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Abstract

Cardiac Magnetic Resonance Imaging (CMR) is widely used since it can
illustrate the structure and function of the heart in a non-invasive and painless
way. However, it is time-consuming and high-cost to acquire high-quality
scans due to the hardware limitation. To this end, we propose a novel end-to-
end trainable network to solve CMR video super-resolution problem without
the hardware upgrade and the scanning protocol modifications. We incorpo-
rate the cardiac knowledge into our model to assist in utilizing the temporal
information. Specifically, we formulate the cardiac knowledge as the pe-
riodic function, which is tailored to meet the cyclic characteristic of CMR.
Besides, the proposed residual of residual learning scheme facilitates the net-
work to learn the LR-HR mapping in a progressive refinement fashion. This
mechanism enables the network to have the adaptive capability by adjusting
refinement iterations depending on the difficulty of the task. Extensive ex-
perimental results on large-scale datasets demonstrate the superiority of the

proposed method compared with numerous state-of-the-art methods.

Keywords: Cardiac MRI, Video Super-resolution, Deep Learning
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Chapter 1

Introduction

Magnetic Resonance Imaging (MRI) has been widely used to examine almost any part of
the body since it can depict the structure inside the human non-invasively and produce
high contrast images. Notably, cardiac MRI (CMR) assessing cardiac structure and func-
tion plays a key role in evidence-based diagnostic and therapeutic pathways in cardiovas-
cular disease [25], including the assessment of myocardial ischemia, cardiomyopathies,
myocarditis, congenital heart disease [26]. However, obtaining high-resolution CMR 1is
time-consuming and high-cost as it is sensitive to the changes in the cardiac cycle length
and respiratory position [21], which is rarely clinically applicable.

To address this issue, the single image super-resolution (SISR) technique, which aims
atreconstructing a high-resolution (HR) image from low-resolution (LR) one, holds a great
promise that does not need to change the hardware or scanning protocol. Most of the MRI
SISR approaches [|19, 3, 22] are based on the deep learning-based methods [5, [14], which
learn the LR-HR mapping with extensive LR-HR paired data. On the other hand, several
previous studies [[11, 31] adapt the self-similarity based SISR algorithm [§], which does
not need external HR data for training. However, straightforwardly employing the afore-
mentioned methods is not appropriate for CMR video reconstruction since the relationship
among the consecutive frames in CMR video is not well considered. Therefore, we adopt
the video super-resolution (VSR) technique, which can properly leverage the temporal in-
formation and has been applied in numerous works [20, [10, 30, 27, [7], to perform CMR

video reconstruction.
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In this work, we propose an end-to-end trainable network to address CMR VSR prob-
lem. To well consider the temporal information, we choose ConvLSTM [28], which has
been proven effective [6, 9], as our backbone. Moreover, we introduce the domain knowl-
edge (i.e., cardiac phase), which has shown to be important for the measurement of the
stroke volume [[13] and disease diagnosis [29], to provide the direct guidance about the
temporal relationship in a cardiac cycle. Combined with the proposed phase fusion mod-
ule, the model can better utilize the temporal information. Last but not the least, we devise
the residual of residual learning inspired by the iterative error feedback mechanism [[17, 2]
to guide the model iteratively recover the lost details. Different from other purely feed-
forward approaches [[16, 10, 27, 30, 20], our iterative learning strategy can make the model
easier in representing the LR-HR mapping with fewer parameters.

We evaluate our model and multiple state-of-the-art baselines on two synthetic datasets
established by mimicking the acquisition of MRI [4, B 1]] from two publicly datasets [ |1}, 24].
It is worth noting that one of them is totally for external evaluation. To properly assess the
model performance, we introduce the cardiac metrics based on PSNR and SSIM. The ex-
perimental results turn out that the proposed network can stand out from existing methods
even on the large-scale external dataset, which indicates our model has the generalization
ability. To our best knowledge, this work is the pioneer to address the CMR VSR problem

and provide a benchmark to facilitate the development in this domain.

