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摘要 

 

基於生物特徵信息的身份認證系統在近年被廣泛的運用，大多數人已經接受它帶

來的便利性、安全性和隱私性，可以避免使用者的密碼被盜或忘記。其中掌紋識

別是人性化且衛生的生物識別，無需觸摸設備，對手勢也沒有太大的限制。隨著

當今影像識別技術的飛速發展，深度學習方法在多樣化的影像資料處理上表現優

於傳統方法，然而大多數掌紋識別中的深度學習方法僅在單個資料集上進行訓練

和測試，一旦使用不同的成像設備，辨識的效果就會嚴重受到影像。但在實際應

用場景中，輸入影像來自不同的相機是很常見的，因此如何解決不同成像設備帶

來的影像差距至關重要。因此我們提出了三種影像增強策略和 ResNeSt 的縮減

版本來解決跨域的掌紋識別。首先我們在訓練期間使用 Optuna 框架和 TPE 採

樣器對影像隨機轉換進行超參數優化搜索。其次，將 ROI 影像旋轉到四個方向

作為不同類別的訓練影像來 oversample 訓練資料集。這也可以用於增強我們

提出的基於 test-time augmentation 的多轉換特徵比對方法。在有約束的資

料集 (PolyU-M) 上訓練並在無約束的資料集 (MPD) 上測試的困難條件下，三

種增強方法可以分別提高準確度 12.55%、5.34% 和 4.66%，總共可以實現 

22.55% 的準確度提升。 此外，使用 MPD 訓練的模型在所有測試資料集中都可

以達到 99.66% 以上的準確度。 
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ABSTRACT

Identity authentication systems based on biometric information have been

widely used in recent years. Most people accept its convenience, security, and

privacy, avoiding the user’s password being stolen or forgotten. Among them,

palmprint recognition is user-friendly and hygienic biometric, without touching

the device and too many pose restrictions. With the rapid development of to-

day’s image recognition technology, deep learning methods perform better than

traditional methods on diverse image data. Although most deep learning methods

in palmprint recognition perform well on a single dataset, it will seriously affect

performance once applied to different image acquisition devices. In practical ap-

plication scenarios, it is common for input images to come from different cameras,

so how to bridge the gap between different imaging conditions is extremely crucial.

Therefore, we propose three data augmentation strategies and a reduced version

of ResNeSt to solve the cross-domain palmprint recognition problem. First, we

perform a hyperparameter optimization search for random transformations during

training with the Optuna framework and the TPE sampler. Second, the training

dataset is oversampling augmented, which the ROI images are rotated into four

orientations as training images of different classes. This can also be used to en-

hance our proposed multi-transform matching based on a test-time augmentation

technique. Under the difficult conditions of training on a constrained acquisition

dataset (PolyU-M) and testing on an unconstrained dataset (MPD), the three aug-

mentation methods can improve by 12.55%, 5.34%, and 4.66%, respectively, so a

total of 22.55% improvement can be achieved. Furthermore, the model trained on

both MPD can achieve more than 99.66% accuracy in all test datasets.

ii
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CHAPTER 1

INTRODUCTION

Biometric recognition has attracted more and more attention in recent years

due to the increasing awareness of privacy concerns and information security. Fur-

thermore, image recognition technology has improved with the development of

deep learning, and the performance of biometric recognition can reach a practi-

cal level. Compared with traditional token-based or knowledge-based methods,

biometric recognition can effectively prevent forgetting and theft, offering higher

security. However, there has been relatively little effort to explore deep learning

for palmprint recognition. The benefits of palmprint recognition are convenience

and user-friendliness. No touching of equipment is required, so it is hygienic and

easy to use. It is not like face recognition would need to take off the mask or iris

recognition can be uncomfortable. In addition, it can be easily combined with

other hand-related features for multi-modal biometric identification, such as palm

veins, finger-knuckle-prints, or hand shape.

A palmprint recognition usually has the following procedures: image acqui-

sition, image preprocessing, feature extraction, and feature matching. The most

important step in image preprocessing is to extract the region of interest (ROI)

so that the feature extraction step can receive images of uniform size and orienta-

tion. The ROI refers to obtaining the main palmprint area without background.

Feature extraction includes many different types, the most commonly used in tra-

ditional methods are texture-based features. The latest methods mostly use deep

learning to train a feature extraction model, and the resulting feature is a vector.

Compared with traditional methods, deep learning methods have better tolerance

for the variation of external environments and different hand postures. As for

feature matching, it is to calculate the difference between the features to indicate

the similarity, and finally judge whether it is the same person according to this

similarity.

However, most deep learning methods for palmprint recognition only focus on a

single dataset. Once identified on other datasets, the performance will be greatly

degraded. In a practical application, it is common for training and real input

images to come from different imaging acquisition devices because it is difficult to

collect enough training images using the same device. Therefore, how to bridge

the gap between images of different domains is of great research value.

1
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2

To address such a cross-dataset recognition problem, most of the past meth-

ods use the target dataset to assist, for example, model fine-tuning with a small

number of target data, domain adaptation, or even training a generative adversar-

ial network (GAN). These methods only focus on a single target dataset and are

not helpful for data in other domains except GAN. However, the model training

process of GAN is cumbersome and difficult to converge. Therefore, we focus on

image augmentation to improve model adaptability fairly without the need for

complex model training.

We observed that the main differences in the ROIs from different datasets lie

in skin color, brightness, and shadow because the ROI cropping algorithm can

well correct the orientation and scale of the images. Most of these changes can be

simulated through image transformation. In addition, the drastic image changes

allow the model to focus more on the texture and ignore other parts. Therefore,

we decided to validate this idea by searching for an data warping augmentation

strategy suitable for palmprint recognition through an optimization method. In

addition, we have also improved the feature extraction model and feature matching

method to make them more suitable for the palmprint recognition task. The main

contributions of our work are summarized as follows:

1. We adopt Optuna, a search optimization framework, and TPE, a sampler, to

perform hyper-parameter search and selection for image transformation. It

turns out that Brightness, Contrast, Hue, and Noise injection are the

most useful transformations among our pre-defined functions. This result is

very consistent with our conjecture. Moreover, the transformations obtained

through this search can improve the accuracy by more than 12.55% compared

to the baseline in cross-dataset evaluation.

2. We refer to the technique of test-time augmentation and propose a multi-

transform matching. This method generates rotated and mirror images

from the input ROI for matching, and then combines the results to obtain

the final similarity. On this basis, we propose an oversampling data aug-

mentation method, which rotates ROI images to 4 orientations as training

data. This training method can not only enhance the performance of multi-

transform matching, but also make the model produce more discriminative

features. Oversampling and multi-transform matching can improve the accu-

racy by more than 5.34% and 4.66% in the case of cross-dataset recognition,

respectively.

3. We also propose a reduced version of ResNeSt with the last layer removed.

According to experiments, such a structure is more suitable for palmprint
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recognition. The last layer usually has the largest number of parameters, so

such adjustment can also make the model lighter. A lightweight model means

less training data is required and faster convergence. The feature extraction

model is proposed first because data augmentation can only make the model

more familiar with existing tasks, but cannot improve the ability of the

model itself, so we need to ensure that the model has sufficient capability.

The thesis consists of 6 chapters. Chapter 2 introduces the background knowl-

edge and reviews the related works. Chapter 3 describes the details of baseline

system implementation and the motivation. Chapter 4 explains our proposed

methods, including the three points listed above. The evaluation of each method

is shown in Chapter 5. Finally, Chapter 6 concludes this thesis.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter first describes the fundamental components of a palmprint recog-

nition system in Section 2.1, along with an overview of the previous works in each

part. In Section 2.2, we detail the definition of the recognition task, as well as

their assumptions and respective evaluation methods. Then, an introduction to

deep metric learning is provided in Section 2.3, since our work is based on this ap-

proach. Finally, we reviewed the related literature about cross-dataset palmprint

recognition.

2.1 Palmprint Recognition System

A biometric system must include both registration and recognition. Regis-

tration converts images into features and stores them in the database, and the

recognition can be operated either in verification mode or identification mode,

depending on the application context [1]. The matching behaviors of these two

modes differ in the number of templates for comparison, as depicted in Figure 1.

Input 
image

Region of
interest 

Registration

Feature
extraction

Input 
image

Region of
interest 

Verification

Feature
matching 

Database

Input 
image

Region of
interest 

Identification

Feature
matching 

one
template 

all
templates 

True / False

user identity / not found 

template 

Database

Database

Feature
extraction

Feature
extraction

Figure 1: Block diagrams of registration, verification, and identification tasks in
a palmprint recognition system, which is adaped from [1].
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The Palmprint recognition system is also a biometric system, including the

above three operations, and they can be integrated into a flow chart as Figure 2.

It consists of four major steps: image acquisition, region of interest cropping, fea-

ture extraction, and feature matching. This section will provide a comprehensive

introduction to these four steps and review related literature on each step.

Image
acquisition 

Region of
interest 

Feature
extraction 

Feature
matching Decision

Database

Registration
Verification / Identification

Figure 2: The flow diagram of palmprint recognition system, which is adapted
from Zhong et al. [2].

2.1.1 Image acquisition

The palmprint image acquisition type was briefly categorized as follows: con-

strained acquisition, partly unconstrained acquisition, and unconstrained acqui-

sition [18]. These three categories are classified according to the pose and the

background.

• Constrained acquisition: The constrained acquisition means that users

can only take one valid pose, and the image must be captured on a uniform

background. Most of them will have the user place their hands directly on

the device and secure with hooks. An example from the PolyU dataset [3]

is shown in Figure 3.

• Partly unconstrained acquisition: Only one of the background and the

pose would be limited by the partly constrained acquisition. Tongji contact-

less palmprint dataset [4] falls into this category. The picture of their device

is shown in Figure 4. They allow the user to change the gesture slightly but

must be inside the device.

• Unconstrained acquisition: The unconstrained acquisition is the oppo-

site of the constrained acquisition, with no restrictions on the pose and the

environment. Generally speaking, the palm will be opened as much as pos-

sible to make the part of the palmprint flat and clear.
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Figure 3: The image acquisition device of PolyU-M palmprint dataset from Zhang
et al. [3]

On the other hand, sensing techniques have also been developed to improve

accuracy, reduce error rate, or be suitable in specific scenarios. Grayscale and

RGB images are the most common choices. There is also some research using

multispectral images, 3D images, or minutiae palmprint images [2]. Multispectral

images can provide more information about the palm. A common multispectral

image is to utilize near-infrared light. It can penetrate subcutaneous tissues and

is absorbed in the vein vessels. As a result, the near-infrared image would reveal

more vein patterns than the palmprint, which is another unique human pattern.

When these two patterns are combined, they may produce better performance.

A 3D hand image can generate a lot of 2D palm images with different angles,

which is very useful in an unconstrained scenario. The minutiae palmprint image

is similar to the fingerprint image, which is a high-resolution image that contains

the whole palm. Nevertheless, it can only be used in contact devices. All the

image examples captured with the techniques mentioned above are demonstrated

in Figure 5.

A variety of palm-related image datasets have been proposed in previous stud-

ies. Ungureanu et al. [18] have detailed a lot of palmprint datasets and classified

them based on the restrictions imposed on the user during the acquisition pro-

cess. They focus on the palmprint images in the visible spectrum, and the other

types are not included because the visible spectrum is the most commonly used

in the research. From the paper, it can be found that the research is moving away

from constrained to unconstrained acquisition and from a fixed camera device to
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Figure 4: The image acquisition device of Tongji contactless palmprint dataset
from [4]

a mobile phone. The experiment setup is getting more general and practical.

Among these datasets, there are several popular choices in past research:

CASIA-M [19], PolyU-M [3], and IIT-D v1 [23]. They are all constrained palmprint

datasets, whereas CASIA-M and PolyU-M are multispectral palm image datasets

that contain spectral images other than RGB. Recently, many large datasets have

appeared, such as Tongji datasets [16, 20] and HFUT [7]. They collected over

10,000 hand images, providing a richer basis for testing. In addition, datasets

obtained through mobile phones have gradually become the main research mate-

rial, because their conditions are more life-like and complex. As long as there are

good results on such a dataset, it can be easily applied to various scenarios. For

example, Tongji MPD [24] and XJTU-UP [25].
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(a) Grayscale image [19] (b) RGB image [16] (c) NIR image [20]

(d) 3D image [21] (e) High-resolution palm-
print image [22]

Figure 5: Images acquired using different sensing techniques

2.1.2 Region of interest (ROI)

Preprocessing is essential to provide a stable and enhanced image for feature

extraction. Because any small issue, such as illumination conditions, backgrounds,

closed fingers, and others, significantly impacts the quality of the extracted fea-

tures. As a result, ensuring that all input images are at the same level is indis-

pensable. In palmprint recognition, extracting the region of interest (ROI) is the

main step apart from other procedures like image enhancement, image filtering,

etc [2].

Palmprint features are mainly distributed in the palm area, and the most

prominent are the three main lines and several wrinkles [26]. However, a palm

image contains a lot of redundant information, which has a negative effect on

feature extraction. For instance, the background may differ, and the pose of

fingers may also affect the recognition result. Therefore, it is suitable to crop the

area that contains most of the information we are interested in, which is also the

region of interest (ROI). Another benefit of the cropped ROI is to adjust hand

image rotation, translation, and scale normalization [7]. Therefore, obtaining a

stable ROI is crucial to the performance of recognition results. In actual scenes,

a successful ROI extraction algorithm requires obtaining stable ROI from palms

of different poses and sizes under a complex background [26].

The classical ROI extraction algorithms set up a coordinate system based on
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Hand  
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ROI  
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Palm
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Figure 6: Key steps in segmenting ROI images for contactless palm images, which
is adapted from Zhou and Kumar [5].

detected key points, which are between fingers [27]. They have four common steps:

(i) hand segmentation, (ii) key points detection, and (iii) ROI extraction. The flow

diagram is shown in Figure 6.

One example is the work of Lin et al. [6]. To separate the palm area from the

background area, they binarized the palm image first. Then the hand contour is

discovered, the sample is shown in Figure 7(c). After that, the distance between

the binarized palm’s wrist point and the palm’s boundary is calculated. They can

then use the computed distance to find four local minimum points. Among these

points, they only use two key points: one is the valley point between the index and

middle finger, and the other is the valley point between the ring and little finger.

So far, the key points are located as shown in Figure 7(e). Based on the length

between these two key points, they calculate the distance apart from this line and

the side length of the ROI. Using a scale of the length between selected key points

is natural for dealing with potential scale changes in the contactless environment.

Finally, the region of interest could be located and cropped. Figure 7 depicts the

details.

One of the advantages of the ROI segmentation described earlier is that it

removes areas of the image that are badly affected. However, this process may

drop too much information because the cropped area only contains the center

of the palm area. Thus, some work is devoted to maximizing the ROI size and

accommodating more biometric information. Ma et al. [28] employed the widely

used method of extracting hand contours and locating peak and valley points to

discover key points. However, instead of selecting the valley point between the

ring and little fingers, they choose the valley point between the thumb and index

finger. Then, they draw a line from the valley point between the middle finger and

index finger through that point to the boundary of the hand contours. A square

ROI box can be obtained by this line segment.

Another work proposed by Nikisins et al. [29] extracts an irregular shape of

ROI by excluding hand edges and parts near fingers because these regions can be

affected by ambient light and shadows. They employ a filter to detect all half-

moon shapes on the binarized image, then compute the squared distances between

each pair of points to see if there are exactly four valley points. The ROI may be

derived if done correctly.
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(a) original hand image (b) binarized hand image (c) the boundaries of the hand

(d) the contour profile dis-
tance distribution

(e) the new coordinate system
in hand image

(f) cropped ROI image

Figure 7: Illustration of segmentation of the ROI, which is adapted from Lin et
al. [6].

From the example described in Figure 7(e), we know that the ROI extraction

is based on the key points. If we can get key points, then we can get the ROI.

Preprocessing techniques such as binarizing and edge detection aim to obtain

the key points, but this kind of operation is sensitive to the background and

illumination issues. As a result, the ROI extraction study is mostly focused on

detecting key points. Xiao et al. [7] is a novel method. They consider that straight

line clusters can easily detect the fingers. They first binarized the hand image and

defined several rules to form line clusters. If any line has eight intersection points

between a straight line and the hand region, they will conclude that this line passes

through four fingers. They then used K-means clustering to obtain the center of

each cluster. The advantage of this approach is that it does not need to extract

the hand’s contour, making it more robust.

Deep learning methods are good at adapting to a different environment, so

they have been used in several studies to detect key points [30, 31]. Zhang et

al. [24] proposed DeepMPV+, which contains an ROI extraction module and an

ROI matching module. They use an object detection method to solve the ROI

extraction problem. Modern CNNs achieve good performance and are highly



doi:10.6342/NTU202203861

2.1. PALMPRINT RECOGNITION SYSTEM 11

Figure 8: A example to find key points with line clusters from Xiao et al. [7]

robust to complex backgrounds. Luo and Zhong [26] further combined object

detection and key point detection to extract ROI, and added an auxiliary network

to estimate the palm angle. Several ROI extraction methods introduced above are

listed in Table 1.

Some research avoids using ROI extraction. They provide a guide on the screen

of the phone during acquisition, indicating reference points [32] or specific hand

pose [33]. Moreover, Afifi [34] and Kuzu et al. [35] use the whole image as an input

to a CNN, so they do not need the step of ROI extraction. However, this kind of

approach is more sensitive to the acquisition environment.

Table 1: Comparison of different ROI extraction methods.

Method
Hand Key points ROI

segmentation detection extraction

Lin et al. [6] threshold
distance

distribution
P2,P4

Ma et al. [28] threshold - P1,P2

Nikisins et al. [29] threshold
morphological
image filter

P1,P2,P3,P4

Xiao et al. [7] threshold line clusters P2,P4

Zhang et al. [24] - Tiny-YOLOv3

Palm center and
the midpoints of
(P2,P3) and
(P3,P4)

Luo and
Zhong [26]

Tiny-YOLOv3 MobilenetV2 P2,P4

Note: P1, P2, P3, and P4 are four valley points from the thumb to the little finger.
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2.1.3 Feature Extraction

Feature extraction aims to generate a template that represents the identity. It

will be stored in the database and compared with the input images. The main

objective is to make the features as discriminative as possible when they come

from different identities, and make the features similar if they are from the same

identity. Secondary considerations include reducing storage costs and shortening

recognition time. A lot of feature extraction algorithms have been developed, not

only for the source of features but also for ways to record and compare features

efficiently. According to the survey [2], there are five main categories of feature

extraction methods: encoding-based, structure-based, statistics-based, subspace-

based, and learning-based. Without a doubt, some methods are a fusion of these

methods. Note that the feature data produced by these methods generally fall

into the image and code template regardless of fusion or not. The following is a

brief introduction to these five categories.

