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Abstract

Gene regulatory networks govern the complex gene expression programs in various
biological phenomena, including cell development, cell fate decision, and oncogen-
esis. Single-cell techniques provide higher resolution in gene expression than tra-
ditional bulk RNA sequencing, but also incur more noise and sparser expression
measurements, making it challenging to infer gene regulatory networks from such
profiles. Inference of a complete gene regulatory network across different cell types
is also difficult. Here, we propose to address the problem by constructing context-
dependent gene regulatory networks (CDGRN) from single-cell RNA sequencing
data. A gene regulatory network is decomposed into subgraphs that correspond
to distinct transcriptomic contexts. Each subgraph is composed of the consensus
active regulation pairs of transcription factors and their target genes shared by a
group of cells. The activities of each regulation pair in different cell groups are in-
ferred by a Gaussian mixture model using both the spliced and unspliced transcript
expression levels. We find that the union of gene regulation pairs in all contexts
provides sufficient information for the reconstruction of differentiation trajectories.
CDGRN allows establishing the connection between gene regulation at the molec-
ular level and cell differentiation at the macroscopic level. Functions specific to
the cell cycle, cell differentiation, or tissue-specific functions are enriched through-
out the developmental progression in each context. Surprisingly, we observe that
the network entropy of CDGRN decreases with differentiation progression, imply-
ing directionality in differentiation. In conclusion, we leverage the advantage of
single-cell RNA sequencing and establish a connection between molecular regula-
tion and differentiation trajectory. Context-dependent network entropy may indi-
cate the maturity of cells in certain contexts. The CDGRN model is available at
https://github.com/yuehhua/CDGRNs.jl.

Keywords: Gene Regulatory Networks, Unspliced RNA, Single-cell RNA Se-
quencing Data Analysis, Gaussian Mixture Model, Cell Trajectory
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摘要

在多樣的生物現象中，基因調控網路掌控複雜的基因表現，包含細胞發育、

決策細胞命運，以及癌化。單細胞定序技術，比起以往大批RNA定序，提供基因
表現較高的解析度，但是同時測量到更多的雜訊，以及更稀疏的表現量，這讓基

因調控網路的推論更加有挑戰性。跨不同細胞型態要推論完整的基因調控網路也

是相當困難。這邊我們提出情境依賴基因調控網路（CDGRN），它可以從單細
胞RNA定序資料來解決這個問題。基因調控網路可以被拆解成子圖，它對應到不
同的轉錄情境。每個子圖是由共同活躍的調控配對組成，其中包含由一群細胞共

享的轉錄因子，以及他們的目標基因。在不同細胞群體，每個調控配對的活性是

由高斯混合模型推得，當中使用了剪切及未剪切轉錄的表現量。我們發現在所有

情境下基因表現的聯集提供了足夠的資訊以建構細胞分化軌跡。CDGRN建立了
分子層級基因調控與巨觀層級細胞分化之間的連結。在整個發育過程的各個情境

中，細胞週期、細胞分化，或是組織特有功能有過度表現這些功能。更令人驚

訝的是，我們發現CDGRN的網路亂度會隨著分化過程下降，這暗示了分化的方
向。總結而言，我們利用了單細胞RNA定序技術的優勢，並建立了分子調控與分
化軌跡之間的連結。情境依賴的網路亂度或許暗示了在特定情境下的細胞成熟

度。CDGRN模型被釋出在https://github.com/yuehhua/CDGRNs.jl。

關鍵字: 基因調控網路、未剪切轉錄、單細胞轉錄定序資料分析、高斯混合模
型、細胞軌跡。

https://github.com/yuehhua/CDGRNs.jl
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Chapter 1

Introduction

Gene regulation plays a central role in cellular biology, governing complex gene ex-

pression and cellular functions. RNA sequencing techniques have been developed for

measuring gene activity, and single-cell sequencing techniques are extending mea-

surement resolution towards the single-cell level. A large number of applications

[1, 2, 3, 4] for single-cell RNA sequencing (scRNA-seq) data analysis have been

published. Integration of multi-omics single-cell data [5] can be achieved through

multimodal integration. However, while gene regulation can be easily inferred from

bulk RNA-seq data, this is more difficult using scRNA-seq data. In contrast, trajec-

tory inference on cell differentiation progression can be made from scRNA-seq data

but not from bulk RNA-seq data.

Trajectory inference (TI) analysis and pseudo-temporal ordering are frequent tar-

gets for single-cell techniques. The approach provides a macroscopic point of view

of cell fate decision and developmental processes. Multiple algorithms have been

proposed to address the problem of inferring developmental trajectories, including

Monocle 3 [6], Palantir [7], Slingshot [8], STREAM [9], and PAGA [10]. TI tries

to identify developmental trajectories from transcriptional states, but the develop-

mental direction in the transcriptional landscape can usually not be derived in this

manner [11]. RNA velocity models [12] have been proposed to give an indication of

1
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developmental direction. However, anomalous gene regulation patterns, including

multiple kinetics and transcriptional boosting, can make this a difficult undertak-

ing [13], and the inferred developmental direction is sometimes inconsistent with

biological sense. Disturbances from a mixture of distinct gene regulation patterns

are the main obstacle in inferring reliable trajectories and developmental directions

from machine-learning models, leading to a loss of connection with underlying gene

regulation.

The gene regulatory network (GRN) is situated at the microscopic level of cell

differentiation and constitutes the underlying driving force of the system. GRNs

have been modelled by various approaches, including differential equations (SCOUP

[14], SCODE [15], GRISLI [16]), machine learning tree-based model (GENIE3 [17],

GRNBoost2 [18], SCENIC [19, 20]), deep learning (SIGNET [21], BiRGRN [22]), in-

formation measures (PIDC [23]), causation (Scribe [24], SINGE [25]), and statistics

(PPCOR [26], GRNVBEM [27], LEAP [28]). Traditionally, the differential equa-

tions approach has been applied for reconstruction of GRNs in terms of dynamical

systems theory. Alternatively, random forest (GENIE3 [17]) and gradient boost tree

(GRNBoost2 [18]) are proposed to infer GRN from scRNA-seq data and they enjoy

the several advantages, including adapting to directed, nonlinear relationship, high

accuracy, not requiring time labels, and allowing feedback loops. Many approaches,

such as SCODE, GRISLI, BIRGRN, GRNVBEM, etc., require time labels or pseudo-

time for inferring GRNs from scRNA-seq data. Despite time information is provided

for GRN inference, it is reported that algorithms not requiring time labels, such as

GENIE3 and GRNBoost2, pose higher accuracy on predicting regulation relation-

ships [29]. Hence, modelling realistic GRNs not requiring time information from

high-dimensional data remains an open issue [30], and owing to the inherent noise

and sparseness of the data, it is still challenging to reconstruct a full GRN from

scRNA-seq data, especially when multiple cell types are involved.

