pysg (blue

line), and M g (green line). Black lines are the highest and lowest proportions

of correct predictions among M. for - = 1,2, and 7.
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Table 6.1: The estimated proportion of correct predictions from the Dynamic

Bradley-Terry models (cf. [6]) and the selected proposed models on playoffs data.

Season 09-10 10-11 11-12 12-13 13-14

Model
DBT 0.6707 0.6667 0.6786 0.6353 0.5618
DBTS 0.5000 0.5926 0.5000 0.5647 0.5618
M ipcp 0.6402 0.6420 0.7143 0.6588 0.5730
Mipmsg 0.6341 0.6420 0.6905 0.6941 0.5730
Migic 0.6463 0.6420 0.6667 0.6588 0.5955
Mopcp 0.6402 0.6543 0.7143 0.6824 0.5506
Mopyise 0.6463 0.6667 0.7143 0.7059 0.6292
Mogic 0.6463 0.6420 0.6667 0.6588 0.5955
Mrpcp 0.6382 0.6543 0.7143 0.6588 0.5506
Mrpmse 0.6341 0.6420 0.6667 0.6941 0.5843
Mrpic 0.6463 0.6420 0.6667 0.6588 0.5955
Season 14-15 15-16 16-17 17-18 18-19

Model
DBT 0.5926 0.6744 0.5696 0.7073 0.5610
DBTS 0.5926 0.6744 0.5696 0.7073 0.5610
Mipcp 0.6296 0.7229 0.6835 0.6341 0.6585
Miipyise 0.6296 0.7093 0.6709 0.6098 0.6951
Migic 0.6296 0.7209 0.6709 0.6098 0.6707
Mapcp 0.6296 0.7171 0.6835 0.5976 0.6951
Mopyse 0.6173 0.7093 0.6709 0.5610 0.7073
Mogic 0.6296 0.7209 0.6709 0.6098 0.6707
Mrpcp 0.6296 0.7200 0.6835 0.6341 0.6768
Mrpmse 0.6049 0.6628 0.6582 0.5732 0.6341
Mrpic 0.6296 0.7209 0.6709 0.6098 0.6707
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Table 6.2: Mean of proportion of correct predictions of Dynamic Bradley-Terry

model (cf. [6]) and proposed models over the ten seasons.
DBT  DBTS Mipcp Mipuse Misic

0.6318 0.5824 0.6557 0.6548 0.6511

M2PCP MQPMSE M2BIC MPCP MPMSE MBIC
0.6565 0.6628 0.6511 0.6560 0.6596 0.6511

Figure 6.2: Selected plots of minimized sum of squares value to A

(a) 2013-2014 season (b) 2014-2015 season (c) 20162017 season

Figure 6.3: Selected plots of minimized sum of squares value to A

(a) 20162017 season (b) 2017-2018 season (c) 2018-2019 season
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Table 6.3: Ratio of 67 to 67 and 67 to 62 (rounded to 3 decimal places)

Model

Ratio of 67 to 62

MIR

M2R

M?2R-i

M2R-ii

Case 1

0.013

0.000

0.000

0.000

Case 2

0.018

0.000

0.000

Case 3

0.769

0.000

0.000

0.002

Case 4

0.011

0.002

0.002

Model

Ratio of 62 to 63

MIR

M2R

M2R-i

M2R-ii

Case 1

0.000

0.000

0.000

0.000

Case 2

0.022

0.000

0.000

Case 3

0.000

0.000

0.000

0.001

Case 4

0.020

0.001
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Table 6.4: Mean of PCP and BIC over ten seasons

PCP
Model M1 M2 M2-i M2-ii
Case 1 0.586 0.631 0.654  0.661
Case2  0.655 0.661 0.657
Case3  0.632 0.639 0.664  0.646
Case4  0.652 0.652 0.655

BIC
Model M1 M2 M2-i M2-ii
Case 1 1010543 10109.69 10125.14 9765.25
Case2 9854.61 9838.85 9807.57
Case3 9838.49 9792.86 9793.35 9540.60
Case4 9569.06 9559.94  9559.02
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