• Encoding-based Methods: The encoding-based methods transfer an im-

age to coded information with predefined filters and generate code accord-

ing to certain principles. The codes will be compared using binary arith-

metic operations and output a matching score. For examples, RLOC [36],

BOCV [37], Ordinal code [38], PalmCode [39], CompCode [40] and OLOF [3]

are representative methods. These ways are more suitable for time-critical

applications.

• Structure-based Methods: The structure-based methods are traditional

recognition techniques that come from fingerprint recognition. They make

use of edge detection algorithms to discover the orientation and location of

ridges, lines, and feature points. Then they construct a template with these

lines and points. The shortcoming of these methods is the demand for photo

quality. They require a high-resolution image source. One recent work is

proposed by Chen and Guo [41].

• Statistics-based Methods: This statistics-based method is based on sta-

tistical conceptions of an image such as mean, variance, standard deviation,

density, and invariant moment. They can be divided into two categories

according to whether a transformation is used. Often used transformations

are the wavelet transform and Fourier transform. They can represent the

multiscale information of a palmprint image in the frequency domain, but

the work should be done in a small region. That means the methods of

transformation type are local-based. A novel approach [42] combined Local
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Binary Pattern Histogram (LBPH) and Dual-Tree Complex Wavelet Trans-

form (DT-CWT). The final representation of the feature was a weighted

histogram set.

• Subspace-based Methods: The subspace-based methods originate from

face recognition. This method will convert a palmprint image into a low-

dimensional representation by projection or mathematical transformation.

There are three common subspace algorithms: principal component analy-

sis (PCA), independent component analysis (ICA), and locality preserving

projection (LPP). Unlike the previous, linear discriminant analysis (LDA)

will use label information to improve performance. Gabor filters, noise re-

duction, image modification, kernel function, and other approaches could

be simply integrated with this type of method to increase robustness and

efficiency. One example that uses PCA is Bai et al. [43]. They combined

surface type (ST) features and PCA for 3D palmprint identification.

• Learning-based Methods: Machine learning and deep learning have been

widely used for image-related tasks in recent years, as well as the palmprint

recognition task. Many researchers apply machine learning not only for fea-

ture extraction but also for classification. In machine learning methods, clus-

tering and SVM are more commonly used in the palmprint recognition task.

As for deep learning methods, there are three major components: model

structure, loss function, and optimization strategy. The model structure

determines the model capability, and the loss function is the optimization

objective. The advantage of deep learning is that it can adapt to changes in

the environment, such as illumination and shadows. However, they require

more training data along with accurate labels. Deep learning can be used

in a variety of ways, including feature extraction with CNN, classification

with DNN, and comparison with the Siamese network. One of a kind is deep

metric learning, which aims to maximize the distance between features be-

longing to different identities and the similarity of features belonging to the

same identity. A recent method is called C-LMCL [8], which was proposed

by Zhong and Zhu. They developed a new loss function that combined center

loss and large margin cosine loss, making the model a more discriminative

feature. Section 2.3 will go into greater detail.

Combining the methods mentioned above is also common. Zhang et al. [4]

proposed CR CompCode, which combines CompCode and block-wise statistics.

This method generates a CompCode map from the ROI and divides it into uni-

form blocks. The output feature vector is the histogram that is computed from
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these blocks. The CompNet [44] is developed for contactless palmprint recog-

nition, which uses a competitive convolutional neural network with constrained

learnable Gabor filters to reduce the number of parameters in typical CNN. Palm-

Net [11] is also the fusion of CNN and other methods, aiming to achieve high

accuracy with touchless palmprint samples captured using different devices. They

proposed a novel CNN that uses unsupervised learning based on Gabor responses

and principal component analysis (PCA) to tune palmprint-specific filters.

2.1.4 Feature Matching

Feature matching is the final step of palmprint recognition, which aims to find

the person corresponding to the input image or reject the imposters. Usually, this

is highly correlated with feature extraction, since the feature extraction method

would pre-determines the target matching method to optimize. Generally, there

are two common types of matching. One is to apply a classifier that would directly

output the result regardless of who the user is or whether these two features

belong to the same person. The classifier could be a decision tree, support vector

machine, multilayer perceptron, and so on. The other is to measure the similarity

or distance of each feature pair with a metric function and find the most similar

pair or compute the similarity score for the decision. Among the metric functions,

Hamming distance, Euclidean distance, and cosine similarity are the most popular

choices. Below is a brief explanation of these three metric function.

• Hamming distance: The Hamming distance between two feature vectors is

the number of positions at which the corresponding indexes differ. If the vec-

tors are in the binary format, they can be computed with the Exclusive-OR

operation, which is an extremely fast method. However, the shortcomings

are also obvious. This data format will cause a large amount of information

loss, and its discriminative power is also weaker than others.

• Euclidean distance: The Euclidean distance is a widely used function,

which could be used in most cases. It calculates the mean square error

between the two feature vectors, which can also be seen as the length of the

straight line between these two points in the hyperspace. Given two feature

vectors x, y ∈ Rn, the formula is expressed as:

d(x, y) =
√
(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2. (2.1)

• Cosine similarity: The cosine similarity is getting more and more attention

recently due to the development of face recognition. This function has several

useful properties discovered in recent face recognition research, which will
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be discussed in Section 2.3. The cosine similarity can be derived by using

the Euclidean dot product formula. Given two feature vectors A,B ∈ Rn,

the formula is represented as:

cos(θ) =
A ·B
∥A∥∥B∥ =

∑n
i=1 AiBi√∑n

i=1A
2
i

√∑n
i=1 B

2
i

, (2.2)

where A and B are two input vectors. Note that cosine similarity is not

a proper metric. Another formal distance metric is the angular distance,

which could be derived from cosine similarity, but the computing cost is

much higher than using the cosine similarity. Therefore, cosine similarity is

more common.

2.2 Evaluation of the Palmprint Recognition System

In Figure 1, we briefly mentioned the two recognition modes of the palmprint

recognition system but did not describe them in detail. Therefore we will explain

their differences and define their recognition process in Section 2.2.1. The next

subsection is evaluation methods for the above two tasks, but we mainly focus on

identification mode. We first define the open-set identification problem, and then

two simulation methods will be introduced according to different situations.

2.2.1 Verification and Identification

In the verification mode, users have to claim an identity and provide their

biometric data. They may use a personal identification number, a user name, or

other tokens that can represent their identity. Then, the system will compare the

stored template of that identity with the captured biometric data, which is called

an one-to-one comparison. Verification is typically used for positive recognition

in order to prevent multiple people from using the same identity.

In the identification mode, users only need to provide their biometric data.

The system will compare it with all the identities in the database, called a one-to-

many comparison. There are two meanings or two usages for it. One is to provide

convenience to users. They no longer need to bring their token or remember any

information. The other is used as negative recognition to prove the person is not

someone else.

The verification problem can be formulated as follows [1]: given an input

feature vector XQ, which is extracted from user’s biometric data, and a claimed

identity I, determine if (XQ, I) belongs to class w1 or w2, where w1 indicates that

the claim is true (a genuine user) and w2 indicates that the claim is false (an

imposter). Typically, XQ is matched against XI , which is the biometric template
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of the claimed identity I, to determine its class. Thus

(XQ, I) ∈

w1 if S(XQ, XI) ≥ t

w2 otherwise,
(2.3)

where S is the function that measures similarity between feature vectors XQ and

XI , and t is a predefined threshold. The output of the similarity function S could

be seen as a similarity or matching score between the two input vectors. Then,

the threshold t is used to determine whether the two feature vectors are similar

enough to prevent imposters. Therefore, every claimed identity is classified into w1

and w2 based on the variables XQ, I, XI , a predefined threshold t and a similarity

function S.

On the other hand, the identification problem can be stated as follows [1]:

give an input feature vector XQ, determine the identity Ik, k ∈ {1, 2, ..., N,N +1}
corresponding to the input feature vector. The identities from I1 to IN are the

identities enrolled in the system, and IN+1 indicates the rejected case where the

system can not find a suitable identity corresponding to the input feature vector.

Hence

XQ ∈

Ik if max
k
{S(XQ, XIk)} ≥ t, k = 1, 2, . . . , N

IN+1 otherwise,
(2.4)

where XIk is the biometric template corresponding to identity Ik, S is a similarity

function, and t is a predefined threshold. The output of the similarity function is

denoted as the matching score, just like verification.

2.2.2 Evaluation Methods

We have covered the entire process of a recognition system, which contains

registration and recognition. To evaluate such a system, we first need to split the

dataset to simulate the registration and input images. The straightforward idea

is to split the palm images of the same people in half. The first half is regarded

as training set, while the second half is considered testing input. This kind of

testing scenario is the same as a classification problem, also known as a close-set

recognition problem. However, this is not sufficient to test a palmprint recognition

system. Thus, we will introduce a more realistic setting, the open-set recognition

problem.

The main difference between the open-set and the close-set recognition prob-

lem is the testing identities. In the close-set recognition problem, all the testing

identities are seen in the training phase. In contrast, we do not have complete

knowledge of the world at the training phase of the open-set recognition problem,



doi:10.6342/NTU202203861

2.2. EVALUATION OF THE PALMPRINT RECOGNITION SYSTEM 17

and unknown identities will be submitted to the system during testing. The open-

set recognition problem is closer to the real application. As a result, the open-set

recognition problem may be carried out in various forms. First, we need to clarify

that known identities in the open-set recognition problem are not trained identi-

ties. It indicates the identities in the registration set, also known as the enrolled

identities. From this point of view, the unknown identities are not only the identi-

ties that have never been seen but also include the training identities that do not

appear in the registration set. The following is a brief explanation.

• Close-set Recognition Problem: Assuming the world has only a finite

number of classes, so defined as close-set recognition. Hence, we can tackle

all the classes and construct a classifier to recognize them.

• Open-set Recognition Problem: Considering the world has an unlimited

number of classes, we can only know a part of them. This is, therefore,

defined as open-set recognition. We do not need to recognize the unknown

classes and do not care about the type of unknown class. We only need to

focus on the known classes and the boundaries between the known and the

unknown.

To simulate the open-set recognition problem, we have to split the test set

into registration images and test images. However, the image sources for newly

registered biometric templates may come from different acquisition equipment.

Therefore, for different registration situations, we can simulate in different ways.

Cross-subject evaluation can be applied when the newly registered identity images

are from the same acquisition device as the training images. If they are different,

cross-dataset evaluation may be more appropriate [8]. An overview of these two

evaluations is described below and shown in Figure 9.

• Cross-Subject Evaluation: The unknown identities are simulated with

the image data that comes from the same dataset.

• Cross-Dataset Evaluation: The testing set for validating the system does

not contain the image data that comes from the same dataset as training

data.

The cross-dataset evaluation can test the system more comprehensively, both

in variance and volume. Normally, a dataset would be divided into a training

dataset and a testing dataset, but the amount of testing data is much smaller.

Especially in palmprint datasets, most of the publicly available datasets are not

so big compared to others, like face recognition or image classification, and so on.

For that, the cross-dataset evaluation can further combine multiple datasets to

look into the robustness of the system.



doi:10.6342/NTU202203861

2.3. DEEP METRIC LEARNING 18

Figure 9: An overview of the open-set recognition from Zhong and Zhu [8].

2.3 Deep Metric Learning

Deep metric learning uses a deep learning method to train an embedding neural

model, which is also known as a feature extractor. The model can minimize the

distance between the samples that belong to the same class, and maximize the

distance of different class samples. An example demonstrating the process of

feature extraction with a CNN model is shown in Figure 10. This technique has

gained great success in face recognition [45] and image retrieval [46], while it is

still not used a lot in the field of palmprint recognition.
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Figure 10: An example of extracting feature template using deep metric learning
model.

A metric is a non-negative function that measures the so-called notion of “dis-

tance” between two points. Thus, given a metric function d : Rn → R (which is

usually predefined), two data samples x1, x2 ∈ X along with their labels y1, y2 ∈ Y ,

and a feature extractor f : X → Rn, the combination d(f(x1), f(x2)) should pro-

duce small value while the labels y1 and y2 are equal, and larger value if they are

not [47].

Deep learning has three main components: model, loss function, and optimizer,

and so does deep metric learning. To obtain the goal described above, deep metric

learning mainly focuses on designing the loss function to form different feature

distributions. The most popular loss functions are all from face recognition, and

the development trend is from contrastive-based to cosine-based loss functions.

For example, contrastive loss [48] and triplet loss [49] are well-known contrastive-

based loss functions. And the CosFace [50] and ArcFace [10] are state-of-the-art

cosine-based loss functions. Since cosine-based loss functions are the mainstream

today, we will only briefly introduce cosine-based loss functions here.

All the cosine-based loss functions originate from softmax loss. The softmax

loss is a combination of the softmax function and cross-entropy loss. It was used

for classification problems, so it would only produce separable features. However,

deep metric learning aims to obtain discriminative features because there are in-

estimable categories to classify in the recognition tasks. If the distance between

each category is not large enough, it is more likely to cause recognition errors when

dealing with unseen samples. An illustration of the difference between these two

types is shown in Figure 11. Hence, those improved loss functions added restric-

tions on the softmax loss to enlarge the decision margins. The following are some

critical cosine-based loss functions.

• Center Loss: Center loss adds an L2 distance regularization term to the

softmax loss. In order to solve the issues in the previous contrastive-based
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Figure 11: The difference of feature distribution requirement in classification task
and recognition task from Wen et al. [9]

losses, such as sampling issues and so on. It was one of the successful at-

tempts to combine softmax loss in deep metric learning. Although it relies

on the softmax loss, the metric function in feature matching is still L2 dis-

tance. It starts the research based on softmax loss in deep metric learning.

The loss function of the center loss for a single sample can be expressed as:

Lcenter = Lsoftmax +
λ

2
∥Xi − Cyi∥22, (2.5)

where Xi is the feature extracted from the input sample and Cyi is the center

vector of the class of Xi.

• SphereFace: The center loss still has no guarantee of large inter-class vari-

ability since the clusters closer to zero will benefit less from the regularization

term. To solve this issue, SphereFace has improved the softmax loss and uses

cosine similarity as a matching metric. First, it regularizes the weight norm

∥Wi∥ = 1 to avoid the feature cluster close to zero. That is, it enforces the

class centers to be at the same distance from the center. Second, it intro-

duces the concept of margins into the cosine function. The loss function of

the SphereFace for a single sample can be expressed as:

LSphereFace = − log
e∥Xi∥ cos (mθyi,i)

e∥Xi∥ cos (mθyi,i) +
∑

j ̸=yi
e∥Xi∥ cos (θj,i)

(2.6)

where the angle θi ∈ [0, π
m
]. They create another function to avoid this

annoying restriction to replace the cosine function, but we will not introduce

it here. The detail is in [51].

• CosFace: The decision margin of SphereFace depends on θ, which leads

to different margins for different classes. As a result, in the decision space,

some inter-class features have a larger margin while others have a smaller

margin, which reduces the discriminating power. CosFace proposes a simpler
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yet more effective way to define the margin. First, they regularize not only

the weight norm but also the feature norm ∥Xi∥ = 1. Second, the margin

changed to be a subtraction term of cosine value. The loss function of the

CosFace for a single sample can be expressed as:

LCosFace = − log
es(cos (θyi,i)−m)

es(cos (θyi,i)−m) +
∑

j ̸=yi
es cos (θj,i)

, (2.7)

where the s is scale parameter and m is the margin parameter.

• ArcFace: ArcFace is very similar to CosFace and addresses the same lim-

itations of SphereFace as mentioned in the CosFace description. However,

instead of defining the margin in the cosine space, it defines the margin

directly in the angle space. The loss function of the ArcFace for a single

sample can be expressed as:

LArcFace = − log
es(cos (θyi,i+m))

es(cos (θyi,i+m)) +
∑

j ̸=yi
es cos (θj,i)

, (2.8)

where s is the scaling parameter and m is referred to as the margin param-

eter.

The comparison of the decision boundary and decision margin is shown in

Figure 12. There is not much difference in performance between CosFace and

ArcFace. Although there are several improved losses, for example, in parameter

choosing, dynamic margin, or multiple centers, both of them are still widely used

in various tasks nowadays.

Figure 12: Decision margins of different loss functions under binary classification
case from Deng et al. [10]. The dashed line represents the decision boundary, and
the grey areas are the decision margins.

2.4 Related Work

Research on palmprint recognition has been going on for a long time, at least

before the 2000s. It can be divided into two periods according to the rise of
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CNN. This is because most methods after that will use CNN, whether it only uses

CNN for feature extraction or combines CNN with previous methods. In contrast,

the method before CNN is usually called the conventional method. Many conven-

tional methods have been introduced in Section 2.1.3, of which the encoding-based

method is the most effective. For instance, RLOC [36], CompCode [40], OLOF [3]

and so on.

Y. Liu and A. Kumar have summarized the limitations of the conventional

methods in [52]. First, although these methods offer quite accurate performance,

they need to be further improved on large contactless datasets. Second, they

applied hand-crafted filters for the generation of features. Therefore, they heavily

rely on parameter selection when operating in different imaging environments.

The CNN-based approaches have the potential to address the above limita-

tions. Since deeply learned architecture is known to offer higher generalization

capabilities for image-related tasks. Compared to the empirical selection of hand-

crafted filter parameters for palmprint matching, the parameters in CNN can be

learned from training data. Therefore, it is now widely used in the field of palm-

print recognition.

Deep metric learning is one of the CNN-based methods, and it has achieved

good performance in face recognition. It indicates that it can identify a large

number of images in a complex environment. The details of deep metric learning

have been introduced in Section 2.3. However, there is a huge difference between

the images of the face and hand. Moreover, the training data for the hand is also

much less than the data in the face dataset.