Conventional Proposed
Scanning Scanning Post-processing
. Iterative
- — ‘L«?} ’ % o
Time Time Low-resolution ideo Super-resolved video

Domain knowledge
(cardiac phase)

Figure 1.1: Our main idea. We present efficient post-processing to facilitate the acqui-
sition of high-quality cardiac MRI (CMR) that is conventionally time-consuming, high-
cost, and sensitive to the changes in the cardiac cycle length and respiratory position [21].
Specifically, we utilize the domain knowledge and iteratively enhance low-resolution
CMR by a neural network, which can reduce the scan time and cost without changing
the hardware or scanning protocol.
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Chapter 2

Proposed approach

Let It , € R7*W denote the ¢-th LR frame obtained by down-sampling the original HR
frame 1%, € R™*™W with the scale factor 7. Given a sequence of LR frames denoted as
{I! }, the proposed end-to-end trainable model aims to estimate the corresponding high-
quality results {I%,} that approximate the ground truth frames {I};}. Besides, @ refers

to the element-wise addition.

2.1 Overall architecture

Our proposed network is illustrated in Fig 2.1]. It consists of a feature extractor, a bidirec-
tional ConvLSTM [28], a phase fusion module, and an up-sampler. The feature extractor
(F'E) first exploits the frame I , to obtain the low-frequency feature L*. Subsequently, the
bidirectional ConvLSTM [28] comprising a forward ConvLSTM (ConvLST Mp) and a
backward ConvLSTM (Conv L ST Mp) makes use of the low-frequency feature L to gen-
erate the high-frequency features H%, HY;. With the help of its memory mechanism, the
bidirectional ConvLSTM can fully utilize the temporal relationship among consecutive
frames in both directions. In addition, we can update the memory cells in the bidirectional
ConvLSTM in advance instead of starting with the empty states due to the cyclic charac-
teristic of the cardiac videos. This can be done by feeding n consequent updated frames
before and after the input sequence {I} ,} to the network.

Furthermore, to completely integrate the bidirectional features, the designed phase

3

doi:10.6342/NTU202002101



fusion module (P F’) applies the cardiac knowledge of the 2N + 1 successive frames from
t — N tot + N in the form of the phase code P*~N*+N which can be defined as H% =
PFR(HENHNT glU=NENT ple-NttN]) where HY, represents the fused high-frequency
feature. After that, the fused high-frequency feature H% combined with the low-frequency
feature L' through the global skip connection is up-scaled by the up-sampler (Up) into the
super-resolved image %, = Up(Hb @ L'). We further define the sub-network (Net,;)
as the combination of PF,ConvLST My and ConvLST Mpg. The purpose of Netg,,
is to recover the high-frequency residual H: = Netg,,(L'). Besides, we employ the
deep supervision technique [|15] to provide the additional gradient signal and stabilize the
training process by adding two auxiliary paths, namely I, » = Up(HL® L") and I, p =
Up(HY @ LY). Finally, we propose the residual of residual learning that progressively
restores the residual that has yet to be recovered in each refinement stage w. To simplify
the notation, w is omitted when it equals to 0, e.g., L’ means the low-frequency feature

of the ¢-th frame at the O-th stage L}’

2.2 Phase fusion module

The cardiac cycle is a cyclic sequence of events when the heart beats, which consists of sys-
tole and diastole process. Identification of the end-systole (£ 5) and the end-diastole (£ D)

in a cardiac cycle has been proved critical in several applications, such as the measure-

Forward ConvLSTM

elShuffle

Feature Extractor|
5 7

1 T
Iigs - g

3x3 Conv

' 1x1 Conv

Auxiliary path
(training only)

ixelShuffle
Pixt
S
N

onv,
PReLU
W, 61\
64
64

gl
816818
(<3 &3 6]

‘7
Backward ConvLSTM

Up-sampler
Phase Code Residual of residual learning (shared weight)