TI algorithms are regarded as a separate avenue of investigation and have seen

2
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independent development. Currently, TI algorithms generally provide less connec-

tion between developmental trajectories and gene regulation. TI and GRN recon-

struction algorithms have tended to be conducted independently, followed by later

compilation and interpretation. This approach is unsystematic and underlines the

crucial need for an integrated explanation of the connection between developmental

trajectories and GRNs, which would be required for a consistent macroscopic and

microscopic interpretation based on the same model and dataset.

We here propose a context-dependent gene regulatory network (CDGRN) to si-

multaneously identify GRNs and visualize developmental trajectories in certain con-

texts. It allows integrated explanation of molecular mechanisms and corresponding

developmental trajectories. To address the issue of mixed regulation patterns, the

idea of decomposing mixture patterns is applied to identify components of gene reg-

ulation patterns for each regulation pair. Since the identified regulation patterns

exhibit cellular behaviors and dynamics in certain transcriptional contexts, patterns

can be used to identify classes of contexts and assign cells to these. GRNs can then

be inferred from cells with homogeneous transcriptional profiles for certain tran-

scriptional contexts, and the developmental trajectories can be visualized from the

same set of profiles.

3
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Chapter 2

Materials and Methods

2.1 Preprocessing datasets

Pancreatic, dentate gyrus, mouse gastrulation, and human bone marrow datasets

were imported from scVelo package [31]. Data were preprocessed following the de-

fault scVelo pipeline. For each gene, both spliced and unspliced count matrices were

filtered by a minimum count of 20. Spliced and unspliced count matrices were nor-

malized for each cell by total counts over all genes. The 5000 most highly variable

genes were preserved, and matrices were log-transformed by log(1 + x). Principal

component analysis (PCA) was applied to reduce the dimensions to 30 principal

components (PC). Neighbor graphs were established with 30 nearest neighbors by

Euclidean distance in PCA space, and used to compute first-/second-order moments

for each cell over its nearest neighbors. First-order moments of spliced and unspliced

matrices were used in the downstream modeling.

2.2 RNA velocity and latent time inference

We followed the default scVelo pipeline for generalized RNA velocity inference. The

RNA velocity and velocity graph were computed first. A dynamical model was

fitted by calling scv.tl.recover_dynamics to derive the latent time, which was

4
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then fetched for each dataset. Genes with an RNA velocity model likelihood higher

than 0.1 were selected.

2.3 Selection of regulation pairs

Transcription factor (TF)–target gene pairs were compiled from a transcription fac-

tor binding site (TFBS) list downloaded from the FANTOM5 data portal: https:

//fantom.gsc.riken.jp/5/datafiles/phase1.3/. Genes were mapped to cor-

responding HGNC id’s, and those that were successfully mapped were retained.

Regulations between TFs and their target genes were modeled with GMM models;

details are described in Section 2.4. After regulation pairs were selected, they were

mapped to the CHEA database [32] and regulation pairs present in the database

were retained. The selected regulation pairs were then used in downstream CDGRN

modeling and analysis.

2.4 Context-dependent gene regulatory network

The process for establishing a context-dependent gene regulatory network can be di-

vided into three stages. First, a single regulatory pattern should be identified from

a mixture of regulation patterns. This requires identifying contextual regulation

patterns from mixed regulation patterns for the whole dataset. Second, transcrip-

tional contexts are identified from the profile of contextual regulation patterns for

each cell. Third and finally, gene regulatory networks are inferred for each context

and developmental trajectories are visualized. In the first stage, a GMM model is

used to model the mixture of regulation patterns, and a single component can be

extracted as the contextual regulation pattern for each pair of TF and its target

gene. Any regulation relationship can be described by the expression of TF xi and

its specific target gene yi for each cell i. Assuming that there are K distinct kinds

of components involved in a regulation relationship for a certain TF and target gene

5
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pair, then, for each component, the distribution is determined by their mean vector

µk and covariance matrix Σk for the specific k-th component:

P (xi, yi | µk,Σk) =
K∑
k=1

πkN (xi, yi | µk,Σk) (2.1)

The spliced mRNA expression for the TF gene and the unspliced mRNA ex-

pression for the target gene are used to train the GMM model. A GMM is trained

across all observations and GMM clusters are identified as context-dependent motifs

for each regulation pair. Clusters can be identified by calculating a hard clustering

from the posterior probability:

z∗i = argmax
k

P (zi = k | θ)P (xi, yi | zi = k, θ)∑K
k′=1 P (zi = k′ | θ)P (xi, yi | zi = k′, θ)

(2.2)

where θ is the set of µk and Σk for all k ∈ [1, K]. The hyperparameter K denotes

number of components for GMM and it corresponds to number of regulatory patterns

in a regulatory pair. Empirically, we observed that number of potential components

in a regulatory pair often falls below 5. Therefore, it is selected from model selection

ranging from 1 to 5. The GMM model with the lowest Akaike information criterion

(AIC) score is selected. The AIC score is calculated as

aic = 2ω − 2 lnL∗ (2.3)

where ω denotes the number of parameters estimated from the GMM model and

L∗ is the model’s maximum likelihood value. If the best GMM model contains

only a single component (k = 1), then the corresponding TF and target gene pair

are considered unregulated. Selected TFs and their target gene sets, as well as the

corresponding contexts, are then used in downstream modeling.

In the second stage, to identify contexts, the profile of contextual regulation

patterns for each cell is collected for the whole dataset. The profile can be expressed

as an observation-motif matrix. An observation-motif matrix is filled with GMM

6
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clusters for each regulation pair in columns and observations in rows, then used as a

feature matrix. Contexts are identified as cell clusters by using hierarchical clustering

(based on cluster dissimilarity) with Ward linkage over all context-dependent motifs

to calculate the Hamming distance. Context-dependent motifs can be regard as

distinct entities, with the distance between observations equal to the Hamming

distance. The variance of cluster dissimilarity is considered and Ward linkage is

used to minimize increase in total within-cluster variance after merging two clusters.

Ward linkage uses the objective function of minimizing the sum of square errors to

optimize clustering. The initial cluster distances are defined as:

dij = d({Xi}, {Xj}) = ||Xi −Xj||2 (2.4)

where the cluster dissimilarity dij between clusters i and j is defined as the distance

between two singleton clusters {Xi} and {Xj}. Cluster dissimilarity d(ij)k can then

be calculated after merging clusters. For distinct clusters Ci, Cj, and Ck with sizes

ni, nj, and nk, respectively:

d(ij)k = d(Ci ∪ Cj, Ck)

=
ni + nk

ni + nj + nk

d(Ci, Ck) +
nj + nk

ni + nj + nk

d(Cj, Ck)−
nk

ni + nj + nk

d(Ci, Cj).