Therefore, it is difficult for us to directly train a powerful model with a large

number of complex images. In practical application scenarios, it is very likely

to receive input images from different imaging conditions. If we use a dataset

different from the training data for testing, the accuracy will suffer from the gap

between different datasets. As a result, how to use this technique to solve the

problem of palmprint recognition in complex environments remains to be studied.

So far, there are three main directions to increase the robustness of deep metric

learning models in palmprint recognition: metric loss, domain adaptation, and

generative adversarial networks.

2.4.1 Metric Loss

These kinds of methods enhanced the metric losses originally used in face recog-

nition based on the domain knowledge of palmprint recognition. They optimize

the feature space distribution of data samples by adding some regularization into

the loss functions to restrict the relationship between input samples. If the model
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can better classify the training data, it is more likely to be able to classify images

from different environments.

Zhu et al. [53] proposed an adversarial metric learning methodology to make

different categories of palmprints uniformly distributed in the hypersphere em-

bedding space. They discovered that the features in the embedding space would

be grouped into two clusters. As a result, they added a confusion term to the

contrastive-based losses to optimize the feature distribution. The confusion term

will shorten the distance between different classes, which is the opposite of the

contrastive-based loss. Hence, they named it adversarial metric learning. How-

ever, the two clusters may be the left and right hand. They did not delve deeply

into the causes of the feature distribution. Moreover, such contrastive-based losses

suffered the sampling issue, so most of the current deep metric learning methods

use cosine-based losses instead.

D. Zhong and J. Zhu [8] developed a new loss function, centralized large margin

cosine loss (C-LMCL), which is a combination of the center loss and large margin

cosine loss (LMCL). The LMCL is the same as CosFace, which we have explained

in Section 2.3. This combination provides a stronger gathering ability and will

result in a very small circular region in the embedding space for each category.

They aim to train a model with C-LMCL that has the ability to generalize across

unseen subjects and different datasets. Although the loss function is well designed,

their model is not that well. Our reproduction can not achieve the result shown

in the paper. There will be a very large difference in cross-dataset evaluation.

2.4.2 Domain Adaptation

Domain adaptation is a group of techniques to fit the deep learning model onto

a new dataset with a domain shift from the training dataset. As we mentioned

above, we usually use a second dataset to evaluate the robustness of palmprint

recognition. Thus, some research regards it as a cross-domain problem. While

this assumption is somewhat different from the original goal, it is still a way to

strengthen feature extraction models, albeit on only one dataset at a time. This

idea is straightforward. Deep learning relies on vast and various training data, but

there is insufficient data with only one dataset. Hence, they take part of the data

in the target dataset and try to unify the feature distributions of the source and

target datasets. To be precise, it is to pull the feature distribution of the target

data closer to the source data.

H. Shao and D. Zhong [54] propose a Learning with Partners (LWP) framework

to improve multi-source cross-dataset palmprint recognition. This framework re-

quires multiple source datasets with labels and an unlabeled target dataset, all of
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which have the same identities. Moreover, the scenario is to find the correspond-

ing identities in the source dataset. They first train a teacher network with the

source datasets. The same target extractors then process the source and target

datasets and can be viewed as students or partners. These target extractors can

not only learn from the teacher but also get guidance from other partners. They

use multiple losses to optimize such a class-like framework. However, this applica-

tion scenario is not practical because it is unlikely that a new target dataset has

exactly the same identity as the training data. In addition, this method needs to

train multiple models, which requires a lot of computing and time costs.

Du et al. [55] follow the ADDA approach [56], which is a two-step training

process, and combine it with Maximum Mean Discrepancy (MMD). They built it

on top of the Deep Hashing Network (DHN) to solve such a cross-domain palm-

print recognition problem. They named it the Regularized Adversarial Domain

Adaptative Hashing method (R-ADAH). It first trains a source feature extractor

in a supervised manner and then trains a target feature extractor in an unsuper-

vised manner with the help of the source feature extractor. However, they not

only build a domain discriminator for adversarial training but also use an MMD

loss to shorten the feature distribution distance between the outputs of the source

and target feature extractor. Although it does not need the identity labels of the

target dataset, it still requires the domain labels and adequate target images for

domain adaptation. Otherwise, the domain discriminator will suffer from the data

unbalance and cause a great performance drop.

H. Shao and D. Zhong [57] solve the problem of data unbalance by introduc-

ing FADA to replace the ADDA. This method can only use one labeled sample

per subject in the target palmprint dataset to make the model adapt to the new

domain. FADA and ADDA are mostly the same, but they can afford a relatively

small amount of target data. They train the domain discriminator by combining

the features from both source and target data and label them as four types ac-

cording to the domain and identity. Even though this method no longer requires

many target images, it requires the target images to have the same identities as

the training data. It is still a very restricted situation, which rarely happens in

real-world applications.

2.4.3 Generative Adversarial Network

Since the main factor limiting the performance of the model is the lack of

training data, if we could generate a lot of fake training data, it might improve

the generalization ability of the model. Generative adversarial network (GAN) is

one of these kinds of techniques that can produce realistic images. Although the
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improvement is not limited to a specific domain, these kinds of methods need to

use more data than the domain adaptation methods mentioned above to train the

generative model. Furthermore, the training of GAN is more difficult and requires

more parameter adjustment skills. Otherwise, it will not be able to generate usable

images.

Shao et al. [58] propose PalmGAN to improve the performance of cross-domain

palmprint recognition. PalmGAN is based on CycleGAN [59], a bi-direction map-

ping. The source domain samples can be mapped to the target domain, and the

target domain samples can also be transferred to the style of the source domain.

They first train this generator with all the source and target images without the

domain labels. They then train a Deep Hashing Network (DHN) with these fake

target domain images. In this way, the feature extractor can be improved in the

target domain without directly using the target domain images. Although Palm-

GAN is not strictly required balanced samples from the source and target domain,

they still need plenty of training data. Otherwise, it can not produce useful fake

target domain images.

H. Shao and D. Zhong [60] propose the Joint Pixel and Feature Alignment

(JPFA) framework, which combines both GAN and domain adaptation for cross-

dataset palmprint recognition scenarios. They first use CycleGAN to transfer the

style of sample images between the source and target domains. For two sample

images, source and target domains, respectively, there will be four input images

for training three feature extractors.

The domain adaptation loss MK-MMD is applied to both the source and target

feature extractors. For the source feature extractor, it is a common adaptation

process that closes the distance between the distributions of source and target

samples. In the case of the target feature extractor, it is applied to both the

target sample and fake target images. Furthermore, there is also a consistency

loss between the source and target feature extractors.

However, these kinds of methods need the help of the target dataset, and

they cannot be directly deployed in new environments. In addition, their “cross-

dataset” experiments are conducted on different splits of the same dataset, such

as different spectrums or different phones. They are not even tested in the new

environment because they require all identities of the target dataset to be the

same as the training dataset.
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CHAPTER 3

IMPLEMENTATION OF THE BASELINE

SYSTEM

This chapter will go through the implementation of the baseline system and the

issues discovered. The system is based on the work [8], whose paper has reported

great recognition results in the cross-dataset evaluation. Its recognition processes

follow Figure 2. The only difference is that we use the ROI extraction algorithm

from [61]. We will explain the ROI, feature extraction, and feature matching

in the first three sections.

Then, we evaluate the system with the same datasets as the reference work:

the PolyU multispectral palmprint dataset (PolyU-M) and the Tongji palmprint

dataset. In addition, we also use the Tongji mobile palmprint dataset (MPD)

to examine its performance in an unconstrained environment. We will show the

shortcomings of this system in Section 3.4 and propose motivations for improve-

ment.

3.1 Region of interest (ROI)

We use the ROI extraction method proposed by Genovese et al. [11] for the

Tongji palmprint dataset, which is partially based on [62]. This ROI extraction

approach is composed of three steps: hand segmentation, valley points searching,

and ROI computation.

1. Hand segmentation: The method begins by converting the RGB image

to grayscale and performing several preprocessing steps before threshold-

ing, including enhancing, normalization, and smoothing. And then, Otsu’s

thresholding [63] is executed to estimate the palm region. An example is

shown in Figure 13(b). After binarization, they extract the edges from the

binarized image by Kirsch’s edge detection [64] method. The edges will be

divided into horizontal and vertical to help obtain the palm outline. The

example of a hand contour is shown in Figure 13(c). On the other hand, the

binarized image would also be used to calculate the centroid, which is the

center of mass. The centroid is illustrated as a blue dot in Figure 13(d)

2. Valley points searching: The valley points could be found by calculating

the distance between the centroid and all the hand boundaries, which is a

26
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(a) original image (b) binarized image (c) hand contour

(d) hand segmentation (e) valley points searching (f) ROI computation

Figure 13: The process of ROI extraction

similar process as we introduced in Figure 7(d). This is followed by a local

search algorithm [65] to optimize the coordinates of those points, which is

depicted in Figure 13(e). And then, these points are checked by several

pre-defined rules for rejecting the points that are not appropriate, such as

the angles and distances between points. If a set contains exact three points

that pass all the rules, the proper valley points for ROI computation are

obtained. If not, it can not extract ROI from this image. This is necessary

because the input images may be various, and the segmentation methods

may not be able to extract accurate hand contours either.

3. ROI computation: If the three valley points between the fingers are prop-

erly located, then we can compute the ROI. The image will be rotated first

so that the line between the valley points is perpendicular to the horizontal

line and the fingers point to the left. Finally, a square area with sides 1.4

times the length of the line and 0.2 times the length of the line away is found.

The reference system of ROI computation is demonstrated in Figure 14.

The process details are shown in Figure 13, and this method is publicly available

at [61]. For the cases of PolyU and Tongji MPD, we use the ROI originating from

the datasets.
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Figure 14: Example of the reference system of ROI computation from Genovese
et al. [11]

3.2 Feature Extraction

Feature extraction is achieved by training a deep learning model as a feature

extractor. The training process is the same as the general process. The following

will be introduced in the order of data augmentation, model structure, and loss

function. Data augmentation refers to the random transformation during the

training process, and the transformed image will keep the same label as the original

image.

3.2.1 Data Augmentation

Data Augmentation is a common deep learning technique in image-related

tasks. It will randomly perform a list of predefined transformations to the input

images. Every single transformation is independent. They could all be executed,

or none of them be executed. The main purpose is to produce more training data

to improve the generalization ability and prevent overfitting.

The extracted ROI images will be resized to 224 × 224 first, then randomly

transformed. All of these transformations are applied with the probability p = 0.6.

Before being fed into the feature extractor, each pixel (in [0, 255]) in RGB images

is normalized to the range of [0, 1]. Our implementation of those transformations

follows the reference work, but there are some slight modifications due to the

implementation library. The list of the transformations we used is as follows:

• Rotation: The range of the rotated degrees is [−5◦,+5◦], and the blank

pixels will be filled with black.

• Resized cropping: The range of resizing is [1.07, 1.14], then a 224 × 224
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image patch is cropped.

• Brightness: The range of the brightness variation is [0.5, 1.5].

• Contrast: The range of the contrast variation is [0.5, 1.5].

• Hue: The range of the saturation variation is [0.75, 1.25].

• Smoothing: Different sizes (1×1, 3×3, 5×5) of Gauss filters are randomly

chosen for smoothing.

• Sharpening: The sharpness is set to 1.5, while 1 gives the original image

and 2 increases the sharpness by a factor of 2.
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(a) original image (b) rotated image (c) translated image

(d) cropped image (e) brightness adjusted im-
age

(f) contrast adjusted image

(g) Hue adjusted image (h) blurred image (i) sharpened image

Figure 15: Examples of the transformed images
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3.2.2 Model Structure

3.2.2.1 ResNet-20

The ResNet-20 is the model proposed in the reference work, which seems to

be a modified version of the ResNet-18. There are three main differences from

ResNet-18: the residual block stack, the downsampling CNN layer, and the fully

connected layer. The original ResNet-18 has 2 residual blocks in each convolution

layer, while the block numbers of ResNet-20 are in the order of 1,2,4,1. Second,

the ResNet-20 has a downsampling CNN layer before each convolution layer, but

the ResNet-18 downsamples in the first residual block in each convolution layer.

At last, the ResNet-20 removes the average pooling after all the convolution layers

from the ResNet-18. The detailed model structure of the ResNet-20 is shown in

Table 2.

Table 2: The architecture of ResNet-20

Layers Output sizes Parameters

input 3× 224× 224 data

3× 3, 64, stride 2

conv1.x 64× 112× 112

[
3× 3, 64

3× 3, 64

]
× 1, stride 1

3× 3, 128, stride 2

conv2.x 128× 56× 56

[
3× 3, 128

3× 3, 128

]
× 2, stride 1

3× 3, 256, stride 2

conv3.x 256× 28× 28

[
3× 3, 256

3× 3, 256

]
× 4, stride 1

3× 3, 512, stride 2

conv4.x 512× 14× 14

[
3× 3, 512

3× 3, 512

]
× 1, stride 1

FC 128 128 dimensional feature vector

Note: The square bracket indicates the residual block, and the num-
ber outside the block means the number of this block. For example,
[3× 3, 128]× 2 represent 2 concatenated residual blocks with 128 filters of
kernel size 3× 3. [8]
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3.2.2.2 ResNet-18

The ResNet was developed by Kaiming et al. [66]. Since ResNet won the

ILSVRC in 2015, it has become one of the most popular CNN models in the

world. Even though several advanced CNN models have evolved in recent years,

it is still a popular choice for image-related tasks. We will utilize ResNet-18 as

another backbone model to see how the modifications from ResNet-18 to ResNet-

20 affect performance. The network architecture of ResNet-18 is as follows, and

we can see the difference of block structure between it and ResNet-20 in Figure 16.

Table 3: The architecture of ResNet-18

Layers Output sizes Parameters

input 3× 224× 224 data

conv1 64× 112× 112 7× 7, 64, stride 2

3× 3 max pool, stride 2

conv2.x 64× 56× 56

[
3× 3, 64

3× 3, 64

]
× 2

conv3.x 128× 28× 28

[
3× 3, 128

3× 3, 128

]
× 2

conv4.x 256× 14× 14

[
3× 3, 256

3× 3, 256

]
× 2

conv5.x 512× 7× 7

[
3× 3, 512

3× 3, 512

]
× 2

avgpool 512× 1× 1 average pooling

FC 1000 softmax 1000 class

Note: The square bracket indicates the residual block, and the num-
ber outside the block means the number of this block. For example,
[3× 3, 128]× 2 represent 2 concatenated residual blocks with 128 filters of
kernel size 3× 3. If this layer has to down scale the image size, the down-
sampling CNN layer will be placed in the first residual block.
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(a) ResNet-18 [66] (b) ResNet-20 [8]

Figure 16: The block structure of models

3.2.3 Centralized Large Margin Cosine Loss (C-LMCL)

The centralized large margin cosine loss (C-LMCL) is the major breakthrough

in the reference work. It is a combination of two deep metric learning losses:

Center loss and large margin cosine loss (LMCL). To the best of our knowledge,

the LMCL is the basis for maximizing the inter-class variance. The Center loss

is regarded as a constraint to reduce the intra-class variance. In other words, the

feature vectors belonging to the same class could be gathered in the hyperspace.

In this section, we will first describe the deviation of the LMCL, followed by the

formula of the Center loss. At last, these two losses are combined to formulate

the centralized large margin cosine loss (C-LMCL).

3.2.3.1 Large Margin Cosine Loss (LMCL)

In the multiclassification tasks, the original softmax loss seeks to maximize the

posterior probability of the true class. This is the same as minimizing the cross

entropy between the true class and the softmax of the model output. Because

the true class label will be expanded as a one-hot vector with only a value at the

index representing the true class, the cross entropy formulation could be simplified

as − log pyi . The pyi indicates the softmax output at the index representing the

true class. Suppose the output feature vector by CNN is Xi whose true label is yi

along with the output of the classification result oj, then the softmax loss can be
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written as

Ls =
1

N

N∑
i=1

− log pyi (3.1)

=
1

N

N∑
i=1

− log
eoyi∑M
j=1 e

oj

=
1

N

N∑
i=1

− log
eW

T
yi
Xi + byi∑M

j=1 e
WT

j Xi + bj

=
1

N

N∑
i=1

− log
e∥Wyi∥ ∥Xi∥ cos θyi + byi∑M
j=1 e

∥Wj∥ ∥Xi∥ cos θj + bj
, (3.2)

where N denotes the total count of training samples and M indicates the number

of classes. Wj and bj are the weight vector and bias of the jth class in the last

full connected layers. And θj is the angle between weight vector Wj and feature

vectors Xi.

In order to minimize the cross-entropy loss, the model should optimize in three

directions: increasing the weight norm of the true class ∥Wyi∥, increasing feature

norm ∥Xi∥, and reducing the angle between feature and weight vector θyi . In

the first case, it will increase the weight norm of the class that has more samples

or easier samples [51]. The second will help to increase the norm of the easier

samples and reduce the norm of the harder samples [67]. These three directions

will be optimized at the same time, and result in a sector distribution of the output

feature.

Although the classification accuracy can be high, it is sensitive to hard samples.

To illustrate, if there are two samples from different classes, they may both be

at the position near the origin [68]; that is, they have a smaller norm. It also

demonstrates that using Euclidean distance as the metric between features is not

precise, because it relies on the norm of the features. If we use angle as a metric

for determining the difference between two features, it would not be influenced by

the norm of the features. Hence, we hope the model can focus on optimizing the

angle between the weight vector and the feature vector. As a result, it is natural

to block another two optimization directions, which is to fix the value of both the

weight norm and the feature norm. And the loss can be further simplified as

Lns =
1

N

N∑
i=1

− log
e∥Wyi∥ ∥Xi∥ cos θyi∑M
j=1 e

∥Wj∥ ∥Xi∥ cos θj

=
1

N

N∑
i=1

− log
es cos θyi∑M
j=1 e

s cos θj
, (3.3)
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where the s is a parameter that we can tune. This is also known as normalized

softmax.