Figure 2.1: Model overview. The bidirectional ConvLSTM [28] utilizes the temporal
information from forward and backward directions.The phase fusion module exploits the
informative phase code to leverage the bidirectional features. With the residual of residual
learning, the network recovers the results in a coarse-to-fine fashion. Auxiliary paths are
adopted for stabilizing the training procedure.
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ment of the ejection fraction and stroke volume [13], and disease diagnosis [29]. Hence,
we embed the physical meaning of the input frames into our model with the informative
phase code generated by projecting the cardiac cycle to the periodic Cosine function as
depicted in Fig. R.2d. Specifically, we map the process of the systole and the diastole to

the half-period cosine separately:

Cos(m x AELS), if ED <t <ES
pt— ES—-ED (21)
Cos(m x (1+ %)), otherwise

where % denotes modulo operation and 7 is the frame number in a cardiac cycle.

The overview of the proposed phase fusion module is shown in Fig 2.2H. The features
from the bidirectional ConvLSTM with the corresponding phase code are concatenated
and fed into the fusion module. With the help of consecutive 2N 4 1 phase codes, it
can link the same-position frames from different periods (inter-period). Besides, it can
realize the heart is relaxing or contracting as the phase code is respectively increasing or

decreasing (intra-period).

2.3 Residual of residual learning

In the computer vision field, the iterative error-correcting mechanism plays an essential
role in several topics, such as reinforcement learning [[17], scene reconstruction [[1§],
and human pose estimation [2]. Inspired by this mechanism, we propose the residual
of residual learning composing the reconstruction process into multiple stages, as shown
in Fig. .2d. At each stage, the sub-network (Net,,;) in our model estimates the high-
frequency residual based on the current low-frequency feature, and then the input low-
frequency feature is updated for the next refinement stage. Let LY be the initial feature

from the feature extractor (F'E) and L' denote the updated feature at the iteration w, the

5
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residual of residual learning for 2 stages can be described as the recursive format:

. FE(I} ), when w = 0
Lt = (2.2)

L1 @ Net g (L971), if0 <w <0

Then, the network generates the super-resolution result 7% based on the current recon-

structed feature L“, which can be written as:
I5e = Up(L™ @ Net (L)) (2.3)

The model progressively restores the residual that has yet to be recovered in each
refinement stage, which is so-called the residual of residual learning. Compared to other
one-step approaches [|16, 10, 27, 30, 20], the proposed mechanism tries to break down the
ill-posed problem into several easier sub-problems in the manner of divide-and-conquer.
Most notably, it can dynamically adjust the iteration number depending on the problem

difficulty without any additional parameters.

2.4 Loss function

In this section, we elaborate on the mathematical formulation of our cost function. At
each refinement stage w, the super-resolved frames {/ g’;} are supervised by the ground-
truth HR video {I% }, which can be formulated as £ = %thzl | 155 — Iy i,
where T indicates the length of the video sequence fed into the network. We choose the
L1 loss as the cost function since the previous works have demonstrated that the L1 loss
provides better convergence compared to the widely used L2 loss [32, 16]. Besides, we
apply the deep supervision technique as described in Sec. by adding two auxiliary
losses £ = L7, || I p— Iy | and £ = 257 || 155 5 — Iyp |1 Hence, the
total loss function can be summarized as £ = Zf}zo(ﬁw + LY + L£%), where ) denoted

as the total number of refinement stages.
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Figure 2.2: Proposed components. (a) Phase code formulated as the periodic function
contains domain knowledge (i.e., cardiac phase). (b) Phase fusion module can realize
the phase of the current sequence with the cardiac knowledge to thoroughly integrate the
bidirectional features. (c) Residual of residual learning aims at directing the model to
reconstruct the results in a coarse-to-fine manner.
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Chapter 3

Experiment

3.1 Data preparation

To our best knowledge, there is no publicly available CMR dataset for the VSR problem.
Hence, we create two datasets named ACDCSR and DSB15SR based on the public MRI
datasets. One is the Automated Cardiac Diagnosis Challenge dataset [|1]], which contains
four dimension MRI scans of a total of 150 patients. The other is the large-scale Second
Annual Data Science Bowl Challenge dataset [24] composed of 2D cine MRI videos that
contain 30 images across the cardiac cycle per sequence. We use its testing dataset com-
prising 440 patients as the external assessment to verify the robustness and generalization
of the algorithms. To more accurately mimic the acquisition of LR MRI scans [4, B1]], we
project the HR MRI videos to the frequency domain by Fourier transform and filter the
high-frequency information. After that, we apply the inverse Fourier transform to project
the videos back to the spatial domain and further downsample by bicubic interpolation

with the scale factor 2, 3, and 4.