(2.5)

After clustering, contexts can be extracted by dividing the dendrogram into distinct

clusters Ci at defined distances. Observations are dissected into several contexts.

In the final stage, CDGRNs can be inferred by using a multiple regression model

for each context of each regulatory pair. In each context, a gene expression profile

with selected spliced and unspliced mRNA levels against corresponding observations

in the context is used to train the model. For each regulatory pair, a multiple regres-

sion model for a target gene and its upstream TFs is trained on the corresponding

gene expression profile for a given context. Thus, a set of multiple regression models

forms a context-dependent gene regulatory network for that context. The regula-

7



doi:10.6342/NTU202210156

tion relationship can be determined by the correlation between TFs and their target

genes in the context.

2.5 Data visualization for trajectory

After removing uncorrelated regulatory pairs, TFs and their target gene expression

profiles from spliced and unspliced transcripts are merged into a feature matrix. The

feature matrix is then reduced to the top five dimensions by PCA, and trajectories

from selected dimensions are plotted in 2D or 3D space.

2.6 Network visualization

Visualization of regulatory networks is done using Cytoscape v3.9.1. The network

is visualized by coloring edges by correlation sign and sizing edges by correlation

strength. The correlation strength and sign for selected TF–target gene pairs in

each context are written to CSV files.

2.7 Statistical methods

To compare contextual regulation patterns to global regulation patterns, the ab-

solute value of correlation for each TF–target gene pair in a given context was

computed. To resolve the difference in sample size between contextual regulation

patterns to global regulation patterns, the dataset was randomly sub-sampled at

the sample size of the contextual regulation pattern. A two-sample Wilcoxon rank-

sum test and a Kolmogorov–Smirnov test were applied to sub-sampled data using

HypothesisTests.jl.

8
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2.8 Functional enrichment analysis

ConsensusPathDB [33] (http://cpdb.molgen.mpg.de/) was used for the functional

enrichment analysis. To investigate the biological processes activated in different

CDGRNs, we excluded low correlation (< 0.3) TF–target gene regulation pairs.

Gene sets were compiled from each CDGRN and uploaded to the website to query

all significant gene ontology (GO) terms from levels 3 to 5.

9
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Chapter 3

Results

3.1 Unspliced mRNA reveals regulatory patterns in

TF-target gene pairs

Unspliced mRNAs can be derived by calling from single-cell RNA sequencing (scRNA-

seq) data [12]. As a central concept of molecular biology, mRNA is transcribed and

spliced by the spliceosome in eukaryotic cells. Mature mRNAs then undergo trans-

lation, and regulation is applied to TFs binding to the promoter region of a target

gene. For this reason, the spliced mRNA level of a TF gene should be in a regulatory

relationship with the unspliced mRNA level from its target genes. To demonstrate

the spliced and unspliced mRNA levels reveal such a regulatory relationship and

form a regulation pair, we investigated this relationship, which at least should then

constitute a stronger correlation than the relationships of spliced mRNA levels to

target genes. To this end, regulation gene pairs were selected from a ChIP-X exper-

iments CHEA database [32]; a pancreatic dataset from embryonic mice including

cell fate commitment to four kinds of pancreas islet cells was used. We calculated

gene regulatory connections between TFs and their target genes using unspliced

mRNA levels and compared these to the same metric using spliced mRNA levels

(Fig. 3.1). Surprisingly, we found that, unlike the case for spliced mRNA levels and

10
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all genes, gene regulations were stronger and there were more robust correlations

between spliced mRNA levels for TF genes and unspliced mRNA levels for their

target genes. We further found that the dataset contained different cell types at

unbalanced proportions. As distinct cell types show different transcriptional behav-

iors, the dataset mixed multiple regulation patterns from distinct cell types for each

pair of gene regulations. To address the issue of multiple regulations, components

were decomposed from specific gene regulation pairs by a Gaussian mixture model

(GMM), with each component representing a specific regulation pattern in a given

context. This allowed the definition of a transcriptional context for each regulation

dynamic.

3.2 Context-dependent gene regulatory network

We propose a context-dependent gene regulatory network (Fig. 3.2a) that decom-

poses cell transcriptional states at the molecular level for different contexts. Cells

carry out their diverse functions, or stay in phase in the cell cycle, because they

remain in distinct contexts. Gene regulations govern complex cellular functions,

and regulations change if the context changes. This context could be distinct cell

types, cell transition dynamics, or even cell transcriptional states. It is usually de-

termined by upstream gene regulation of TFs and their target genes. We therefore

modeled the gene regulation for distinct patterns and constructed contexts based on

the combination of distinct regulation patterns (Fig. 3.2b).

To infer regulation effects more directly, target gene expressions could be mea-

sured from unspliced transcript levels. A GRN is inferred from TF and their target

genes using spliced and unspliced transcript levels (Fig. 3.3). Regulation between

TF and target genes is then inferred from correlation. However, gene regulations are

extracted from datasets containing mixture pattern made up of many different cell

types, which impedes reliable inferral of regulations from scRNA-seq data. A GMM

11
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is thus used to identify and isolate distinct components for each TF–target gene

pair, which represent single regulation tendencies. Context can then be identified

from the combination of regulations across TFs and their target genes; cells sharing

a similar combination of regulations should be in similar distinct contexts, which in

turn are identified by cluster analysis. Cells in the same cluster are considered to

be in the same context, and are used to infer CDGRNs for that context.

We constructed CDGRNs (Fig. 3.4) for four independent real datasets. First,

a pancreatic dataset describing embryonic mouse pancreas cell fate commitment to

alpha, beta, delta, and epsilon cell lineages was used. A total of 3,696 cells with

27,998 expressed genes were fetched from scVelo and preprocessed. The 5,000 most

highly variable genes were selected, for which 11,610 TF–target gene pairs were

identified by GMM model. Of these models, 8,734 corresponded to TF–target gene

pairs showing two or more components in their regulation patterns. The remaining

single-component pairs were discarded. To further remove spurious regulation pairs,

the selected TF–target gene pairs were mapped to the CHEA database [32], which

collects experimentally curated transcriptional factor binding site profiles and their

targets, and contains 199 TFs and 21,585 target genes (198 TFs included), thus

forming 386,776 pairs. Mapping yielded a match for 830 TF–target gene pairs

consisting of six TF genes and 609 target genes, corresponding to a total of 2,270

components.