In the biometric recognition tasks, it is not sufficient for the model to merely

classify the known classes. We need the capability to measure the similarity be-

tween unknown classes in palmprint recognition. For better generalization capa-

bility, large inter-class variance and small intra-class variance are necessary, while

these are not the optimization targets of the softmax loss. A classic strategy is

to add a margin between classes. The feature extractor trained with the normal-

ized softmax loss may produce a feature close to the decision boundary. In order

to further increase the margin between classes, a more stringent constraint for

classification should be added to the training time:

cos θyi −m > cos θj, ∀ j = 1, 2, . . . ,M and j ̸= yi. (3.4)

The constraint forces the feature vector to be much closer to its true weight vector

than others with a certain “advantage” - m. In this way, the inter-class distance

can be expanded so that it is less likely to induce incorrect recognition despite

small disturbances [8]. After adding this constraint to the normalized softmax

loss, the formulation would be

Llmc =
1

N

N∑
i=1

− log
es(cos θyi−m)

es(cos θyi−m) +
∑M

j=1,j ̸=yi
es cos θj

, (3.5)

where the scale s and margin m are parameters that can be adjusted individually.

This loss function is proposed by Wang et al. [50], which is named the large margin

cosine loss (LMCL).

3.2.3.2 Center loss

In contrast to LMCL, which enlarges the gaps of decision boundaries to pro-

duce a more discriminative feature vector, the main objective of Center loss is

to minimize the intra-class distance in another way. As the name suggests, the

Center loss is the distance between the feature vector and the center vector of its

class. Thus, the function of the Center loss could be expressed by

Lc =
1

2

N∑
i=1

∥Xi − Cyi∥22, (3.6)

where N denotes the number of training samples, Xi is the output feature vector,

yi is the ground-truth class that Xi belongs to, and Cyi is the center vector of the

yith class. In our implementation, the center vector is not calculated from the

mean of all the feature vectors for each class. With the help of the LMCL, we can

use its weight vector as the center vector.
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3.2.3.3 Centralized Large Margin Cosine Loss (C-LMCL)

The cooperation of the previous two loss functions results in a new loss function

named centralized large margin cosine Loss (C-LMCL) [8]. The formula of the C-

LMCL is written as follows

L = Llmc + λLc

= − 1

N

N∑
i=1

log
es(cos θyi−m)

es(cos θyi−m) +
∑M

j=1,j ̸=yi
es cos θj

(3.7)

+
λ

2

N∑
i=1

∥Xi − Cyi∥22,

where λ is a parameter balancing LMCL and Center loss. There are a total of 3

hyperparameters that could be adjusted: the balancing parameter λ, the scale s,

and the margin m. We will follow the best parameters that the original paper [8]

provides: λ = 0.1, s = 30,m = 0.65.

3.3 Feature Matching

Feature  
extractor 

Feature  
extractor 

Feature  
extractor 

Feature  
extractor 

Cosine
similarity

Registered image

Probe image

Mirror

Mirror

Figure 17: Illustration of feature matching which uses the concatenated feature of
the origin image and its mirror image.

In the reference work, they mentioned that the final feature is the feature

concatenation of the input image and its mirror image. Based on these features,
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the cosine similarity is calculated. An example is illustrated in Figure 17. In

identification mode, the input image will be compared with multiple templates.

The template with the highest similarity score with the input image will be selected

as the recognition result. In the verification mode, a one-to-one comparison is

performed. A preset threshold is usually used to verify the similarity score of the

two to determine whether the two are the same person.

3.4 Observation and Discussion

In this section, we first derive the limitations of the feature matching method

in Section 3.4.1, which they did not explain in the reference work. And then show

the results of the cross-subject evaluation on several datasets in Section 3.4.2. We

pay special attention to the unconstrained dataset, MPD, because our goal is to

develop an approach that can handle complex environments. The MPD would be

represented as MPD(h) and MPD(m) in the following tables, indicating Huawei

and Xiaomi, according to the mobile phone used to take the images. We also

conducted a cross-dataset evaluation between the Tongji and PolyU datasets like

the reference work in Section 3.4.3. Both evaluations will compare ResNet-18

to ResNet-20. We found that the performance of ResNet-20 on the cross-dataset

evaluation trained on the PolyU dataset and directly applied to the Tongji dataset

is far worse than the results in the paper. Finally, we will summarize the observed

shortcomings of the current system and analyze the possible improvements in

Section 3.4.4.

We performed a different dataset split from the reference work in these eval-

uations. We keep one-tenth of the source dataset for evaluation. These parts of

image data are from totally different classes than the training classes. In detail,

the heading “source” in the following tables means that we use 90% of the classes

in that dataset to train the model. Note that the number of image data samples

in each class is the same within each dataset, so there will be the same number

of training images regardless of which classes are used for training. Moreover, the

heading “target” in the following tables means the dataset we used for testing.

As for the split of the registration set, 5 images in each class are regarded as the

registration set and the others are the probe images so that the experiment is

more realistic while having a larger number of testing samples.

3.4.1 Feature Matching by Concatenated Features

In the original paper, they did not explain why they used such a matching

method, and of course, they did not explain the advantages and disadvantages of

this method. They only have one sentence saying they use this way to generate
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the final palmprint representation. However, we suffer an accuracy drop due to

this. So we derive the mathematical formulation of this matching method and

figure out its effects and limitations for improvement.

Since this feature matching method is based on cosine similarity, we start from

its mathematical representation. The formula for the cosine similarity can be

derived from the Euclidean dot product, and it could be written as

cos(θ) =
A ·B
∥A∥ ∥B∥ . (3.8)

Then, we need to define the notation of the concatenation of two vectors. If

the feature dimension is N , the feature vector extracted from a registered image

can be denoted as G ∈ RN, as well as the feature vector GM ∈ RN is from its

mirror image. According to the matrix notation, the concatenated vector can be

expressed as [G GM ]1×2N . As a result, given the feature vector G,GM along with

the features P, PM obtained from an input image, the cosine similarity of these

two input images can be defined as

cos(θ) =
[G GM ] · [P PM ]

∥[G GM ]∥ ∥[P PM ]∥ . (3.9)

Since the dot product is an element-wise multiplication, the dot product of

two concatenated vectors equals adding the dot product of each vector. Hence,

the formula can be derived as follows:

cos(θ) =
G · P +GM · PM

∥[G GM ]∥ ∥[P PM ]∥ . (3.10)

Then we expand it, and if all the feature norms are assumed to be equal, we can

get a more simplified form as shown below:

cos(θ) =
∥G∥ ∥P∥ cos(θI) + ∥GM∥ ∥PM∥ cos(θM)√
∥G∥2 + ∥GM∥2 ×

√
∥P∥2 + ∥PM∥2

(3.11)

=
cos(θI) + cos(θM)

2
, if ∥G∥ = ∥P∥ = ∥GM∥ = ∥PM∥, (3.12)

where the θI is the angle between the vectors extracted from input image and

registrated image, and θM is the angle between their mirror images.

From Equation (3.12), we know that if the norm of every feature vector is the

same, the final cosine similarity would be the median value of the cosine similarity

between the input image and registered image and between their mirror images.

Since the Center loss cluster the features of the same class closely together, the

feature norm of the same class will be very close. Although the feature norm of

different classes is not very close, they are usually not too far apart for a well-

trained model. Consequently, the cosine similarity of the concatenated features
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might be between the cosine similarity of the input image and registered image

and the cosine similarity of their mirror images in an ideal case.

In the above descriptions, we assume the feature norm of different palmprints

might be close, but this is not always the case. If one of the feature norms is

much higher than the others, it will cause the final similarity to be reduced to a

value lower than both of the similarities. This is because once the feature norm is

high, the cosine similarity between it and others is very likely to be low. Since the

high feature norm indicates the model was unfamiliar with the source image and

produced an abnormal feature, the similarity between it and others is more like a

random value. According to Equation (3.11), if ∥GM∥ is large, the denominator

will also become larger. However, ∥GM∥ cos(θM) may remain at a similar value or

lower, and the final similarity will become lower.

The lower bound becomes especially important since the final similarity will fall

between the two similarities. Thus, not only should the feature extracted from the

two input images be similar, but the feature extracted from their mirror images

also needs to be similar. Otherwise, the final performance will also be affected

greatly. Because the number of matching is very large in identification mode, it

is more likely that recognition errors will occur due to the addition of features

from mirror images. Therefore, we need to ensure the recognition performance of

mirror images.

In summary, concatenating the feature from the input image and its mirror

image would result in a performance gain under two constraints. First, the norm of

any feature cannot be significantly greater than the norms of the others. Second,

the model must also be able to identify by the mirror images. Hence, this technique

boosts the accuracy of a system that already performs well, while in other cases,

it has a negative impact. We will remove these negative effects, ensuring that

the matching method can use additional images to improve accuracy or at least

remain the same.

3.4.2 Cross-subject Observation

Table 4: Comparison of Rank 1 accuracy(%) on different datasets

Dataset PolyU Tongji MPD(h) MPD(m)

ResNet-20 100 99.56 72.67 70.17

ResNet-18 100 96.11 91.83 77.33

The result of cross-subject evaluation on four palmprint datasets is shown in
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Table 4. ResNet-20 performs perfectly on the PolyU and Tongji datasets, but the

accuracy on both the MPD datasets is much worse than on these datasets. One of

the reasons for the large drop in accuracy is the feature matching method. In the

previous section, we have explained the requirements of this matching method.

The ResNet-18 performed much better in the MPD datasets, despite having lower

accuracy on the Tongji dataset than ResNet-20. It is also affected by the matching

method on the MPD(m) result, but it is still higher than ResNet-20 when matching

with only input images.

We consider that the key reason ResNet-20 performed so poorly on MPD

datasets was that it used a fully connected layer rather than global average pooling.

Since Lin et al. [69] proposed to replace the fully connected layer with the global

average pooling, it has become a dominant choice to use the pooling layer instead

of the fully connected layer. The advantage of using a pooling layer is to prevent

overfitting and provides more robust features. Hence, in such an unconstrained

environment like the MPD dataset, the features extracted by ResNet-18 have

better performance. However, this is still not enough. We must find a model

structure more suitable for unconstrained palmprint recognition.

3.4.3 Cross-dataset Observation

Table 5: Comparison of Rank 1 accuracy(%) on the cross-dataset evaluation

Source Target ResNet-20 ResNet-18

Tongji PolyU 99.57 83.94

PolyU Tongji 60.68 75.64

The cross-dataset evaluation result between the PolyU and Tongji datasets

is shown in Table 5. For simplicity, we denote “train on the source dataset and

directly test on the target dataset” as the right arrow in the following descriptions,

e.g., PolyU → Tongji. According to the table, the performance of ResNet-20 on

Tongji → PolyU is satisfactory, though it does not reach the level of the original

paper. In contrast, it is far worse on PolyU → Tongji. Although the matching

method also decreases accuracy, if we do not use the mirror image, the accuracy

would still only be 67%. This result is far away from what is reported in the paper,

let alone if the model is used on an unconstrained dataset.

The ResNet-18 outperformed the ResNet-20 on PolyU→ Tongji but was lower

in reverse. This is similar to cross-subject evaluation. The ResNet-20 wins in the

easier scenario, whereas the ResNet-18 wins in the more difficult scenario. Because
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the PolyU dataset is captured in a constrained manner, the pose and environment

of images are almost consistent. Thus, the variance of the images in the PolyU

dataset is less than that of the Tongji dataset. That is why it is more difficult on

PolyU → Tongji. This shows that ResNet-18 has better generalization ability.

As mentioned in the previous section, the advantage of global average pooling

is that it can prevent overfitting. Conversely, the fully connected layer fits the

training data more closely. When the patterns in the training data can somewhat

cover the patterns in the testing data, it can get excellent recognition results. That

is the case of Tongji → PolyU, so ResNet-20 has very high accuracy. However, it

has three apparent disadvantages:

1. The testing data is always unpredictable in the real application. Training

data rarely cover the testing data. A scenario like Tongji→ PolyU is unlikely

to happen. Thus, there is not much chance for him to show his strengths.

2. The accuracy drop is particularly huge when the palmprint images differ

from the training data. In practical applications, this is always the case.

3. If the amount and variation of training data grow, the model may not be

able to fit the training data well. Alternatively, the number of parameters

may need to grow with the amount of data.

On the other hand, the more important part is that there are huge gaps in the

images of different datasets. Some samples of each dataset we used are shown in

Figure 18. Many studies treat such situations as cross-domain problems mentioned

in the related work section. Most of them tried to solve this problem by using

more existing data. Whether it is to adapt the model to the target domain or

to generate training data in the style of the target domain, using target domain

images for learning is required. However, those methods only focus on one target

domain, while our goal is to enhance the generalization ability of the model so

that it can identify in complex environments. The characteristic of deep learning

is that it can model the problem better as long as it is given more diverse training

data. Therefore, we will focus on data augmentation and find better augmentation

strategies to solve the cross-datasets palmprint recognition problem.

3.4.4 Summary and Motivation

After reviewing these several evaluations, we can sort out some problems and

improve directions in the current method. From the cross-subject evaluation,

we know that the current matching method is unstable. Although it sometimes

improves the accuracy, it worsens when the model cannot extract discriminative

features from the mirror images. While the number of registered images increases,
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(a) PolyU [3]

(b) Tongji [16]

(c) MPD(h) [17]

(d) MPD(m) [17]

Figure 18: Example ROIs of each datasets

it is more likely that the wrong identities will produce a higher similarity score

than the true identity due to the mirror image, resulting in an identification error.

We can make it better by separating features. Since the feature norm of the

input image and its mirror image will affect each other, we can perform feature

matching separately and then recombine the results, thereby eliminating the neg-

ative impact of instability. In addition, the mirror transformation can be done

in different directions, such as vertical and horizontal. Moreover, the rotations

could also be taken into account. Because when we perform both vertical and

horizontal mirror conversion, it is equal to the 180 degrees rotation. The fusion of

these additional features could make the matching more robust. We could design

a better feature matching method based on these two points.

In the cross-subject evaluation of the MPD dataset, both models perform

poorly due to the diversity of input images. Suppose we increase the network

width to expand the receptive field and introduce an attention mechanism to en-

hance the generalization ability of the model while avoiding overfitting. In that

case, the model may handle these more challenging environments.

As for cross-dataset evaluation, training data is important. Previous research

has focused on cross-domain approaches to bridge the gap between palmprint
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datasets. However, this is insufficient to handle the complex environment as they

only consider one target domain. We will optimize the existing data augmentation

strategy so that models can be trained on only one dataset and applied to other

datasets. We can organize the above into the following three points:

1. The current feature matching method is unstable. Using mirror of input

images to improve accuracy must preserve at least the same level of accuracy

as not using mirror images.

2. ResNet-20 cannot produce sufficiently discriminative features in an uncon-

strained environment like MPD. We will use a wider model structure to

handle these diverse input images.

3. To overcome the cross-datasets palmprint recognition problem, providing

more various training data for deep learning models is necessary. We would

improve the data augmentation strategy to help models perform better in

various environments.
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CHAPTER 4

DATA AUGMENTATION ON TRAINING

AND RECOGNITION

In this chapter, we address the problem of cross-datasets palmprint recognition

through three data augmentation techniques: data warping, oversampling, and

test-time augmentation. Data warping is a method of randomly transforming

images during training, and we optimize this method for palmprint recognition.

Our oversampling method is to expand the training set through rotation, and each

image would be rotated to the other 3 orientations as new training data. Both of

these are applied during training to enable the model to reach its better potential,

while test-time augmentation improves performance through image transformation

during recognition. Based on test-time augmentation, We propose a method to

generate multiple images for comparison by rotating and mirroring, called multi-

transform matching. In addition to data augmentation, we have mentioned the

shortcomings of existing feature extraction models at the end of Chapter 3, so we

propose a model stacking that is more suitable for palmprint recognition.

Since our method includes feature extraction model training and feature match-

ing, we will introduce it in two parts according to the flow chart shown in Fig-

ure 2. First, we organize our proposed training method in Figure 19. The data

augmentation in the red dash lines includes the oversampling and data warping we

mentioned above, which we will detail in Section 4.1. The feature extractor in the

blue block is the deep learning model. We will introduce our proposed structure

in the section 4.2. The rest of the training process will be describe later.

As for feature matching, we have explained the advantages and disadvantages

of using mirror-concatenated feature matching in Section 3.4.1. While the match-

ing performance can be improved when the features are very distinguishable, it

also increases the risk of recognition errors. To solve this problem, we match the

mirror images independently, and add another mirror transformation and rota-

tions to increase reliability. This method benefits from our proposed oversampling

method, which we will explain in more detail in Section 4.3.

The training process in Figure 19 is our improvement based on [8]. The main

difference is the part of data augmentation. The random transformation during

training is called data augmentation in the original paper, but this method is only

one of data augmentation according to the definition in [70]. Such an approach

44



doi:10.6342/NTU202203861

45

Feature
extractor Classifier

Feature vector

Optimizer

Optimizer L2 distance
loss 

Classification
loss 

Data
warping 

Oversampled  
training set

Figure 19: Feature extractor training process

is called data warping in their definition, as shown in the red block in the figure.

In addition, oversampling is to expand the training set before training, so it is

directly displayed on the training set in the figure.

The rest are based on the original process to improve the components sepa-

rately. In addition to the feature extraction model, we also make the loss function

more suitable for our proposed augmentation strategy. The original CLMCL is

divided into three parts: classifier, classification loss, and L2 distance loss.

The classifier maintains a set of weight vectors with as many classes as the

training set to find the class closest to the input feature vector. It originated

from the last fully connected layer of the model in the image classification task.

However, it is also used for L2 distance calculation here in addition to the original

classification. It can be imagined that it uses cosine similarity and L2 distance for

classification, and there are also two types of loss functions for parameter update.

The classification loss refers to the margin-based cosine loss based on the dot

product, such as LMCL [50], ArcFace [10], CurricularFace [71]. These losses are

based on softmax loss and add some restrictions to its input to create a more

compact feature space. Hence, these losses consist of two parts, of which we use

LMCL for the restriction part. As for the L2 distance loss, it is a very important

part. We proposed the oversampling method based on the assumption that this

loss can closely gather samples of the same class.

Since our data warping strategy produces extreme samples, the original loss

function may lead to unstable training. Therefore, we use Focal loss and Huber

loss to replace the softmax loss and center loss. These two have relatively smooth

gradient curves, and will not generate excessive gradients due to extreme samples,

resulting in excessive parameter updates. We will discuss more in Section 4.1.4.

For the classifier, we keep the original LMCL.
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Finally, we use the two optimizers to update the parameters of the feature

extractor and classifier because they require different learning rates. Since the

weights in the classifier represent the center vectors of each class, a relatively large

learning rate is required at the beginning of training to spread these vectors evenly.