3.2 Evaluation metrics

PSNR and SSIM criteria have been widely used in previous studies to evaluate the SR
algorithms. However, the considerable disparity of the proportion of the cardiac region

to the background region in MRI images makes the results heavily biased towards the in-

8
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Table 3.1: Quantitative results. The red and blue indicate the best and the second-best
performance, respectively. We adopt CardiacPSNR/CardiacSSIM to fairly assess the re-
construction quality of the heart region. It is worth noting that the large-scale DSB15SR
dataset is entirely for external evaluation.

SISR VSR
Dataset  Scale Model
Bicubic EDSR([I4] DUF[I{] EDVR[P7] RBPN[f] TOFlow{B{] FRVSR[R0] Oy
x2  33.0927/0.9362 37.3022/0.9681 37.4008 / 0.9688 -/- 37.5017/0.9694 36.6510/0.9641 -/- 37.5003 / 0.9696
ACDCSR  x3  29.0724/0.8472 32.8177/0.9201 32.7942/0.9203 -/- 32.9099/0.9225 32.4535/0.9136 -/- 32.93427/0.9231
x4 26.9961/0.7611 30.2536/0.8631 30.2420/0.8621 30.2817/0.8655 30.3294/0.8653 30.0087/0.8538 30.1693/0.8592 30.4060/0.8668
x2  34.1661/0.9597 40.1723/0.9815 40.3548/0.9822 -/- 40.3792/0.9824  39.5042/0.9794 -/- 40.4635/0.9821
DSBISSR %3 29.1175/0.8854 33.9893/0.9424 33.9736/0.9428 / 34.1320/0.9445 33.6656 /0.9386 / 34.2169/0.9451

x4 26.5157/0.8065 30.6354/0.8907 30.7411/0.8918 30.8564/0.8949 30.7985/0.8933 30.3153/0.8836 30.5800/0.8889 30.9104/0.8956

significant background region. Therefore, we introduce CardiacPSNR and CardiacSSIM
to assess the performance more impartially and objectively. Specifically, we employ a
heart ROI detection method similar to [23] to crop the cardiac region and calculate PSNR
and SSIM in this region. This can reduce the influence of the background region and more

accurately reflect the reconstruction quality of the heart region.

3.3 Training details

For training, we randomly crop the LR clips of 7' = 7 consecutive frames of size 32 x 32
with the corresponding HR clips. We experimentally choose n = 6 and {2 = 2 as detailed
in Sec.B.3, while N = 2 in the phase fusion module. We use the Adam optimizer [[12] with
learning rate 10~% and set the batch size to 16. For other baselines, we basically follow

their original settings except the necessary modifications to train them from the scratch.

3.4 Experimental results

To confirm the superiority of the proposed approach, we compare our network with mul-
tiple state-of-the-art methods, namely EDSR [16], DUF [10], EDVR [27], RBPN [7],
TOFlow [30], and FRVSR [20]. We present the quantitative and qualitative results in
Tab. B.1 and Fig. B.1| respectively. Our approach outperforms almost all the existing meth-
ods by a huge margin in all scales in terms of CardiacPSNR and CardiacSSIM. In addition,
our method can yield more clear and photo-realistic SR results which subjectively closer to

the ground truths. Moreover, the results on the external DSB15SR dataset are sufficiently

9
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convincing to validate the generalization of the proposed approach. On the other hand,
the comparison with regard to the model parameters, FPS, and the image quality in the
cardiac region plotted in Fig. demonstrates that our method strikes the best balance

between efficiency and reconstruction performance.