Second, a dentate gyrus neurogenesis dataset was fetched from scVelo and an-

alyzed. It contained 2,930 cells with 13,913 expressed genes. A total of 2,688

TF–target gene pairs were identified by GMM modeling of the 5,000 most highly

variable genes, yielding 1,063 models corresponding to multiple-component TF–target

gene pairs. After mapping to the CHEA database, 371 TF–target gene pairs con-

sisting of four TF genes and 259 target genes were retained.

Third, a dataset describing mouse gastrulation to erythroid lineages was ana-

lyzed, which contained 9,815 cells and 53,801 expressed genes. A total of 1,208

12
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TF–target gene pairs were identified, which included 785 multiple-component TF–target

gene pairs. After mapping to the CHEA database, 268 TF–target gene pairs con-

sisting of four TF genes and 141 target genes were retained.

Fourth, a human bone marrow dataset describing the haematopoiesis process in

bone marrow and consisting of 5,780 cells with 14,319 expressed genes was used. A

total of 8,727 TF–target gene pairs were identified, which included 7,643 multiple-

component TF–target gene pairs. After mapping to the CHEA database, 893

TF–target gene pairs consisting of eight TF genes and 461 target genes were re-

tained.

3.3 Extracting contextual regulation pattern as a

single component from global mixture regula-

tions

To investigate a single component of a regulation pattern in a given context, cells

in that context are extracted from the complete dataset (Fig. 3.5a). Extracted cells

share the same single regulation component, which corresponds to a component in

the respective GMM model (Figures 3.5de, 3.6). The single contextual regulation

pattern represents a shared dynamic of gene regulations, e.g., the estimated rela-

tionship between TF gene expression and target gene expression. To verify that

the contextual regulation pattern provides a simple and more robust descriptor of

regulation than global regulation, we tested correlation strengths for cells in a given

context against all cells across all regulation pairs. To this end, an equal number

of global regulation patterns was matched to TF–target gene pairs and correlation

strength was calculated. We found that in the pancreatic dataset, contextual reg-

ulation patterns yielded higher correlation strength than global regulation patterns

(Fig. 3.5b, p value < 10−32; Wilcoxon rank-sum test), and that the empirical cumu-
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lative distribution functions of correlation differed significantly between these levels

(Fig. 3.5c, p value < 10−7; Kolmogorov–Smirnov test). This suggests that dissecting

global mixture regulations into several components is a suitable approach to create

a simple and robust basis for analysis.

3.4 Explaining differentiation trajectory from regu-

latory pairs

TI algorithms are typically developed independently to GRN algorithms, and the

connection between macroscopic or cellular phenomena and microscopic or molecular

mechanisms remains unclear in most analyses. To explain the connection between

differentiation progression and gene regulation, we used gene expression profiles of

previous selected TF–target gene pairs derived from spliced and unspliced mRNA

levels to visualize differentiation trajectories (Fig. 3.3). We found that these trajec-

tories are suitable for determining cell differentiation progression and describe useful

cell types well in eigenspaces.

In the pancreatic dataset, ductal cells (Fig. 3.7a) exhibited DNA replication

and mitosis in the five highest-ranked enriched Gene Ontology (GO) terms (Table

3.1). Ngn3 -low EP cells derived from the trunk domain [34] progressed towards

pre-endocrine cells, showing chromosome condensation in context 4 (Fig. 3.7b) and

gland morphogenesis and development in context 5 (Fig. 3.7b, Tables 3.1, 3.2).

Cells committed to terminal alpha, beta, epsilon, and delta cells and progressed to

endocrine system development in context 1 (Fig. 3.7b, Tables 3.1, 3.2).

In the dentate gyrus dataset, a neurogenesis trajectory was revealed (Fig. 3.8a)

from nIPC and neuroblasts to granule (mature) cells. Initial nIPC and neuroblasts

corresponding to context 3 (Fig. 3.8b) changed to partial neuroblasts at the turning

corner. Granule maturation can be observed in context 1 (Fig. 3.8b). Immature cells

were aligned along the trajectory and mature cells terminated at the end of context

14
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1 (Fig. 3.8c). The five highest-ranked enriched GO terms in contexts 1 and 3 only

partially consisted of terms related to nervous system development (Table 3.3).

The mouse gastrulation dataset demonstrated that blood progenitors differen-

tiate into erythroid cells. The trajectory indicates that differentiation progressed

significantly from blood progenitors to erythroid cells (Fig. 3.9a). The five highest-

ranked enriched GO terms for blood progenitors 1 and 2 in context 1 (Fig. 3.9c)

contained terms like blood vessel morphogenesis and development, cardiovascular

system development, and circulatory system development (Tables 3.5, 3.6). For

erythroid 1, these terms indicate that myeloid leukocyte activation and differentia-

tion occurred in context 2. Myeloid leukocytes may undergo further cell migration.

Myeloid cell differentiation remains active until the erythroid 2 and 3 stages (con-

text 3) (Fig. 3.9c). In context 3, the regulation for systematic anatomical structure

morphogenesis and fine-grained cellular component organization takes place. This

dataset demonstrates that cells in different contexts shift progressively from coarse,

early-stage to detailed, late-stage cellular functions.

The differentiation landscape of human hematopoiesis in bone marrow showed a

progression from human stem cells to erythrocytes, dendritic cells, monocytes, and

megakaryocytes (Fig. 3.9b). In the monocyte lineage, cells originating from stem

cells HSC_1 and HSC_2 (context 2 and partially context 7) were enriched in the

regulation of hemopoiesis and hematopoietic or lymphoid organ development (Ta-

ble 3.7). In contrast to context 2, cells in context 7 were further enriched in leukocyte

differentiation (Fig. 3.9d). Cells in context 6 covered most precursors, and Mono_1

monocytes were active in the regulation of immune system processes. Meanwhile,

Mono_2 monocytes in context 3 showed enrichment unrelated to monocytes or the

immune system. Data from the Reactome database indicates that contexts 2, 6, and

7 all were involved in the regulation of granulopoiesis (Table 3.8).

Differentiation progression also aligned well with latent time, which was inferred

from generalized RNA velocity using a dynamical model. Trajectories from the
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pancreatic dataset were biologically consistent with latent times (Fig. 3.7c). Note

that, while in gastrulation to erythroids, latent time was reversed in the model

(Fig. 3.10); this was still consistent with inverse trajectories.

3.5 Revealing regulation network dynamics by pro-

gression of contexts

A set of contextual regulation patterns describes cellular behavior at the molecular

regulation level. Contexts describe cellular regulation states and can be identified

by clustering cells against contextual regulation patterns. Cells in similar contexts

tend to have similar regulatory networks. To investigate the underlying regulatory

network in a given context, the regulatory network is inferred from the relevant cells.