If the same optimizer is used, the parameters will not converge well. Here we use

SGDM and Adam optimizer for the feature extractor and classifier, respectively.

Although it has a great impact on model training, in this study, we only focus

on the components that improve palmprint recognition across datasets. In the

following sections, we will introduce the colored blocks in Figure 19.

4.1 Palmprint ROI Augmentation

C. Shorten and T. M. Khoshgoftaar [70] have stated that data augmentation is

a very powerful method for enhancing generalizability. The augmented data will

represent a more comprehensive set of possible data points to bridge the gap be-

tween the training set, the validation set, and any other testing data in the future.

Although this is not the only technique for enhancing generalization ability, we

will focus on developing a better data augmentation strategy for palmprint recog-

nition in this work. Other solutions such as designing more complex architecture,

batch normalization, and pre-training are covered in next section.

The image-related recognition algorithm must overcome the issues of lighting,

background, occlusion, scale, viewpoint, and more. The idea of data augmentation

is to use domain knowledge or experience to imagine possible situations so that

the model can overcome these challenges and achieve good performance in real-

world applications. Especially when we do not have a sufficiently diverse and large

amount of training data, as is the situation with palmprint recognition. Therefore,

we will invest more effort in developing better data augmentation strategies to

simulate various imaging conditions.

Data augmentation tries to solve the problem from the root cause, which is

the training dataset. It is generally accepted that larger datasets result in bet-

ter deep learning models. Data augmentation methods assume we can extract

more information from the original dataset and expand the training dataset by ei-

ther oversampling or data warping. Oversampling creates synthetic instances and

adds them to the training set. For example, mixing images, generative adversar-

ial networks (GANs), and feature space augmentations. Data warping transforms

existing images during each training epoch, including geometric and color transfor-

mations, noise injection, random erasing, and neural style transfer. Oversampling

and data warping are not mutually exclusive, and they can work on the images

simultaneously.
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In Section 4.1.1, We explain our oversampling method, which expands the

training data size through rotation. Due to the constraints of L2 distance loss,

palmprint ROIs in different orientations can be regarded as new training data. It

can not only directly improve recognition performance but also make the features

generated by the model more compact, giving the matching algorithm greater

development flexibility.

Second, data warping is another augmentation approach that generates im-

ages through various transformations during training. These transformations are

performed randomly, and the intensity of the transformations is also randomly

chosen. Since there are many kinds of transformations, each has several parame-

ters. The most suitable transform combination and their hyper-parameters cannot

be found by manual search alone, so we adopt hyper-parameter optimization to

search for the best solution. We detail the search method in Section 4.1.3.

We mentioned earlier that the oversampling augmentation we used requires

L2 distance loss, but Center loss is a loss with a very large numerical change.

Therefore, it will make the training difficult to converge, especially when the

transformation used by data warping is relatively extreme. These excessively

transformed training images will cause a large gradient in the Center loss, so we use

a smoother loss instead. We will introduce these loss functions in Section 4.1.4,

which make training stable.

4.1.1 Oversampling with rotation

We found that even if there is only one orientation of palmprint ROI in the

training data, the model can still distinguish palmprints in different orientations,

as well as the left and right hands in these orientations. Although they are not

very tightly clustered in the feature space, a clear distinction can still be seen.

However, the recognition accuracy of palmprint ROI images in these orientation

is relatively poor, and the improvement of feature matching by using them is

relatively small. This explanation will be described in Section 4.3. We extracted

the registrated images different from the training dataset to features and drew

them into 3D feature space by UMAP [72] as shown in Figure 20.

If we use palmprint ROI images in different orientations as training images, it

can improve the model’s generalization ability and enhance our ensembled feature

matching. Instead of only using one mirror image to improve the performance of

the comparison, various rotated and mirrored images can be added to assist feature

matching effectively. The implementation is to generate images rotated by 90, 180,

and 270 degrees for each training image so that the training set will become four

times the original size. It can also be randomly transformed in combination with
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Figure 20: An illustration of the features extracted from different palmprint ROI
orientations. 0 is for the original input image, 180 refers to the input image being
rotated 180 degrees, and so on.

the data warping augmentation.

What class these newly generated training images fall into is still to be deter-

mined. According to the facts, these images belong to the same person. However,

they are significantly distinguished in the feature space. The loss function we use

during training includes an L2 distance loss, which is very restrictive. It gathers

images of the same class very closely together because these cropped ROI images

of the same class will definitely be very similar. Figure 21 is an example of ROI

images from the same class. Therefore, these rotated training images are regarded

as different classes during training. Overall, applying such rotational augmenta-

tion will increase the size of the training set and the number of classes by a factor

of 4.
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Figure 21: Sample images of the same palm from the PolyU-M dataset [3]. All
samples are very similar, so palmprints that are not in the same orientation,
even if they are the same hand, should be regarded as different classes from the
perspective of loss.

4.1.2 Data Warping Transformations

Data warping augmentation is a fundamental choice for image-related tasks,

as it is easy to implement and brings huge performance gains, especially when

the training dataset is small. A common practice is pre-determining a set of

image transformation functions suitable for the task and randomly executing these

transformations during training to make the same image different for each training

iteration. These transformations are independent to each other. That is, an input

image may have no transformations or every transformation. In order to make

the training images more diverse, each transformation usually defines an intensity

range in addition to the probability. In other words, one transformation needs to

decide on at least two hyper-parameters. When many transformations are used,

there are a large number of hyper-parameters to decide. Therefore, we aim to find

a set of image transformation functions and their operating hyper-parameters that

are most suitable for palmprint recognition.

We first review the seven transformation functions used in Section 3.2.1. Of

these, resized cropping and sharpening are useless, in our opinion. Resized crop-

ping will scale up the image and randomly crop a portion of it, but this will make

it a different scale from the normal image. In the ROI cropping algorithm, the

distance between the finger valleys has been used to unify the scale of each palm-

print image. It can also be seen from Figure 18 that the scales between the sample

images are almost the same. Therefore, the image generated by resized cropping

is not suitable for use in the current scenario, so we remove this conversion func-

tion. As for sharpening, instead of providing more difficult images, it provides the

images with a clearer texture. It does not help much in training, so we do not

need a useless function to increase training time.

In addition, we added two transformation methods: noise injection and trans-

lation. The translation is intuitive. Although the anchor point fixes the ROI,

there will still be a slight error. Translation can simulate such a situation. Noise

injection is to add diversity to the training image, and the model is expected to

focus more on texture features. The following are the transformation functions
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and their intensity parameters that we will search for:

• Brightness: The brightness factor is uniformly sampled from [max(0, 1−
a), 1 + a ] to adjust brightness.

• Contrast: The contrast factor is uniformly sampled from [max(0, 1−a), 1+
a ] to adjust contrast.

• Saturation: The saturation factor is uniformly sampled from [max(0, 1−
a), 1 + a ] to adjust saturation.

• Hue: The hue factor is uniformly sampled from [−a, a ] to adjust hue, but

the bounds of the hue factor is [−0.5, 0.5 ].

• Smoothing: The smoothing is performed by Gaussian blur, which ran-

domly chooses the kernel size from (3 × 3, 5 × 5). The standard deviation

for creating a kernel is in the range of [ 0.1, a ].

• Noise injection: We randomly sample from the standard normal distri-

bution to form a matrix with the same size and number of channels as the

input image. Then, multiply it by a magnification factor, and add it to the

original image. The magnification factor is an integer uniformly sampled

from the range of [ 0, a ].

• Rotation: The range of the rotated degrees is uniformly sampled from

[−a◦,+a◦ ], and the blank pixels will be filled with black.

• Translation: If the images size is [W,H ], the range of the number of the

shift pixels is [−aW, aW ] along the x axis and [−aH, aH ] along the y axis.

The blank pixels will also be filled with black.

Note that all the intensity parameters in each transformation are non-negative

values and have been reduced to only one.

The execution order of these transformations also needs to be considered, oth-

erwise, the effect of some transformations will not be brought into play. For a

simple example, performing noise injection followed by smoothing will eliminate

the noise. First of all, rotation and translation will not be affected in any way, so

put them last. Second, color-related transformations (brightness, contrast, satu-

ration, and hue) require RGB values for color space conversion, so they come first.

Finally, smoothing and noise are placed in the middle. This order is the same as

we introduced earlier.
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4.1.3 Hyper-Parameter Optimization

We adopt the hyper-parameter optimization framework Optuna [73] to op-

timize data warping hyper-parameters. Optuna mainly consists of two parts:

searching strategy and performance estimation strategy. The search strategy

defines the search space of the parameter set and a sampling algorithm. The

sampling algorithm includes grid search, various evolutionary algorithms, etc. On

the other hand, the performance estimation strategy estimates the values of the

hyper-parameters of the current search process based on the learning curve. It

determines whether this hyper-parameter set should be discarded, also known as

automated early stopping. These two are called sampler and pruner, respectively,

in Optuna.

Sequence Model-Based Global Optimization (SMBO) is one of the sampling

algorithms, which is a formal definition of Bayesian optimization. This kind of

method will try to find a better sample to reduce the number of sampling, so it is

more efficient than grid search or random search. Each time a set of parameters

is sampled, a model must be trained to obtain the objective value, which is a very

time-consuming process, so efficiency is a very important consideration. Compared

with evolutionary algorithms that require a large number of initial samples, SMBO

is a more efficient choice. SMBO consists of the following four core elements:

1. Domain: Each hyper-parameter has its own value range and prior distri-

bution, such as uniform distribution, log uniform distribution, and so on.

2. Objective function: The objective function is what we want to optimize,

which is the loss function in our case. Given a set of hyper-parameter, fitting

a model to the training set after instantiating the hyper-parameters, and the

loss on the validation set is obtained as the output value.

3. Surrogate function: A substitution function, also called a response sur-

face, is a probabilistic representation of an objective function based on the

previous history. It is called a response surface because it is the probability

that given a hyper-parameters to obtain such an objective function score at

a high dimensional level.

4. Selection function: The selection function is how we choose a new set of

hyper-parameters to experiment with based on the surrogate function, which

is our expectation for the next set of parameters.

To sum up, SMBO is to construct a probabilistic model based on the histori-

cal trial records. Since calculating the objective function is too time-consuming,

the surrogate function is used to represent the probability response between the
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hyper-parameter set and the objective value. With this surrogate function, we

can calculate the probability that any hyper-parameter set will reach a specific

objective value. Then define the goal of the next hyper-parameter set, which is

the selection function, to find a hyper-parameter set closer to our goal.

The detailed process is shown in Algorithm 1 [74], where the λ is a hyper-

parameter set and St is the surrogate function. There are four steps in total. The

first step is to find a hyper-parameter set that is more likely to have a smaller

objective function value based on the existing historical trial records. Second,

calculate the value of the objective function. Third, add current result to the trial

record collection. Finally, update S with the new trial record collection.

Algorithm 1 Sequential model-based global optimization (SMBO)

Input: Objective function L
Output: Best parameter λ∗

1: Initializing S0

2: H = ∅
3: for t = 1 to T do
4: λ∗ = argminSt−1(λ)
5: c = L(λ∗)
6: H = H ∪ (λ∗, c)
7: fit new model St according to updated H
8: end for
9: return λ with minumum c in H

Here we use the Tree-structured Parzen Estimator (TPE) [74] as the

sampler, which is also an SMBO method. The advantage is that it converges faster

and only focuses on searching near better parameters rather than performing a

global sampling. We will go into detail in Section 4.1.3.1. We then describe our

optimization process and setup in Section 4.1.3.2. Finally, we use the TPE

results to analyze the utility of each transformation. We remove transformations

with low execution rates and search again with the remaining transformations,

which are covered in Section 4.1.3.3.

4.1.3.1 Tree-structured Parzen Estimator

The idea of TPE is to search for hyper-parameters close to better samples when

we already have some sample points, instead of global sampling like a Gaussian

process. The demonstration is shown in Figure 22. When we already have several

samples, we naturally think to sample the points near the samples that exceed the

threshold because it is more likely to produce a better objective value. This is the

assumption of TPE so that it can converge faster.

We have mentioned the basic elements of the sampling algorithm earlier, and
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Figure 22: Tree-structured Parzen Estimator. a) Tree-structured Parzen Estima-
tor divides the data into two sets L and H by thresholding the observed function
values. b) They then build a probability density of each set using a Parzen kernel
estimator — they place a Gaussian at each data point and sum these Gaussians
to get the final data distribution. A point is desirable to sample next if the proba-
bility of Pr(x|y ∈ H) being in the set H is large and the probability of Pr(x|y ∈ L)
being in the set L is low [12].
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we will introduce them one by one except for the objective function. The first one is

Domain. Besides the probability distribution of hyper-parameters in the domain,

the relationship between hyper-parameters should be considered. In TPE, they

restrict the domain to tree-structured configuration spaces. Configuration spaces

are tree-structured in the sense that some leaf variables are only well-defined when

node variables take particular values.

Moreover, they remark that not all hyper-parameters are correlated. Thus

it is not enough to place one Gaussian process over the entire space of hyper-

parameters. They chose to group the hyper-parameters by common use in a

tree-like fashion and place different independent Gaussian processes over each

group. That is, they sample hyper-parameters from each group independently,

and different groups are also independently optimized.

As for the surrogate function, they use the Parzen window to model the

probability density function between samples and objective function values. The

Parzen–Rosenblatt window is proposed by Emanuel Parzen and Murray Rosen-

blatt in the kernel density estimation problem, which can estimate the probability

density of the estimated value based on the currently observed value and the prior

distribution type. The definition of the Parzen window is that the probability

within the window is divided by the window volume V , and its high-dimensional

expression is as follows:

p(x) =
k

nhD
=

1

nhD

n∑
i=1

K(
xi − x

h
), (4.1)

where the k is the number of samples in the window, and n is the total number

of samples. The D refers to dimension, and the hD equals V if the dimension is

three. The function K is used to calculate k and is called the window function,

or kernel function. In TPE, the kernel function uses a Gaussian kernel function,

in which the closer the distance is, the greater the count weight.

Whereas the Gaussian-process based approach modeled p(y|x) directly, TPE

models p(x|y) and p(y). As mentioned earlier, TPE establish two probability

distributions based on the threshold of the observed loss, so the p(x|y) can be

defined as

p(x|y) =

l(x) if y < y∗

g(x) if y ≥ y∗,
(4.2)

where l(x) is the density formed by the observations that the corresponding loss

was less than y∗ and g(x) is the density formed by the remaining observations.

In the Gaussian-process based approach, the y∗ is typically less than the best-

observed loss, while the TPE algorithm depends on a y∗ larger than the best-

observed loss so that some points can be used to form l(x). The TPE algorithm
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chooses y∗ to be some quantile γ of the observed y values, so that p(y < y∗) = γ,

but no specific model for p(y) is necessary. By maintaining sorted lists of obser-

vations, the number of samples used to estimate l(x) can be computed through

γ.

The selection function used in TPE is Expected Improvement (EI) [75], but

they redefine EI according to the surrogate function. EI is the expected value that

the objective value of this hyper-parameter set exceeds a certain threshold y∗. If

it is in the form of minimizing the loss, the mathematical formula can be written

as

EIy∗(x) =

∫ ∞

−∞
max(y∗ − y, 0)p(y|x)dy. (4.3)

Since the surrogate function defines p(x|y), rewrite the formula as

EIy∗(x) =

∫ y∗

−∞
(y∗ − y)p(y|x)dy =

∫ y∗

−∞
(y∗ − y)

p(x|y)p(y)
p(x)

dy, (4.4)

where p(x) can be expressed in Equation 4.2 as follows:

p(x) =

∫
R
p(x|y)p(y)dy

=

∫ y∗

−∞
p(x|y)p(y)dy +

∫ ∞

y∗
p(x|y)p(y)dy

= γl(x) + (1− γ)g(x), (4.5)

and the remaining molecular part can also be rewritten with Equation 4.2 as the

following: ∫ y∗

−∞
(y∗ − y)p(x|y)p(y)dy = l(x)

∫ y∗

−∞
(y∗ − y)p(y)dy

= y∗γl(x)− l(x)

∫ y∗

−∞
yp(y)dy. (4.6)

Hence, the complete EI function can be derived as

EIy∗(x) =
y∗γl(x)− l(x)

∫ y∗

−∞ yp(y)dy

γl(x) + (1− γ)g(x)

∝
(
γ + (1− γ)

g(x)

l(x)

)−1

. (4.7)

Equation 4.7 shows that to maximize improvement we would like points x with

high probability under l(x) and low probability under g(x). The tree-structured

form of l and g makes it easy to obtain many candidates through l and evaluate

them according to g(x)/l(x). The algorithm returns the candidate x∗ with the

greatest EI on each iteration.
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To make the sampling process of TPE clearer, we can summarize it into three

steps:

1. Set the tree formed by all hyper-parameters. Each group of hyper-parameters

must remain independent.

2. The Parzen estimator is used to construct the probability distribution of

each group and then sample from the l(x) distribution of each group several

times.

3. After sampling the hyper-parameter subset x̄i from each group , we can get

the l(x̄i) and g(x̄i) of this subset. Multiplying the probability of each subset

to get the joint probability l(x̄) and g(x̄) of the current hyper-parameter set,

and then calculate the l(x̄)/g(x̄). The hyper-parameter set with maximum

l(x̄)/g(x̄) would be chosen as the sample of this iteration.

4.1.3.2 Optimization Process

In Section 4.1.2, we have already listed the transformation set to search, as well

as the hyper-parameters and their bounds. There are a total of 8 transformation

functions, each containing an intensity and a probability hyper-parameters, and

these 16 hyper-parameters form the search space. Except for hue, none of these

intensity hyper-parameters have upper bounds, so we need to define upper bounds

for them. To ensure the range is large enough is to check if the image generated

using the upper bound is sufficiently indistinguishable.

To evaluate the effect of a hyper-parameter set, we train the model according

to the process in Figure 19. All components will use the same as described in

this chapter. The validation loss is then calculated using the validation set from a

different dataset than the training set, since the main purpose of our augmentation

is to adapt the model to different environments. However, the classifier used for

training cannot be directly used to classify non-training data, so the validation loss

cannot be calculated. Therefore, we average the feature template from registrated

images in the validation set to generate the center vector, which is used to simulate

the weight vector in the classifier.