Bicubic EDSR [[16] RBPN [7] Ours

Figure 3.1: Qualitative results. Zoom in to see better visualization.

3.5 Ablation study

We adopt the unidirectional ConvLSTM as the simplest baseline. As shown in the Tab. 3.2,
the temporal information is important since the model performance is worse when the
memory cells in ConvLSTM are disabled. As the cardiac MRI video is cyclic, we can
refresh the memory by feeding n successive frames. Accordingly, we analyze the relation
between n and model performance. The result in Fig turns out that the network
significantly improves as the updated frame number increases. Moreover, the forward
and backward information is shown to be useful and complementary for recovering the
lost details. In Sec. 2.2, we exploit the knowledge of the cardiac phase to better fuse the
bidirectional information. The result in Tab. B.2 reveals that the phase fusion module can
leverage the bidirectional temporal features more effectively. Besides, we explore the
influence of the total number of refinement stages €2 in the residual of residual learning.
It can be observed from Fig. that the reconstruction performance is improved as the
total refinement stages continue to increase. The possible reason for the saturation or

degradation of the overall performance when €2 equals to 3 or 4 is overfitting.

10
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Table 3.2: Ablation study. Memory: the memory cells in the ConvLSTM [28] are acti-
vated; Updated memory: the memory cells are updated by feeding n consecutive frames;
Bidirection: bidirectional ConvLSTM is adopted; Phase fusion module and Residual of
residual learning: the proposed components are adopted.

Memory Updated memory Bidirection Phase fusion module Residual of residual learning CardiacPSNR/CardiacSSIM

(n=106) Q=2
29.7580/0.8458
v 30.0733/0.8562
v v 30.1790/ 0.8596
v v v 30.2380/0.8623
v v v v 30.2754 /0.8635
v v v v v 30.4060 / 0.8668
0.8975 Parameters Ours 30.12 0.8577
(20.0 FPS) = 30.11 =
0.8950 1 1:309M (13E«?\|$S)0 ’ £30.10 2 oo
2.567M o 83009 508569
= (g89251 - 2.891M EDSR RBPN % 30.08 7 0.8565
7 5g13m  (1B1FPS) e (36FPS) 3007 © 08561
! e @ _DUF YT 2 3 4 5 6 TP 235 4 5 6
% 0.89001 @ 12.747M (7.8 FPS) Number of updated frames (n) Number of updated frames (n)
8 @ 20630M ’uce .
0.88751 @ 43.081M (30.3FPS) (b) Analysis of the update frame number n.
0.8850 1 o 3043 0.8672
TOFlow (8.2 FPS) g =
: ' ' ' ' ' Z30.39  0.8662
30.3 304 305 306 307 308 309 %3035 20,8652
CardiacPSNR §30.31 §0.8642
. [&]
(a) Efficiency vs performance on DSB15SR 0207 533 0.8632 g————% 3
dataset for scale X4. (FPS processed Total refinement stages (Q) Total refinement stages (Q)

frames per second)

(c) Analysis of total refinement stages €).

Figure 3.2: Experimental analysis. (a) Our network outperforms other baselines with
fewer parameters and higher FPS. (b) The performance is progressively enhanced as n
increases, which indicates that the prior sequence can provide useful information. (¢) The
performance can be improved with (2 increasing.
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Chapter 4

Conclusion

In this work, we define the cyclic cardiac MRI video super-resolution problem which has
not yet been completely solved to our best knowledge. To tackle this issue, we bring the
cardiac knowledge into our network and employ the residual of residual learning to train
in the progressive refinement manner, which enables the model to generate sharper results
with fewer model parameters. In addition, we build large-scale datasets and introduce car-
diac metrics for this problem. Through extensive experiments, we demonstrate that our
network outperforms the state-of-the-art baselines qualitatively and quantitatively. Most
notably, we carry out the external evaluation, which indicates our model exhibits good
generalization behavior. We believe our approach can be seamlessly applied to other

modalities such as computed tomography angiography and echocardiography.

12
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