Contexts are inferred by applying hierarchical clustering against the contextual reg-

ulation patterns, and CDGRNs are in turn inferred by calculating the correlation

between spliced mRNA levels for TF and unspliced mRNA levels for target genes

in each context (Fig. 3.11). Each context then corresponds to its underlying CD-

GRN. Regulation pairs with high correlation strength (e.g., > 0.3) are then selected

from each CDGRN, and genes involved in these pairs are collected as a gene set

for enrichment. The dynamics of the underlying gene regulatory network can be

explained by rewiring gene regulations from one CDGRN to another.

In the pancreatic dataset, we inferred five contexts. Ductal cells and a very small

portion of Ngn3 with low EP underwent DNA replication in context 3 (Fig. 3.11a).

POLA1, CCNE2, and CDT1 genes, which are polymerases and key factors involved

in DNA synthesis, were positively regulated by the E2F1 gene. Another portion of

ductal and low-EP Ngn3 cells played roles in spindle localization and microtubule or-

ganization in the M phase, in which NUSAP1 genes are involved and are regulated by

PAX6, PDX1, and E2F1 genes (Fig. 3.11b). In early- to middle-stage high-EP Ngn3

cells, complicated regulation processes occurred simultaneously in context 4, includ-
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ing cell cycle regulation and regulation of hormone levels and metabolic processes

(Fig. 3.11c). Peptide hormone processing, transport, and regulation were enriched

in context 4, including PCSK1, HADH, CPE, NR3C1, PDX1, and SNAP25 genes.

Surprisingly, late-stage high-EP Ngn3 cells switched their behaviors in context 5

(Fig. 3.11d). In addition to the behaviors observed in context 4, gland morphogen-

esis, cell proliferation, and multicellular organ development processes were enriched

in context 5, involving other, more complicated groups of genes. Finally, cell devel-

opment went through pre-endocrine stages and terminated in four types of islet cells

in context 1 (Fig. 3.11e). Unexpectedly, these cell types shared similar CDGRNs for

context 1, and the remaining regulations were relatively simple. PDX1, NR3C1, and

PAX6 genes were involved in gland development and islet cell functions, including

regulation of hormone levels and responses to nutrient and fatty acid levels. The de-

veloped CDGRNs allowed explanation of cellular behaviors in each context in terms

of gene regulations and functional enrichment analysis, and provided insights into

sub-population behaviors within a given cell type.

3.6 Shrinkage of regulation network size shrinks dur-

ing cell differentiation process

We also discovered that the size of CDGRNs decreased as cell differentiation pro-

gressed. Network entropy as a measure of regulation network complexity declined

gradually in parallel with cell maturation (Fig. 3.12). This may indicate that the

activity of a regulation network simplifies during maturation. More detailed context

dissections showed that this decline fluctuated to some degree. During phases of

rising network entropy, cells progressed from one stable cell type to another, and

entropy declined again when the next stable type was reached. In other words,

network entropy indicated not only network complexity but also the stability of

transcriptional states. Evaluated over a longer time frame, the network entropy of
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a CDGRN may be an indicator of cell maturity, and differences in network entropy

may imply varying differentiation directions.
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Figure 3.1: Comparison of regulatory network inference from unspliced and spliced
mRNA levels. (a) Gene regulation between TFs and their target genes. Blue points
represent spliced mRNA, yellow points represent unspliced mRNA. Two scenarios
are compared. (b) Histogram of correlations from different mRNA levels in the
pancreatic dataset. (c) Empirical cumulative distribution function of correlations
from different mRNA levels in the pancreatic dataset. (d) Gene regulation pattern
between Naaladl2 and Elf5 from unspliced (left) and spliced (right) mRNA levels
in a given context. (e) Gene regulation pattern between Atad2 and E2f1 from
unspliced (left) and spliced (right) mRNA levels in a given context.
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Figure 3.2: Context-dependent gene regulatory networks. (a) A CDGRN is de-
rived by decomposing a GRN into several sub-networks for distinct contexts. (b)
Regulation patterns are used to cluster cellular contexts.

Figure 3.3: An overview of the CDGRN framework. Input of (un)spliced transcripts
are used for GMM feature selection for significant regulatory patterns. Contexts are
then identified from regulatory pattern profiles by clustering. Each GRN can be
inferred for each context and developmental trajectory can also be inferred from
selected gene expression profiles.
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Figure 3.4: The detailed workflow of CDGRN.
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Figure 3.5: Comparison of regulatory network inference from distinct and global
contexts. (a) Comparison of cellular contexts with global context. (b) Histogram of
correlations between distinct and global contexts in the pancreatic dataset. (c) Em-
pirical cumulative distribution function of correlations between distinct and global
contexts in the pancreatic dataset. (d) Gene regulation patterns between Nr3c1
and Cpe in distinct (left) and global (right) contexts. (e) Gene regulation patterns
between E2f1 and Ccne2 in distinct (left) and global (right) contexts.
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Figure 3.6: Cases of gene regulations for regulatory network inference for specific
and global context. The gene regulation pattern between Elf5 and Naaladl2 in a,
specific and b, global context. The gene regulation pattern between Atad2 and E2f1
in c, specific and d, global context.

Figure 3.7: Inference and visualization of landscape for the pancreatic dataset. (a)
Developmental trajectory visualized after GMM feature selection for the pancreatic
dataset. (b) Distinct contexts are identified, revealing regulation dynamics in the
developmental trajectory. (c) The developmental trajectory aligns well with latent
time inferred from the generalized RNA velocity model.
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Table 3.1: Ten highest-ranked enriched GO terms for pancreatic islet cell develop-
ment.

Context Level 4 biological process q-value

gland development 0.001092
endocrine system development 0.001092
gland morphogenesis 0.001092
cellular response to oxygen-containing compound 0.001092

1 cellular response to oxygen levels 0.001092
regulation of cell proliferation 0.002197
regulation of cell death 0.002197
cellular response to nutrient levels 0.002952
hexose metabolic process 0.002952
response to fatty acid 0.002952

establishment of spindle localization 0.000811
regulation of DNA binding 0.003040

2 microtubule cytoskeleton organization involved in mitosis 0.003040
cellular response to organic substance 0.053478
brain development 0.058915

DNA metabolic process 8.92× 10−6

macromolecule biosynthetic process 8.92× 10−6

cellular macromolecule biosynthetic process 0.000012
nuclear DNA replication 0.000123

3 nucleic acid metabolic process 0.000123
mitotic DNA replication 0.000123
chromosome organization 0.000149
heterocycle biosynthetic process 0.000696
aromatic compound biosynthetic process 0.000696
negative regulation of cellular process 0.001006

positive regulation of metabolic process 0.001059
positive regulation of cellular process 0.001738
mitotic chromosome condensation 0.002228
hormone transport 0.007280

4 regulation of cellular metabolic process 0.009952
meiotic chromosome condensation 0.009952
mitotic sister chromatid segregation 0.011022
regulation of nitrogen compound metabolic process 0.011622
macromolecule biosynthetic process 0.013475
hormone secretion 0.013642

gland morphogenesis 0.000012
gland development 0.000023
nervous system development 0.000023
regulation of cell proliferation 0.000024

5 cell projection morphogenesis 0.000027
neuron development 0.000037
plasma membrane bounded cell projection organization 0.000037
cell part morphogenesis 0.000037
neurogenesis 0.000057
axon guidance 0.000081
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Table 3.2: Ten highest-ranked enriched pathway terms for pancreatic islet cell de-
velopment.