We use cross-entropy loss and Center loss when calculating the validation loss

instead of the Focal loss and Huber loss mentioned in Section 4.1.4. This is

because the loss generated by Focal loss and Huber loss will be smaller than

the original, which is not conducive to our observation of the difference between

hyper-parameter sets. Their meanings are similar, but the impact on training is

different. Therefore, we choose the more intuitive and significant cross-entropy

loss and center loss.
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Furthermore, the execution probability and the sampling of intensity are both

random, indicating that the model trained with the same hyper-parameter set

may lead to a very different result. Therefore, we will perform training twice

for the same hyper-parameter set during searching. The result representing this

hyper-parameter set is the average of the validation losses computed by the two

models.

Pruner requires the validation loss of each training epoch to decide whether

this hyper-parameter set should be dropped early. Using too much data as a

validation set will increase the training time, so we only use half of the classes of

the target dataset as a validation set. Note that some images of each category

need to be divided into a registration set to calculate the center vector. As a

consequence, the image split of each category will also affect the loss calculation,

and we use 5 images as a registration set here.

The pruner we use will calculate the median of the validation loss reported

on the same epoch for each trial to judge whether the current hyper-parameter

set is promising. In other words, it will be discarded if this hyper-parameter set

performs less than half of the existing hyper-parameter sets at a certain step. Since

we will train twice in total, the definition of the same epoch will be confused, so

we only use the pruner for the first training. Moreover, if this hyper-parameter

set can complete the first training, it is worth the expense.

We have covered all the tools needed in the hyper-parameter optimization pro-

cess, including a set of transformation functions and their search space, objective

function, sampler, and pruner. The detailed optimization process is presented in

Algorithm 2, which can be briefly described as follows:

1. Define the bounds of every hyper-parameter to be searched for the sampler

(line 1).

2. At the beginning of each trial, the sampler will sample all the hyper-parameters

from the search space (line 4).

3. Train the model with the hyper-parameters to convergence, then calculate

the validation loss and record it (line 8 ∼ 10).

4. Check if the current hyper-parameter set is worth continuing. If not, termi-

nate the training and start another trial (line 11 ∼ 18).

5. After the pre-defined trial numbers, the best hyper-parameter set with the

smallest loss could be found (line 23).
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Algorithm 2 Optuna optimization process
Input:
1) Pre-defined transformations: T = {T1, T2, · · · , TN }
2) Objective function: O
3) Sampler: S
4) Pruner: P

Output: Best hyper-parameters p∗

1: Define the hyper-parameter bounds of T in S
2: trialLosses ← [ ]
3: for i = 0 to number of trials do
4: p← S.sample()
5: modelLosses ← [ ]
6: for j = 0 to 2 do
7: for e = 0 to number of epoch do
8: Training model M with T, p
9: l← O(M)
10: Save (i, e, l) into P
11: if l < P .median(e) then
12: P .prune()
13: break
14: end if
15: end for
16: if P .pruned then
17: break
18: end if
19: modelLosses.append(l)
20: end for
21: trialLosses.append(p, average(modelLosses))
22: end for
23: p∗ ← min(trialLosses)
24: return p∗

4.1.3.3 Transformation Selection with TPE

In the TPE algorithm, the existing parameters are only searched for optimiza-

tion, and no selection is made. However, these selected transformations are just

guesswork based on the possible scenario and have no credible basis. A common

hyper-parameter analysis method uses functional ANOVA [76] to evaluate the im-

portance, but this method requires using random sampling to have more accurate

results. Therefore, we directly decide whether or not to use this transformation

based on the results of the TPE search.

Each transformation has a hyper-parameter of execution probability, which

can be a good indicator of the utilization of the transformation. With this, we can

use a threshold to filter out those transformations with low usage. First, we take

the top n% samples from the TPE search results and average the probability of
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each transformation to represent their usage. Then set a threshold U to remove

transformations with usage lower than this value. In this way, we can find those

transformations that are more suitable for palmprint recognition in the current

workflow.

Additionally, we can narrow down the intensity hyper-parameters through the

TPE search results for a more precise search. We take the upper and lower bounds

of the best half samples as the new hyper-parameter intensity range. We perform

a iterative search with these newly selected transformations and a new range of

hyper-parameters with the same process described earlier.

4.1.4 Loss Function for Extreme Samples

We have found that using the 0.1 lambda (coefficient of Center loss) and the

learning rate of 0.01 provided by the original paper would cause the training to

fail. The loss value would be too large to learn at the beginning of training. We

successfully train by adjusting the learning rate afterward. If we adjust lambda,

the impact on the final result will vary greatly, which means that the parameter

lambda is very sensitive. In addition, the augmentation method we use may

produce a large transformation of the image. These samples will cause Center loss

to generate a large loss value, which in turn affects the stability in the later stage

of training.

To solve the above problems, we turn to Huber loss. It is the synthesis

of squared loss and absolute loss, which we will introduce in detail in Subsec-

tion 4.1.4.1. In addition, we also replace the original cross-entropy loss with Focal

loss. Focal loss is characterized by reducing the weight of easy samples and in-

creasing the weight of hard samples so that the model pays more attention to

these hard samples. This may seem to conflict with the original purpose, but

they are compatible and reinforce the effect of data augmentation. Because Focal

loss mainly balances the gradient proportions of hard and easy samples, it will

not cause the hard samples to generate excessive gradients, leading to unstable

training. Conversely, it reduces the loss value of hard samples, and we will explain

Focal loss in more detail in Subsection 4.1.4.2.

4.1.4.1 Huber Loss

Huber loss [77] is proposed to improve the robustness of the squared loss func-

tion to outliers. The form of Center loss is the same as square loss, so it can solve

the problem that Center loss is too sensitive to outliers. Given the prediction ŷ
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Figure 23: Residual-loss curve of Huber loss between different parameters from
Huang [13]

and the ground truth y, the function could be formulated as

Lδ(y, ŷ) =

1
2
(y − ŷ)2 if |y − ŷ| ≤ δ

δ(|y − ŷ| − 1
2
δ) otherwise,

(4.8)

where the δ is a hyper-parameter needed to be tuned. The residual-loss curves of

different δ are shown in Figure 23.

From Equation (4.8), we can know that Huber loss consists of two parts. One

is the part where the absolute value of the error is less than δ, which is equivalent

to squared loss, and the rest is equivalent to absolute loss. This design can make

the whole curve smoother and combine both advantages. The merit of squared

loss is that the gradient will gradually decrease as the loss value approaches its

minimum value, which benefits convergence. However, its problem is that when

the residual is large, it will bring too large gradients, which was mentioned earlier.

As for absolute loss, it is the other way around. Although it will not cause an

excessive gradient, the gradient remains large even when the residual is close to

its minimum value, which is not conducive to convergence. Thus, combining these

two can perfectly keep the benefits and do away with the drawbacks.

Another benefit is the ease of tuning parameters. From Figure 23, it can be
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found that the residual-loss curve does not change drastically between different δ.

It means that there would not be a significant variation in performance between

similar δ, and thus no parameter tuning issues mentioned above. We directly

set the coefficient of Huber loss to 1, and balance the ratio between it and the

classification loss through δ.

4.1.4.2 Focal Loss

Focal loss [14] was originally proposed for object detection tasks. Because most

of the candidate objects found in a picture are from the background, these are all

simple negative samples. Therefore, there will be an extreme imbalance in the

calculation of loss, resulting in the optimization direction of the model is not what

we want. In response to such an imbalance problem, Lin et al. [14] proposed Focal

loss based on cross-entropy loss, which multiplies the original cross-entropy loss

by a modulating factor. The purpose is to reduce the weight of easy samples so

that the model can focus more on hard samples during training.

The cross-entropy loss is the same as the softmax loss. Thus, the formulation

could be found in Equation (3.1). Take the binary classification as an example.

The original classification loss is the direct summation of the cross-entropy of each

training sample. That is, the weight of each sample is the same. The formula is

as follows:

CE(p, y) =

− log(p) if y = 1

− log(1− p) otherwise,
(4.9)

where p represents the model’s estimated probability for the class with label y = 1,

ranging from 0 to 1. For notational convenience, they define pt:

pt =

p if y = 1

1− p otherwise,
(4.10)

and the cross-entropy loss could be simplified as

CE(p, y) = CE(pt) = − log(pt). (4.11)

Since the problem is that easily classified negatives comprise most of the loss

and dominate the gradients, they first proposed the alpha-balanced cross-entropy

loss, which uses a weighting factor α to balance the weights between positive and

negative samples. The definition of α is almost the same as pt, α ∈ [0, 1] for y = 1,

1− α otherwise. The α-balanced CE loss could be written as

CE(pt) = −αt log(pt). (4.12)
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Because alpha can only balance the importance of positive and negative sam-

ples, it does not differentiate between easy and hard samples. Therefore, they

propose another loss function to down-weight easy examples and thus focus train-

ing on hard samples. They used a modulating factor to replace the alpha coefficient

and defined the Focal loss as

FL(pt) = −(1− pt)
γ log(pt), (4.13)

where the γ is the focusing parameter greater than 0. The focusing parameter

γ smoothly adjusts the ratio of reducing the weight of easily classified samples.

When γ = 0, the Focal loss is equal to the traditional cross-entropy loss, and the

influence of the modulating factor will increase while γ increases. The Focal loss

curves of different γ are visualized in Figure 24.

Figure 24: Probability-loss curve of Focal loss between different gamma from Lin
et al. [14]

When a sample is misclassified, pt is small. The modulating factor (1 − pt)

is close to 1, so the loss value is slightly reduced. However, when pt is close

to 1, the modulating factor (1 − pt) will be close to 0, so the weights of well-

classified samples will be significantly reduced. All in all, Focal loss is to balance

the importance between hard samples and easy samples by adding a coefficient,

which down-weights hard samples and easy samples with different ratios.

Although the authors also mentioned combining the two into alpha-balanced

Focal loss, the choice of parameters will become complicated. Our main purpose

is to control the impact of hard samples on the training process, because our

augmentation may generate hard samples. Hence, we only use modulating factor

to make the model pay more attention to hard samples without being overly

sensitive.
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4.2 Reduced ResNeSt-50

As seen from Section 3.4.2, the ResNet-18 performs well in the constrained

dataset but not in an unconstrained dataset like MPD. Therefore, we need to

improve the generalization ability of the model in an unconstrained dataset. Oth-

erwise, even if we use the data augmentation technique to generate many samples,

the model will not be able to fit on such a complex training set.

After ResNet, many models have been proposed. Given the characteristics

of palmprint ROI images, we think that increasing the model width would be a

better direction, namely split-transform-merge. The design concept behind split-

transform-merge is to make use of the separable characteristic of convolution to

increase the network width, thereby increasing the representation ability of the

network without requiring more computing power. This kind of design focus

on the fusion of channel features from different dimensions, and it starts from

Inception [78] and converges to ResNeXt [79]. ResNeXt perfectly interprets it in

a simple way, and it also does a very good job in palmprint recognition. However,

ResNeSt [15] combines the design concept of squeeze-and-attention on this basis,

called the Split-Attention network. Because of its good integration of the two

mainstream design concepts for image classification models, it is also the best-

performing model of the ResNet series. Therefore, we will use ResNeSt as the

backbone model and introduce it in Section 4.2.1.

Furthermore, we wonder if the effectiveness of the deep structure. We only

need the texture information of the palmprint ROI, not the semantic information

like image classification. The advantage of the deep structure of deep learning is

that it can use the hierarchical convolution structure to convert the original image

into meaningful feature embeddings. Therefore, shallower models may be more

suitable for palmprint recognition, so we propose reduced ResNeSt, which will

be discussed in Section 4.2.2.

4.2.1 ResNeSt

As a member of the ResNet family, ResNeSt also uses classic architecture,

which is shown in Figure 6. This architecture comprises three parts: stem, building

blocks, and output head. They have proposed several tweaks to network structure

and training strategies, but we will only explain the core part, which is the building

block.

ResNeSt block is a bottleneck structure. First, reduce the number of channels

through 1 × 1 CNN, then use 3 × 3 CNN for feature processing in the middle,

and finally restore the number of channels through 1 × 1 CNN. The 1 × 1 CNN

at the bottom of Figure 25(a) is the part that used for channel restoration. As
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Table 6: ResNeSt architectures

Output ResNeSt-26 ResNeSt-50 ResNeSt-101

112× 112 3× 3, 32, stride 2 3× 3, 64, stride 2

56× 56
3× 3, 32, stride 1
3× 3, 64, stride 1

3× 3 max pool, stride 2

3× 3, 64, stride 1
3× 3, 128, stride 1

3× 3 max pool, stride 2

56× 56


1× 1, 64

SA[C=1,R=2], 128

1× 1, 256

× 2


1× 1, 64

SA[C=1,R=2], 128

1× 1, 256

× 3


1× 1, 64

SA[C=1,R=2], 128

1× 1, 256

× 3

28× 28


1× 1, 128

SA[C=1,R=2], 256

1× 1, 512

× 2


1× 1, 128

SA[C=1,R=2], 256

1× 1, 512

× 4


1× 1, 128

SA[C=1,R=2], 256

1× 1, 512

× 4

14× 14


1× 1, 256

SA[C=1,R=2], 512

1× 1, 1025

× 2


1× 1, 256

SA[C=1,R=2], 512

1× 1, 1024

× 6


1× 1, 256

SA[C=1,R=2], 512

1× 1, 1024

× 23

7× 7


1× 1, 512

SA[C=1,R=2], 1024

1× 1, 2048

× 2


1× 1, 512

SA[C=1,R=2], 1024

1× 1, 2048

× 3


1× 1, 512

SA[C=1,R=2], 1024

1× 1, 2048

× 3

1× 1 global average pool

128 fully connected layer

Note: The SA refers to the split attention module, where the C and R are cadinality and radix, respectively.

for the upper part, it draws on the multi-path of ResNeXt [79] and the feature

map Attention of SKNet [80]. The input is first divided into k cardinal groups,

which is the same as ResNeXt. Each cardinal group is further divided into r radix,

and the output of the splits would be processed by the split-attention module and

concatenated at the end, where k and r are hyper-parameters.

The purpose of the split attention module is to re-weight each feature channel

by the channel attention mechanism. It captures the channel correlation by the

following processes. The first step is squeezing the global context by the global

average pooling. The output of this step would be a vector of the same length

as the number of channels. Then perform an operation similar to squeeze-and-

excitation on this vector, first reducing the vector and then restoring the length to

achieve cross-channel feature fusion. This channel attention is conducted group-

wise, so it is more nuanced than previous methods. Finally, the attention factors

of different groups are weighted into the original grouping features, and feature

fusion is performed to achieve attention assignment. The operation details are

depicted in Figure 25(b).

Although the structure is straightforward and intuitive, which adds channel

attention to each group, it is not easy to modularize and accelerate using standard

CNN operators [15]. So they came up with another structure called radix-major

implementation. The overview of the radix-major ResNeSt block is illustrated
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(a) ResNeSt block (b) Split-attention module

Figure 25: The block structure of ResNeSt from Zhang et al. [15]

in Figure 26. The input feature is first divided into rk groups, in which each

group has a cardinality index and a radix index. After the convolution operation,

the summation is conducted across different splits. The feature map groups with

the same cardinality index, but different radix indexes are fused. The global

average pooling layer keeps the channel dimension separated, which is the same

as conducting pooling for each cardinal group and then concatenating the results.

The next two dense layers have the number of groups equal to the cardinality,

which produces the attention for each split as in the original structure. Then, the

attention is turned into weights through softmax. Finally, the weighted sum of

the features in each cardinal group is also conducted.

Such an implementation can greatly simplify the block construction. The first

1× 1 convolutional layer can be unified into one layer, and the 3× 3 convolutional

layer can be replaced by a single grouped convolution with the number of groups

equal to rk. As for the remaining attention and convolution layers, it is also not

a problem. Therefore, we will use this ResNeSt implementation as our backbone

model for palmprint recognition.

4.2.2 Reduced ResNeSt

While the standard ResNeSt has performed well, we will make some adjust-

ments to make it more suitable for palmprint recognition tasks. Y. Liu and A.

Kumar [52] have mentioned that palmprint patterns do not reveal rich structural

information or meaningful hierarchies like facial images. Among conventional

methods, the texture-based methods are considered to be more accurate methods,

which often use small-sized filters and block-based operations to extract palmprint
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Figure 26: Radix-major implementation of ResNeSt block from Zhang et al. [15]

features. Therefore, they infer that the most discriminative information in a palm-

print image is from the local intensity distributions in the ROI image rather than

global features. However, the deep structure of the CNN models is used to be ef-

fective in capturing high-level or global information, so we believe that the model

does not need to be too deep. The ResNeSt-26 and ResNeSt-50 would be better

choice. Furthermore, we also wonder if such a four-layer structure is necessary.

Due to the characteristics of deep CNN models, it is difficult for us to prove

the role of a single layer directly. Even if we use visualization techniques to draw
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the outputs and gradient amounts of the intermediate layers or the activations of

CNN kernels, we cannot be sure whether there are useless blocks. Therefore, we

try to remove one model layer to verify the effect of depth. Because the entire

model is tightly linked, we can not remove the middle layers directly. The only

choice is the layer before the global pooling layer because the global pooling layer

will only leave one value per channel regardless of the length and width of the

input feature map. In this way, we examine the training process and performance

between models with different layers, including the original model, the model with

one layer removed, and the model with two layers removed.

We found that the validation loss of the model with the last layer removed is

lower than the other two, and the training speed is quite fast. In particular, the

ResNeSt-50 with one layer removed is not only much better than others, but also

has the fastest training speed. Furthermore, we observe that the model with the

last layer removed performs the best on ResNet. Therefore, we infer that using

such a three-layer architecture for palmprint recognition would be a better choice.

Consequently, we used ResNeSt-50 without the last layer as the backbone model

for palmprint feature extraction and call it reduced ResNeSt-50. The detailed

model structure is shown in Figure 27.
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Figure 27: The architecture of reduced ResNeSt-50

4.2.3 Pre-trained Model

Pre-trained models have many benefits, such as transfer learning or speeding

up training time, especially in few-shot image classification, which can achieve

surprising results [81]. He et al. [82] have summarized the effect of pre-training
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on ImageNet. Their conclusions show that similar results can be achieved on Im-

ageNet with or without pre-training and that using ImageNet pre-trained models

does not necessarily improve the accuracy of the target task. However, they also

mention that the target dataset must be sufficiently large for direct training. In

addition, they support the use of pre-trained models to speed up the convergence

of the target task, and such an advantage reduces research cycles, leading to easier

access to encouraging results. On the other hand, Hendrycks et al. [83] shows that

although pre-training does not improve performance on traditional tasks, it can

improve robustness and uncertainty estimates.

In view of the above, we believe that the use of pre-trained models is necessary

and important. The advantages of the pre-trained model can be organized into

the following four points:

1. There is no current study pointing out the disadvantages of using pre-trained

models.

2. It has been widely proven that pre-trained models can speed up training

time.

3. Pre-trained models may improve accuracy when the target dataset is not

large enough. The existing palmprint datasets are not large enough in terms

of volume and variation.

4. The pre-trained model may improve the performance across datasets because

it can improve robustness and produce better feature representation.

4.3 Multi-Transform Matching

Test-time augmentation is a technique that also uses transformation at recog-

nition time, and the matching methods we mentioned in Section 3.3 also belong to

this category. In [70], they collected several research studies showing that incor-

porating augmented data during testing is effective and reduces highly confident

but inaccurate predictions. Such a method has been around for a long time, as

early as in the Alexnet paper [84], they average the predictions on ten randomly

cropped patches. In this section, we will first introduce our ensembled matching

method in Section 4.3.1. Then, we discuss the transformations used in recognition

time in Section 4.3.2.

4.3.1 Ensembled Matching

From Section 3.4.1 we have discovered that existing matching methods allow

the original input image and its mirror image to influence each other through
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feature norms. If the norm of the features extracted by the model from this

mirror image is large, it is likely to cause identification errors. Since we aim to

use these additional images to aid recognition, we want to avoid negative effects

like this.

Instead of combining features, we perform feature matching separately so that

they do not affect each other. We compare the original images of the two input

images to generate a similarity score, then compare their mirror images to gen-

erate another similarity score, and finally average the two scores to get the final

similarity score. In addition, this approach can be more flexible to add other kinds

of transformations to increase the confidence of identification results further. We

refer to this method as multi-transform matching, and the matching process is

shown in Figure 28. Thus, given a set of transformations T , the final similarity

score can be denoted as

S(A,B) =
1

N

N∑
n=1

D(M(Tn(A)),M(Tn(B))), (4.14)

where A and B are two input images, N is the number of transformations we

use, and the D and M are distance function and feature extraction model. The

distance function we use here is cosine similarity.
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Figure 28: Illustration of our multi-transform feature matching

We further organize this approach into an algorithm to make it clearer. A

palmprint recognition system generally includes the following three behaviors:

registration, identification, and verification, which we have already introduced

in Figure 1. The registration procedure is detailed in Algorithm 3, which mainly

converts the input image into features and stores them. Here, due to the use of

test-time augmentation technique, several features will be stored according to the

number of transformations used.
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The feature matching part of identification and verification is the same; the

main difference is the number of matches. Because the verification process is sim-

pler, we can focus more on the feature matching part, so we only describe the

verification process here. The verification procedure is presented in Algorithm 4.

The most important part is in line 3 to 7, which generate the features from trans-

formed images respectively and calculate the cosine similarity with the registration

templates. Note that the T0 in the pre-defined transformation set is an identity

function that takes input as output directly. Finally, the similarity of all pairs are

averaged to produce the final similarity score (line 9).

Algorithm 3 Registration procedure
Input:
1) Pre-defined transformations: T = {T0, T1, · · · , TN }
2) Feature extraction model: M
3) Registered templates: G
4) Input image: X

Output: Registered templates: G

1: templates ← [ ]
2: for t ∈ T do
3: img ← t(X)
4: feature ←M(img)
5: templates.append(feature)
6: end for
7: G.append(templates)
8: return G

Algorithm 4 Verification procedure
Input:
1) Pre-defined transformations: T = {T0, T1, · · · , TN }
2) Feature extraction model: M
3) Registered templates: G
4) Input image: X
5) Query identity: I

Output: Similarity score

1: similarities ← [ ]
2: Find index i of query identity I in the registered templates G
3: for j = 0 to N do
4: img ← Tj(X)
5: feature ←M(img)
6: similarity ← cos(feature, Gij)
7: similarities.append(similarity)
8: end for
9: score ← average(similarities)
10: return score
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4.3.2 Transformations for Recognition Time

There are three points to consider about the transformation used in recognition.

First, we must be sure that it is reasonable to use such an image transformation

for this task. That is, the model needs to be able to recognize these transformed

images. Second, the model must be robust enough with a low variance in feature

extraction across transformations. Finally, the computational cost of these trans-

formations and the impact on recognition speed are application considerations.

We will cover these points in the following explanation.

270° rotation

180° rotation

Horizontal flip

Vertical flip

Input image

90° rotation

Point to bottom

Point to right

Point to up

Figure 29: A left hand image can be converted to form left and right hand images
in four orientations, a total of eight images.

We already know that adding mirror image for feature matching is helpful,

and rotation is a similar transformation. In Section 4.1.1, we also showed that

these rotated images can be recognized by the model and are also helpful for
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feature matching. Therefore, we can infer that both rotation and mirroring are

transformations that improve the recognition effect. These two transformations

can expand an input image into 8 images in total, including left and right hand

images in four orientations, as shown in Figure 29.

Although these transformed images can improve the matching performance,

the vertical flip is the best. The reason it is the best comes from the ROI cropping

algorithm, where the last step rotates the image so that the fingers point to the

left. It makes a left hand image form a texture similar to the right hand in the

same orientation after a vertical flip. Because we have trained the left and right

hand images in this orientation, it is natural that flipping vertically works best.

To satisfy the aforementioned conditions, make the model robust enough to

produce similar recognition results under these transformations. Therefore, we

employ the oversampling augmentation method described in Section 4.1.1. This

approach successfully enables the model to recognize through these transformed

images and maintain the same level of improvement from these transformed im-

ages.

Since no matter which of these newly added images is used, the improvement

in recognition accuracy is similar, so we only need to consider the number of addi-

tional images. Although using more transformations can lead to more performance

gains, both transformations and additional matching increase computational cost,

which in turn reduces the speed of identification. In practical application sce-

narios, more consideration should be given to hardware specifications and user

experience, so adjustments should be made according to the situation.

Only 5 additional images were used in our experiments. Because the more

we use, the less the improvement will be. Moreover, The remaining two need to

convert the input image twice, so the computation cost is relatively high. There-

fore, we totally compare 6 feature pairs for every two input images in our multi-

transform matching.
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CHAPTER 5

PERFORMANCE EVALUATION

In this chapter, we evaluate the three improvements proposed in Chapter 4.

Before that, we introduce the datasets used in these evaluations, which are detailed

in Section 5.1. Since the model is the basis of all methods, we will first demonstrate

the advantages of our proposed Reduced ResNeSt in Section 5.2. This is followed

by the results of our hyper-parameter optimization search for data warping aug-

mentation and the improvements it brings are described in Section 5.3. Then,

We evaluate our proposed multi-transform matching in Section 5.4. Since our

oversampling augmentation is developed from it, its effect is also presented in this

section. Details about the metrics and implementation are explained separately

in each section. Finally, we summarize the performance improvements brought by

our three proposed data augmentation methods.

5.1 Datasets

5.1.1 PolyU Multispectral Palmprint Dataset

The PolyU multispectral palmprint dataset [3] has been widely adopted in

palmprint recognition for a long time. The images of the dataset were acquired

under four channels of the image spectrum, i.e., the blue channel, the green chan-

nel, the red channel, and the NIR channel. They recruited a total of 250 volunteers,

including 55 women and 195 men, between the ages of 20 and 60. The images

were collected in an enclosed space with a fixed position and from two sessions at a

time interval of 9 days. During each session, the volunteers were asked to provide

6 images for each palm. Hence, 12 images were collected from a single palm under

one certain channel. In total, the database contains 6000 (500 palms * 6 shots *

2 sessions) images for one channel. In order to standardize the application, a set

of cropped ROI images with a size of 128 × 128 pixels was released for public use.

Some examples are shown in Figure 30. The red, green, and blue channels were

concatenated in our experiment to form RGB palmprint images.

5.1.2 Tongji Contactless Palmprint Dataset

The Tongji contactless palmprint dataset [4] is the first large-scale contactless

palm image dataset. They designed image acquisition equipment and collected

both palmprint and palm vein images. Although the images were divided into

73
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(a) Blue (b) Green (c) Red (d) NIR (e) RGB

Figure 30: The sample images of PolyU-M dataset [3]. (e) is the concatenated
RGB image.

two datasets, they were captured at the same time. During acquisition, only one

instruction is given to the subjects: they need to stretch their hands and naturally

make the finger gaps observed on the screen. There were 300 volunteers in total,

with 192 men and 108 women. 235 of them were between the ages of 20 and 30,

and the rest were between 30 and 50. The images were collected in two separate

sessions, and the average time interval between the two acquisition sessions was

about two months. In each session, 10 images of each palm were captured from

each volunteer. In total, the dataset contains 12000 (600 palms * 10 shots * 2

sessions) images from 600 different palms. Figure 31 shows the examples from

their public website [16].

Figure 31: The sample images of Tongji contactless palmprint dataset from [16]
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5.1.3 Tongji Mobile Palmprint Dataset

The palmprint images of the Tongji mobile palmprint dataset [24] were col-

lected by two kinds of smartphones, Huawei and Xiaomi, in an unconstrained

manner. Thus, they have a variety of backgrounds and lighting environments.

MPD comprises 16,000 palmprint images from 200 volunteers in two sessions at

a time interval of half a year. Among those volunteers, 195 subjects were 20 to

30 years old, and the others were from 30 to 50 years old, with a balanced gender

ratio. Each volunteer is asked to provide 10 palm images of each hand in each

session using each smartphone, which means there are 40 images of each hand.

They also provide a set of cropped ROI images for public use. Figure 32 shows

the examples from their public website [17].

Figure 32: The sample images of Tongji mobile palmprint dataset from [17]

In our experiment, the images collected by different mobile phones were se-

lected as different datasets. Although the images captured by the two phones

may not have a huge difference, they come from different acquisition devices. Our

goal is to bridge the gap between the different environments, and the different ac-

quisition devices are regarded as different environments in our application context.

So there are two datasets denoted as MPD(h) and MPD(m) that indicate Huawwi

and Xiaomi, respectively. Each contains 8,000 (400 palms * 10 shots * 2 sessions)

palmprint images belonging to 400 categories. The details of the datasets we used

in the experiments are summarized in Table 7.
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Table 7: Some details of different palmprint datasets

Database Acquisition type Palms Images Images per palm

PolyU [3] Constrained 500 6000 12

Tongji [16] Partly unconstrained 600 12000 20

MPD(h) [17] Unconstrained 400 8000 20

MPD(m) [17] Unconstrained 400 8000 20

5.2 Evaluation of the Reduced ResNeSt-50

This section mainly examines our proposed improvements to the feature ex-

traction model, the details of which are introduced in Section 4.2. We first demon-

strate the advantages of the pre-trained model in Section 5.2.1, then examine the

effect of ResNeSt layer reduction in Section 5.2.2, and finally compare our pro-

posed Reduced ResNeSt-50 with the baseline models introduced in Chapter 3 in

Section 5.2.3.

In this section, the experiments follow the training process in Figure 19, and

we only change the feature extraction model. To evaluate the model, we mainly

consider training and validation loss curves to compare convergence speed and

cross-dataset recognition performance. The significance of verification loss as per-

formance is that it includes L2 distance loss and classification loss. L2 distance

loss can be regarded as the aggregation degree of the classes, and classification

loss is directly related to the accuracy of recognition.

Note that the calculation for training loss and validation loss is different. The

computation of the loss requires the assistance of the classifier, but the classifier

can only be used for classes in the training set. Therefore we cannot directly

calculate the validation loss. To address this problem, we average the feature

template of each registered image as the center vector to replace the weights in

the classifier, because the weights in the classifier are regarded as the center vector

in the L2 distance loss during training.

We mentioned using softmax loss and center loss as our metrics during data

warping search. Because their values are relatively large, and have better discrim-

ination. Here we also use these two as validation loss to maintain consistency. For

training, we use the Focal loss and Huber loss we introduced, because they can

stabilize the training convergence.

PolyU-M and MPD(h) are used for the training set and validation set, re-

spectively. The validation set only contains half of the classes in the dataset.
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Moreover, five images in each class are regarded as registration set, and the rest

are probe images. Since our main objective is to improve recognition accuracy

across datasets, we choose a relatively difficult setting to evaluate the proposed

method: train from the constrained dataset and apply it to the unconstrained

dataset.

5.2.1 Pre-trained Model

We have introduced the benefits of pre-trained models in Section 4.2.3. There

are three main advantages: faster convergence, improved performance on small

training datasets, and more robustness across datasets. In this section, we will

compare the loss records during training between the pre-trained model and train-

ing from scratch to show their training speed and loss on the target dataset. The

model used in the following experimental is ResNeSt-26.
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Figure 33: Comparison between pre-trained model and training from scratch

From the figure 33 we can clearly see that there is a huge gap between the two

in terms of training speed and validation loss. First of all, it can be found from

the number of training iterations that the pre-training model converges extremely

fast. Although it does not seem obvious from the illustration, overfitting will still

occur on the pre-trained model, so it is necessary to pay attention to the number

of training iterations. The validation loss represents the performance on the target

dataset. The smaller the loss, the smaller the distance between the registration

set and the probe images. The reason why the validation loss is smaller than

the training loss is that they are computed differently, which is explained at the

beginning of the section. Since here we use different datasets for training and
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validation, it shows that the pre-trained model is indeed helpful for cross-dataset

recognition.

5.2.2 Reduced ResNeSt
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Figure 34: Comparison between different depths of ResNeSt-26 and ResNeSt-50

This experiment is to answer the question, is the deep structure model really

suitable for palmprint recognition? Therefore, we show a comparison of training

records for models with a different number of layers. The layer here refers to a

row of Table 6 rather than an individual ResNeSt block, which we mentioned in

Section 4.2.2.
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Figure 34(a) and (b) shows the comparison of the training records with different

depths of ResNeSt-26, including the original ResNeSt-26 and its removal of the last

layer and the last two layers. From Figure 34(a), it can be found that the model

with fewer layers converges slower. This is because we use pre-trained models.

The more layers a pre-trained model has, the better its modularization ability to

adapt to new tasks. Otherwise, in general, the larger the number of parameters,

the more data and training time it will take for the model to converge. As for the

validation loss demonstrated in Figure 34(b) that the model with the last layer

removed is the best.

The results of ResNeSt-50 are even more surprising, which is shown in Fig-

ure 34(c) and (d). ResNeSt-50 with the last layer removed far outperforms the

other two, and has the fastest convergence speed. Compared with ResNeSt-26,

this reduced ResNeSt-50 also has better performance.

In addition, we also observed the same phenomenon on ResNet. Therefore, we

infer that in palmprint recognition, it is more suitable to use the ResNet series of

models without the last layer.

5.2.3 Model Comparison
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Figure 35: Comparison between different models

Finally, we compare the proposed Reduced ResNeSt-50 with ResNet-20 and

ResNet-18 mentioned in Chapter 3. It is obvious from Figure 35(b) that Reduced

ResNeSt-50 outperforms the other two. Since the validation loss of ResNet-20 is

too high, the range of the loss in the figure is limited. It shows that this model
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performs poorly across datasets and cannot extract discriminative features in such

situation. In contrast, Reduced ResNeSt-50 has superior discrimination ability.

Then we show the model’s ability to generate discriminative features from

another intuitive point of view. We extract features from the registration images in

the validation set through different models and use UMAP [72] for dimensionality

reduction visualization, as shown in Figure 36. A total of 1000 (400 class * 5

samples) samples are included in the registration set. We combine samples with

very close distances through UMAP, so the separation between features should be

clearly seen on the graph. If the sample distance on the graph is very close, the

margin between categories would also be small, and it is more likely to produce a

recognition error.

It can be seen from the figure that the features extracted by Reduced ResNeSt-

50 are more evenly distributed, while ResNet-20 is tightly clustered. This result

is consistent with the validation loss curve that Reduced ResNeSt-50 has better

feature extraction ability. Therefore, we use this proposed Reduced ResNeSt-50

as the backbone model to provide sufficient capacity for data augmentation.

5.3 Evaluation of the Data Warping Search

We will examine the results of our proposed hyper-parameter search method in

this section, while the evaluation of oversampling will be presented in the next sec-

tion because it is very deeply related to multi-transform matching. The results of

hyper-parameter optimization will be shown in Section 5.3.1, and the comparison

with the baseline augmentation method is in Section 5.3.2.

The experimental setup performed in this section is basically the same as in

the previous section. Refer to Figure 19 for the specific training process. Similarly,

Focal loss and Huber loss are training losses, while softmax loss and center loss

are used for validation. PolyU-M dataset and half of MPD(h) are training and

validation sets, and does not oversample the training dataset. Reduced ResNeSt-

50 is used as a feature extraction model.

The image transformations to search have been introduced in Section 4.1.2,

and we organize them in Table 8. In order to reduce the interaction between

image transformations, we first perform brightness, contrast, saturation, and hue

adjustments that require precise values for their color space transformations. Then

smoothing and noise injection are performed to avoid noise being eliminated by

smoothing. Rotation and translation are done last, as they are not affected by the

others.

Our goal is to search for the best values of the intensity and probability pa-

rameters. The intensity parameter defines the range of intensity sampling for each
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Figure 36: Visualization of the features extracted by different models. The dots
on the illustration are the images of the registration set, and the more scattered,
the less potential to produce recognition error.
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Table 8: Image transformations and its intensity parameter

Transformation Intensity range Description

Brightness [max(0, 1− a), 1 + a ] magnification factor

Contrast [max(0, 1− a), 1 + a ] magnification factor

Saturation [max(0, 1− a), 1 + a ] magnification factor

Hue [−a, a ], a ∈ [ 0, 0.5 ] magnification factor

Smoothing [ 0.1, a ] Gaussian kernel σ

Noise injection [ 0, a ] magnification factor

Rotation [−a◦,+a◦ ] counterclockwise degree

Translation [−aW, aW ], [−aH, aH ] ratio of the width and
height

Note: Transformations are performed in the order shown in the table to reduce
the mutual influence. The intensity range represents the sampling range defined
by the intensity parameter a.

transformation performed, and the probability parameter determines the proba-

bility of performing the transformation on each training sample. Next, we will

search for the hyper-parameter values of each transformation and whether they

are necessary by our proposed method, thereby finding a data warping strategy

that is more suitable for palmprint recognition across datasets.