Context Pathway terms Source q-value

Reelin signalling pathway KEGG 0.000290
SUMOylation of intracellular receptors Reactome 0.005005

1 Maturity onset diabetes of the young KEGG 0.005005
Nuclear Receptor transcription pathway Reactome 0.012816
Chemical carcinogenesis - receptor activa-
tion

KEGG 0.018803

2 (none)

DNA Replication Reactome 7.32× 10−10

Synthesis of DNA Reactome 9.19× 10−9

Mitotic G1 phase and G1/S transition Reactome 2.57× 10−8

Activation of the pre-replicative complex Reactome 2.94× 10−8

3 S Phase Reactome 3.67× 10−8

G1/S Transition Reactome 3.67× 10−8

DNA replication - Mus musculus KEGG 3.67× 10−8

DNA Replication Pre-Initiation Reactome 3.84× 10−8

Cell Cycle, Mitotic Reactome 6.03× 10−6

Lagging Strand Synthesis Reactome 6.03× 10−6

Cell Cycle, Mitotic Reactome 0.000303
Cell Cycle Reactome 0.000698
M Phase Reactome 0.003657
Thyroid hormone signaling pathway KEGG 0.004907

4 Insulin secretion KEGG 0.013079
Mitotic Prometaphase Reactome 0.022410
Carbohydrate digestion and absorption -
Mus musculus

KEGG 0.022490

Growth hormone synthesis, secretion and
action - Mus musculus

KEGG 0.023886

Mitotic Prophase Reactome 0.023886
GnRH secretion - Mus musculus KEGG 0.034641

Prostate cancer KEGG 0.006888
DNA Replication Reactome 0.059728
Cocaine addiction KEGG 0.059728
Insulin secretion KEGG 0.059728

5 SUMOylation of intracellular receptors Reactome 0.059728
Small cell lung cancer - Mus musculus KEGG 0.059728
Maturity onset diabetes of the young -
Mus musculus

KEGG 0.062375

Activation of the pre-replicative complex Reactome 0.078607
Amphetamine addiction - Mus musculus KEGG 0.078607
DNA replication - Mus musculus KEGG 0.078607
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Figure 3.8: Inference and visualization of CDGRNs for dentate gyrus dataset. a,
Developmental trajectory visualized from CDGRN for dentate gyrus dataset. b,
Distinct contexts are clustered and reveals regulation dynamics in developmental
trajectory. c, Developmental trajectory aligns well with latent time inferred from
generalized RNA velocity model.
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Table 3.3: Ten highest-ranked enriched GO terms for dentate gyrus dataset.
Context Level 4 biological process q-value

sensory organ morphogenesis 0.002534
cell morphogenesis 0.002534
nervous system development 0.002534
actin filament organization 0.002534

1 muscle organ development 0.002534
neuron development 0.002534
muscle tissue development 0.002534
skeletal muscle cell differentiation 0.002534
cell migration 0.002701
neuron differentiation 0.002701

regulation of neuronal synaptic plasticity 0.000767
nervous system development 0.000767
neurogenesis 0.000767
regulation of vesicle-mediated transport 0.001770

3 regulation of cell proliferation 0.001851
positive regulation of cellular process 0.001851
regulation of multicellular organismal development 0.002432
cell projection morphogenesis 0.002458
positive regulation of developmental process 0.002458
cell part morphogenesis 0.002725

B cell lineage commitment 0.006214
glial cell migration 0.008199
cognition 0.008199
cell migration 0.009270

5 positive regulation of multicellular organismal process 0.012891
regulation of transmembrane transporter activity 0.016714
trans-synaptic signaling 0.018080
positive regulation of cellular process 0.020871
regulation of trans-synaptic signaling 0.020871
response to light stimulus 0.021355
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Table 3.4: Ten highest-ranked enriched pathway terms for dentate gyrus dataset.
Context Pathway terms Source q-value

1 AGE-RAGE signaling pathway in diabetic compli-
cations

KEGG 0.001212

Parathyroid hormone synthesis, secretion and ac-
tion

KEGG 0.001212

Glioma - Mus musculus KEGG 0.018286
ErbB signaling pathway - Mus musculus KEGG 0.018286
GnRH signaling pathway - Mus musculus KEGG 0.018286
AGE-RAGE signaling pathway in diabetic compli-
cations - Mus musculus

KEGG 0.018286

3 Cholinergic synapse - Mus musculus KEGG 0.018286
Trafficking of AMPA receptors Reactome 0.018286
Glutamate binding, activation of AMPA receptors
and synaptic plasticity

Reactome 0.018286

HIF-1 signaling pathway - Mus musculus KEGG 0.018286
Neurotrophin signaling pathway - Mus musculus KEGG 0.018286
Regulation of TP53 Activity through Acetylation Reactome 0.018286

Post-translational protein phosphorylation Reactome 0.036114
Regulation of Insulin-like Growth Factor (IGF)
transport and uptake by Insulin-like Growth Fac-
tor Binding Proteins (IGFBPs)

Reactome 0.036114

Hedgehog signaling pathway - Mus musculus KEGG 0.060524
Glycerolipid metabolism - Mus musculus KEGG 0.060524

5 Focal adhesion - Mus musculus KEGG 0.060524
p53 signaling pathway - Mus musculus KEGG 0.060524
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Figure 3.9: Inference and visualization of landscapes for mouse gastrulation to
erythroid lineage and human bone marrow datasets. Developmental trajectory vi-
sualized after GMM feature selection for (a) mouse gastrulation to erythroid lineage
and (b) human bone marrow. Distinct contexts reveal regulation dynamics for (c)
mouse gastrulation to erythroid lineage, and (d) human bone marrow.
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Table 3.5: Ten highest-ranked enriched GO terms for mouse gastrulation to ery-
throid lineage.

Context Level 4 biological process q-value

blood vessel morphogenesis 1.10× 10−6

vasculature development 4.23× 10−6

cardiovascular system development 4.23× 10−6

circulatory system development 0.000008
1 cell migration 0.000018

hematopoietic or lymphoid organ development 0.000033
enzyme linked receptor protein signaling pathway 0.000081
response to laminar fluid shear stress 0.000094
small GTPase mediated signal transduction 0.000156
myeloid cell differentiation 0.000225

cytoskeleton organization 0.014426
myeloid leukocyte activation 0.015613
cell migration 0.045814
myeloid cell differentiation 0.045814

2 regulation of cell motility 0.045814
hematopoietic or lymphoid organ development 0.045814
positive regulation of cellular process 0.045814
regulation of cellular component movement 0.045814
hematopoietic progenitor cell differentiation 0.045814
regulation of cellular component organization 0.045814

regulation of anatomical structure morphogenesis 0.107952
3 regulation of cellular component organization 0.107952

myeloid cell differentiation 0.107952
regulation of protein complex assembly 0.107952
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Table 3.6: Ten highest-ranked enriched pathway terms for mouse gastrulation to
erythroid lineage.

Context Pathway terms Source q-value

Reelin signalling pathway Reactome 0.000037
Platelet activation, signaling and aggregation Reactome 0.000045
GPVI-mediated activation cascade Reactome 0.000122
PECAM1 interactions Reactome 0.000198

1 Transcriptional misregulation in cancer KEGG 0.001402
Signal Transduction Reactome 0.001785
DAP12 signaling Reactome 0.001812
Hemostasis Reactome 0.002553
Signaling by VEGF Reactome 0.002576
Interleukin-3, Interleukin-5 and GM-CSF signaling Reactome 0.002576

Transcriptional misregulation in cancer KEGG 0.004060
Acute myeloid leukemia KEGG 0.004801

2 Chronic myeloid leukemia KEGG 0.004801
Pathways in cancer KEGG 0.014636
Axon guidance Reactome 0.021230
Nervous system development Reactome 0.021230

3 Transcriptional misregulation in cancer KEGG 0.001959
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Table 3.7: Ten highest-ranked enriched GO terms for human bone marrow.
Context Level 4 biological process q-value

regulation of cell-cell adhesion 0.000062
regulation of hemopoiesis 0.001356
leukocyte differentiation 0.001356
hematopoietic or lymphoid organ development 0.001356

2 regulation of cell activation 0.002040
neurogenesis 0.002040
leukocyte cell-cell adhesion 0.002147
lymphocyte differentiation 0.002147
positive regulation of multicellular organismal process 0.002147
regulation of cell differentiation 0.002949

hematopoietic or lymphoid organ development 0.013494
leukocyte differentiation 0.027460
bone cell development 0.034438
nucleobase metabolic process 0.034438

7 cellular response to xenobiotic stimulus 0.034438
myeloid cell differentiation 0.034438
bone development 0.034438
regulation of multicellular organismal development 0.035925
lipopolysaccharide-mediated signaling pathway 0.035925
regulation of cell proliferation 0.035925

hematopoietic or lymphoid organ development 0.004979
leukocyte differentiation 0.004979
negative regulation of erythrocyte differentiation 0.009821
negative regulation of immune system process 0.009821

6 T cell activation 0.009821
regulation of hemopoiesis 0.009821
lymphocyte differentiation 0.015608
defense response to protozoan 0.022174
glomerulus vasculature development 0.022174
myeloid cell differentiation 0.022174

cellular response to oxygen-containing compound 0.012110
response to muscle stretch 0.012110
cellular response to organonitrogen compound 0.012110
cellular response to drug 0.012110

3 response to decreased oxygen levels 0.012110
cellular response to nitrogen compound 0.012110
positive regulation of metabolic process 0.012110
pigment cell differentiation 0.012116
cellular response to xenobiotic stimulus 0.015304
response to peptide hormone 0.015304
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Table 3.8: Ten highest-ranked enriched pathway terms for human bone marrow.
Context Pathway terms Source q-value

Transcriptional regulation of granulopoiesis Reactome 0.000043
Signaling by EGFR Reactome 0.004850
Regulation of lipolysis in adipocytes KEGG 0.005304

2 Developmental Biology Reactome 0.007104
RUNX1 regulates transcription of genes involved
in differentiation of HSCs

Reactome 0.008266

Platelet activation - Homo sapiens KEGG 0.012526
Hepatitis C - Homo sapiens KEGG 0.015672
Axon guidance - Homo sapiens KEGG 0.017749

Transcriptional regulation of granulopoiesis Reactome 0.000174
Plasma lipoprotein clearance Reactome 0.005398
Cholesterol metabolism KEGG 0.009530

7 Plasma lipoprotein assembly, remodeling, and
clearance

Reactome 0.011499

RUNX1 regulates transcription of genes involved
in differentiation of HSCs

Reactome 0.014227

Cell junction organization Reactome 0.014227
Developmental Biology Reactome 0.021473

Transcriptional regulation of granulopoiesis Reactome 0.001445
Rap1 signalling Reactome 0.007776
NGF-stimulated transcription Reactome 0.024503

6 Signal Transduction Reactome 0.039711
Nuclear Events (kinase and transcription factor ac-
tivation)

Reactome 0.039711

Rap1 signaling pathway - Homo sapiens KEGG 0.039757
Cell surface interactions at the vascular wall Reactome 0.039757

Signal Transduction Reactome 0.001591
Intracellular signaling by second messengers Reactome 0.002737
Parathyroid hormone synthesis, secretion and ac-
tion - Homo sapiens

KEGG 0.002737

Transcriptional regulation of granulopoiesis Reactome 0.003185
3 Integrin signaling Reactome 0.003185

Apelin signaling pathway - Homo sapiens KEGG 0.003185
SUMOylation of intracellular receptors Reactome 0.003185
Hemostasis Reactome 0.003926
Platelet Aggregation (Plug Formation) Reactome 0.004316
Nuclear Receptor transcription pathway Reactome 0.006615
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Figure 3.10: Inversed latent time inferred from generalized RNA velocity model for
a, mouse gastrulation to erythroid lineage and b, human bone marrow.
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Figure 3.11: The visualization of CDGRN for (a) context 3, (b) context 2, (c)
context 4, (d) context 5, and (e) context 1 in the pancreatic dataset. Each node
represents a gene with its expression level in color from yellow (low) to dark red
(high). Regulations are shown as directed edges with their colors in red (positive
correlation) and blue (negative correlation). Directed edges with greater line with
pose higher (absolute) correlations.
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Figure 3.12: Network statistics for CDGRNs in each dataset. (a) Numbers of nodes
and edges and (b) CDGRN network entropy for the dentate gyrus neurogenesis
dataset. (c) Numbers of nodes and edges and (d) CDGRN network entropy for the
mouse gastrulation to erythroid lineage dataset. (e) Numbers of nodes and edges
and (f) CDGRN network entropy for the human bone marrow.
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Chapter 4

Discussion

We have investigated the GRN construction issue for single-cell sequencing data.