5.3.1 TPE Searching Result

In this section, we first introduce the details of the TPE implementation, and

then show the history of the optimization process, as well as the selection of

transformations based on the results.

The first step is to form a tree-structured domain. All transformation hyper-

parameters are sampled independently, so instead of creating groups, we form

probability models for each hyper-parameter. We then need to define the search

space for each hyper-parameter, which is listed in Table 9. The maximum value

of these ranges is set to a fairly large value to ensure that the search range is

large enough. If the image is transformed with the maximum value, it will result

in indistinguishable images. Taking brightness as an example, it will produce a

completely white image. As for the probability parameters, all of them are set as

[0,1].
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Table 9: Search range of each intensity parameter

Transformation Search range type

Brightness [ 0, 2 ] continuous

Contrast [ 0, 3 ] continuous

Saturation [ 0, 4 ] continuous

Hue [ 0, 0.5 ] continuous

Smoothing [ 1, 10 ] discrete integer

Noise injection [ 0, 20 ] discrete integer

Rotation [ 0, 10 ] discrete integer

Translation [ 0, 0.1 ] discrete

Second, the TPE sampler needs enough start-up samples to compute the com-

putational model. Therefore, 20 trials were randomly sampled before sampling

according to TPE, and gamma was set to 0.1, indicating that at least two samples

were used to form l(x). In each sampling, 24 candidates will be obtained from

each l(x) to calculate l(x)/g(x), and the highest one will be taken as the current

sampling.

In addition, we only use pruner in the search phase of TPE to speed up the

search process, so the first 20 trials are not terminated early. Because the random

sampling at the beginning aims to explore the parameter space as much as possible,

once the sampling stage of TPE is entered, only the best part will be explored.

The pruner does not come into play until after the 10th epoch of the first training,

called warm-up steps. If the first training is complete, the second training will not

be stopped early as well.

According to the above implementation details, we have performed 50 trials,

and the results are recorded in Figure 37. It can be found that the verification

loss obtained after the 20th trial is almost a small value, indicating that TPE can

effectively find a good value, so it is more likely to find a better value.

Then we make the transformation selection based on the search results of TPE.

The probability parameter of a transformation indicates how often this transfor-

mation is performed. Suppose the TPE search result shows that the probability

parameter of this transformation should be as small as possible. In that case, this

transformation obviously provides very little help and may even have a negative

impact.
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Figure 37: The sampling history and corresponding validation loss. TPE sampling
starts at the 20th trial, and before this is random sampling.

Consequently, we take the best top 10% samples to represent the best param-

eters. If the mean of the probability parameter of any transformation is lower

than 0.1, remove the transformation. This operation was done iteratively until no

transformations were filtered out. Because removing some transformations, the

mutual influence will also change, causing the distribution of the parameters to

change as well.

Figure 38 is a plot of the probability parameter and validation loss for the two

removed transformations: saturation and rotation. The deeper the sample in the

figure represents the later sampling, that is, the parameter that TPE considers

to be better. It can be found that they all tend to be smaller and smaller. In

addition to these two, smoothing and translation are also similar.

We performed a total of three searches with 50 trials each. In the end, only

brightness, contrast, hue, and noise injection are left. The optimal value

of the noise intensity parameter is only 1, which has little effect on the image.

Therefore, we infer that adjusting color is the most effective way to augment data

for palmprint recognition across datasets. From Figure 18, it can also be found

that the biggest gap between different palmprint ROIs is the skin color, ambient

light and shadow.
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(b) Rotation probability samples

Figure 38: The relationship between the transformation probability parameter and
the validation loss, the darker the color represents the later sampled value. Both
saturation and rotation would be removed because their execution probability is
too low.

5.3.2 Cross-dataset Evaluation of Different Data Warping

In this subsection, we compare the data warping augmentation searched by

TPE with the baseline, including both eight transformations and the remaining

four transformations after filtering through the threshold. We first compare the

effect of different data warping augmentation on the model’s feature extraction

ability across datasets by validation loss curves. The accuracy gain of the data

warping augmentation approach discovered through hyper-parameter optimization

is then demonstrated in comparison to the baseline.

Figure 39(b) shows the validation loss curves of these three data warping aug-

mentations on MPD(h). The validation loss curves searched by TPE are lower

than the baseline, and the TPE with threshold filter is even better. Such results

suggest that adding more transformations does not lead to better data warping

augmentation. More transformations may bring not only more computational cost

but also a negative impact. Therefore, the choice of transformation is critical, and

how to evaluate the contribution of transformation more precisely deserves further

research.

Figure 40 shows the cross-dataset accuracy of these three data warping aug-

mentations, and we first focus on the results trained with the PolyU-M dataset.

Since the training set is a constrained dataset, it lacks a lot of light and shadow

variation compared to the unconstrained dataset. While baseline augmentation

is a relatively moderate data warping, most of the hyper-parameter selections are

close to the middle value or common value, lacking sufficient image changes. Hence

it performs poorly on MPD.
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Figure 39: Comparison between different augmentations

By optimization search, we can avoid the influence of stereotypes and find

the most suitable combination of transformations and hyper-parameters. The

combination obtained through the search greatly improves the accuracy of cross-

dataset identification. The accuracy of our proposed method increases by 12.4%

from the baseline on MPD(h), as seen in the Figure.

Since the search is performed on PolyU-M and MPD(h), their improvement is

particularly large. However, MPD is the most challenging among these datasets,

so this data warping approach can also be helpful for training on other datasets.

We show the cross-dataset accuracy trained on the Tongji dataset in Figure 40(b).

Our method is still superior to the baseline. It can be noted that training on the

Tongji dataset and identifying on the MPD(m), which is completely different from

our search setup, still achieves an accuracy improvement of 10.54%.

The limitation of this method lies in the target dataset to be searched, and its

diversity determines the upper bound of the search results. Once more complex

data emerges, more complex datasets must be searched to cope with those new

data. For example, images have lots of shadows or painting on palms. Another

limitation is the transformation chosen, which must be able to cover changes in

the target dataset. For example, the issue of occlusion is not considered in current

transformation set. In addition, the current way of transformation selection still

needs to be improved to become more efficient and accurate.
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Figure 40: Rank 1 Accuracy(%) comparison of different kinds of data warping in
cross-dataset scenarios
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5.4 Evaluation of the Multi-Transform Matching and
Oversampling

Inspired by [8] introduced in Chapter 3, we have proposed to add more trans-

formations in recognition time. A palmprint ROI image can form up to 8 images

in four orientations, up, down, left, and right of the left and right hands. We eval-

uate the feature matching improvement brought by using these additional images

in this section.

Since the model only inputs images in the left orientation during training,

the improvement in feature matching of images in other orientations is limited.

Therefore, we have proposed an oversampling augmentation method that trans-

forms images to different orientations as training images. It not only improves the

recognition ability in other directions, but also makes the improvement brought

by different transformations consistent. Therefore, the selection of transforma-

tions is reduced to only the number of transformations need to be chosen. We will

demonstrate their advantages in Section 5.4.1. Finally, we compare the recogni-

tion performance across datasets of the multi-transform matching with the mirror-

concatenated matching introduced earlier in Section 5.4.2.

The feature extraction model used in the following evaluations was trained

according to Figure 19. The data warp augmentation uses the four transformations

found with TPE and threshold filter along with the optimal parameters. The

feature extraction model is pre-trained reduced ResNeSt-50, and the loss function

is Focal loss and Huber loss. The parameters of the reduced ResNeSt-50 and the

classifier are updated with SGDM and Adam, respectively.

5.4.1 Evaluation of the Transformations within Multi-Transform
Matching

Table 10 shows the evaluation of the multi-transform matching and oversam-

pling. The values in the table are all rank 1 accuracy, calculated by feature

matching to identify the most similar registered images. Feature matching is all

performed with multi-transform matching, differing only in the transformations

used. Here we select only five transformations for comparison. Note that the

most common way of matching using only the input image can also be considered

one kind of multi-transform matching, i.e., including only one transformation that

does no transformation.

This table is divided into two columns; the difference is whether the training

data is expanded with oversampling. We start from “without oversampling”. Us-

ing only the input image I can be considered as a basis for calculating the amount

of improvement. It can be seen from the table that the improvement of vertical
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Table 10: Comparison of Rank 1 Accuracy(%) of multi-transform matching using
different transformations on MPD(h)

Matching Source Without Oversampling With Oversampling

Input I 85.27 90.03

I +H 88.77 92.20

I + V 90.25 92.28

I +R 88.80 92.32

I + U 86.50 92.02

I +B 86.07 92.55

All 91.62 94.33

Note: “All” refers to match with total 6 palmprint templates, including input,
horizontal flip (H), vertical flip (V), 180◦ rotation (R), 90◦ rotation (U), and 270◦

rotation (B).

flip is the largest, because the output image of the ROI cropping algorithm is

left-oriented, and the vertical flip is equivalent to converting into a style similar

to the texture of the other hand. For example, the ROI image of a left hand will

become the texture of a right hand after being vertically flipped. This texture is

included in the training data, so the model has a better ability to identify it, and

thus has a better accuracy improvement.

Although the model has not been trained on images in other orientations, it still

has a part of the ability to identify images in these orientations, so it can improve

the accuracy. Among them, the flip type (180◦ rotation is equal to horizontal and

then vertical flip) is better, and the improvement of rotation is less. However,

adding all five of these transformations is even better, which means that adding

multiple transformations has its advantages.

Since the best improvement is the vertical transformation which produces im-

ages similar to training images, we generate images in all orientations to train the

model to enhance the multi-transform matching further. It can be seen from the

table that oversampling not only boost up all transformations to the same level

but also improves the basic identification accuracy. The accuracy improvement is

even as high as 4.76%.

We mentioned earlier that multi-transform matching could afford up to eight

images. However, the accuracy gain decreases as more generated images are added.

Figure 41 depicts the accuracy of adding transitions in different orders. Among
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them, 0 means that no additional images are added, which is “input I” in the above

table, and 5 means that five additional images are used to assist the matching,

that is, “All” in the above table. The figure shows that the effect of different orders

on the accuracy is not much different, and the number used is critical. Moreover,

regardless of the order, the accuracy gain is gradually decreasing.

We, therefore, reasoned that adding too many generated images might be a

waste of computational cost, so we chose only six kinds. The remaining two

require two transformations to achieve, which consumes more computation than

the others, so they are not taken into account.
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Figure 41: Accuracy of cumulative transformations in different order. The symbols
are the same as Table 10. From the left to the right of the X-axis, each grid
adds a transformation. The Y-axis corresponds to the accuracy using cumulative
transformations. For x = 0 and x = 5 is the same as the “I” and “All” in Table 10.

5.4.2 Comparison of Different Matching Methods

In this section, we compare the proposed multi-transform matching with mirror-

concatenated matching [8] and single matching. Single matching is to match only

through the input image. Because the other two will use multiple images, it is

called single matching here. Single matching is the most common method, so we

consider it as the baseline. Next, we compare the accuracy and time consuming

of these three matching methods in several datasets that are different from the

training dataset.
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Figure 42: Rank 1 Accuracy(%) comparison of different kinds of matching in cross-
dataset scenarios
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Figure 42 shows the rank 1 accuracy comparison of different matching methods.

Different matching methods use the features extracted by the same model but are

trained with different oversampled source datasets. Since training on the PolyU-

M dataset and identifying on other datasets is the most difficult situation, we use

this situation as a representative to examine the performance of multi-transform

matching.

From the figure, we can see that the multi-transform matching significantly

improved compared with single matching on MPD. The improvement can reach

up to 4.66%, which is better than the mirror-concatenated matching.

We mentioned earlier that single matching is a special case of multi-transform

matching, and mirror-concatenated matching under a well-trained model is very

similar to multi-transform matching using a single mirror reflection. Therefore, it

is intuitive that the results of the multi-transform matching are superior. As can

be seen from Figure 41, the more kinds of transformations are used, the higher

the accuracy. Moreover, it is not limited to a certain dataset. It can be seen from

Figure 42(b) that significant accuracy improvements are also achieved on each

target dataset when trained on the Tongji dataset.

Table 11: Comparison of execution time(s) of different matching methods

Matching method Matching time(s)

Single 0.363

Mirror-Concatenated 0.516

Multi-Transform 1.041

Finally, the execution time of the matching is also a matter of concern. There-

fore, we compare the execution times of different matching methods in Table 11,

and the experiments are conducted with one-to-one validation.

We exclude the feature extraction time of the registration images and only

compare the time from inputting the test ROI image to generating the similarity

score. Taking the multi-transform matching as an example, the calculated time

interval includes the transformation of the input ROI image, the feature extraction

of the six images, the calculation of their respective cosine similarity, and averaging

the similarities. Furthermore, the matching is only calculated by CPU, without

parallel acceleration through the GPU.

Compared with the calculation of similarity, feature extraction takes much

more time. Taking the single matching as an example, almost all the time is

used for feature extraction, and the calculation of cosine similarity is only a few
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milliseconds. Hence, the multi-transform matching is more than six times the

amount of operations compared to single, but only three times worse in execution

time. Moreover, the multi-transform matching can also be greatly accelerated

through parallel computing, so such a matching method can effectively improve

the accuracy.

5.5 Summary

In previous evaluations, we individually demonstrated the advantages of our

proposed method, including Reduced ResNeSt-50, hyper-parameter search with

optuna and TPE, oversampling by rotation, and multi-transform matching. As

mentioned earlier, these data augmentation methods can all be used simultane-

ously to improve performance. We previously focused on comparisons with other

methods, so here we will summarize the effects of combining our proposed data

augmentation methods.

Figure 43 depicts a difficult cross-dataset situation, using the PolyU-M and

Tongji datasets as training sets, and testing the effect of the trained model on

other datasets. The methods we propose are added sequentially from left to right

in the figure. Testing on the unconstrained dataset MPD is critical. When we use

PolyU-M datasets as the training set, our method can achieve a total of 21.46% and

22.55% on MPD(h) and MPD(m), respectively. As for using the Tongji dataset

as a training set, it is increased by 18.5% and 18.15%, respectively. It indicates

that our proposed method has a very significant improvement for datasets with

less variation.

The previous figure is intended to show that even if not the PolyU-M dataset,

which is used for search, such an approach can also improve substantially when

other datasets are used as training sets. In addition, such methods are not limited

to improving the accuracy of MPD. Figure 44 shows the improvement in accuracy

using MPD(h) and MPD(m) as the training set. The images in MPD are more

various, so it has a better effect as a training set. However, our proposed method

can still improve the accuracy to very close to 100% on this basis. It can be seen

from the figure that using MPD as the training set has the lowest accuracy of

99.66% on all datasets. It indicates that our method is very robust in improving

palmprint recognition under various training conditions, and can achieve excellent

rank 1 accuracy.
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Figure 43: Cumulative accuracy(%) improvement of our data augmentation meth-
ods in cross-dataset scenarios.
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Figure 44: Cumulative accuracy(%) improvement for training on MPD.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In palmprint recognition across datasets, past methods mostly focus on a single

target dataset. Such an approach is still not robust enough. The variation of input

images in practical applications may be very large, not limited to two domains.

Therefore, we aim to enable the feature extraction model to learn a more general

feature representation.

Given that the ROI cropping algorithm provides a very uniform input image,

we reasoned that this problem could be effectively addressed by enhancing random

image transformations during training. Based on the observation, we conduct a

search for random image transformations in a situation where the image condition

gap is the largest. We use PolyU-M as the training dataset and half of MPD(h)

as the validation set. The transformations found under such conditions can best

reflect the kind of transformation most suitable for palmprint ROI images. The

results show that brightness, contrast, hue, and noise injection are the most effec-

tive transformations, with up to 12.55% improvement in accuracy on cross-dataset

recognition.

For feature matching, we propose a test-time augmentation method suitable for

palmprint recognition, called multi-transform matching. Rotate the input image

into four orientations or mirror it, and up to eight images can be formed. We

use 6 of them for matching and then combine the results as the final similarity.

Although such a matching method has a good improvement, the images from

different orientations have different degrees of improvement.

Inspired by this concept, we propose an oversampling method that rotates the

images into 4 orientations and adds them to the training set as different classes

of training images. This data augmentation method can not only strengthen the

feature extraction ability of the model, but also make the improvement brought

by images from different orientations similar.

This oversampling method can improve the accuracy by up to 5.34% base on

the data warping proposed above, and a further improvement of up to 4.66% with

multi-transform matching. Combining these three, we can improve the accuracy

by up to 22.55% in total compared to the augmentation used in the baseline system

on cross-dataset recognition.

There are some issues that need to be considered in such a multi-transformation

matching. The first is the cost of increasing the matching. Our comparison of
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the time cost in the situation of using only the CPU shows that matching with

6 images takes about three times as long as a single image. However, such an

algorithm can be highly parallelized, greatly reducing the computational time.

The second is about the performance of the matching. Our experiments show

that the improvement in accuracy decreases as more transformations are used in

the matching. Therefore, even if we use all of them, the benefits are not high. In

the case of sufficient computing power, it is enough to use 6 transformations.

Although our search method also requires additional datasets to assist, only a

small number of target dataset for validation is sufficient. Moreover, the process of

searching is quite automated and does not require a tedious tuning process. Such

a method is not limited to improving the target dataset, but can fairly improve

the overall capability of the model. However, there are still some issues that can

be investigated deeply.

First, we only study the identification accuracy rate, and have not yet had a

deep understanding of the validation error rate like FAR and FRR. Reducing the

error rate is the key to making palmprint recognition closer to the application level.

Second, the current transformation selection algorithm is still simple and requires

multiple iterations, which is inefficient. If there is a more accurate method will be

able to speed up the search process. Third, if more complex image conditions are

present, such as graffiti on palms or strong shadows, our current selection of image

transformations may be inadequate. Therefore, more practical scenarios are still

to be studied.
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