A prespective of mixed regulatory patterns is revealed and can be decomposed by

GMM into components. Mixed regulatory patterns represent an extent of nonlinear-

ity in regulation dynamics, which can be decomposed into several linear patterns,

across all cell types. Machine learning approaches often formulate regulation re-

lationship prediction into a regression problem. Tree-based models like GENIE3

[17], GRNBoost2 [18], SCENIC [19, 20] also decomposed nonlinear features into

piecewise linear patterns. While tree-based models leverage the power of approxi-

mation to nonlinearity for prediction, CDGRN dissects whole dataset into contexts

based on these components. This shows CDGRN have ability to resolve a degree of

nonlinearity for GRN construction problem.

Theoretically, some properties of CDGRN can be carried out. The use of Gaus-

sian mixture model in CDGRN provides property of approximation to arbitrary

distributions in general [35]. Arbitrary mixture patterns can be decomposed into

several components in terms of linear patterns (lines) or cluster patterns (spots) from

GMM. Contexts can be identified by clustering cells against regulatory pattern pro-

files. This provides the ability of CDGRN for capturing any kinds of regulatory

patterns or even mixed regulatory patterns. This reasonably generalizes CDGRN
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to any dataset for gene regulatory network inference. Additionally, CDGRN also

shows its robustness statistically. Suppose the dataset is random sampled from a

certain population. In CDGRN, the population of any regulatory pair is modeled

by GMM. Thus, the estimation of GMM would be the same from their population

for the regulatory pair and the inferred CDGRN will be the same. The robustness

of CDGRN is ensured statistically.

We also observed that CDGRNs may enable the determination of master regu-

lators while not having sufficient evidence. The Pdx1 gene has been reported as a

unique master regulator in embryonic development and pancreatic cancer [36, 37].

The Pax6 gene acts as a developmental regulator for maintenance of islet cell func-

tion and beta cell identity [38, 39, 40]. Given the possible TF–target gene pairs, a

CDGRN extracts regulation relationships from single-cell transcriptome data. Since

target genes are usually regulated by higher level TFs, hub TFs regulate more target

genes, and in this context may then be candidates for master regulators.

It is essential to validate inferred results from CDGRN through biological ex-

periments. There are some thoughts enable validating the results from CDGRN.

A RNA-seq or in vivo fluorescent protein biological experiment can be made to

measure and get a time-course cell differentiation data which provides insight into

cell transition between states. Over the duration of transition between cell states,

this measures the expression of genes or proteins across different CDGRNs. Thus,

changes of gene regulations can be validated while cells change their contexts. An-

other more detailed experiment can be designed using a reporter system to validate

gene regulation of interest in a more sophisticated setup.

GMM is employed to identify and extract regulation relationships, and Hamming

distances are then computed to represent the distance among cells for following hi-

erarchical clustering. Hamming distance regards regulation relationships as distinct

classes, which neglects fine structure in-between the spectrum of distinct classes.

A continuous clustering methods like fuzzy c-means or other distance methods can
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be considered to improve estimating distances. Therefore, it could provide more

fine-grained contexts identification from cells.

While the proposed model establishes connections between macroscopic devel-

opmental trajectories and microscopic gene regulations, some further developments

are likely desirable. For example, the currently employed method for identification

of contexts is hierarchical clustering, which provides a simple method to identify

transcriptional contexts from regulatory patterns. However, this approach only con-

siders different regulatory patterns as distinct regulatory dynamics, and nuances

like positive/negative regulations or regulation strength are not taken into account.

The development of a more easily interpretable and meaningful method to identity

transcriptional contexts may lead the way for describing discrete cellular contexts

as continuous contexts.

CDGRNs can serve as a general approach for analyzing not only developmental

trajectories but also cell clusters. While we only treat the former case in this study,

there are no conceptual limitations for the latter, e.g., in the analysis of data from

the PBMC dataset.

As noted, network complexity in the form of entropy in a CDGRN could work

as an indicator for cell maturity; however, this remains a imprecise metric. It may

be worthwhile to determine a more robust descriptor of network complexity that

allows more reliable predictions of cell maturity and thus developmental directions.

The proposed model is subject to some limitations. Because the TF–target gene

lists are fetched from a ChIP-seq experimental database, the use of a pure TFBS

for modeling is limited. This issue could be addressed by pooling several ChIP-

seq databases and thus enlarging the available data space; however, coverage of

TF–target gene pairs would remain problematic. To resolve the issue thoroughly,

an approach for modeling from a pure TFBS would be needed.

CDGRNs infer regulations by calculating correlations for gene expression. How-

ever, correlation does not equal causation, and spurious regulation relationships
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may be represented in a CDGRN. To reduce such cases, partial correlation networks

could be used. Furthermore, the use of experimental databases rather than pure

TFBS information may lower this risk.

In future research, the integration of scRNA-seq and scATAC-seq data is likely

to become important. Taking into account chromatin openness in gene regulations

may avoid a large proportion of falsely estimated positive regulations. From the

perspective of epigenetics, the memory effect of chromatin openness explains how

gene regulation differs from case to case. Individual or environmental factors may

interact in their contributions at each level from the epigenome to gene regulations.

Epigenetic information enables construction of a Waddington epigenetic landscape

[41], which acts as a theoretical model for understanding how cell fates are deter-

mined and combines several advantages in one model. These include describing and

explaining developmental trajectories, providing an explanation of the underlying

gene regulation for macroscopic phenomena, evaluating the direction of cell differ-

entiation, and predicting cell types. Some of these goals are achieved by the use

of CDGRNs, making them possible building blocks for modeling epigenetic land-

scapes. Once cell maturity can be predicted correctly, modeling of the Waddington

epigenetic landscape will become possible.
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Chapter 5

Conclusions

We propose a model intended to allow simultaneous inference of a cell population’s

gene regulatory network in a given context and the identification of the different

contexts within the population. The model provides solid evidence for the interpre-

tation of biological phenomena. We applied this model on four real datasets and

show that the revealed trajectory is consistent with current biological knowledge.

CDGRN explains gene regulation coupled with functional enrichment analysis in

each context. Contexts dissect developmental trajectory into disjoint parts, and

we found that subpopulation behaviors could be differ from other cells within the

same cell types. We further show that the network entropy of CDGRN indicates

cell maturity along the developmental trajectory.
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